mm: store compound_nr as well as compound_order
[linux-block.git] / include / linux / mm.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/mmap_lock.h>
19#include <linux/range.h>
20#include <linux/pfn.h>
21#include <linux/percpu-refcount.h>
22#include <linux/bit_spinlock.h>
23#include <linux/shrinker.h>
24#include <linux/resource.h>
25#include <linux/page_ext.h>
26#include <linux/err.h>
27#include <linux/page_ref.h>
28#include <linux/memremap.h>
29#include <linux/overflow.h>
30#include <linux/sizes.h>
31#include <linux/sched.h>
32#include <linux/pgtable.h>
33
34struct mempolicy;
35struct anon_vma;
36struct anon_vma_chain;
37struct file_ra_state;
38struct user_struct;
39struct writeback_control;
40struct bdi_writeback;
41struct pt_regs;
42
43void init_mm_internals(void);
44
45#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
46extern unsigned long max_mapnr;
47
48static inline void set_max_mapnr(unsigned long limit)
49{
50 max_mapnr = limit;
51}
52#else
53static inline void set_max_mapnr(unsigned long limit) { }
54#endif
55
56extern atomic_long_t _totalram_pages;
57static inline unsigned long totalram_pages(void)
58{
59 return (unsigned long)atomic_long_read(&_totalram_pages);
60}
61
62static inline void totalram_pages_inc(void)
63{
64 atomic_long_inc(&_totalram_pages);
65}
66
67static inline void totalram_pages_dec(void)
68{
69 atomic_long_dec(&_totalram_pages);
70}
71
72static inline void totalram_pages_add(long count)
73{
74 atomic_long_add(count, &_totalram_pages);
75}
76
77extern void * high_memory;
78extern int page_cluster;
79
80#ifdef CONFIG_SYSCTL
81extern int sysctl_legacy_va_layout;
82#else
83#define sysctl_legacy_va_layout 0
84#endif
85
86#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
87extern const int mmap_rnd_bits_min;
88extern const int mmap_rnd_bits_max;
89extern int mmap_rnd_bits __read_mostly;
90#endif
91#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
92extern const int mmap_rnd_compat_bits_min;
93extern const int mmap_rnd_compat_bits_max;
94extern int mmap_rnd_compat_bits __read_mostly;
95#endif
96
97#include <asm/page.h>
98#include <asm/processor.h>
99
100/*
101 * Architectures that support memory tagging (assigning tags to memory regions,
102 * embedding these tags into addresses that point to these memory regions, and
103 * checking that the memory and the pointer tags match on memory accesses)
104 * redefine this macro to strip tags from pointers.
105 * It's defined as noop for arcitectures that don't support memory tagging.
106 */
107#ifndef untagged_addr
108#define untagged_addr(addr) (addr)
109#endif
110
111#ifndef __pa_symbol
112#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
113#endif
114
115#ifndef page_to_virt
116#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
117#endif
118
119#ifndef lm_alias
120#define lm_alias(x) __va(__pa_symbol(x))
121#endif
122
123/*
124 * To prevent common memory management code establishing
125 * a zero page mapping on a read fault.
126 * This macro should be defined within <asm/pgtable.h>.
127 * s390 does this to prevent multiplexing of hardware bits
128 * related to the physical page in case of virtualization.
129 */
130#ifndef mm_forbids_zeropage
131#define mm_forbids_zeropage(X) (0)
132#endif
133
134/*
135 * On some architectures it is expensive to call memset() for small sizes.
136 * If an architecture decides to implement their own version of
137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138 * define their own version of this macro in <asm/pgtable.h>
139 */
140#if BITS_PER_LONG == 64
141/* This function must be updated when the size of struct page grows above 80
142 * or reduces below 56. The idea that compiler optimizes out switch()
143 * statement, and only leaves move/store instructions. Also the compiler can
144 * combine write statments if they are both assignments and can be reordered,
145 * this can result in several of the writes here being dropped.
146 */
147#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
148static inline void __mm_zero_struct_page(struct page *page)
149{
150 unsigned long *_pp = (void *)page;
151
152 /* Check that struct page is either 56, 64, 72, or 80 bytes */
153 BUILD_BUG_ON(sizeof(struct page) & 7);
154 BUILD_BUG_ON(sizeof(struct page) < 56);
155 BUILD_BUG_ON(sizeof(struct page) > 80);
156
157 switch (sizeof(struct page)) {
158 case 80:
159 _pp[9] = 0; /* fallthrough */
160 case 72:
161 _pp[8] = 0; /* fallthrough */
162 case 64:
163 _pp[7] = 0; /* fallthrough */
164 case 56:
165 _pp[6] = 0;
166 _pp[5] = 0;
167 _pp[4] = 0;
168 _pp[3] = 0;
169 _pp[2] = 0;
170 _pp[1] = 0;
171 _pp[0] = 0;
172 }
173}
174#else
175#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
176#endif
177
178/*
179 * Default maximum number of active map areas, this limits the number of vmas
180 * per mm struct. Users can overwrite this number by sysctl but there is a
181 * problem.
182 *
183 * When a program's coredump is generated as ELF format, a section is created
184 * per a vma. In ELF, the number of sections is represented in unsigned short.
185 * This means the number of sections should be smaller than 65535 at coredump.
186 * Because the kernel adds some informative sections to a image of program at
187 * generating coredump, we need some margin. The number of extra sections is
188 * 1-3 now and depends on arch. We use "5" as safe margin, here.
189 *
190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
191 * not a hard limit any more. Although some userspace tools can be surprised by
192 * that.
193 */
194#define MAPCOUNT_ELF_CORE_MARGIN (5)
195#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
196
197extern int sysctl_max_map_count;
198
199extern unsigned long sysctl_user_reserve_kbytes;
200extern unsigned long sysctl_admin_reserve_kbytes;
201
202extern int sysctl_overcommit_memory;
203extern int sysctl_overcommit_ratio;
204extern unsigned long sysctl_overcommit_kbytes;
205
206int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
207 loff_t *);
208int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
210int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
212
213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214
215/* to align the pointer to the (next) page boundary */
216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217
218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220
221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222
223/*
224 * Linux kernel virtual memory manager primitives.
225 * The idea being to have a "virtual" mm in the same way
226 * we have a virtual fs - giving a cleaner interface to the
227 * mm details, and allowing different kinds of memory mappings
228 * (from shared memory to executable loading to arbitrary
229 * mmap() functions).
230 */
231
232struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234void vm_area_free(struct vm_area_struct *);
235
236#ifndef CONFIG_MMU
237extern struct rb_root nommu_region_tree;
238extern struct rw_semaphore nommu_region_sem;
239
240extern unsigned int kobjsize(const void *objp);
241#endif
242
243/*
244 * vm_flags in vm_area_struct, see mm_types.h.
245 * When changing, update also include/trace/events/mmflags.h
246 */
247#define VM_NONE 0x00000000
248
249#define VM_READ 0x00000001 /* currently active flags */
250#define VM_WRITE 0x00000002
251#define VM_EXEC 0x00000004
252#define VM_SHARED 0x00000008
253
254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
256#define VM_MAYWRITE 0x00000020
257#define VM_MAYEXEC 0x00000040
258#define VM_MAYSHARE 0x00000080
259
260#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
261#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
262#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
263#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
264#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
265
266#define VM_LOCKED 0x00002000
267#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
268
269 /* Used by sys_madvise() */
270#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
271#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
272
273#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
274#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
275#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
276#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
277#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
278#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
279#define VM_SYNC 0x00800000 /* Synchronous page faults */
280#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
281#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
282#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
283
284#ifdef CONFIG_MEM_SOFT_DIRTY
285# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
286#else
287# define VM_SOFTDIRTY 0
288#endif
289
290#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
291#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
292#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
293#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
294
295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
297#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
298#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
299#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
300#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
301#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
302#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
303#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
304#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
305#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307
308#ifdef CONFIG_ARCH_HAS_PKEYS
309# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
310# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
311# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
312# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
313# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
314#ifdef CONFIG_PPC
315# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
316#else
317# define VM_PKEY_BIT4 0
318#endif
319#endif /* CONFIG_ARCH_HAS_PKEYS */
320
321#if defined(CONFIG_X86)
322# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
323#elif defined(CONFIG_PARISC)
324# define VM_GROWSUP VM_ARCH_1
325#elif defined(CONFIG_IA64)
326# define VM_GROWSUP VM_ARCH_1
327#elif defined(CONFIG_SPARC64)
328# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
329# define VM_ARCH_CLEAR VM_SPARC_ADI
330#elif defined(CONFIG_ARM64)
331# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
332# define VM_ARCH_CLEAR VM_ARM64_BTI
333#elif !defined(CONFIG_MMU)
334# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
335#endif
336
337#ifndef VM_GROWSUP
338# define VM_GROWSUP VM_NONE
339#endif
340
341/* Bits set in the VMA until the stack is in its final location */
342#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
343
344#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
345
346/* Common data flag combinations */
347#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
348 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
349#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
350 VM_MAYWRITE | VM_MAYEXEC)
351#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
352 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
353
354#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
355#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
356#endif
357
358#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
359#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
360#endif
361
362#ifdef CONFIG_STACK_GROWSUP
363#define VM_STACK VM_GROWSUP
364#else
365#define VM_STACK VM_GROWSDOWN
366#endif
367
368#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
369
370/* VMA basic access permission flags */
371#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
372
373
374/*
375 * Special vmas that are non-mergable, non-mlock()able.
376 */
377#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
378
379/* This mask prevents VMA from being scanned with khugepaged */
380#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
381
382/* This mask defines which mm->def_flags a process can inherit its parent */
383#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
384
385/* This mask is used to clear all the VMA flags used by mlock */
386#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
387
388/* Arch-specific flags to clear when updating VM flags on protection change */
389#ifndef VM_ARCH_CLEAR
390# define VM_ARCH_CLEAR VM_NONE
391#endif
392#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
393
394/*
395 * mapping from the currently active vm_flags protection bits (the
396 * low four bits) to a page protection mask..
397 */
398extern pgprot_t protection_map[16];
399
400/**
401 * Fault flag definitions.
402 *
403 * @FAULT_FLAG_WRITE: Fault was a write fault.
404 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
405 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
406 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
407 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
408 * @FAULT_FLAG_TRIED: The fault has been tried once.
409 * @FAULT_FLAG_USER: The fault originated in userspace.
410 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
411 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
412 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
413 *
414 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
415 * whether we would allow page faults to retry by specifying these two
416 * fault flags correctly. Currently there can be three legal combinations:
417 *
418 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
419 * this is the first try
420 *
421 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
422 * we've already tried at least once
423 *
424 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
425 *
426 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
427 * be used. Note that page faults can be allowed to retry for multiple times,
428 * in which case we'll have an initial fault with flags (a) then later on
429 * continuous faults with flags (b). We should always try to detect pending
430 * signals before a retry to make sure the continuous page faults can still be
431 * interrupted if necessary.
432 */
433#define FAULT_FLAG_WRITE 0x01
434#define FAULT_FLAG_MKWRITE 0x02
435#define FAULT_FLAG_ALLOW_RETRY 0x04
436#define FAULT_FLAG_RETRY_NOWAIT 0x08
437#define FAULT_FLAG_KILLABLE 0x10
438#define FAULT_FLAG_TRIED 0x20
439#define FAULT_FLAG_USER 0x40
440#define FAULT_FLAG_REMOTE 0x80
441#define FAULT_FLAG_INSTRUCTION 0x100
442#define FAULT_FLAG_INTERRUPTIBLE 0x200
443
444/*
445 * The default fault flags that should be used by most of the
446 * arch-specific page fault handlers.
447 */
448#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
449 FAULT_FLAG_KILLABLE | \
450 FAULT_FLAG_INTERRUPTIBLE)
451
452/**
453 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
454 *
455 * This is mostly used for places where we want to try to avoid taking
456 * the mmap_lock for too long a time when waiting for another condition
457 * to change, in which case we can try to be polite to release the
458 * mmap_lock in the first round to avoid potential starvation of other
459 * processes that would also want the mmap_lock.
460 *
461 * Return: true if the page fault allows retry and this is the first
462 * attempt of the fault handling; false otherwise.
463 */
464static inline bool fault_flag_allow_retry_first(unsigned int flags)
465{
466 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
467 (!(flags & FAULT_FLAG_TRIED));
468}
469
470#define FAULT_FLAG_TRACE \
471 { FAULT_FLAG_WRITE, "WRITE" }, \
472 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
473 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
474 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
475 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
476 { FAULT_FLAG_TRIED, "TRIED" }, \
477 { FAULT_FLAG_USER, "USER" }, \
478 { FAULT_FLAG_REMOTE, "REMOTE" }, \
479 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
480 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
481
482/*
483 * vm_fault is filled by the pagefault handler and passed to the vma's
484 * ->fault function. The vma's ->fault is responsible for returning a bitmask
485 * of VM_FAULT_xxx flags that give details about how the fault was handled.
486 *
487 * MM layer fills up gfp_mask for page allocations but fault handler might
488 * alter it if its implementation requires a different allocation context.
489 *
490 * pgoff should be used in favour of virtual_address, if possible.
491 */
492struct vm_fault {
493 struct vm_area_struct *vma; /* Target VMA */
494 unsigned int flags; /* FAULT_FLAG_xxx flags */
495 gfp_t gfp_mask; /* gfp mask to be used for allocations */
496 pgoff_t pgoff; /* Logical page offset based on vma */
497 unsigned long address; /* Faulting virtual address */
498 pmd_t *pmd; /* Pointer to pmd entry matching
499 * the 'address' */
500 pud_t *pud; /* Pointer to pud entry matching
501 * the 'address'
502 */
503 pte_t orig_pte; /* Value of PTE at the time of fault */
504
505 struct page *cow_page; /* Page handler may use for COW fault */
506 struct page *page; /* ->fault handlers should return a
507 * page here, unless VM_FAULT_NOPAGE
508 * is set (which is also implied by
509 * VM_FAULT_ERROR).
510 */
511 /* These three entries are valid only while holding ptl lock */
512 pte_t *pte; /* Pointer to pte entry matching
513 * the 'address'. NULL if the page
514 * table hasn't been allocated.
515 */
516 spinlock_t *ptl; /* Page table lock.
517 * Protects pte page table if 'pte'
518 * is not NULL, otherwise pmd.
519 */
520 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
521 * vm_ops->map_pages() calls
522 * alloc_set_pte() from atomic context.
523 * do_fault_around() pre-allocates
524 * page table to avoid allocation from
525 * atomic context.
526 */
527};
528
529/* page entry size for vm->huge_fault() */
530enum page_entry_size {
531 PE_SIZE_PTE = 0,
532 PE_SIZE_PMD,
533 PE_SIZE_PUD,
534};
535
536/*
537 * These are the virtual MM functions - opening of an area, closing and
538 * unmapping it (needed to keep files on disk up-to-date etc), pointer
539 * to the functions called when a no-page or a wp-page exception occurs.
540 */
541struct vm_operations_struct {
542 void (*open)(struct vm_area_struct * area);
543 void (*close)(struct vm_area_struct * area);
544 int (*split)(struct vm_area_struct * area, unsigned long addr);
545 int (*mremap)(struct vm_area_struct * area);
546 vm_fault_t (*fault)(struct vm_fault *vmf);
547 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
548 enum page_entry_size pe_size);
549 void (*map_pages)(struct vm_fault *vmf,
550 pgoff_t start_pgoff, pgoff_t end_pgoff);
551 unsigned long (*pagesize)(struct vm_area_struct * area);
552
553 /* notification that a previously read-only page is about to become
554 * writable, if an error is returned it will cause a SIGBUS */
555 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
556
557 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
558 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
559
560 /* called by access_process_vm when get_user_pages() fails, typically
561 * for use by special VMAs that can switch between memory and hardware
562 */
563 int (*access)(struct vm_area_struct *vma, unsigned long addr,
564 void *buf, int len, int write);
565
566 /* Called by the /proc/PID/maps code to ask the vma whether it
567 * has a special name. Returning non-NULL will also cause this
568 * vma to be dumped unconditionally. */
569 const char *(*name)(struct vm_area_struct *vma);
570
571#ifdef CONFIG_NUMA
572 /*
573 * set_policy() op must add a reference to any non-NULL @new mempolicy
574 * to hold the policy upon return. Caller should pass NULL @new to
575 * remove a policy and fall back to surrounding context--i.e. do not
576 * install a MPOL_DEFAULT policy, nor the task or system default
577 * mempolicy.
578 */
579 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
580
581 /*
582 * get_policy() op must add reference [mpol_get()] to any policy at
583 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
584 * in mm/mempolicy.c will do this automatically.
585 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
586 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
587 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
588 * must return NULL--i.e., do not "fallback" to task or system default
589 * policy.
590 */
591 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
592 unsigned long addr);
593#endif
594 /*
595 * Called by vm_normal_page() for special PTEs to find the
596 * page for @addr. This is useful if the default behavior
597 * (using pte_page()) would not find the correct page.
598 */
599 struct page *(*find_special_page)(struct vm_area_struct *vma,
600 unsigned long addr);
601};
602
603static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
604{
605 static const struct vm_operations_struct dummy_vm_ops = {};
606
607 memset(vma, 0, sizeof(*vma));
608 vma->vm_mm = mm;
609 vma->vm_ops = &dummy_vm_ops;
610 INIT_LIST_HEAD(&vma->anon_vma_chain);
611}
612
613static inline void vma_set_anonymous(struct vm_area_struct *vma)
614{
615 vma->vm_ops = NULL;
616}
617
618static inline bool vma_is_anonymous(struct vm_area_struct *vma)
619{
620 return !vma->vm_ops;
621}
622
623static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
624{
625 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
626
627 if (!maybe_stack)
628 return false;
629
630 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
631 VM_STACK_INCOMPLETE_SETUP)
632 return true;
633
634 return false;
635}
636
637static inline bool vma_is_foreign(struct vm_area_struct *vma)
638{
639 if (!current->mm)
640 return true;
641
642 if (current->mm != vma->vm_mm)
643 return true;
644
645 return false;
646}
647
648static inline bool vma_is_accessible(struct vm_area_struct *vma)
649{
650 return vma->vm_flags & VM_ACCESS_FLAGS;
651}
652
653#ifdef CONFIG_SHMEM
654/*
655 * The vma_is_shmem is not inline because it is used only by slow
656 * paths in userfault.
657 */
658bool vma_is_shmem(struct vm_area_struct *vma);
659#else
660static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
661#endif
662
663int vma_is_stack_for_current(struct vm_area_struct *vma);
664
665/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
666#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
667
668struct mmu_gather;
669struct inode;
670
671/*
672 * FIXME: take this include out, include page-flags.h in
673 * files which need it (119 of them)
674 */
675#include <linux/page-flags.h>
676#include <linux/huge_mm.h>
677
678/*
679 * Methods to modify the page usage count.
680 *
681 * What counts for a page usage:
682 * - cache mapping (page->mapping)
683 * - private data (page->private)
684 * - page mapped in a task's page tables, each mapping
685 * is counted separately
686 *
687 * Also, many kernel routines increase the page count before a critical
688 * routine so they can be sure the page doesn't go away from under them.
689 */
690
691/*
692 * Drop a ref, return true if the refcount fell to zero (the page has no users)
693 */
694static inline int put_page_testzero(struct page *page)
695{
696 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
697 return page_ref_dec_and_test(page);
698}
699
700/*
701 * Try to grab a ref unless the page has a refcount of zero, return false if
702 * that is the case.
703 * This can be called when MMU is off so it must not access
704 * any of the virtual mappings.
705 */
706static inline int get_page_unless_zero(struct page *page)
707{
708 return page_ref_add_unless(page, 1, 0);
709}
710
711extern int page_is_ram(unsigned long pfn);
712
713enum {
714 REGION_INTERSECTS,
715 REGION_DISJOINT,
716 REGION_MIXED,
717};
718
719int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
720 unsigned long desc);
721
722/* Support for virtually mapped pages */
723struct page *vmalloc_to_page(const void *addr);
724unsigned long vmalloc_to_pfn(const void *addr);
725
726/*
727 * Determine if an address is within the vmalloc range
728 *
729 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
730 * is no special casing required.
731 */
732
733#ifndef is_ioremap_addr
734#define is_ioremap_addr(x) is_vmalloc_addr(x)
735#endif
736
737#ifdef CONFIG_MMU
738extern bool is_vmalloc_addr(const void *x);
739extern int is_vmalloc_or_module_addr(const void *x);
740#else
741static inline bool is_vmalloc_addr(const void *x)
742{
743 return false;
744}
745static inline int is_vmalloc_or_module_addr(const void *x)
746{
747 return 0;
748}
749#endif
750
751extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
752static inline void *kvmalloc(size_t size, gfp_t flags)
753{
754 return kvmalloc_node(size, flags, NUMA_NO_NODE);
755}
756static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
757{
758 return kvmalloc_node(size, flags | __GFP_ZERO, node);
759}
760static inline void *kvzalloc(size_t size, gfp_t flags)
761{
762 return kvmalloc(size, flags | __GFP_ZERO);
763}
764
765static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
766{
767 size_t bytes;
768
769 if (unlikely(check_mul_overflow(n, size, &bytes)))
770 return NULL;
771
772 return kvmalloc(bytes, flags);
773}
774
775static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
776{
777 return kvmalloc_array(n, size, flags | __GFP_ZERO);
778}
779
780extern void kvfree(const void *addr);
781extern void kvfree_sensitive(const void *addr, size_t len);
782
783static inline int head_mapcount(struct page *head)
784{
785 return atomic_read(compound_mapcount_ptr(head)) + 1;
786}
787
788/*
789 * Mapcount of compound page as a whole, does not include mapped sub-pages.
790 *
791 * Must be called only for compound pages or any their tail sub-pages.
792 */
793static inline int compound_mapcount(struct page *page)
794{
795 VM_BUG_ON_PAGE(!PageCompound(page), page);
796 page = compound_head(page);
797 return head_mapcount(page);
798}
799
800/*
801 * The atomic page->_mapcount, starts from -1: so that transitions
802 * both from it and to it can be tracked, using atomic_inc_and_test
803 * and atomic_add_negative(-1).
804 */
805static inline void page_mapcount_reset(struct page *page)
806{
807 atomic_set(&(page)->_mapcount, -1);
808}
809
810int __page_mapcount(struct page *page);
811
812/*
813 * Mapcount of 0-order page; when compound sub-page, includes
814 * compound_mapcount().
815 *
816 * Result is undefined for pages which cannot be mapped into userspace.
817 * For example SLAB or special types of pages. See function page_has_type().
818 * They use this place in struct page differently.
819 */
820static inline int page_mapcount(struct page *page)
821{
822 if (unlikely(PageCompound(page)))
823 return __page_mapcount(page);
824 return atomic_read(&page->_mapcount) + 1;
825}
826
827#ifdef CONFIG_TRANSPARENT_HUGEPAGE
828int total_mapcount(struct page *page);
829int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
830#else
831static inline int total_mapcount(struct page *page)
832{
833 return page_mapcount(page);
834}
835static inline int page_trans_huge_mapcount(struct page *page,
836 int *total_mapcount)
837{
838 int mapcount = page_mapcount(page);
839 if (total_mapcount)
840 *total_mapcount = mapcount;
841 return mapcount;
842}
843#endif
844
845static inline struct page *virt_to_head_page(const void *x)
846{
847 struct page *page = virt_to_page(x);
848
849 return compound_head(page);
850}
851
852void __put_page(struct page *page);
853
854void put_pages_list(struct list_head *pages);
855
856void split_page(struct page *page, unsigned int order);
857
858/*
859 * Compound pages have a destructor function. Provide a
860 * prototype for that function and accessor functions.
861 * These are _only_ valid on the head of a compound page.
862 */
863typedef void compound_page_dtor(struct page *);
864
865/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
866enum compound_dtor_id {
867 NULL_COMPOUND_DTOR,
868 COMPOUND_PAGE_DTOR,
869#ifdef CONFIG_HUGETLB_PAGE
870 HUGETLB_PAGE_DTOR,
871#endif
872#ifdef CONFIG_TRANSPARENT_HUGEPAGE
873 TRANSHUGE_PAGE_DTOR,
874#endif
875 NR_COMPOUND_DTORS,
876};
877extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
878
879static inline void set_compound_page_dtor(struct page *page,
880 enum compound_dtor_id compound_dtor)
881{
882 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
883 page[1].compound_dtor = compound_dtor;
884}
885
886static inline void destroy_compound_page(struct page *page)
887{
888 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
889 compound_page_dtors[page[1].compound_dtor](page);
890}
891
892static inline unsigned int compound_order(struct page *page)
893{
894 if (!PageHead(page))
895 return 0;
896 return page[1].compound_order;
897}
898
899static inline bool hpage_pincount_available(struct page *page)
900{
901 /*
902 * Can the page->hpage_pinned_refcount field be used? That field is in
903 * the 3rd page of the compound page, so the smallest (2-page) compound
904 * pages cannot support it.
905 */
906 page = compound_head(page);
907 return PageCompound(page) && compound_order(page) > 1;
908}
909
910static inline int head_pincount(struct page *head)
911{
912 return atomic_read(compound_pincount_ptr(head));
913}
914
915static inline int compound_pincount(struct page *page)
916{
917 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
918 page = compound_head(page);
919 return head_pincount(page);
920}
921
922static inline void set_compound_order(struct page *page, unsigned int order)
923{
924 page[1].compound_order = order;
925 page[1].compound_nr = 1U << order;
926}
927
928/* Returns the number of pages in this potentially compound page. */
929static inline unsigned long compound_nr(struct page *page)
930{
931 if (!PageHead(page))
932 return 1;
933 return page[1].compound_nr;
934}
935
936/* Returns the number of bytes in this potentially compound page. */
937static inline unsigned long page_size(struct page *page)
938{
939 return PAGE_SIZE << compound_order(page);
940}
941
942/* Returns the number of bits needed for the number of bytes in a page */
943static inline unsigned int page_shift(struct page *page)
944{
945 return PAGE_SHIFT + compound_order(page);
946}
947
948void free_compound_page(struct page *page);
949
950#ifdef CONFIG_MMU
951/*
952 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
953 * servicing faults for write access. In the normal case, do always want
954 * pte_mkwrite. But get_user_pages can cause write faults for mappings
955 * that do not have writing enabled, when used by access_process_vm.
956 */
957static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
958{
959 if (likely(vma->vm_flags & VM_WRITE))
960 pte = pte_mkwrite(pte);
961 return pte;
962}
963
964vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
965vm_fault_t finish_fault(struct vm_fault *vmf);
966vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
967#endif
968
969/*
970 * Multiple processes may "see" the same page. E.g. for untouched
971 * mappings of /dev/null, all processes see the same page full of
972 * zeroes, and text pages of executables and shared libraries have
973 * only one copy in memory, at most, normally.
974 *
975 * For the non-reserved pages, page_count(page) denotes a reference count.
976 * page_count() == 0 means the page is free. page->lru is then used for
977 * freelist management in the buddy allocator.
978 * page_count() > 0 means the page has been allocated.
979 *
980 * Pages are allocated by the slab allocator in order to provide memory
981 * to kmalloc and kmem_cache_alloc. In this case, the management of the
982 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
983 * unless a particular usage is carefully commented. (the responsibility of
984 * freeing the kmalloc memory is the caller's, of course).
985 *
986 * A page may be used by anyone else who does a __get_free_page().
987 * In this case, page_count still tracks the references, and should only
988 * be used through the normal accessor functions. The top bits of page->flags
989 * and page->virtual store page management information, but all other fields
990 * are unused and could be used privately, carefully. The management of this
991 * page is the responsibility of the one who allocated it, and those who have
992 * subsequently been given references to it.
993 *
994 * The other pages (we may call them "pagecache pages") are completely
995 * managed by the Linux memory manager: I/O, buffers, swapping etc.
996 * The following discussion applies only to them.
997 *
998 * A pagecache page contains an opaque `private' member, which belongs to the
999 * page's address_space. Usually, this is the address of a circular list of
1000 * the page's disk buffers. PG_private must be set to tell the VM to call
1001 * into the filesystem to release these pages.
1002 *
1003 * A page may belong to an inode's memory mapping. In this case, page->mapping
1004 * is the pointer to the inode, and page->index is the file offset of the page,
1005 * in units of PAGE_SIZE.
1006 *
1007 * If pagecache pages are not associated with an inode, they are said to be
1008 * anonymous pages. These may become associated with the swapcache, and in that
1009 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1010 *
1011 * In either case (swapcache or inode backed), the pagecache itself holds one
1012 * reference to the page. Setting PG_private should also increment the
1013 * refcount. The each user mapping also has a reference to the page.
1014 *
1015 * The pagecache pages are stored in a per-mapping radix tree, which is
1016 * rooted at mapping->i_pages, and indexed by offset.
1017 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1018 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1019 *
1020 * All pagecache pages may be subject to I/O:
1021 * - inode pages may need to be read from disk,
1022 * - inode pages which have been modified and are MAP_SHARED may need
1023 * to be written back to the inode on disk,
1024 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1025 * modified may need to be swapped out to swap space and (later) to be read
1026 * back into memory.
1027 */
1028
1029/*
1030 * The zone field is never updated after free_area_init_core()
1031 * sets it, so none of the operations on it need to be atomic.
1032 */
1033
1034/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1035#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1036#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1037#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1038#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1039#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1040
1041/*
1042 * Define the bit shifts to access each section. For non-existent
1043 * sections we define the shift as 0; that plus a 0 mask ensures
1044 * the compiler will optimise away reference to them.
1045 */
1046#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1047#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1048#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1049#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1050#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1051
1052/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1053#ifdef NODE_NOT_IN_PAGE_FLAGS
1054#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1055#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1056 SECTIONS_PGOFF : ZONES_PGOFF)
1057#else
1058#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1059#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1060 NODES_PGOFF : ZONES_PGOFF)
1061#endif
1062
1063#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1064
1065#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1066#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1067#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1068#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1069#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1070#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1071
1072static inline enum zone_type page_zonenum(const struct page *page)
1073{
1074 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1075}
1076
1077#ifdef CONFIG_ZONE_DEVICE
1078static inline bool is_zone_device_page(const struct page *page)
1079{
1080 return page_zonenum(page) == ZONE_DEVICE;
1081}
1082extern void memmap_init_zone_device(struct zone *, unsigned long,
1083 unsigned long, struct dev_pagemap *);
1084#else
1085static inline bool is_zone_device_page(const struct page *page)
1086{
1087 return false;
1088}
1089#endif
1090
1091#ifdef CONFIG_DEV_PAGEMAP_OPS
1092void free_devmap_managed_page(struct page *page);
1093DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1094
1095static inline bool page_is_devmap_managed(struct page *page)
1096{
1097 if (!static_branch_unlikely(&devmap_managed_key))
1098 return false;
1099 if (!is_zone_device_page(page))
1100 return false;
1101 switch (page->pgmap->type) {
1102 case MEMORY_DEVICE_PRIVATE:
1103 case MEMORY_DEVICE_FS_DAX:
1104 return true;
1105 default:
1106 break;
1107 }
1108 return false;
1109}
1110
1111void put_devmap_managed_page(struct page *page);
1112
1113#else /* CONFIG_DEV_PAGEMAP_OPS */
1114static inline bool page_is_devmap_managed(struct page *page)
1115{
1116 return false;
1117}
1118
1119static inline void put_devmap_managed_page(struct page *page)
1120{
1121}
1122#endif /* CONFIG_DEV_PAGEMAP_OPS */
1123
1124static inline bool is_device_private_page(const struct page *page)
1125{
1126 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1127 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1128 is_zone_device_page(page) &&
1129 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1130}
1131
1132static inline bool is_pci_p2pdma_page(const struct page *page)
1133{
1134 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1135 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1136 is_zone_device_page(page) &&
1137 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1138}
1139
1140/* 127: arbitrary random number, small enough to assemble well */
1141#define page_ref_zero_or_close_to_overflow(page) \
1142 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1143
1144static inline void get_page(struct page *page)
1145{
1146 page = compound_head(page);
1147 /*
1148 * Getting a normal page or the head of a compound page
1149 * requires to already have an elevated page->_refcount.
1150 */
1151 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1152 page_ref_inc(page);
1153}
1154
1155bool __must_check try_grab_page(struct page *page, unsigned int flags);
1156
1157static inline __must_check bool try_get_page(struct page *page)
1158{
1159 page = compound_head(page);
1160 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1161 return false;
1162 page_ref_inc(page);
1163 return true;
1164}
1165
1166static inline void put_page(struct page *page)
1167{
1168 page = compound_head(page);
1169
1170 /*
1171 * For devmap managed pages we need to catch refcount transition from
1172 * 2 to 1, when refcount reach one it means the page is free and we
1173 * need to inform the device driver through callback. See
1174 * include/linux/memremap.h and HMM for details.
1175 */
1176 if (page_is_devmap_managed(page)) {
1177 put_devmap_managed_page(page);
1178 return;
1179 }
1180
1181 if (put_page_testzero(page))
1182 __put_page(page);
1183}
1184
1185/*
1186 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1187 * the page's refcount so that two separate items are tracked: the original page
1188 * reference count, and also a new count of how many pin_user_pages() calls were
1189 * made against the page. ("gup-pinned" is another term for the latter).
1190 *
1191 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1192 * distinct from normal pages. As such, the unpin_user_page() call (and its
1193 * variants) must be used in order to release gup-pinned pages.
1194 *
1195 * Choice of value:
1196 *
1197 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1198 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1199 * simpler, due to the fact that adding an even power of two to the page
1200 * refcount has the effect of using only the upper N bits, for the code that
1201 * counts up using the bias value. This means that the lower bits are left for
1202 * the exclusive use of the original code that increments and decrements by one
1203 * (or at least, by much smaller values than the bias value).
1204 *
1205 * Of course, once the lower bits overflow into the upper bits (and this is
1206 * OK, because subtraction recovers the original values), then visual inspection
1207 * no longer suffices to directly view the separate counts. However, for normal
1208 * applications that don't have huge page reference counts, this won't be an
1209 * issue.
1210 *
1211 * Locking: the lockless algorithm described in page_cache_get_speculative()
1212 * and page_cache_gup_pin_speculative() provides safe operation for
1213 * get_user_pages and page_mkclean and other calls that race to set up page
1214 * table entries.
1215 */
1216#define GUP_PIN_COUNTING_BIAS (1U << 10)
1217
1218void unpin_user_page(struct page *page);
1219void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1220 bool make_dirty);
1221void unpin_user_pages(struct page **pages, unsigned long npages);
1222
1223/**
1224 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1225 *
1226 * This function checks if a page has been pinned via a call to
1227 * pin_user_pages*().
1228 *
1229 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1230 * because it means "definitely not pinned for DMA", but true means "probably
1231 * pinned for DMA, but possibly a false positive due to having at least
1232 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1233 *
1234 * False positives are OK, because: a) it's unlikely for a page to get that many
1235 * refcounts, and b) all the callers of this routine are expected to be able to
1236 * deal gracefully with a false positive.
1237 *
1238 * For huge pages, the result will be exactly correct. That's because we have
1239 * more tracking data available: the 3rd struct page in the compound page is
1240 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1241 * scheme).
1242 *
1243 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1244 *
1245 * @page: pointer to page to be queried.
1246 * @Return: True, if it is likely that the page has been "dma-pinned".
1247 * False, if the page is definitely not dma-pinned.
1248 */
1249static inline bool page_maybe_dma_pinned(struct page *page)
1250{
1251 if (hpage_pincount_available(page))
1252 return compound_pincount(page) > 0;
1253
1254 /*
1255 * page_ref_count() is signed. If that refcount overflows, then
1256 * page_ref_count() returns a negative value, and callers will avoid
1257 * further incrementing the refcount.
1258 *
1259 * Here, for that overflow case, use the signed bit to count a little
1260 * bit higher via unsigned math, and thus still get an accurate result.
1261 */
1262 return ((unsigned int)page_ref_count(compound_head(page))) >=
1263 GUP_PIN_COUNTING_BIAS;
1264}
1265
1266#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1267#define SECTION_IN_PAGE_FLAGS
1268#endif
1269
1270/*
1271 * The identification function is mainly used by the buddy allocator for
1272 * determining if two pages could be buddies. We are not really identifying
1273 * the zone since we could be using the section number id if we do not have
1274 * node id available in page flags.
1275 * We only guarantee that it will return the same value for two combinable
1276 * pages in a zone.
1277 */
1278static inline int page_zone_id(struct page *page)
1279{
1280 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1281}
1282
1283#ifdef NODE_NOT_IN_PAGE_FLAGS
1284extern int page_to_nid(const struct page *page);
1285#else
1286static inline int page_to_nid(const struct page *page)
1287{
1288 struct page *p = (struct page *)page;
1289
1290 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1291}
1292#endif
1293
1294#ifdef CONFIG_NUMA_BALANCING
1295static inline int cpu_pid_to_cpupid(int cpu, int pid)
1296{
1297 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1298}
1299
1300static inline int cpupid_to_pid(int cpupid)
1301{
1302 return cpupid & LAST__PID_MASK;
1303}
1304
1305static inline int cpupid_to_cpu(int cpupid)
1306{
1307 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1308}
1309
1310static inline int cpupid_to_nid(int cpupid)
1311{
1312 return cpu_to_node(cpupid_to_cpu(cpupid));
1313}
1314
1315static inline bool cpupid_pid_unset(int cpupid)
1316{
1317 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1318}
1319
1320static inline bool cpupid_cpu_unset(int cpupid)
1321{
1322 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1323}
1324
1325static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1326{
1327 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1328}
1329
1330#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1331#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1332static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1333{
1334 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1335}
1336
1337static inline int page_cpupid_last(struct page *page)
1338{
1339 return page->_last_cpupid;
1340}
1341static inline void page_cpupid_reset_last(struct page *page)
1342{
1343 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1344}
1345#else
1346static inline int page_cpupid_last(struct page *page)
1347{
1348 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1349}
1350
1351extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1352
1353static inline void page_cpupid_reset_last(struct page *page)
1354{
1355 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1356}
1357#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1358#else /* !CONFIG_NUMA_BALANCING */
1359static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1360{
1361 return page_to_nid(page); /* XXX */
1362}
1363
1364static inline int page_cpupid_last(struct page *page)
1365{
1366 return page_to_nid(page); /* XXX */
1367}
1368
1369static inline int cpupid_to_nid(int cpupid)
1370{
1371 return -1;
1372}
1373
1374static inline int cpupid_to_pid(int cpupid)
1375{
1376 return -1;
1377}
1378
1379static inline int cpupid_to_cpu(int cpupid)
1380{
1381 return -1;
1382}
1383
1384static inline int cpu_pid_to_cpupid(int nid, int pid)
1385{
1386 return -1;
1387}
1388
1389static inline bool cpupid_pid_unset(int cpupid)
1390{
1391 return true;
1392}
1393
1394static inline void page_cpupid_reset_last(struct page *page)
1395{
1396}
1397
1398static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1399{
1400 return false;
1401}
1402#endif /* CONFIG_NUMA_BALANCING */
1403
1404#ifdef CONFIG_KASAN_SW_TAGS
1405static inline u8 page_kasan_tag(const struct page *page)
1406{
1407 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1408}
1409
1410static inline void page_kasan_tag_set(struct page *page, u8 tag)
1411{
1412 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1413 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1414}
1415
1416static inline void page_kasan_tag_reset(struct page *page)
1417{
1418 page_kasan_tag_set(page, 0xff);
1419}
1420#else
1421static inline u8 page_kasan_tag(const struct page *page)
1422{
1423 return 0xff;
1424}
1425
1426static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1427static inline void page_kasan_tag_reset(struct page *page) { }
1428#endif
1429
1430static inline struct zone *page_zone(const struct page *page)
1431{
1432 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1433}
1434
1435static inline pg_data_t *page_pgdat(const struct page *page)
1436{
1437 return NODE_DATA(page_to_nid(page));
1438}
1439
1440#ifdef SECTION_IN_PAGE_FLAGS
1441static inline void set_page_section(struct page *page, unsigned long section)
1442{
1443 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1444 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1445}
1446
1447static inline unsigned long page_to_section(const struct page *page)
1448{
1449 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1450}
1451#endif
1452
1453static inline void set_page_zone(struct page *page, enum zone_type zone)
1454{
1455 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1456 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1457}
1458
1459static inline void set_page_node(struct page *page, unsigned long node)
1460{
1461 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1462 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1463}
1464
1465static inline void set_page_links(struct page *page, enum zone_type zone,
1466 unsigned long node, unsigned long pfn)
1467{
1468 set_page_zone(page, zone);
1469 set_page_node(page, node);
1470#ifdef SECTION_IN_PAGE_FLAGS
1471 set_page_section(page, pfn_to_section_nr(pfn));
1472#endif
1473}
1474
1475#ifdef CONFIG_MEMCG
1476static inline struct mem_cgroup *page_memcg(struct page *page)
1477{
1478 return page->mem_cgroup;
1479}
1480static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1481{
1482 WARN_ON_ONCE(!rcu_read_lock_held());
1483 return READ_ONCE(page->mem_cgroup);
1484}
1485#else
1486static inline struct mem_cgroup *page_memcg(struct page *page)
1487{
1488 return NULL;
1489}
1490static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1491{
1492 WARN_ON_ONCE(!rcu_read_lock_held());
1493 return NULL;
1494}
1495#endif
1496
1497/*
1498 * Some inline functions in vmstat.h depend on page_zone()
1499 */
1500#include <linux/vmstat.h>
1501
1502static __always_inline void *lowmem_page_address(const struct page *page)
1503{
1504 return page_to_virt(page);
1505}
1506
1507#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1508#define HASHED_PAGE_VIRTUAL
1509#endif
1510
1511#if defined(WANT_PAGE_VIRTUAL)
1512static inline void *page_address(const struct page *page)
1513{
1514 return page->virtual;
1515}
1516static inline void set_page_address(struct page *page, void *address)
1517{
1518 page->virtual = address;
1519}
1520#define page_address_init() do { } while(0)
1521#endif
1522
1523#if defined(HASHED_PAGE_VIRTUAL)
1524void *page_address(const struct page *page);
1525void set_page_address(struct page *page, void *virtual);
1526void page_address_init(void);
1527#endif
1528
1529#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1530#define page_address(page) lowmem_page_address(page)
1531#define set_page_address(page, address) do { } while(0)
1532#define page_address_init() do { } while(0)
1533#endif
1534
1535extern void *page_rmapping(struct page *page);
1536extern struct anon_vma *page_anon_vma(struct page *page);
1537extern struct address_space *page_mapping(struct page *page);
1538
1539extern struct address_space *__page_file_mapping(struct page *);
1540
1541static inline
1542struct address_space *page_file_mapping(struct page *page)
1543{
1544 if (unlikely(PageSwapCache(page)))
1545 return __page_file_mapping(page);
1546
1547 return page->mapping;
1548}
1549
1550extern pgoff_t __page_file_index(struct page *page);
1551
1552/*
1553 * Return the pagecache index of the passed page. Regular pagecache pages
1554 * use ->index whereas swapcache pages use swp_offset(->private)
1555 */
1556static inline pgoff_t page_index(struct page *page)
1557{
1558 if (unlikely(PageSwapCache(page)))
1559 return __page_file_index(page);
1560 return page->index;
1561}
1562
1563bool page_mapped(struct page *page);
1564struct address_space *page_mapping(struct page *page);
1565struct address_space *page_mapping_file(struct page *page);
1566
1567/*
1568 * Return true only if the page has been allocated with
1569 * ALLOC_NO_WATERMARKS and the low watermark was not
1570 * met implying that the system is under some pressure.
1571 */
1572static inline bool page_is_pfmemalloc(struct page *page)
1573{
1574 /*
1575 * Page index cannot be this large so this must be
1576 * a pfmemalloc page.
1577 */
1578 return page->index == -1UL;
1579}
1580
1581/*
1582 * Only to be called by the page allocator on a freshly allocated
1583 * page.
1584 */
1585static inline void set_page_pfmemalloc(struct page *page)
1586{
1587 page->index = -1UL;
1588}
1589
1590static inline void clear_page_pfmemalloc(struct page *page)
1591{
1592 page->index = 0;
1593}
1594
1595/*
1596 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1597 */
1598extern void pagefault_out_of_memory(void);
1599
1600#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1601
1602/*
1603 * Flags passed to show_mem() and show_free_areas() to suppress output in
1604 * various contexts.
1605 */
1606#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1607
1608extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1609
1610#ifdef CONFIG_MMU
1611extern bool can_do_mlock(void);
1612#else
1613static inline bool can_do_mlock(void) { return false; }
1614#endif
1615extern int user_shm_lock(size_t, struct user_struct *);
1616extern void user_shm_unlock(size_t, struct user_struct *);
1617
1618/*
1619 * Parameter block passed down to zap_pte_range in exceptional cases.
1620 */
1621struct zap_details {
1622 struct address_space *check_mapping; /* Check page->mapping if set */
1623 pgoff_t first_index; /* Lowest page->index to unmap */
1624 pgoff_t last_index; /* Highest page->index to unmap */
1625};
1626
1627struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1628 pte_t pte);
1629struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1630 pmd_t pmd);
1631
1632void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1633 unsigned long size);
1634void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1635 unsigned long size);
1636void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1637 unsigned long start, unsigned long end);
1638
1639struct mmu_notifier_range;
1640
1641void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1642 unsigned long end, unsigned long floor, unsigned long ceiling);
1643int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1644 struct vm_area_struct *vma);
1645int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1646 struct mmu_notifier_range *range,
1647 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1648int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1649 unsigned long *pfn);
1650int follow_phys(struct vm_area_struct *vma, unsigned long address,
1651 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1652int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1653 void *buf, int len, int write);
1654
1655extern void truncate_pagecache(struct inode *inode, loff_t new);
1656extern void truncate_setsize(struct inode *inode, loff_t newsize);
1657void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1658void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1659int truncate_inode_page(struct address_space *mapping, struct page *page);
1660int generic_error_remove_page(struct address_space *mapping, struct page *page);
1661int invalidate_inode_page(struct page *page);
1662
1663#ifdef CONFIG_MMU
1664extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1665 unsigned long address, unsigned int flags,
1666 struct pt_regs *regs);
1667extern int fixup_user_fault(struct mm_struct *mm,
1668 unsigned long address, unsigned int fault_flags,
1669 bool *unlocked);
1670void unmap_mapping_pages(struct address_space *mapping,
1671 pgoff_t start, pgoff_t nr, bool even_cows);
1672void unmap_mapping_range(struct address_space *mapping,
1673 loff_t const holebegin, loff_t const holelen, int even_cows);
1674#else
1675static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1676 unsigned long address, unsigned int flags,
1677 struct pt_regs *regs)
1678{
1679 /* should never happen if there's no MMU */
1680 BUG();
1681 return VM_FAULT_SIGBUS;
1682}
1683static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1684 unsigned int fault_flags, bool *unlocked)
1685{
1686 /* should never happen if there's no MMU */
1687 BUG();
1688 return -EFAULT;
1689}
1690static inline void unmap_mapping_pages(struct address_space *mapping,
1691 pgoff_t start, pgoff_t nr, bool even_cows) { }
1692static inline void unmap_mapping_range(struct address_space *mapping,
1693 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1694#endif
1695
1696static inline void unmap_shared_mapping_range(struct address_space *mapping,
1697 loff_t const holebegin, loff_t const holelen)
1698{
1699 unmap_mapping_range(mapping, holebegin, holelen, 0);
1700}
1701
1702extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1703 void *buf, int len, unsigned int gup_flags);
1704extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1705 void *buf, int len, unsigned int gup_flags);
1706extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1707 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1708
1709long get_user_pages_remote(struct mm_struct *mm,
1710 unsigned long start, unsigned long nr_pages,
1711 unsigned int gup_flags, struct page **pages,
1712 struct vm_area_struct **vmas, int *locked);
1713long pin_user_pages_remote(struct mm_struct *mm,
1714 unsigned long start, unsigned long nr_pages,
1715 unsigned int gup_flags, struct page **pages,
1716 struct vm_area_struct **vmas, int *locked);
1717long get_user_pages(unsigned long start, unsigned long nr_pages,
1718 unsigned int gup_flags, struct page **pages,
1719 struct vm_area_struct **vmas);
1720long pin_user_pages(unsigned long start, unsigned long nr_pages,
1721 unsigned int gup_flags, struct page **pages,
1722 struct vm_area_struct **vmas);
1723long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1724 unsigned int gup_flags, struct page **pages, int *locked);
1725long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1726 unsigned int gup_flags, struct page **pages, int *locked);
1727long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1728 struct page **pages, unsigned int gup_flags);
1729long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1730 struct page **pages, unsigned int gup_flags);
1731
1732int get_user_pages_fast(unsigned long start, int nr_pages,
1733 unsigned int gup_flags, struct page **pages);
1734int pin_user_pages_fast(unsigned long start, int nr_pages,
1735 unsigned int gup_flags, struct page **pages);
1736
1737int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1738int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1739 struct task_struct *task, bool bypass_rlim);
1740
1741/* Container for pinned pfns / pages */
1742struct frame_vector {
1743 unsigned int nr_allocated; /* Number of frames we have space for */
1744 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1745 bool got_ref; /* Did we pin pages by getting page ref? */
1746 bool is_pfns; /* Does array contain pages or pfns? */
1747 void *ptrs[]; /* Array of pinned pfns / pages. Use
1748 * pfns_vector_pages() or pfns_vector_pfns()
1749 * for access */
1750};
1751
1752struct frame_vector *frame_vector_create(unsigned int nr_frames);
1753void frame_vector_destroy(struct frame_vector *vec);
1754int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1755 unsigned int gup_flags, struct frame_vector *vec);
1756void put_vaddr_frames(struct frame_vector *vec);
1757int frame_vector_to_pages(struct frame_vector *vec);
1758void frame_vector_to_pfns(struct frame_vector *vec);
1759
1760static inline unsigned int frame_vector_count(struct frame_vector *vec)
1761{
1762 return vec->nr_frames;
1763}
1764
1765static inline struct page **frame_vector_pages(struct frame_vector *vec)
1766{
1767 if (vec->is_pfns) {
1768 int err = frame_vector_to_pages(vec);
1769
1770 if (err)
1771 return ERR_PTR(err);
1772 }
1773 return (struct page **)(vec->ptrs);
1774}
1775
1776static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1777{
1778 if (!vec->is_pfns)
1779 frame_vector_to_pfns(vec);
1780 return (unsigned long *)(vec->ptrs);
1781}
1782
1783struct kvec;
1784int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1785 struct page **pages);
1786int get_kernel_page(unsigned long start, int write, struct page **pages);
1787struct page *get_dump_page(unsigned long addr);
1788
1789extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1790extern void do_invalidatepage(struct page *page, unsigned int offset,
1791 unsigned int length);
1792
1793void __set_page_dirty(struct page *, struct address_space *, int warn);
1794int __set_page_dirty_nobuffers(struct page *page);
1795int __set_page_dirty_no_writeback(struct page *page);
1796int redirty_page_for_writepage(struct writeback_control *wbc,
1797 struct page *page);
1798void account_page_dirtied(struct page *page, struct address_space *mapping);
1799void account_page_cleaned(struct page *page, struct address_space *mapping,
1800 struct bdi_writeback *wb);
1801int set_page_dirty(struct page *page);
1802int set_page_dirty_lock(struct page *page);
1803void __cancel_dirty_page(struct page *page);
1804static inline void cancel_dirty_page(struct page *page)
1805{
1806 /* Avoid atomic ops, locking, etc. when not actually needed. */
1807 if (PageDirty(page))
1808 __cancel_dirty_page(page);
1809}
1810int clear_page_dirty_for_io(struct page *page);
1811
1812int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1813
1814extern unsigned long move_page_tables(struct vm_area_struct *vma,
1815 unsigned long old_addr, struct vm_area_struct *new_vma,
1816 unsigned long new_addr, unsigned long len,
1817 bool need_rmap_locks);
1818
1819/*
1820 * Flags used by change_protection(). For now we make it a bitmap so
1821 * that we can pass in multiple flags just like parameters. However
1822 * for now all the callers are only use one of the flags at the same
1823 * time.
1824 */
1825/* Whether we should allow dirty bit accounting */
1826#define MM_CP_DIRTY_ACCT (1UL << 0)
1827/* Whether this protection change is for NUMA hints */
1828#define MM_CP_PROT_NUMA (1UL << 1)
1829/* Whether this change is for write protecting */
1830#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1831#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1832#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1833 MM_CP_UFFD_WP_RESOLVE)
1834
1835extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1836 unsigned long end, pgprot_t newprot,
1837 unsigned long cp_flags);
1838extern int mprotect_fixup(struct vm_area_struct *vma,
1839 struct vm_area_struct **pprev, unsigned long start,
1840 unsigned long end, unsigned long newflags);
1841
1842/*
1843 * doesn't attempt to fault and will return short.
1844 */
1845int get_user_pages_fast_only(unsigned long start, int nr_pages,
1846 unsigned int gup_flags, struct page **pages);
1847int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1848 unsigned int gup_flags, struct page **pages);
1849
1850static inline bool get_user_page_fast_only(unsigned long addr,
1851 unsigned int gup_flags, struct page **pagep)
1852{
1853 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1854}
1855/*
1856 * per-process(per-mm_struct) statistics.
1857 */
1858static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1859{
1860 long val = atomic_long_read(&mm->rss_stat.count[member]);
1861
1862#ifdef SPLIT_RSS_COUNTING
1863 /*
1864 * counter is updated in asynchronous manner and may go to minus.
1865 * But it's never be expected number for users.
1866 */
1867 if (val < 0)
1868 val = 0;
1869#endif
1870 return (unsigned long)val;
1871}
1872
1873void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1874
1875static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1876{
1877 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1878
1879 mm_trace_rss_stat(mm, member, count);
1880}
1881
1882static inline void inc_mm_counter(struct mm_struct *mm, int member)
1883{
1884 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1885
1886 mm_trace_rss_stat(mm, member, count);
1887}
1888
1889static inline void dec_mm_counter(struct mm_struct *mm, int member)
1890{
1891 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1892
1893 mm_trace_rss_stat(mm, member, count);
1894}
1895
1896/* Optimized variant when page is already known not to be PageAnon */
1897static inline int mm_counter_file(struct page *page)
1898{
1899 if (PageSwapBacked(page))
1900 return MM_SHMEMPAGES;
1901 return MM_FILEPAGES;
1902}
1903
1904static inline int mm_counter(struct page *page)
1905{
1906 if (PageAnon(page))
1907 return MM_ANONPAGES;
1908 return mm_counter_file(page);
1909}
1910
1911static inline unsigned long get_mm_rss(struct mm_struct *mm)
1912{
1913 return get_mm_counter(mm, MM_FILEPAGES) +
1914 get_mm_counter(mm, MM_ANONPAGES) +
1915 get_mm_counter(mm, MM_SHMEMPAGES);
1916}
1917
1918static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1919{
1920 return max(mm->hiwater_rss, get_mm_rss(mm));
1921}
1922
1923static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1924{
1925 return max(mm->hiwater_vm, mm->total_vm);
1926}
1927
1928static inline void update_hiwater_rss(struct mm_struct *mm)
1929{
1930 unsigned long _rss = get_mm_rss(mm);
1931
1932 if ((mm)->hiwater_rss < _rss)
1933 (mm)->hiwater_rss = _rss;
1934}
1935
1936static inline void update_hiwater_vm(struct mm_struct *mm)
1937{
1938 if (mm->hiwater_vm < mm->total_vm)
1939 mm->hiwater_vm = mm->total_vm;
1940}
1941
1942static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1943{
1944 mm->hiwater_rss = get_mm_rss(mm);
1945}
1946
1947static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1948 struct mm_struct *mm)
1949{
1950 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1951
1952 if (*maxrss < hiwater_rss)
1953 *maxrss = hiwater_rss;
1954}
1955
1956#if defined(SPLIT_RSS_COUNTING)
1957void sync_mm_rss(struct mm_struct *mm);
1958#else
1959static inline void sync_mm_rss(struct mm_struct *mm)
1960{
1961}
1962#endif
1963
1964#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1965static inline int pte_special(pte_t pte)
1966{
1967 return 0;
1968}
1969
1970static inline pte_t pte_mkspecial(pte_t pte)
1971{
1972 return pte;
1973}
1974#endif
1975
1976#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1977static inline int pte_devmap(pte_t pte)
1978{
1979 return 0;
1980}
1981#endif
1982
1983int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1984
1985extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1986 spinlock_t **ptl);
1987static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1988 spinlock_t **ptl)
1989{
1990 pte_t *ptep;
1991 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1992 return ptep;
1993}
1994
1995#ifdef __PAGETABLE_P4D_FOLDED
1996static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1997 unsigned long address)
1998{
1999 return 0;
2000}
2001#else
2002int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2003#endif
2004
2005#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2006static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2007 unsigned long address)
2008{
2009 return 0;
2010}
2011static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2012static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2013
2014#else
2015int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2016
2017static inline void mm_inc_nr_puds(struct mm_struct *mm)
2018{
2019 if (mm_pud_folded(mm))
2020 return;
2021 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2022}
2023
2024static inline void mm_dec_nr_puds(struct mm_struct *mm)
2025{
2026 if (mm_pud_folded(mm))
2027 return;
2028 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2029}
2030#endif
2031
2032#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2033static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2034 unsigned long address)
2035{
2036 return 0;
2037}
2038
2039static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2040static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2041
2042#else
2043int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2044
2045static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2046{
2047 if (mm_pmd_folded(mm))
2048 return;
2049 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2050}
2051
2052static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2053{
2054 if (mm_pmd_folded(mm))
2055 return;
2056 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2057}
2058#endif
2059
2060#ifdef CONFIG_MMU
2061static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2062{
2063 atomic_long_set(&mm->pgtables_bytes, 0);
2064}
2065
2066static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2067{
2068 return atomic_long_read(&mm->pgtables_bytes);
2069}
2070
2071static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2072{
2073 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2074}
2075
2076static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2077{
2078 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2079}
2080#else
2081
2082static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2083static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2084{
2085 return 0;
2086}
2087
2088static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2089static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2090#endif
2091
2092int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2093int __pte_alloc_kernel(pmd_t *pmd);
2094
2095#if defined(CONFIG_MMU)
2096
2097static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2098 unsigned long address)
2099{
2100 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2101 NULL : p4d_offset(pgd, address);
2102}
2103
2104static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2105 unsigned long address)
2106{
2107 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2108 NULL : pud_offset(p4d, address);
2109}
2110
2111static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2112{
2113 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2114 NULL: pmd_offset(pud, address);
2115}
2116#endif /* CONFIG_MMU */
2117
2118#if USE_SPLIT_PTE_PTLOCKS
2119#if ALLOC_SPLIT_PTLOCKS
2120void __init ptlock_cache_init(void);
2121extern bool ptlock_alloc(struct page *page);
2122extern void ptlock_free(struct page *page);
2123
2124static inline spinlock_t *ptlock_ptr(struct page *page)
2125{
2126 return page->ptl;
2127}
2128#else /* ALLOC_SPLIT_PTLOCKS */
2129static inline void ptlock_cache_init(void)
2130{
2131}
2132
2133static inline bool ptlock_alloc(struct page *page)
2134{
2135 return true;
2136}
2137
2138static inline void ptlock_free(struct page *page)
2139{
2140}
2141
2142static inline spinlock_t *ptlock_ptr(struct page *page)
2143{
2144 return &page->ptl;
2145}
2146#endif /* ALLOC_SPLIT_PTLOCKS */
2147
2148static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2149{
2150 return ptlock_ptr(pmd_page(*pmd));
2151}
2152
2153static inline bool ptlock_init(struct page *page)
2154{
2155 /*
2156 * prep_new_page() initialize page->private (and therefore page->ptl)
2157 * with 0. Make sure nobody took it in use in between.
2158 *
2159 * It can happen if arch try to use slab for page table allocation:
2160 * slab code uses page->slab_cache, which share storage with page->ptl.
2161 */
2162 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2163 if (!ptlock_alloc(page))
2164 return false;
2165 spin_lock_init(ptlock_ptr(page));
2166 return true;
2167}
2168
2169#else /* !USE_SPLIT_PTE_PTLOCKS */
2170/*
2171 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2172 */
2173static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2174{
2175 return &mm->page_table_lock;
2176}
2177static inline void ptlock_cache_init(void) {}
2178static inline bool ptlock_init(struct page *page) { return true; }
2179static inline void ptlock_free(struct page *page) {}
2180#endif /* USE_SPLIT_PTE_PTLOCKS */
2181
2182static inline void pgtable_init(void)
2183{
2184 ptlock_cache_init();
2185 pgtable_cache_init();
2186}
2187
2188static inline bool pgtable_pte_page_ctor(struct page *page)
2189{
2190 if (!ptlock_init(page))
2191 return false;
2192 __SetPageTable(page);
2193 inc_zone_page_state(page, NR_PAGETABLE);
2194 return true;
2195}
2196
2197static inline void pgtable_pte_page_dtor(struct page *page)
2198{
2199 ptlock_free(page);
2200 __ClearPageTable(page);
2201 dec_zone_page_state(page, NR_PAGETABLE);
2202}
2203
2204#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2205({ \
2206 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2207 pte_t *__pte = pte_offset_map(pmd, address); \
2208 *(ptlp) = __ptl; \
2209 spin_lock(__ptl); \
2210 __pte; \
2211})
2212
2213#define pte_unmap_unlock(pte, ptl) do { \
2214 spin_unlock(ptl); \
2215 pte_unmap(pte); \
2216} while (0)
2217
2218#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2219
2220#define pte_alloc_map(mm, pmd, address) \
2221 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2222
2223#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2224 (pte_alloc(mm, pmd) ? \
2225 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2226
2227#define pte_alloc_kernel(pmd, address) \
2228 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2229 NULL: pte_offset_kernel(pmd, address))
2230
2231#if USE_SPLIT_PMD_PTLOCKS
2232
2233static struct page *pmd_to_page(pmd_t *pmd)
2234{
2235 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2236 return virt_to_page((void *)((unsigned long) pmd & mask));
2237}
2238
2239static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2240{
2241 return ptlock_ptr(pmd_to_page(pmd));
2242}
2243
2244static inline bool pgtable_pmd_page_ctor(struct page *page)
2245{
2246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2247 page->pmd_huge_pte = NULL;
2248#endif
2249 return ptlock_init(page);
2250}
2251
2252static inline void pgtable_pmd_page_dtor(struct page *page)
2253{
2254#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2255 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2256#endif
2257 ptlock_free(page);
2258}
2259
2260#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2261
2262#else
2263
2264static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2265{
2266 return &mm->page_table_lock;
2267}
2268
2269static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2270static inline void pgtable_pmd_page_dtor(struct page *page) {}
2271
2272#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2273
2274#endif
2275
2276static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2277{
2278 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2279 spin_lock(ptl);
2280 return ptl;
2281}
2282
2283/*
2284 * No scalability reason to split PUD locks yet, but follow the same pattern
2285 * as the PMD locks to make it easier if we decide to. The VM should not be
2286 * considered ready to switch to split PUD locks yet; there may be places
2287 * which need to be converted from page_table_lock.
2288 */
2289static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2290{
2291 return &mm->page_table_lock;
2292}
2293
2294static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2295{
2296 spinlock_t *ptl = pud_lockptr(mm, pud);
2297
2298 spin_lock(ptl);
2299 return ptl;
2300}
2301
2302extern void __init pagecache_init(void);
2303extern void __init free_area_init_memoryless_node(int nid);
2304extern void free_initmem(void);
2305
2306/*
2307 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2308 * into the buddy system. The freed pages will be poisoned with pattern
2309 * "poison" if it's within range [0, UCHAR_MAX].
2310 * Return pages freed into the buddy system.
2311 */
2312extern unsigned long free_reserved_area(void *start, void *end,
2313 int poison, const char *s);
2314
2315#ifdef CONFIG_HIGHMEM
2316/*
2317 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2318 * and totalram_pages.
2319 */
2320extern void free_highmem_page(struct page *page);
2321#endif
2322
2323extern void adjust_managed_page_count(struct page *page, long count);
2324extern void mem_init_print_info(const char *str);
2325
2326extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2327
2328/* Free the reserved page into the buddy system, so it gets managed. */
2329static inline void __free_reserved_page(struct page *page)
2330{
2331 ClearPageReserved(page);
2332 init_page_count(page);
2333 __free_page(page);
2334}
2335
2336static inline void free_reserved_page(struct page *page)
2337{
2338 __free_reserved_page(page);
2339 adjust_managed_page_count(page, 1);
2340}
2341
2342static inline void mark_page_reserved(struct page *page)
2343{
2344 SetPageReserved(page);
2345 adjust_managed_page_count(page, -1);
2346}
2347
2348/*
2349 * Default method to free all the __init memory into the buddy system.
2350 * The freed pages will be poisoned with pattern "poison" if it's within
2351 * range [0, UCHAR_MAX].
2352 * Return pages freed into the buddy system.
2353 */
2354static inline unsigned long free_initmem_default(int poison)
2355{
2356 extern char __init_begin[], __init_end[];
2357
2358 return free_reserved_area(&__init_begin, &__init_end,
2359 poison, "unused kernel");
2360}
2361
2362static inline unsigned long get_num_physpages(void)
2363{
2364 int nid;
2365 unsigned long phys_pages = 0;
2366
2367 for_each_online_node(nid)
2368 phys_pages += node_present_pages(nid);
2369
2370 return phys_pages;
2371}
2372
2373/*
2374 * Using memblock node mappings, an architecture may initialise its
2375 * zones, allocate the backing mem_map and account for memory holes in an
2376 * architecture independent manner.
2377 *
2378 * An architecture is expected to register range of page frames backed by
2379 * physical memory with memblock_add[_node]() before calling
2380 * free_area_init() passing in the PFN each zone ends at. At a basic
2381 * usage, an architecture is expected to do something like
2382 *
2383 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2384 * max_highmem_pfn};
2385 * for_each_valid_physical_page_range()
2386 * memblock_add_node(base, size, nid)
2387 * free_area_init(max_zone_pfns);
2388 */
2389void free_area_init(unsigned long *max_zone_pfn);
2390unsigned long node_map_pfn_alignment(void);
2391unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2392 unsigned long end_pfn);
2393extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2394 unsigned long end_pfn);
2395extern void get_pfn_range_for_nid(unsigned int nid,
2396 unsigned long *start_pfn, unsigned long *end_pfn);
2397extern unsigned long find_min_pfn_with_active_regions(void);
2398
2399#ifndef CONFIG_NEED_MULTIPLE_NODES
2400static inline int early_pfn_to_nid(unsigned long pfn)
2401{
2402 return 0;
2403}
2404#else
2405/* please see mm/page_alloc.c */
2406extern int __meminit early_pfn_to_nid(unsigned long pfn);
2407/* there is a per-arch backend function. */
2408extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2409 struct mminit_pfnnid_cache *state);
2410#endif
2411
2412extern void set_dma_reserve(unsigned long new_dma_reserve);
2413extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2414 enum memmap_context, struct vmem_altmap *);
2415extern void setup_per_zone_wmarks(void);
2416extern int __meminit init_per_zone_wmark_min(void);
2417extern void mem_init(void);
2418extern void __init mmap_init(void);
2419extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2420extern long si_mem_available(void);
2421extern void si_meminfo(struct sysinfo * val);
2422extern void si_meminfo_node(struct sysinfo *val, int nid);
2423#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2424extern unsigned long arch_reserved_kernel_pages(void);
2425#endif
2426
2427extern __printf(3, 4)
2428void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2429
2430extern void setup_per_cpu_pageset(void);
2431
2432/* page_alloc.c */
2433extern int min_free_kbytes;
2434extern int watermark_boost_factor;
2435extern int watermark_scale_factor;
2436extern bool arch_has_descending_max_zone_pfns(void);
2437
2438/* nommu.c */
2439extern atomic_long_t mmap_pages_allocated;
2440extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2441
2442/* interval_tree.c */
2443void vma_interval_tree_insert(struct vm_area_struct *node,
2444 struct rb_root_cached *root);
2445void vma_interval_tree_insert_after(struct vm_area_struct *node,
2446 struct vm_area_struct *prev,
2447 struct rb_root_cached *root);
2448void vma_interval_tree_remove(struct vm_area_struct *node,
2449 struct rb_root_cached *root);
2450struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2451 unsigned long start, unsigned long last);
2452struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2453 unsigned long start, unsigned long last);
2454
2455#define vma_interval_tree_foreach(vma, root, start, last) \
2456 for (vma = vma_interval_tree_iter_first(root, start, last); \
2457 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2458
2459void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2460 struct rb_root_cached *root);
2461void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2462 struct rb_root_cached *root);
2463struct anon_vma_chain *
2464anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2465 unsigned long start, unsigned long last);
2466struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2467 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2468#ifdef CONFIG_DEBUG_VM_RB
2469void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2470#endif
2471
2472#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2473 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2474 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2475
2476/* mmap.c */
2477extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2478extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2479 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2480 struct vm_area_struct *expand);
2481static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2482 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2483{
2484 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2485}
2486extern struct vm_area_struct *vma_merge(struct mm_struct *,
2487 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2488 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2489 struct mempolicy *, struct vm_userfaultfd_ctx);
2490extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2491extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2492 unsigned long addr, int new_below);
2493extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2494 unsigned long addr, int new_below);
2495extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2496extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2497 struct rb_node **, struct rb_node *);
2498extern void unlink_file_vma(struct vm_area_struct *);
2499extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2500 unsigned long addr, unsigned long len, pgoff_t pgoff,
2501 bool *need_rmap_locks);
2502extern void exit_mmap(struct mm_struct *);
2503
2504static inline int check_data_rlimit(unsigned long rlim,
2505 unsigned long new,
2506 unsigned long start,
2507 unsigned long end_data,
2508 unsigned long start_data)
2509{
2510 if (rlim < RLIM_INFINITY) {
2511 if (((new - start) + (end_data - start_data)) > rlim)
2512 return -ENOSPC;
2513 }
2514
2515 return 0;
2516}
2517
2518extern int mm_take_all_locks(struct mm_struct *mm);
2519extern void mm_drop_all_locks(struct mm_struct *mm);
2520
2521extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2522extern struct file *get_mm_exe_file(struct mm_struct *mm);
2523extern struct file *get_task_exe_file(struct task_struct *task);
2524
2525extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2526extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2527
2528extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2529 const struct vm_special_mapping *sm);
2530extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2531 unsigned long addr, unsigned long len,
2532 unsigned long flags,
2533 const struct vm_special_mapping *spec);
2534/* This is an obsolete alternative to _install_special_mapping. */
2535extern int install_special_mapping(struct mm_struct *mm,
2536 unsigned long addr, unsigned long len,
2537 unsigned long flags, struct page **pages);
2538
2539unsigned long randomize_stack_top(unsigned long stack_top);
2540
2541extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2542
2543extern unsigned long mmap_region(struct file *file, unsigned long addr,
2544 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2545 struct list_head *uf);
2546extern unsigned long do_mmap(struct file *file, unsigned long addr,
2547 unsigned long len, unsigned long prot, unsigned long flags,
2548 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2549extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2550 struct list_head *uf, bool downgrade);
2551extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2552 struct list_head *uf);
2553extern int do_madvise(unsigned long start, size_t len_in, int behavior);
2554
2555#ifdef CONFIG_MMU
2556extern int __mm_populate(unsigned long addr, unsigned long len,
2557 int ignore_errors);
2558static inline void mm_populate(unsigned long addr, unsigned long len)
2559{
2560 /* Ignore errors */
2561 (void) __mm_populate(addr, len, 1);
2562}
2563#else
2564static inline void mm_populate(unsigned long addr, unsigned long len) {}
2565#endif
2566
2567/* These take the mm semaphore themselves */
2568extern int __must_check vm_brk(unsigned long, unsigned long);
2569extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2570extern int vm_munmap(unsigned long, size_t);
2571extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2572 unsigned long, unsigned long,
2573 unsigned long, unsigned long);
2574
2575struct vm_unmapped_area_info {
2576#define VM_UNMAPPED_AREA_TOPDOWN 1
2577 unsigned long flags;
2578 unsigned long length;
2579 unsigned long low_limit;
2580 unsigned long high_limit;
2581 unsigned long align_mask;
2582 unsigned long align_offset;
2583};
2584
2585extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2586
2587/* truncate.c */
2588extern void truncate_inode_pages(struct address_space *, loff_t);
2589extern void truncate_inode_pages_range(struct address_space *,
2590 loff_t lstart, loff_t lend);
2591extern void truncate_inode_pages_final(struct address_space *);
2592
2593/* generic vm_area_ops exported for stackable file systems */
2594extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2595extern void filemap_map_pages(struct vm_fault *vmf,
2596 pgoff_t start_pgoff, pgoff_t end_pgoff);
2597extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2598
2599/* mm/page-writeback.c */
2600int __must_check write_one_page(struct page *page);
2601void task_dirty_inc(struct task_struct *tsk);
2602
2603extern unsigned long stack_guard_gap;
2604/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2605extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2606
2607/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2608extern int expand_downwards(struct vm_area_struct *vma,
2609 unsigned long address);
2610#if VM_GROWSUP
2611extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2612#else
2613 #define expand_upwards(vma, address) (0)
2614#endif
2615
2616/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2617extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2618extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2619 struct vm_area_struct **pprev);
2620
2621/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2622 NULL if none. Assume start_addr < end_addr. */
2623static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2624{
2625 struct vm_area_struct * vma = find_vma(mm,start_addr);
2626
2627 if (vma && end_addr <= vma->vm_start)
2628 vma = NULL;
2629 return vma;
2630}
2631
2632static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2633{
2634 unsigned long vm_start = vma->vm_start;
2635
2636 if (vma->vm_flags & VM_GROWSDOWN) {
2637 vm_start -= stack_guard_gap;
2638 if (vm_start > vma->vm_start)
2639 vm_start = 0;
2640 }
2641 return vm_start;
2642}
2643
2644static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2645{
2646 unsigned long vm_end = vma->vm_end;
2647
2648 if (vma->vm_flags & VM_GROWSUP) {
2649 vm_end += stack_guard_gap;
2650 if (vm_end < vma->vm_end)
2651 vm_end = -PAGE_SIZE;
2652 }
2653 return vm_end;
2654}
2655
2656static inline unsigned long vma_pages(struct vm_area_struct *vma)
2657{
2658 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2659}
2660
2661/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2662static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2663 unsigned long vm_start, unsigned long vm_end)
2664{
2665 struct vm_area_struct *vma = find_vma(mm, vm_start);
2666
2667 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2668 vma = NULL;
2669
2670 return vma;
2671}
2672
2673static inline bool range_in_vma(struct vm_area_struct *vma,
2674 unsigned long start, unsigned long end)
2675{
2676 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2677}
2678
2679#ifdef CONFIG_MMU
2680pgprot_t vm_get_page_prot(unsigned long vm_flags);
2681void vma_set_page_prot(struct vm_area_struct *vma);
2682#else
2683static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2684{
2685 return __pgprot(0);
2686}
2687static inline void vma_set_page_prot(struct vm_area_struct *vma)
2688{
2689 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2690}
2691#endif
2692
2693#ifdef CONFIG_NUMA_BALANCING
2694unsigned long change_prot_numa(struct vm_area_struct *vma,
2695 unsigned long start, unsigned long end);
2696#endif
2697
2698struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2699int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2700 unsigned long pfn, unsigned long size, pgprot_t);
2701int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2702int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2703 struct page **pages, unsigned long *num);
2704int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2705 unsigned long num);
2706int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2707 unsigned long num);
2708vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2709 unsigned long pfn);
2710vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2711 unsigned long pfn, pgprot_t pgprot);
2712vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2713 pfn_t pfn);
2714vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2715 pfn_t pfn, pgprot_t pgprot);
2716vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2717 unsigned long addr, pfn_t pfn);
2718int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2719
2720static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2721 unsigned long addr, struct page *page)
2722{
2723 int err = vm_insert_page(vma, addr, page);
2724
2725 if (err == -ENOMEM)
2726 return VM_FAULT_OOM;
2727 if (err < 0 && err != -EBUSY)
2728 return VM_FAULT_SIGBUS;
2729
2730 return VM_FAULT_NOPAGE;
2731}
2732
2733static inline vm_fault_t vmf_error(int err)
2734{
2735 if (err == -ENOMEM)
2736 return VM_FAULT_OOM;
2737 return VM_FAULT_SIGBUS;
2738}
2739
2740struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2741 unsigned int foll_flags);
2742
2743#define FOLL_WRITE 0x01 /* check pte is writable */
2744#define FOLL_TOUCH 0x02 /* mark page accessed */
2745#define FOLL_GET 0x04 /* do get_page on page */
2746#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2747#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2748#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2749 * and return without waiting upon it */
2750#define FOLL_POPULATE 0x40 /* fault in page */
2751#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2752#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2753#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2754#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2755#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2756#define FOLL_MLOCK 0x1000 /* lock present pages */
2757#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2758#define FOLL_COW 0x4000 /* internal GUP flag */
2759#define FOLL_ANON 0x8000 /* don't do file mappings */
2760#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2761#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2762#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2763#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2764
2765/*
2766 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2767 * other. Here is what they mean, and how to use them:
2768 *
2769 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2770 * period _often_ under userspace control. This is in contrast to
2771 * iov_iter_get_pages(), whose usages are transient.
2772 *
2773 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2774 * lifetime enforced by the filesystem and we need guarantees that longterm
2775 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2776 * the filesystem. Ideas for this coordination include revoking the longterm
2777 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2778 * added after the problem with filesystems was found FS DAX VMAs are
2779 * specifically failed. Filesystem pages are still subject to bugs and use of
2780 * FOLL_LONGTERM should be avoided on those pages.
2781 *
2782 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2783 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2784 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2785 * is due to an incompatibility with the FS DAX check and
2786 * FAULT_FLAG_ALLOW_RETRY.
2787 *
2788 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2789 * that region. And so, CMA attempts to migrate the page before pinning, when
2790 * FOLL_LONGTERM is specified.
2791 *
2792 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2793 * but an additional pin counting system) will be invoked. This is intended for
2794 * anything that gets a page reference and then touches page data (for example,
2795 * Direct IO). This lets the filesystem know that some non-file-system entity is
2796 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2797 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2798 * a call to unpin_user_page().
2799 *
2800 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2801 * and separate refcounting mechanisms, however, and that means that each has
2802 * its own acquire and release mechanisms:
2803 *
2804 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2805 *
2806 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2807 *
2808 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2809 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2810 * calls applied to them, and that's perfectly OK. This is a constraint on the
2811 * callers, not on the pages.)
2812 *
2813 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2814 * directly by the caller. That's in order to help avoid mismatches when
2815 * releasing pages: get_user_pages*() pages must be released via put_page(),
2816 * while pin_user_pages*() pages must be released via unpin_user_page().
2817 *
2818 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2819 */
2820
2821static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2822{
2823 if (vm_fault & VM_FAULT_OOM)
2824 return -ENOMEM;
2825 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2826 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2827 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2828 return -EFAULT;
2829 return 0;
2830}
2831
2832typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2833extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2834 unsigned long size, pte_fn_t fn, void *data);
2835extern int apply_to_existing_page_range(struct mm_struct *mm,
2836 unsigned long address, unsigned long size,
2837 pte_fn_t fn, void *data);
2838
2839#ifdef CONFIG_PAGE_POISONING
2840extern bool page_poisoning_enabled(void);
2841extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2842#else
2843static inline bool page_poisoning_enabled(void) { return false; }
2844static inline void kernel_poison_pages(struct page *page, int numpages,
2845 int enable) { }
2846#endif
2847
2848#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2849DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2850#else
2851DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2852#endif
2853static inline bool want_init_on_alloc(gfp_t flags)
2854{
2855 if (static_branch_unlikely(&init_on_alloc) &&
2856 !page_poisoning_enabled())
2857 return true;
2858 return flags & __GFP_ZERO;
2859}
2860
2861#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2862DECLARE_STATIC_KEY_TRUE(init_on_free);
2863#else
2864DECLARE_STATIC_KEY_FALSE(init_on_free);
2865#endif
2866static inline bool want_init_on_free(void)
2867{
2868 return static_branch_unlikely(&init_on_free) &&
2869 !page_poisoning_enabled();
2870}
2871
2872#ifdef CONFIG_DEBUG_PAGEALLOC
2873extern void init_debug_pagealloc(void);
2874#else
2875static inline void init_debug_pagealloc(void) {}
2876#endif
2877extern bool _debug_pagealloc_enabled_early;
2878DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2879
2880static inline bool debug_pagealloc_enabled(void)
2881{
2882 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2883 _debug_pagealloc_enabled_early;
2884}
2885
2886/*
2887 * For use in fast paths after init_debug_pagealloc() has run, or when a
2888 * false negative result is not harmful when called too early.
2889 */
2890static inline bool debug_pagealloc_enabled_static(void)
2891{
2892 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2893 return false;
2894
2895 return static_branch_unlikely(&_debug_pagealloc_enabled);
2896}
2897
2898#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2899extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2900
2901/*
2902 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2903 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2904 */
2905static inline void
2906kernel_map_pages(struct page *page, int numpages, int enable)
2907{
2908 __kernel_map_pages(page, numpages, enable);
2909}
2910#ifdef CONFIG_HIBERNATION
2911extern bool kernel_page_present(struct page *page);
2912#endif /* CONFIG_HIBERNATION */
2913#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2914static inline void
2915kernel_map_pages(struct page *page, int numpages, int enable) {}
2916#ifdef CONFIG_HIBERNATION
2917static inline bool kernel_page_present(struct page *page) { return true; }
2918#endif /* CONFIG_HIBERNATION */
2919#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2920
2921#ifdef __HAVE_ARCH_GATE_AREA
2922extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2923extern int in_gate_area_no_mm(unsigned long addr);
2924extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2925#else
2926static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2927{
2928 return NULL;
2929}
2930static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2931static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2932{
2933 return 0;
2934}
2935#endif /* __HAVE_ARCH_GATE_AREA */
2936
2937extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2938
2939#ifdef CONFIG_SYSCTL
2940extern int sysctl_drop_caches;
2941int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2942 loff_t *);
2943#endif
2944
2945void drop_slab(void);
2946void drop_slab_node(int nid);
2947
2948#ifndef CONFIG_MMU
2949#define randomize_va_space 0
2950#else
2951extern int randomize_va_space;
2952#endif
2953
2954const char * arch_vma_name(struct vm_area_struct *vma);
2955#ifdef CONFIG_MMU
2956void print_vma_addr(char *prefix, unsigned long rip);
2957#else
2958static inline void print_vma_addr(char *prefix, unsigned long rip)
2959{
2960}
2961#endif
2962
2963void *sparse_buffer_alloc(unsigned long size);
2964struct page * __populate_section_memmap(unsigned long pfn,
2965 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2966pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2967p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2968pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2969pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2970pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
2971 struct vmem_altmap *altmap);
2972void *vmemmap_alloc_block(unsigned long size, int node);
2973struct vmem_altmap;
2974void *vmemmap_alloc_block_buf(unsigned long size, int node,
2975 struct vmem_altmap *altmap);
2976void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2977int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2978 int node, struct vmem_altmap *altmap);
2979int vmemmap_populate(unsigned long start, unsigned long end, int node,
2980 struct vmem_altmap *altmap);
2981void vmemmap_populate_print_last(void);
2982#ifdef CONFIG_MEMORY_HOTPLUG
2983void vmemmap_free(unsigned long start, unsigned long end,
2984 struct vmem_altmap *altmap);
2985#endif
2986void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2987 unsigned long nr_pages);
2988
2989enum mf_flags {
2990 MF_COUNT_INCREASED = 1 << 0,
2991 MF_ACTION_REQUIRED = 1 << 1,
2992 MF_MUST_KILL = 1 << 2,
2993 MF_SOFT_OFFLINE = 1 << 3,
2994};
2995extern int memory_failure(unsigned long pfn, int flags);
2996extern void memory_failure_queue(unsigned long pfn, int flags);
2997extern void memory_failure_queue_kick(int cpu);
2998extern int unpoison_memory(unsigned long pfn);
2999extern int get_hwpoison_page(struct page *page);
3000#define put_hwpoison_page(page) put_page(page)
3001extern int sysctl_memory_failure_early_kill;
3002extern int sysctl_memory_failure_recovery;
3003extern void shake_page(struct page *p, int access);
3004extern atomic_long_t num_poisoned_pages __read_mostly;
3005extern int soft_offline_page(unsigned long pfn, int flags);
3006
3007
3008/*
3009 * Error handlers for various types of pages.
3010 */
3011enum mf_result {
3012 MF_IGNORED, /* Error: cannot be handled */
3013 MF_FAILED, /* Error: handling failed */
3014 MF_DELAYED, /* Will be handled later */
3015 MF_RECOVERED, /* Successfully recovered */
3016};
3017
3018enum mf_action_page_type {
3019 MF_MSG_KERNEL,
3020 MF_MSG_KERNEL_HIGH_ORDER,
3021 MF_MSG_SLAB,
3022 MF_MSG_DIFFERENT_COMPOUND,
3023 MF_MSG_POISONED_HUGE,
3024 MF_MSG_HUGE,
3025 MF_MSG_FREE_HUGE,
3026 MF_MSG_NON_PMD_HUGE,
3027 MF_MSG_UNMAP_FAILED,
3028 MF_MSG_DIRTY_SWAPCACHE,
3029 MF_MSG_CLEAN_SWAPCACHE,
3030 MF_MSG_DIRTY_MLOCKED_LRU,
3031 MF_MSG_CLEAN_MLOCKED_LRU,
3032 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3033 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3034 MF_MSG_DIRTY_LRU,
3035 MF_MSG_CLEAN_LRU,
3036 MF_MSG_TRUNCATED_LRU,
3037 MF_MSG_BUDDY,
3038 MF_MSG_BUDDY_2ND,
3039 MF_MSG_DAX,
3040 MF_MSG_UNKNOWN,
3041};
3042
3043#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3044extern void clear_huge_page(struct page *page,
3045 unsigned long addr_hint,
3046 unsigned int pages_per_huge_page);
3047extern void copy_user_huge_page(struct page *dst, struct page *src,
3048 unsigned long addr_hint,
3049 struct vm_area_struct *vma,
3050 unsigned int pages_per_huge_page);
3051extern long copy_huge_page_from_user(struct page *dst_page,
3052 const void __user *usr_src,
3053 unsigned int pages_per_huge_page,
3054 bool allow_pagefault);
3055
3056/**
3057 * vma_is_special_huge - Are transhuge page-table entries considered special?
3058 * @vma: Pointer to the struct vm_area_struct to consider
3059 *
3060 * Whether transhuge page-table entries are considered "special" following
3061 * the definition in vm_normal_page().
3062 *
3063 * Return: true if transhuge page-table entries should be considered special,
3064 * false otherwise.
3065 */
3066static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3067{
3068 return vma_is_dax(vma) || (vma->vm_file &&
3069 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3070}
3071
3072#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3073
3074#ifdef CONFIG_DEBUG_PAGEALLOC
3075extern unsigned int _debug_guardpage_minorder;
3076DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3077
3078static inline unsigned int debug_guardpage_minorder(void)
3079{
3080 return _debug_guardpage_minorder;
3081}
3082
3083static inline bool debug_guardpage_enabled(void)
3084{
3085 return static_branch_unlikely(&_debug_guardpage_enabled);
3086}
3087
3088static inline bool page_is_guard(struct page *page)
3089{
3090 if (!debug_guardpage_enabled())
3091 return false;
3092
3093 return PageGuard(page);
3094}
3095#else
3096static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3097static inline bool debug_guardpage_enabled(void) { return false; }
3098static inline bool page_is_guard(struct page *page) { return false; }
3099#endif /* CONFIG_DEBUG_PAGEALLOC */
3100
3101#if MAX_NUMNODES > 1
3102void __init setup_nr_node_ids(void);
3103#else
3104static inline void setup_nr_node_ids(void) {}
3105#endif
3106
3107extern int memcmp_pages(struct page *page1, struct page *page2);
3108
3109static inline int pages_identical(struct page *page1, struct page *page2)
3110{
3111 return !memcmp_pages(page1, page2);
3112}
3113
3114#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3115unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3116 pgoff_t first_index, pgoff_t nr,
3117 pgoff_t bitmap_pgoff,
3118 unsigned long *bitmap,
3119 pgoff_t *start,
3120 pgoff_t *end);
3121
3122unsigned long wp_shared_mapping_range(struct address_space *mapping,
3123 pgoff_t first_index, pgoff_t nr);
3124#endif
3125
3126extern int sysctl_nr_trim_pages;
3127
3128#endif /* __KERNEL__ */
3129#endif /* _LINUX_MM_H */