Merge tag 'phy-for-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/phy/linux-phy
[linux-block.git] / include / linux / mm.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/bug.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/atomic.h>
13#include <linux/debug_locks.h>
14#include <linux/mm_types.h>
15#include <linux/mmap_lock.h>
16#include <linux/range.h>
17#include <linux/pfn.h>
18#include <linux/percpu-refcount.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23#include <linux/err.h>
24#include <linux/page-flags.h>
25#include <linux/page_ref.h>
26#include <linux/overflow.h>
27#include <linux/sizes.h>
28#include <linux/sched.h>
29#include <linux/pgtable.h>
30#include <linux/kasan.h>
31#include <linux/memremap.h>
32#include <linux/slab.h>
33
34struct mempolicy;
35struct anon_vma;
36struct anon_vma_chain;
37struct user_struct;
38struct pt_regs;
39
40extern int sysctl_page_lock_unfairness;
41
42void mm_core_init(void);
43void init_mm_internals(void);
44
45#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
46extern unsigned long max_mapnr;
47
48static inline void set_max_mapnr(unsigned long limit)
49{
50 max_mapnr = limit;
51}
52#else
53static inline void set_max_mapnr(unsigned long limit) { }
54#endif
55
56extern atomic_long_t _totalram_pages;
57static inline unsigned long totalram_pages(void)
58{
59 return (unsigned long)atomic_long_read(&_totalram_pages);
60}
61
62static inline void totalram_pages_inc(void)
63{
64 atomic_long_inc(&_totalram_pages);
65}
66
67static inline void totalram_pages_dec(void)
68{
69 atomic_long_dec(&_totalram_pages);
70}
71
72static inline void totalram_pages_add(long count)
73{
74 atomic_long_add(count, &_totalram_pages);
75}
76
77extern void * high_memory;
78extern int page_cluster;
79extern const int page_cluster_max;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
98#include <asm/page.h>
99#include <asm/processor.h>
100
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
126 * If an architecture decides to implement their own version of
127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128 * define their own version of this macro in <asm/pgtable.h>
129 */
130#if BITS_PER_LONG == 64
131/* This function must be updated when the size of struct page grows above 96
132 * or reduces below 56. The idea that compiler optimizes out switch()
133 * statement, and only leaves move/store instructions. Also the compiler can
134 * combine write statements if they are both assignments and can be reordered,
135 * this can result in several of the writes here being dropped.
136 */
137#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138static inline void __mm_zero_struct_page(struct page *page)
139{
140 unsigned long *_pp = (void *)page;
141
142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
143 BUILD_BUG_ON(sizeof(struct page) & 7);
144 BUILD_BUG_ON(sizeof(struct page) < 56);
145 BUILD_BUG_ON(sizeof(struct page) > 96);
146
147 switch (sizeof(struct page)) {
148 case 96:
149 _pp[11] = 0;
150 fallthrough;
151 case 88:
152 _pp[10] = 0;
153 fallthrough;
154 case 80:
155 _pp[9] = 0;
156 fallthrough;
157 case 72:
158 _pp[8] = 0;
159 fallthrough;
160 case 64:
161 _pp[7] = 0;
162 fallthrough;
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172}
173#else
174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175#endif
176
177/*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193#define MAPCOUNT_ELF_CORE_MARGIN (5)
194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196extern int sysctl_max_map_count;
197
198extern unsigned long sysctl_user_reserve_kbytes;
199extern unsigned long sysctl_admin_reserve_kbytes;
200
201extern int sysctl_overcommit_memory;
202extern int sysctl_overcommit_ratio;
203extern unsigned long sysctl_overcommit_kbytes;
204
205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
211
212#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
215#else
216#define nth_page(page,n) ((page) + (n))
217#define folio_page_idx(folio, p) ((p) - &(folio)->page)
218#endif
219
220/* to align the pointer to the (next) page boundary */
221#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222
223/* to align the pointer to the (prev) page boundary */
224#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225
226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228
229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230static inline struct folio *lru_to_folio(struct list_head *head)
231{
232 return list_entry((head)->prev, struct folio, lru);
233}
234
235void setup_initial_init_mm(void *start_code, void *end_code,
236 void *end_data, void *brk);
237
238/*
239 * Linux kernel virtual memory manager primitives.
240 * The idea being to have a "virtual" mm in the same way
241 * we have a virtual fs - giving a cleaner interface to the
242 * mm details, and allowing different kinds of memory mappings
243 * (from shared memory to executable loading to arbitrary
244 * mmap() functions).
245 */
246
247struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249void vm_area_free(struct vm_area_struct *);
250/* Use only if VMA has no other users */
251void __vm_area_free(struct vm_area_struct *vma);
252
253#ifndef CONFIG_MMU
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
261 * vm_flags in vm_area_struct, see mm_types.h.
262 * When changing, update also include/trace/events/mmflags.h
263 */
264#define VM_NONE 0x00000000
265
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
278#ifdef CONFIG_MMU
279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
280#else /* CONFIG_MMU */
281#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282#define VM_UFFD_MISSING 0
283#endif /* CONFIG_MMU */
284#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
286
287#define VM_LOCKED 0x00002000
288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
289
290 /* Used by sys_madvise() */
291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
293
294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
300#define VM_SYNC 0x00800000 /* Synchronous page faults */
301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
304
305#ifdef CONFIG_MEM_SOFT_DIRTY
306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
307#else
308# define VM_SOFTDIRTY 0
309#endif
310
311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
315
316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
322#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
323#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
324#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
325#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
326#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
327#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
328#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
329#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
330
331#ifdef CONFIG_ARCH_HAS_PKEYS
332# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
333# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
334# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
335# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
336# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
337#ifdef CONFIG_PPC
338# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
339#else
340# define VM_PKEY_BIT4 0
341#endif
342#endif /* CONFIG_ARCH_HAS_PKEYS */
343
344#ifdef CONFIG_X86_USER_SHADOW_STACK
345/*
346 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
347 * support core mm.
348 *
349 * These VMAs will get a single end guard page. This helps userspace protect
350 * itself from attacks. A single page is enough for current shadow stack archs
351 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
352 * for more details on the guard size.
353 */
354# define VM_SHADOW_STACK VM_HIGH_ARCH_5
355#else
356# define VM_SHADOW_STACK VM_NONE
357#endif
358
359#if defined(CONFIG_X86)
360# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
361#elif defined(CONFIG_PPC)
362# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
363#elif defined(CONFIG_PARISC)
364# define VM_GROWSUP VM_ARCH_1
365#elif defined(CONFIG_IA64)
366# define VM_GROWSUP VM_ARCH_1
367#elif defined(CONFIG_SPARC64)
368# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
369# define VM_ARCH_CLEAR VM_SPARC_ADI
370#elif defined(CONFIG_ARM64)
371# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
372# define VM_ARCH_CLEAR VM_ARM64_BTI
373#elif !defined(CONFIG_MMU)
374# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
375#endif
376
377#if defined(CONFIG_ARM64_MTE)
378# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
379# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
380#else
381# define VM_MTE VM_NONE
382# define VM_MTE_ALLOWED VM_NONE
383#endif
384
385#ifndef VM_GROWSUP
386# define VM_GROWSUP VM_NONE
387#endif
388
389#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
390# define VM_UFFD_MINOR_BIT 38
391# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
392#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
393# define VM_UFFD_MINOR VM_NONE
394#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
395
396/* Bits set in the VMA until the stack is in its final location */
397#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
398
399#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
400
401/* Common data flag combinations */
402#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
403 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
404#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
405 VM_MAYWRITE | VM_MAYEXEC)
406#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
407 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
408
409#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
410#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
411#endif
412
413#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
414#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
415#endif
416
417#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
418
419#ifdef CONFIG_STACK_GROWSUP
420#define VM_STACK VM_GROWSUP
421#define VM_STACK_EARLY VM_GROWSDOWN
422#else
423#define VM_STACK VM_GROWSDOWN
424#define VM_STACK_EARLY 0
425#endif
426
427#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
428
429/* VMA basic access permission flags */
430#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
431
432
433/*
434 * Special vmas that are non-mergable, non-mlock()able.
435 */
436#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
437
438/* This mask prevents VMA from being scanned with khugepaged */
439#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
440
441/* This mask defines which mm->def_flags a process can inherit its parent */
442#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
443
444/* This mask represents all the VMA flag bits used by mlock */
445#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
446
447/* Arch-specific flags to clear when updating VM flags on protection change */
448#ifndef VM_ARCH_CLEAR
449# define VM_ARCH_CLEAR VM_NONE
450#endif
451#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
452
453/*
454 * mapping from the currently active vm_flags protection bits (the
455 * low four bits) to a page protection mask..
456 */
457
458/*
459 * The default fault flags that should be used by most of the
460 * arch-specific page fault handlers.
461 */
462#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
463 FAULT_FLAG_KILLABLE | \
464 FAULT_FLAG_INTERRUPTIBLE)
465
466/**
467 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
468 * @flags: Fault flags.
469 *
470 * This is mostly used for places where we want to try to avoid taking
471 * the mmap_lock for too long a time when waiting for another condition
472 * to change, in which case we can try to be polite to release the
473 * mmap_lock in the first round to avoid potential starvation of other
474 * processes that would also want the mmap_lock.
475 *
476 * Return: true if the page fault allows retry and this is the first
477 * attempt of the fault handling; false otherwise.
478 */
479static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
480{
481 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
482 (!(flags & FAULT_FLAG_TRIED));
483}
484
485#define FAULT_FLAG_TRACE \
486 { FAULT_FLAG_WRITE, "WRITE" }, \
487 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
488 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
489 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
490 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
491 { FAULT_FLAG_TRIED, "TRIED" }, \
492 { FAULT_FLAG_USER, "USER" }, \
493 { FAULT_FLAG_REMOTE, "REMOTE" }, \
494 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
495 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
496 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
497
498/*
499 * vm_fault is filled by the pagefault handler and passed to the vma's
500 * ->fault function. The vma's ->fault is responsible for returning a bitmask
501 * of VM_FAULT_xxx flags that give details about how the fault was handled.
502 *
503 * MM layer fills up gfp_mask for page allocations but fault handler might
504 * alter it if its implementation requires a different allocation context.
505 *
506 * pgoff should be used in favour of virtual_address, if possible.
507 */
508struct vm_fault {
509 const struct {
510 struct vm_area_struct *vma; /* Target VMA */
511 gfp_t gfp_mask; /* gfp mask to be used for allocations */
512 pgoff_t pgoff; /* Logical page offset based on vma */
513 unsigned long address; /* Faulting virtual address - masked */
514 unsigned long real_address; /* Faulting virtual address - unmasked */
515 };
516 enum fault_flag flags; /* FAULT_FLAG_xxx flags
517 * XXX: should really be 'const' */
518 pmd_t *pmd; /* Pointer to pmd entry matching
519 * the 'address' */
520 pud_t *pud; /* Pointer to pud entry matching
521 * the 'address'
522 */
523 union {
524 pte_t orig_pte; /* Value of PTE at the time of fault */
525 pmd_t orig_pmd; /* Value of PMD at the time of fault,
526 * used by PMD fault only.
527 */
528 };
529
530 struct page *cow_page; /* Page handler may use for COW fault */
531 struct page *page; /* ->fault handlers should return a
532 * page here, unless VM_FAULT_NOPAGE
533 * is set (which is also implied by
534 * VM_FAULT_ERROR).
535 */
536 /* These three entries are valid only while holding ptl lock */
537 pte_t *pte; /* Pointer to pte entry matching
538 * the 'address'. NULL if the page
539 * table hasn't been allocated.
540 */
541 spinlock_t *ptl; /* Page table lock.
542 * Protects pte page table if 'pte'
543 * is not NULL, otherwise pmd.
544 */
545 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
546 * vm_ops->map_pages() sets up a page
547 * table from atomic context.
548 * do_fault_around() pre-allocates
549 * page table to avoid allocation from
550 * atomic context.
551 */
552};
553
554/*
555 * These are the virtual MM functions - opening of an area, closing and
556 * unmapping it (needed to keep files on disk up-to-date etc), pointer
557 * to the functions called when a no-page or a wp-page exception occurs.
558 */
559struct vm_operations_struct {
560 void (*open)(struct vm_area_struct * area);
561 /**
562 * @close: Called when the VMA is being removed from the MM.
563 * Context: User context. May sleep. Caller holds mmap_lock.
564 */
565 void (*close)(struct vm_area_struct * area);
566 /* Called any time before splitting to check if it's allowed */
567 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
568 int (*mremap)(struct vm_area_struct *area);
569 /*
570 * Called by mprotect() to make driver-specific permission
571 * checks before mprotect() is finalised. The VMA must not
572 * be modified. Returns 0 if mprotect() can proceed.
573 */
574 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
575 unsigned long end, unsigned long newflags);
576 vm_fault_t (*fault)(struct vm_fault *vmf);
577 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
578 vm_fault_t (*map_pages)(struct vm_fault *vmf,
579 pgoff_t start_pgoff, pgoff_t end_pgoff);
580 unsigned long (*pagesize)(struct vm_area_struct * area);
581
582 /* notification that a previously read-only page is about to become
583 * writable, if an error is returned it will cause a SIGBUS */
584 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
585
586 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
587 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
588
589 /* called by access_process_vm when get_user_pages() fails, typically
590 * for use by special VMAs. See also generic_access_phys() for a generic
591 * implementation useful for any iomem mapping.
592 */
593 int (*access)(struct vm_area_struct *vma, unsigned long addr,
594 void *buf, int len, int write);
595
596 /* Called by the /proc/PID/maps code to ask the vma whether it
597 * has a special name. Returning non-NULL will also cause this
598 * vma to be dumped unconditionally. */
599 const char *(*name)(struct vm_area_struct *vma);
600
601#ifdef CONFIG_NUMA
602 /*
603 * set_policy() op must add a reference to any non-NULL @new mempolicy
604 * to hold the policy upon return. Caller should pass NULL @new to
605 * remove a policy and fall back to surrounding context--i.e. do not
606 * install a MPOL_DEFAULT policy, nor the task or system default
607 * mempolicy.
608 */
609 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
610
611 /*
612 * get_policy() op must add reference [mpol_get()] to any policy at
613 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
614 * in mm/mempolicy.c will do this automatically.
615 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
616 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
617 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
618 * must return NULL--i.e., do not "fallback" to task or system default
619 * policy.
620 */
621 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
622 unsigned long addr);
623#endif
624 /*
625 * Called by vm_normal_page() for special PTEs to find the
626 * page for @addr. This is useful if the default behavior
627 * (using pte_page()) would not find the correct page.
628 */
629 struct page *(*find_special_page)(struct vm_area_struct *vma,
630 unsigned long addr);
631};
632
633#ifdef CONFIG_NUMA_BALANCING
634static inline void vma_numab_state_init(struct vm_area_struct *vma)
635{
636 vma->numab_state = NULL;
637}
638static inline void vma_numab_state_free(struct vm_area_struct *vma)
639{
640 kfree(vma->numab_state);
641}
642#else
643static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
644static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
645#endif /* CONFIG_NUMA_BALANCING */
646
647#ifdef CONFIG_PER_VMA_LOCK
648/*
649 * Try to read-lock a vma. The function is allowed to occasionally yield false
650 * locked result to avoid performance overhead, in which case we fall back to
651 * using mmap_lock. The function should never yield false unlocked result.
652 */
653static inline bool vma_start_read(struct vm_area_struct *vma)
654{
655 /*
656 * Check before locking. A race might cause false locked result.
657 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
658 * ACQUIRE semantics, because this is just a lockless check whose result
659 * we don't rely on for anything - the mm_lock_seq read against which we
660 * need ordering is below.
661 */
662 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
663 return false;
664
665 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
666 return false;
667
668 /*
669 * Overflow might produce false locked result.
670 * False unlocked result is impossible because we modify and check
671 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
672 * modification invalidates all existing locks.
673 *
674 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
675 * racing with vma_end_write_all(), we only start reading from the VMA
676 * after it has been unlocked.
677 * This pairs with RELEASE semantics in vma_end_write_all().
678 */
679 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
680 up_read(&vma->vm_lock->lock);
681 return false;
682 }
683 return true;
684}
685
686static inline void vma_end_read(struct vm_area_struct *vma)
687{
688 rcu_read_lock(); /* keeps vma alive till the end of up_read */
689 up_read(&vma->vm_lock->lock);
690 rcu_read_unlock();
691}
692
693/* WARNING! Can only be used if mmap_lock is expected to be write-locked */
694static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
695{
696 mmap_assert_write_locked(vma->vm_mm);
697
698 /*
699 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
700 * mm->mm_lock_seq can't be concurrently modified.
701 */
702 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
703 return (vma->vm_lock_seq == *mm_lock_seq);
704}
705
706/*
707 * Begin writing to a VMA.
708 * Exclude concurrent readers under the per-VMA lock until the currently
709 * write-locked mmap_lock is dropped or downgraded.
710 */
711static inline void vma_start_write(struct vm_area_struct *vma)
712{
713 int mm_lock_seq;
714
715 if (__is_vma_write_locked(vma, &mm_lock_seq))
716 return;
717
718 down_write(&vma->vm_lock->lock);
719 /*
720 * We should use WRITE_ONCE() here because we can have concurrent reads
721 * from the early lockless pessimistic check in vma_start_read().
722 * We don't really care about the correctness of that early check, but
723 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
724 */
725 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
726 up_write(&vma->vm_lock->lock);
727}
728
729static inline void vma_assert_write_locked(struct vm_area_struct *vma)
730{
731 int mm_lock_seq;
732
733 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
734}
735
736static inline void vma_assert_locked(struct vm_area_struct *vma)
737{
738 if (!rwsem_is_locked(&vma->vm_lock->lock))
739 vma_assert_write_locked(vma);
740}
741
742static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
743{
744 /* When detaching vma should be write-locked */
745 if (detached)
746 vma_assert_write_locked(vma);
747 vma->detached = detached;
748}
749
750static inline void release_fault_lock(struct vm_fault *vmf)
751{
752 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
753 vma_end_read(vmf->vma);
754 else
755 mmap_read_unlock(vmf->vma->vm_mm);
756}
757
758static inline void assert_fault_locked(struct vm_fault *vmf)
759{
760 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
761 vma_assert_locked(vmf->vma);
762 else
763 mmap_assert_locked(vmf->vma->vm_mm);
764}
765
766struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
767 unsigned long address);
768
769#else /* CONFIG_PER_VMA_LOCK */
770
771static inline bool vma_start_read(struct vm_area_struct *vma)
772 { return false; }
773static inline void vma_end_read(struct vm_area_struct *vma) {}
774static inline void vma_start_write(struct vm_area_struct *vma) {}
775static inline void vma_assert_write_locked(struct vm_area_struct *vma)
776 { mmap_assert_write_locked(vma->vm_mm); }
777static inline void vma_mark_detached(struct vm_area_struct *vma,
778 bool detached) {}
779
780static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
781 unsigned long address)
782{
783 return NULL;
784}
785
786static inline void release_fault_lock(struct vm_fault *vmf)
787{
788 mmap_read_unlock(vmf->vma->vm_mm);
789}
790
791static inline void assert_fault_locked(struct vm_fault *vmf)
792{
793 mmap_assert_locked(vmf->vma->vm_mm);
794}
795
796#endif /* CONFIG_PER_VMA_LOCK */
797
798extern const struct vm_operations_struct vma_dummy_vm_ops;
799
800/*
801 * WARNING: vma_init does not initialize vma->vm_lock.
802 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
803 */
804static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
805{
806 memset(vma, 0, sizeof(*vma));
807 vma->vm_mm = mm;
808 vma->vm_ops = &vma_dummy_vm_ops;
809 INIT_LIST_HEAD(&vma->anon_vma_chain);
810 vma_mark_detached(vma, false);
811 vma_numab_state_init(vma);
812}
813
814/* Use when VMA is not part of the VMA tree and needs no locking */
815static inline void vm_flags_init(struct vm_area_struct *vma,
816 vm_flags_t flags)
817{
818 ACCESS_PRIVATE(vma, __vm_flags) = flags;
819}
820
821/*
822 * Use when VMA is part of the VMA tree and modifications need coordination
823 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
824 * it should be locked explicitly beforehand.
825 */
826static inline void vm_flags_reset(struct vm_area_struct *vma,
827 vm_flags_t flags)
828{
829 vma_assert_write_locked(vma);
830 vm_flags_init(vma, flags);
831}
832
833static inline void vm_flags_reset_once(struct vm_area_struct *vma,
834 vm_flags_t flags)
835{
836 vma_assert_write_locked(vma);
837 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
838}
839
840static inline void vm_flags_set(struct vm_area_struct *vma,
841 vm_flags_t flags)
842{
843 vma_start_write(vma);
844 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
845}
846
847static inline void vm_flags_clear(struct vm_area_struct *vma,
848 vm_flags_t flags)
849{
850 vma_start_write(vma);
851 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
852}
853
854/*
855 * Use only if VMA is not part of the VMA tree or has no other users and
856 * therefore needs no locking.
857 */
858static inline void __vm_flags_mod(struct vm_area_struct *vma,
859 vm_flags_t set, vm_flags_t clear)
860{
861 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
862}
863
864/*
865 * Use only when the order of set/clear operations is unimportant, otherwise
866 * use vm_flags_{set|clear} explicitly.
867 */
868static inline void vm_flags_mod(struct vm_area_struct *vma,
869 vm_flags_t set, vm_flags_t clear)
870{
871 vma_start_write(vma);
872 __vm_flags_mod(vma, set, clear);
873}
874
875static inline void vma_set_anonymous(struct vm_area_struct *vma)
876{
877 vma->vm_ops = NULL;
878}
879
880static inline bool vma_is_anonymous(struct vm_area_struct *vma)
881{
882 return !vma->vm_ops;
883}
884
885/*
886 * Indicate if the VMA is a heap for the given task; for
887 * /proc/PID/maps that is the heap of the main task.
888 */
889static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
890{
891 return vma->vm_start <= vma->vm_mm->brk &&
892 vma->vm_end >= vma->vm_mm->start_brk;
893}
894
895/*
896 * Indicate if the VMA is a stack for the given task; for
897 * /proc/PID/maps that is the stack of the main task.
898 */
899static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
900{
901 /*
902 * We make no effort to guess what a given thread considers to be
903 * its "stack". It's not even well-defined for programs written
904 * languages like Go.
905 */
906 return vma->vm_start <= vma->vm_mm->start_stack &&
907 vma->vm_end >= vma->vm_mm->start_stack;
908}
909
910static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
911{
912 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
913
914 if (!maybe_stack)
915 return false;
916
917 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
918 VM_STACK_INCOMPLETE_SETUP)
919 return true;
920
921 return false;
922}
923
924static inline bool vma_is_foreign(struct vm_area_struct *vma)
925{
926 if (!current->mm)
927 return true;
928
929 if (current->mm != vma->vm_mm)
930 return true;
931
932 return false;
933}
934
935static inline bool vma_is_accessible(struct vm_area_struct *vma)
936{
937 return vma->vm_flags & VM_ACCESS_FLAGS;
938}
939
940static inline
941struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
942{
943 return mas_find(&vmi->mas, max - 1);
944}
945
946static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
947{
948 /*
949 * Uses mas_find() to get the first VMA when the iterator starts.
950 * Calling mas_next() could skip the first entry.
951 */
952 return mas_find(&vmi->mas, ULONG_MAX);
953}
954
955static inline
956struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
957{
958 return mas_next_range(&vmi->mas, ULONG_MAX);
959}
960
961
962static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
963{
964 return mas_prev(&vmi->mas, 0);
965}
966
967static inline
968struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
969{
970 return mas_prev_range(&vmi->mas, 0);
971}
972
973static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
974{
975 return vmi->mas.index;
976}
977
978static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
979{
980 return vmi->mas.last + 1;
981}
982static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
983 unsigned long count)
984{
985 return mas_expected_entries(&vmi->mas, count);
986}
987
988/* Free any unused preallocations */
989static inline void vma_iter_free(struct vma_iterator *vmi)
990{
991 mas_destroy(&vmi->mas);
992}
993
994static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
995 struct vm_area_struct *vma)
996{
997 vmi->mas.index = vma->vm_start;
998 vmi->mas.last = vma->vm_end - 1;
999 mas_store(&vmi->mas, vma);
1000 if (unlikely(mas_is_err(&vmi->mas)))
1001 return -ENOMEM;
1002
1003 return 0;
1004}
1005
1006static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1007{
1008 mas_pause(&vmi->mas);
1009}
1010
1011static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1012{
1013 mas_set(&vmi->mas, addr);
1014}
1015
1016#define for_each_vma(__vmi, __vma) \
1017 while (((__vma) = vma_next(&(__vmi))) != NULL)
1018
1019/* The MM code likes to work with exclusive end addresses */
1020#define for_each_vma_range(__vmi, __vma, __end) \
1021 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1022
1023#ifdef CONFIG_SHMEM
1024/*
1025 * The vma_is_shmem is not inline because it is used only by slow
1026 * paths in userfault.
1027 */
1028bool vma_is_shmem(struct vm_area_struct *vma);
1029bool vma_is_anon_shmem(struct vm_area_struct *vma);
1030#else
1031static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1032static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1033#endif
1034
1035int vma_is_stack_for_current(struct vm_area_struct *vma);
1036
1037/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1038#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1039
1040struct mmu_gather;
1041struct inode;
1042
1043/*
1044 * compound_order() can be called without holding a reference, which means
1045 * that niceties like page_folio() don't work. These callers should be
1046 * prepared to handle wild return values. For example, PG_head may be
1047 * set before the order is initialised, or this may be a tail page.
1048 * See compaction.c for some good examples.
1049 */
1050static inline unsigned int compound_order(struct page *page)
1051{
1052 struct folio *folio = (struct folio *)page;
1053
1054 if (!test_bit(PG_head, &folio->flags))
1055 return 0;
1056 return folio->_flags_1 & 0xff;
1057}
1058
1059/**
1060 * folio_order - The allocation order of a folio.
1061 * @folio: The folio.
1062 *
1063 * A folio is composed of 2^order pages. See get_order() for the definition
1064 * of order.
1065 *
1066 * Return: The order of the folio.
1067 */
1068static inline unsigned int folio_order(struct folio *folio)
1069{
1070 if (!folio_test_large(folio))
1071 return 0;
1072 return folio->_flags_1 & 0xff;
1073}
1074
1075#include <linux/huge_mm.h>
1076
1077/*
1078 * Methods to modify the page usage count.
1079 *
1080 * What counts for a page usage:
1081 * - cache mapping (page->mapping)
1082 * - private data (page->private)
1083 * - page mapped in a task's page tables, each mapping
1084 * is counted separately
1085 *
1086 * Also, many kernel routines increase the page count before a critical
1087 * routine so they can be sure the page doesn't go away from under them.
1088 */
1089
1090/*
1091 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1092 */
1093static inline int put_page_testzero(struct page *page)
1094{
1095 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1096 return page_ref_dec_and_test(page);
1097}
1098
1099static inline int folio_put_testzero(struct folio *folio)
1100{
1101 return put_page_testzero(&folio->page);
1102}
1103
1104/*
1105 * Try to grab a ref unless the page has a refcount of zero, return false if
1106 * that is the case.
1107 * This can be called when MMU is off so it must not access
1108 * any of the virtual mappings.
1109 */
1110static inline bool get_page_unless_zero(struct page *page)
1111{
1112 return page_ref_add_unless(page, 1, 0);
1113}
1114
1115static inline struct folio *folio_get_nontail_page(struct page *page)
1116{
1117 if (unlikely(!get_page_unless_zero(page)))
1118 return NULL;
1119 return (struct folio *)page;
1120}
1121
1122extern int page_is_ram(unsigned long pfn);
1123
1124enum {
1125 REGION_INTERSECTS,
1126 REGION_DISJOINT,
1127 REGION_MIXED,
1128};
1129
1130int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1131 unsigned long desc);
1132
1133/* Support for virtually mapped pages */
1134struct page *vmalloc_to_page(const void *addr);
1135unsigned long vmalloc_to_pfn(const void *addr);
1136
1137/*
1138 * Determine if an address is within the vmalloc range
1139 *
1140 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1141 * is no special casing required.
1142 */
1143#ifdef CONFIG_MMU
1144extern bool is_vmalloc_addr(const void *x);
1145extern int is_vmalloc_or_module_addr(const void *x);
1146#else
1147static inline bool is_vmalloc_addr(const void *x)
1148{
1149 return false;
1150}
1151static inline int is_vmalloc_or_module_addr(const void *x)
1152{
1153 return 0;
1154}
1155#endif
1156
1157/*
1158 * How many times the entire folio is mapped as a single unit (eg by a
1159 * PMD or PUD entry). This is probably not what you want, except for
1160 * debugging purposes - it does not include PTE-mapped sub-pages; look
1161 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1162 */
1163static inline int folio_entire_mapcount(struct folio *folio)
1164{
1165 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1166 return atomic_read(&folio->_entire_mapcount) + 1;
1167}
1168
1169/*
1170 * The atomic page->_mapcount, starts from -1: so that transitions
1171 * both from it and to it can be tracked, using atomic_inc_and_test
1172 * and atomic_add_negative(-1).
1173 */
1174static inline void page_mapcount_reset(struct page *page)
1175{
1176 atomic_set(&(page)->_mapcount, -1);
1177}
1178
1179/**
1180 * page_mapcount() - Number of times this precise page is mapped.
1181 * @page: The page.
1182 *
1183 * The number of times this page is mapped. If this page is part of
1184 * a large folio, it includes the number of times this page is mapped
1185 * as part of that folio.
1186 *
1187 * The result is undefined for pages which cannot be mapped into userspace.
1188 * For example SLAB or special types of pages. See function page_has_type().
1189 * They use this field in struct page differently.
1190 */
1191static inline int page_mapcount(struct page *page)
1192{
1193 int mapcount = atomic_read(&page->_mapcount) + 1;
1194
1195 if (unlikely(PageCompound(page)))
1196 mapcount += folio_entire_mapcount(page_folio(page));
1197
1198 return mapcount;
1199}
1200
1201int folio_total_mapcount(struct folio *folio);
1202
1203/**
1204 * folio_mapcount() - Calculate the number of mappings of this folio.
1205 * @folio: The folio.
1206 *
1207 * A large folio tracks both how many times the entire folio is mapped,
1208 * and how many times each individual page in the folio is mapped.
1209 * This function calculates the total number of times the folio is
1210 * mapped.
1211 *
1212 * Return: The number of times this folio is mapped.
1213 */
1214static inline int folio_mapcount(struct folio *folio)
1215{
1216 if (likely(!folio_test_large(folio)))
1217 return atomic_read(&folio->_mapcount) + 1;
1218 return folio_total_mapcount(folio);
1219}
1220
1221static inline int total_mapcount(struct page *page)
1222{
1223 if (likely(!PageCompound(page)))
1224 return atomic_read(&page->_mapcount) + 1;
1225 return folio_total_mapcount(page_folio(page));
1226}
1227
1228static inline bool folio_large_is_mapped(struct folio *folio)
1229{
1230 /*
1231 * Reading _entire_mapcount below could be omitted if hugetlb
1232 * participated in incrementing nr_pages_mapped when compound mapped.
1233 */
1234 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1235 atomic_read(&folio->_entire_mapcount) >= 0;
1236}
1237
1238/**
1239 * folio_mapped - Is this folio mapped into userspace?
1240 * @folio: The folio.
1241 *
1242 * Return: True if any page in this folio is referenced by user page tables.
1243 */
1244static inline bool folio_mapped(struct folio *folio)
1245{
1246 if (likely(!folio_test_large(folio)))
1247 return atomic_read(&folio->_mapcount) >= 0;
1248 return folio_large_is_mapped(folio);
1249}
1250
1251/*
1252 * Return true if this page is mapped into pagetables.
1253 * For compound page it returns true if any sub-page of compound page is mapped,
1254 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1255 */
1256static inline bool page_mapped(struct page *page)
1257{
1258 if (likely(!PageCompound(page)))
1259 return atomic_read(&page->_mapcount) >= 0;
1260 return folio_large_is_mapped(page_folio(page));
1261}
1262
1263static inline struct page *virt_to_head_page(const void *x)
1264{
1265 struct page *page = virt_to_page(x);
1266
1267 return compound_head(page);
1268}
1269
1270static inline struct folio *virt_to_folio(const void *x)
1271{
1272 struct page *page = virt_to_page(x);
1273
1274 return page_folio(page);
1275}
1276
1277void __folio_put(struct folio *folio);
1278
1279void put_pages_list(struct list_head *pages);
1280
1281void split_page(struct page *page, unsigned int order);
1282void folio_copy(struct folio *dst, struct folio *src);
1283
1284unsigned long nr_free_buffer_pages(void);
1285
1286void destroy_large_folio(struct folio *folio);
1287
1288/* Returns the number of bytes in this potentially compound page. */
1289static inline unsigned long page_size(struct page *page)
1290{
1291 return PAGE_SIZE << compound_order(page);
1292}
1293
1294/* Returns the number of bits needed for the number of bytes in a page */
1295static inline unsigned int page_shift(struct page *page)
1296{
1297 return PAGE_SHIFT + compound_order(page);
1298}
1299
1300/**
1301 * thp_order - Order of a transparent huge page.
1302 * @page: Head page of a transparent huge page.
1303 */
1304static inline unsigned int thp_order(struct page *page)
1305{
1306 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1307 return compound_order(page);
1308}
1309
1310/**
1311 * thp_size - Size of a transparent huge page.
1312 * @page: Head page of a transparent huge page.
1313 *
1314 * Return: Number of bytes in this page.
1315 */
1316static inline unsigned long thp_size(struct page *page)
1317{
1318 return PAGE_SIZE << thp_order(page);
1319}
1320
1321#ifdef CONFIG_MMU
1322/*
1323 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1324 * servicing faults for write access. In the normal case, do always want
1325 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1326 * that do not have writing enabled, when used by access_process_vm.
1327 */
1328static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1329{
1330 if (likely(vma->vm_flags & VM_WRITE))
1331 pte = pte_mkwrite(pte, vma);
1332 return pte;
1333}
1334
1335vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1336void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1337 struct page *page, unsigned int nr, unsigned long addr);
1338
1339vm_fault_t finish_fault(struct vm_fault *vmf);
1340vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1341#endif
1342
1343/*
1344 * Multiple processes may "see" the same page. E.g. for untouched
1345 * mappings of /dev/null, all processes see the same page full of
1346 * zeroes, and text pages of executables and shared libraries have
1347 * only one copy in memory, at most, normally.
1348 *
1349 * For the non-reserved pages, page_count(page) denotes a reference count.
1350 * page_count() == 0 means the page is free. page->lru is then used for
1351 * freelist management in the buddy allocator.
1352 * page_count() > 0 means the page has been allocated.
1353 *
1354 * Pages are allocated by the slab allocator in order to provide memory
1355 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1356 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1357 * unless a particular usage is carefully commented. (the responsibility of
1358 * freeing the kmalloc memory is the caller's, of course).
1359 *
1360 * A page may be used by anyone else who does a __get_free_page().
1361 * In this case, page_count still tracks the references, and should only
1362 * be used through the normal accessor functions. The top bits of page->flags
1363 * and page->virtual store page management information, but all other fields
1364 * are unused and could be used privately, carefully. The management of this
1365 * page is the responsibility of the one who allocated it, and those who have
1366 * subsequently been given references to it.
1367 *
1368 * The other pages (we may call them "pagecache pages") are completely
1369 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1370 * The following discussion applies only to them.
1371 *
1372 * A pagecache page contains an opaque `private' member, which belongs to the
1373 * page's address_space. Usually, this is the address of a circular list of
1374 * the page's disk buffers. PG_private must be set to tell the VM to call
1375 * into the filesystem to release these pages.
1376 *
1377 * A page may belong to an inode's memory mapping. In this case, page->mapping
1378 * is the pointer to the inode, and page->index is the file offset of the page,
1379 * in units of PAGE_SIZE.
1380 *
1381 * If pagecache pages are not associated with an inode, they are said to be
1382 * anonymous pages. These may become associated with the swapcache, and in that
1383 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1384 *
1385 * In either case (swapcache or inode backed), the pagecache itself holds one
1386 * reference to the page. Setting PG_private should also increment the
1387 * refcount. The each user mapping also has a reference to the page.
1388 *
1389 * The pagecache pages are stored in a per-mapping radix tree, which is
1390 * rooted at mapping->i_pages, and indexed by offset.
1391 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1392 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1393 *
1394 * All pagecache pages may be subject to I/O:
1395 * - inode pages may need to be read from disk,
1396 * - inode pages which have been modified and are MAP_SHARED may need
1397 * to be written back to the inode on disk,
1398 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1399 * modified may need to be swapped out to swap space and (later) to be read
1400 * back into memory.
1401 */
1402
1403#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1404DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1405
1406bool __put_devmap_managed_page_refs(struct page *page, int refs);
1407static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1408{
1409 if (!static_branch_unlikely(&devmap_managed_key))
1410 return false;
1411 if (!is_zone_device_page(page))
1412 return false;
1413 return __put_devmap_managed_page_refs(page, refs);
1414}
1415#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1416static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1417{
1418 return false;
1419}
1420#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1421
1422static inline bool put_devmap_managed_page(struct page *page)
1423{
1424 return put_devmap_managed_page_refs(page, 1);
1425}
1426
1427/* 127: arbitrary random number, small enough to assemble well */
1428#define folio_ref_zero_or_close_to_overflow(folio) \
1429 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1430
1431/**
1432 * folio_get - Increment the reference count on a folio.
1433 * @folio: The folio.
1434 *
1435 * Context: May be called in any context, as long as you know that
1436 * you have a refcount on the folio. If you do not already have one,
1437 * folio_try_get() may be the right interface for you to use.
1438 */
1439static inline void folio_get(struct folio *folio)
1440{
1441 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1442 folio_ref_inc(folio);
1443}
1444
1445static inline void get_page(struct page *page)
1446{
1447 folio_get(page_folio(page));
1448}
1449
1450static inline __must_check bool try_get_page(struct page *page)
1451{
1452 page = compound_head(page);
1453 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1454 return false;
1455 page_ref_inc(page);
1456 return true;
1457}
1458
1459/**
1460 * folio_put - Decrement the reference count on a folio.
1461 * @folio: The folio.
1462 *
1463 * If the folio's reference count reaches zero, the memory will be
1464 * released back to the page allocator and may be used by another
1465 * allocation immediately. Do not access the memory or the struct folio
1466 * after calling folio_put() unless you can be sure that it wasn't the
1467 * last reference.
1468 *
1469 * Context: May be called in process or interrupt context, but not in NMI
1470 * context. May be called while holding a spinlock.
1471 */
1472static inline void folio_put(struct folio *folio)
1473{
1474 if (folio_put_testzero(folio))
1475 __folio_put(folio);
1476}
1477
1478/**
1479 * folio_put_refs - Reduce the reference count on a folio.
1480 * @folio: The folio.
1481 * @refs: The amount to subtract from the folio's reference count.
1482 *
1483 * If the folio's reference count reaches zero, the memory will be
1484 * released back to the page allocator and may be used by another
1485 * allocation immediately. Do not access the memory or the struct folio
1486 * after calling folio_put_refs() unless you can be sure that these weren't
1487 * the last references.
1488 *
1489 * Context: May be called in process or interrupt context, but not in NMI
1490 * context. May be called while holding a spinlock.
1491 */
1492static inline void folio_put_refs(struct folio *folio, int refs)
1493{
1494 if (folio_ref_sub_and_test(folio, refs))
1495 __folio_put(folio);
1496}
1497
1498/*
1499 * union release_pages_arg - an array of pages or folios
1500 *
1501 * release_pages() releases a simple array of multiple pages, and
1502 * accepts various different forms of said page array: either
1503 * a regular old boring array of pages, an array of folios, or
1504 * an array of encoded page pointers.
1505 *
1506 * The transparent union syntax for this kind of "any of these
1507 * argument types" is all kinds of ugly, so look away.
1508 */
1509typedef union {
1510 struct page **pages;
1511 struct folio **folios;
1512 struct encoded_page **encoded_pages;
1513} release_pages_arg __attribute__ ((__transparent_union__));
1514
1515void release_pages(release_pages_arg, int nr);
1516
1517/**
1518 * folios_put - Decrement the reference count on an array of folios.
1519 * @folios: The folios.
1520 * @nr: How many folios there are.
1521 *
1522 * Like folio_put(), but for an array of folios. This is more efficient
1523 * than writing the loop yourself as it will optimise the locks which
1524 * need to be taken if the folios are freed.
1525 *
1526 * Context: May be called in process or interrupt context, but not in NMI
1527 * context. May be called while holding a spinlock.
1528 */
1529static inline void folios_put(struct folio **folios, unsigned int nr)
1530{
1531 release_pages(folios, nr);
1532}
1533
1534static inline void put_page(struct page *page)
1535{
1536 struct folio *folio = page_folio(page);
1537
1538 /*
1539 * For some devmap managed pages we need to catch refcount transition
1540 * from 2 to 1:
1541 */
1542 if (put_devmap_managed_page(&folio->page))
1543 return;
1544 folio_put(folio);
1545}
1546
1547/*
1548 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1549 * the page's refcount so that two separate items are tracked: the original page
1550 * reference count, and also a new count of how many pin_user_pages() calls were
1551 * made against the page. ("gup-pinned" is another term for the latter).
1552 *
1553 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1554 * distinct from normal pages. As such, the unpin_user_page() call (and its
1555 * variants) must be used in order to release gup-pinned pages.
1556 *
1557 * Choice of value:
1558 *
1559 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1560 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1561 * simpler, due to the fact that adding an even power of two to the page
1562 * refcount has the effect of using only the upper N bits, for the code that
1563 * counts up using the bias value. This means that the lower bits are left for
1564 * the exclusive use of the original code that increments and decrements by one
1565 * (or at least, by much smaller values than the bias value).
1566 *
1567 * Of course, once the lower bits overflow into the upper bits (and this is
1568 * OK, because subtraction recovers the original values), then visual inspection
1569 * no longer suffices to directly view the separate counts. However, for normal
1570 * applications that don't have huge page reference counts, this won't be an
1571 * issue.
1572 *
1573 * Locking: the lockless algorithm described in folio_try_get_rcu()
1574 * provides safe operation for get_user_pages(), page_mkclean() and
1575 * other calls that race to set up page table entries.
1576 */
1577#define GUP_PIN_COUNTING_BIAS (1U << 10)
1578
1579void unpin_user_page(struct page *page);
1580void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1581 bool make_dirty);
1582void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1583 bool make_dirty);
1584void unpin_user_pages(struct page **pages, unsigned long npages);
1585
1586static inline bool is_cow_mapping(vm_flags_t flags)
1587{
1588 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1589}
1590
1591#ifndef CONFIG_MMU
1592static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1593{
1594 /*
1595 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1596 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1597 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1598 * underlying memory if ptrace is active, so this is only possible if
1599 * ptrace does not apply. Note that there is no mprotect() to upgrade
1600 * write permissions later.
1601 */
1602 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1603}
1604#endif
1605
1606#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1607#define SECTION_IN_PAGE_FLAGS
1608#endif
1609
1610/*
1611 * The identification function is mainly used by the buddy allocator for
1612 * determining if two pages could be buddies. We are not really identifying
1613 * the zone since we could be using the section number id if we do not have
1614 * node id available in page flags.
1615 * We only guarantee that it will return the same value for two combinable
1616 * pages in a zone.
1617 */
1618static inline int page_zone_id(struct page *page)
1619{
1620 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1621}
1622
1623#ifdef NODE_NOT_IN_PAGE_FLAGS
1624extern int page_to_nid(const struct page *page);
1625#else
1626static inline int page_to_nid(const struct page *page)
1627{
1628 struct page *p = (struct page *)page;
1629
1630 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1631}
1632#endif
1633
1634static inline int folio_nid(const struct folio *folio)
1635{
1636 return page_to_nid(&folio->page);
1637}
1638
1639#ifdef CONFIG_NUMA_BALANCING
1640/* page access time bits needs to hold at least 4 seconds */
1641#define PAGE_ACCESS_TIME_MIN_BITS 12
1642#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1643#define PAGE_ACCESS_TIME_BUCKETS \
1644 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1645#else
1646#define PAGE_ACCESS_TIME_BUCKETS 0
1647#endif
1648
1649#define PAGE_ACCESS_TIME_MASK \
1650 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1651
1652static inline int cpu_pid_to_cpupid(int cpu, int pid)
1653{
1654 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1655}
1656
1657static inline int cpupid_to_pid(int cpupid)
1658{
1659 return cpupid & LAST__PID_MASK;
1660}
1661
1662static inline int cpupid_to_cpu(int cpupid)
1663{
1664 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1665}
1666
1667static inline int cpupid_to_nid(int cpupid)
1668{
1669 return cpu_to_node(cpupid_to_cpu(cpupid));
1670}
1671
1672static inline bool cpupid_pid_unset(int cpupid)
1673{
1674 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1675}
1676
1677static inline bool cpupid_cpu_unset(int cpupid)
1678{
1679 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1680}
1681
1682static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1683{
1684 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1685}
1686
1687#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1688#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1689static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1690{
1691 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1692}
1693
1694static inline int page_cpupid_last(struct page *page)
1695{
1696 return page->_last_cpupid;
1697}
1698static inline void page_cpupid_reset_last(struct page *page)
1699{
1700 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1701}
1702#else
1703static inline int page_cpupid_last(struct page *page)
1704{
1705 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1706}
1707
1708extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1709
1710static inline void page_cpupid_reset_last(struct page *page)
1711{
1712 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1713}
1714#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1715
1716static inline int xchg_page_access_time(struct page *page, int time)
1717{
1718 int last_time;
1719
1720 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1721 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1722}
1723
1724static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1725{
1726 unsigned int pid_bit;
1727
1728 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1729 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1730 __set_bit(pid_bit, &vma->numab_state->access_pids[1]);
1731 }
1732}
1733#else /* !CONFIG_NUMA_BALANCING */
1734static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1735{
1736 return page_to_nid(page); /* XXX */
1737}
1738
1739static inline int xchg_page_access_time(struct page *page, int time)
1740{
1741 return 0;
1742}
1743
1744static inline int page_cpupid_last(struct page *page)
1745{
1746 return page_to_nid(page); /* XXX */
1747}
1748
1749static inline int cpupid_to_nid(int cpupid)
1750{
1751 return -1;
1752}
1753
1754static inline int cpupid_to_pid(int cpupid)
1755{
1756 return -1;
1757}
1758
1759static inline int cpupid_to_cpu(int cpupid)
1760{
1761 return -1;
1762}
1763
1764static inline int cpu_pid_to_cpupid(int nid, int pid)
1765{
1766 return -1;
1767}
1768
1769static inline bool cpupid_pid_unset(int cpupid)
1770{
1771 return true;
1772}
1773
1774static inline void page_cpupid_reset_last(struct page *page)
1775{
1776}
1777
1778static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1779{
1780 return false;
1781}
1782
1783static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1784{
1785}
1786#endif /* CONFIG_NUMA_BALANCING */
1787
1788#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1789
1790/*
1791 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1792 * setting tags for all pages to native kernel tag value 0xff, as the default
1793 * value 0x00 maps to 0xff.
1794 */
1795
1796static inline u8 page_kasan_tag(const struct page *page)
1797{
1798 u8 tag = 0xff;
1799
1800 if (kasan_enabled()) {
1801 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1802 tag ^= 0xff;
1803 }
1804
1805 return tag;
1806}
1807
1808static inline void page_kasan_tag_set(struct page *page, u8 tag)
1809{
1810 unsigned long old_flags, flags;
1811
1812 if (!kasan_enabled())
1813 return;
1814
1815 tag ^= 0xff;
1816 old_flags = READ_ONCE(page->flags);
1817 do {
1818 flags = old_flags;
1819 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1820 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1821 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1822}
1823
1824static inline void page_kasan_tag_reset(struct page *page)
1825{
1826 if (kasan_enabled())
1827 page_kasan_tag_set(page, 0xff);
1828}
1829
1830#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1831
1832static inline u8 page_kasan_tag(const struct page *page)
1833{
1834 return 0xff;
1835}
1836
1837static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1838static inline void page_kasan_tag_reset(struct page *page) { }
1839
1840#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1841
1842static inline struct zone *page_zone(const struct page *page)
1843{
1844 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1845}
1846
1847static inline pg_data_t *page_pgdat(const struct page *page)
1848{
1849 return NODE_DATA(page_to_nid(page));
1850}
1851
1852static inline struct zone *folio_zone(const struct folio *folio)
1853{
1854 return page_zone(&folio->page);
1855}
1856
1857static inline pg_data_t *folio_pgdat(const struct folio *folio)
1858{
1859 return page_pgdat(&folio->page);
1860}
1861
1862#ifdef SECTION_IN_PAGE_FLAGS
1863static inline void set_page_section(struct page *page, unsigned long section)
1864{
1865 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1866 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1867}
1868
1869static inline unsigned long page_to_section(const struct page *page)
1870{
1871 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1872}
1873#endif
1874
1875/**
1876 * folio_pfn - Return the Page Frame Number of a folio.
1877 * @folio: The folio.
1878 *
1879 * A folio may contain multiple pages. The pages have consecutive
1880 * Page Frame Numbers.
1881 *
1882 * Return: The Page Frame Number of the first page in the folio.
1883 */
1884static inline unsigned long folio_pfn(struct folio *folio)
1885{
1886 return page_to_pfn(&folio->page);
1887}
1888
1889static inline struct folio *pfn_folio(unsigned long pfn)
1890{
1891 return page_folio(pfn_to_page(pfn));
1892}
1893
1894/**
1895 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1896 * @folio: The folio.
1897 *
1898 * This function checks if a folio has been pinned via a call to
1899 * a function in the pin_user_pages() family.
1900 *
1901 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1902 * because it means "definitely not pinned for DMA", but true means "probably
1903 * pinned for DMA, but possibly a false positive due to having at least
1904 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1905 *
1906 * False positives are OK, because: a) it's unlikely for a folio to
1907 * get that many refcounts, and b) all the callers of this routine are
1908 * expected to be able to deal gracefully with a false positive.
1909 *
1910 * For large folios, the result will be exactly correct. That's because
1911 * we have more tracking data available: the _pincount field is used
1912 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1913 *
1914 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1915 *
1916 * Return: True, if it is likely that the page has been "dma-pinned".
1917 * False, if the page is definitely not dma-pinned.
1918 */
1919static inline bool folio_maybe_dma_pinned(struct folio *folio)
1920{
1921 if (folio_test_large(folio))
1922 return atomic_read(&folio->_pincount) > 0;
1923
1924 /*
1925 * folio_ref_count() is signed. If that refcount overflows, then
1926 * folio_ref_count() returns a negative value, and callers will avoid
1927 * further incrementing the refcount.
1928 *
1929 * Here, for that overflow case, use the sign bit to count a little
1930 * bit higher via unsigned math, and thus still get an accurate result.
1931 */
1932 return ((unsigned int)folio_ref_count(folio)) >=
1933 GUP_PIN_COUNTING_BIAS;
1934}
1935
1936static inline bool page_maybe_dma_pinned(struct page *page)
1937{
1938 return folio_maybe_dma_pinned(page_folio(page));
1939}
1940
1941/*
1942 * This should most likely only be called during fork() to see whether we
1943 * should break the cow immediately for an anon page on the src mm.
1944 *
1945 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1946 */
1947static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1948 struct page *page)
1949{
1950 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1951
1952 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1953 return false;
1954
1955 return page_maybe_dma_pinned(page);
1956}
1957
1958/**
1959 * is_zero_page - Query if a page is a zero page
1960 * @page: The page to query
1961 *
1962 * This returns true if @page is one of the permanent zero pages.
1963 */
1964static inline bool is_zero_page(const struct page *page)
1965{
1966 return is_zero_pfn(page_to_pfn(page));
1967}
1968
1969/**
1970 * is_zero_folio - Query if a folio is a zero page
1971 * @folio: The folio to query
1972 *
1973 * This returns true if @folio is one of the permanent zero pages.
1974 */
1975static inline bool is_zero_folio(const struct folio *folio)
1976{
1977 return is_zero_page(&folio->page);
1978}
1979
1980/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1981#ifdef CONFIG_MIGRATION
1982static inline bool folio_is_longterm_pinnable(struct folio *folio)
1983{
1984#ifdef CONFIG_CMA
1985 int mt = folio_migratetype(folio);
1986
1987 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1988 return false;
1989#endif
1990 /* The zero page can be "pinned" but gets special handling. */
1991 if (is_zero_folio(folio))
1992 return true;
1993
1994 /* Coherent device memory must always allow eviction. */
1995 if (folio_is_device_coherent(folio))
1996 return false;
1997
1998 /* Otherwise, non-movable zone folios can be pinned. */
1999 return !folio_is_zone_movable(folio);
2000
2001}
2002#else
2003static inline bool folio_is_longterm_pinnable(struct folio *folio)
2004{
2005 return true;
2006}
2007#endif
2008
2009static inline void set_page_zone(struct page *page, enum zone_type zone)
2010{
2011 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2012 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2013}
2014
2015static inline void set_page_node(struct page *page, unsigned long node)
2016{
2017 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2018 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2019}
2020
2021static inline void set_page_links(struct page *page, enum zone_type zone,
2022 unsigned long node, unsigned long pfn)
2023{
2024 set_page_zone(page, zone);
2025 set_page_node(page, node);
2026#ifdef SECTION_IN_PAGE_FLAGS
2027 set_page_section(page, pfn_to_section_nr(pfn));
2028#endif
2029}
2030
2031/**
2032 * folio_nr_pages - The number of pages in the folio.
2033 * @folio: The folio.
2034 *
2035 * Return: A positive power of two.
2036 */
2037static inline long folio_nr_pages(struct folio *folio)
2038{
2039 if (!folio_test_large(folio))
2040 return 1;
2041#ifdef CONFIG_64BIT
2042 return folio->_folio_nr_pages;
2043#else
2044 return 1L << (folio->_flags_1 & 0xff);
2045#endif
2046}
2047
2048/*
2049 * compound_nr() returns the number of pages in this potentially compound
2050 * page. compound_nr() can be called on a tail page, and is defined to
2051 * return 1 in that case.
2052 */
2053static inline unsigned long compound_nr(struct page *page)
2054{
2055 struct folio *folio = (struct folio *)page;
2056
2057 if (!test_bit(PG_head, &folio->flags))
2058 return 1;
2059#ifdef CONFIG_64BIT
2060 return folio->_folio_nr_pages;
2061#else
2062 return 1L << (folio->_flags_1 & 0xff);
2063#endif
2064}
2065
2066/**
2067 * thp_nr_pages - The number of regular pages in this huge page.
2068 * @page: The head page of a huge page.
2069 */
2070static inline int thp_nr_pages(struct page *page)
2071{
2072 return folio_nr_pages((struct folio *)page);
2073}
2074
2075/**
2076 * folio_next - Move to the next physical folio.
2077 * @folio: The folio we're currently operating on.
2078 *
2079 * If you have physically contiguous memory which may span more than
2080 * one folio (eg a &struct bio_vec), use this function to move from one
2081 * folio to the next. Do not use it if the memory is only virtually
2082 * contiguous as the folios are almost certainly not adjacent to each
2083 * other. This is the folio equivalent to writing ``page++``.
2084 *
2085 * Context: We assume that the folios are refcounted and/or locked at a
2086 * higher level and do not adjust the reference counts.
2087 * Return: The next struct folio.
2088 */
2089static inline struct folio *folio_next(struct folio *folio)
2090{
2091 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2092}
2093
2094/**
2095 * folio_shift - The size of the memory described by this folio.
2096 * @folio: The folio.
2097 *
2098 * A folio represents a number of bytes which is a power-of-two in size.
2099 * This function tells you which power-of-two the folio is. See also
2100 * folio_size() and folio_order().
2101 *
2102 * Context: The caller should have a reference on the folio to prevent
2103 * it from being split. It is not necessary for the folio to be locked.
2104 * Return: The base-2 logarithm of the size of this folio.
2105 */
2106static inline unsigned int folio_shift(struct folio *folio)
2107{
2108 return PAGE_SHIFT + folio_order(folio);
2109}
2110
2111/**
2112 * folio_size - The number of bytes in a folio.
2113 * @folio: The folio.
2114 *
2115 * Context: The caller should have a reference on the folio to prevent
2116 * it from being split. It is not necessary for the folio to be locked.
2117 * Return: The number of bytes in this folio.
2118 */
2119static inline size_t folio_size(struct folio *folio)
2120{
2121 return PAGE_SIZE << folio_order(folio);
2122}
2123
2124/**
2125 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2126 * @folio: The folio.
2127 *
2128 * folio_estimated_sharers() aims to serve as a function to efficiently
2129 * estimate the number of processes sharing a folio. This is done by
2130 * looking at the precise mapcount of the first subpage in the folio, and
2131 * assuming the other subpages are the same. This may not be true for large
2132 * folios. If you want exact mapcounts for exact calculations, look at
2133 * page_mapcount() or folio_total_mapcount().
2134 *
2135 * Return: The estimated number of processes sharing a folio.
2136 */
2137static inline int folio_estimated_sharers(struct folio *folio)
2138{
2139 return page_mapcount(folio_page(folio, 0));
2140}
2141
2142#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2143static inline int arch_make_page_accessible(struct page *page)
2144{
2145 return 0;
2146}
2147#endif
2148
2149#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2150static inline int arch_make_folio_accessible(struct folio *folio)
2151{
2152 int ret;
2153 long i, nr = folio_nr_pages(folio);
2154
2155 for (i = 0; i < nr; i++) {
2156 ret = arch_make_page_accessible(folio_page(folio, i));
2157 if (ret)
2158 break;
2159 }
2160
2161 return ret;
2162}
2163#endif
2164
2165/*
2166 * Some inline functions in vmstat.h depend on page_zone()
2167 */
2168#include <linux/vmstat.h>
2169
2170static __always_inline void *lowmem_page_address(const struct page *page)
2171{
2172 return page_to_virt(page);
2173}
2174
2175#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2176#define HASHED_PAGE_VIRTUAL
2177#endif
2178
2179#if defined(WANT_PAGE_VIRTUAL)
2180static inline void *page_address(const struct page *page)
2181{
2182 return page->virtual;
2183}
2184static inline void set_page_address(struct page *page, void *address)
2185{
2186 page->virtual = address;
2187}
2188#define page_address_init() do { } while(0)
2189#endif
2190
2191#if defined(HASHED_PAGE_VIRTUAL)
2192void *page_address(const struct page *page);
2193void set_page_address(struct page *page, void *virtual);
2194void page_address_init(void);
2195#endif
2196
2197#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2198#define page_address(page) lowmem_page_address(page)
2199#define set_page_address(page, address) do { } while(0)
2200#define page_address_init() do { } while(0)
2201#endif
2202
2203static inline void *folio_address(const struct folio *folio)
2204{
2205 return page_address(&folio->page);
2206}
2207
2208extern pgoff_t __page_file_index(struct page *page);
2209
2210/*
2211 * Return the pagecache index of the passed page. Regular pagecache pages
2212 * use ->index whereas swapcache pages use swp_offset(->private)
2213 */
2214static inline pgoff_t page_index(struct page *page)
2215{
2216 if (unlikely(PageSwapCache(page)))
2217 return __page_file_index(page);
2218 return page->index;
2219}
2220
2221/*
2222 * Return true only if the page has been allocated with
2223 * ALLOC_NO_WATERMARKS and the low watermark was not
2224 * met implying that the system is under some pressure.
2225 */
2226static inline bool page_is_pfmemalloc(const struct page *page)
2227{
2228 /*
2229 * lru.next has bit 1 set if the page is allocated from the
2230 * pfmemalloc reserves. Callers may simply overwrite it if
2231 * they do not need to preserve that information.
2232 */
2233 return (uintptr_t)page->lru.next & BIT(1);
2234}
2235
2236/*
2237 * Return true only if the folio has been allocated with
2238 * ALLOC_NO_WATERMARKS and the low watermark was not
2239 * met implying that the system is under some pressure.
2240 */
2241static inline bool folio_is_pfmemalloc(const struct folio *folio)
2242{
2243 /*
2244 * lru.next has bit 1 set if the page is allocated from the
2245 * pfmemalloc reserves. Callers may simply overwrite it if
2246 * they do not need to preserve that information.
2247 */
2248 return (uintptr_t)folio->lru.next & BIT(1);
2249}
2250
2251/*
2252 * Only to be called by the page allocator on a freshly allocated
2253 * page.
2254 */
2255static inline void set_page_pfmemalloc(struct page *page)
2256{
2257 page->lru.next = (void *)BIT(1);
2258}
2259
2260static inline void clear_page_pfmemalloc(struct page *page)
2261{
2262 page->lru.next = NULL;
2263}
2264
2265/*
2266 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2267 */
2268extern void pagefault_out_of_memory(void);
2269
2270#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2271#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2272#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2273
2274/*
2275 * Parameter block passed down to zap_pte_range in exceptional cases.
2276 */
2277struct zap_details {
2278 struct folio *single_folio; /* Locked folio to be unmapped */
2279 bool even_cows; /* Zap COWed private pages too? */
2280 zap_flags_t zap_flags; /* Extra flags for zapping */
2281};
2282
2283/*
2284 * Whether to drop the pte markers, for example, the uffd-wp information for
2285 * file-backed memory. This should only be specified when we will completely
2286 * drop the page in the mm, either by truncation or unmapping of the vma. By
2287 * default, the flag is not set.
2288 */
2289#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2290/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2291#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2292
2293#ifdef CONFIG_SCHED_MM_CID
2294void sched_mm_cid_before_execve(struct task_struct *t);
2295void sched_mm_cid_after_execve(struct task_struct *t);
2296void sched_mm_cid_fork(struct task_struct *t);
2297void sched_mm_cid_exit_signals(struct task_struct *t);
2298static inline int task_mm_cid(struct task_struct *t)
2299{
2300 return t->mm_cid;
2301}
2302#else
2303static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2304static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2305static inline void sched_mm_cid_fork(struct task_struct *t) { }
2306static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2307static inline int task_mm_cid(struct task_struct *t)
2308{
2309 /*
2310 * Use the processor id as a fall-back when the mm cid feature is
2311 * disabled. This provides functional per-cpu data structure accesses
2312 * in user-space, althrough it won't provide the memory usage benefits.
2313 */
2314 return raw_smp_processor_id();
2315}
2316#endif
2317
2318#ifdef CONFIG_MMU
2319extern bool can_do_mlock(void);
2320#else
2321static inline bool can_do_mlock(void) { return false; }
2322#endif
2323extern int user_shm_lock(size_t, struct ucounts *);
2324extern void user_shm_unlock(size_t, struct ucounts *);
2325
2326struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2327 pte_t pte);
2328struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2329 pte_t pte);
2330struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2331 pmd_t pmd);
2332
2333void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2334 unsigned long size);
2335void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2336 unsigned long size, struct zap_details *details);
2337static inline void zap_vma_pages(struct vm_area_struct *vma)
2338{
2339 zap_page_range_single(vma, vma->vm_start,
2340 vma->vm_end - vma->vm_start, NULL);
2341}
2342void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2343 struct vm_area_struct *start_vma, unsigned long start,
2344 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2345
2346struct mmu_notifier_range;
2347
2348void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2349 unsigned long end, unsigned long floor, unsigned long ceiling);
2350int
2351copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2352int follow_pte(struct mm_struct *mm, unsigned long address,
2353 pte_t **ptepp, spinlock_t **ptlp);
2354int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2355 unsigned long *pfn);
2356int follow_phys(struct vm_area_struct *vma, unsigned long address,
2357 unsigned int flags, unsigned long *prot, resource_size_t *phys);
2358int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2359 void *buf, int len, int write);
2360
2361extern void truncate_pagecache(struct inode *inode, loff_t new);
2362extern void truncate_setsize(struct inode *inode, loff_t newsize);
2363void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2364void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2365int generic_error_remove_page(struct address_space *mapping, struct page *page);
2366
2367struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2368 unsigned long address, struct pt_regs *regs);
2369
2370#ifdef CONFIG_MMU
2371extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2372 unsigned long address, unsigned int flags,
2373 struct pt_regs *regs);
2374extern int fixup_user_fault(struct mm_struct *mm,
2375 unsigned long address, unsigned int fault_flags,
2376 bool *unlocked);
2377void unmap_mapping_pages(struct address_space *mapping,
2378 pgoff_t start, pgoff_t nr, bool even_cows);
2379void unmap_mapping_range(struct address_space *mapping,
2380 loff_t const holebegin, loff_t const holelen, int even_cows);
2381#else
2382static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2383 unsigned long address, unsigned int flags,
2384 struct pt_regs *regs)
2385{
2386 /* should never happen if there's no MMU */
2387 BUG();
2388 return VM_FAULT_SIGBUS;
2389}
2390static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2391 unsigned int fault_flags, bool *unlocked)
2392{
2393 /* should never happen if there's no MMU */
2394 BUG();
2395 return -EFAULT;
2396}
2397static inline void unmap_mapping_pages(struct address_space *mapping,
2398 pgoff_t start, pgoff_t nr, bool even_cows) { }
2399static inline void unmap_mapping_range(struct address_space *mapping,
2400 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2401#endif
2402
2403static inline void unmap_shared_mapping_range(struct address_space *mapping,
2404 loff_t const holebegin, loff_t const holelen)
2405{
2406 unmap_mapping_range(mapping, holebegin, holelen, 0);
2407}
2408
2409static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2410 unsigned long addr);
2411
2412extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2413 void *buf, int len, unsigned int gup_flags);
2414extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2415 void *buf, int len, unsigned int gup_flags);
2416extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2417 void *buf, int len, unsigned int gup_flags);
2418
2419long get_user_pages_remote(struct mm_struct *mm,
2420 unsigned long start, unsigned long nr_pages,
2421 unsigned int gup_flags, struct page **pages,
2422 int *locked);
2423long pin_user_pages_remote(struct mm_struct *mm,
2424 unsigned long start, unsigned long nr_pages,
2425 unsigned int gup_flags, struct page **pages,
2426 int *locked);
2427
2428static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2429 unsigned long addr,
2430 int gup_flags,
2431 struct vm_area_struct **vmap)
2432{
2433 struct page *page;
2434 struct vm_area_struct *vma;
2435 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2436
2437 if (got < 0)
2438 return ERR_PTR(got);
2439 if (got == 0)
2440 return NULL;
2441
2442 vma = vma_lookup(mm, addr);
2443 if (WARN_ON_ONCE(!vma)) {
2444 put_page(page);
2445 return ERR_PTR(-EINVAL);
2446 }
2447
2448 *vmap = vma;
2449 return page;
2450}
2451
2452long get_user_pages(unsigned long start, unsigned long nr_pages,
2453 unsigned int gup_flags, struct page **pages);
2454long pin_user_pages(unsigned long start, unsigned long nr_pages,
2455 unsigned int gup_flags, struct page **pages);
2456long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2457 struct page **pages, unsigned int gup_flags);
2458long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2459 struct page **pages, unsigned int gup_flags);
2460
2461int get_user_pages_fast(unsigned long start, int nr_pages,
2462 unsigned int gup_flags, struct page **pages);
2463int pin_user_pages_fast(unsigned long start, int nr_pages,
2464 unsigned int gup_flags, struct page **pages);
2465void folio_add_pin(struct folio *folio);
2466
2467int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2468int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2469 struct task_struct *task, bool bypass_rlim);
2470
2471struct kvec;
2472struct page *get_dump_page(unsigned long addr);
2473
2474bool folio_mark_dirty(struct folio *folio);
2475bool set_page_dirty(struct page *page);
2476int set_page_dirty_lock(struct page *page);
2477
2478int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2479
2480extern unsigned long move_page_tables(struct vm_area_struct *vma,
2481 unsigned long old_addr, struct vm_area_struct *new_vma,
2482 unsigned long new_addr, unsigned long len,
2483 bool need_rmap_locks);
2484
2485/*
2486 * Flags used by change_protection(). For now we make it a bitmap so
2487 * that we can pass in multiple flags just like parameters. However
2488 * for now all the callers are only use one of the flags at the same
2489 * time.
2490 */
2491/*
2492 * Whether we should manually check if we can map individual PTEs writable,
2493 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2494 * PTEs automatically in a writable mapping.
2495 */
2496#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2497/* Whether this protection change is for NUMA hints */
2498#define MM_CP_PROT_NUMA (1UL << 1)
2499/* Whether this change is for write protecting */
2500#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2501#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2502#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2503 MM_CP_UFFD_WP_RESOLVE)
2504
2505bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2506int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2507static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2508{
2509 /*
2510 * We want to check manually if we can change individual PTEs writable
2511 * if we can't do that automatically for all PTEs in a mapping. For
2512 * private mappings, that's always the case when we have write
2513 * permissions as we properly have to handle COW.
2514 */
2515 if (vma->vm_flags & VM_SHARED)
2516 return vma_wants_writenotify(vma, vma->vm_page_prot);
2517 return !!(vma->vm_flags & VM_WRITE);
2518
2519}
2520bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2521 pte_t pte);
2522extern long change_protection(struct mmu_gather *tlb,
2523 struct vm_area_struct *vma, unsigned long start,
2524 unsigned long end, unsigned long cp_flags);
2525extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2526 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2527 unsigned long start, unsigned long end, unsigned long newflags);
2528
2529/*
2530 * doesn't attempt to fault and will return short.
2531 */
2532int get_user_pages_fast_only(unsigned long start, int nr_pages,
2533 unsigned int gup_flags, struct page **pages);
2534
2535static inline bool get_user_page_fast_only(unsigned long addr,
2536 unsigned int gup_flags, struct page **pagep)
2537{
2538 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2539}
2540/*
2541 * per-process(per-mm_struct) statistics.
2542 */
2543static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2544{
2545 return percpu_counter_read_positive(&mm->rss_stat[member]);
2546}
2547
2548void mm_trace_rss_stat(struct mm_struct *mm, int member);
2549
2550static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2551{
2552 percpu_counter_add(&mm->rss_stat[member], value);
2553
2554 mm_trace_rss_stat(mm, member);
2555}
2556
2557static inline void inc_mm_counter(struct mm_struct *mm, int member)
2558{
2559 percpu_counter_inc(&mm->rss_stat[member]);
2560
2561 mm_trace_rss_stat(mm, member);
2562}
2563
2564static inline void dec_mm_counter(struct mm_struct *mm, int member)
2565{
2566 percpu_counter_dec(&mm->rss_stat[member]);
2567
2568 mm_trace_rss_stat(mm, member);
2569}
2570
2571/* Optimized variant when page is already known not to be PageAnon */
2572static inline int mm_counter_file(struct page *page)
2573{
2574 if (PageSwapBacked(page))
2575 return MM_SHMEMPAGES;
2576 return MM_FILEPAGES;
2577}
2578
2579static inline int mm_counter(struct page *page)
2580{
2581 if (PageAnon(page))
2582 return MM_ANONPAGES;
2583 return mm_counter_file(page);
2584}
2585
2586static inline unsigned long get_mm_rss(struct mm_struct *mm)
2587{
2588 return get_mm_counter(mm, MM_FILEPAGES) +
2589 get_mm_counter(mm, MM_ANONPAGES) +
2590 get_mm_counter(mm, MM_SHMEMPAGES);
2591}
2592
2593static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2594{
2595 return max(mm->hiwater_rss, get_mm_rss(mm));
2596}
2597
2598static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2599{
2600 return max(mm->hiwater_vm, mm->total_vm);
2601}
2602
2603static inline void update_hiwater_rss(struct mm_struct *mm)
2604{
2605 unsigned long _rss = get_mm_rss(mm);
2606
2607 if ((mm)->hiwater_rss < _rss)
2608 (mm)->hiwater_rss = _rss;
2609}
2610
2611static inline void update_hiwater_vm(struct mm_struct *mm)
2612{
2613 if (mm->hiwater_vm < mm->total_vm)
2614 mm->hiwater_vm = mm->total_vm;
2615}
2616
2617static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2618{
2619 mm->hiwater_rss = get_mm_rss(mm);
2620}
2621
2622static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2623 struct mm_struct *mm)
2624{
2625 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2626
2627 if (*maxrss < hiwater_rss)
2628 *maxrss = hiwater_rss;
2629}
2630
2631#if defined(SPLIT_RSS_COUNTING)
2632void sync_mm_rss(struct mm_struct *mm);
2633#else
2634static inline void sync_mm_rss(struct mm_struct *mm)
2635{
2636}
2637#endif
2638
2639#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2640static inline int pte_special(pte_t pte)
2641{
2642 return 0;
2643}
2644
2645static inline pte_t pte_mkspecial(pte_t pte)
2646{
2647 return pte;
2648}
2649#endif
2650
2651#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2652static inline int pte_devmap(pte_t pte)
2653{
2654 return 0;
2655}
2656#endif
2657
2658extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2659 spinlock_t **ptl);
2660static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2661 spinlock_t **ptl)
2662{
2663 pte_t *ptep;
2664 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2665 return ptep;
2666}
2667
2668#ifdef __PAGETABLE_P4D_FOLDED
2669static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2670 unsigned long address)
2671{
2672 return 0;
2673}
2674#else
2675int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2676#endif
2677
2678#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2679static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2680 unsigned long address)
2681{
2682 return 0;
2683}
2684static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2685static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2686
2687#else
2688int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2689
2690static inline void mm_inc_nr_puds(struct mm_struct *mm)
2691{
2692 if (mm_pud_folded(mm))
2693 return;
2694 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2695}
2696
2697static inline void mm_dec_nr_puds(struct mm_struct *mm)
2698{
2699 if (mm_pud_folded(mm))
2700 return;
2701 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2702}
2703#endif
2704
2705#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2706static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2707 unsigned long address)
2708{
2709 return 0;
2710}
2711
2712static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2713static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2714
2715#else
2716int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2717
2718static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2719{
2720 if (mm_pmd_folded(mm))
2721 return;
2722 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2723}
2724
2725static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2726{
2727 if (mm_pmd_folded(mm))
2728 return;
2729 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2730}
2731#endif
2732
2733#ifdef CONFIG_MMU
2734static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2735{
2736 atomic_long_set(&mm->pgtables_bytes, 0);
2737}
2738
2739static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2740{
2741 return atomic_long_read(&mm->pgtables_bytes);
2742}
2743
2744static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2745{
2746 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2747}
2748
2749static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2750{
2751 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2752}
2753#else
2754
2755static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2756static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2757{
2758 return 0;
2759}
2760
2761static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2762static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2763#endif
2764
2765int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2766int __pte_alloc_kernel(pmd_t *pmd);
2767
2768#if defined(CONFIG_MMU)
2769
2770static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2771 unsigned long address)
2772{
2773 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2774 NULL : p4d_offset(pgd, address);
2775}
2776
2777static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2778 unsigned long address)
2779{
2780 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2781 NULL : pud_offset(p4d, address);
2782}
2783
2784static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2785{
2786 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2787 NULL: pmd_offset(pud, address);
2788}
2789#endif /* CONFIG_MMU */
2790
2791static inline struct ptdesc *virt_to_ptdesc(const void *x)
2792{
2793 return page_ptdesc(virt_to_page(x));
2794}
2795
2796static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2797{
2798 return page_to_virt(ptdesc_page(pt));
2799}
2800
2801static inline void *ptdesc_address(const struct ptdesc *pt)
2802{
2803 return folio_address(ptdesc_folio(pt));
2804}
2805
2806static inline bool pagetable_is_reserved(struct ptdesc *pt)
2807{
2808 return folio_test_reserved(ptdesc_folio(pt));
2809}
2810
2811/**
2812 * pagetable_alloc - Allocate pagetables
2813 * @gfp: GFP flags
2814 * @order: desired pagetable order
2815 *
2816 * pagetable_alloc allocates memory for page tables as well as a page table
2817 * descriptor to describe that memory.
2818 *
2819 * Return: The ptdesc describing the allocated page tables.
2820 */
2821static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order)
2822{
2823 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2824
2825 return page_ptdesc(page);
2826}
2827
2828/**
2829 * pagetable_free - Free pagetables
2830 * @pt: The page table descriptor
2831 *
2832 * pagetable_free frees the memory of all page tables described by a page
2833 * table descriptor and the memory for the descriptor itself.
2834 */
2835static inline void pagetable_free(struct ptdesc *pt)
2836{
2837 struct page *page = ptdesc_page(pt);
2838
2839 __free_pages(page, compound_order(page));
2840}
2841
2842#if USE_SPLIT_PTE_PTLOCKS
2843#if ALLOC_SPLIT_PTLOCKS
2844void __init ptlock_cache_init(void);
2845bool ptlock_alloc(struct ptdesc *ptdesc);
2846void ptlock_free(struct ptdesc *ptdesc);
2847
2848static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2849{
2850 return ptdesc->ptl;
2851}
2852#else /* ALLOC_SPLIT_PTLOCKS */
2853static inline void ptlock_cache_init(void)
2854{
2855}
2856
2857static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2858{
2859 return true;
2860}
2861
2862static inline void ptlock_free(struct ptdesc *ptdesc)
2863{
2864}
2865
2866static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2867{
2868 return &ptdesc->ptl;
2869}
2870#endif /* ALLOC_SPLIT_PTLOCKS */
2871
2872static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2873{
2874 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2875}
2876
2877static inline bool ptlock_init(struct ptdesc *ptdesc)
2878{
2879 /*
2880 * prep_new_page() initialize page->private (and therefore page->ptl)
2881 * with 0. Make sure nobody took it in use in between.
2882 *
2883 * It can happen if arch try to use slab for page table allocation:
2884 * slab code uses page->slab_cache, which share storage with page->ptl.
2885 */
2886 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2887 if (!ptlock_alloc(ptdesc))
2888 return false;
2889 spin_lock_init(ptlock_ptr(ptdesc));
2890 return true;
2891}
2892
2893#else /* !USE_SPLIT_PTE_PTLOCKS */
2894/*
2895 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2896 */
2897static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2898{
2899 return &mm->page_table_lock;
2900}
2901static inline void ptlock_cache_init(void) {}
2902static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2903static inline void ptlock_free(struct ptdesc *ptdesc) {}
2904#endif /* USE_SPLIT_PTE_PTLOCKS */
2905
2906static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2907{
2908 struct folio *folio = ptdesc_folio(ptdesc);
2909
2910 if (!ptlock_init(ptdesc))
2911 return false;
2912 __folio_set_pgtable(folio);
2913 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2914 return true;
2915}
2916
2917static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2918{
2919 struct folio *folio = ptdesc_folio(ptdesc);
2920
2921 ptlock_free(ptdesc);
2922 __folio_clear_pgtable(folio);
2923 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2924}
2925
2926pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2927static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2928{
2929 return __pte_offset_map(pmd, addr, NULL);
2930}
2931
2932pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2933 unsigned long addr, spinlock_t **ptlp);
2934static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2935 unsigned long addr, spinlock_t **ptlp)
2936{
2937 pte_t *pte;
2938
2939 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2940 return pte;
2941}
2942
2943pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2944 unsigned long addr, spinlock_t **ptlp);
2945
2946#define pte_unmap_unlock(pte, ptl) do { \
2947 spin_unlock(ptl); \
2948 pte_unmap(pte); \
2949} while (0)
2950
2951#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2952
2953#define pte_alloc_map(mm, pmd, address) \
2954 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2955
2956#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2957 (pte_alloc(mm, pmd) ? \
2958 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2959
2960#define pte_alloc_kernel(pmd, address) \
2961 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2962 NULL: pte_offset_kernel(pmd, address))
2963
2964#if USE_SPLIT_PMD_PTLOCKS
2965
2966static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2967{
2968 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2969 return virt_to_page((void *)((unsigned long) pmd & mask));
2970}
2971
2972static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
2973{
2974 return page_ptdesc(pmd_pgtable_page(pmd));
2975}
2976
2977static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2978{
2979 return ptlock_ptr(pmd_ptdesc(pmd));
2980}
2981
2982static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
2983{
2984#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2985 ptdesc->pmd_huge_pte = NULL;
2986#endif
2987 return ptlock_init(ptdesc);
2988}
2989
2990static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
2991{
2992#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2993 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
2994#endif
2995 ptlock_free(ptdesc);
2996}
2997
2998#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
2999
3000#else
3001
3002static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3003{
3004 return &mm->page_table_lock;
3005}
3006
3007static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3008static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3009
3010#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3011
3012#endif
3013
3014static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3015{
3016 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3017 spin_lock(ptl);
3018 return ptl;
3019}
3020
3021static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3022{
3023 struct folio *folio = ptdesc_folio(ptdesc);
3024
3025 if (!pmd_ptlock_init(ptdesc))
3026 return false;
3027 __folio_set_pgtable(folio);
3028 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3029 return true;
3030}
3031
3032static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3033{
3034 struct folio *folio = ptdesc_folio(ptdesc);
3035
3036 pmd_ptlock_free(ptdesc);
3037 __folio_clear_pgtable(folio);
3038 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3039}
3040
3041/*
3042 * No scalability reason to split PUD locks yet, but follow the same pattern
3043 * as the PMD locks to make it easier if we decide to. The VM should not be
3044 * considered ready to switch to split PUD locks yet; there may be places
3045 * which need to be converted from page_table_lock.
3046 */
3047static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3048{
3049 return &mm->page_table_lock;
3050}
3051
3052static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3053{
3054 spinlock_t *ptl = pud_lockptr(mm, pud);
3055
3056 spin_lock(ptl);
3057 return ptl;
3058}
3059
3060extern void __init pagecache_init(void);
3061extern void free_initmem(void);
3062
3063/*
3064 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3065 * into the buddy system. The freed pages will be poisoned with pattern
3066 * "poison" if it's within range [0, UCHAR_MAX].
3067 * Return pages freed into the buddy system.
3068 */
3069extern unsigned long free_reserved_area(void *start, void *end,
3070 int poison, const char *s);
3071
3072extern void adjust_managed_page_count(struct page *page, long count);
3073
3074extern void reserve_bootmem_region(phys_addr_t start,
3075 phys_addr_t end, int nid);
3076
3077/* Free the reserved page into the buddy system, so it gets managed. */
3078static inline void free_reserved_page(struct page *page)
3079{
3080 ClearPageReserved(page);
3081 init_page_count(page);
3082 __free_page(page);
3083 adjust_managed_page_count(page, 1);
3084}
3085#define free_highmem_page(page) free_reserved_page(page)
3086
3087static inline void mark_page_reserved(struct page *page)
3088{
3089 SetPageReserved(page);
3090 adjust_managed_page_count(page, -1);
3091}
3092
3093static inline void free_reserved_ptdesc(struct ptdesc *pt)
3094{
3095 free_reserved_page(ptdesc_page(pt));
3096}
3097
3098/*
3099 * Default method to free all the __init memory into the buddy system.
3100 * The freed pages will be poisoned with pattern "poison" if it's within
3101 * range [0, UCHAR_MAX].
3102 * Return pages freed into the buddy system.
3103 */
3104static inline unsigned long free_initmem_default(int poison)
3105{
3106 extern char __init_begin[], __init_end[];
3107
3108 return free_reserved_area(&__init_begin, &__init_end,
3109 poison, "unused kernel image (initmem)");
3110}
3111
3112static inline unsigned long get_num_physpages(void)
3113{
3114 int nid;
3115 unsigned long phys_pages = 0;
3116
3117 for_each_online_node(nid)
3118 phys_pages += node_present_pages(nid);
3119
3120 return phys_pages;
3121}
3122
3123/*
3124 * Using memblock node mappings, an architecture may initialise its
3125 * zones, allocate the backing mem_map and account for memory holes in an
3126 * architecture independent manner.
3127 *
3128 * An architecture is expected to register range of page frames backed by
3129 * physical memory with memblock_add[_node]() before calling
3130 * free_area_init() passing in the PFN each zone ends at. At a basic
3131 * usage, an architecture is expected to do something like
3132 *
3133 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3134 * max_highmem_pfn};
3135 * for_each_valid_physical_page_range()
3136 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3137 * free_area_init(max_zone_pfns);
3138 */
3139void free_area_init(unsigned long *max_zone_pfn);
3140unsigned long node_map_pfn_alignment(void);
3141unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3142 unsigned long end_pfn);
3143extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3144 unsigned long end_pfn);
3145extern void get_pfn_range_for_nid(unsigned int nid,
3146 unsigned long *start_pfn, unsigned long *end_pfn);
3147
3148#ifndef CONFIG_NUMA
3149static inline int early_pfn_to_nid(unsigned long pfn)
3150{
3151 return 0;
3152}
3153#else
3154/* please see mm/page_alloc.c */
3155extern int __meminit early_pfn_to_nid(unsigned long pfn);
3156#endif
3157
3158extern void set_dma_reserve(unsigned long new_dma_reserve);
3159extern void mem_init(void);
3160extern void __init mmap_init(void);
3161
3162extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3163static inline void show_mem(void)
3164{
3165 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3166}
3167extern long si_mem_available(void);
3168extern void si_meminfo(struct sysinfo * val);
3169extern void si_meminfo_node(struct sysinfo *val, int nid);
3170#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3171extern unsigned long arch_reserved_kernel_pages(void);
3172#endif
3173
3174extern __printf(3, 4)
3175void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3176
3177extern void setup_per_cpu_pageset(void);
3178
3179/* nommu.c */
3180extern atomic_long_t mmap_pages_allocated;
3181extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3182
3183/* interval_tree.c */
3184void vma_interval_tree_insert(struct vm_area_struct *node,
3185 struct rb_root_cached *root);
3186void vma_interval_tree_insert_after(struct vm_area_struct *node,
3187 struct vm_area_struct *prev,
3188 struct rb_root_cached *root);
3189void vma_interval_tree_remove(struct vm_area_struct *node,
3190 struct rb_root_cached *root);
3191struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3192 unsigned long start, unsigned long last);
3193struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3194 unsigned long start, unsigned long last);
3195
3196#define vma_interval_tree_foreach(vma, root, start, last) \
3197 for (vma = vma_interval_tree_iter_first(root, start, last); \
3198 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3199
3200void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3201 struct rb_root_cached *root);
3202void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3203 struct rb_root_cached *root);
3204struct anon_vma_chain *
3205anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3206 unsigned long start, unsigned long last);
3207struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3208 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3209#ifdef CONFIG_DEBUG_VM_RB
3210void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3211#endif
3212
3213#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3214 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3215 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3216
3217/* mmap.c */
3218extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3219extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3220 unsigned long start, unsigned long end, pgoff_t pgoff,
3221 struct vm_area_struct *next);
3222extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3223 unsigned long start, unsigned long end, pgoff_t pgoff);
3224extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
3225 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3226 unsigned long end, unsigned long vm_flags, struct anon_vma *,
3227 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3228 struct anon_vma_name *);
3229extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3230extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3231 unsigned long addr, int new_below);
3232extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3233 unsigned long addr, int new_below);
3234extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3235extern void unlink_file_vma(struct vm_area_struct *);
3236extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3237 unsigned long addr, unsigned long len, pgoff_t pgoff,
3238 bool *need_rmap_locks);
3239extern void exit_mmap(struct mm_struct *);
3240
3241static inline int check_data_rlimit(unsigned long rlim,
3242 unsigned long new,
3243 unsigned long start,
3244 unsigned long end_data,
3245 unsigned long start_data)
3246{
3247 if (rlim < RLIM_INFINITY) {
3248 if (((new - start) + (end_data - start_data)) > rlim)
3249 return -ENOSPC;
3250 }
3251
3252 return 0;
3253}
3254
3255extern int mm_take_all_locks(struct mm_struct *mm);
3256extern void mm_drop_all_locks(struct mm_struct *mm);
3257
3258extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3259extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3260extern struct file *get_mm_exe_file(struct mm_struct *mm);
3261extern struct file *get_task_exe_file(struct task_struct *task);
3262
3263extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3264extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3265
3266extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3267 const struct vm_special_mapping *sm);
3268extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3269 unsigned long addr, unsigned long len,
3270 unsigned long flags,
3271 const struct vm_special_mapping *spec);
3272/* This is an obsolete alternative to _install_special_mapping. */
3273extern int install_special_mapping(struct mm_struct *mm,
3274 unsigned long addr, unsigned long len,
3275 unsigned long flags, struct page **pages);
3276
3277unsigned long randomize_stack_top(unsigned long stack_top);
3278unsigned long randomize_page(unsigned long start, unsigned long range);
3279
3280extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3281
3282extern unsigned long mmap_region(struct file *file, unsigned long addr,
3283 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3284 struct list_head *uf);
3285extern unsigned long do_mmap(struct file *file, unsigned long addr,
3286 unsigned long len, unsigned long prot, unsigned long flags,
3287 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3288 struct list_head *uf);
3289extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3290 unsigned long start, size_t len, struct list_head *uf,
3291 bool unlock);
3292extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3293 struct list_head *uf);
3294extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3295
3296#ifdef CONFIG_MMU
3297extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3298 unsigned long start, unsigned long end,
3299 struct list_head *uf, bool unlock);
3300extern int __mm_populate(unsigned long addr, unsigned long len,
3301 int ignore_errors);
3302static inline void mm_populate(unsigned long addr, unsigned long len)
3303{
3304 /* Ignore errors */
3305 (void) __mm_populate(addr, len, 1);
3306}
3307#else
3308static inline void mm_populate(unsigned long addr, unsigned long len) {}
3309#endif
3310
3311/* These take the mm semaphore themselves */
3312extern int __must_check vm_brk(unsigned long, unsigned long);
3313extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3314extern int vm_munmap(unsigned long, size_t);
3315extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3316 unsigned long, unsigned long,
3317 unsigned long, unsigned long);
3318
3319struct vm_unmapped_area_info {
3320#define VM_UNMAPPED_AREA_TOPDOWN 1
3321 unsigned long flags;
3322 unsigned long length;
3323 unsigned long low_limit;
3324 unsigned long high_limit;
3325 unsigned long align_mask;
3326 unsigned long align_offset;
3327};
3328
3329extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3330
3331/* truncate.c */
3332extern void truncate_inode_pages(struct address_space *, loff_t);
3333extern void truncate_inode_pages_range(struct address_space *,
3334 loff_t lstart, loff_t lend);
3335extern void truncate_inode_pages_final(struct address_space *);
3336
3337/* generic vm_area_ops exported for stackable file systems */
3338extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3339extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3340 pgoff_t start_pgoff, pgoff_t end_pgoff);
3341extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3342
3343extern unsigned long stack_guard_gap;
3344/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3345int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3346struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3347
3348/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3349int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3350
3351/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3352extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3353extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3354 struct vm_area_struct **pprev);
3355
3356/*
3357 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3358 * NULL if none. Assume start_addr < end_addr.
3359 */
3360struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3361 unsigned long start_addr, unsigned long end_addr);
3362
3363/**
3364 * vma_lookup() - Find a VMA at a specific address
3365 * @mm: The process address space.
3366 * @addr: The user address.
3367 *
3368 * Return: The vm_area_struct at the given address, %NULL otherwise.
3369 */
3370static inline
3371struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3372{
3373 return mtree_load(&mm->mm_mt, addr);
3374}
3375
3376static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3377{
3378 if (vma->vm_flags & VM_GROWSDOWN)
3379 return stack_guard_gap;
3380
3381 /* See reasoning around the VM_SHADOW_STACK definition */
3382 if (vma->vm_flags & VM_SHADOW_STACK)
3383 return PAGE_SIZE;
3384
3385 return 0;
3386}
3387
3388static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3389{
3390 unsigned long gap = stack_guard_start_gap(vma);
3391 unsigned long vm_start = vma->vm_start;
3392
3393 vm_start -= gap;
3394 if (vm_start > vma->vm_start)
3395 vm_start = 0;
3396 return vm_start;
3397}
3398
3399static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3400{
3401 unsigned long vm_end = vma->vm_end;
3402
3403 if (vma->vm_flags & VM_GROWSUP) {
3404 vm_end += stack_guard_gap;
3405 if (vm_end < vma->vm_end)
3406 vm_end = -PAGE_SIZE;
3407 }
3408 return vm_end;
3409}
3410
3411static inline unsigned long vma_pages(struct vm_area_struct *vma)
3412{
3413 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3414}
3415
3416/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3417static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3418 unsigned long vm_start, unsigned long vm_end)
3419{
3420 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3421
3422 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3423 vma = NULL;
3424
3425 return vma;
3426}
3427
3428static inline bool range_in_vma(struct vm_area_struct *vma,
3429 unsigned long start, unsigned long end)
3430{
3431 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3432}
3433
3434#ifdef CONFIG_MMU
3435pgprot_t vm_get_page_prot(unsigned long vm_flags);
3436void vma_set_page_prot(struct vm_area_struct *vma);
3437#else
3438static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3439{
3440 return __pgprot(0);
3441}
3442static inline void vma_set_page_prot(struct vm_area_struct *vma)
3443{
3444 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3445}
3446#endif
3447
3448void vma_set_file(struct vm_area_struct *vma, struct file *file);
3449
3450#ifdef CONFIG_NUMA_BALANCING
3451unsigned long change_prot_numa(struct vm_area_struct *vma,
3452 unsigned long start, unsigned long end);
3453#endif
3454
3455struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3456 unsigned long addr);
3457int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3458 unsigned long pfn, unsigned long size, pgprot_t);
3459int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3460 unsigned long pfn, unsigned long size, pgprot_t prot);
3461int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3462int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3463 struct page **pages, unsigned long *num);
3464int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3465 unsigned long num);
3466int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3467 unsigned long num);
3468vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3469 unsigned long pfn);
3470vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3471 unsigned long pfn, pgprot_t pgprot);
3472vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3473 pfn_t pfn);
3474vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3475 unsigned long addr, pfn_t pfn);
3476int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3477
3478static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3479 unsigned long addr, struct page *page)
3480{
3481 int err = vm_insert_page(vma, addr, page);
3482
3483 if (err == -ENOMEM)
3484 return VM_FAULT_OOM;
3485 if (err < 0 && err != -EBUSY)
3486 return VM_FAULT_SIGBUS;
3487
3488 return VM_FAULT_NOPAGE;
3489}
3490
3491#ifndef io_remap_pfn_range
3492static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3493 unsigned long addr, unsigned long pfn,
3494 unsigned long size, pgprot_t prot)
3495{
3496 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3497}
3498#endif
3499
3500static inline vm_fault_t vmf_error(int err)
3501{
3502 if (err == -ENOMEM)
3503 return VM_FAULT_OOM;
3504 else if (err == -EHWPOISON)
3505 return VM_FAULT_HWPOISON;
3506 return VM_FAULT_SIGBUS;
3507}
3508
3509/*
3510 * Convert errno to return value for ->page_mkwrite() calls.
3511 *
3512 * This should eventually be merged with vmf_error() above, but will need a
3513 * careful audit of all vmf_error() callers.
3514 */
3515static inline vm_fault_t vmf_fs_error(int err)
3516{
3517 if (err == 0)
3518 return VM_FAULT_LOCKED;
3519 if (err == -EFAULT || err == -EAGAIN)
3520 return VM_FAULT_NOPAGE;
3521 if (err == -ENOMEM)
3522 return VM_FAULT_OOM;
3523 /* -ENOSPC, -EDQUOT, -EIO ... */
3524 return VM_FAULT_SIGBUS;
3525}
3526
3527struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3528 unsigned int foll_flags);
3529
3530static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3531{
3532 if (vm_fault & VM_FAULT_OOM)
3533 return -ENOMEM;
3534 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3535 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3536 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3537 return -EFAULT;
3538 return 0;
3539}
3540
3541/*
3542 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3543 * a (NUMA hinting) fault is required.
3544 */
3545static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3546 unsigned int flags)
3547{
3548 /*
3549 * If callers don't want to honor NUMA hinting faults, no need to
3550 * determine if we would actually have to trigger a NUMA hinting fault.
3551 */
3552 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3553 return true;
3554
3555 /*
3556 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3557 *
3558 * Requiring a fault here even for inaccessible VMAs would mean that
3559 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3560 * refuses to process NUMA hinting faults in inaccessible VMAs.
3561 */
3562 return !vma_is_accessible(vma);
3563}
3564
3565typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3566extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3567 unsigned long size, pte_fn_t fn, void *data);
3568extern int apply_to_existing_page_range(struct mm_struct *mm,
3569 unsigned long address, unsigned long size,
3570 pte_fn_t fn, void *data);
3571
3572#ifdef CONFIG_PAGE_POISONING
3573extern void __kernel_poison_pages(struct page *page, int numpages);
3574extern void __kernel_unpoison_pages(struct page *page, int numpages);
3575extern bool _page_poisoning_enabled_early;
3576DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3577static inline bool page_poisoning_enabled(void)
3578{
3579 return _page_poisoning_enabled_early;
3580}
3581/*
3582 * For use in fast paths after init_mem_debugging() has run, or when a
3583 * false negative result is not harmful when called too early.
3584 */
3585static inline bool page_poisoning_enabled_static(void)
3586{
3587 return static_branch_unlikely(&_page_poisoning_enabled);
3588}
3589static inline void kernel_poison_pages(struct page *page, int numpages)
3590{
3591 if (page_poisoning_enabled_static())
3592 __kernel_poison_pages(page, numpages);
3593}
3594static inline void kernel_unpoison_pages(struct page *page, int numpages)
3595{
3596 if (page_poisoning_enabled_static())
3597 __kernel_unpoison_pages(page, numpages);
3598}
3599#else
3600static inline bool page_poisoning_enabled(void) { return false; }
3601static inline bool page_poisoning_enabled_static(void) { return false; }
3602static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3603static inline void kernel_poison_pages(struct page *page, int numpages) { }
3604static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3605#endif
3606
3607DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3608static inline bool want_init_on_alloc(gfp_t flags)
3609{
3610 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3611 &init_on_alloc))
3612 return true;
3613 return flags & __GFP_ZERO;
3614}
3615
3616DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3617static inline bool want_init_on_free(void)
3618{
3619 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3620 &init_on_free);
3621}
3622
3623extern bool _debug_pagealloc_enabled_early;
3624DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3625
3626static inline bool debug_pagealloc_enabled(void)
3627{
3628 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3629 _debug_pagealloc_enabled_early;
3630}
3631
3632/*
3633 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3634 * or when a false negative result is not harmful when called too early.
3635 */
3636static inline bool debug_pagealloc_enabled_static(void)
3637{
3638 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3639 return false;
3640
3641 return static_branch_unlikely(&_debug_pagealloc_enabled);
3642}
3643
3644/*
3645 * To support DEBUG_PAGEALLOC architecture must ensure that
3646 * __kernel_map_pages() never fails
3647 */
3648extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3649#ifdef CONFIG_DEBUG_PAGEALLOC
3650static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3651{
3652 if (debug_pagealloc_enabled_static())
3653 __kernel_map_pages(page, numpages, 1);
3654}
3655
3656static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3657{
3658 if (debug_pagealloc_enabled_static())
3659 __kernel_map_pages(page, numpages, 0);
3660}
3661
3662extern unsigned int _debug_guardpage_minorder;
3663DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3664
3665static inline unsigned int debug_guardpage_minorder(void)
3666{
3667 return _debug_guardpage_minorder;
3668}
3669
3670static inline bool debug_guardpage_enabled(void)
3671{
3672 return static_branch_unlikely(&_debug_guardpage_enabled);
3673}
3674
3675static inline bool page_is_guard(struct page *page)
3676{
3677 if (!debug_guardpage_enabled())
3678 return false;
3679
3680 return PageGuard(page);
3681}
3682
3683bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3684 int migratetype);
3685static inline bool set_page_guard(struct zone *zone, struct page *page,
3686 unsigned int order, int migratetype)
3687{
3688 if (!debug_guardpage_enabled())
3689 return false;
3690 return __set_page_guard(zone, page, order, migratetype);
3691}
3692
3693void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3694 int migratetype);
3695static inline void clear_page_guard(struct zone *zone, struct page *page,
3696 unsigned int order, int migratetype)
3697{
3698 if (!debug_guardpage_enabled())
3699 return;
3700 __clear_page_guard(zone, page, order, migratetype);
3701}
3702
3703#else /* CONFIG_DEBUG_PAGEALLOC */
3704static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3705static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3706static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3707static inline bool debug_guardpage_enabled(void) { return false; }
3708static inline bool page_is_guard(struct page *page) { return false; }
3709static inline bool set_page_guard(struct zone *zone, struct page *page,
3710 unsigned int order, int migratetype) { return false; }
3711static inline void clear_page_guard(struct zone *zone, struct page *page,
3712 unsigned int order, int migratetype) {}
3713#endif /* CONFIG_DEBUG_PAGEALLOC */
3714
3715#ifdef __HAVE_ARCH_GATE_AREA
3716extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3717extern int in_gate_area_no_mm(unsigned long addr);
3718extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3719#else
3720static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3721{
3722 return NULL;
3723}
3724static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3725static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3726{
3727 return 0;
3728}
3729#endif /* __HAVE_ARCH_GATE_AREA */
3730
3731extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3732
3733#ifdef CONFIG_SYSCTL
3734extern int sysctl_drop_caches;
3735int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3736 loff_t *);
3737#endif
3738
3739void drop_slab(void);
3740
3741#ifndef CONFIG_MMU
3742#define randomize_va_space 0
3743#else
3744extern int randomize_va_space;
3745#endif
3746
3747const char * arch_vma_name(struct vm_area_struct *vma);
3748#ifdef CONFIG_MMU
3749void print_vma_addr(char *prefix, unsigned long rip);
3750#else
3751static inline void print_vma_addr(char *prefix, unsigned long rip)
3752{
3753}
3754#endif
3755
3756void *sparse_buffer_alloc(unsigned long size);
3757struct page * __populate_section_memmap(unsigned long pfn,
3758 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3759 struct dev_pagemap *pgmap);
3760void pmd_init(void *addr);
3761void pud_init(void *addr);
3762pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3763p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3764pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3765pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3766pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3767 struct vmem_altmap *altmap, struct page *reuse);
3768void *vmemmap_alloc_block(unsigned long size, int node);
3769struct vmem_altmap;
3770void *vmemmap_alloc_block_buf(unsigned long size, int node,
3771 struct vmem_altmap *altmap);
3772void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3773void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3774 unsigned long addr, unsigned long next);
3775int vmemmap_check_pmd(pmd_t *pmd, int node,
3776 unsigned long addr, unsigned long next);
3777int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3778 int node, struct vmem_altmap *altmap);
3779int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3780 int node, struct vmem_altmap *altmap);
3781int vmemmap_populate(unsigned long start, unsigned long end, int node,
3782 struct vmem_altmap *altmap);
3783void vmemmap_populate_print_last(void);
3784#ifdef CONFIG_MEMORY_HOTPLUG
3785void vmemmap_free(unsigned long start, unsigned long end,
3786 struct vmem_altmap *altmap);
3787#endif
3788
3789#define VMEMMAP_RESERVE_NR 2
3790#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3791static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3792 struct dev_pagemap *pgmap)
3793{
3794 unsigned long nr_pages;
3795 unsigned long nr_vmemmap_pages;
3796
3797 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3798 return false;
3799
3800 nr_pages = pgmap_vmemmap_nr(pgmap);
3801 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3802 /*
3803 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3804 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3805 */
3806 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3807}
3808/*
3809 * If we don't have an architecture override, use the generic rule
3810 */
3811#ifndef vmemmap_can_optimize
3812#define vmemmap_can_optimize __vmemmap_can_optimize
3813#endif
3814
3815#else
3816static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3817 struct dev_pagemap *pgmap)
3818{
3819 return false;
3820}
3821#endif
3822
3823void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3824 unsigned long nr_pages);
3825
3826enum mf_flags {
3827 MF_COUNT_INCREASED = 1 << 0,
3828 MF_ACTION_REQUIRED = 1 << 1,
3829 MF_MUST_KILL = 1 << 2,
3830 MF_SOFT_OFFLINE = 1 << 3,
3831 MF_UNPOISON = 1 << 4,
3832 MF_SW_SIMULATED = 1 << 5,
3833 MF_NO_RETRY = 1 << 6,
3834};
3835int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3836 unsigned long count, int mf_flags);
3837extern int memory_failure(unsigned long pfn, int flags);
3838extern void memory_failure_queue_kick(int cpu);
3839extern int unpoison_memory(unsigned long pfn);
3840extern void shake_page(struct page *p);
3841extern atomic_long_t num_poisoned_pages __read_mostly;
3842extern int soft_offline_page(unsigned long pfn, int flags);
3843#ifdef CONFIG_MEMORY_FAILURE
3844/*
3845 * Sysfs entries for memory failure handling statistics.
3846 */
3847extern const struct attribute_group memory_failure_attr_group;
3848extern void memory_failure_queue(unsigned long pfn, int flags);
3849extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3850 bool *migratable_cleared);
3851void num_poisoned_pages_inc(unsigned long pfn);
3852void num_poisoned_pages_sub(unsigned long pfn, long i);
3853struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3854#else
3855static inline void memory_failure_queue(unsigned long pfn, int flags)
3856{
3857}
3858
3859static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3860 bool *migratable_cleared)
3861{
3862 return 0;
3863}
3864
3865static inline void num_poisoned_pages_inc(unsigned long pfn)
3866{
3867}
3868
3869static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3870{
3871}
3872#endif
3873
3874#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3875void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3876 struct vm_area_struct *vma, struct list_head *to_kill,
3877 unsigned long ksm_addr);
3878#endif
3879
3880#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3881extern void memblk_nr_poison_inc(unsigned long pfn);
3882extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3883#else
3884static inline void memblk_nr_poison_inc(unsigned long pfn)
3885{
3886}
3887
3888static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3889{
3890}
3891#endif
3892
3893#ifndef arch_memory_failure
3894static inline int arch_memory_failure(unsigned long pfn, int flags)
3895{
3896 return -ENXIO;
3897}
3898#endif
3899
3900#ifndef arch_is_platform_page
3901static inline bool arch_is_platform_page(u64 paddr)
3902{
3903 return false;
3904}
3905#endif
3906
3907/*
3908 * Error handlers for various types of pages.
3909 */
3910enum mf_result {
3911 MF_IGNORED, /* Error: cannot be handled */
3912 MF_FAILED, /* Error: handling failed */
3913 MF_DELAYED, /* Will be handled later */
3914 MF_RECOVERED, /* Successfully recovered */
3915};
3916
3917enum mf_action_page_type {
3918 MF_MSG_KERNEL,
3919 MF_MSG_KERNEL_HIGH_ORDER,
3920 MF_MSG_SLAB,
3921 MF_MSG_DIFFERENT_COMPOUND,
3922 MF_MSG_HUGE,
3923 MF_MSG_FREE_HUGE,
3924 MF_MSG_UNMAP_FAILED,
3925 MF_MSG_DIRTY_SWAPCACHE,
3926 MF_MSG_CLEAN_SWAPCACHE,
3927 MF_MSG_DIRTY_MLOCKED_LRU,
3928 MF_MSG_CLEAN_MLOCKED_LRU,
3929 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3930 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3931 MF_MSG_DIRTY_LRU,
3932 MF_MSG_CLEAN_LRU,
3933 MF_MSG_TRUNCATED_LRU,
3934 MF_MSG_BUDDY,
3935 MF_MSG_DAX,
3936 MF_MSG_UNSPLIT_THP,
3937 MF_MSG_UNKNOWN,
3938};
3939
3940#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3941extern void clear_huge_page(struct page *page,
3942 unsigned long addr_hint,
3943 unsigned int pages_per_huge_page);
3944int copy_user_large_folio(struct folio *dst, struct folio *src,
3945 unsigned long addr_hint,
3946 struct vm_area_struct *vma);
3947long copy_folio_from_user(struct folio *dst_folio,
3948 const void __user *usr_src,
3949 bool allow_pagefault);
3950
3951/**
3952 * vma_is_special_huge - Are transhuge page-table entries considered special?
3953 * @vma: Pointer to the struct vm_area_struct to consider
3954 *
3955 * Whether transhuge page-table entries are considered "special" following
3956 * the definition in vm_normal_page().
3957 *
3958 * Return: true if transhuge page-table entries should be considered special,
3959 * false otherwise.
3960 */
3961static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3962{
3963 return vma_is_dax(vma) || (vma->vm_file &&
3964 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3965}
3966
3967#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3968
3969#if MAX_NUMNODES > 1
3970void __init setup_nr_node_ids(void);
3971#else
3972static inline void setup_nr_node_ids(void) {}
3973#endif
3974
3975extern int memcmp_pages(struct page *page1, struct page *page2);
3976
3977static inline int pages_identical(struct page *page1, struct page *page2)
3978{
3979 return !memcmp_pages(page1, page2);
3980}
3981
3982#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3983unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3984 pgoff_t first_index, pgoff_t nr,
3985 pgoff_t bitmap_pgoff,
3986 unsigned long *bitmap,
3987 pgoff_t *start,
3988 pgoff_t *end);
3989
3990unsigned long wp_shared_mapping_range(struct address_space *mapping,
3991 pgoff_t first_index, pgoff_t nr);
3992#endif
3993
3994extern int sysctl_nr_trim_pages;
3995
3996#ifdef CONFIG_PRINTK
3997void mem_dump_obj(void *object);
3998#else
3999static inline void mem_dump_obj(void *object) {}
4000#endif
4001
4002/**
4003 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
4004 * @seals: the seals to check
4005 * @vma: the vma to operate on
4006 *
4007 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
4008 * the vma flags. Return 0 if check pass, or <0 for errors.
4009 */
4010static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
4011{
4012 if (seals & F_SEAL_FUTURE_WRITE) {
4013 /*
4014 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4015 * "future write" seal active.
4016 */
4017 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4018 return -EPERM;
4019
4020 /*
4021 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
4022 * MAP_SHARED and read-only, take care to not allow mprotect to
4023 * revert protections on such mappings. Do this only for shared
4024 * mappings. For private mappings, don't need to mask
4025 * VM_MAYWRITE as we still want them to be COW-writable.
4026 */
4027 if (vma->vm_flags & VM_SHARED)
4028 vm_flags_clear(vma, VM_MAYWRITE);
4029 }
4030
4031 return 0;
4032}
4033
4034#ifdef CONFIG_ANON_VMA_NAME
4035int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4036 unsigned long len_in,
4037 struct anon_vma_name *anon_name);
4038#else
4039static inline int
4040madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4041 unsigned long len_in, struct anon_vma_name *anon_name) {
4042 return 0;
4043}
4044#endif
4045
4046#ifdef CONFIG_UNACCEPTED_MEMORY
4047
4048bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4049void accept_memory(phys_addr_t start, phys_addr_t end);
4050
4051#else
4052
4053static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4054 phys_addr_t end)
4055{
4056 return false;
4057}
4058
4059static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4060{
4061}
4062
4063#endif
4064
4065#endif /* _LINUX_MM_H */