Merge branch 'topic/tasklet-convert' into for-linus
[linux-block.git] / include / linux / memcontrol.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24
25struct mem_cgroup;
26struct obj_cgroup;
27struct page;
28struct mm_struct;
29struct kmem_cache;
30
31/* Cgroup-specific page state, on top of universal node page state */
32enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_NR_STAT,
37};
38
39enum memcg_memory_event {
40 MEMCG_LOW,
41 MEMCG_HIGH,
42 MEMCG_MAX,
43 MEMCG_OOM,
44 MEMCG_OOM_KILL,
45 MEMCG_SWAP_HIGH,
46 MEMCG_SWAP_MAX,
47 MEMCG_SWAP_FAIL,
48 MEMCG_NR_MEMORY_EVENTS,
49};
50
51struct mem_cgroup_reclaim_cookie {
52 pg_data_t *pgdat;
53 unsigned int generation;
54};
55
56#ifdef CONFIG_MEMCG
57
58#define MEM_CGROUP_ID_SHIFT 16
59#define MEM_CGROUP_ID_MAX USHRT_MAX
60
61struct mem_cgroup_id {
62 int id;
63 refcount_t ref;
64};
65
66/*
67 * Per memcg event counter is incremented at every pagein/pageout. With THP,
68 * it will be incremented by the number of pages. This counter is used
69 * to trigger some periodic events. This is straightforward and better
70 * than using jiffies etc. to handle periodic memcg event.
71 */
72enum mem_cgroup_events_target {
73 MEM_CGROUP_TARGET_THRESH,
74 MEM_CGROUP_TARGET_SOFTLIMIT,
75 MEM_CGROUP_NTARGETS,
76};
77
78struct memcg_vmstats_percpu {
79 long stat[MEMCG_NR_STAT];
80 unsigned long events[NR_VM_EVENT_ITEMS];
81 unsigned long nr_page_events;
82 unsigned long targets[MEM_CGROUP_NTARGETS];
83};
84
85struct mem_cgroup_reclaim_iter {
86 struct mem_cgroup *position;
87 /* scan generation, increased every round-trip */
88 unsigned int generation;
89};
90
91struct lruvec_stat {
92 long count[NR_VM_NODE_STAT_ITEMS];
93};
94
95/*
96 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
97 * which have elements charged to this memcg.
98 */
99struct memcg_shrinker_map {
100 struct rcu_head rcu;
101 unsigned long map[];
102};
103
104/*
105 * per-node information in memory controller.
106 */
107struct mem_cgroup_per_node {
108 struct lruvec lruvec;
109
110 /* Legacy local VM stats */
111 struct lruvec_stat __percpu *lruvec_stat_local;
112
113 /* Subtree VM stats (batched updates) */
114 struct lruvec_stat __percpu *lruvec_stat_cpu;
115 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
116
117 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
118
119 struct mem_cgroup_reclaim_iter iter;
120
121 struct memcg_shrinker_map __rcu *shrinker_map;
122
123 struct rb_node tree_node; /* RB tree node */
124 unsigned long usage_in_excess;/* Set to the value by which */
125 /* the soft limit is exceeded*/
126 bool on_tree;
127 struct mem_cgroup *memcg; /* Back pointer, we cannot */
128 /* use container_of */
129};
130
131struct mem_cgroup_threshold {
132 struct eventfd_ctx *eventfd;
133 unsigned long threshold;
134};
135
136/* For threshold */
137struct mem_cgroup_threshold_ary {
138 /* An array index points to threshold just below or equal to usage. */
139 int current_threshold;
140 /* Size of entries[] */
141 unsigned int size;
142 /* Array of thresholds */
143 struct mem_cgroup_threshold entries[];
144};
145
146struct mem_cgroup_thresholds {
147 /* Primary thresholds array */
148 struct mem_cgroup_threshold_ary *primary;
149 /*
150 * Spare threshold array.
151 * This is needed to make mem_cgroup_unregister_event() "never fail".
152 * It must be able to store at least primary->size - 1 entries.
153 */
154 struct mem_cgroup_threshold_ary *spare;
155};
156
157enum memcg_kmem_state {
158 KMEM_NONE,
159 KMEM_ALLOCATED,
160 KMEM_ONLINE,
161};
162
163#if defined(CONFIG_SMP)
164struct memcg_padding {
165 char x[0];
166} ____cacheline_internodealigned_in_smp;
167#define MEMCG_PADDING(name) struct memcg_padding name;
168#else
169#define MEMCG_PADDING(name)
170#endif
171
172/*
173 * Remember four most recent foreign writebacks with dirty pages in this
174 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
175 * one in a given round, we're likely to catch it later if it keeps
176 * foreign-dirtying, so a fairly low count should be enough.
177 *
178 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
179 */
180#define MEMCG_CGWB_FRN_CNT 4
181
182struct memcg_cgwb_frn {
183 u64 bdi_id; /* bdi->id of the foreign inode */
184 int memcg_id; /* memcg->css.id of foreign inode */
185 u64 at; /* jiffies_64 at the time of dirtying */
186 struct wb_completion done; /* tracks in-flight foreign writebacks */
187};
188
189/*
190 * Bucket for arbitrarily byte-sized objects charged to a memory
191 * cgroup. The bucket can be reparented in one piece when the cgroup
192 * is destroyed, without having to round up the individual references
193 * of all live memory objects in the wild.
194 */
195struct obj_cgroup {
196 struct percpu_ref refcnt;
197 struct mem_cgroup *memcg;
198 atomic_t nr_charged_bytes;
199 union {
200 struct list_head list;
201 struct rcu_head rcu;
202 };
203};
204
205/*
206 * The memory controller data structure. The memory controller controls both
207 * page cache and RSS per cgroup. We would eventually like to provide
208 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
209 * to help the administrator determine what knobs to tune.
210 */
211struct mem_cgroup {
212 struct cgroup_subsys_state css;
213
214 /* Private memcg ID. Used to ID objects that outlive the cgroup */
215 struct mem_cgroup_id id;
216
217 /* Accounted resources */
218 struct page_counter memory;
219 struct page_counter swap;
220
221 /* Legacy consumer-oriented counters */
222 struct page_counter memsw;
223 struct page_counter kmem;
224 struct page_counter tcpmem;
225
226 /* Range enforcement for interrupt charges */
227 struct work_struct high_work;
228
229 unsigned long soft_limit;
230
231 /* vmpressure notifications */
232 struct vmpressure vmpressure;
233
234 /*
235 * Should the accounting and control be hierarchical, per subtree?
236 */
237 bool use_hierarchy;
238
239 /*
240 * Should the OOM killer kill all belonging tasks, had it kill one?
241 */
242 bool oom_group;
243
244 /* protected by memcg_oom_lock */
245 bool oom_lock;
246 int under_oom;
247
248 int swappiness;
249 /* OOM-Killer disable */
250 int oom_kill_disable;
251
252 /* memory.events and memory.events.local */
253 struct cgroup_file events_file;
254 struct cgroup_file events_local_file;
255
256 /* handle for "memory.swap.events" */
257 struct cgroup_file swap_events_file;
258
259 /* protect arrays of thresholds */
260 struct mutex thresholds_lock;
261
262 /* thresholds for memory usage. RCU-protected */
263 struct mem_cgroup_thresholds thresholds;
264
265 /* thresholds for mem+swap usage. RCU-protected */
266 struct mem_cgroup_thresholds memsw_thresholds;
267
268 /* For oom notifier event fd */
269 struct list_head oom_notify;
270
271 /*
272 * Should we move charges of a task when a task is moved into this
273 * mem_cgroup ? And what type of charges should we move ?
274 */
275 unsigned long move_charge_at_immigrate;
276 /* taken only while moving_account > 0 */
277 spinlock_t move_lock;
278 unsigned long move_lock_flags;
279
280 MEMCG_PADDING(_pad1_);
281
282 /*
283 * set > 0 if pages under this cgroup are moving to other cgroup.
284 */
285 atomic_t moving_account;
286 struct task_struct *move_lock_task;
287
288 /* Legacy local VM stats and events */
289 struct memcg_vmstats_percpu __percpu *vmstats_local;
290
291 /* Subtree VM stats and events (batched updates) */
292 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
293
294 MEMCG_PADDING(_pad2_);
295
296 atomic_long_t vmstats[MEMCG_NR_STAT];
297 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
298
299 /* memory.events */
300 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
301 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
302
303 unsigned long socket_pressure;
304
305 /* Legacy tcp memory accounting */
306 bool tcpmem_active;
307 int tcpmem_pressure;
308
309#ifdef CONFIG_MEMCG_KMEM
310 /* Index in the kmem_cache->memcg_params.memcg_caches array */
311 int kmemcg_id;
312 enum memcg_kmem_state kmem_state;
313 struct obj_cgroup __rcu *objcg;
314 struct list_head objcg_list; /* list of inherited objcgs */
315#endif
316
317#ifdef CONFIG_CGROUP_WRITEBACK
318 struct list_head cgwb_list;
319 struct wb_domain cgwb_domain;
320 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
321#endif
322
323 /* List of events which userspace want to receive */
324 struct list_head event_list;
325 spinlock_t event_list_lock;
326
327#ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 struct deferred_split deferred_split_queue;
329#endif
330
331 struct mem_cgroup_per_node *nodeinfo[0];
332 /* WARNING: nodeinfo must be the last member here */
333};
334
335/*
336 * size of first charge trial. "32" comes from vmscan.c's magic value.
337 * TODO: maybe necessary to use big numbers in big irons.
338 */
339#define MEMCG_CHARGE_BATCH 32U
340
341extern struct mem_cgroup *root_mem_cgroup;
342
343static __always_inline bool memcg_stat_item_in_bytes(int idx)
344{
345 if (idx == MEMCG_PERCPU_B)
346 return true;
347 return vmstat_item_in_bytes(idx);
348}
349
350static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
351{
352 return (memcg == root_mem_cgroup);
353}
354
355static inline bool mem_cgroup_disabled(void)
356{
357 return !cgroup_subsys_enabled(memory_cgrp_subsys);
358}
359
360static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
361 struct mem_cgroup *memcg,
362 bool in_low_reclaim)
363{
364 if (mem_cgroup_disabled())
365 return 0;
366
367 /*
368 * There is no reclaim protection applied to a targeted reclaim.
369 * We are special casing this specific case here because
370 * mem_cgroup_protected calculation is not robust enough to keep
371 * the protection invariant for calculated effective values for
372 * parallel reclaimers with different reclaim target. This is
373 * especially a problem for tail memcgs (as they have pages on LRU)
374 * which would want to have effective values 0 for targeted reclaim
375 * but a different value for external reclaim.
376 *
377 * Example
378 * Let's have global and A's reclaim in parallel:
379 * |
380 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
381 * |\
382 * | C (low = 1G, usage = 2.5G)
383 * B (low = 1G, usage = 0.5G)
384 *
385 * For the global reclaim
386 * A.elow = A.low
387 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
388 * C.elow = min(C.usage, C.low)
389 *
390 * With the effective values resetting we have A reclaim
391 * A.elow = 0
392 * B.elow = B.low
393 * C.elow = C.low
394 *
395 * If the global reclaim races with A's reclaim then
396 * B.elow = C.elow = 0 because children_low_usage > A.elow)
397 * is possible and reclaiming B would be violating the protection.
398 *
399 */
400 if (root == memcg)
401 return 0;
402
403 if (in_low_reclaim)
404 return READ_ONCE(memcg->memory.emin);
405
406 return max(READ_ONCE(memcg->memory.emin),
407 READ_ONCE(memcg->memory.elow));
408}
409
410void mem_cgroup_calculate_protection(struct mem_cgroup *root,
411 struct mem_cgroup *memcg);
412
413static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
414{
415 /*
416 * The root memcg doesn't account charges, and doesn't support
417 * protection.
418 */
419 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
420
421}
422
423static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
424{
425 if (!mem_cgroup_supports_protection(memcg))
426 return false;
427
428 return READ_ONCE(memcg->memory.elow) >=
429 page_counter_read(&memcg->memory);
430}
431
432static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
433{
434 if (!mem_cgroup_supports_protection(memcg))
435 return false;
436
437 return READ_ONCE(memcg->memory.emin) >=
438 page_counter_read(&memcg->memory);
439}
440
441int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
442
443void mem_cgroup_uncharge(struct page *page);
444void mem_cgroup_uncharge_list(struct list_head *page_list);
445
446void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
447
448static struct mem_cgroup_per_node *
449mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
450{
451 return memcg->nodeinfo[nid];
452}
453
454/**
455 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
456 * @memcg: memcg of the wanted lruvec
457 *
458 * Returns the lru list vector holding pages for a given @memcg &
459 * @node combination. This can be the node lruvec, if the memory
460 * controller is disabled.
461 */
462static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
463 struct pglist_data *pgdat)
464{
465 struct mem_cgroup_per_node *mz;
466 struct lruvec *lruvec;
467
468 if (mem_cgroup_disabled()) {
469 lruvec = &pgdat->__lruvec;
470 goto out;
471 }
472
473 if (!memcg)
474 memcg = root_mem_cgroup;
475
476 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
477 lruvec = &mz->lruvec;
478out:
479 /*
480 * Since a node can be onlined after the mem_cgroup was created,
481 * we have to be prepared to initialize lruvec->pgdat here;
482 * and if offlined then reonlined, we need to reinitialize it.
483 */
484 if (unlikely(lruvec->pgdat != pgdat))
485 lruvec->pgdat = pgdat;
486 return lruvec;
487}
488
489struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
490
491struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
492
493struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
494
495struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
496
497static inline
498struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
499 return css ? container_of(css, struct mem_cgroup, css) : NULL;
500}
501
502static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
503{
504 return percpu_ref_tryget(&objcg->refcnt);
505}
506
507static inline void obj_cgroup_get(struct obj_cgroup *objcg)
508{
509 percpu_ref_get(&objcg->refcnt);
510}
511
512static inline void obj_cgroup_put(struct obj_cgroup *objcg)
513{
514 percpu_ref_put(&objcg->refcnt);
515}
516
517/*
518 * After the initialization objcg->memcg is always pointing at
519 * a valid memcg, but can be atomically swapped to the parent memcg.
520 *
521 * The caller must ensure that the returned memcg won't be released:
522 * e.g. acquire the rcu_read_lock or css_set_lock.
523 */
524static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
525{
526 return READ_ONCE(objcg->memcg);
527}
528
529static inline void mem_cgroup_put(struct mem_cgroup *memcg)
530{
531 if (memcg)
532 css_put(&memcg->css);
533}
534
535#define mem_cgroup_from_counter(counter, member) \
536 container_of(counter, struct mem_cgroup, member)
537
538struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
539 struct mem_cgroup *,
540 struct mem_cgroup_reclaim_cookie *);
541void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
542int mem_cgroup_scan_tasks(struct mem_cgroup *,
543 int (*)(struct task_struct *, void *), void *);
544
545static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
546{
547 if (mem_cgroup_disabled())
548 return 0;
549
550 return memcg->id.id;
551}
552struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
553
554static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
555{
556 return mem_cgroup_from_css(seq_css(m));
557}
558
559static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
560{
561 struct mem_cgroup_per_node *mz;
562
563 if (mem_cgroup_disabled())
564 return NULL;
565
566 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
567 return mz->memcg;
568}
569
570/**
571 * parent_mem_cgroup - find the accounting parent of a memcg
572 * @memcg: memcg whose parent to find
573 *
574 * Returns the parent memcg, or NULL if this is the root or the memory
575 * controller is in legacy no-hierarchy mode.
576 */
577static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
578{
579 if (!memcg->memory.parent)
580 return NULL;
581 return mem_cgroup_from_counter(memcg->memory.parent, memory);
582}
583
584static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
585 struct mem_cgroup *root)
586{
587 if (root == memcg)
588 return true;
589 if (!root->use_hierarchy)
590 return false;
591 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
592}
593
594static inline bool mm_match_cgroup(struct mm_struct *mm,
595 struct mem_cgroup *memcg)
596{
597 struct mem_cgroup *task_memcg;
598 bool match = false;
599
600 rcu_read_lock();
601 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
602 if (task_memcg)
603 match = mem_cgroup_is_descendant(task_memcg, memcg);
604 rcu_read_unlock();
605 return match;
606}
607
608struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
609ino_t page_cgroup_ino(struct page *page);
610
611static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
612{
613 if (mem_cgroup_disabled())
614 return true;
615 return !!(memcg->css.flags & CSS_ONLINE);
616}
617
618/*
619 * For memory reclaim.
620 */
621int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
622
623void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
624 int zid, int nr_pages);
625
626static inline
627unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
628 enum lru_list lru, int zone_idx)
629{
630 struct mem_cgroup_per_node *mz;
631
632 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
633 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
634}
635
636void mem_cgroup_handle_over_high(void);
637
638unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
639
640unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
641
642void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
643 struct task_struct *p);
644
645void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
646
647static inline void mem_cgroup_enter_user_fault(void)
648{
649 WARN_ON(current->in_user_fault);
650 current->in_user_fault = 1;
651}
652
653static inline void mem_cgroup_exit_user_fault(void)
654{
655 WARN_ON(!current->in_user_fault);
656 current->in_user_fault = 0;
657}
658
659static inline bool task_in_memcg_oom(struct task_struct *p)
660{
661 return p->memcg_in_oom;
662}
663
664bool mem_cgroup_oom_synchronize(bool wait);
665struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
666 struct mem_cgroup *oom_domain);
667void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
668
669#ifdef CONFIG_MEMCG_SWAP
670extern bool cgroup_memory_noswap;
671#endif
672
673struct mem_cgroup *lock_page_memcg(struct page *page);
674void __unlock_page_memcg(struct mem_cgroup *memcg);
675void unlock_page_memcg(struct page *page);
676
677/*
678 * idx can be of type enum memcg_stat_item or node_stat_item.
679 * Keep in sync with memcg_exact_page_state().
680 */
681static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
682{
683 long x = atomic_long_read(&memcg->vmstats[idx]);
684#ifdef CONFIG_SMP
685 if (x < 0)
686 x = 0;
687#endif
688 return x;
689}
690
691/*
692 * idx can be of type enum memcg_stat_item or node_stat_item.
693 * Keep in sync with memcg_exact_page_state().
694 */
695static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
696 int idx)
697{
698 long x = 0;
699 int cpu;
700
701 for_each_possible_cpu(cpu)
702 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
703#ifdef CONFIG_SMP
704 if (x < 0)
705 x = 0;
706#endif
707 return x;
708}
709
710void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
711
712/* idx can be of type enum memcg_stat_item or node_stat_item */
713static inline void mod_memcg_state(struct mem_cgroup *memcg,
714 int idx, int val)
715{
716 unsigned long flags;
717
718 local_irq_save(flags);
719 __mod_memcg_state(memcg, idx, val);
720 local_irq_restore(flags);
721}
722
723/**
724 * mod_memcg_page_state - update page state statistics
725 * @page: the page
726 * @idx: page state item to account
727 * @val: number of pages (positive or negative)
728 *
729 * The @page must be locked or the caller must use lock_page_memcg()
730 * to prevent double accounting when the page is concurrently being
731 * moved to another memcg:
732 *
733 * lock_page(page) or lock_page_memcg(page)
734 * if (TestClearPageState(page))
735 * mod_memcg_page_state(page, state, -1);
736 * unlock_page(page) or unlock_page_memcg(page)
737 *
738 * Kernel pages are an exception to this, since they'll never move.
739 */
740static inline void __mod_memcg_page_state(struct page *page,
741 int idx, int val)
742{
743 if (page->mem_cgroup)
744 __mod_memcg_state(page->mem_cgroup, idx, val);
745}
746
747static inline void mod_memcg_page_state(struct page *page,
748 int idx, int val)
749{
750 if (page->mem_cgroup)
751 mod_memcg_state(page->mem_cgroup, idx, val);
752}
753
754static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
755 enum node_stat_item idx)
756{
757 struct mem_cgroup_per_node *pn;
758 long x;
759
760 if (mem_cgroup_disabled())
761 return node_page_state(lruvec_pgdat(lruvec), idx);
762
763 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
764 x = atomic_long_read(&pn->lruvec_stat[idx]);
765#ifdef CONFIG_SMP
766 if (x < 0)
767 x = 0;
768#endif
769 return x;
770}
771
772static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
773 enum node_stat_item idx)
774{
775 struct mem_cgroup_per_node *pn;
776 long x = 0;
777 int cpu;
778
779 if (mem_cgroup_disabled())
780 return node_page_state(lruvec_pgdat(lruvec), idx);
781
782 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
783 for_each_possible_cpu(cpu)
784 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
785#ifdef CONFIG_SMP
786 if (x < 0)
787 x = 0;
788#endif
789 return x;
790}
791
792void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
793 int val);
794void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
795 int val);
796void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
797
798void mod_memcg_obj_state(void *p, int idx, int val);
799
800static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
801 int val)
802{
803 unsigned long flags;
804
805 local_irq_save(flags);
806 __mod_lruvec_slab_state(p, idx, val);
807 local_irq_restore(flags);
808}
809
810static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
811 enum node_stat_item idx, int val)
812{
813 unsigned long flags;
814
815 local_irq_save(flags);
816 __mod_memcg_lruvec_state(lruvec, idx, val);
817 local_irq_restore(flags);
818}
819
820static inline void mod_lruvec_state(struct lruvec *lruvec,
821 enum node_stat_item idx, int val)
822{
823 unsigned long flags;
824
825 local_irq_save(flags);
826 __mod_lruvec_state(lruvec, idx, val);
827 local_irq_restore(flags);
828}
829
830static inline void __mod_lruvec_page_state(struct page *page,
831 enum node_stat_item idx, int val)
832{
833 struct page *head = compound_head(page); /* rmap on tail pages */
834 pg_data_t *pgdat = page_pgdat(page);
835 struct lruvec *lruvec;
836
837 /* Untracked pages have no memcg, no lruvec. Update only the node */
838 if (!head->mem_cgroup) {
839 __mod_node_page_state(pgdat, idx, val);
840 return;
841 }
842
843 lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat);
844 __mod_lruvec_state(lruvec, idx, val);
845}
846
847static inline void mod_lruvec_page_state(struct page *page,
848 enum node_stat_item idx, int val)
849{
850 unsigned long flags;
851
852 local_irq_save(flags);
853 __mod_lruvec_page_state(page, idx, val);
854 local_irq_restore(flags);
855}
856
857unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
858 gfp_t gfp_mask,
859 unsigned long *total_scanned);
860
861void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
862 unsigned long count);
863
864static inline void count_memcg_events(struct mem_cgroup *memcg,
865 enum vm_event_item idx,
866 unsigned long count)
867{
868 unsigned long flags;
869
870 local_irq_save(flags);
871 __count_memcg_events(memcg, idx, count);
872 local_irq_restore(flags);
873}
874
875static inline void count_memcg_page_event(struct page *page,
876 enum vm_event_item idx)
877{
878 if (page->mem_cgroup)
879 count_memcg_events(page->mem_cgroup, idx, 1);
880}
881
882static inline void count_memcg_event_mm(struct mm_struct *mm,
883 enum vm_event_item idx)
884{
885 struct mem_cgroup *memcg;
886
887 if (mem_cgroup_disabled())
888 return;
889
890 rcu_read_lock();
891 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
892 if (likely(memcg))
893 count_memcg_events(memcg, idx, 1);
894 rcu_read_unlock();
895}
896
897static inline void memcg_memory_event(struct mem_cgroup *memcg,
898 enum memcg_memory_event event)
899{
900 atomic_long_inc(&memcg->memory_events_local[event]);
901 cgroup_file_notify(&memcg->events_local_file);
902
903 do {
904 atomic_long_inc(&memcg->memory_events[event]);
905 cgroup_file_notify(&memcg->events_file);
906
907 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
908 break;
909 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
910 break;
911 } while ((memcg = parent_mem_cgroup(memcg)) &&
912 !mem_cgroup_is_root(memcg));
913}
914
915static inline void memcg_memory_event_mm(struct mm_struct *mm,
916 enum memcg_memory_event event)
917{
918 struct mem_cgroup *memcg;
919
920 if (mem_cgroup_disabled())
921 return;
922
923 rcu_read_lock();
924 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
925 if (likely(memcg))
926 memcg_memory_event(memcg, event);
927 rcu_read_unlock();
928}
929
930#ifdef CONFIG_TRANSPARENT_HUGEPAGE
931void mem_cgroup_split_huge_fixup(struct page *head);
932#endif
933
934#else /* CONFIG_MEMCG */
935
936#define MEM_CGROUP_ID_SHIFT 0
937#define MEM_CGROUP_ID_MAX 0
938
939struct mem_cgroup;
940
941static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
942{
943 return true;
944}
945
946static inline bool mem_cgroup_disabled(void)
947{
948 return true;
949}
950
951static inline void memcg_memory_event(struct mem_cgroup *memcg,
952 enum memcg_memory_event event)
953{
954}
955
956static inline void memcg_memory_event_mm(struct mm_struct *mm,
957 enum memcg_memory_event event)
958{
959}
960
961static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
962 struct mem_cgroup *memcg,
963 bool in_low_reclaim)
964{
965 return 0;
966}
967
968static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
969 struct mem_cgroup *memcg)
970{
971}
972
973static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
974{
975 return false;
976}
977
978static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
979{
980 return false;
981}
982
983static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
984 gfp_t gfp_mask)
985{
986 return 0;
987}
988
989static inline void mem_cgroup_uncharge(struct page *page)
990{
991}
992
993static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
994{
995}
996
997static inline void mem_cgroup_migrate(struct page *old, struct page *new)
998{
999}
1000
1001static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1002 struct pglist_data *pgdat)
1003{
1004 return &pgdat->__lruvec;
1005}
1006
1007static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1008 struct pglist_data *pgdat)
1009{
1010 return &pgdat->__lruvec;
1011}
1012
1013static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1014{
1015 return NULL;
1016}
1017
1018static inline bool mm_match_cgroup(struct mm_struct *mm,
1019 struct mem_cgroup *memcg)
1020{
1021 return true;
1022}
1023
1024static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1025{
1026 return NULL;
1027}
1028
1029static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1030{
1031 return NULL;
1032}
1033
1034static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1035{
1036}
1037
1038static inline struct mem_cgroup *
1039mem_cgroup_iter(struct mem_cgroup *root,
1040 struct mem_cgroup *prev,
1041 struct mem_cgroup_reclaim_cookie *reclaim)
1042{
1043 return NULL;
1044}
1045
1046static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1047 struct mem_cgroup *prev)
1048{
1049}
1050
1051static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1052 int (*fn)(struct task_struct *, void *), void *arg)
1053{
1054 return 0;
1055}
1056
1057static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1058{
1059 return 0;
1060}
1061
1062static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1063{
1064 WARN_ON_ONCE(id);
1065 /* XXX: This should always return root_mem_cgroup */
1066 return NULL;
1067}
1068
1069static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1070{
1071 return NULL;
1072}
1073
1074static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1075{
1076 return NULL;
1077}
1078
1079static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1080{
1081 return true;
1082}
1083
1084static inline
1085unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1086 enum lru_list lru, int zone_idx)
1087{
1088 return 0;
1089}
1090
1091static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1092{
1093 return 0;
1094}
1095
1096static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1097{
1098 return 0;
1099}
1100
1101static inline void
1102mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1103{
1104}
1105
1106static inline void
1107mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1108{
1109}
1110
1111static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1112{
1113 return NULL;
1114}
1115
1116static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1117{
1118}
1119
1120static inline void unlock_page_memcg(struct page *page)
1121{
1122}
1123
1124static inline void mem_cgroup_handle_over_high(void)
1125{
1126}
1127
1128static inline void mem_cgroup_enter_user_fault(void)
1129{
1130}
1131
1132static inline void mem_cgroup_exit_user_fault(void)
1133{
1134}
1135
1136static inline bool task_in_memcg_oom(struct task_struct *p)
1137{
1138 return false;
1139}
1140
1141static inline bool mem_cgroup_oom_synchronize(bool wait)
1142{
1143 return false;
1144}
1145
1146static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1147 struct task_struct *victim, struct mem_cgroup *oom_domain)
1148{
1149 return NULL;
1150}
1151
1152static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1153{
1154}
1155
1156static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1157{
1158 return 0;
1159}
1160
1161static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1162 int idx)
1163{
1164 return 0;
1165}
1166
1167static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1168 int idx,
1169 int nr)
1170{
1171}
1172
1173static inline void mod_memcg_state(struct mem_cgroup *memcg,
1174 int idx,
1175 int nr)
1176{
1177}
1178
1179static inline void __mod_memcg_page_state(struct page *page,
1180 int idx,
1181 int nr)
1182{
1183}
1184
1185static inline void mod_memcg_page_state(struct page *page,
1186 int idx,
1187 int nr)
1188{
1189}
1190
1191static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1192 enum node_stat_item idx)
1193{
1194 return node_page_state(lruvec_pgdat(lruvec), idx);
1195}
1196
1197static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1198 enum node_stat_item idx)
1199{
1200 return node_page_state(lruvec_pgdat(lruvec), idx);
1201}
1202
1203static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1204 enum node_stat_item idx, int val)
1205{
1206}
1207
1208static inline void __mod_lruvec_state(struct lruvec *lruvec,
1209 enum node_stat_item idx, int val)
1210{
1211 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1212}
1213
1214static inline void mod_lruvec_state(struct lruvec *lruvec,
1215 enum node_stat_item idx, int val)
1216{
1217 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1218}
1219
1220static inline void __mod_lruvec_page_state(struct page *page,
1221 enum node_stat_item idx, int val)
1222{
1223 __mod_node_page_state(page_pgdat(page), idx, val);
1224}
1225
1226static inline void mod_lruvec_page_state(struct page *page,
1227 enum node_stat_item idx, int val)
1228{
1229 mod_node_page_state(page_pgdat(page), idx, val);
1230}
1231
1232static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1233 int val)
1234{
1235 struct page *page = virt_to_head_page(p);
1236
1237 __mod_node_page_state(page_pgdat(page), idx, val);
1238}
1239
1240static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1241 int val)
1242{
1243 struct page *page = virt_to_head_page(p);
1244
1245 mod_node_page_state(page_pgdat(page), idx, val);
1246}
1247
1248static inline void mod_memcg_obj_state(void *p, int idx, int val)
1249{
1250}
1251
1252static inline
1253unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1254 gfp_t gfp_mask,
1255 unsigned long *total_scanned)
1256{
1257 return 0;
1258}
1259
1260static inline void mem_cgroup_split_huge_fixup(struct page *head)
1261{
1262}
1263
1264static inline void count_memcg_events(struct mem_cgroup *memcg,
1265 enum vm_event_item idx,
1266 unsigned long count)
1267{
1268}
1269
1270static inline void __count_memcg_events(struct mem_cgroup *memcg,
1271 enum vm_event_item idx,
1272 unsigned long count)
1273{
1274}
1275
1276static inline void count_memcg_page_event(struct page *page,
1277 int idx)
1278{
1279}
1280
1281static inline
1282void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1283{
1284}
1285#endif /* CONFIG_MEMCG */
1286
1287/* idx can be of type enum memcg_stat_item or node_stat_item */
1288static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1289 int idx)
1290{
1291 __mod_memcg_state(memcg, idx, 1);
1292}
1293
1294/* idx can be of type enum memcg_stat_item or node_stat_item */
1295static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1296 int idx)
1297{
1298 __mod_memcg_state(memcg, idx, -1);
1299}
1300
1301/* idx can be of type enum memcg_stat_item or node_stat_item */
1302static inline void __inc_memcg_page_state(struct page *page,
1303 int idx)
1304{
1305 __mod_memcg_page_state(page, idx, 1);
1306}
1307
1308/* idx can be of type enum memcg_stat_item or node_stat_item */
1309static inline void __dec_memcg_page_state(struct page *page,
1310 int idx)
1311{
1312 __mod_memcg_page_state(page, idx, -1);
1313}
1314
1315static inline void __inc_lruvec_state(struct lruvec *lruvec,
1316 enum node_stat_item idx)
1317{
1318 __mod_lruvec_state(lruvec, idx, 1);
1319}
1320
1321static inline void __dec_lruvec_state(struct lruvec *lruvec,
1322 enum node_stat_item idx)
1323{
1324 __mod_lruvec_state(lruvec, idx, -1);
1325}
1326
1327static inline void __inc_lruvec_page_state(struct page *page,
1328 enum node_stat_item idx)
1329{
1330 __mod_lruvec_page_state(page, idx, 1);
1331}
1332
1333static inline void __dec_lruvec_page_state(struct page *page,
1334 enum node_stat_item idx)
1335{
1336 __mod_lruvec_page_state(page, idx, -1);
1337}
1338
1339static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1340{
1341 __mod_lruvec_slab_state(p, idx, 1);
1342}
1343
1344static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1345{
1346 __mod_lruvec_slab_state(p, idx, -1);
1347}
1348
1349/* idx can be of type enum memcg_stat_item or node_stat_item */
1350static inline void inc_memcg_state(struct mem_cgroup *memcg,
1351 int idx)
1352{
1353 mod_memcg_state(memcg, idx, 1);
1354}
1355
1356/* idx can be of type enum memcg_stat_item or node_stat_item */
1357static inline void dec_memcg_state(struct mem_cgroup *memcg,
1358 int idx)
1359{
1360 mod_memcg_state(memcg, idx, -1);
1361}
1362
1363/* idx can be of type enum memcg_stat_item or node_stat_item */
1364static inline void inc_memcg_page_state(struct page *page,
1365 int idx)
1366{
1367 mod_memcg_page_state(page, idx, 1);
1368}
1369
1370/* idx can be of type enum memcg_stat_item or node_stat_item */
1371static inline void dec_memcg_page_state(struct page *page,
1372 int idx)
1373{
1374 mod_memcg_page_state(page, idx, -1);
1375}
1376
1377static inline void inc_lruvec_state(struct lruvec *lruvec,
1378 enum node_stat_item idx)
1379{
1380 mod_lruvec_state(lruvec, idx, 1);
1381}
1382
1383static inline void dec_lruvec_state(struct lruvec *lruvec,
1384 enum node_stat_item idx)
1385{
1386 mod_lruvec_state(lruvec, idx, -1);
1387}
1388
1389static inline void inc_lruvec_page_state(struct page *page,
1390 enum node_stat_item idx)
1391{
1392 mod_lruvec_page_state(page, idx, 1);
1393}
1394
1395static inline void dec_lruvec_page_state(struct page *page,
1396 enum node_stat_item idx)
1397{
1398 mod_lruvec_page_state(page, idx, -1);
1399}
1400
1401static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1402{
1403 struct mem_cgroup *memcg;
1404
1405 memcg = lruvec_memcg(lruvec);
1406 if (!memcg)
1407 return NULL;
1408 memcg = parent_mem_cgroup(memcg);
1409 if (!memcg)
1410 return NULL;
1411 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1412}
1413
1414#ifdef CONFIG_CGROUP_WRITEBACK
1415
1416struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1417void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1418 unsigned long *pheadroom, unsigned long *pdirty,
1419 unsigned long *pwriteback);
1420
1421void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1422 struct bdi_writeback *wb);
1423
1424static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1425 struct bdi_writeback *wb)
1426{
1427 if (mem_cgroup_disabled())
1428 return;
1429
1430 if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
1431 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1432}
1433
1434void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1435
1436#else /* CONFIG_CGROUP_WRITEBACK */
1437
1438static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1439{
1440 return NULL;
1441}
1442
1443static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1444 unsigned long *pfilepages,
1445 unsigned long *pheadroom,
1446 unsigned long *pdirty,
1447 unsigned long *pwriteback)
1448{
1449}
1450
1451static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1452 struct bdi_writeback *wb)
1453{
1454}
1455
1456static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1457{
1458}
1459
1460#endif /* CONFIG_CGROUP_WRITEBACK */
1461
1462struct sock;
1463bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1464void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1465#ifdef CONFIG_MEMCG
1466extern struct static_key_false memcg_sockets_enabled_key;
1467#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1468void mem_cgroup_sk_alloc(struct sock *sk);
1469void mem_cgroup_sk_free(struct sock *sk);
1470static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1471{
1472 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1473 return true;
1474 do {
1475 if (time_before(jiffies, memcg->socket_pressure))
1476 return true;
1477 } while ((memcg = parent_mem_cgroup(memcg)));
1478 return false;
1479}
1480
1481extern int memcg_expand_shrinker_maps(int new_id);
1482
1483extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1484 int nid, int shrinker_id);
1485#else
1486#define mem_cgroup_sockets_enabled 0
1487static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1488static inline void mem_cgroup_sk_free(struct sock *sk) { };
1489static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1490{
1491 return false;
1492}
1493
1494static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1495 int nid, int shrinker_id)
1496{
1497}
1498#endif
1499
1500#ifdef CONFIG_MEMCG_KMEM
1501int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1502 unsigned int nr_pages);
1503void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
1504int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1505void __memcg_kmem_uncharge_page(struct page *page, int order);
1506
1507struct obj_cgroup *get_obj_cgroup_from_current(void);
1508
1509int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1510void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1511
1512extern struct static_key_false memcg_kmem_enabled_key;
1513
1514extern int memcg_nr_cache_ids;
1515void memcg_get_cache_ids(void);
1516void memcg_put_cache_ids(void);
1517
1518/*
1519 * Helper macro to loop through all memcg-specific caches. Callers must still
1520 * check if the cache is valid (it is either valid or NULL).
1521 * the slab_mutex must be held when looping through those caches
1522 */
1523#define for_each_memcg_cache_index(_idx) \
1524 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1525
1526static inline bool memcg_kmem_enabled(void)
1527{
1528 return static_branch_likely(&memcg_kmem_enabled_key);
1529}
1530
1531static inline bool memcg_kmem_bypass(void)
1532{
1533 if (in_interrupt())
1534 return true;
1535
1536 /* Allow remote memcg charging in kthread contexts. */
1537 if ((!current->mm || (current->flags & PF_KTHREAD)) &&
1538 !current->active_memcg)
1539 return true;
1540 return false;
1541}
1542
1543static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1544 int order)
1545{
1546 if (memcg_kmem_enabled())
1547 return __memcg_kmem_charge_page(page, gfp, order);
1548 return 0;
1549}
1550
1551static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1552{
1553 if (memcg_kmem_enabled())
1554 __memcg_kmem_uncharge_page(page, order);
1555}
1556
1557static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1558 unsigned int nr_pages)
1559{
1560 if (memcg_kmem_enabled())
1561 return __memcg_kmem_charge(memcg, gfp, nr_pages);
1562 return 0;
1563}
1564
1565static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg,
1566 unsigned int nr_pages)
1567{
1568 if (memcg_kmem_enabled())
1569 __memcg_kmem_uncharge(memcg, nr_pages);
1570}
1571
1572/*
1573 * helper for accessing a memcg's index. It will be used as an index in the
1574 * child cache array in kmem_cache, and also to derive its name. This function
1575 * will return -1 when this is not a kmem-limited memcg.
1576 */
1577static inline int memcg_cache_id(struct mem_cgroup *memcg)
1578{
1579 return memcg ? memcg->kmemcg_id : -1;
1580}
1581
1582struct mem_cgroup *mem_cgroup_from_obj(void *p);
1583
1584#else
1585
1586static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1587 int order)
1588{
1589 return 0;
1590}
1591
1592static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1593{
1594}
1595
1596static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1597 int order)
1598{
1599 return 0;
1600}
1601
1602static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1603{
1604}
1605
1606#define for_each_memcg_cache_index(_idx) \
1607 for (; NULL; )
1608
1609static inline bool memcg_kmem_enabled(void)
1610{
1611 return false;
1612}
1613
1614static inline int memcg_cache_id(struct mem_cgroup *memcg)
1615{
1616 return -1;
1617}
1618
1619static inline void memcg_get_cache_ids(void)
1620{
1621}
1622
1623static inline void memcg_put_cache_ids(void)
1624{
1625}
1626
1627static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1628{
1629 return NULL;
1630}
1631
1632#endif /* CONFIG_MEMCG_KMEM */
1633
1634#endif /* _LINUX_MEMCONTROL_H */