| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| 4 | * All Rights Reserved. |
| 5 | */ |
| 6 | #include "xfs.h" |
| 7 | #include "xfs_fs.h" |
| 8 | #include "xfs_shared.h" |
| 9 | #include "xfs_format.h" |
| 10 | #include "xfs_log_format.h" |
| 11 | #include "xfs_trans_resv.h" |
| 12 | #include "xfs_bit.h" |
| 13 | #include "xfs_sb.h" |
| 14 | #include "xfs_mount.h" |
| 15 | #include "xfs_defer.h" |
| 16 | #include "xfs_inode.h" |
| 17 | #include "xfs_trans.h" |
| 18 | #include "xfs_log.h" |
| 19 | #include "xfs_log_priv.h" |
| 20 | #include "xfs_log_recover.h" |
| 21 | #include "xfs_trans_priv.h" |
| 22 | #include "xfs_alloc.h" |
| 23 | #include "xfs_ialloc.h" |
| 24 | #include "xfs_trace.h" |
| 25 | #include "xfs_icache.h" |
| 26 | #include "xfs_error.h" |
| 27 | #include "xfs_buf_item.h" |
| 28 | #include "xfs_ag.h" |
| 29 | #include "xfs_quota.h" |
| 30 | #include "xfs_reflink.h" |
| 31 | |
| 32 | #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) |
| 33 | |
| 34 | STATIC int |
| 35 | xlog_find_zeroed( |
| 36 | struct xlog *, |
| 37 | xfs_daddr_t *); |
| 38 | STATIC int |
| 39 | xlog_clear_stale_blocks( |
| 40 | struct xlog *, |
| 41 | xfs_lsn_t); |
| 42 | STATIC int |
| 43 | xlog_do_recovery_pass( |
| 44 | struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); |
| 45 | |
| 46 | /* |
| 47 | * Sector aligned buffer routines for buffer create/read/write/access |
| 48 | */ |
| 49 | |
| 50 | /* |
| 51 | * Verify the log-relative block number and length in basic blocks are valid for |
| 52 | * an operation involving the given XFS log buffer. Returns true if the fields |
| 53 | * are valid, false otherwise. |
| 54 | */ |
| 55 | static inline bool |
| 56 | xlog_verify_bno( |
| 57 | struct xlog *log, |
| 58 | xfs_daddr_t blk_no, |
| 59 | int bbcount) |
| 60 | { |
| 61 | if (blk_no < 0 || blk_no >= log->l_logBBsize) |
| 62 | return false; |
| 63 | if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) |
| 64 | return false; |
| 65 | return true; |
| 66 | } |
| 67 | |
| 68 | /* |
| 69 | * Allocate a buffer to hold log data. The buffer needs to be able to map to |
| 70 | * a range of nbblks basic blocks at any valid offset within the log. |
| 71 | */ |
| 72 | static char * |
| 73 | xlog_alloc_buffer( |
| 74 | struct xlog *log, |
| 75 | int nbblks) |
| 76 | { |
| 77 | /* |
| 78 | * Pass log block 0 since we don't have an addr yet, buffer will be |
| 79 | * verified on read. |
| 80 | */ |
| 81 | if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) { |
| 82 | xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", |
| 83 | nbblks); |
| 84 | return NULL; |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * We do log I/O in units of log sectors (a power-of-2 multiple of the |
| 89 | * basic block size), so we round up the requested size to accommodate |
| 90 | * the basic blocks required for complete log sectors. |
| 91 | * |
| 92 | * In addition, the buffer may be used for a non-sector-aligned block |
| 93 | * offset, in which case an I/O of the requested size could extend |
| 94 | * beyond the end of the buffer. If the requested size is only 1 basic |
| 95 | * block it will never straddle a sector boundary, so this won't be an |
| 96 | * issue. Nor will this be a problem if the log I/O is done in basic |
| 97 | * blocks (sector size 1). But otherwise we extend the buffer by one |
| 98 | * extra log sector to ensure there's space to accommodate this |
| 99 | * possibility. |
| 100 | */ |
| 101 | if (nbblks > 1 && log->l_sectBBsize > 1) |
| 102 | nbblks += log->l_sectBBsize; |
| 103 | nbblks = round_up(nbblks, log->l_sectBBsize); |
| 104 | return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL); |
| 105 | } |
| 106 | |
| 107 | /* |
| 108 | * Return the address of the start of the given block number's data |
| 109 | * in a log buffer. The buffer covers a log sector-aligned region. |
| 110 | */ |
| 111 | static inline unsigned int |
| 112 | xlog_align( |
| 113 | struct xlog *log, |
| 114 | xfs_daddr_t blk_no) |
| 115 | { |
| 116 | return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1)); |
| 117 | } |
| 118 | |
| 119 | static int |
| 120 | xlog_do_io( |
| 121 | struct xlog *log, |
| 122 | xfs_daddr_t blk_no, |
| 123 | unsigned int nbblks, |
| 124 | char *data, |
| 125 | enum req_op op) |
| 126 | { |
| 127 | int error; |
| 128 | |
| 129 | if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) { |
| 130 | xfs_warn(log->l_mp, |
| 131 | "Invalid log block/length (0x%llx, 0x%x) for buffer", |
| 132 | blk_no, nbblks); |
| 133 | return -EFSCORRUPTED; |
| 134 | } |
| 135 | |
| 136 | blk_no = round_down(blk_no, log->l_sectBBsize); |
| 137 | nbblks = round_up(nbblks, log->l_sectBBsize); |
| 138 | ASSERT(nbblks > 0); |
| 139 | |
| 140 | error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no, |
| 141 | BBTOB(nbblks), data, op); |
| 142 | if (error && !xlog_is_shutdown(log)) { |
| 143 | xfs_alert(log->l_mp, |
| 144 | "log recovery %s I/O error at daddr 0x%llx len %d error %d", |
| 145 | op == REQ_OP_WRITE ? "write" : "read", |
| 146 | blk_no, nbblks, error); |
| 147 | } |
| 148 | return error; |
| 149 | } |
| 150 | |
| 151 | STATIC int |
| 152 | xlog_bread_noalign( |
| 153 | struct xlog *log, |
| 154 | xfs_daddr_t blk_no, |
| 155 | int nbblks, |
| 156 | char *data) |
| 157 | { |
| 158 | return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); |
| 159 | } |
| 160 | |
| 161 | STATIC int |
| 162 | xlog_bread( |
| 163 | struct xlog *log, |
| 164 | xfs_daddr_t blk_no, |
| 165 | int nbblks, |
| 166 | char *data, |
| 167 | char **offset) |
| 168 | { |
| 169 | int error; |
| 170 | |
| 171 | error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); |
| 172 | if (!error) |
| 173 | *offset = data + xlog_align(log, blk_no); |
| 174 | return error; |
| 175 | } |
| 176 | |
| 177 | STATIC int |
| 178 | xlog_bwrite( |
| 179 | struct xlog *log, |
| 180 | xfs_daddr_t blk_no, |
| 181 | int nbblks, |
| 182 | char *data) |
| 183 | { |
| 184 | return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE); |
| 185 | } |
| 186 | |
| 187 | #ifdef DEBUG |
| 188 | /* |
| 189 | * dump debug superblock and log record information |
| 190 | */ |
| 191 | STATIC void |
| 192 | xlog_header_check_dump( |
| 193 | xfs_mount_t *mp, |
| 194 | xlog_rec_header_t *head) |
| 195 | { |
| 196 | xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", |
| 197 | __func__, &mp->m_sb.sb_uuid, XLOG_FMT); |
| 198 | xfs_debug(mp, " log : uuid = %pU, fmt = %d", |
| 199 | &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); |
| 200 | } |
| 201 | #else |
| 202 | #define xlog_header_check_dump(mp, head) |
| 203 | #endif |
| 204 | |
| 205 | /* |
| 206 | * check log record header for recovery |
| 207 | */ |
| 208 | STATIC int |
| 209 | xlog_header_check_recover( |
| 210 | xfs_mount_t *mp, |
| 211 | xlog_rec_header_t *head) |
| 212 | { |
| 213 | ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); |
| 214 | |
| 215 | /* |
| 216 | * IRIX doesn't write the h_fmt field and leaves it zeroed |
| 217 | * (XLOG_FMT_UNKNOWN). This stops us from trying to recover |
| 218 | * a dirty log created in IRIX. |
| 219 | */ |
| 220 | if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) { |
| 221 | xfs_warn(mp, |
| 222 | "dirty log written in incompatible format - can't recover"); |
| 223 | xlog_header_check_dump(mp, head); |
| 224 | return -EFSCORRUPTED; |
| 225 | } |
| 226 | if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, |
| 227 | &head->h_fs_uuid))) { |
| 228 | xfs_warn(mp, |
| 229 | "dirty log entry has mismatched uuid - can't recover"); |
| 230 | xlog_header_check_dump(mp, head); |
| 231 | return -EFSCORRUPTED; |
| 232 | } |
| 233 | return 0; |
| 234 | } |
| 235 | |
| 236 | /* |
| 237 | * read the head block of the log and check the header |
| 238 | */ |
| 239 | STATIC int |
| 240 | xlog_header_check_mount( |
| 241 | xfs_mount_t *mp, |
| 242 | xlog_rec_header_t *head) |
| 243 | { |
| 244 | ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); |
| 245 | |
| 246 | if (uuid_is_null(&head->h_fs_uuid)) { |
| 247 | /* |
| 248 | * IRIX doesn't write the h_fs_uuid or h_fmt fields. If |
| 249 | * h_fs_uuid is null, we assume this log was last mounted |
| 250 | * by IRIX and continue. |
| 251 | */ |
| 252 | xfs_warn(mp, "null uuid in log - IRIX style log"); |
| 253 | } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, |
| 254 | &head->h_fs_uuid))) { |
| 255 | xfs_warn(mp, "log has mismatched uuid - can't recover"); |
| 256 | xlog_header_check_dump(mp, head); |
| 257 | return -EFSCORRUPTED; |
| 258 | } |
| 259 | return 0; |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * This routine finds (to an approximation) the first block in the physical |
| 264 | * log which contains the given cycle. It uses a binary search algorithm. |
| 265 | * Note that the algorithm can not be perfect because the disk will not |
| 266 | * necessarily be perfect. |
| 267 | */ |
| 268 | STATIC int |
| 269 | xlog_find_cycle_start( |
| 270 | struct xlog *log, |
| 271 | char *buffer, |
| 272 | xfs_daddr_t first_blk, |
| 273 | xfs_daddr_t *last_blk, |
| 274 | uint cycle) |
| 275 | { |
| 276 | char *offset; |
| 277 | xfs_daddr_t mid_blk; |
| 278 | xfs_daddr_t end_blk; |
| 279 | uint mid_cycle; |
| 280 | int error; |
| 281 | |
| 282 | end_blk = *last_blk; |
| 283 | mid_blk = BLK_AVG(first_blk, end_blk); |
| 284 | while (mid_blk != first_blk && mid_blk != end_blk) { |
| 285 | error = xlog_bread(log, mid_blk, 1, buffer, &offset); |
| 286 | if (error) |
| 287 | return error; |
| 288 | mid_cycle = xlog_get_cycle(offset); |
| 289 | if (mid_cycle == cycle) |
| 290 | end_blk = mid_blk; /* last_half_cycle == mid_cycle */ |
| 291 | else |
| 292 | first_blk = mid_blk; /* first_half_cycle == mid_cycle */ |
| 293 | mid_blk = BLK_AVG(first_blk, end_blk); |
| 294 | } |
| 295 | ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || |
| 296 | (mid_blk == end_blk && mid_blk-1 == first_blk)); |
| 297 | |
| 298 | *last_blk = end_blk; |
| 299 | |
| 300 | return 0; |
| 301 | } |
| 302 | |
| 303 | /* |
| 304 | * Check that a range of blocks does not contain stop_on_cycle_no. |
| 305 | * Fill in *new_blk with the block offset where such a block is |
| 306 | * found, or with -1 (an invalid block number) if there is no such |
| 307 | * block in the range. The scan needs to occur from front to back |
| 308 | * and the pointer into the region must be updated since a later |
| 309 | * routine will need to perform another test. |
| 310 | */ |
| 311 | STATIC int |
| 312 | xlog_find_verify_cycle( |
| 313 | struct xlog *log, |
| 314 | xfs_daddr_t start_blk, |
| 315 | int nbblks, |
| 316 | uint stop_on_cycle_no, |
| 317 | xfs_daddr_t *new_blk) |
| 318 | { |
| 319 | xfs_daddr_t i, j; |
| 320 | uint cycle; |
| 321 | char *buffer; |
| 322 | xfs_daddr_t bufblks; |
| 323 | char *buf = NULL; |
| 324 | int error = 0; |
| 325 | |
| 326 | /* |
| 327 | * Greedily allocate a buffer big enough to handle the full |
| 328 | * range of basic blocks we'll be examining. If that fails, |
| 329 | * try a smaller size. We need to be able to read at least |
| 330 | * a log sector, or we're out of luck. |
| 331 | */ |
| 332 | bufblks = roundup_pow_of_two(nbblks); |
| 333 | while (bufblks > log->l_logBBsize) |
| 334 | bufblks >>= 1; |
| 335 | while (!(buffer = xlog_alloc_buffer(log, bufblks))) { |
| 336 | bufblks >>= 1; |
| 337 | if (bufblks < log->l_sectBBsize) |
| 338 | return -ENOMEM; |
| 339 | } |
| 340 | |
| 341 | for (i = start_blk; i < start_blk + nbblks; i += bufblks) { |
| 342 | int bcount; |
| 343 | |
| 344 | bcount = min(bufblks, (start_blk + nbblks - i)); |
| 345 | |
| 346 | error = xlog_bread(log, i, bcount, buffer, &buf); |
| 347 | if (error) |
| 348 | goto out; |
| 349 | |
| 350 | for (j = 0; j < bcount; j++) { |
| 351 | cycle = xlog_get_cycle(buf); |
| 352 | if (cycle == stop_on_cycle_no) { |
| 353 | *new_blk = i+j; |
| 354 | goto out; |
| 355 | } |
| 356 | |
| 357 | buf += BBSIZE; |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | *new_blk = -1; |
| 362 | |
| 363 | out: |
| 364 | kvfree(buffer); |
| 365 | return error; |
| 366 | } |
| 367 | |
| 368 | static inline int |
| 369 | xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh) |
| 370 | { |
| 371 | if (xfs_has_logv2(log->l_mp)) { |
| 372 | int h_size = be32_to_cpu(rh->h_size); |
| 373 | |
| 374 | if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) && |
| 375 | h_size > XLOG_HEADER_CYCLE_SIZE) |
| 376 | return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE); |
| 377 | } |
| 378 | return 1; |
| 379 | } |
| 380 | |
| 381 | /* |
| 382 | * Potentially backup over partial log record write. |
| 383 | * |
| 384 | * In the typical case, last_blk is the number of the block directly after |
| 385 | * a good log record. Therefore, we subtract one to get the block number |
| 386 | * of the last block in the given buffer. extra_bblks contains the number |
| 387 | * of blocks we would have read on a previous read. This happens when the |
| 388 | * last log record is split over the end of the physical log. |
| 389 | * |
| 390 | * extra_bblks is the number of blocks potentially verified on a previous |
| 391 | * call to this routine. |
| 392 | */ |
| 393 | STATIC int |
| 394 | xlog_find_verify_log_record( |
| 395 | struct xlog *log, |
| 396 | xfs_daddr_t start_blk, |
| 397 | xfs_daddr_t *last_blk, |
| 398 | int extra_bblks) |
| 399 | { |
| 400 | xfs_daddr_t i; |
| 401 | char *buffer; |
| 402 | char *offset = NULL; |
| 403 | xlog_rec_header_t *head = NULL; |
| 404 | int error = 0; |
| 405 | int smallmem = 0; |
| 406 | int num_blks = *last_blk - start_blk; |
| 407 | int xhdrs; |
| 408 | |
| 409 | ASSERT(start_blk != 0 || *last_blk != start_blk); |
| 410 | |
| 411 | buffer = xlog_alloc_buffer(log, num_blks); |
| 412 | if (!buffer) { |
| 413 | buffer = xlog_alloc_buffer(log, 1); |
| 414 | if (!buffer) |
| 415 | return -ENOMEM; |
| 416 | smallmem = 1; |
| 417 | } else { |
| 418 | error = xlog_bread(log, start_blk, num_blks, buffer, &offset); |
| 419 | if (error) |
| 420 | goto out; |
| 421 | offset += ((num_blks - 1) << BBSHIFT); |
| 422 | } |
| 423 | |
| 424 | for (i = (*last_blk) - 1; i >= 0; i--) { |
| 425 | if (i < start_blk) { |
| 426 | /* valid log record not found */ |
| 427 | xfs_warn(log->l_mp, |
| 428 | "Log inconsistent (didn't find previous header)"); |
| 429 | ASSERT(0); |
| 430 | error = -EFSCORRUPTED; |
| 431 | goto out; |
| 432 | } |
| 433 | |
| 434 | if (smallmem) { |
| 435 | error = xlog_bread(log, i, 1, buffer, &offset); |
| 436 | if (error) |
| 437 | goto out; |
| 438 | } |
| 439 | |
| 440 | head = (xlog_rec_header_t *)offset; |
| 441 | |
| 442 | if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) |
| 443 | break; |
| 444 | |
| 445 | if (!smallmem) |
| 446 | offset -= BBSIZE; |
| 447 | } |
| 448 | |
| 449 | /* |
| 450 | * We hit the beginning of the physical log & still no header. Return |
| 451 | * to caller. If caller can handle a return of -1, then this routine |
| 452 | * will be called again for the end of the physical log. |
| 453 | */ |
| 454 | if (i == -1) { |
| 455 | error = 1; |
| 456 | goto out; |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * We have the final block of the good log (the first block |
| 461 | * of the log record _before_ the head. So we check the uuid. |
| 462 | */ |
| 463 | if ((error = xlog_header_check_mount(log->l_mp, head))) |
| 464 | goto out; |
| 465 | |
| 466 | /* |
| 467 | * We may have found a log record header before we expected one. |
| 468 | * last_blk will be the 1st block # with a given cycle #. We may end |
| 469 | * up reading an entire log record. In this case, we don't want to |
| 470 | * reset last_blk. Only when last_blk points in the middle of a log |
| 471 | * record do we update last_blk. |
| 472 | */ |
| 473 | xhdrs = xlog_logrec_hblks(log, head); |
| 474 | |
| 475 | if (*last_blk - i + extra_bblks != |
| 476 | BTOBB(be32_to_cpu(head->h_len)) + xhdrs) |
| 477 | *last_blk = i; |
| 478 | |
| 479 | out: |
| 480 | kvfree(buffer); |
| 481 | return error; |
| 482 | } |
| 483 | |
| 484 | /* |
| 485 | * Head is defined to be the point of the log where the next log write |
| 486 | * could go. This means that incomplete LR writes at the end are |
| 487 | * eliminated when calculating the head. We aren't guaranteed that previous |
| 488 | * LR have complete transactions. We only know that a cycle number of |
| 489 | * current cycle number -1 won't be present in the log if we start writing |
| 490 | * from our current block number. |
| 491 | * |
| 492 | * last_blk contains the block number of the first block with a given |
| 493 | * cycle number. |
| 494 | * |
| 495 | * Return: zero if normal, non-zero if error. |
| 496 | */ |
| 497 | STATIC int |
| 498 | xlog_find_head( |
| 499 | struct xlog *log, |
| 500 | xfs_daddr_t *return_head_blk) |
| 501 | { |
| 502 | char *buffer; |
| 503 | char *offset; |
| 504 | xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; |
| 505 | int num_scan_bblks; |
| 506 | uint first_half_cycle, last_half_cycle; |
| 507 | uint stop_on_cycle; |
| 508 | int error, log_bbnum = log->l_logBBsize; |
| 509 | |
| 510 | /* Is the end of the log device zeroed? */ |
| 511 | error = xlog_find_zeroed(log, &first_blk); |
| 512 | if (error < 0) { |
| 513 | xfs_warn(log->l_mp, "empty log check failed"); |
| 514 | return error; |
| 515 | } |
| 516 | if (error == 1) { |
| 517 | *return_head_blk = first_blk; |
| 518 | |
| 519 | /* Is the whole lot zeroed? */ |
| 520 | if (!first_blk) { |
| 521 | /* Linux XFS shouldn't generate totally zeroed logs - |
| 522 | * mkfs etc write a dummy unmount record to a fresh |
| 523 | * log so we can store the uuid in there |
| 524 | */ |
| 525 | xfs_warn(log->l_mp, "totally zeroed log"); |
| 526 | } |
| 527 | |
| 528 | return 0; |
| 529 | } |
| 530 | |
| 531 | first_blk = 0; /* get cycle # of 1st block */ |
| 532 | buffer = xlog_alloc_buffer(log, 1); |
| 533 | if (!buffer) |
| 534 | return -ENOMEM; |
| 535 | |
| 536 | error = xlog_bread(log, 0, 1, buffer, &offset); |
| 537 | if (error) |
| 538 | goto out_free_buffer; |
| 539 | |
| 540 | first_half_cycle = xlog_get_cycle(offset); |
| 541 | |
| 542 | last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ |
| 543 | error = xlog_bread(log, last_blk, 1, buffer, &offset); |
| 544 | if (error) |
| 545 | goto out_free_buffer; |
| 546 | |
| 547 | last_half_cycle = xlog_get_cycle(offset); |
| 548 | ASSERT(last_half_cycle != 0); |
| 549 | |
| 550 | /* |
| 551 | * If the 1st half cycle number is equal to the last half cycle number, |
| 552 | * then the entire log is stamped with the same cycle number. In this |
| 553 | * case, head_blk can't be set to zero (which makes sense). The below |
| 554 | * math doesn't work out properly with head_blk equal to zero. Instead, |
| 555 | * we set it to log_bbnum which is an invalid block number, but this |
| 556 | * value makes the math correct. If head_blk doesn't changed through |
| 557 | * all the tests below, *head_blk is set to zero at the very end rather |
| 558 | * than log_bbnum. In a sense, log_bbnum and zero are the same block |
| 559 | * in a circular file. |
| 560 | */ |
| 561 | if (first_half_cycle == last_half_cycle) { |
| 562 | /* |
| 563 | * In this case we believe that the entire log should have |
| 564 | * cycle number last_half_cycle. We need to scan backwards |
| 565 | * from the end verifying that there are no holes still |
| 566 | * containing last_half_cycle - 1. If we find such a hole, |
| 567 | * then the start of that hole will be the new head. The |
| 568 | * simple case looks like |
| 569 | * x | x ... | x - 1 | x |
| 570 | * Another case that fits this picture would be |
| 571 | * x | x + 1 | x ... | x |
| 572 | * In this case the head really is somewhere at the end of the |
| 573 | * log, as one of the latest writes at the beginning was |
| 574 | * incomplete. |
| 575 | * One more case is |
| 576 | * x | x + 1 | x ... | x - 1 | x |
| 577 | * This is really the combination of the above two cases, and |
| 578 | * the head has to end up at the start of the x-1 hole at the |
| 579 | * end of the log. |
| 580 | * |
| 581 | * In the 256k log case, we will read from the beginning to the |
| 582 | * end of the log and search for cycle numbers equal to x-1. |
| 583 | * We don't worry about the x+1 blocks that we encounter, |
| 584 | * because we know that they cannot be the head since the log |
| 585 | * started with x. |
| 586 | */ |
| 587 | head_blk = log_bbnum; |
| 588 | stop_on_cycle = last_half_cycle - 1; |
| 589 | } else { |
| 590 | /* |
| 591 | * In this case we want to find the first block with cycle |
| 592 | * number matching last_half_cycle. We expect the log to be |
| 593 | * some variation on |
| 594 | * x + 1 ... | x ... | x |
| 595 | * The first block with cycle number x (last_half_cycle) will |
| 596 | * be where the new head belongs. First we do a binary search |
| 597 | * for the first occurrence of last_half_cycle. The binary |
| 598 | * search may not be totally accurate, so then we scan back |
| 599 | * from there looking for occurrences of last_half_cycle before |
| 600 | * us. If that backwards scan wraps around the beginning of |
| 601 | * the log, then we look for occurrences of last_half_cycle - 1 |
| 602 | * at the end of the log. The cases we're looking for look |
| 603 | * like |
| 604 | * v binary search stopped here |
| 605 | * x + 1 ... | x | x + 1 | x ... | x |
| 606 | * ^ but we want to locate this spot |
| 607 | * or |
| 608 | * <---------> less than scan distance |
| 609 | * x + 1 ... | x ... | x - 1 | x |
| 610 | * ^ we want to locate this spot |
| 611 | */ |
| 612 | stop_on_cycle = last_half_cycle; |
| 613 | error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk, |
| 614 | last_half_cycle); |
| 615 | if (error) |
| 616 | goto out_free_buffer; |
| 617 | } |
| 618 | |
| 619 | /* |
| 620 | * Now validate the answer. Scan back some number of maximum possible |
| 621 | * blocks and make sure each one has the expected cycle number. The |
| 622 | * maximum is determined by the total possible amount of buffering |
| 623 | * in the in-core log. The following number can be made tighter if |
| 624 | * we actually look at the block size of the filesystem. |
| 625 | */ |
| 626 | num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); |
| 627 | if (head_blk >= num_scan_bblks) { |
| 628 | /* |
| 629 | * We are guaranteed that the entire check can be performed |
| 630 | * in one buffer. |
| 631 | */ |
| 632 | start_blk = head_blk - num_scan_bblks; |
| 633 | if ((error = xlog_find_verify_cycle(log, |
| 634 | start_blk, num_scan_bblks, |
| 635 | stop_on_cycle, &new_blk))) |
| 636 | goto out_free_buffer; |
| 637 | if (new_blk != -1) |
| 638 | head_blk = new_blk; |
| 639 | } else { /* need to read 2 parts of log */ |
| 640 | /* |
| 641 | * We are going to scan backwards in the log in two parts. |
| 642 | * First we scan the physical end of the log. In this part |
| 643 | * of the log, we are looking for blocks with cycle number |
| 644 | * last_half_cycle - 1. |
| 645 | * If we find one, then we know that the log starts there, as |
| 646 | * we've found a hole that didn't get written in going around |
| 647 | * the end of the physical log. The simple case for this is |
| 648 | * x + 1 ... | x ... | x - 1 | x |
| 649 | * <---------> less than scan distance |
| 650 | * If all of the blocks at the end of the log have cycle number |
| 651 | * last_half_cycle, then we check the blocks at the start of |
| 652 | * the log looking for occurrences of last_half_cycle. If we |
| 653 | * find one, then our current estimate for the location of the |
| 654 | * first occurrence of last_half_cycle is wrong and we move |
| 655 | * back to the hole we've found. This case looks like |
| 656 | * x + 1 ... | x | x + 1 | x ... |
| 657 | * ^ binary search stopped here |
| 658 | * Another case we need to handle that only occurs in 256k |
| 659 | * logs is |
| 660 | * x + 1 ... | x ... | x+1 | x ... |
| 661 | * ^ binary search stops here |
| 662 | * In a 256k log, the scan at the end of the log will see the |
| 663 | * x + 1 blocks. We need to skip past those since that is |
| 664 | * certainly not the head of the log. By searching for |
| 665 | * last_half_cycle-1 we accomplish that. |
| 666 | */ |
| 667 | ASSERT(head_blk <= INT_MAX && |
| 668 | (xfs_daddr_t) num_scan_bblks >= head_blk); |
| 669 | start_blk = log_bbnum - (num_scan_bblks - head_blk); |
| 670 | if ((error = xlog_find_verify_cycle(log, start_blk, |
| 671 | num_scan_bblks - (int)head_blk, |
| 672 | (stop_on_cycle - 1), &new_blk))) |
| 673 | goto out_free_buffer; |
| 674 | if (new_blk != -1) { |
| 675 | head_blk = new_blk; |
| 676 | goto validate_head; |
| 677 | } |
| 678 | |
| 679 | /* |
| 680 | * Scan beginning of log now. The last part of the physical |
| 681 | * log is good. This scan needs to verify that it doesn't find |
| 682 | * the last_half_cycle. |
| 683 | */ |
| 684 | start_blk = 0; |
| 685 | ASSERT(head_blk <= INT_MAX); |
| 686 | if ((error = xlog_find_verify_cycle(log, |
| 687 | start_blk, (int)head_blk, |
| 688 | stop_on_cycle, &new_blk))) |
| 689 | goto out_free_buffer; |
| 690 | if (new_blk != -1) |
| 691 | head_blk = new_blk; |
| 692 | } |
| 693 | |
| 694 | validate_head: |
| 695 | /* |
| 696 | * Now we need to make sure head_blk is not pointing to a block in |
| 697 | * the middle of a log record. |
| 698 | */ |
| 699 | num_scan_bblks = XLOG_REC_SHIFT(log); |
| 700 | if (head_blk >= num_scan_bblks) { |
| 701 | start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ |
| 702 | |
| 703 | /* start ptr at last block ptr before head_blk */ |
| 704 | error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); |
| 705 | if (error == 1) |
| 706 | error = -EIO; |
| 707 | if (error) |
| 708 | goto out_free_buffer; |
| 709 | } else { |
| 710 | start_blk = 0; |
| 711 | ASSERT(head_blk <= INT_MAX); |
| 712 | error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); |
| 713 | if (error < 0) |
| 714 | goto out_free_buffer; |
| 715 | if (error == 1) { |
| 716 | /* We hit the beginning of the log during our search */ |
| 717 | start_blk = log_bbnum - (num_scan_bblks - head_blk); |
| 718 | new_blk = log_bbnum; |
| 719 | ASSERT(start_blk <= INT_MAX && |
| 720 | (xfs_daddr_t) log_bbnum-start_blk >= 0); |
| 721 | ASSERT(head_blk <= INT_MAX); |
| 722 | error = xlog_find_verify_log_record(log, start_blk, |
| 723 | &new_blk, (int)head_blk); |
| 724 | if (error == 1) |
| 725 | error = -EIO; |
| 726 | if (error) |
| 727 | goto out_free_buffer; |
| 728 | if (new_blk != log_bbnum) |
| 729 | head_blk = new_blk; |
| 730 | } else if (error) |
| 731 | goto out_free_buffer; |
| 732 | } |
| 733 | |
| 734 | kvfree(buffer); |
| 735 | if (head_blk == log_bbnum) |
| 736 | *return_head_blk = 0; |
| 737 | else |
| 738 | *return_head_blk = head_blk; |
| 739 | /* |
| 740 | * When returning here, we have a good block number. Bad block |
| 741 | * means that during a previous crash, we didn't have a clean break |
| 742 | * from cycle number N to cycle number N-1. In this case, we need |
| 743 | * to find the first block with cycle number N-1. |
| 744 | */ |
| 745 | return 0; |
| 746 | |
| 747 | out_free_buffer: |
| 748 | kvfree(buffer); |
| 749 | if (error) |
| 750 | xfs_warn(log->l_mp, "failed to find log head"); |
| 751 | return error; |
| 752 | } |
| 753 | |
| 754 | /* |
| 755 | * Seek backwards in the log for log record headers. |
| 756 | * |
| 757 | * Given a starting log block, walk backwards until we find the provided number |
| 758 | * of records or hit the provided tail block. The return value is the number of |
| 759 | * records encountered or a negative error code. The log block and buffer |
| 760 | * pointer of the last record seen are returned in rblk and rhead respectively. |
| 761 | */ |
| 762 | STATIC int |
| 763 | xlog_rseek_logrec_hdr( |
| 764 | struct xlog *log, |
| 765 | xfs_daddr_t head_blk, |
| 766 | xfs_daddr_t tail_blk, |
| 767 | int count, |
| 768 | char *buffer, |
| 769 | xfs_daddr_t *rblk, |
| 770 | struct xlog_rec_header **rhead, |
| 771 | bool *wrapped) |
| 772 | { |
| 773 | int i; |
| 774 | int error; |
| 775 | int found = 0; |
| 776 | char *offset = NULL; |
| 777 | xfs_daddr_t end_blk; |
| 778 | |
| 779 | *wrapped = false; |
| 780 | |
| 781 | /* |
| 782 | * Walk backwards from the head block until we hit the tail or the first |
| 783 | * block in the log. |
| 784 | */ |
| 785 | end_blk = head_blk > tail_blk ? tail_blk : 0; |
| 786 | for (i = (int) head_blk - 1; i >= end_blk; i--) { |
| 787 | error = xlog_bread(log, i, 1, buffer, &offset); |
| 788 | if (error) |
| 789 | goto out_error; |
| 790 | |
| 791 | if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { |
| 792 | *rblk = i; |
| 793 | *rhead = (struct xlog_rec_header *) offset; |
| 794 | if (++found == count) |
| 795 | break; |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | /* |
| 800 | * If we haven't hit the tail block or the log record header count, |
| 801 | * start looking again from the end of the physical log. Note that |
| 802 | * callers can pass head == tail if the tail is not yet known. |
| 803 | */ |
| 804 | if (tail_blk >= head_blk && found != count) { |
| 805 | for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { |
| 806 | error = xlog_bread(log, i, 1, buffer, &offset); |
| 807 | if (error) |
| 808 | goto out_error; |
| 809 | |
| 810 | if (*(__be32 *)offset == |
| 811 | cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { |
| 812 | *wrapped = true; |
| 813 | *rblk = i; |
| 814 | *rhead = (struct xlog_rec_header *) offset; |
| 815 | if (++found == count) |
| 816 | break; |
| 817 | } |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | return found; |
| 822 | |
| 823 | out_error: |
| 824 | return error; |
| 825 | } |
| 826 | |
| 827 | /* |
| 828 | * Seek forward in the log for log record headers. |
| 829 | * |
| 830 | * Given head and tail blocks, walk forward from the tail block until we find |
| 831 | * the provided number of records or hit the head block. The return value is the |
| 832 | * number of records encountered or a negative error code. The log block and |
| 833 | * buffer pointer of the last record seen are returned in rblk and rhead |
| 834 | * respectively. |
| 835 | */ |
| 836 | STATIC int |
| 837 | xlog_seek_logrec_hdr( |
| 838 | struct xlog *log, |
| 839 | xfs_daddr_t head_blk, |
| 840 | xfs_daddr_t tail_blk, |
| 841 | int count, |
| 842 | char *buffer, |
| 843 | xfs_daddr_t *rblk, |
| 844 | struct xlog_rec_header **rhead, |
| 845 | bool *wrapped) |
| 846 | { |
| 847 | int i; |
| 848 | int error; |
| 849 | int found = 0; |
| 850 | char *offset = NULL; |
| 851 | xfs_daddr_t end_blk; |
| 852 | |
| 853 | *wrapped = false; |
| 854 | |
| 855 | /* |
| 856 | * Walk forward from the tail block until we hit the head or the last |
| 857 | * block in the log. |
| 858 | */ |
| 859 | end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; |
| 860 | for (i = (int) tail_blk; i <= end_blk; i++) { |
| 861 | error = xlog_bread(log, i, 1, buffer, &offset); |
| 862 | if (error) |
| 863 | goto out_error; |
| 864 | |
| 865 | if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { |
| 866 | *rblk = i; |
| 867 | *rhead = (struct xlog_rec_header *) offset; |
| 868 | if (++found == count) |
| 869 | break; |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | /* |
| 874 | * If we haven't hit the head block or the log record header count, |
| 875 | * start looking again from the start of the physical log. |
| 876 | */ |
| 877 | if (tail_blk > head_blk && found != count) { |
| 878 | for (i = 0; i < (int) head_blk; i++) { |
| 879 | error = xlog_bread(log, i, 1, buffer, &offset); |
| 880 | if (error) |
| 881 | goto out_error; |
| 882 | |
| 883 | if (*(__be32 *)offset == |
| 884 | cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { |
| 885 | *wrapped = true; |
| 886 | *rblk = i; |
| 887 | *rhead = (struct xlog_rec_header *) offset; |
| 888 | if (++found == count) |
| 889 | break; |
| 890 | } |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | return found; |
| 895 | |
| 896 | out_error: |
| 897 | return error; |
| 898 | } |
| 899 | |
| 900 | /* |
| 901 | * Calculate distance from head to tail (i.e., unused space in the log). |
| 902 | */ |
| 903 | static inline int |
| 904 | xlog_tail_distance( |
| 905 | struct xlog *log, |
| 906 | xfs_daddr_t head_blk, |
| 907 | xfs_daddr_t tail_blk) |
| 908 | { |
| 909 | if (head_blk < tail_blk) |
| 910 | return tail_blk - head_blk; |
| 911 | |
| 912 | return tail_blk + (log->l_logBBsize - head_blk); |
| 913 | } |
| 914 | |
| 915 | /* |
| 916 | * Verify the log tail. This is particularly important when torn or incomplete |
| 917 | * writes have been detected near the front of the log and the head has been |
| 918 | * walked back accordingly. |
| 919 | * |
| 920 | * We also have to handle the case where the tail was pinned and the head |
| 921 | * blocked behind the tail right before a crash. If the tail had been pushed |
| 922 | * immediately prior to the crash and the subsequent checkpoint was only |
| 923 | * partially written, it's possible it overwrote the last referenced tail in the |
| 924 | * log with garbage. This is not a coherency problem because the tail must have |
| 925 | * been pushed before it can be overwritten, but appears as log corruption to |
| 926 | * recovery because we have no way to know the tail was updated if the |
| 927 | * subsequent checkpoint didn't write successfully. |
| 928 | * |
| 929 | * Therefore, CRC check the log from tail to head. If a failure occurs and the |
| 930 | * offending record is within max iclog bufs from the head, walk the tail |
| 931 | * forward and retry until a valid tail is found or corruption is detected out |
| 932 | * of the range of a possible overwrite. |
| 933 | */ |
| 934 | STATIC int |
| 935 | xlog_verify_tail( |
| 936 | struct xlog *log, |
| 937 | xfs_daddr_t head_blk, |
| 938 | xfs_daddr_t *tail_blk, |
| 939 | int hsize) |
| 940 | { |
| 941 | struct xlog_rec_header *thead; |
| 942 | char *buffer; |
| 943 | xfs_daddr_t first_bad; |
| 944 | int error = 0; |
| 945 | bool wrapped; |
| 946 | xfs_daddr_t tmp_tail; |
| 947 | xfs_daddr_t orig_tail = *tail_blk; |
| 948 | |
| 949 | buffer = xlog_alloc_buffer(log, 1); |
| 950 | if (!buffer) |
| 951 | return -ENOMEM; |
| 952 | |
| 953 | /* |
| 954 | * Make sure the tail points to a record (returns positive count on |
| 955 | * success). |
| 956 | */ |
| 957 | error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer, |
| 958 | &tmp_tail, &thead, &wrapped); |
| 959 | if (error < 0) |
| 960 | goto out; |
| 961 | if (*tail_blk != tmp_tail) |
| 962 | *tail_blk = tmp_tail; |
| 963 | |
| 964 | /* |
| 965 | * Run a CRC check from the tail to the head. We can't just check |
| 966 | * MAX_ICLOGS records past the tail because the tail may point to stale |
| 967 | * blocks cleared during the search for the head/tail. These blocks are |
| 968 | * overwritten with zero-length records and thus record count is not a |
| 969 | * reliable indicator of the iclog state before a crash. |
| 970 | */ |
| 971 | first_bad = 0; |
| 972 | error = xlog_do_recovery_pass(log, head_blk, *tail_blk, |
| 973 | XLOG_RECOVER_CRCPASS, &first_bad); |
| 974 | while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { |
| 975 | int tail_distance; |
| 976 | |
| 977 | /* |
| 978 | * Is corruption within range of the head? If so, retry from |
| 979 | * the next record. Otherwise return an error. |
| 980 | */ |
| 981 | tail_distance = xlog_tail_distance(log, head_blk, first_bad); |
| 982 | if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) |
| 983 | break; |
| 984 | |
| 985 | /* skip to the next record; returns positive count on success */ |
| 986 | error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, |
| 987 | buffer, &tmp_tail, &thead, &wrapped); |
| 988 | if (error < 0) |
| 989 | goto out; |
| 990 | |
| 991 | *tail_blk = tmp_tail; |
| 992 | first_bad = 0; |
| 993 | error = xlog_do_recovery_pass(log, head_blk, *tail_blk, |
| 994 | XLOG_RECOVER_CRCPASS, &first_bad); |
| 995 | } |
| 996 | |
| 997 | if (!error && *tail_blk != orig_tail) |
| 998 | xfs_warn(log->l_mp, |
| 999 | "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", |
| 1000 | orig_tail, *tail_blk); |
| 1001 | out: |
| 1002 | kvfree(buffer); |
| 1003 | return error; |
| 1004 | } |
| 1005 | |
| 1006 | /* |
| 1007 | * Detect and trim torn writes from the head of the log. |
| 1008 | * |
| 1009 | * Storage without sector atomicity guarantees can result in torn writes in the |
| 1010 | * log in the event of a crash. Our only means to detect this scenario is via |
| 1011 | * CRC verification. While we can't always be certain that CRC verification |
| 1012 | * failure is due to a torn write vs. an unrelated corruption, we do know that |
| 1013 | * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at |
| 1014 | * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of |
| 1015 | * the log and treat failures in this range as torn writes as a matter of |
| 1016 | * policy. In the event of CRC failure, the head is walked back to the last good |
| 1017 | * record in the log and the tail is updated from that record and verified. |
| 1018 | */ |
| 1019 | STATIC int |
| 1020 | xlog_verify_head( |
| 1021 | struct xlog *log, |
| 1022 | xfs_daddr_t *head_blk, /* in/out: unverified head */ |
| 1023 | xfs_daddr_t *tail_blk, /* out: tail block */ |
| 1024 | char *buffer, |
| 1025 | xfs_daddr_t *rhead_blk, /* start blk of last record */ |
| 1026 | struct xlog_rec_header **rhead, /* ptr to last record */ |
| 1027 | bool *wrapped) /* last rec. wraps phys. log */ |
| 1028 | { |
| 1029 | struct xlog_rec_header *tmp_rhead; |
| 1030 | char *tmp_buffer; |
| 1031 | xfs_daddr_t first_bad; |
| 1032 | xfs_daddr_t tmp_rhead_blk; |
| 1033 | int found; |
| 1034 | int error; |
| 1035 | bool tmp_wrapped; |
| 1036 | |
| 1037 | /* |
| 1038 | * Check the head of the log for torn writes. Search backwards from the |
| 1039 | * head until we hit the tail or the maximum number of log record I/Os |
| 1040 | * that could have been in flight at one time. Use a temporary buffer so |
| 1041 | * we don't trash the rhead/buffer pointers from the caller. |
| 1042 | */ |
| 1043 | tmp_buffer = xlog_alloc_buffer(log, 1); |
| 1044 | if (!tmp_buffer) |
| 1045 | return -ENOMEM; |
| 1046 | error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, |
| 1047 | XLOG_MAX_ICLOGS, tmp_buffer, |
| 1048 | &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped); |
| 1049 | kvfree(tmp_buffer); |
| 1050 | if (error < 0) |
| 1051 | return error; |
| 1052 | |
| 1053 | /* |
| 1054 | * Now run a CRC verification pass over the records starting at the |
| 1055 | * block found above to the current head. If a CRC failure occurs, the |
| 1056 | * log block of the first bad record is saved in first_bad. |
| 1057 | */ |
| 1058 | error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, |
| 1059 | XLOG_RECOVER_CRCPASS, &first_bad); |
| 1060 | if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { |
| 1061 | /* |
| 1062 | * We've hit a potential torn write. Reset the error and warn |
| 1063 | * about it. |
| 1064 | */ |
| 1065 | error = 0; |
| 1066 | xfs_warn(log->l_mp, |
| 1067 | "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", |
| 1068 | first_bad, *head_blk); |
| 1069 | |
| 1070 | /* |
| 1071 | * Get the header block and buffer pointer for the last good |
| 1072 | * record before the bad record. |
| 1073 | * |
| 1074 | * Note that xlog_find_tail() clears the blocks at the new head |
| 1075 | * (i.e., the records with invalid CRC) if the cycle number |
| 1076 | * matches the current cycle. |
| 1077 | */ |
| 1078 | found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, |
| 1079 | buffer, rhead_blk, rhead, wrapped); |
| 1080 | if (found < 0) |
| 1081 | return found; |
| 1082 | if (found == 0) /* XXX: right thing to do here? */ |
| 1083 | return -EIO; |
| 1084 | |
| 1085 | /* |
| 1086 | * Reset the head block to the starting block of the first bad |
| 1087 | * log record and set the tail block based on the last good |
| 1088 | * record. |
| 1089 | * |
| 1090 | * Bail out if the updated head/tail match as this indicates |
| 1091 | * possible corruption outside of the acceptable |
| 1092 | * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... |
| 1093 | */ |
| 1094 | *head_blk = first_bad; |
| 1095 | *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); |
| 1096 | if (*head_blk == *tail_blk) { |
| 1097 | ASSERT(0); |
| 1098 | return 0; |
| 1099 | } |
| 1100 | } |
| 1101 | if (error) |
| 1102 | return error; |
| 1103 | |
| 1104 | return xlog_verify_tail(log, *head_blk, tail_blk, |
| 1105 | be32_to_cpu((*rhead)->h_size)); |
| 1106 | } |
| 1107 | |
| 1108 | /* |
| 1109 | * We need to make sure we handle log wrapping properly, so we can't use the |
| 1110 | * calculated logbno directly. Make sure it wraps to the correct bno inside the |
| 1111 | * log. |
| 1112 | * |
| 1113 | * The log is limited to 32 bit sizes, so we use the appropriate modulus |
| 1114 | * operation here and cast it back to a 64 bit daddr on return. |
| 1115 | */ |
| 1116 | static inline xfs_daddr_t |
| 1117 | xlog_wrap_logbno( |
| 1118 | struct xlog *log, |
| 1119 | xfs_daddr_t bno) |
| 1120 | { |
| 1121 | int mod; |
| 1122 | |
| 1123 | div_s64_rem(bno, log->l_logBBsize, &mod); |
| 1124 | return mod; |
| 1125 | } |
| 1126 | |
| 1127 | /* |
| 1128 | * Check whether the head of the log points to an unmount record. In other |
| 1129 | * words, determine whether the log is clean. If so, update the in-core state |
| 1130 | * appropriately. |
| 1131 | */ |
| 1132 | static int |
| 1133 | xlog_check_unmount_rec( |
| 1134 | struct xlog *log, |
| 1135 | xfs_daddr_t *head_blk, |
| 1136 | xfs_daddr_t *tail_blk, |
| 1137 | struct xlog_rec_header *rhead, |
| 1138 | xfs_daddr_t rhead_blk, |
| 1139 | char *buffer, |
| 1140 | bool *clean) |
| 1141 | { |
| 1142 | struct xlog_op_header *op_head; |
| 1143 | xfs_daddr_t umount_data_blk; |
| 1144 | xfs_daddr_t after_umount_blk; |
| 1145 | int hblks; |
| 1146 | int error; |
| 1147 | char *offset; |
| 1148 | |
| 1149 | *clean = false; |
| 1150 | |
| 1151 | /* |
| 1152 | * Look for unmount record. If we find it, then we know there was a |
| 1153 | * clean unmount. Since 'i' could be the last block in the physical |
| 1154 | * log, we convert to a log block before comparing to the head_blk. |
| 1155 | * |
| 1156 | * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() |
| 1157 | * below. We won't want to clear the unmount record if there is one, so |
| 1158 | * we pass the lsn of the unmount record rather than the block after it. |
| 1159 | */ |
| 1160 | hblks = xlog_logrec_hblks(log, rhead); |
| 1161 | after_umount_blk = xlog_wrap_logbno(log, |
| 1162 | rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); |
| 1163 | |
| 1164 | if (*head_blk == after_umount_blk && |
| 1165 | be32_to_cpu(rhead->h_num_logops) == 1) { |
| 1166 | umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); |
| 1167 | error = xlog_bread(log, umount_data_blk, 1, buffer, &offset); |
| 1168 | if (error) |
| 1169 | return error; |
| 1170 | |
| 1171 | op_head = (struct xlog_op_header *)offset; |
| 1172 | if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { |
| 1173 | /* |
| 1174 | * Set tail and last sync so that newly written log |
| 1175 | * records will point recovery to after the current |
| 1176 | * unmount record. |
| 1177 | */ |
| 1178 | xlog_assign_atomic_lsn(&log->l_tail_lsn, |
| 1179 | log->l_curr_cycle, after_umount_blk); |
| 1180 | log->l_ailp->ail_head_lsn = |
| 1181 | atomic64_read(&log->l_tail_lsn); |
| 1182 | *tail_blk = after_umount_blk; |
| 1183 | |
| 1184 | *clean = true; |
| 1185 | } |
| 1186 | } |
| 1187 | |
| 1188 | return 0; |
| 1189 | } |
| 1190 | |
| 1191 | static void |
| 1192 | xlog_set_state( |
| 1193 | struct xlog *log, |
| 1194 | xfs_daddr_t head_blk, |
| 1195 | struct xlog_rec_header *rhead, |
| 1196 | xfs_daddr_t rhead_blk, |
| 1197 | bool bump_cycle) |
| 1198 | { |
| 1199 | /* |
| 1200 | * Reset log values according to the state of the log when we |
| 1201 | * crashed. In the case where head_blk == 0, we bump curr_cycle |
| 1202 | * one because the next write starts a new cycle rather than |
| 1203 | * continuing the cycle of the last good log record. At this |
| 1204 | * point we have guaranteed that all partial log records have been |
| 1205 | * accounted for. Therefore, we know that the last good log record |
| 1206 | * written was complete and ended exactly on the end boundary |
| 1207 | * of the physical log. |
| 1208 | */ |
| 1209 | log->l_prev_block = rhead_blk; |
| 1210 | log->l_curr_block = (int)head_blk; |
| 1211 | log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); |
| 1212 | if (bump_cycle) |
| 1213 | log->l_curr_cycle++; |
| 1214 | atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); |
| 1215 | log->l_ailp->ail_head_lsn = be64_to_cpu(rhead->h_lsn); |
| 1216 | } |
| 1217 | |
| 1218 | /* |
| 1219 | * Find the sync block number or the tail of the log. |
| 1220 | * |
| 1221 | * This will be the block number of the last record to have its |
| 1222 | * associated buffers synced to disk. Every log record header has |
| 1223 | * a sync lsn embedded in it. LSNs hold block numbers, so it is easy |
| 1224 | * to get a sync block number. The only concern is to figure out which |
| 1225 | * log record header to believe. |
| 1226 | * |
| 1227 | * The following algorithm uses the log record header with the largest |
| 1228 | * lsn. The entire log record does not need to be valid. We only care |
| 1229 | * that the header is valid. |
| 1230 | * |
| 1231 | * We could speed up search by using current head_blk buffer, but it is not |
| 1232 | * available. |
| 1233 | */ |
| 1234 | STATIC int |
| 1235 | xlog_find_tail( |
| 1236 | struct xlog *log, |
| 1237 | xfs_daddr_t *head_blk, |
| 1238 | xfs_daddr_t *tail_blk) |
| 1239 | { |
| 1240 | xlog_rec_header_t *rhead; |
| 1241 | char *offset = NULL; |
| 1242 | char *buffer; |
| 1243 | int error; |
| 1244 | xfs_daddr_t rhead_blk; |
| 1245 | xfs_lsn_t tail_lsn; |
| 1246 | bool wrapped = false; |
| 1247 | bool clean = false; |
| 1248 | |
| 1249 | /* |
| 1250 | * Find previous log record |
| 1251 | */ |
| 1252 | if ((error = xlog_find_head(log, head_blk))) |
| 1253 | return error; |
| 1254 | ASSERT(*head_blk < INT_MAX); |
| 1255 | |
| 1256 | buffer = xlog_alloc_buffer(log, 1); |
| 1257 | if (!buffer) |
| 1258 | return -ENOMEM; |
| 1259 | if (*head_blk == 0) { /* special case */ |
| 1260 | error = xlog_bread(log, 0, 1, buffer, &offset); |
| 1261 | if (error) |
| 1262 | goto done; |
| 1263 | |
| 1264 | if (xlog_get_cycle(offset) == 0) { |
| 1265 | *tail_blk = 0; |
| 1266 | /* leave all other log inited values alone */ |
| 1267 | goto done; |
| 1268 | } |
| 1269 | } |
| 1270 | |
| 1271 | /* |
| 1272 | * Search backwards through the log looking for the log record header |
| 1273 | * block. This wraps all the way back around to the head so something is |
| 1274 | * seriously wrong if we can't find it. |
| 1275 | */ |
| 1276 | error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer, |
| 1277 | &rhead_blk, &rhead, &wrapped); |
| 1278 | if (error < 0) |
| 1279 | goto done; |
| 1280 | if (!error) { |
| 1281 | xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); |
| 1282 | error = -EFSCORRUPTED; |
| 1283 | goto done; |
| 1284 | } |
| 1285 | *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); |
| 1286 | |
| 1287 | /* |
| 1288 | * Set the log state based on the current head record. |
| 1289 | */ |
| 1290 | xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); |
| 1291 | tail_lsn = atomic64_read(&log->l_tail_lsn); |
| 1292 | |
| 1293 | /* |
| 1294 | * Look for an unmount record at the head of the log. This sets the log |
| 1295 | * state to determine whether recovery is necessary. |
| 1296 | */ |
| 1297 | error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, |
| 1298 | rhead_blk, buffer, &clean); |
| 1299 | if (error) |
| 1300 | goto done; |
| 1301 | |
| 1302 | /* |
| 1303 | * Verify the log head if the log is not clean (e.g., we have anything |
| 1304 | * but an unmount record at the head). This uses CRC verification to |
| 1305 | * detect and trim torn writes. If discovered, CRC failures are |
| 1306 | * considered torn writes and the log head is trimmed accordingly. |
| 1307 | * |
| 1308 | * Note that we can only run CRC verification when the log is dirty |
| 1309 | * because there's no guarantee that the log data behind an unmount |
| 1310 | * record is compatible with the current architecture. |
| 1311 | */ |
| 1312 | if (!clean) { |
| 1313 | xfs_daddr_t orig_head = *head_blk; |
| 1314 | |
| 1315 | error = xlog_verify_head(log, head_blk, tail_blk, buffer, |
| 1316 | &rhead_blk, &rhead, &wrapped); |
| 1317 | if (error) |
| 1318 | goto done; |
| 1319 | |
| 1320 | /* update in-core state again if the head changed */ |
| 1321 | if (*head_blk != orig_head) { |
| 1322 | xlog_set_state(log, *head_blk, rhead, rhead_blk, |
| 1323 | wrapped); |
| 1324 | tail_lsn = atomic64_read(&log->l_tail_lsn); |
| 1325 | error = xlog_check_unmount_rec(log, head_blk, tail_blk, |
| 1326 | rhead, rhead_blk, buffer, |
| 1327 | &clean); |
| 1328 | if (error) |
| 1329 | goto done; |
| 1330 | } |
| 1331 | } |
| 1332 | |
| 1333 | /* |
| 1334 | * Note that the unmount was clean. If the unmount was not clean, we |
| 1335 | * need to know this to rebuild the superblock counters from the perag |
| 1336 | * headers if we have a filesystem using non-persistent counters. |
| 1337 | */ |
| 1338 | if (clean) |
| 1339 | xfs_set_clean(log->l_mp); |
| 1340 | |
| 1341 | /* |
| 1342 | * Make sure that there are no blocks in front of the head |
| 1343 | * with the same cycle number as the head. This can happen |
| 1344 | * because we allow multiple outstanding log writes concurrently, |
| 1345 | * and the later writes might make it out before earlier ones. |
| 1346 | * |
| 1347 | * We use the lsn from before modifying it so that we'll never |
| 1348 | * overwrite the unmount record after a clean unmount. |
| 1349 | * |
| 1350 | * Do this only if we are going to recover the filesystem |
| 1351 | * |
| 1352 | * NOTE: This used to say "if (!readonly)" |
| 1353 | * However on Linux, we can & do recover a read-only filesystem. |
| 1354 | * We only skip recovery if NORECOVERY is specified on mount, |
| 1355 | * in which case we would not be here. |
| 1356 | * |
| 1357 | * But... if the -device- itself is readonly, just skip this. |
| 1358 | * We can't recover this device anyway, so it won't matter. |
| 1359 | */ |
| 1360 | if (!xfs_readonly_buftarg(log->l_targ)) |
| 1361 | error = xlog_clear_stale_blocks(log, tail_lsn); |
| 1362 | |
| 1363 | done: |
| 1364 | kvfree(buffer); |
| 1365 | |
| 1366 | if (error) |
| 1367 | xfs_warn(log->l_mp, "failed to locate log tail"); |
| 1368 | return error; |
| 1369 | } |
| 1370 | |
| 1371 | /* |
| 1372 | * Is the log zeroed at all? |
| 1373 | * |
| 1374 | * The last binary search should be changed to perform an X block read |
| 1375 | * once X becomes small enough. You can then search linearly through |
| 1376 | * the X blocks. This will cut down on the number of reads we need to do. |
| 1377 | * |
| 1378 | * If the log is partially zeroed, this routine will pass back the blkno |
| 1379 | * of the first block with cycle number 0. It won't have a complete LR |
| 1380 | * preceding it. |
| 1381 | * |
| 1382 | * Return: |
| 1383 | * 0 => the log is completely written to |
| 1384 | * 1 => use *blk_no as the first block of the log |
| 1385 | * <0 => error has occurred |
| 1386 | */ |
| 1387 | STATIC int |
| 1388 | xlog_find_zeroed( |
| 1389 | struct xlog *log, |
| 1390 | xfs_daddr_t *blk_no) |
| 1391 | { |
| 1392 | char *buffer; |
| 1393 | char *offset; |
| 1394 | uint first_cycle, last_cycle; |
| 1395 | xfs_daddr_t new_blk, last_blk, start_blk; |
| 1396 | xfs_daddr_t num_scan_bblks; |
| 1397 | int error, log_bbnum = log->l_logBBsize; |
| 1398 | int ret = 1; |
| 1399 | |
| 1400 | *blk_no = 0; |
| 1401 | |
| 1402 | /* check totally zeroed log */ |
| 1403 | buffer = xlog_alloc_buffer(log, 1); |
| 1404 | if (!buffer) |
| 1405 | return -ENOMEM; |
| 1406 | error = xlog_bread(log, 0, 1, buffer, &offset); |
| 1407 | if (error) |
| 1408 | goto out_free_buffer; |
| 1409 | |
| 1410 | first_cycle = xlog_get_cycle(offset); |
| 1411 | if (first_cycle == 0) { /* completely zeroed log */ |
| 1412 | *blk_no = 0; |
| 1413 | goto out_free_buffer; |
| 1414 | } |
| 1415 | |
| 1416 | /* check partially zeroed log */ |
| 1417 | error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset); |
| 1418 | if (error) |
| 1419 | goto out_free_buffer; |
| 1420 | |
| 1421 | last_cycle = xlog_get_cycle(offset); |
| 1422 | if (last_cycle != 0) { /* log completely written to */ |
| 1423 | ret = 0; |
| 1424 | goto out_free_buffer; |
| 1425 | } |
| 1426 | |
| 1427 | /* we have a partially zeroed log */ |
| 1428 | last_blk = log_bbnum-1; |
| 1429 | error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0); |
| 1430 | if (error) |
| 1431 | goto out_free_buffer; |
| 1432 | |
| 1433 | /* |
| 1434 | * Validate the answer. Because there is no way to guarantee that |
| 1435 | * the entire log is made up of log records which are the same size, |
| 1436 | * we scan over the defined maximum blocks. At this point, the maximum |
| 1437 | * is not chosen to mean anything special. XXXmiken |
| 1438 | */ |
| 1439 | num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); |
| 1440 | ASSERT(num_scan_bblks <= INT_MAX); |
| 1441 | |
| 1442 | if (last_blk < num_scan_bblks) |
| 1443 | num_scan_bblks = last_blk; |
| 1444 | start_blk = last_blk - num_scan_bblks; |
| 1445 | |
| 1446 | /* |
| 1447 | * We search for any instances of cycle number 0 that occur before |
| 1448 | * our current estimate of the head. What we're trying to detect is |
| 1449 | * 1 ... | 0 | 1 | 0... |
| 1450 | * ^ binary search ends here |
| 1451 | */ |
| 1452 | if ((error = xlog_find_verify_cycle(log, start_blk, |
| 1453 | (int)num_scan_bblks, 0, &new_blk))) |
| 1454 | goto out_free_buffer; |
| 1455 | if (new_blk != -1) |
| 1456 | last_blk = new_blk; |
| 1457 | |
| 1458 | /* |
| 1459 | * Potentially backup over partial log record write. We don't need |
| 1460 | * to search the end of the log because we know it is zero. |
| 1461 | */ |
| 1462 | error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); |
| 1463 | if (error == 1) |
| 1464 | error = -EIO; |
| 1465 | if (error) |
| 1466 | goto out_free_buffer; |
| 1467 | |
| 1468 | *blk_no = last_blk; |
| 1469 | out_free_buffer: |
| 1470 | kvfree(buffer); |
| 1471 | if (error) |
| 1472 | return error; |
| 1473 | return ret; |
| 1474 | } |
| 1475 | |
| 1476 | /* |
| 1477 | * These are simple subroutines used by xlog_clear_stale_blocks() below |
| 1478 | * to initialize a buffer full of empty log record headers and write |
| 1479 | * them into the log. |
| 1480 | */ |
| 1481 | STATIC void |
| 1482 | xlog_add_record( |
| 1483 | struct xlog *log, |
| 1484 | char *buf, |
| 1485 | int cycle, |
| 1486 | int block, |
| 1487 | int tail_cycle, |
| 1488 | int tail_block) |
| 1489 | { |
| 1490 | xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; |
| 1491 | |
| 1492 | memset(buf, 0, BBSIZE); |
| 1493 | recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); |
| 1494 | recp->h_cycle = cpu_to_be32(cycle); |
| 1495 | recp->h_version = cpu_to_be32( |
| 1496 | xfs_has_logv2(log->l_mp) ? 2 : 1); |
| 1497 | recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); |
| 1498 | recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); |
| 1499 | recp->h_fmt = cpu_to_be32(XLOG_FMT); |
| 1500 | memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); |
| 1501 | } |
| 1502 | |
| 1503 | STATIC int |
| 1504 | xlog_write_log_records( |
| 1505 | struct xlog *log, |
| 1506 | int cycle, |
| 1507 | int start_block, |
| 1508 | int blocks, |
| 1509 | int tail_cycle, |
| 1510 | int tail_block) |
| 1511 | { |
| 1512 | char *offset; |
| 1513 | char *buffer; |
| 1514 | int balign, ealign; |
| 1515 | int sectbb = log->l_sectBBsize; |
| 1516 | int end_block = start_block + blocks; |
| 1517 | int bufblks; |
| 1518 | int error = 0; |
| 1519 | int i, j = 0; |
| 1520 | |
| 1521 | /* |
| 1522 | * Greedily allocate a buffer big enough to handle the full |
| 1523 | * range of basic blocks to be written. If that fails, try |
| 1524 | * a smaller size. We need to be able to write at least a |
| 1525 | * log sector, or we're out of luck. |
| 1526 | */ |
| 1527 | bufblks = roundup_pow_of_two(blocks); |
| 1528 | while (bufblks > log->l_logBBsize) |
| 1529 | bufblks >>= 1; |
| 1530 | while (!(buffer = xlog_alloc_buffer(log, bufblks))) { |
| 1531 | bufblks >>= 1; |
| 1532 | if (bufblks < sectbb) |
| 1533 | return -ENOMEM; |
| 1534 | } |
| 1535 | |
| 1536 | /* We may need to do a read at the start to fill in part of |
| 1537 | * the buffer in the starting sector not covered by the first |
| 1538 | * write below. |
| 1539 | */ |
| 1540 | balign = round_down(start_block, sectbb); |
| 1541 | if (balign != start_block) { |
| 1542 | error = xlog_bread_noalign(log, start_block, 1, buffer); |
| 1543 | if (error) |
| 1544 | goto out_free_buffer; |
| 1545 | |
| 1546 | j = start_block - balign; |
| 1547 | } |
| 1548 | |
| 1549 | for (i = start_block; i < end_block; i += bufblks) { |
| 1550 | int bcount, endcount; |
| 1551 | |
| 1552 | bcount = min(bufblks, end_block - start_block); |
| 1553 | endcount = bcount - j; |
| 1554 | |
| 1555 | /* We may need to do a read at the end to fill in part of |
| 1556 | * the buffer in the final sector not covered by the write. |
| 1557 | * If this is the same sector as the above read, skip it. |
| 1558 | */ |
| 1559 | ealign = round_down(end_block, sectbb); |
| 1560 | if (j == 0 && (start_block + endcount > ealign)) { |
| 1561 | error = xlog_bread_noalign(log, ealign, sectbb, |
| 1562 | buffer + BBTOB(ealign - start_block)); |
| 1563 | if (error) |
| 1564 | break; |
| 1565 | |
| 1566 | } |
| 1567 | |
| 1568 | offset = buffer + xlog_align(log, start_block); |
| 1569 | for (; j < endcount; j++) { |
| 1570 | xlog_add_record(log, offset, cycle, i+j, |
| 1571 | tail_cycle, tail_block); |
| 1572 | offset += BBSIZE; |
| 1573 | } |
| 1574 | error = xlog_bwrite(log, start_block, endcount, buffer); |
| 1575 | if (error) |
| 1576 | break; |
| 1577 | start_block += endcount; |
| 1578 | j = 0; |
| 1579 | } |
| 1580 | |
| 1581 | out_free_buffer: |
| 1582 | kvfree(buffer); |
| 1583 | return error; |
| 1584 | } |
| 1585 | |
| 1586 | /* |
| 1587 | * This routine is called to blow away any incomplete log writes out |
| 1588 | * in front of the log head. We do this so that we won't become confused |
| 1589 | * if we come up, write only a little bit more, and then crash again. |
| 1590 | * If we leave the partial log records out there, this situation could |
| 1591 | * cause us to think those partial writes are valid blocks since they |
| 1592 | * have the current cycle number. We get rid of them by overwriting them |
| 1593 | * with empty log records with the old cycle number rather than the |
| 1594 | * current one. |
| 1595 | * |
| 1596 | * The tail lsn is passed in rather than taken from |
| 1597 | * the log so that we will not write over the unmount record after a |
| 1598 | * clean unmount in a 512 block log. Doing so would leave the log without |
| 1599 | * any valid log records in it until a new one was written. If we crashed |
| 1600 | * during that time we would not be able to recover. |
| 1601 | */ |
| 1602 | STATIC int |
| 1603 | xlog_clear_stale_blocks( |
| 1604 | struct xlog *log, |
| 1605 | xfs_lsn_t tail_lsn) |
| 1606 | { |
| 1607 | int tail_cycle, head_cycle; |
| 1608 | int tail_block, head_block; |
| 1609 | int tail_distance, max_distance; |
| 1610 | int distance; |
| 1611 | int error; |
| 1612 | |
| 1613 | tail_cycle = CYCLE_LSN(tail_lsn); |
| 1614 | tail_block = BLOCK_LSN(tail_lsn); |
| 1615 | head_cycle = log->l_curr_cycle; |
| 1616 | head_block = log->l_curr_block; |
| 1617 | |
| 1618 | /* |
| 1619 | * Figure out the distance between the new head of the log |
| 1620 | * and the tail. We want to write over any blocks beyond the |
| 1621 | * head that we may have written just before the crash, but |
| 1622 | * we don't want to overwrite the tail of the log. |
| 1623 | */ |
| 1624 | if (head_cycle == tail_cycle) { |
| 1625 | /* |
| 1626 | * The tail is behind the head in the physical log, |
| 1627 | * so the distance from the head to the tail is the |
| 1628 | * distance from the head to the end of the log plus |
| 1629 | * the distance from the beginning of the log to the |
| 1630 | * tail. |
| 1631 | */ |
| 1632 | if (XFS_IS_CORRUPT(log->l_mp, |
| 1633 | head_block < tail_block || |
| 1634 | head_block >= log->l_logBBsize)) |
| 1635 | return -EFSCORRUPTED; |
| 1636 | tail_distance = tail_block + (log->l_logBBsize - head_block); |
| 1637 | } else { |
| 1638 | /* |
| 1639 | * The head is behind the tail in the physical log, |
| 1640 | * so the distance from the head to the tail is just |
| 1641 | * the tail block minus the head block. |
| 1642 | */ |
| 1643 | if (XFS_IS_CORRUPT(log->l_mp, |
| 1644 | head_block >= tail_block || |
| 1645 | head_cycle != tail_cycle + 1)) |
| 1646 | return -EFSCORRUPTED; |
| 1647 | tail_distance = tail_block - head_block; |
| 1648 | } |
| 1649 | |
| 1650 | /* |
| 1651 | * If the head is right up against the tail, we can't clear |
| 1652 | * anything. |
| 1653 | */ |
| 1654 | if (tail_distance <= 0) { |
| 1655 | ASSERT(tail_distance == 0); |
| 1656 | return 0; |
| 1657 | } |
| 1658 | |
| 1659 | max_distance = XLOG_TOTAL_REC_SHIFT(log); |
| 1660 | /* |
| 1661 | * Take the smaller of the maximum amount of outstanding I/O |
| 1662 | * we could have and the distance to the tail to clear out. |
| 1663 | * We take the smaller so that we don't overwrite the tail and |
| 1664 | * we don't waste all day writing from the head to the tail |
| 1665 | * for no reason. |
| 1666 | */ |
| 1667 | max_distance = min(max_distance, tail_distance); |
| 1668 | |
| 1669 | if ((head_block + max_distance) <= log->l_logBBsize) { |
| 1670 | /* |
| 1671 | * We can stomp all the blocks we need to without |
| 1672 | * wrapping around the end of the log. Just do it |
| 1673 | * in a single write. Use the cycle number of the |
| 1674 | * current cycle minus one so that the log will look like: |
| 1675 | * n ... | n - 1 ... |
| 1676 | */ |
| 1677 | error = xlog_write_log_records(log, (head_cycle - 1), |
| 1678 | head_block, max_distance, tail_cycle, |
| 1679 | tail_block); |
| 1680 | if (error) |
| 1681 | return error; |
| 1682 | } else { |
| 1683 | /* |
| 1684 | * We need to wrap around the end of the physical log in |
| 1685 | * order to clear all the blocks. Do it in two separate |
| 1686 | * I/Os. The first write should be from the head to the |
| 1687 | * end of the physical log, and it should use the current |
| 1688 | * cycle number minus one just like above. |
| 1689 | */ |
| 1690 | distance = log->l_logBBsize - head_block; |
| 1691 | error = xlog_write_log_records(log, (head_cycle - 1), |
| 1692 | head_block, distance, tail_cycle, |
| 1693 | tail_block); |
| 1694 | |
| 1695 | if (error) |
| 1696 | return error; |
| 1697 | |
| 1698 | /* |
| 1699 | * Now write the blocks at the start of the physical log. |
| 1700 | * This writes the remainder of the blocks we want to clear. |
| 1701 | * It uses the current cycle number since we're now on the |
| 1702 | * same cycle as the head so that we get: |
| 1703 | * n ... n ... | n - 1 ... |
| 1704 | * ^^^^^ blocks we're writing |
| 1705 | */ |
| 1706 | distance = max_distance - (log->l_logBBsize - head_block); |
| 1707 | error = xlog_write_log_records(log, head_cycle, 0, distance, |
| 1708 | tail_cycle, tail_block); |
| 1709 | if (error) |
| 1710 | return error; |
| 1711 | } |
| 1712 | |
| 1713 | return 0; |
| 1714 | } |
| 1715 | |
| 1716 | /* |
| 1717 | * Release the recovered intent item in the AIL that matches the given intent |
| 1718 | * type and intent id. |
| 1719 | */ |
| 1720 | void |
| 1721 | xlog_recover_release_intent( |
| 1722 | struct xlog *log, |
| 1723 | unsigned short intent_type, |
| 1724 | uint64_t intent_id) |
| 1725 | { |
| 1726 | struct xfs_defer_pending *dfp, *n; |
| 1727 | |
| 1728 | list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { |
| 1729 | struct xfs_log_item *lip = dfp->dfp_intent; |
| 1730 | |
| 1731 | if (lip->li_type != intent_type) |
| 1732 | continue; |
| 1733 | if (!lip->li_ops->iop_match(lip, intent_id)) |
| 1734 | continue; |
| 1735 | |
| 1736 | ASSERT(xlog_item_is_intent(lip)); |
| 1737 | |
| 1738 | xfs_defer_cancel_recovery(log->l_mp, dfp); |
| 1739 | } |
| 1740 | } |
| 1741 | |
| 1742 | int |
| 1743 | xlog_recover_iget( |
| 1744 | struct xfs_mount *mp, |
| 1745 | xfs_ino_t ino, |
| 1746 | struct xfs_inode **ipp) |
| 1747 | { |
| 1748 | int error; |
| 1749 | |
| 1750 | error = xfs_iget(mp, NULL, ino, 0, 0, ipp); |
| 1751 | if (error) |
| 1752 | return error; |
| 1753 | |
| 1754 | error = xfs_qm_dqattach(*ipp); |
| 1755 | if (error) { |
| 1756 | xfs_irele(*ipp); |
| 1757 | return error; |
| 1758 | } |
| 1759 | |
| 1760 | if (VFS_I(*ipp)->i_nlink == 0) |
| 1761 | xfs_iflags_set(*ipp, XFS_IRECOVERY); |
| 1762 | |
| 1763 | return 0; |
| 1764 | } |
| 1765 | |
| 1766 | /* |
| 1767 | * Get an inode so that we can recover a log operation. |
| 1768 | * |
| 1769 | * Log intent items that target inodes effectively contain a file handle. |
| 1770 | * Check that the generation number matches the intent item like we do for |
| 1771 | * other file handles. Log intent items defined after this validation weakness |
| 1772 | * was identified must use this function. |
| 1773 | */ |
| 1774 | int |
| 1775 | xlog_recover_iget_handle( |
| 1776 | struct xfs_mount *mp, |
| 1777 | xfs_ino_t ino, |
| 1778 | uint32_t gen, |
| 1779 | struct xfs_inode **ipp) |
| 1780 | { |
| 1781 | struct xfs_inode *ip; |
| 1782 | int error; |
| 1783 | |
| 1784 | error = xlog_recover_iget(mp, ino, &ip); |
| 1785 | if (error) |
| 1786 | return error; |
| 1787 | |
| 1788 | if (VFS_I(ip)->i_generation != gen) { |
| 1789 | xfs_irele(ip); |
| 1790 | return -EFSCORRUPTED; |
| 1791 | } |
| 1792 | |
| 1793 | *ipp = ip; |
| 1794 | return 0; |
| 1795 | } |
| 1796 | |
| 1797 | /****************************************************************************** |
| 1798 | * |
| 1799 | * Log recover routines |
| 1800 | * |
| 1801 | ****************************************************************************** |
| 1802 | */ |
| 1803 | static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = { |
| 1804 | &xlog_buf_item_ops, |
| 1805 | &xlog_inode_item_ops, |
| 1806 | &xlog_dquot_item_ops, |
| 1807 | &xlog_quotaoff_item_ops, |
| 1808 | &xlog_icreate_item_ops, |
| 1809 | &xlog_efi_item_ops, |
| 1810 | &xlog_efd_item_ops, |
| 1811 | &xlog_rui_item_ops, |
| 1812 | &xlog_rud_item_ops, |
| 1813 | &xlog_cui_item_ops, |
| 1814 | &xlog_cud_item_ops, |
| 1815 | &xlog_bui_item_ops, |
| 1816 | &xlog_bud_item_ops, |
| 1817 | &xlog_attri_item_ops, |
| 1818 | &xlog_attrd_item_ops, |
| 1819 | &xlog_xmi_item_ops, |
| 1820 | &xlog_xmd_item_ops, |
| 1821 | &xlog_rtefi_item_ops, |
| 1822 | &xlog_rtefd_item_ops, |
| 1823 | &xlog_rtrui_item_ops, |
| 1824 | &xlog_rtrud_item_ops, |
| 1825 | &xlog_rtcui_item_ops, |
| 1826 | &xlog_rtcud_item_ops, |
| 1827 | }; |
| 1828 | |
| 1829 | static const struct xlog_recover_item_ops * |
| 1830 | xlog_find_item_ops( |
| 1831 | struct xlog_recover_item *item) |
| 1832 | { |
| 1833 | unsigned int i; |
| 1834 | |
| 1835 | for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++) |
| 1836 | if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type) |
| 1837 | return xlog_recover_item_ops[i]; |
| 1838 | |
| 1839 | return NULL; |
| 1840 | } |
| 1841 | |
| 1842 | /* |
| 1843 | * Sort the log items in the transaction. |
| 1844 | * |
| 1845 | * The ordering constraints are defined by the inode allocation and unlink |
| 1846 | * behaviour. The rules are: |
| 1847 | * |
| 1848 | * 1. Every item is only logged once in a given transaction. Hence it |
| 1849 | * represents the last logged state of the item. Hence ordering is |
| 1850 | * dependent on the order in which operations need to be performed so |
| 1851 | * required initial conditions are always met. |
| 1852 | * |
| 1853 | * 2. Cancelled buffers are recorded in pass 1 in a separate table and |
| 1854 | * there's nothing to replay from them so we can simply cull them |
| 1855 | * from the transaction. However, we can't do that until after we've |
| 1856 | * replayed all the other items because they may be dependent on the |
| 1857 | * cancelled buffer and replaying the cancelled buffer can remove it |
| 1858 | * form the cancelled buffer table. Hence they have to be done last. |
| 1859 | * |
| 1860 | * 3. Inode allocation buffers must be replayed before inode items that |
| 1861 | * read the buffer and replay changes into it. For filesystems using the |
| 1862 | * ICREATE transactions, this means XFS_LI_ICREATE objects need to get |
| 1863 | * treated the same as inode allocation buffers as they create and |
| 1864 | * initialise the buffers directly. |
| 1865 | * |
| 1866 | * 4. Inode unlink buffers must be replayed after inode items are replayed. |
| 1867 | * This ensures that inodes are completely flushed to the inode buffer |
| 1868 | * in a "free" state before we remove the unlinked inode list pointer. |
| 1869 | * |
| 1870 | * Hence the ordering needs to be inode allocation buffers first, inode items |
| 1871 | * second, inode unlink buffers third and cancelled buffers last. |
| 1872 | * |
| 1873 | * But there's a problem with that - we can't tell an inode allocation buffer |
| 1874 | * apart from a regular buffer, so we can't separate them. We can, however, |
| 1875 | * tell an inode unlink buffer from the others, and so we can separate them out |
| 1876 | * from all the other buffers and move them to last. |
| 1877 | * |
| 1878 | * Hence, 4 lists, in order from head to tail: |
| 1879 | * - buffer_list for all buffers except cancelled/inode unlink buffers |
| 1880 | * - item_list for all non-buffer items |
| 1881 | * - inode_buffer_list for inode unlink buffers |
| 1882 | * - cancel_list for the cancelled buffers |
| 1883 | * |
| 1884 | * Note that we add objects to the tail of the lists so that first-to-last |
| 1885 | * ordering is preserved within the lists. Adding objects to the head of the |
| 1886 | * list means when we traverse from the head we walk them in last-to-first |
| 1887 | * order. For cancelled buffers and inode unlink buffers this doesn't matter, |
| 1888 | * but for all other items there may be specific ordering that we need to |
| 1889 | * preserve. |
| 1890 | */ |
| 1891 | STATIC int |
| 1892 | xlog_recover_reorder_trans( |
| 1893 | struct xlog *log, |
| 1894 | struct xlog_recover *trans, |
| 1895 | int pass) |
| 1896 | { |
| 1897 | struct xlog_recover_item *item, *n; |
| 1898 | int error = 0; |
| 1899 | LIST_HEAD(sort_list); |
| 1900 | LIST_HEAD(cancel_list); |
| 1901 | LIST_HEAD(buffer_list); |
| 1902 | LIST_HEAD(inode_buffer_list); |
| 1903 | LIST_HEAD(item_list); |
| 1904 | |
| 1905 | list_splice_init(&trans->r_itemq, &sort_list); |
| 1906 | list_for_each_entry_safe(item, n, &sort_list, ri_list) { |
| 1907 | enum xlog_recover_reorder fate = XLOG_REORDER_ITEM_LIST; |
| 1908 | |
| 1909 | item->ri_ops = xlog_find_item_ops(item); |
| 1910 | if (!item->ri_ops) { |
| 1911 | xfs_warn(log->l_mp, |
| 1912 | "%s: unrecognized type of log operation (%d)", |
| 1913 | __func__, ITEM_TYPE(item)); |
| 1914 | ASSERT(0); |
| 1915 | /* |
| 1916 | * return the remaining items back to the transaction |
| 1917 | * item list so they can be freed in caller. |
| 1918 | */ |
| 1919 | if (!list_empty(&sort_list)) |
| 1920 | list_splice_init(&sort_list, &trans->r_itemq); |
| 1921 | error = -EFSCORRUPTED; |
| 1922 | break; |
| 1923 | } |
| 1924 | |
| 1925 | if (item->ri_ops->reorder) |
| 1926 | fate = item->ri_ops->reorder(item); |
| 1927 | |
| 1928 | switch (fate) { |
| 1929 | case XLOG_REORDER_BUFFER_LIST: |
| 1930 | list_move_tail(&item->ri_list, &buffer_list); |
| 1931 | break; |
| 1932 | case XLOG_REORDER_CANCEL_LIST: |
| 1933 | trace_xfs_log_recover_item_reorder_head(log, |
| 1934 | trans, item, pass); |
| 1935 | list_move(&item->ri_list, &cancel_list); |
| 1936 | break; |
| 1937 | case XLOG_REORDER_INODE_BUFFER_LIST: |
| 1938 | list_move(&item->ri_list, &inode_buffer_list); |
| 1939 | break; |
| 1940 | case XLOG_REORDER_ITEM_LIST: |
| 1941 | trace_xfs_log_recover_item_reorder_tail(log, |
| 1942 | trans, item, pass); |
| 1943 | list_move_tail(&item->ri_list, &item_list); |
| 1944 | break; |
| 1945 | } |
| 1946 | } |
| 1947 | |
| 1948 | ASSERT(list_empty(&sort_list)); |
| 1949 | if (!list_empty(&buffer_list)) |
| 1950 | list_splice(&buffer_list, &trans->r_itemq); |
| 1951 | if (!list_empty(&item_list)) |
| 1952 | list_splice_tail(&item_list, &trans->r_itemq); |
| 1953 | if (!list_empty(&inode_buffer_list)) |
| 1954 | list_splice_tail(&inode_buffer_list, &trans->r_itemq); |
| 1955 | if (!list_empty(&cancel_list)) |
| 1956 | list_splice_tail(&cancel_list, &trans->r_itemq); |
| 1957 | return error; |
| 1958 | } |
| 1959 | |
| 1960 | void |
| 1961 | xlog_buf_readahead( |
| 1962 | struct xlog *log, |
| 1963 | xfs_daddr_t blkno, |
| 1964 | uint len, |
| 1965 | const struct xfs_buf_ops *ops) |
| 1966 | { |
| 1967 | if (!xlog_is_buffer_cancelled(log, blkno, len)) |
| 1968 | xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops); |
| 1969 | } |
| 1970 | |
| 1971 | /* |
| 1972 | * Create a deferred work structure for resuming and tracking the progress of a |
| 1973 | * log intent item that was found during recovery. |
| 1974 | */ |
| 1975 | void |
| 1976 | xlog_recover_intent_item( |
| 1977 | struct xlog *log, |
| 1978 | struct xfs_log_item *lip, |
| 1979 | xfs_lsn_t lsn, |
| 1980 | const struct xfs_defer_op_type *ops) |
| 1981 | { |
| 1982 | ASSERT(xlog_item_is_intent(lip)); |
| 1983 | |
| 1984 | xfs_defer_start_recovery(lip, &log->r_dfops, ops); |
| 1985 | |
| 1986 | /* |
| 1987 | * Insert the intent into the AIL directly and drop one reference so |
| 1988 | * that finishing or canceling the work will drop the other. |
| 1989 | */ |
| 1990 | xfs_trans_ail_insert(log->l_ailp, lip, lsn); |
| 1991 | lip->li_ops->iop_unpin(lip, 0); |
| 1992 | } |
| 1993 | |
| 1994 | STATIC int |
| 1995 | xlog_recover_items_pass2( |
| 1996 | struct xlog *log, |
| 1997 | struct xlog_recover *trans, |
| 1998 | struct list_head *buffer_list, |
| 1999 | struct list_head *item_list) |
| 2000 | { |
| 2001 | struct xlog_recover_item *item; |
| 2002 | int error = 0; |
| 2003 | |
| 2004 | list_for_each_entry(item, item_list, ri_list) { |
| 2005 | trace_xfs_log_recover_item_recover(log, trans, item, |
| 2006 | XLOG_RECOVER_PASS2); |
| 2007 | |
| 2008 | if (item->ri_ops->commit_pass2) |
| 2009 | error = item->ri_ops->commit_pass2(log, buffer_list, |
| 2010 | item, trans->r_lsn); |
| 2011 | if (error) |
| 2012 | return error; |
| 2013 | } |
| 2014 | |
| 2015 | return error; |
| 2016 | } |
| 2017 | |
| 2018 | /* |
| 2019 | * Perform the transaction. |
| 2020 | * |
| 2021 | * If the transaction modifies a buffer or inode, do it now. Otherwise, |
| 2022 | * EFIs and EFDs get queued up by adding entries into the AIL for them. |
| 2023 | */ |
| 2024 | STATIC int |
| 2025 | xlog_recover_commit_trans( |
| 2026 | struct xlog *log, |
| 2027 | struct xlog_recover *trans, |
| 2028 | int pass, |
| 2029 | struct list_head *buffer_list) |
| 2030 | { |
| 2031 | int error = 0; |
| 2032 | int items_queued = 0; |
| 2033 | struct xlog_recover_item *item; |
| 2034 | struct xlog_recover_item *next; |
| 2035 | LIST_HEAD (ra_list); |
| 2036 | LIST_HEAD (done_list); |
| 2037 | |
| 2038 | #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 |
| 2039 | |
| 2040 | hlist_del_init(&trans->r_list); |
| 2041 | |
| 2042 | error = xlog_recover_reorder_trans(log, trans, pass); |
| 2043 | if (error) |
| 2044 | return error; |
| 2045 | |
| 2046 | list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { |
| 2047 | trace_xfs_log_recover_item_recover(log, trans, item, pass); |
| 2048 | |
| 2049 | switch (pass) { |
| 2050 | case XLOG_RECOVER_PASS1: |
| 2051 | if (item->ri_ops->commit_pass1) |
| 2052 | error = item->ri_ops->commit_pass1(log, item); |
| 2053 | break; |
| 2054 | case XLOG_RECOVER_PASS2: |
| 2055 | if (item->ri_ops->ra_pass2) |
| 2056 | item->ri_ops->ra_pass2(log, item); |
| 2057 | list_move_tail(&item->ri_list, &ra_list); |
| 2058 | items_queued++; |
| 2059 | if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { |
| 2060 | error = xlog_recover_items_pass2(log, trans, |
| 2061 | buffer_list, &ra_list); |
| 2062 | list_splice_tail_init(&ra_list, &done_list); |
| 2063 | items_queued = 0; |
| 2064 | } |
| 2065 | |
| 2066 | break; |
| 2067 | default: |
| 2068 | ASSERT(0); |
| 2069 | } |
| 2070 | |
| 2071 | if (error) |
| 2072 | goto out; |
| 2073 | } |
| 2074 | |
| 2075 | out: |
| 2076 | if (!list_empty(&ra_list)) { |
| 2077 | if (!error) |
| 2078 | error = xlog_recover_items_pass2(log, trans, |
| 2079 | buffer_list, &ra_list); |
| 2080 | list_splice_tail_init(&ra_list, &done_list); |
| 2081 | } |
| 2082 | |
| 2083 | if (!list_empty(&done_list)) |
| 2084 | list_splice_init(&done_list, &trans->r_itemq); |
| 2085 | |
| 2086 | return error; |
| 2087 | } |
| 2088 | |
| 2089 | STATIC void |
| 2090 | xlog_recover_add_item( |
| 2091 | struct list_head *head) |
| 2092 | { |
| 2093 | struct xlog_recover_item *item; |
| 2094 | |
| 2095 | item = kzalloc(sizeof(struct xlog_recover_item), |
| 2096 | GFP_KERNEL | __GFP_NOFAIL); |
| 2097 | INIT_LIST_HEAD(&item->ri_list); |
| 2098 | list_add_tail(&item->ri_list, head); |
| 2099 | } |
| 2100 | |
| 2101 | STATIC int |
| 2102 | xlog_recover_add_to_cont_trans( |
| 2103 | struct xlog *log, |
| 2104 | struct xlog_recover *trans, |
| 2105 | char *dp, |
| 2106 | int len) |
| 2107 | { |
| 2108 | struct xlog_recover_item *item; |
| 2109 | char *ptr, *old_ptr; |
| 2110 | int old_len; |
| 2111 | |
| 2112 | /* |
| 2113 | * If the transaction is empty, the header was split across this and the |
| 2114 | * previous record. Copy the rest of the header. |
| 2115 | */ |
| 2116 | if (list_empty(&trans->r_itemq)) { |
| 2117 | ASSERT(len <= sizeof(struct xfs_trans_header)); |
| 2118 | if (len > sizeof(struct xfs_trans_header)) { |
| 2119 | xfs_warn(log->l_mp, "%s: bad header length", __func__); |
| 2120 | return -EFSCORRUPTED; |
| 2121 | } |
| 2122 | |
| 2123 | xlog_recover_add_item(&trans->r_itemq); |
| 2124 | ptr = (char *)&trans->r_theader + |
| 2125 | sizeof(struct xfs_trans_header) - len; |
| 2126 | memcpy(ptr, dp, len); |
| 2127 | return 0; |
| 2128 | } |
| 2129 | |
| 2130 | /* take the tail entry */ |
| 2131 | item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, |
| 2132 | ri_list); |
| 2133 | |
| 2134 | old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; |
| 2135 | old_len = item->ri_buf[item->ri_cnt-1].i_len; |
| 2136 | |
| 2137 | ptr = kvrealloc(old_ptr, len + old_len, GFP_KERNEL); |
| 2138 | if (!ptr) |
| 2139 | return -ENOMEM; |
| 2140 | memcpy(&ptr[old_len], dp, len); |
| 2141 | item->ri_buf[item->ri_cnt-1].i_len += len; |
| 2142 | item->ri_buf[item->ri_cnt-1].i_addr = ptr; |
| 2143 | trace_xfs_log_recover_item_add_cont(log, trans, item, 0); |
| 2144 | return 0; |
| 2145 | } |
| 2146 | |
| 2147 | /* |
| 2148 | * The next region to add is the start of a new region. It could be |
| 2149 | * a whole region or it could be the first part of a new region. Because |
| 2150 | * of this, the assumption here is that the type and size fields of all |
| 2151 | * format structures fit into the first 32 bits of the structure. |
| 2152 | * |
| 2153 | * This works because all regions must be 32 bit aligned. Therefore, we |
| 2154 | * either have both fields or we have neither field. In the case we have |
| 2155 | * neither field, the data part of the region is zero length. We only have |
| 2156 | * a log_op_header and can throw away the header since a new one will appear |
| 2157 | * later. If we have at least 4 bytes, then we can determine how many regions |
| 2158 | * will appear in the current log item. |
| 2159 | */ |
| 2160 | STATIC int |
| 2161 | xlog_recover_add_to_trans( |
| 2162 | struct xlog *log, |
| 2163 | struct xlog_recover *trans, |
| 2164 | char *dp, |
| 2165 | int len) |
| 2166 | { |
| 2167 | struct xfs_inode_log_format *in_f; /* any will do */ |
| 2168 | struct xlog_recover_item *item; |
| 2169 | char *ptr; |
| 2170 | |
| 2171 | if (!len) |
| 2172 | return 0; |
| 2173 | if (list_empty(&trans->r_itemq)) { |
| 2174 | /* we need to catch log corruptions here */ |
| 2175 | if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { |
| 2176 | xfs_warn(log->l_mp, "%s: bad header magic number", |
| 2177 | __func__); |
| 2178 | ASSERT(0); |
| 2179 | return -EFSCORRUPTED; |
| 2180 | } |
| 2181 | |
| 2182 | if (len > sizeof(struct xfs_trans_header)) { |
| 2183 | xfs_warn(log->l_mp, "%s: bad header length", __func__); |
| 2184 | ASSERT(0); |
| 2185 | return -EFSCORRUPTED; |
| 2186 | } |
| 2187 | |
| 2188 | /* |
| 2189 | * The transaction header can be arbitrarily split across op |
| 2190 | * records. If we don't have the whole thing here, copy what we |
| 2191 | * do have and handle the rest in the next record. |
| 2192 | */ |
| 2193 | if (len == sizeof(struct xfs_trans_header)) |
| 2194 | xlog_recover_add_item(&trans->r_itemq); |
| 2195 | memcpy(&trans->r_theader, dp, len); |
| 2196 | return 0; |
| 2197 | } |
| 2198 | |
| 2199 | ptr = xlog_kvmalloc(len); |
| 2200 | memcpy(ptr, dp, len); |
| 2201 | in_f = (struct xfs_inode_log_format *)ptr; |
| 2202 | |
| 2203 | /* take the tail entry */ |
| 2204 | item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, |
| 2205 | ri_list); |
| 2206 | if (item->ri_total != 0 && |
| 2207 | item->ri_total == item->ri_cnt) { |
| 2208 | /* tail item is in use, get a new one */ |
| 2209 | xlog_recover_add_item(&trans->r_itemq); |
| 2210 | item = list_entry(trans->r_itemq.prev, |
| 2211 | struct xlog_recover_item, ri_list); |
| 2212 | } |
| 2213 | |
| 2214 | if (item->ri_total == 0) { /* first region to be added */ |
| 2215 | if (in_f->ilf_size == 0 || |
| 2216 | in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { |
| 2217 | xfs_warn(log->l_mp, |
| 2218 | "bad number of regions (%d) in inode log format", |
| 2219 | in_f->ilf_size); |
| 2220 | ASSERT(0); |
| 2221 | kvfree(ptr); |
| 2222 | return -EFSCORRUPTED; |
| 2223 | } |
| 2224 | |
| 2225 | item->ri_total = in_f->ilf_size; |
| 2226 | item->ri_buf = kzalloc(item->ri_total * sizeof(xfs_log_iovec_t), |
| 2227 | GFP_KERNEL | __GFP_NOFAIL); |
| 2228 | } |
| 2229 | |
| 2230 | if (item->ri_total <= item->ri_cnt) { |
| 2231 | xfs_warn(log->l_mp, |
| 2232 | "log item region count (%d) overflowed size (%d)", |
| 2233 | item->ri_cnt, item->ri_total); |
| 2234 | ASSERT(0); |
| 2235 | kvfree(ptr); |
| 2236 | return -EFSCORRUPTED; |
| 2237 | } |
| 2238 | |
| 2239 | /* Description region is ri_buf[0] */ |
| 2240 | item->ri_buf[item->ri_cnt].i_addr = ptr; |
| 2241 | item->ri_buf[item->ri_cnt].i_len = len; |
| 2242 | item->ri_cnt++; |
| 2243 | trace_xfs_log_recover_item_add(log, trans, item, 0); |
| 2244 | return 0; |
| 2245 | } |
| 2246 | |
| 2247 | /* |
| 2248 | * Free up any resources allocated by the transaction |
| 2249 | * |
| 2250 | * Remember that EFIs, EFDs, and IUNLINKs are handled later. |
| 2251 | */ |
| 2252 | STATIC void |
| 2253 | xlog_recover_free_trans( |
| 2254 | struct xlog_recover *trans) |
| 2255 | { |
| 2256 | struct xlog_recover_item *item, *n; |
| 2257 | int i; |
| 2258 | |
| 2259 | hlist_del_init(&trans->r_list); |
| 2260 | |
| 2261 | list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { |
| 2262 | /* Free the regions in the item. */ |
| 2263 | list_del(&item->ri_list); |
| 2264 | for (i = 0; i < item->ri_cnt; i++) |
| 2265 | kvfree(item->ri_buf[i].i_addr); |
| 2266 | /* Free the item itself */ |
| 2267 | kfree(item->ri_buf); |
| 2268 | kfree(item); |
| 2269 | } |
| 2270 | /* Free the transaction recover structure */ |
| 2271 | kfree(trans); |
| 2272 | } |
| 2273 | |
| 2274 | /* |
| 2275 | * On error or completion, trans is freed. |
| 2276 | */ |
| 2277 | STATIC int |
| 2278 | xlog_recovery_process_trans( |
| 2279 | struct xlog *log, |
| 2280 | struct xlog_recover *trans, |
| 2281 | char *dp, |
| 2282 | unsigned int len, |
| 2283 | unsigned int flags, |
| 2284 | int pass, |
| 2285 | struct list_head *buffer_list) |
| 2286 | { |
| 2287 | int error = 0; |
| 2288 | bool freeit = false; |
| 2289 | |
| 2290 | /* mask off ophdr transaction container flags */ |
| 2291 | flags &= ~XLOG_END_TRANS; |
| 2292 | if (flags & XLOG_WAS_CONT_TRANS) |
| 2293 | flags &= ~XLOG_CONTINUE_TRANS; |
| 2294 | |
| 2295 | /* |
| 2296 | * Callees must not free the trans structure. We'll decide if we need to |
| 2297 | * free it or not based on the operation being done and it's result. |
| 2298 | */ |
| 2299 | switch (flags) { |
| 2300 | /* expected flag values */ |
| 2301 | case 0: |
| 2302 | case XLOG_CONTINUE_TRANS: |
| 2303 | error = xlog_recover_add_to_trans(log, trans, dp, len); |
| 2304 | break; |
| 2305 | case XLOG_WAS_CONT_TRANS: |
| 2306 | error = xlog_recover_add_to_cont_trans(log, trans, dp, len); |
| 2307 | break; |
| 2308 | case XLOG_COMMIT_TRANS: |
| 2309 | error = xlog_recover_commit_trans(log, trans, pass, |
| 2310 | buffer_list); |
| 2311 | /* success or fail, we are now done with this transaction. */ |
| 2312 | freeit = true; |
| 2313 | break; |
| 2314 | |
| 2315 | /* unexpected flag values */ |
| 2316 | case XLOG_UNMOUNT_TRANS: |
| 2317 | /* just skip trans */ |
| 2318 | xfs_warn(log->l_mp, "%s: Unmount LR", __func__); |
| 2319 | freeit = true; |
| 2320 | break; |
| 2321 | case XLOG_START_TRANS: |
| 2322 | default: |
| 2323 | xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); |
| 2324 | ASSERT(0); |
| 2325 | error = -EFSCORRUPTED; |
| 2326 | break; |
| 2327 | } |
| 2328 | if (error || freeit) |
| 2329 | xlog_recover_free_trans(trans); |
| 2330 | return error; |
| 2331 | } |
| 2332 | |
| 2333 | /* |
| 2334 | * Lookup the transaction recovery structure associated with the ID in the |
| 2335 | * current ophdr. If the transaction doesn't exist and the start flag is set in |
| 2336 | * the ophdr, then allocate a new transaction for future ID matches to find. |
| 2337 | * Either way, return what we found during the lookup - an existing transaction |
| 2338 | * or nothing. |
| 2339 | */ |
| 2340 | STATIC struct xlog_recover * |
| 2341 | xlog_recover_ophdr_to_trans( |
| 2342 | struct hlist_head rhash[], |
| 2343 | struct xlog_rec_header *rhead, |
| 2344 | struct xlog_op_header *ohead) |
| 2345 | { |
| 2346 | struct xlog_recover *trans; |
| 2347 | xlog_tid_t tid; |
| 2348 | struct hlist_head *rhp; |
| 2349 | |
| 2350 | tid = be32_to_cpu(ohead->oh_tid); |
| 2351 | rhp = &rhash[XLOG_RHASH(tid)]; |
| 2352 | hlist_for_each_entry(trans, rhp, r_list) { |
| 2353 | if (trans->r_log_tid == tid) |
| 2354 | return trans; |
| 2355 | } |
| 2356 | |
| 2357 | /* |
| 2358 | * skip over non-start transaction headers - we could be |
| 2359 | * processing slack space before the next transaction starts |
| 2360 | */ |
| 2361 | if (!(ohead->oh_flags & XLOG_START_TRANS)) |
| 2362 | return NULL; |
| 2363 | |
| 2364 | ASSERT(be32_to_cpu(ohead->oh_len) == 0); |
| 2365 | |
| 2366 | /* |
| 2367 | * This is a new transaction so allocate a new recovery container to |
| 2368 | * hold the recovery ops that will follow. |
| 2369 | */ |
| 2370 | trans = kzalloc(sizeof(struct xlog_recover), GFP_KERNEL | __GFP_NOFAIL); |
| 2371 | trans->r_log_tid = tid; |
| 2372 | trans->r_lsn = be64_to_cpu(rhead->h_lsn); |
| 2373 | INIT_LIST_HEAD(&trans->r_itemq); |
| 2374 | INIT_HLIST_NODE(&trans->r_list); |
| 2375 | hlist_add_head(&trans->r_list, rhp); |
| 2376 | |
| 2377 | /* |
| 2378 | * Nothing more to do for this ophdr. Items to be added to this new |
| 2379 | * transaction will be in subsequent ophdr containers. |
| 2380 | */ |
| 2381 | return NULL; |
| 2382 | } |
| 2383 | |
| 2384 | STATIC int |
| 2385 | xlog_recover_process_ophdr( |
| 2386 | struct xlog *log, |
| 2387 | struct hlist_head rhash[], |
| 2388 | struct xlog_rec_header *rhead, |
| 2389 | struct xlog_op_header *ohead, |
| 2390 | char *dp, |
| 2391 | char *end, |
| 2392 | int pass, |
| 2393 | struct list_head *buffer_list) |
| 2394 | { |
| 2395 | struct xlog_recover *trans; |
| 2396 | unsigned int len; |
| 2397 | int error; |
| 2398 | |
| 2399 | /* Do we understand who wrote this op? */ |
| 2400 | if (ohead->oh_clientid != XFS_TRANSACTION && |
| 2401 | ohead->oh_clientid != XFS_LOG) { |
| 2402 | xfs_warn(log->l_mp, "%s: bad clientid 0x%x", |
| 2403 | __func__, ohead->oh_clientid); |
| 2404 | ASSERT(0); |
| 2405 | return -EFSCORRUPTED; |
| 2406 | } |
| 2407 | |
| 2408 | /* |
| 2409 | * Check the ophdr contains all the data it is supposed to contain. |
| 2410 | */ |
| 2411 | len = be32_to_cpu(ohead->oh_len); |
| 2412 | if (dp + len > end) { |
| 2413 | xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); |
| 2414 | WARN_ON(1); |
| 2415 | return -EFSCORRUPTED; |
| 2416 | } |
| 2417 | |
| 2418 | trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); |
| 2419 | if (!trans) { |
| 2420 | /* nothing to do, so skip over this ophdr */ |
| 2421 | return 0; |
| 2422 | } |
| 2423 | |
| 2424 | /* |
| 2425 | * The recovered buffer queue is drained only once we know that all |
| 2426 | * recovery items for the current LSN have been processed. This is |
| 2427 | * required because: |
| 2428 | * |
| 2429 | * - Buffer write submission updates the metadata LSN of the buffer. |
| 2430 | * - Log recovery skips items with a metadata LSN >= the current LSN of |
| 2431 | * the recovery item. |
| 2432 | * - Separate recovery items against the same metadata buffer can share |
| 2433 | * a current LSN. I.e., consider that the LSN of a recovery item is |
| 2434 | * defined as the starting LSN of the first record in which its |
| 2435 | * transaction appears, that a record can hold multiple transactions, |
| 2436 | * and/or that a transaction can span multiple records. |
| 2437 | * |
| 2438 | * In other words, we are allowed to submit a buffer from log recovery |
| 2439 | * once per current LSN. Otherwise, we may incorrectly skip recovery |
| 2440 | * items and cause corruption. |
| 2441 | * |
| 2442 | * We don't know up front whether buffers are updated multiple times per |
| 2443 | * LSN. Therefore, track the current LSN of each commit log record as it |
| 2444 | * is processed and drain the queue when it changes. Use commit records |
| 2445 | * because they are ordered correctly by the logging code. |
| 2446 | */ |
| 2447 | if (log->l_recovery_lsn != trans->r_lsn && |
| 2448 | ohead->oh_flags & XLOG_COMMIT_TRANS) { |
| 2449 | error = xfs_buf_delwri_submit(buffer_list); |
| 2450 | if (error) |
| 2451 | return error; |
| 2452 | log->l_recovery_lsn = trans->r_lsn; |
| 2453 | } |
| 2454 | |
| 2455 | return xlog_recovery_process_trans(log, trans, dp, len, |
| 2456 | ohead->oh_flags, pass, buffer_list); |
| 2457 | } |
| 2458 | |
| 2459 | /* |
| 2460 | * There are two valid states of the r_state field. 0 indicates that the |
| 2461 | * transaction structure is in a normal state. We have either seen the |
| 2462 | * start of the transaction or the last operation we added was not a partial |
| 2463 | * operation. If the last operation we added to the transaction was a |
| 2464 | * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. |
| 2465 | * |
| 2466 | * NOTE: skip LRs with 0 data length. |
| 2467 | */ |
| 2468 | STATIC int |
| 2469 | xlog_recover_process_data( |
| 2470 | struct xlog *log, |
| 2471 | struct hlist_head rhash[], |
| 2472 | struct xlog_rec_header *rhead, |
| 2473 | char *dp, |
| 2474 | int pass, |
| 2475 | struct list_head *buffer_list) |
| 2476 | { |
| 2477 | struct xlog_op_header *ohead; |
| 2478 | char *end; |
| 2479 | int num_logops; |
| 2480 | int error; |
| 2481 | |
| 2482 | end = dp + be32_to_cpu(rhead->h_len); |
| 2483 | num_logops = be32_to_cpu(rhead->h_num_logops); |
| 2484 | |
| 2485 | /* check the log format matches our own - else we can't recover */ |
| 2486 | if (xlog_header_check_recover(log->l_mp, rhead)) |
| 2487 | return -EIO; |
| 2488 | |
| 2489 | trace_xfs_log_recover_record(log, rhead, pass); |
| 2490 | while ((dp < end) && num_logops) { |
| 2491 | |
| 2492 | ohead = (struct xlog_op_header *)dp; |
| 2493 | dp += sizeof(*ohead); |
| 2494 | if (dp > end) { |
| 2495 | xfs_warn(log->l_mp, "%s: op header overrun", __func__); |
| 2496 | return -EFSCORRUPTED; |
| 2497 | } |
| 2498 | |
| 2499 | /* errors will abort recovery */ |
| 2500 | error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, |
| 2501 | dp, end, pass, buffer_list); |
| 2502 | if (error) |
| 2503 | return error; |
| 2504 | |
| 2505 | dp += be32_to_cpu(ohead->oh_len); |
| 2506 | num_logops--; |
| 2507 | } |
| 2508 | return 0; |
| 2509 | } |
| 2510 | |
| 2511 | /* Take all the collected deferred ops and finish them in order. */ |
| 2512 | static int |
| 2513 | xlog_finish_defer_ops( |
| 2514 | struct xfs_mount *mp, |
| 2515 | struct list_head *capture_list) |
| 2516 | { |
| 2517 | struct xfs_defer_capture *dfc, *next; |
| 2518 | struct xfs_trans *tp; |
| 2519 | int error = 0; |
| 2520 | |
| 2521 | list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { |
| 2522 | struct xfs_trans_res resv; |
| 2523 | struct xfs_defer_resources dres; |
| 2524 | |
| 2525 | /* |
| 2526 | * Create a new transaction reservation from the captured |
| 2527 | * information. Set logcount to 1 to force the new transaction |
| 2528 | * to regrant every roll so that we can make forward progress |
| 2529 | * in recovery no matter how full the log might be. |
| 2530 | */ |
| 2531 | resv.tr_logres = dfc->dfc_logres; |
| 2532 | resv.tr_logcount = 1; |
| 2533 | resv.tr_logflags = XFS_TRANS_PERM_LOG_RES; |
| 2534 | |
| 2535 | error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres, |
| 2536 | dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp); |
| 2537 | if (error) { |
| 2538 | xlog_force_shutdown(mp->m_log, SHUTDOWN_LOG_IO_ERROR); |
| 2539 | return error; |
| 2540 | } |
| 2541 | |
| 2542 | /* |
| 2543 | * Transfer to this new transaction all the dfops we captured |
| 2544 | * from recovering a single intent item. |
| 2545 | */ |
| 2546 | list_del_init(&dfc->dfc_list); |
| 2547 | xfs_defer_ops_continue(dfc, tp, &dres); |
| 2548 | error = xfs_trans_commit(tp); |
| 2549 | xfs_defer_resources_rele(&dres); |
| 2550 | if (error) |
| 2551 | return error; |
| 2552 | } |
| 2553 | |
| 2554 | ASSERT(list_empty(capture_list)); |
| 2555 | return 0; |
| 2556 | } |
| 2557 | |
| 2558 | /* Release all the captured defer ops and capture structures in this list. */ |
| 2559 | static void |
| 2560 | xlog_abort_defer_ops( |
| 2561 | struct xfs_mount *mp, |
| 2562 | struct list_head *capture_list) |
| 2563 | { |
| 2564 | struct xfs_defer_capture *dfc; |
| 2565 | struct xfs_defer_capture *next; |
| 2566 | |
| 2567 | list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { |
| 2568 | list_del_init(&dfc->dfc_list); |
| 2569 | xfs_defer_ops_capture_abort(mp, dfc); |
| 2570 | } |
| 2571 | } |
| 2572 | |
| 2573 | /* |
| 2574 | * When this is called, all of the log intent items which did not have |
| 2575 | * corresponding log done items should be in the AIL. What we do now is update |
| 2576 | * the data structures associated with each one. |
| 2577 | * |
| 2578 | * Since we process the log intent items in normal transactions, they will be |
| 2579 | * removed at some point after the commit. This prevents us from just walking |
| 2580 | * down the list processing each one. We'll use a flag in the intent item to |
| 2581 | * skip those that we've already processed and use the AIL iteration mechanism's |
| 2582 | * generation count to try to speed this up at least a bit. |
| 2583 | * |
| 2584 | * When we start, we know that the intents are the only things in the AIL. As we |
| 2585 | * process them, however, other items are added to the AIL. Hence we know we |
| 2586 | * have started recovery on all the pending intents when we find an non-intent |
| 2587 | * item in the AIL. |
| 2588 | */ |
| 2589 | STATIC int |
| 2590 | xlog_recover_process_intents( |
| 2591 | struct xlog *log) |
| 2592 | { |
| 2593 | LIST_HEAD(capture_list); |
| 2594 | struct xfs_defer_pending *dfp, *n; |
| 2595 | int error = 0; |
| 2596 | #if defined(DEBUG) || defined(XFS_WARN) |
| 2597 | xfs_lsn_t last_lsn; |
| 2598 | |
| 2599 | last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); |
| 2600 | #endif |
| 2601 | |
| 2602 | list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { |
| 2603 | ASSERT(xlog_item_is_intent(dfp->dfp_intent)); |
| 2604 | |
| 2605 | /* |
| 2606 | * We should never see a redo item with a LSN higher than |
| 2607 | * the last transaction we found in the log at the start |
| 2608 | * of recovery. |
| 2609 | */ |
| 2610 | ASSERT(XFS_LSN_CMP(last_lsn, dfp->dfp_intent->li_lsn) >= 0); |
| 2611 | |
| 2612 | /* |
| 2613 | * NOTE: If your intent processing routine can create more |
| 2614 | * deferred ops, you /must/ attach them to the capture list in |
| 2615 | * the recover routine or else those subsequent intents will be |
| 2616 | * replayed in the wrong order! |
| 2617 | * |
| 2618 | * The recovery function can free the log item, so we must not |
| 2619 | * access dfp->dfp_intent after it returns. It must dispose of |
| 2620 | * @dfp if it returns 0. |
| 2621 | */ |
| 2622 | error = xfs_defer_finish_recovery(log->l_mp, dfp, |
| 2623 | &capture_list); |
| 2624 | if (error) |
| 2625 | break; |
| 2626 | } |
| 2627 | if (error) |
| 2628 | goto err; |
| 2629 | |
| 2630 | error = xlog_finish_defer_ops(log->l_mp, &capture_list); |
| 2631 | if (error) |
| 2632 | goto err; |
| 2633 | |
| 2634 | return 0; |
| 2635 | err: |
| 2636 | xlog_abort_defer_ops(log->l_mp, &capture_list); |
| 2637 | return error; |
| 2638 | } |
| 2639 | |
| 2640 | /* |
| 2641 | * A cancel occurs when the mount has failed and we're bailing out. Release all |
| 2642 | * pending log intent items that we haven't started recovery on so they don't |
| 2643 | * pin the AIL. |
| 2644 | */ |
| 2645 | STATIC void |
| 2646 | xlog_recover_cancel_intents( |
| 2647 | struct xlog *log) |
| 2648 | { |
| 2649 | struct xfs_defer_pending *dfp, *n; |
| 2650 | |
| 2651 | list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { |
| 2652 | ASSERT(xlog_item_is_intent(dfp->dfp_intent)); |
| 2653 | |
| 2654 | xfs_defer_cancel_recovery(log->l_mp, dfp); |
| 2655 | } |
| 2656 | } |
| 2657 | |
| 2658 | /* |
| 2659 | * Transfer ownership of the recovered pending work to the recovery transaction |
| 2660 | * and try to finish the work. If there is more work to be done, the dfp will |
| 2661 | * remain attached to the transaction. If not, the dfp is freed. |
| 2662 | */ |
| 2663 | int |
| 2664 | xlog_recover_finish_intent( |
| 2665 | struct xfs_trans *tp, |
| 2666 | struct xfs_defer_pending *dfp) |
| 2667 | { |
| 2668 | int error; |
| 2669 | |
| 2670 | list_move(&dfp->dfp_list, &tp->t_dfops); |
| 2671 | error = xfs_defer_finish_one(tp, dfp); |
| 2672 | if (error == -EAGAIN) |
| 2673 | return 0; |
| 2674 | return error; |
| 2675 | } |
| 2676 | |
| 2677 | /* |
| 2678 | * This routine performs a transaction to null out a bad inode pointer |
| 2679 | * in an agi unlinked inode hash bucket. |
| 2680 | */ |
| 2681 | STATIC void |
| 2682 | xlog_recover_clear_agi_bucket( |
| 2683 | struct xfs_perag *pag, |
| 2684 | int bucket) |
| 2685 | { |
| 2686 | struct xfs_mount *mp = pag_mount(pag); |
| 2687 | struct xfs_trans *tp; |
| 2688 | struct xfs_agi *agi; |
| 2689 | struct xfs_buf *agibp; |
| 2690 | int offset; |
| 2691 | int error; |
| 2692 | |
| 2693 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); |
| 2694 | if (error) |
| 2695 | goto out_error; |
| 2696 | |
| 2697 | error = xfs_read_agi(pag, tp, 0, &agibp); |
| 2698 | if (error) |
| 2699 | goto out_abort; |
| 2700 | |
| 2701 | agi = agibp->b_addr; |
| 2702 | agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); |
| 2703 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
| 2704 | (sizeof(xfs_agino_t) * bucket); |
| 2705 | xfs_trans_log_buf(tp, agibp, offset, |
| 2706 | (offset + sizeof(xfs_agino_t) - 1)); |
| 2707 | |
| 2708 | error = xfs_trans_commit(tp); |
| 2709 | if (error) |
| 2710 | goto out_error; |
| 2711 | return; |
| 2712 | |
| 2713 | out_abort: |
| 2714 | xfs_trans_cancel(tp); |
| 2715 | out_error: |
| 2716 | xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, |
| 2717 | pag_agno(pag)); |
| 2718 | return; |
| 2719 | } |
| 2720 | |
| 2721 | static int |
| 2722 | xlog_recover_iunlink_bucket( |
| 2723 | struct xfs_perag *pag, |
| 2724 | struct xfs_agi *agi, |
| 2725 | int bucket) |
| 2726 | { |
| 2727 | struct xfs_mount *mp = pag_mount(pag); |
| 2728 | struct xfs_inode *prev_ip = NULL; |
| 2729 | struct xfs_inode *ip; |
| 2730 | xfs_agino_t prev_agino, agino; |
| 2731 | int error = 0; |
| 2732 | |
| 2733 | agino = be32_to_cpu(agi->agi_unlinked[bucket]); |
| 2734 | while (agino != NULLAGINO) { |
| 2735 | error = xfs_iget(mp, NULL, xfs_agino_to_ino(pag, agino), 0, 0, |
| 2736 | &ip); |
| 2737 | if (error) |
| 2738 | break; |
| 2739 | |
| 2740 | ASSERT(VFS_I(ip)->i_nlink == 0); |
| 2741 | ASSERT(VFS_I(ip)->i_mode != 0); |
| 2742 | xfs_iflags_clear(ip, XFS_IRECOVERY); |
| 2743 | agino = ip->i_next_unlinked; |
| 2744 | |
| 2745 | if (prev_ip) { |
| 2746 | ip->i_prev_unlinked = prev_agino; |
| 2747 | xfs_irele(prev_ip); |
| 2748 | |
| 2749 | /* |
| 2750 | * Ensure the inode is removed from the unlinked list |
| 2751 | * before we continue so that it won't race with |
| 2752 | * building the in-memory list here. This could be |
| 2753 | * serialised with the agibp lock, but that just |
| 2754 | * serialises via lockstepping and it's much simpler |
| 2755 | * just to flush the inodegc queue and wait for it to |
| 2756 | * complete. |
| 2757 | */ |
| 2758 | error = xfs_inodegc_flush(mp); |
| 2759 | if (error) |
| 2760 | break; |
| 2761 | } |
| 2762 | |
| 2763 | prev_agino = agino; |
| 2764 | prev_ip = ip; |
| 2765 | } |
| 2766 | |
| 2767 | if (prev_ip) { |
| 2768 | int error2; |
| 2769 | |
| 2770 | ip->i_prev_unlinked = prev_agino; |
| 2771 | xfs_irele(prev_ip); |
| 2772 | |
| 2773 | error2 = xfs_inodegc_flush(mp); |
| 2774 | if (error2 && !error) |
| 2775 | return error2; |
| 2776 | } |
| 2777 | return error; |
| 2778 | } |
| 2779 | |
| 2780 | /* |
| 2781 | * Recover AGI unlinked lists |
| 2782 | * |
| 2783 | * This is called during recovery to process any inodes which we unlinked but |
| 2784 | * not freed when the system crashed. These inodes will be on the lists in the |
| 2785 | * AGI blocks. What we do here is scan all the AGIs and fully truncate and free |
| 2786 | * any inodes found on the lists. Each inode is removed from the lists when it |
| 2787 | * has been fully truncated and is freed. The freeing of the inode and its |
| 2788 | * removal from the list must be atomic. |
| 2789 | * |
| 2790 | * If everything we touch in the agi processing loop is already in memory, this |
| 2791 | * loop can hold the cpu for a long time. It runs without lock contention, |
| 2792 | * memory allocation contention, the need wait for IO, etc, and so will run |
| 2793 | * until we either run out of inodes to process, run low on memory or we run out |
| 2794 | * of log space. |
| 2795 | * |
| 2796 | * This behaviour is bad for latency on single CPU and non-preemptible kernels, |
| 2797 | * and can prevent other filesystem work (such as CIL pushes) from running. This |
| 2798 | * can lead to deadlocks if the recovery process runs out of log reservation |
| 2799 | * space. Hence we need to yield the CPU when there is other kernel work |
| 2800 | * scheduled on this CPU to ensure other scheduled work can run without undue |
| 2801 | * latency. |
| 2802 | */ |
| 2803 | static void |
| 2804 | xlog_recover_iunlink_ag( |
| 2805 | struct xfs_perag *pag) |
| 2806 | { |
| 2807 | struct xfs_agi *agi; |
| 2808 | struct xfs_buf *agibp; |
| 2809 | int bucket; |
| 2810 | int error; |
| 2811 | |
| 2812 | error = xfs_read_agi(pag, NULL, 0, &agibp); |
| 2813 | if (error) { |
| 2814 | /* |
| 2815 | * AGI is b0rked. Don't process it. |
| 2816 | * |
| 2817 | * We should probably mark the filesystem as corrupt after we've |
| 2818 | * recovered all the ag's we can.... |
| 2819 | */ |
| 2820 | return; |
| 2821 | } |
| 2822 | |
| 2823 | /* |
| 2824 | * Unlock the buffer so that it can be acquired in the normal course of |
| 2825 | * the transaction to truncate and free each inode. Because we are not |
| 2826 | * racing with anyone else here for the AGI buffer, we don't even need |
| 2827 | * to hold it locked to read the initial unlinked bucket entries out of |
| 2828 | * the buffer. We keep buffer reference though, so that it stays pinned |
| 2829 | * in memory while we need the buffer. |
| 2830 | */ |
| 2831 | agi = agibp->b_addr; |
| 2832 | xfs_buf_unlock(agibp); |
| 2833 | |
| 2834 | for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { |
| 2835 | error = xlog_recover_iunlink_bucket(pag, agi, bucket); |
| 2836 | if (error) { |
| 2837 | /* |
| 2838 | * Bucket is unrecoverable, so only a repair scan can |
| 2839 | * free the remaining unlinked inodes. Just empty the |
| 2840 | * bucket and remaining inodes on it unreferenced and |
| 2841 | * unfreeable. |
| 2842 | */ |
| 2843 | xlog_recover_clear_agi_bucket(pag, bucket); |
| 2844 | } |
| 2845 | } |
| 2846 | |
| 2847 | xfs_buf_rele(agibp); |
| 2848 | } |
| 2849 | |
| 2850 | static void |
| 2851 | xlog_recover_process_iunlinks( |
| 2852 | struct xlog *log) |
| 2853 | { |
| 2854 | struct xfs_perag *pag = NULL; |
| 2855 | |
| 2856 | while ((pag = xfs_perag_next(log->l_mp, pag))) |
| 2857 | xlog_recover_iunlink_ag(pag); |
| 2858 | } |
| 2859 | |
| 2860 | STATIC void |
| 2861 | xlog_unpack_data( |
| 2862 | struct xlog_rec_header *rhead, |
| 2863 | char *dp, |
| 2864 | struct xlog *log) |
| 2865 | { |
| 2866 | int i, j, k; |
| 2867 | |
| 2868 | for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && |
| 2869 | i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { |
| 2870 | *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; |
| 2871 | dp += BBSIZE; |
| 2872 | } |
| 2873 | |
| 2874 | if (xfs_has_logv2(log->l_mp)) { |
| 2875 | xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; |
| 2876 | for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { |
| 2877 | j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); |
| 2878 | k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); |
| 2879 | *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; |
| 2880 | dp += BBSIZE; |
| 2881 | } |
| 2882 | } |
| 2883 | } |
| 2884 | |
| 2885 | /* |
| 2886 | * CRC check, unpack and process a log record. |
| 2887 | */ |
| 2888 | STATIC int |
| 2889 | xlog_recover_process( |
| 2890 | struct xlog *log, |
| 2891 | struct hlist_head rhash[], |
| 2892 | struct xlog_rec_header *rhead, |
| 2893 | char *dp, |
| 2894 | int pass, |
| 2895 | struct list_head *buffer_list) |
| 2896 | { |
| 2897 | __le32 old_crc = rhead->h_crc; |
| 2898 | __le32 crc; |
| 2899 | |
| 2900 | crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); |
| 2901 | |
| 2902 | /* |
| 2903 | * Nothing else to do if this is a CRC verification pass. Just return |
| 2904 | * if this a record with a non-zero crc. Unfortunately, mkfs always |
| 2905 | * sets old_crc to 0 so we must consider this valid even on v5 supers. |
| 2906 | * Otherwise, return EFSBADCRC on failure so the callers up the stack |
| 2907 | * know precisely what failed. |
| 2908 | */ |
| 2909 | if (pass == XLOG_RECOVER_CRCPASS) { |
| 2910 | if (old_crc && crc != old_crc) |
| 2911 | return -EFSBADCRC; |
| 2912 | return 0; |
| 2913 | } |
| 2914 | |
| 2915 | /* |
| 2916 | * We're in the normal recovery path. Issue a warning if and only if the |
| 2917 | * CRC in the header is non-zero. This is an advisory warning and the |
| 2918 | * zero CRC check prevents warnings from being emitted when upgrading |
| 2919 | * the kernel from one that does not add CRCs by default. |
| 2920 | */ |
| 2921 | if (crc != old_crc) { |
| 2922 | if (old_crc || xfs_has_crc(log->l_mp)) { |
| 2923 | xfs_alert(log->l_mp, |
| 2924 | "log record CRC mismatch: found 0x%x, expected 0x%x.", |
| 2925 | le32_to_cpu(old_crc), |
| 2926 | le32_to_cpu(crc)); |
| 2927 | xfs_hex_dump(dp, 32); |
| 2928 | } |
| 2929 | |
| 2930 | /* |
| 2931 | * If the filesystem is CRC enabled, this mismatch becomes a |
| 2932 | * fatal log corruption failure. |
| 2933 | */ |
| 2934 | if (xfs_has_crc(log->l_mp)) { |
| 2935 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); |
| 2936 | return -EFSCORRUPTED; |
| 2937 | } |
| 2938 | } |
| 2939 | |
| 2940 | xlog_unpack_data(rhead, dp, log); |
| 2941 | |
| 2942 | return xlog_recover_process_data(log, rhash, rhead, dp, pass, |
| 2943 | buffer_list); |
| 2944 | } |
| 2945 | |
| 2946 | STATIC int |
| 2947 | xlog_valid_rec_header( |
| 2948 | struct xlog *log, |
| 2949 | struct xlog_rec_header *rhead, |
| 2950 | xfs_daddr_t blkno, |
| 2951 | int bufsize) |
| 2952 | { |
| 2953 | int hlen; |
| 2954 | |
| 2955 | if (XFS_IS_CORRUPT(log->l_mp, |
| 2956 | rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) |
| 2957 | return -EFSCORRUPTED; |
| 2958 | if (XFS_IS_CORRUPT(log->l_mp, |
| 2959 | (!rhead->h_version || |
| 2960 | (be32_to_cpu(rhead->h_version) & |
| 2961 | (~XLOG_VERSION_OKBITS))))) { |
| 2962 | xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", |
| 2963 | __func__, be32_to_cpu(rhead->h_version)); |
| 2964 | return -EFSCORRUPTED; |
| 2965 | } |
| 2966 | |
| 2967 | /* |
| 2968 | * LR body must have data (or it wouldn't have been written) |
| 2969 | * and h_len must not be greater than LR buffer size. |
| 2970 | */ |
| 2971 | hlen = be32_to_cpu(rhead->h_len); |
| 2972 | if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize)) |
| 2973 | return -EFSCORRUPTED; |
| 2974 | |
| 2975 | if (XFS_IS_CORRUPT(log->l_mp, |
| 2976 | blkno > log->l_logBBsize || blkno > INT_MAX)) |
| 2977 | return -EFSCORRUPTED; |
| 2978 | return 0; |
| 2979 | } |
| 2980 | |
| 2981 | /* |
| 2982 | * Read the log from tail to head and process the log records found. |
| 2983 | * Handle the two cases where the tail and head are in the same cycle |
| 2984 | * and where the active portion of the log wraps around the end of |
| 2985 | * the physical log separately. The pass parameter is passed through |
| 2986 | * to the routines called to process the data and is not looked at |
| 2987 | * here. |
| 2988 | */ |
| 2989 | STATIC int |
| 2990 | xlog_do_recovery_pass( |
| 2991 | struct xlog *log, |
| 2992 | xfs_daddr_t head_blk, |
| 2993 | xfs_daddr_t tail_blk, |
| 2994 | int pass, |
| 2995 | xfs_daddr_t *first_bad) /* out: first bad log rec */ |
| 2996 | { |
| 2997 | xlog_rec_header_t *rhead; |
| 2998 | xfs_daddr_t blk_no, rblk_no; |
| 2999 | xfs_daddr_t rhead_blk; |
| 3000 | char *offset; |
| 3001 | char *hbp, *dbp; |
| 3002 | int error = 0, h_size, h_len; |
| 3003 | int error2 = 0; |
| 3004 | int bblks, split_bblks; |
| 3005 | int hblks = 1, split_hblks, wrapped_hblks; |
| 3006 | int i; |
| 3007 | struct hlist_head rhash[XLOG_RHASH_SIZE]; |
| 3008 | LIST_HEAD (buffer_list); |
| 3009 | |
| 3010 | ASSERT(head_blk != tail_blk); |
| 3011 | blk_no = rhead_blk = tail_blk; |
| 3012 | |
| 3013 | for (i = 0; i < XLOG_RHASH_SIZE; i++) |
| 3014 | INIT_HLIST_HEAD(&rhash[i]); |
| 3015 | |
| 3016 | hbp = xlog_alloc_buffer(log, hblks); |
| 3017 | if (!hbp) |
| 3018 | return -ENOMEM; |
| 3019 | |
| 3020 | /* |
| 3021 | * Read the header of the tail block and get the iclog buffer size from |
| 3022 | * h_size. Use this to tell how many sectors make up the log header. |
| 3023 | */ |
| 3024 | if (xfs_has_logv2(log->l_mp)) { |
| 3025 | /* |
| 3026 | * When using variable length iclogs, read first sector of |
| 3027 | * iclog header and extract the header size from it. Get a |
| 3028 | * new hbp that is the correct size. |
| 3029 | */ |
| 3030 | error = xlog_bread(log, tail_blk, 1, hbp, &offset); |
| 3031 | if (error) |
| 3032 | goto bread_err1; |
| 3033 | |
| 3034 | rhead = (xlog_rec_header_t *)offset; |
| 3035 | |
| 3036 | /* |
| 3037 | * xfsprogs has a bug where record length is based on lsunit but |
| 3038 | * h_size (iclog size) is hardcoded to 32k. Now that we |
| 3039 | * unconditionally CRC verify the unmount record, this means the |
| 3040 | * log buffer can be too small for the record and cause an |
| 3041 | * overrun. |
| 3042 | * |
| 3043 | * Detect this condition here. Use lsunit for the buffer size as |
| 3044 | * long as this looks like the mkfs case. Otherwise, return an |
| 3045 | * error to avoid a buffer overrun. |
| 3046 | */ |
| 3047 | h_size = be32_to_cpu(rhead->h_size); |
| 3048 | h_len = be32_to_cpu(rhead->h_len); |
| 3049 | if (h_len > h_size && h_len <= log->l_mp->m_logbsize && |
| 3050 | rhead->h_num_logops == cpu_to_be32(1)) { |
| 3051 | xfs_warn(log->l_mp, |
| 3052 | "invalid iclog size (%d bytes), using lsunit (%d bytes)", |
| 3053 | h_size, log->l_mp->m_logbsize); |
| 3054 | h_size = log->l_mp->m_logbsize; |
| 3055 | } |
| 3056 | |
| 3057 | error = xlog_valid_rec_header(log, rhead, tail_blk, h_size); |
| 3058 | if (error) |
| 3059 | goto bread_err1; |
| 3060 | |
| 3061 | /* |
| 3062 | * This open codes xlog_logrec_hblks so that we can reuse the |
| 3063 | * fixed up h_size value calculated above. Without that we'd |
| 3064 | * still allocate the buffer based on the incorrect on-disk |
| 3065 | * size. |
| 3066 | */ |
| 3067 | if (h_size > XLOG_HEADER_CYCLE_SIZE && |
| 3068 | (rhead->h_version & cpu_to_be32(XLOG_VERSION_2))) { |
| 3069 | hblks = DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE); |
| 3070 | if (hblks > 1) { |
| 3071 | kvfree(hbp); |
| 3072 | hbp = xlog_alloc_buffer(log, hblks); |
| 3073 | if (!hbp) |
| 3074 | return -ENOMEM; |
| 3075 | } |
| 3076 | } |
| 3077 | } else { |
| 3078 | ASSERT(log->l_sectBBsize == 1); |
| 3079 | h_size = XLOG_BIG_RECORD_BSIZE; |
| 3080 | } |
| 3081 | |
| 3082 | dbp = xlog_alloc_buffer(log, BTOBB(h_size)); |
| 3083 | if (!dbp) { |
| 3084 | kvfree(hbp); |
| 3085 | return -ENOMEM; |
| 3086 | } |
| 3087 | |
| 3088 | memset(rhash, 0, sizeof(rhash)); |
| 3089 | if (tail_blk > head_blk) { |
| 3090 | /* |
| 3091 | * Perform recovery around the end of the physical log. |
| 3092 | * When the head is not on the same cycle number as the tail, |
| 3093 | * we can't do a sequential recovery. |
| 3094 | */ |
| 3095 | while (blk_no < log->l_logBBsize) { |
| 3096 | /* |
| 3097 | * Check for header wrapping around physical end-of-log |
| 3098 | */ |
| 3099 | offset = hbp; |
| 3100 | split_hblks = 0; |
| 3101 | wrapped_hblks = 0; |
| 3102 | if (blk_no + hblks <= log->l_logBBsize) { |
| 3103 | /* Read header in one read */ |
| 3104 | error = xlog_bread(log, blk_no, hblks, hbp, |
| 3105 | &offset); |
| 3106 | if (error) |
| 3107 | goto bread_err2; |
| 3108 | } else { |
| 3109 | /* This LR is split across physical log end */ |
| 3110 | if (blk_no != log->l_logBBsize) { |
| 3111 | /* some data before physical log end */ |
| 3112 | ASSERT(blk_no <= INT_MAX); |
| 3113 | split_hblks = log->l_logBBsize - (int)blk_no; |
| 3114 | ASSERT(split_hblks > 0); |
| 3115 | error = xlog_bread(log, blk_no, |
| 3116 | split_hblks, hbp, |
| 3117 | &offset); |
| 3118 | if (error) |
| 3119 | goto bread_err2; |
| 3120 | } |
| 3121 | |
| 3122 | /* |
| 3123 | * Note: this black magic still works with |
| 3124 | * large sector sizes (non-512) only because: |
| 3125 | * - we increased the buffer size originally |
| 3126 | * by 1 sector giving us enough extra space |
| 3127 | * for the second read; |
| 3128 | * - the log start is guaranteed to be sector |
| 3129 | * aligned; |
| 3130 | * - we read the log end (LR header start) |
| 3131 | * _first_, then the log start (LR header end) |
| 3132 | * - order is important. |
| 3133 | */ |
| 3134 | wrapped_hblks = hblks - split_hblks; |
| 3135 | error = xlog_bread_noalign(log, 0, |
| 3136 | wrapped_hblks, |
| 3137 | offset + BBTOB(split_hblks)); |
| 3138 | if (error) |
| 3139 | goto bread_err2; |
| 3140 | } |
| 3141 | rhead = (xlog_rec_header_t *)offset; |
| 3142 | error = xlog_valid_rec_header(log, rhead, |
| 3143 | split_hblks ? blk_no : 0, h_size); |
| 3144 | if (error) |
| 3145 | goto bread_err2; |
| 3146 | |
| 3147 | bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); |
| 3148 | blk_no += hblks; |
| 3149 | |
| 3150 | /* |
| 3151 | * Read the log record data in multiple reads if it |
| 3152 | * wraps around the end of the log. Note that if the |
| 3153 | * header already wrapped, blk_no could point past the |
| 3154 | * end of the log. The record data is contiguous in |
| 3155 | * that case. |
| 3156 | */ |
| 3157 | if (blk_no + bblks <= log->l_logBBsize || |
| 3158 | blk_no >= log->l_logBBsize) { |
| 3159 | rblk_no = xlog_wrap_logbno(log, blk_no); |
| 3160 | error = xlog_bread(log, rblk_no, bblks, dbp, |
| 3161 | &offset); |
| 3162 | if (error) |
| 3163 | goto bread_err2; |
| 3164 | } else { |
| 3165 | /* This log record is split across the |
| 3166 | * physical end of log */ |
| 3167 | offset = dbp; |
| 3168 | split_bblks = 0; |
| 3169 | if (blk_no != log->l_logBBsize) { |
| 3170 | /* some data is before the physical |
| 3171 | * end of log */ |
| 3172 | ASSERT(!wrapped_hblks); |
| 3173 | ASSERT(blk_no <= INT_MAX); |
| 3174 | split_bblks = |
| 3175 | log->l_logBBsize - (int)blk_no; |
| 3176 | ASSERT(split_bblks > 0); |
| 3177 | error = xlog_bread(log, blk_no, |
| 3178 | split_bblks, dbp, |
| 3179 | &offset); |
| 3180 | if (error) |
| 3181 | goto bread_err2; |
| 3182 | } |
| 3183 | |
| 3184 | /* |
| 3185 | * Note: this black magic still works with |
| 3186 | * large sector sizes (non-512) only because: |
| 3187 | * - we increased the buffer size originally |
| 3188 | * by 1 sector giving us enough extra space |
| 3189 | * for the second read; |
| 3190 | * - the log start is guaranteed to be sector |
| 3191 | * aligned; |
| 3192 | * - we read the log end (LR header start) |
| 3193 | * _first_, then the log start (LR header end) |
| 3194 | * - order is important. |
| 3195 | */ |
| 3196 | error = xlog_bread_noalign(log, 0, |
| 3197 | bblks - split_bblks, |
| 3198 | offset + BBTOB(split_bblks)); |
| 3199 | if (error) |
| 3200 | goto bread_err2; |
| 3201 | } |
| 3202 | |
| 3203 | error = xlog_recover_process(log, rhash, rhead, offset, |
| 3204 | pass, &buffer_list); |
| 3205 | if (error) |
| 3206 | goto bread_err2; |
| 3207 | |
| 3208 | blk_no += bblks; |
| 3209 | rhead_blk = blk_no; |
| 3210 | } |
| 3211 | |
| 3212 | ASSERT(blk_no >= log->l_logBBsize); |
| 3213 | blk_no -= log->l_logBBsize; |
| 3214 | rhead_blk = blk_no; |
| 3215 | } |
| 3216 | |
| 3217 | /* read first part of physical log */ |
| 3218 | while (blk_no < head_blk) { |
| 3219 | error = xlog_bread(log, blk_no, hblks, hbp, &offset); |
| 3220 | if (error) |
| 3221 | goto bread_err2; |
| 3222 | |
| 3223 | rhead = (xlog_rec_header_t *)offset; |
| 3224 | error = xlog_valid_rec_header(log, rhead, blk_no, h_size); |
| 3225 | if (error) |
| 3226 | goto bread_err2; |
| 3227 | |
| 3228 | /* blocks in data section */ |
| 3229 | bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); |
| 3230 | error = xlog_bread(log, blk_no+hblks, bblks, dbp, |
| 3231 | &offset); |
| 3232 | if (error) |
| 3233 | goto bread_err2; |
| 3234 | |
| 3235 | error = xlog_recover_process(log, rhash, rhead, offset, pass, |
| 3236 | &buffer_list); |
| 3237 | if (error) |
| 3238 | goto bread_err2; |
| 3239 | |
| 3240 | blk_no += bblks + hblks; |
| 3241 | rhead_blk = blk_no; |
| 3242 | } |
| 3243 | |
| 3244 | bread_err2: |
| 3245 | kvfree(dbp); |
| 3246 | bread_err1: |
| 3247 | kvfree(hbp); |
| 3248 | |
| 3249 | /* |
| 3250 | * Submit buffers that have been dirtied by the last record recovered. |
| 3251 | */ |
| 3252 | if (!list_empty(&buffer_list)) { |
| 3253 | if (error) { |
| 3254 | /* |
| 3255 | * If there has been an item recovery error then we |
| 3256 | * cannot allow partial checkpoint writeback to |
| 3257 | * occur. We might have multiple checkpoints with the |
| 3258 | * same start LSN in this buffer list, and partial |
| 3259 | * writeback of a checkpoint in this situation can |
| 3260 | * prevent future recovery of all the changes in the |
| 3261 | * checkpoints at this start LSN. |
| 3262 | * |
| 3263 | * Note: Shutting down the filesystem will result in the |
| 3264 | * delwri submission marking all the buffers stale, |
| 3265 | * completing them and cleaning up _XBF_LOGRECOVERY |
| 3266 | * state without doing any IO. |
| 3267 | */ |
| 3268 | xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); |
| 3269 | } |
| 3270 | error2 = xfs_buf_delwri_submit(&buffer_list); |
| 3271 | } |
| 3272 | |
| 3273 | if (error && first_bad) |
| 3274 | *first_bad = rhead_blk; |
| 3275 | |
| 3276 | /* |
| 3277 | * Transactions are freed at commit time but transactions without commit |
| 3278 | * records on disk are never committed. Free any that may be left in the |
| 3279 | * hash table. |
| 3280 | */ |
| 3281 | for (i = 0; i < XLOG_RHASH_SIZE; i++) { |
| 3282 | struct hlist_node *tmp; |
| 3283 | struct xlog_recover *trans; |
| 3284 | |
| 3285 | hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) |
| 3286 | xlog_recover_free_trans(trans); |
| 3287 | } |
| 3288 | |
| 3289 | return error ? error : error2; |
| 3290 | } |
| 3291 | |
| 3292 | /* |
| 3293 | * Do the recovery of the log. We actually do this in two phases. |
| 3294 | * The two passes are necessary in order to implement the function |
| 3295 | * of cancelling a record written into the log. The first pass |
| 3296 | * determines those things which have been cancelled, and the |
| 3297 | * second pass replays log items normally except for those which |
| 3298 | * have been cancelled. The handling of the replay and cancellations |
| 3299 | * takes place in the log item type specific routines. |
| 3300 | * |
| 3301 | * The table of items which have cancel records in the log is allocated |
| 3302 | * and freed at this level, since only here do we know when all of |
| 3303 | * the log recovery has been completed. |
| 3304 | */ |
| 3305 | STATIC int |
| 3306 | xlog_do_log_recovery( |
| 3307 | struct xlog *log, |
| 3308 | xfs_daddr_t head_blk, |
| 3309 | xfs_daddr_t tail_blk) |
| 3310 | { |
| 3311 | int error; |
| 3312 | |
| 3313 | ASSERT(head_blk != tail_blk); |
| 3314 | |
| 3315 | /* |
| 3316 | * First do a pass to find all of the cancelled buf log items. |
| 3317 | * Store them in the buf_cancel_table for use in the second pass. |
| 3318 | */ |
| 3319 | error = xlog_alloc_buf_cancel_table(log); |
| 3320 | if (error) |
| 3321 | return error; |
| 3322 | |
| 3323 | error = xlog_do_recovery_pass(log, head_blk, tail_blk, |
| 3324 | XLOG_RECOVER_PASS1, NULL); |
| 3325 | if (error != 0) |
| 3326 | goto out_cancel; |
| 3327 | |
| 3328 | /* |
| 3329 | * Then do a second pass to actually recover the items in the log. |
| 3330 | * When it is complete free the table of buf cancel items. |
| 3331 | */ |
| 3332 | error = xlog_do_recovery_pass(log, head_blk, tail_blk, |
| 3333 | XLOG_RECOVER_PASS2, NULL); |
| 3334 | if (!error) |
| 3335 | xlog_check_buf_cancel_table(log); |
| 3336 | out_cancel: |
| 3337 | xlog_free_buf_cancel_table(log); |
| 3338 | return error; |
| 3339 | } |
| 3340 | |
| 3341 | /* |
| 3342 | * Do the actual recovery |
| 3343 | */ |
| 3344 | STATIC int |
| 3345 | xlog_do_recover( |
| 3346 | struct xlog *log, |
| 3347 | xfs_daddr_t head_blk, |
| 3348 | xfs_daddr_t tail_blk) |
| 3349 | { |
| 3350 | struct xfs_mount *mp = log->l_mp; |
| 3351 | struct xfs_buf *bp = mp->m_sb_bp; |
| 3352 | struct xfs_sb *sbp = &mp->m_sb; |
| 3353 | int error; |
| 3354 | |
| 3355 | trace_xfs_log_recover(log, head_blk, tail_blk); |
| 3356 | |
| 3357 | /* |
| 3358 | * First replay the images in the log. |
| 3359 | */ |
| 3360 | error = xlog_do_log_recovery(log, head_blk, tail_blk); |
| 3361 | if (error) |
| 3362 | return error; |
| 3363 | |
| 3364 | if (xlog_is_shutdown(log)) |
| 3365 | return -EIO; |
| 3366 | |
| 3367 | /* |
| 3368 | * We now update the tail_lsn since much of the recovery has completed |
| 3369 | * and there may be space available to use. If there were no extent or |
| 3370 | * iunlinks, we can free up the entire log. This was set in |
| 3371 | * xlog_find_tail to be the lsn of the last known good LR on disk. If |
| 3372 | * there are extent frees or iunlinks they will have some entries in the |
| 3373 | * AIL; so we look at the AIL to determine how to set the tail_lsn. |
| 3374 | */ |
| 3375 | xfs_ail_assign_tail_lsn(log->l_ailp); |
| 3376 | |
| 3377 | /* |
| 3378 | * Now that we've finished replaying all buffer and inode updates, |
| 3379 | * re-read the superblock and reverify it. |
| 3380 | */ |
| 3381 | xfs_buf_lock(bp); |
| 3382 | xfs_buf_hold(bp); |
| 3383 | error = _xfs_buf_read(bp); |
| 3384 | if (error) { |
| 3385 | if (!xlog_is_shutdown(log)) { |
| 3386 | xfs_buf_ioerror_alert(bp, __this_address); |
| 3387 | ASSERT(0); |
| 3388 | } |
| 3389 | xfs_buf_relse(bp); |
| 3390 | return error; |
| 3391 | } |
| 3392 | |
| 3393 | /* Convert superblock from on-disk format */ |
| 3394 | xfs_sb_from_disk(sbp, bp->b_addr); |
| 3395 | xfs_buf_relse(bp); |
| 3396 | |
| 3397 | /* re-initialise in-core superblock and geometry structures */ |
| 3398 | mp->m_features |= xfs_sb_version_to_features(sbp); |
| 3399 | xfs_reinit_percpu_counters(mp); |
| 3400 | |
| 3401 | /* Normal transactions can now occur */ |
| 3402 | clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); |
| 3403 | return 0; |
| 3404 | } |
| 3405 | |
| 3406 | /* |
| 3407 | * Perform recovery and re-initialize some log variables in xlog_find_tail. |
| 3408 | * |
| 3409 | * Return error or zero. |
| 3410 | */ |
| 3411 | int |
| 3412 | xlog_recover( |
| 3413 | struct xlog *log) |
| 3414 | { |
| 3415 | xfs_daddr_t head_blk, tail_blk; |
| 3416 | int error; |
| 3417 | |
| 3418 | /* find the tail of the log */ |
| 3419 | error = xlog_find_tail(log, &head_blk, &tail_blk); |
| 3420 | if (error) |
| 3421 | return error; |
| 3422 | |
| 3423 | /* |
| 3424 | * The superblock was read before the log was available and thus the LSN |
| 3425 | * could not be verified. Check the superblock LSN against the current |
| 3426 | * LSN now that it's known. |
| 3427 | */ |
| 3428 | if (xfs_has_crc(log->l_mp) && |
| 3429 | !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) |
| 3430 | return -EINVAL; |
| 3431 | |
| 3432 | if (tail_blk != head_blk) { |
| 3433 | /* There used to be a comment here: |
| 3434 | * |
| 3435 | * disallow recovery on read-only mounts. note -- mount |
| 3436 | * checks for ENOSPC and turns it into an intelligent |
| 3437 | * error message. |
| 3438 | * ...but this is no longer true. Now, unless you specify |
| 3439 | * NORECOVERY (in which case this function would never be |
| 3440 | * called), we just go ahead and recover. We do this all |
| 3441 | * under the vfs layer, so we can get away with it unless |
| 3442 | * the device itself is read-only, in which case we fail. |
| 3443 | */ |
| 3444 | if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { |
| 3445 | return error; |
| 3446 | } |
| 3447 | |
| 3448 | /* |
| 3449 | * Version 5 superblock log feature mask validation. We know the |
| 3450 | * log is dirty so check if there are any unknown log features |
| 3451 | * in what we need to recover. If there are unknown features |
| 3452 | * (e.g. unsupported transactions, then simply reject the |
| 3453 | * attempt at recovery before touching anything. |
| 3454 | */ |
| 3455 | if (xfs_sb_is_v5(&log->l_mp->m_sb) && |
| 3456 | xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, |
| 3457 | XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { |
| 3458 | xfs_warn(log->l_mp, |
| 3459 | "Superblock has unknown incompatible log features (0x%x) enabled.", |
| 3460 | (log->l_mp->m_sb.sb_features_log_incompat & |
| 3461 | XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); |
| 3462 | xfs_warn(log->l_mp, |
| 3463 | "The log can not be fully and/or safely recovered by this kernel."); |
| 3464 | xfs_warn(log->l_mp, |
| 3465 | "Please recover the log on a kernel that supports the unknown features."); |
| 3466 | return -EINVAL; |
| 3467 | } |
| 3468 | |
| 3469 | /* |
| 3470 | * Delay log recovery if the debug hook is set. This is debug |
| 3471 | * instrumentation to coordinate simulation of I/O failures with |
| 3472 | * log recovery. |
| 3473 | */ |
| 3474 | if (xfs_globals.log_recovery_delay) { |
| 3475 | xfs_notice(log->l_mp, |
| 3476 | "Delaying log recovery for %d seconds.", |
| 3477 | xfs_globals.log_recovery_delay); |
| 3478 | msleep(xfs_globals.log_recovery_delay * 1000); |
| 3479 | } |
| 3480 | |
| 3481 | xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", |
| 3482 | log->l_mp->m_logname ? log->l_mp->m_logname |
| 3483 | : "internal"); |
| 3484 | |
| 3485 | error = xlog_do_recover(log, head_blk, tail_blk); |
| 3486 | set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); |
| 3487 | } |
| 3488 | return error; |
| 3489 | } |
| 3490 | |
| 3491 | /* |
| 3492 | * In the first part of recovery we replay inodes and buffers and build up the |
| 3493 | * list of intents which need to be processed. Here we process the intents and |
| 3494 | * clean up the on disk unlinked inode lists. This is separated from the first |
| 3495 | * part of recovery so that the root and real-time bitmap inodes can be read in |
| 3496 | * from disk in between the two stages. This is necessary so that we can free |
| 3497 | * space in the real-time portion of the file system. |
| 3498 | * |
| 3499 | * We run this whole process under GFP_NOFS allocation context. We do a |
| 3500 | * combination of non-transactional and transactional work, yet we really don't |
| 3501 | * want to recurse into the filesystem from direct reclaim during any of this |
| 3502 | * processing. This allows all the recovery code run here not to care about the |
| 3503 | * memory allocation context it is running in. |
| 3504 | */ |
| 3505 | int |
| 3506 | xlog_recover_finish( |
| 3507 | struct xlog *log) |
| 3508 | { |
| 3509 | unsigned int nofs_flags = memalloc_nofs_save(); |
| 3510 | int error; |
| 3511 | |
| 3512 | error = xlog_recover_process_intents(log); |
| 3513 | if (error) { |
| 3514 | /* |
| 3515 | * Cancel all the unprocessed intent items now so that we don't |
| 3516 | * leave them pinned in the AIL. This can cause the AIL to |
| 3517 | * livelock on the pinned item if anyone tries to push the AIL |
| 3518 | * (inode reclaim does this) before we get around to |
| 3519 | * xfs_log_mount_cancel. |
| 3520 | */ |
| 3521 | xlog_recover_cancel_intents(log); |
| 3522 | xfs_alert(log->l_mp, "Failed to recover intents"); |
| 3523 | xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); |
| 3524 | goto out_error; |
| 3525 | } |
| 3526 | |
| 3527 | /* |
| 3528 | * Sync the log to get all the intents out of the AIL. This isn't |
| 3529 | * absolutely necessary, but it helps in case the unlink transactions |
| 3530 | * would have problems pushing the intents out of the way. |
| 3531 | */ |
| 3532 | xfs_log_force(log->l_mp, XFS_LOG_SYNC); |
| 3533 | |
| 3534 | xlog_recover_process_iunlinks(log); |
| 3535 | |
| 3536 | /* |
| 3537 | * Recover any CoW staging blocks that are still referenced by the |
| 3538 | * ondisk refcount metadata. During mount there cannot be any live |
| 3539 | * staging extents as we have not permitted any user modifications. |
| 3540 | * Therefore, it is safe to free them all right now, even on a |
| 3541 | * read-only mount. |
| 3542 | */ |
| 3543 | error = xfs_reflink_recover_cow(log->l_mp); |
| 3544 | if (error) { |
| 3545 | xfs_alert(log->l_mp, |
| 3546 | "Failed to recover leftover CoW staging extents, err %d.", |
| 3547 | error); |
| 3548 | /* |
| 3549 | * If we get an error here, make sure the log is shut down |
| 3550 | * but return zero so that any log items committed since the |
| 3551 | * end of intents processing can be pushed through the CIL |
| 3552 | * and AIL. |
| 3553 | */ |
| 3554 | xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); |
| 3555 | error = 0; |
| 3556 | goto out_error; |
| 3557 | } |
| 3558 | |
| 3559 | out_error: |
| 3560 | memalloc_nofs_restore(nofs_flags); |
| 3561 | return error; |
| 3562 | } |
| 3563 | |
| 3564 | void |
| 3565 | xlog_recover_cancel( |
| 3566 | struct xlog *log) |
| 3567 | { |
| 3568 | if (xlog_recovery_needed(log)) |
| 3569 | xlog_recover_cancel_intents(log); |
| 3570 | } |
| 3571 | |