Merge tag 'for-6.16-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-block.git] / fs / xfs / xfs_iops.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_acl.h"
15#include "xfs_quota.h"
16#include "xfs_da_format.h"
17#include "xfs_da_btree.h"
18#include "xfs_attr.h"
19#include "xfs_trans.h"
20#include "xfs_trans_space.h"
21#include "xfs_bmap_btree.h"
22#include "xfs_trace.h"
23#include "xfs_icache.h"
24#include "xfs_symlink.h"
25#include "xfs_dir2.h"
26#include "xfs_iomap.h"
27#include "xfs_error.h"
28#include "xfs_ioctl.h"
29#include "xfs_xattr.h"
30#include "xfs_file.h"
31#include "xfs_bmap.h"
32#include "xfs_zone_alloc.h"
33
34#include <linux/posix_acl.h>
35#include <linux/security.h>
36#include <linux/iversion.h>
37#include <linux/fiemap.h>
38
39/*
40 * Directories have different lock order w.r.t. mmap_lock compared to regular
41 * files. This is due to readdir potentially triggering page faults on a user
42 * buffer inside filldir(), and this happens with the ilock on the directory
43 * held. For regular files, the lock order is the other way around - the
44 * mmap_lock is taken during the page fault, and then we lock the ilock to do
45 * block mapping. Hence we need a different class for the directory ilock so
46 * that lockdep can tell them apart. Directories in the metadata directory
47 * tree get a separate class so that lockdep reports will warn us if someone
48 * ever tries to lock regular directories after locking metadata directories.
49 */
50static struct lock_class_key xfs_nondir_ilock_class;
51static struct lock_class_key xfs_dir_ilock_class;
52
53static int
54xfs_initxattrs(
55 struct inode *inode,
56 const struct xattr *xattr_array,
57 void *fs_info)
58{
59 const struct xattr *xattr;
60 struct xfs_inode *ip = XFS_I(inode);
61 int error = 0;
62
63 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
64 struct xfs_da_args args = {
65 .dp = ip,
66 .attr_filter = XFS_ATTR_SECURE,
67 .name = xattr->name,
68 .namelen = strlen(xattr->name),
69 .value = xattr->value,
70 .valuelen = xattr->value_len,
71 };
72 error = xfs_attr_change(&args, XFS_ATTRUPDATE_UPSERT);
73 if (error < 0)
74 break;
75 }
76 return error;
77}
78
79/*
80 * Hook in SELinux. This is not quite correct yet, what we really need
81 * here (as we do for default ACLs) is a mechanism by which creation of
82 * these attrs can be journalled at inode creation time (along with the
83 * inode, of course, such that log replay can't cause these to be lost).
84 */
85int
86xfs_inode_init_security(
87 struct inode *inode,
88 struct inode *dir,
89 const struct qstr *qstr)
90{
91 return security_inode_init_security(inode, dir, qstr,
92 &xfs_initxattrs, NULL);
93}
94
95static void
96xfs_dentry_to_name(
97 struct xfs_name *namep,
98 struct dentry *dentry)
99{
100 namep->name = dentry->d_name.name;
101 namep->len = dentry->d_name.len;
102 namep->type = XFS_DIR3_FT_UNKNOWN;
103}
104
105static int
106xfs_dentry_mode_to_name(
107 struct xfs_name *namep,
108 struct dentry *dentry,
109 int mode)
110{
111 namep->name = dentry->d_name.name;
112 namep->len = dentry->d_name.len;
113 namep->type = xfs_mode_to_ftype(mode);
114
115 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
116 return -EFSCORRUPTED;
117
118 return 0;
119}
120
121STATIC void
122xfs_cleanup_inode(
123 struct inode *dir,
124 struct inode *inode,
125 struct dentry *dentry)
126{
127 struct xfs_name teardown;
128
129 /* Oh, the horror.
130 * If we can't add the ACL or we fail in
131 * xfs_inode_init_security we must back out.
132 * ENOSPC can hit here, among other things.
133 */
134 xfs_dentry_to_name(&teardown, dentry);
135
136 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
137}
138
139/*
140 * Check to see if we are likely to need an extended attribute to be added to
141 * the inode we are about to allocate. This allows the attribute fork to be
142 * created during the inode allocation, reducing the number of transactions we
143 * need to do in this fast path.
144 *
145 * The security checks are optimistic, but not guaranteed. The two LSMs that
146 * require xattrs to be added here (selinux and smack) are also the only two
147 * LSMs that add a sb->s_security structure to the superblock. Hence if security
148 * is enabled and sb->s_security is set, we have a pretty good idea that we are
149 * going to be asked to add a security xattr immediately after allocating the
150 * xfs inode and instantiating the VFS inode.
151 */
152static inline bool
153xfs_create_need_xattr(
154 struct inode *dir,
155 struct posix_acl *default_acl,
156 struct posix_acl *acl)
157{
158 if (acl)
159 return true;
160 if (default_acl)
161 return true;
162#if IS_ENABLED(CONFIG_SECURITY)
163 if (dir->i_sb->s_security)
164 return true;
165#endif
166 return false;
167}
168
169
170STATIC int
171xfs_generic_create(
172 struct mnt_idmap *idmap,
173 struct inode *dir,
174 struct dentry *dentry,
175 umode_t mode,
176 dev_t rdev,
177 struct file *tmpfile) /* unnamed file */
178{
179 struct xfs_icreate_args args = {
180 .idmap = idmap,
181 .pip = XFS_I(dir),
182 .rdev = rdev,
183 .mode = mode,
184 };
185 struct inode *inode;
186 struct xfs_inode *ip = NULL;
187 struct posix_acl *default_acl, *acl;
188 struct xfs_name name;
189 int error;
190
191 /*
192 * Irix uses Missed'em'V split, but doesn't want to see
193 * the upper 5 bits of (14bit) major.
194 */
195 if (S_ISCHR(args.mode) || S_ISBLK(args.mode)) {
196 if (unlikely(!sysv_valid_dev(args.rdev) ||
197 MAJOR(args.rdev) & ~0x1ff))
198 return -EINVAL;
199 } else {
200 args.rdev = 0;
201 }
202
203 error = posix_acl_create(dir, &args.mode, &default_acl, &acl);
204 if (error)
205 return error;
206
207 /* Verify mode is valid also for tmpfile case */
208 error = xfs_dentry_mode_to_name(&name, dentry, args.mode);
209 if (unlikely(error))
210 goto out_free_acl;
211
212 if (!tmpfile) {
213 if (xfs_create_need_xattr(dir, default_acl, acl))
214 args.flags |= XFS_ICREATE_INIT_XATTRS;
215
216 error = xfs_create(&args, &name, &ip);
217 } else {
218 args.flags |= XFS_ICREATE_TMPFILE;
219
220 /*
221 * If this temporary file will not be linkable, don't bother
222 * creating an attr fork to receive a parent pointer.
223 */
224 if (tmpfile->f_flags & O_EXCL)
225 args.flags |= XFS_ICREATE_UNLINKABLE;
226
227 error = xfs_create_tmpfile(&args, &ip);
228 }
229 if (unlikely(error))
230 goto out_free_acl;
231
232 inode = VFS_I(ip);
233
234 error = xfs_inode_init_security(inode, dir, &dentry->d_name);
235 if (unlikely(error))
236 goto out_cleanup_inode;
237
238 if (default_acl) {
239 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
240 if (error)
241 goto out_cleanup_inode;
242 }
243 if (acl) {
244 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
245 if (error)
246 goto out_cleanup_inode;
247 }
248
249 xfs_setup_iops(ip);
250
251 if (tmpfile) {
252 /*
253 * The VFS requires that any inode fed to d_tmpfile must have
254 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
255 * However, we created the temp file with nlink == 0 because
256 * we're not allowed to put an inode with nlink > 0 on the
257 * unlinked list. Therefore we have to set nlink to 1 so that
258 * d_tmpfile can immediately set it back to zero.
259 */
260 set_nlink(inode, 1);
261 d_tmpfile(tmpfile, inode);
262 } else
263 d_instantiate(dentry, inode);
264
265 xfs_finish_inode_setup(ip);
266
267 out_free_acl:
268 posix_acl_release(default_acl);
269 posix_acl_release(acl);
270 return error;
271
272 out_cleanup_inode:
273 xfs_finish_inode_setup(ip);
274 if (!tmpfile)
275 xfs_cleanup_inode(dir, inode, dentry);
276 xfs_irele(ip);
277 goto out_free_acl;
278}
279
280STATIC int
281xfs_vn_mknod(
282 struct mnt_idmap *idmap,
283 struct inode *dir,
284 struct dentry *dentry,
285 umode_t mode,
286 dev_t rdev)
287{
288 return xfs_generic_create(idmap, dir, dentry, mode, rdev, NULL);
289}
290
291STATIC int
292xfs_vn_create(
293 struct mnt_idmap *idmap,
294 struct inode *dir,
295 struct dentry *dentry,
296 umode_t mode,
297 bool flags)
298{
299 return xfs_generic_create(idmap, dir, dentry, mode, 0, NULL);
300}
301
302STATIC struct dentry *
303xfs_vn_mkdir(
304 struct mnt_idmap *idmap,
305 struct inode *dir,
306 struct dentry *dentry,
307 umode_t mode)
308{
309 return ERR_PTR(xfs_generic_create(idmap, dir, dentry, mode | S_IFDIR, 0, NULL));
310}
311
312STATIC struct dentry *
313xfs_vn_lookup(
314 struct inode *dir,
315 struct dentry *dentry,
316 unsigned int flags)
317{
318 struct inode *inode;
319 struct xfs_inode *cip;
320 struct xfs_name name;
321 int error;
322
323 if (dentry->d_name.len >= MAXNAMELEN)
324 return ERR_PTR(-ENAMETOOLONG);
325
326 xfs_dentry_to_name(&name, dentry);
327 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
328 if (likely(!error))
329 inode = VFS_I(cip);
330 else if (likely(error == -ENOENT))
331 inode = NULL;
332 else
333 inode = ERR_PTR(error);
334 return d_splice_alias(inode, dentry);
335}
336
337STATIC struct dentry *
338xfs_vn_ci_lookup(
339 struct inode *dir,
340 struct dentry *dentry,
341 unsigned int flags)
342{
343 struct xfs_inode *ip;
344 struct xfs_name xname;
345 struct xfs_name ci_name;
346 struct qstr dname;
347 int error;
348
349 if (dentry->d_name.len >= MAXNAMELEN)
350 return ERR_PTR(-ENAMETOOLONG);
351
352 xfs_dentry_to_name(&xname, dentry);
353 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
354 if (unlikely(error)) {
355 if (unlikely(error != -ENOENT))
356 return ERR_PTR(error);
357 /*
358 * call d_add(dentry, NULL) here when d_drop_negative_children
359 * is called in xfs_vn_mknod (ie. allow negative dentries
360 * with CI filesystems).
361 */
362 return NULL;
363 }
364
365 /* if exact match, just splice and exit */
366 if (!ci_name.name)
367 return d_splice_alias(VFS_I(ip), dentry);
368
369 /* else case-insensitive match... */
370 dname.name = ci_name.name;
371 dname.len = ci_name.len;
372 dentry = d_add_ci(dentry, VFS_I(ip), &dname);
373 kfree(ci_name.name);
374 return dentry;
375}
376
377STATIC int
378xfs_vn_link(
379 struct dentry *old_dentry,
380 struct inode *dir,
381 struct dentry *dentry)
382{
383 struct inode *inode = d_inode(old_dentry);
384 struct xfs_name name;
385 int error;
386
387 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
388 if (unlikely(error))
389 return error;
390
391 if (IS_PRIVATE(inode))
392 return -EPERM;
393
394 error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
395 if (unlikely(error))
396 return error;
397
398 ihold(inode);
399 d_instantiate(dentry, inode);
400 return 0;
401}
402
403STATIC int
404xfs_vn_unlink(
405 struct inode *dir,
406 struct dentry *dentry)
407{
408 struct xfs_name name;
409 int error;
410
411 xfs_dentry_to_name(&name, dentry);
412
413 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
414 if (error)
415 return error;
416
417 /*
418 * With unlink, the VFS makes the dentry "negative": no inode,
419 * but still hashed. This is incompatible with case-insensitive
420 * mode, so invalidate (unhash) the dentry in CI-mode.
421 */
422 if (xfs_has_asciici(XFS_M(dir->i_sb)))
423 d_invalidate(dentry);
424 return 0;
425}
426
427STATIC int
428xfs_vn_symlink(
429 struct mnt_idmap *idmap,
430 struct inode *dir,
431 struct dentry *dentry,
432 const char *symname)
433{
434 struct inode *inode;
435 struct xfs_inode *cip = NULL;
436 struct xfs_name name;
437 int error;
438 umode_t mode;
439
440 mode = S_IFLNK |
441 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
442 error = xfs_dentry_mode_to_name(&name, dentry, mode);
443 if (unlikely(error))
444 goto out;
445
446 error = xfs_symlink(idmap, XFS_I(dir), &name, symname, mode, &cip);
447 if (unlikely(error))
448 goto out;
449
450 inode = VFS_I(cip);
451
452 error = xfs_inode_init_security(inode, dir, &dentry->d_name);
453 if (unlikely(error))
454 goto out_cleanup_inode;
455
456 xfs_setup_iops(cip);
457
458 d_instantiate(dentry, inode);
459 xfs_finish_inode_setup(cip);
460 return 0;
461
462 out_cleanup_inode:
463 xfs_finish_inode_setup(cip);
464 xfs_cleanup_inode(dir, inode, dentry);
465 xfs_irele(cip);
466 out:
467 return error;
468}
469
470STATIC int
471xfs_vn_rename(
472 struct mnt_idmap *idmap,
473 struct inode *odir,
474 struct dentry *odentry,
475 struct inode *ndir,
476 struct dentry *ndentry,
477 unsigned int flags)
478{
479 struct inode *new_inode = d_inode(ndentry);
480 int omode = 0;
481 int error;
482 struct xfs_name oname;
483 struct xfs_name nname;
484
485 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
486 return -EINVAL;
487
488 /* if we are exchanging files, we need to set i_mode of both files */
489 if (flags & RENAME_EXCHANGE)
490 omode = d_inode(ndentry)->i_mode;
491
492 error = xfs_dentry_mode_to_name(&oname, odentry, omode);
493 if (omode && unlikely(error))
494 return error;
495
496 error = xfs_dentry_mode_to_name(&nname, ndentry,
497 d_inode(odentry)->i_mode);
498 if (unlikely(error))
499 return error;
500
501 return xfs_rename(idmap, XFS_I(odir), &oname,
502 XFS_I(d_inode(odentry)), XFS_I(ndir), &nname,
503 new_inode ? XFS_I(new_inode) : NULL, flags);
504}
505
506/*
507 * careful here - this function can get called recursively, so
508 * we need to be very careful about how much stack we use.
509 * uio is kmalloced for this reason...
510 */
511STATIC const char *
512xfs_vn_get_link(
513 struct dentry *dentry,
514 struct inode *inode,
515 struct delayed_call *done)
516{
517 char *link;
518 int error = -ENOMEM;
519
520 if (!dentry)
521 return ERR_PTR(-ECHILD);
522
523 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
524 if (!link)
525 goto out_err;
526
527 error = xfs_readlink(XFS_I(d_inode(dentry)), link);
528 if (unlikely(error))
529 goto out_kfree;
530
531 set_delayed_call(done, kfree_link, link);
532 return link;
533
534 out_kfree:
535 kfree(link);
536 out_err:
537 return ERR_PTR(error);
538}
539
540static uint32_t
541xfs_stat_blksize(
542 struct xfs_inode *ip)
543{
544 struct xfs_mount *mp = ip->i_mount;
545
546 /*
547 * If the file blocks are being allocated from a realtime volume, then
548 * always return the realtime extent size.
549 */
550 if (XFS_IS_REALTIME_INODE(ip))
551 return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip) ? : 1);
552
553 /*
554 * Allow large block sizes to be reported to userspace programs if the
555 * "largeio" mount option is used.
556 *
557 * If compatibility mode is specified, simply return the basic unit of
558 * caching so that we don't get inefficient read/modify/write I/O from
559 * user apps. Otherwise....
560 *
561 * If the underlying volume is a stripe, then return the stripe width in
562 * bytes as the recommended I/O size. It is not a stripe and we've set a
563 * default buffered I/O size, return that, otherwise return the compat
564 * default.
565 */
566 if (xfs_has_large_iosize(mp)) {
567 if (mp->m_swidth)
568 return XFS_FSB_TO_B(mp, mp->m_swidth);
569 if (xfs_has_allocsize(mp))
570 return 1U << mp->m_allocsize_log;
571 }
572
573 return max_t(uint32_t, PAGE_SIZE, mp->m_sb.sb_blocksize);
574}
575
576static void
577xfs_report_dioalign(
578 struct xfs_inode *ip,
579 struct kstat *stat)
580{
581 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
582 struct block_device *bdev = target->bt_bdev;
583
584 stat->result_mask |= STATX_DIOALIGN | STATX_DIO_READ_ALIGN;
585 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
586
587 /*
588 * For COW inodes, we can only perform out of place writes of entire
589 * allocation units (blocks or RT extents).
590 * For writes smaller than the allocation unit, we must fall back to
591 * buffered I/O to perform read-modify-write cycles. At best this is
592 * highly inefficient; at worst it leads to page cache invalidation
593 * races. Tell applications to avoid this by reporting the larger write
594 * alignment in dio_offset_align, and the smaller read alignment in
595 * dio_read_offset_align.
596 */
597 stat->dio_read_offset_align = bdev_logical_block_size(bdev);
598 if (xfs_is_cow_inode(ip))
599 stat->dio_offset_align = xfs_inode_alloc_unitsize(ip);
600 else
601 stat->dio_offset_align = stat->dio_read_offset_align;
602}
603
604unsigned int
605xfs_get_atomic_write_min(
606 struct xfs_inode *ip)
607{
608 struct xfs_mount *mp = ip->i_mount;
609
610 /*
611 * If we can complete an atomic write via atomic out of place writes,
612 * then advertise a minimum size of one fsblock. Without this
613 * mechanism, we can only guarantee atomic writes up to a single LBA.
614 *
615 * If out of place writes are not available, we can guarantee an atomic
616 * write of exactly one single fsblock if the bdev will make that
617 * guarantee for us.
618 */
619 if (xfs_inode_can_hw_atomic_write(ip) || xfs_can_sw_atomic_write(mp))
620 return mp->m_sb.sb_blocksize;
621
622 return 0;
623}
624
625unsigned int
626xfs_get_atomic_write_max(
627 struct xfs_inode *ip)
628{
629 struct xfs_mount *mp = ip->i_mount;
630
631 /*
632 * If out of place writes are not available, we can guarantee an atomic
633 * write of exactly one single fsblock if the bdev will make that
634 * guarantee for us.
635 */
636 if (!xfs_can_sw_atomic_write(mp)) {
637 if (xfs_inode_can_hw_atomic_write(ip))
638 return mp->m_sb.sb_blocksize;
639 return 0;
640 }
641
642 /*
643 * If we can complete an atomic write via atomic out of place writes,
644 * then advertise a maximum size of whatever we can complete through
645 * that means. Hardware support is reported via max_opt, not here.
646 */
647 if (XFS_IS_REALTIME_INODE(ip))
648 return XFS_FSB_TO_B(mp, mp->m_groups[XG_TYPE_RTG].awu_max);
649 return XFS_FSB_TO_B(mp, mp->m_groups[XG_TYPE_AG].awu_max);
650}
651
652unsigned int
653xfs_get_atomic_write_max_opt(
654 struct xfs_inode *ip)
655{
656 unsigned int awu_max = xfs_get_atomic_write_max(ip);
657
658 /* if the max is 1x block, then just keep behaviour that opt is 0 */
659 if (awu_max <= ip->i_mount->m_sb.sb_blocksize)
660 return 0;
661
662 /*
663 * Advertise the maximum size of an atomic write that we can tell the
664 * block device to perform for us. In general the bdev limit will be
665 * less than our out of place write limit, but we don't want to exceed
666 * the awu_max.
667 */
668 return min(awu_max, xfs_inode_buftarg(ip)->bt_bdev_awu_max);
669}
670
671static void
672xfs_report_atomic_write(
673 struct xfs_inode *ip,
674 struct kstat *stat)
675{
676 generic_fill_statx_atomic_writes(stat,
677 xfs_get_atomic_write_min(ip),
678 xfs_get_atomic_write_max(ip),
679 xfs_get_atomic_write_max_opt(ip));
680}
681
682STATIC int
683xfs_vn_getattr(
684 struct mnt_idmap *idmap,
685 const struct path *path,
686 struct kstat *stat,
687 u32 request_mask,
688 unsigned int query_flags)
689{
690 struct inode *inode = d_inode(path->dentry);
691 struct xfs_inode *ip = XFS_I(inode);
692 struct xfs_mount *mp = ip->i_mount;
693 vfsuid_t vfsuid = i_uid_into_vfsuid(idmap, inode);
694 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
695
696 trace_xfs_getattr(ip);
697
698 if (xfs_is_shutdown(mp))
699 return -EIO;
700
701 stat->size = XFS_ISIZE(ip);
702 stat->dev = inode->i_sb->s_dev;
703 stat->mode = inode->i_mode;
704 stat->nlink = inode->i_nlink;
705 stat->uid = vfsuid_into_kuid(vfsuid);
706 stat->gid = vfsgid_into_kgid(vfsgid);
707 stat->ino = ip->i_ino;
708 stat->atime = inode_get_atime(inode);
709
710 fill_mg_cmtime(stat, request_mask, inode);
711
712 stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks);
713
714 if (xfs_has_v3inodes(mp)) {
715 if (request_mask & STATX_BTIME) {
716 stat->result_mask |= STATX_BTIME;
717 stat->btime = ip->i_crtime;
718 }
719 }
720
721 /*
722 * Note: If you add another clause to set an attribute flag, please
723 * update attributes_mask below.
724 */
725 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
726 stat->attributes |= STATX_ATTR_IMMUTABLE;
727 if (ip->i_diflags & XFS_DIFLAG_APPEND)
728 stat->attributes |= STATX_ATTR_APPEND;
729 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
730 stat->attributes |= STATX_ATTR_NODUMP;
731
732 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
733 STATX_ATTR_APPEND |
734 STATX_ATTR_NODUMP);
735
736 switch (inode->i_mode & S_IFMT) {
737 case S_IFBLK:
738 case S_IFCHR:
739 stat->blksize = BLKDEV_IOSIZE;
740 stat->rdev = inode->i_rdev;
741 break;
742 case S_IFREG:
743 if (request_mask & (STATX_DIOALIGN | STATX_DIO_READ_ALIGN))
744 xfs_report_dioalign(ip, stat);
745 if (request_mask & STATX_WRITE_ATOMIC)
746 xfs_report_atomic_write(ip, stat);
747 fallthrough;
748 default:
749 stat->blksize = xfs_stat_blksize(ip);
750 stat->rdev = 0;
751 break;
752 }
753
754 return 0;
755}
756
757static int
758xfs_vn_change_ok(
759 struct mnt_idmap *idmap,
760 struct dentry *dentry,
761 struct iattr *iattr)
762{
763 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount;
764
765 if (xfs_is_readonly(mp))
766 return -EROFS;
767
768 if (xfs_is_shutdown(mp))
769 return -EIO;
770
771 return setattr_prepare(idmap, dentry, iattr);
772}
773
774/*
775 * Set non-size attributes of an inode.
776 *
777 * Caution: The caller of this function is responsible for calling
778 * setattr_prepare() or otherwise verifying the change is fine.
779 */
780static int
781xfs_setattr_nonsize(
782 struct mnt_idmap *idmap,
783 struct dentry *dentry,
784 struct xfs_inode *ip,
785 struct iattr *iattr)
786{
787 xfs_mount_t *mp = ip->i_mount;
788 struct inode *inode = VFS_I(ip);
789 int mask = iattr->ia_valid;
790 xfs_trans_t *tp;
791 int error;
792 kuid_t uid = GLOBAL_ROOT_UID;
793 kgid_t gid = GLOBAL_ROOT_GID;
794 struct xfs_dquot *udqp = NULL, *gdqp = NULL;
795 struct xfs_dquot *old_udqp = NULL, *old_gdqp = NULL;
796
797 ASSERT((mask & ATTR_SIZE) == 0);
798
799 /*
800 * If disk quotas is on, we make sure that the dquots do exist on disk,
801 * before we start any other transactions. Trying to do this later
802 * is messy. We don't care to take a readlock to look at the ids
803 * in inode here, because we can't hold it across the trans_reserve.
804 * If the IDs do change before we take the ilock, we're covered
805 * because the i_*dquot fields will get updated anyway.
806 */
807 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
808 uint qflags = 0;
809
810 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
811 uid = from_vfsuid(idmap, i_user_ns(inode),
812 iattr->ia_vfsuid);
813 qflags |= XFS_QMOPT_UQUOTA;
814 } else {
815 uid = inode->i_uid;
816 }
817 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
818 gid = from_vfsgid(idmap, i_user_ns(inode),
819 iattr->ia_vfsgid);
820 qflags |= XFS_QMOPT_GQUOTA;
821 } else {
822 gid = inode->i_gid;
823 }
824
825 /*
826 * We take a reference when we initialize udqp and gdqp,
827 * so it is important that we never blindly double trip on
828 * the same variable. See xfs_create() for an example.
829 */
830 ASSERT(udqp == NULL);
831 ASSERT(gdqp == NULL);
832 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid,
833 qflags, &udqp, &gdqp, NULL);
834 if (error)
835 return error;
836 }
837
838 error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL,
839 has_capability_noaudit(current, CAP_FOWNER), &tp);
840 if (error)
841 goto out_dqrele;
842
843 /*
844 * Register quota modifications in the transaction. Must be the owner
845 * or privileged. These IDs could have changed since we last looked at
846 * them. But, we're assured that if the ownership did change while we
847 * didn't have the inode locked, inode's dquot(s) would have changed
848 * also.
849 */
850 if (XFS_IS_UQUOTA_ON(mp) &&
851 i_uid_needs_update(idmap, iattr, inode)) {
852 ASSERT(udqp);
853 old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp);
854 }
855 if (XFS_IS_GQUOTA_ON(mp) &&
856 i_gid_needs_update(idmap, iattr, inode)) {
857 ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp));
858 ASSERT(gdqp);
859 old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp);
860 }
861
862 setattr_copy(idmap, inode, iattr);
863 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
864
865 XFS_STATS_INC(mp, xs_ig_attrchg);
866
867 if (xfs_has_wsync(mp))
868 xfs_trans_set_sync(tp);
869 error = xfs_trans_commit(tp);
870
871 /*
872 * Release any dquot(s) the inode had kept before chown.
873 */
874 xfs_qm_dqrele(old_udqp);
875 xfs_qm_dqrele(old_gdqp);
876 xfs_qm_dqrele(udqp);
877 xfs_qm_dqrele(gdqp);
878
879 if (error)
880 return error;
881
882 /*
883 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
884 * update. We could avoid this with linked transactions
885 * and passing down the transaction pointer all the way
886 * to attr_set. No previous user of the generic
887 * Posix ACL code seems to care about this issue either.
888 */
889 if (mask & ATTR_MODE) {
890 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
891 if (error)
892 return error;
893 }
894
895 return 0;
896
897out_dqrele:
898 xfs_qm_dqrele(udqp);
899 xfs_qm_dqrele(gdqp);
900 return error;
901}
902
903/*
904 * Truncate file. Must have write permission and not be a directory.
905 *
906 * Caution: The caller of this function is responsible for calling
907 * setattr_prepare() or otherwise verifying the change is fine.
908 */
909STATIC int
910xfs_setattr_size(
911 struct mnt_idmap *idmap,
912 struct dentry *dentry,
913 struct xfs_inode *ip,
914 struct iattr *iattr)
915{
916 struct xfs_mount *mp = ip->i_mount;
917 struct inode *inode = VFS_I(ip);
918 xfs_off_t oldsize, newsize;
919 struct xfs_trans *tp;
920 int error;
921 uint lock_flags = 0;
922 uint resblks = 0;
923 bool did_zeroing = false;
924 struct xfs_zone_alloc_ctx ac = { };
925
926 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
927 ASSERT(S_ISREG(inode->i_mode));
928 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
929 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0);
930
931 oldsize = inode->i_size;
932 newsize = iattr->ia_size;
933
934 /*
935 * Short circuit the truncate case for zero length files.
936 */
937 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
938 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
939 return 0;
940
941 /*
942 * Use the regular setattr path to update the timestamps.
943 */
944 iattr->ia_valid &= ~ATTR_SIZE;
945 return xfs_setattr_nonsize(idmap, dentry, ip, iattr);
946 }
947
948 /*
949 * Make sure that the dquots are attached to the inode.
950 */
951 error = xfs_qm_dqattach(ip);
952 if (error)
953 return error;
954
955 /*
956 * Wait for all direct I/O to complete.
957 */
958 inode_dio_wait(inode);
959
960 /*
961 * Normally xfs_zoned_space_reserve is supposed to be called outside the
962 * IOLOCK. For truncate we can't do that since ->setattr is called with
963 * it already held by the VFS. So for now chicken out and try to
964 * allocate space under it.
965 *
966 * To avoid deadlocks this means we can't block waiting for space, which
967 * can lead to spurious -ENOSPC if there are no directly available
968 * blocks. We mitigate this a bit by allowing zeroing to dip into the
969 * reserved pool, but eventually the VFS calling convention needs to
970 * change.
971 */
972 if (xfs_is_zoned_inode(ip)) {
973 error = xfs_zoned_space_reserve(ip, 1,
974 XFS_ZR_NOWAIT | XFS_ZR_RESERVED, &ac);
975 if (error) {
976 if (error == -EAGAIN)
977 return -ENOSPC;
978 return error;
979 }
980 }
981
982 /*
983 * File data changes must be complete before we start the transaction to
984 * modify the inode. This needs to be done before joining the inode to
985 * the transaction because the inode cannot be unlocked once it is a
986 * part of the transaction.
987 *
988 * Start with zeroing any data beyond EOF that we may expose on file
989 * extension, or zeroing out the rest of the block on a downward
990 * truncate.
991 */
992 if (newsize > oldsize) {
993 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
994 error = xfs_zero_range(ip, oldsize, newsize - oldsize,
995 &ac, &did_zeroing);
996 } else {
997 error = xfs_truncate_page(ip, newsize, &ac, &did_zeroing);
998 }
999
1000 if (xfs_is_zoned_inode(ip))
1001 xfs_zoned_space_unreserve(ip, &ac);
1002
1003 if (error)
1004 return error;
1005
1006 /*
1007 * We've already locked out new page faults, so now we can safely remove
1008 * pages from the page cache knowing they won't get refaulted until we
1009 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
1010 * complete. The truncate_setsize() call also cleans partial EOF page
1011 * PTEs on extending truncates and hence ensures sub-page block size
1012 * filesystems are correctly handled, too.
1013 *
1014 * We have to do all the page cache truncate work outside the
1015 * transaction context as the "lock" order is page lock->log space
1016 * reservation as defined by extent allocation in the writeback path.
1017 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
1018 * having already truncated the in-memory version of the file (i.e. made
1019 * user visible changes). There's not much we can do about this, except
1020 * to hope that the caller sees ENOMEM and retries the truncate
1021 * operation.
1022 *
1023 * And we update in-core i_size and truncate page cache beyond newsize
1024 * before writeback the [i_disk_size, newsize] range, so we're
1025 * guaranteed not to write stale data past the new EOF on truncate down.
1026 */
1027 truncate_setsize(inode, newsize);
1028
1029 /*
1030 * We are going to log the inode size change in this transaction so
1031 * any previous writes that are beyond the on disk EOF and the new
1032 * EOF that have not been written out need to be written here. If we
1033 * do not write the data out, we expose ourselves to the null files
1034 * problem. Note that this includes any block zeroing we did above;
1035 * otherwise those blocks may not be zeroed after a crash.
1036 */
1037 if (did_zeroing ||
1038 (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) {
1039 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1040 ip->i_disk_size, newsize - 1);
1041 if (error)
1042 return error;
1043 }
1044
1045 /*
1046 * For realtime inode with more than one block rtextsize, we need the
1047 * block reservation for bmap btree block allocations/splits that can
1048 * happen since it could split the tail written extent and convert the
1049 * right beyond EOF one to unwritten.
1050 */
1051 if (xfs_inode_has_bigrtalloc(ip))
1052 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1053
1054 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
1055 0, 0, &tp);
1056 if (error)
1057 return error;
1058
1059 lock_flags |= XFS_ILOCK_EXCL;
1060 xfs_ilock(ip, XFS_ILOCK_EXCL);
1061 xfs_trans_ijoin(tp, ip, 0);
1062
1063 /*
1064 * Only change the c/mtime if we are changing the size or we are
1065 * explicitly asked to change it. This handles the semantic difference
1066 * between truncate() and ftruncate() as implemented in the VFS.
1067 *
1068 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
1069 * special case where we need to update the times despite not having
1070 * these flags set. For all other operations the VFS set these flags
1071 * explicitly if it wants a timestamp update.
1072 */
1073 if (newsize != oldsize &&
1074 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
1075 iattr->ia_ctime = iattr->ia_mtime =
1076 current_time(inode);
1077 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
1078 }
1079
1080 /*
1081 * The first thing we do is set the size to new_size permanently on
1082 * disk. This way we don't have to worry about anyone ever being able
1083 * to look at the data being freed even in the face of a crash.
1084 * What we're getting around here is the case where we free a block, it
1085 * is allocated to another file, it is written to, and then we crash.
1086 * If the new data gets written to the file but the log buffers
1087 * containing the free and reallocation don't, then we'd end up with
1088 * garbage in the blocks being freed. As long as we make the new size
1089 * permanent before actually freeing any blocks it doesn't matter if
1090 * they get written to.
1091 */
1092 ip->i_disk_size = newsize;
1093 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1094
1095 if (newsize <= oldsize) {
1096 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
1097 if (error)
1098 goto out_trans_cancel;
1099
1100 /*
1101 * Truncated "down", so we're removing references to old data
1102 * here - if we delay flushing for a long time, we expose
1103 * ourselves unduly to the notorious NULL files problem. So,
1104 * we mark this inode and flush it when the file is closed,
1105 * and do not wait the usual (long) time for writeout.
1106 */
1107 xfs_iflags_set(ip, XFS_ITRUNCATED);
1108
1109 /* A truncate down always removes post-EOF blocks. */
1110 xfs_inode_clear_eofblocks_tag(ip);
1111 }
1112
1113 ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID)));
1114 setattr_copy(idmap, inode, iattr);
1115 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1116
1117 XFS_STATS_INC(mp, xs_ig_attrchg);
1118
1119 if (xfs_has_wsync(mp))
1120 xfs_trans_set_sync(tp);
1121
1122 error = xfs_trans_commit(tp);
1123out_unlock:
1124 if (lock_flags)
1125 xfs_iunlock(ip, lock_flags);
1126 return error;
1127
1128out_trans_cancel:
1129 xfs_trans_cancel(tp);
1130 goto out_unlock;
1131}
1132
1133int
1134xfs_vn_setattr_size(
1135 struct mnt_idmap *idmap,
1136 struct dentry *dentry,
1137 struct iattr *iattr)
1138{
1139 struct xfs_inode *ip = XFS_I(d_inode(dentry));
1140 int error;
1141
1142 trace_xfs_setattr(ip);
1143
1144 error = xfs_vn_change_ok(idmap, dentry, iattr);
1145 if (error)
1146 return error;
1147 return xfs_setattr_size(idmap, dentry, ip, iattr);
1148}
1149
1150STATIC int
1151xfs_vn_setattr(
1152 struct mnt_idmap *idmap,
1153 struct dentry *dentry,
1154 struct iattr *iattr)
1155{
1156 struct inode *inode = d_inode(dentry);
1157 struct xfs_inode *ip = XFS_I(inode);
1158 int error;
1159
1160 if (iattr->ia_valid & ATTR_SIZE) {
1161 uint iolock;
1162
1163 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1164 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1165
1166 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1167 if (error) {
1168 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1169 return error;
1170 }
1171
1172 error = xfs_vn_setattr_size(idmap, dentry, iattr);
1173 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1174 } else {
1175 trace_xfs_setattr(ip);
1176
1177 error = xfs_vn_change_ok(idmap, dentry, iattr);
1178 if (!error)
1179 error = xfs_setattr_nonsize(idmap, dentry, ip, iattr);
1180 }
1181
1182 return error;
1183}
1184
1185STATIC int
1186xfs_vn_update_time(
1187 struct inode *inode,
1188 int flags)
1189{
1190 struct xfs_inode *ip = XFS_I(inode);
1191 struct xfs_mount *mp = ip->i_mount;
1192 int log_flags = XFS_ILOG_TIMESTAMP;
1193 struct xfs_trans *tp;
1194 int error;
1195 struct timespec64 now;
1196
1197 trace_xfs_update_time(ip);
1198
1199 if (inode->i_sb->s_flags & SB_LAZYTIME) {
1200 if (!((flags & S_VERSION) &&
1201 inode_maybe_inc_iversion(inode, false))) {
1202 generic_update_time(inode, flags);
1203 return 0;
1204 }
1205
1206 /* Capture the iversion update that just occurred */
1207 log_flags |= XFS_ILOG_CORE;
1208 }
1209
1210 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1211 if (error)
1212 return error;
1213
1214 xfs_ilock(ip, XFS_ILOCK_EXCL);
1215 if (flags & (S_CTIME|S_MTIME))
1216 now = inode_set_ctime_current(inode);
1217 else
1218 now = current_time(inode);
1219
1220 if (flags & S_MTIME)
1221 inode_set_mtime_to_ts(inode, now);
1222 if (flags & S_ATIME)
1223 inode_set_atime_to_ts(inode, now);
1224
1225 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1226 xfs_trans_log_inode(tp, ip, log_flags);
1227 return xfs_trans_commit(tp);
1228}
1229
1230STATIC int
1231xfs_vn_fiemap(
1232 struct inode *inode,
1233 struct fiemap_extent_info *fieinfo,
1234 u64 start,
1235 u64 length)
1236{
1237 int error;
1238
1239 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1240 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1241 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1242 error = iomap_fiemap(inode, fieinfo, start, length,
1243 &xfs_xattr_iomap_ops);
1244 } else {
1245 error = iomap_fiemap(inode, fieinfo, start, length,
1246 &xfs_read_iomap_ops);
1247 }
1248 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1249
1250 return error;
1251}
1252
1253STATIC int
1254xfs_vn_tmpfile(
1255 struct mnt_idmap *idmap,
1256 struct inode *dir,
1257 struct file *file,
1258 umode_t mode)
1259{
1260 int err = xfs_generic_create(idmap, dir, file->f_path.dentry, mode, 0, file);
1261
1262 return finish_open_simple(file, err);
1263}
1264
1265static const struct inode_operations xfs_inode_operations = {
1266 .get_inode_acl = xfs_get_acl,
1267 .set_acl = xfs_set_acl,
1268 .getattr = xfs_vn_getattr,
1269 .setattr = xfs_vn_setattr,
1270 .listxattr = xfs_vn_listxattr,
1271 .fiemap = xfs_vn_fiemap,
1272 .update_time = xfs_vn_update_time,
1273 .fileattr_get = xfs_fileattr_get,
1274 .fileattr_set = xfs_fileattr_set,
1275};
1276
1277static const struct inode_operations xfs_dir_inode_operations = {
1278 .create = xfs_vn_create,
1279 .lookup = xfs_vn_lookup,
1280 .link = xfs_vn_link,
1281 .unlink = xfs_vn_unlink,
1282 .symlink = xfs_vn_symlink,
1283 .mkdir = xfs_vn_mkdir,
1284 /*
1285 * Yes, XFS uses the same method for rmdir and unlink.
1286 *
1287 * There are some subtile differences deeper in the code,
1288 * but we use S_ISDIR to check for those.
1289 */
1290 .rmdir = xfs_vn_unlink,
1291 .mknod = xfs_vn_mknod,
1292 .rename = xfs_vn_rename,
1293 .get_inode_acl = xfs_get_acl,
1294 .set_acl = xfs_set_acl,
1295 .getattr = xfs_vn_getattr,
1296 .setattr = xfs_vn_setattr,
1297 .listxattr = xfs_vn_listxattr,
1298 .update_time = xfs_vn_update_time,
1299 .tmpfile = xfs_vn_tmpfile,
1300 .fileattr_get = xfs_fileattr_get,
1301 .fileattr_set = xfs_fileattr_set,
1302};
1303
1304static const struct inode_operations xfs_dir_ci_inode_operations = {
1305 .create = xfs_vn_create,
1306 .lookup = xfs_vn_ci_lookup,
1307 .link = xfs_vn_link,
1308 .unlink = xfs_vn_unlink,
1309 .symlink = xfs_vn_symlink,
1310 .mkdir = xfs_vn_mkdir,
1311 /*
1312 * Yes, XFS uses the same method for rmdir and unlink.
1313 *
1314 * There are some subtile differences deeper in the code,
1315 * but we use S_ISDIR to check for those.
1316 */
1317 .rmdir = xfs_vn_unlink,
1318 .mknod = xfs_vn_mknod,
1319 .rename = xfs_vn_rename,
1320 .get_inode_acl = xfs_get_acl,
1321 .set_acl = xfs_set_acl,
1322 .getattr = xfs_vn_getattr,
1323 .setattr = xfs_vn_setattr,
1324 .listxattr = xfs_vn_listxattr,
1325 .update_time = xfs_vn_update_time,
1326 .tmpfile = xfs_vn_tmpfile,
1327 .fileattr_get = xfs_fileattr_get,
1328 .fileattr_set = xfs_fileattr_set,
1329};
1330
1331static const struct inode_operations xfs_symlink_inode_operations = {
1332 .get_link = xfs_vn_get_link,
1333 .getattr = xfs_vn_getattr,
1334 .setattr = xfs_vn_setattr,
1335 .listxattr = xfs_vn_listxattr,
1336 .update_time = xfs_vn_update_time,
1337};
1338
1339/* Figure out if this file actually supports DAX. */
1340static bool
1341xfs_inode_supports_dax(
1342 struct xfs_inode *ip)
1343{
1344 struct xfs_mount *mp = ip->i_mount;
1345
1346 /* Only supported on regular files. */
1347 if (!S_ISREG(VFS_I(ip)->i_mode))
1348 return false;
1349
1350 /* Block size must match page size */
1351 if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1352 return false;
1353
1354 /* Device has to support DAX too. */
1355 return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1356}
1357
1358static bool
1359xfs_inode_should_enable_dax(
1360 struct xfs_inode *ip)
1361{
1362 if (!IS_ENABLED(CONFIG_FS_DAX))
1363 return false;
1364 if (xfs_has_dax_never(ip->i_mount))
1365 return false;
1366 if (!xfs_inode_supports_dax(ip))
1367 return false;
1368 if (xfs_has_dax_always(ip->i_mount))
1369 return true;
1370 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
1371 return true;
1372 return false;
1373}
1374
1375void
1376xfs_diflags_to_iflags(
1377 struct xfs_inode *ip,
1378 bool init)
1379{
1380 struct inode *inode = VFS_I(ip);
1381 unsigned int xflags = xfs_ip2xflags(ip);
1382 unsigned int flags = 0;
1383
1384 ASSERT(!(IS_DAX(inode) && init));
1385
1386 if (xflags & FS_XFLAG_IMMUTABLE)
1387 flags |= S_IMMUTABLE;
1388 if (xflags & FS_XFLAG_APPEND)
1389 flags |= S_APPEND;
1390 if (xflags & FS_XFLAG_SYNC)
1391 flags |= S_SYNC;
1392 if (xflags & FS_XFLAG_NOATIME)
1393 flags |= S_NOATIME;
1394 if (init && xfs_inode_should_enable_dax(ip))
1395 flags |= S_DAX;
1396
1397 /*
1398 * S_DAX can only be set during inode initialization and is never set by
1399 * the VFS, so we cannot mask off S_DAX in i_flags.
1400 */
1401 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1402 inode->i_flags |= flags;
1403}
1404
1405/*
1406 * Initialize the Linux inode.
1407 *
1408 * When reading existing inodes from disk this is called directly from xfs_iget,
1409 * when creating a new inode it is called from xfs_init_new_inode after setting
1410 * up the inode. These callers have different criteria for clearing XFS_INEW, so
1411 * leave it up to the caller to deal with unlocking the inode appropriately.
1412 */
1413void
1414xfs_setup_inode(
1415 struct xfs_inode *ip)
1416{
1417 struct inode *inode = &ip->i_vnode;
1418 gfp_t gfp_mask;
1419 bool is_meta = xfs_is_internal_inode(ip);
1420
1421 inode->i_ino = ip->i_ino;
1422 inode->i_state |= I_NEW;
1423
1424 inode_sb_list_add(inode);
1425 /* make the inode look hashed for the writeback code */
1426 inode_fake_hash(inode);
1427
1428 i_size_write(inode, ip->i_disk_size);
1429 xfs_diflags_to_iflags(ip, true);
1430
1431 /*
1432 * Mark our metadata files as private so that LSMs and the ACL code
1433 * don't try to add their own metadata or reason about these files,
1434 * and users cannot ever obtain file handles to them.
1435 */
1436 if (is_meta) {
1437 inode->i_flags |= S_PRIVATE;
1438 inode->i_opflags &= ~IOP_XATTR;
1439 }
1440
1441 if (S_ISDIR(inode->i_mode)) {
1442 /*
1443 * We set the i_rwsem class here to avoid potential races with
1444 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1445 * after a filehandle lookup has already found the inode in
1446 * cache before it has been unlocked via unlock_new_inode().
1447 */
1448 lockdep_set_class(&inode->i_rwsem,
1449 &inode->i_sb->s_type->i_mutex_dir_key);
1450 lockdep_set_class(&ip->i_lock, &xfs_dir_ilock_class);
1451 } else {
1452 lockdep_set_class(&ip->i_lock, &xfs_nondir_ilock_class);
1453 }
1454
1455 /*
1456 * Ensure all page cache allocations are done from GFP_NOFS context to
1457 * prevent direct reclaim recursion back into the filesystem and blowing
1458 * stacks or deadlocking.
1459 */
1460 gfp_mask = mapping_gfp_mask(inode->i_mapping);
1461 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1462
1463 /*
1464 * For real-time inodes update the stable write flags to that of the RT
1465 * device instead of the data device.
1466 */
1467 if (S_ISREG(inode->i_mode) && XFS_IS_REALTIME_INODE(ip))
1468 xfs_update_stable_writes(ip);
1469
1470 /*
1471 * If there is no attribute fork no ACL can exist on this inode,
1472 * and it can't have any file capabilities attached to it either.
1473 */
1474 if (!xfs_inode_has_attr_fork(ip)) {
1475 inode_has_no_xattr(inode);
1476 cache_no_acl(inode);
1477 }
1478}
1479
1480void
1481xfs_setup_iops(
1482 struct xfs_inode *ip)
1483{
1484 struct inode *inode = &ip->i_vnode;
1485
1486 switch (inode->i_mode & S_IFMT) {
1487 case S_IFREG:
1488 inode->i_op = &xfs_inode_operations;
1489 inode->i_fop = &xfs_file_operations;
1490 if (IS_DAX(inode))
1491 inode->i_mapping->a_ops = &xfs_dax_aops;
1492 else
1493 inode->i_mapping->a_ops = &xfs_address_space_operations;
1494 break;
1495 case S_IFDIR:
1496 if (xfs_has_asciici(XFS_M(inode->i_sb)))
1497 inode->i_op = &xfs_dir_ci_inode_operations;
1498 else
1499 inode->i_op = &xfs_dir_inode_operations;
1500 inode->i_fop = &xfs_dir_file_operations;
1501 break;
1502 case S_IFLNK:
1503 inode->i_op = &xfs_symlink_inode_operations;
1504 break;
1505 default:
1506 inode->i_op = &xfs_inode_operations;
1507 init_special_inode(inode, inode->i_mode, inode->i_rdev);
1508 break;
1509 }
1510}