| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| 4 | * All Rights Reserved. |
| 5 | */ |
| 6 | #include "xfs.h" |
| 7 | #include "xfs_fs.h" |
| 8 | #include "xfs_shared.h" |
| 9 | #include "xfs_format.h" |
| 10 | #include "xfs_log_format.h" |
| 11 | #include "xfs_trans_resv.h" |
| 12 | #include "xfs_mount.h" |
| 13 | #include "xfs_inode.h" |
| 14 | #include "xfs_trans.h" |
| 15 | #include "xfs_trans_priv.h" |
| 16 | #include "xfs_inode_item.h" |
| 17 | #include "xfs_quota.h" |
| 18 | #include "xfs_trace.h" |
| 19 | #include "xfs_icache.h" |
| 20 | #include "xfs_bmap_util.h" |
| 21 | #include "xfs_dquot_item.h" |
| 22 | #include "xfs_dquot.h" |
| 23 | #include "xfs_reflink.h" |
| 24 | #include "xfs_ialloc.h" |
| 25 | #include "xfs_ag.h" |
| 26 | #include "xfs_log_priv.h" |
| 27 | #include "xfs_health.h" |
| 28 | #include "xfs_da_format.h" |
| 29 | #include "xfs_dir2.h" |
| 30 | #include "xfs_metafile.h" |
| 31 | |
| 32 | #include <linux/iversion.h> |
| 33 | |
| 34 | /* Radix tree tags for incore inode tree. */ |
| 35 | |
| 36 | /* inode is to be reclaimed */ |
| 37 | #define XFS_ICI_RECLAIM_TAG 0 |
| 38 | /* Inode has speculative preallocations (posteof or cow) to clean. */ |
| 39 | #define XFS_ICI_BLOCKGC_TAG 1 |
| 40 | |
| 41 | /* |
| 42 | * The goal for walking incore inodes. These can correspond with incore inode |
| 43 | * radix tree tags when convenient. Avoid existing XFS_IWALK namespace. |
| 44 | */ |
| 45 | enum xfs_icwalk_goal { |
| 46 | /* Goals directly associated with tagged inodes. */ |
| 47 | XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG, |
| 48 | XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG, |
| 49 | }; |
| 50 | |
| 51 | static int xfs_icwalk(struct xfs_mount *mp, |
| 52 | enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); |
| 53 | static int xfs_icwalk_ag(struct xfs_perag *pag, |
| 54 | enum xfs_icwalk_goal goal, struct xfs_icwalk *icw); |
| 55 | |
| 56 | /* |
| 57 | * Private inode cache walk flags for struct xfs_icwalk. Must not |
| 58 | * coincide with XFS_ICWALK_FLAGS_VALID. |
| 59 | */ |
| 60 | |
| 61 | /* Stop scanning after icw_scan_limit inodes. */ |
| 62 | #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28) |
| 63 | |
| 64 | #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27) |
| 65 | #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */ |
| 66 | |
| 67 | #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \ |
| 68 | XFS_ICWALK_FLAG_RECLAIM_SICK | \ |
| 69 | XFS_ICWALK_FLAG_UNION) |
| 70 | |
| 71 | /* Marks for the perag xarray */ |
| 72 | #define XFS_PERAG_RECLAIM_MARK XA_MARK_0 |
| 73 | #define XFS_PERAG_BLOCKGC_MARK XA_MARK_1 |
| 74 | |
| 75 | static inline xa_mark_t ici_tag_to_mark(unsigned int tag) |
| 76 | { |
| 77 | if (tag == XFS_ICI_RECLAIM_TAG) |
| 78 | return XFS_PERAG_RECLAIM_MARK; |
| 79 | ASSERT(tag == XFS_ICI_BLOCKGC_TAG); |
| 80 | return XFS_PERAG_BLOCKGC_MARK; |
| 81 | } |
| 82 | |
| 83 | /* |
| 84 | * Allocate and initialise an xfs_inode. |
| 85 | */ |
| 86 | struct xfs_inode * |
| 87 | xfs_inode_alloc( |
| 88 | struct xfs_mount *mp, |
| 89 | xfs_ino_t ino) |
| 90 | { |
| 91 | struct xfs_inode *ip; |
| 92 | |
| 93 | /* |
| 94 | * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL |
| 95 | * and return NULL here on ENOMEM. |
| 96 | */ |
| 97 | ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL); |
| 98 | |
| 99 | if (inode_init_always(mp->m_super, VFS_I(ip))) { |
| 100 | kmem_cache_free(xfs_inode_cache, ip); |
| 101 | return NULL; |
| 102 | } |
| 103 | |
| 104 | /* VFS doesn't initialise i_mode! */ |
| 105 | VFS_I(ip)->i_mode = 0; |
| 106 | mapping_set_folio_min_order(VFS_I(ip)->i_mapping, |
| 107 | M_IGEO(mp)->min_folio_order); |
| 108 | |
| 109 | XFS_STATS_INC(mp, vn_active); |
| 110 | ASSERT(atomic_read(&ip->i_pincount) == 0); |
| 111 | ASSERT(ip->i_ino == 0); |
| 112 | |
| 113 | /* initialise the xfs inode */ |
| 114 | ip->i_ino = ino; |
| 115 | ip->i_mount = mp; |
| 116 | memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); |
| 117 | ip->i_cowfp = NULL; |
| 118 | memset(&ip->i_af, 0, sizeof(ip->i_af)); |
| 119 | ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; |
| 120 | memset(&ip->i_df, 0, sizeof(ip->i_df)); |
| 121 | ip->i_flags = 0; |
| 122 | ip->i_delayed_blks = 0; |
| 123 | ip->i_diflags2 = mp->m_ino_geo.new_diflags2; |
| 124 | ip->i_nblocks = 0; |
| 125 | ip->i_forkoff = 0; |
| 126 | ip->i_sick = 0; |
| 127 | ip->i_checked = 0; |
| 128 | INIT_WORK(&ip->i_ioend_work, xfs_end_io); |
| 129 | INIT_LIST_HEAD(&ip->i_ioend_list); |
| 130 | spin_lock_init(&ip->i_ioend_lock); |
| 131 | ip->i_next_unlinked = NULLAGINO; |
| 132 | ip->i_prev_unlinked = 0; |
| 133 | |
| 134 | return ip; |
| 135 | } |
| 136 | |
| 137 | STATIC void |
| 138 | xfs_inode_free_callback( |
| 139 | struct rcu_head *head) |
| 140 | { |
| 141 | struct inode *inode = container_of(head, struct inode, i_rcu); |
| 142 | struct xfs_inode *ip = XFS_I(inode); |
| 143 | |
| 144 | switch (VFS_I(ip)->i_mode & S_IFMT) { |
| 145 | case S_IFREG: |
| 146 | case S_IFDIR: |
| 147 | case S_IFLNK: |
| 148 | xfs_idestroy_fork(&ip->i_df); |
| 149 | break; |
| 150 | } |
| 151 | |
| 152 | xfs_ifork_zap_attr(ip); |
| 153 | |
| 154 | if (ip->i_cowfp) { |
| 155 | xfs_idestroy_fork(ip->i_cowfp); |
| 156 | kmem_cache_free(xfs_ifork_cache, ip->i_cowfp); |
| 157 | } |
| 158 | if (ip->i_itemp) { |
| 159 | ASSERT(!test_bit(XFS_LI_IN_AIL, |
| 160 | &ip->i_itemp->ili_item.li_flags)); |
| 161 | xfs_inode_item_destroy(ip); |
| 162 | ip->i_itemp = NULL; |
| 163 | } |
| 164 | |
| 165 | kmem_cache_free(xfs_inode_cache, ip); |
| 166 | } |
| 167 | |
| 168 | static void |
| 169 | __xfs_inode_free( |
| 170 | struct xfs_inode *ip) |
| 171 | { |
| 172 | /* asserts to verify all state is correct here */ |
| 173 | ASSERT(atomic_read(&ip->i_pincount) == 0); |
| 174 | ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list)); |
| 175 | XFS_STATS_DEC(ip->i_mount, vn_active); |
| 176 | |
| 177 | call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); |
| 178 | } |
| 179 | |
| 180 | void |
| 181 | xfs_inode_free( |
| 182 | struct xfs_inode *ip) |
| 183 | { |
| 184 | ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING)); |
| 185 | |
| 186 | /* |
| 187 | * Because we use RCU freeing we need to ensure the inode always |
| 188 | * appears to be reclaimed with an invalid inode number when in the |
| 189 | * free state. The ip->i_flags_lock provides the barrier against lookup |
| 190 | * races. |
| 191 | */ |
| 192 | spin_lock(&ip->i_flags_lock); |
| 193 | ip->i_flags = XFS_IRECLAIM; |
| 194 | ip->i_ino = 0; |
| 195 | spin_unlock(&ip->i_flags_lock); |
| 196 | |
| 197 | __xfs_inode_free(ip); |
| 198 | } |
| 199 | |
| 200 | /* |
| 201 | * Queue background inode reclaim work if there are reclaimable inodes and there |
| 202 | * isn't reclaim work already scheduled or in progress. |
| 203 | */ |
| 204 | static void |
| 205 | xfs_reclaim_work_queue( |
| 206 | struct xfs_mount *mp) |
| 207 | { |
| 208 | |
| 209 | rcu_read_lock(); |
| 210 | if (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) { |
| 211 | queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, |
| 212 | msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); |
| 213 | } |
| 214 | rcu_read_unlock(); |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * Background scanning to trim preallocated space. This is queued based on the |
| 219 | * 'speculative_prealloc_lifetime' tunable (5m by default). |
| 220 | */ |
| 221 | static inline void |
| 222 | xfs_blockgc_queue( |
| 223 | struct xfs_perag *pag) |
| 224 | { |
| 225 | struct xfs_mount *mp = pag_mount(pag); |
| 226 | |
| 227 | if (!xfs_is_blockgc_enabled(mp)) |
| 228 | return; |
| 229 | |
| 230 | rcu_read_lock(); |
| 231 | if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) |
| 232 | queue_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, |
| 233 | secs_to_jiffies(xfs_blockgc_secs)); |
| 234 | rcu_read_unlock(); |
| 235 | } |
| 236 | |
| 237 | /* Set a tag on both the AG incore inode tree and the AG radix tree. */ |
| 238 | static void |
| 239 | xfs_perag_set_inode_tag( |
| 240 | struct xfs_perag *pag, |
| 241 | xfs_agino_t agino, |
| 242 | unsigned int tag) |
| 243 | { |
| 244 | bool was_tagged; |
| 245 | |
| 246 | lockdep_assert_held(&pag->pag_ici_lock); |
| 247 | |
| 248 | was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag); |
| 249 | radix_tree_tag_set(&pag->pag_ici_root, agino, tag); |
| 250 | |
| 251 | if (tag == XFS_ICI_RECLAIM_TAG) |
| 252 | pag->pag_ici_reclaimable++; |
| 253 | |
| 254 | if (was_tagged) |
| 255 | return; |
| 256 | |
| 257 | /* propagate the tag up into the pag xarray tree */ |
| 258 | xfs_group_set_mark(pag_group(pag), ici_tag_to_mark(tag)); |
| 259 | |
| 260 | /* start background work */ |
| 261 | switch (tag) { |
| 262 | case XFS_ICI_RECLAIM_TAG: |
| 263 | xfs_reclaim_work_queue(pag_mount(pag)); |
| 264 | break; |
| 265 | case XFS_ICI_BLOCKGC_TAG: |
| 266 | xfs_blockgc_queue(pag); |
| 267 | break; |
| 268 | } |
| 269 | |
| 270 | trace_xfs_perag_set_inode_tag(pag, _RET_IP_); |
| 271 | } |
| 272 | |
| 273 | /* Clear a tag on both the AG incore inode tree and the AG radix tree. */ |
| 274 | static void |
| 275 | xfs_perag_clear_inode_tag( |
| 276 | struct xfs_perag *pag, |
| 277 | xfs_agino_t agino, |
| 278 | unsigned int tag) |
| 279 | { |
| 280 | lockdep_assert_held(&pag->pag_ici_lock); |
| 281 | |
| 282 | /* |
| 283 | * Reclaim can signal (with a null agino) that it cleared its own tag |
| 284 | * by removing the inode from the radix tree. |
| 285 | */ |
| 286 | if (agino != NULLAGINO) |
| 287 | radix_tree_tag_clear(&pag->pag_ici_root, agino, tag); |
| 288 | else |
| 289 | ASSERT(tag == XFS_ICI_RECLAIM_TAG); |
| 290 | |
| 291 | if (tag == XFS_ICI_RECLAIM_TAG) |
| 292 | pag->pag_ici_reclaimable--; |
| 293 | |
| 294 | if (radix_tree_tagged(&pag->pag_ici_root, tag)) |
| 295 | return; |
| 296 | |
| 297 | /* clear the tag from the pag xarray */ |
| 298 | xfs_group_clear_mark(pag_group(pag), ici_tag_to_mark(tag)); |
| 299 | trace_xfs_perag_clear_inode_tag(pag, _RET_IP_); |
| 300 | } |
| 301 | |
| 302 | /* |
| 303 | * Find the next AG after @pag, or the first AG if @pag is NULL. |
| 304 | */ |
| 305 | static struct xfs_perag * |
| 306 | xfs_perag_grab_next_tag( |
| 307 | struct xfs_mount *mp, |
| 308 | struct xfs_perag *pag, |
| 309 | int tag) |
| 310 | { |
| 311 | return to_perag(xfs_group_grab_next_mark(mp, |
| 312 | pag ? pag_group(pag) : NULL, |
| 313 | ici_tag_to_mark(tag), XG_TYPE_AG)); |
| 314 | } |
| 315 | |
| 316 | /* |
| 317 | * When we recycle a reclaimable inode, we need to re-initialise the VFS inode |
| 318 | * part of the structure. This is made more complex by the fact we store |
| 319 | * information about the on-disk values in the VFS inode and so we can't just |
| 320 | * overwrite the values unconditionally. Hence we save the parameters we |
| 321 | * need to retain across reinitialisation, and rewrite them into the VFS inode |
| 322 | * after reinitialisation even if it fails. |
| 323 | */ |
| 324 | static int |
| 325 | xfs_reinit_inode( |
| 326 | struct xfs_mount *mp, |
| 327 | struct inode *inode) |
| 328 | { |
| 329 | int error; |
| 330 | uint32_t nlink = inode->i_nlink; |
| 331 | uint32_t generation = inode->i_generation; |
| 332 | uint64_t version = inode_peek_iversion(inode); |
| 333 | umode_t mode = inode->i_mode; |
| 334 | dev_t dev = inode->i_rdev; |
| 335 | kuid_t uid = inode->i_uid; |
| 336 | kgid_t gid = inode->i_gid; |
| 337 | unsigned long state = inode->i_state; |
| 338 | |
| 339 | error = inode_init_always(mp->m_super, inode); |
| 340 | |
| 341 | set_nlink(inode, nlink); |
| 342 | inode->i_generation = generation; |
| 343 | inode_set_iversion_queried(inode, version); |
| 344 | inode->i_mode = mode; |
| 345 | inode->i_rdev = dev; |
| 346 | inode->i_uid = uid; |
| 347 | inode->i_gid = gid; |
| 348 | inode->i_state = state; |
| 349 | mapping_set_folio_min_order(inode->i_mapping, |
| 350 | M_IGEO(mp)->min_folio_order); |
| 351 | return error; |
| 352 | } |
| 353 | |
| 354 | /* |
| 355 | * Carefully nudge an inode whose VFS state has been torn down back into a |
| 356 | * usable state. Drops the i_flags_lock and the rcu read lock. |
| 357 | */ |
| 358 | static int |
| 359 | xfs_iget_recycle( |
| 360 | struct xfs_perag *pag, |
| 361 | struct xfs_inode *ip) __releases(&ip->i_flags_lock) |
| 362 | { |
| 363 | struct xfs_mount *mp = ip->i_mount; |
| 364 | struct inode *inode = VFS_I(ip); |
| 365 | int error; |
| 366 | |
| 367 | trace_xfs_iget_recycle(ip); |
| 368 | |
| 369 | if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) |
| 370 | return -EAGAIN; |
| 371 | |
| 372 | /* |
| 373 | * We need to make it look like the inode is being reclaimed to prevent |
| 374 | * the actual reclaim workers from stomping over us while we recycle |
| 375 | * the inode. We can't clear the radix tree tag yet as it requires |
| 376 | * pag_ici_lock to be held exclusive. |
| 377 | */ |
| 378 | ip->i_flags |= XFS_IRECLAIM; |
| 379 | |
| 380 | spin_unlock(&ip->i_flags_lock); |
| 381 | rcu_read_unlock(); |
| 382 | |
| 383 | ASSERT(!rwsem_is_locked(&inode->i_rwsem)); |
| 384 | error = xfs_reinit_inode(mp, inode); |
| 385 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 386 | if (error) { |
| 387 | /* |
| 388 | * Re-initializing the inode failed, and we are in deep |
| 389 | * trouble. Try to re-add it to the reclaim list. |
| 390 | */ |
| 391 | rcu_read_lock(); |
| 392 | spin_lock(&ip->i_flags_lock); |
| 393 | ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); |
| 394 | ASSERT(ip->i_flags & XFS_IRECLAIMABLE); |
| 395 | spin_unlock(&ip->i_flags_lock); |
| 396 | rcu_read_unlock(); |
| 397 | |
| 398 | trace_xfs_iget_recycle_fail(ip); |
| 399 | return error; |
| 400 | } |
| 401 | |
| 402 | spin_lock(&pag->pag_ici_lock); |
| 403 | spin_lock(&ip->i_flags_lock); |
| 404 | |
| 405 | /* |
| 406 | * Clear the per-lifetime state in the inode as we are now effectively |
| 407 | * a new inode and need to return to the initial state before reuse |
| 408 | * occurs. |
| 409 | */ |
| 410 | ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; |
| 411 | ip->i_flags |= XFS_INEW; |
| 412 | xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), |
| 413 | XFS_ICI_RECLAIM_TAG); |
| 414 | inode->i_state = I_NEW; |
| 415 | spin_unlock(&ip->i_flags_lock); |
| 416 | spin_unlock(&pag->pag_ici_lock); |
| 417 | |
| 418 | return 0; |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * If we are allocating a new inode, then check what was returned is |
| 423 | * actually a free, empty inode. If we are not allocating an inode, |
| 424 | * then check we didn't find a free inode. |
| 425 | * |
| 426 | * Returns: |
| 427 | * 0 if the inode free state matches the lookup context |
| 428 | * -ENOENT if the inode is free and we are not allocating |
| 429 | * -EFSCORRUPTED if there is any state mismatch at all |
| 430 | */ |
| 431 | static int |
| 432 | xfs_iget_check_free_state( |
| 433 | struct xfs_inode *ip, |
| 434 | int flags) |
| 435 | { |
| 436 | if (flags & XFS_IGET_CREATE) { |
| 437 | /* should be a free inode */ |
| 438 | if (VFS_I(ip)->i_mode != 0) { |
| 439 | xfs_warn(ip->i_mount, |
| 440 | "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)", |
| 441 | ip->i_ino, VFS_I(ip)->i_mode); |
| 442 | xfs_agno_mark_sick(ip->i_mount, |
| 443 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), |
| 444 | XFS_SICK_AG_INOBT); |
| 445 | return -EFSCORRUPTED; |
| 446 | } |
| 447 | |
| 448 | if (ip->i_nblocks != 0) { |
| 449 | xfs_warn(ip->i_mount, |
| 450 | "Corruption detected! Free inode 0x%llx has blocks allocated!", |
| 451 | ip->i_ino); |
| 452 | xfs_agno_mark_sick(ip->i_mount, |
| 453 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), |
| 454 | XFS_SICK_AG_INOBT); |
| 455 | return -EFSCORRUPTED; |
| 456 | } |
| 457 | return 0; |
| 458 | } |
| 459 | |
| 460 | /* should be an allocated inode */ |
| 461 | if (VFS_I(ip)->i_mode == 0) |
| 462 | return -ENOENT; |
| 463 | |
| 464 | return 0; |
| 465 | } |
| 466 | |
| 467 | /* Make all pending inactivation work start immediately. */ |
| 468 | static bool |
| 469 | xfs_inodegc_queue_all( |
| 470 | struct xfs_mount *mp) |
| 471 | { |
| 472 | struct xfs_inodegc *gc; |
| 473 | int cpu; |
| 474 | bool ret = false; |
| 475 | |
| 476 | for_each_cpu(cpu, &mp->m_inodegc_cpumask) { |
| 477 | gc = per_cpu_ptr(mp->m_inodegc, cpu); |
| 478 | if (!llist_empty(&gc->list)) { |
| 479 | mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); |
| 480 | ret = true; |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | return ret; |
| 485 | } |
| 486 | |
| 487 | /* Wait for all queued work and collect errors */ |
| 488 | static int |
| 489 | xfs_inodegc_wait_all( |
| 490 | struct xfs_mount *mp) |
| 491 | { |
| 492 | int cpu; |
| 493 | int error = 0; |
| 494 | |
| 495 | flush_workqueue(mp->m_inodegc_wq); |
| 496 | for_each_cpu(cpu, &mp->m_inodegc_cpumask) { |
| 497 | struct xfs_inodegc *gc; |
| 498 | |
| 499 | gc = per_cpu_ptr(mp->m_inodegc, cpu); |
| 500 | if (gc->error && !error) |
| 501 | error = gc->error; |
| 502 | gc->error = 0; |
| 503 | } |
| 504 | |
| 505 | return error; |
| 506 | } |
| 507 | |
| 508 | /* |
| 509 | * Check the validity of the inode we just found it the cache |
| 510 | */ |
| 511 | static int |
| 512 | xfs_iget_cache_hit( |
| 513 | struct xfs_perag *pag, |
| 514 | struct xfs_inode *ip, |
| 515 | xfs_ino_t ino, |
| 516 | int flags, |
| 517 | int lock_flags) __releases(RCU) |
| 518 | { |
| 519 | struct inode *inode = VFS_I(ip); |
| 520 | struct xfs_mount *mp = ip->i_mount; |
| 521 | int error; |
| 522 | |
| 523 | /* |
| 524 | * check for re-use of an inode within an RCU grace period due to the |
| 525 | * radix tree nodes not being updated yet. We monitor for this by |
| 526 | * setting the inode number to zero before freeing the inode structure. |
| 527 | * If the inode has been reallocated and set up, then the inode number |
| 528 | * will not match, so check for that, too. |
| 529 | */ |
| 530 | spin_lock(&ip->i_flags_lock); |
| 531 | if (ip->i_ino != ino) |
| 532 | goto out_skip; |
| 533 | |
| 534 | /* |
| 535 | * If we are racing with another cache hit that is currently |
| 536 | * instantiating this inode or currently recycling it out of |
| 537 | * reclaimable state, wait for the initialisation to complete |
| 538 | * before continuing. |
| 539 | * |
| 540 | * If we're racing with the inactivation worker we also want to wait. |
| 541 | * If we're creating a new file, it's possible that the worker |
| 542 | * previously marked the inode as free on disk but hasn't finished |
| 543 | * updating the incore state yet. The AGI buffer will be dirty and |
| 544 | * locked to the icreate transaction, so a synchronous push of the |
| 545 | * inodegc workers would result in deadlock. For a regular iget, the |
| 546 | * worker is running already, so we might as well wait. |
| 547 | * |
| 548 | * XXX(hch): eventually we should do something equivalent to |
| 549 | * wait_on_inode to wait for these flags to be cleared |
| 550 | * instead of polling for it. |
| 551 | */ |
| 552 | if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING)) |
| 553 | goto out_skip; |
| 554 | |
| 555 | if (ip->i_flags & XFS_NEED_INACTIVE) { |
| 556 | /* Unlinked inodes cannot be re-grabbed. */ |
| 557 | if (VFS_I(ip)->i_nlink == 0) { |
| 558 | error = -ENOENT; |
| 559 | goto out_error; |
| 560 | } |
| 561 | goto out_inodegc_flush; |
| 562 | } |
| 563 | |
| 564 | /* |
| 565 | * Check the inode free state is valid. This also detects lookup |
| 566 | * racing with unlinks. |
| 567 | */ |
| 568 | error = xfs_iget_check_free_state(ip, flags); |
| 569 | if (error) |
| 570 | goto out_error; |
| 571 | |
| 572 | /* Skip inodes that have no vfs state. */ |
| 573 | if ((flags & XFS_IGET_INCORE) && |
| 574 | (ip->i_flags & XFS_IRECLAIMABLE)) |
| 575 | goto out_skip; |
| 576 | |
| 577 | /* The inode fits the selection criteria; process it. */ |
| 578 | if (ip->i_flags & XFS_IRECLAIMABLE) { |
| 579 | /* Drops i_flags_lock and RCU read lock. */ |
| 580 | error = xfs_iget_recycle(pag, ip); |
| 581 | if (error == -EAGAIN) |
| 582 | goto out_skip; |
| 583 | if (error) |
| 584 | return error; |
| 585 | } else { |
| 586 | /* If the VFS inode is being torn down, pause and try again. */ |
| 587 | if (!igrab(inode)) |
| 588 | goto out_skip; |
| 589 | |
| 590 | /* We've got a live one. */ |
| 591 | spin_unlock(&ip->i_flags_lock); |
| 592 | rcu_read_unlock(); |
| 593 | trace_xfs_iget_hit(ip); |
| 594 | } |
| 595 | |
| 596 | if (lock_flags != 0) |
| 597 | xfs_ilock(ip, lock_flags); |
| 598 | |
| 599 | if (!(flags & XFS_IGET_INCORE)) |
| 600 | xfs_iflags_clear(ip, XFS_ISTALE); |
| 601 | XFS_STATS_INC(mp, xs_ig_found); |
| 602 | |
| 603 | return 0; |
| 604 | |
| 605 | out_skip: |
| 606 | trace_xfs_iget_skip(ip); |
| 607 | XFS_STATS_INC(mp, xs_ig_frecycle); |
| 608 | error = -EAGAIN; |
| 609 | out_error: |
| 610 | spin_unlock(&ip->i_flags_lock); |
| 611 | rcu_read_unlock(); |
| 612 | return error; |
| 613 | |
| 614 | out_inodegc_flush: |
| 615 | spin_unlock(&ip->i_flags_lock); |
| 616 | rcu_read_unlock(); |
| 617 | /* |
| 618 | * Do not wait for the workers, because the caller could hold an AGI |
| 619 | * buffer lock. We're just going to sleep in a loop anyway. |
| 620 | */ |
| 621 | if (xfs_is_inodegc_enabled(mp)) |
| 622 | xfs_inodegc_queue_all(mp); |
| 623 | return -EAGAIN; |
| 624 | } |
| 625 | |
| 626 | static int |
| 627 | xfs_iget_cache_miss( |
| 628 | struct xfs_mount *mp, |
| 629 | struct xfs_perag *pag, |
| 630 | xfs_trans_t *tp, |
| 631 | xfs_ino_t ino, |
| 632 | struct xfs_inode **ipp, |
| 633 | int flags, |
| 634 | int lock_flags) |
| 635 | { |
| 636 | struct xfs_inode *ip; |
| 637 | int error; |
| 638 | xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); |
| 639 | |
| 640 | ip = xfs_inode_alloc(mp, ino); |
| 641 | if (!ip) |
| 642 | return -ENOMEM; |
| 643 | |
| 644 | error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags); |
| 645 | if (error) |
| 646 | goto out_destroy; |
| 647 | |
| 648 | /* |
| 649 | * For version 5 superblocks, if we are initialising a new inode and we |
| 650 | * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can |
| 651 | * simply build the new inode core with a random generation number. |
| 652 | * |
| 653 | * For version 4 (and older) superblocks, log recovery is dependent on |
| 654 | * the i_flushiter field being initialised from the current on-disk |
| 655 | * value and hence we must also read the inode off disk even when |
| 656 | * initializing new inodes. |
| 657 | */ |
| 658 | if (xfs_has_v3inodes(mp) && |
| 659 | (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) { |
| 660 | VFS_I(ip)->i_generation = get_random_u32(); |
| 661 | } else { |
| 662 | struct xfs_buf *bp; |
| 663 | |
| 664 | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp); |
| 665 | if (error) |
| 666 | goto out_destroy; |
| 667 | |
| 668 | error = xfs_inode_from_disk(ip, |
| 669 | xfs_buf_offset(bp, ip->i_imap.im_boffset)); |
| 670 | if (!error) |
| 671 | xfs_buf_set_ref(bp, XFS_INO_REF); |
| 672 | else |
| 673 | xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); |
| 674 | xfs_trans_brelse(tp, bp); |
| 675 | |
| 676 | if (error) |
| 677 | goto out_destroy; |
| 678 | } |
| 679 | |
| 680 | trace_xfs_iget_miss(ip); |
| 681 | |
| 682 | /* |
| 683 | * Check the inode free state is valid. This also detects lookup |
| 684 | * racing with unlinks. |
| 685 | */ |
| 686 | error = xfs_iget_check_free_state(ip, flags); |
| 687 | if (error) |
| 688 | goto out_destroy; |
| 689 | |
| 690 | /* |
| 691 | * Preload the radix tree so we can insert safely under the |
| 692 | * write spinlock. Note that we cannot sleep inside the preload |
| 693 | * region. |
| 694 | */ |
| 695 | if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) { |
| 696 | error = -EAGAIN; |
| 697 | goto out_destroy; |
| 698 | } |
| 699 | |
| 700 | /* |
| 701 | * Because the inode hasn't been added to the radix-tree yet it can't |
| 702 | * be found by another thread, so we can do the non-sleeping lock here. |
| 703 | */ |
| 704 | if (lock_flags) { |
| 705 | if (!xfs_ilock_nowait(ip, lock_flags)) |
| 706 | BUG(); |
| 707 | } |
| 708 | |
| 709 | /* |
| 710 | * These values must be set before inserting the inode into the radix |
| 711 | * tree as the moment it is inserted a concurrent lookup (allowed by the |
| 712 | * RCU locking mechanism) can find it and that lookup must see that this |
| 713 | * is an inode currently under construction (i.e. that XFS_INEW is set). |
| 714 | * The ip->i_flags_lock that protects the XFS_INEW flag forms the |
| 715 | * memory barrier that ensures this detection works correctly at lookup |
| 716 | * time. |
| 717 | */ |
| 718 | if (flags & XFS_IGET_DONTCACHE) |
| 719 | d_mark_dontcache(VFS_I(ip)); |
| 720 | ip->i_udquot = NULL; |
| 721 | ip->i_gdquot = NULL; |
| 722 | ip->i_pdquot = NULL; |
| 723 | xfs_iflags_set(ip, XFS_INEW); |
| 724 | |
| 725 | /* insert the new inode */ |
| 726 | spin_lock(&pag->pag_ici_lock); |
| 727 | error = radix_tree_insert(&pag->pag_ici_root, agino, ip); |
| 728 | if (unlikely(error)) { |
| 729 | WARN_ON(error != -EEXIST); |
| 730 | XFS_STATS_INC(mp, xs_ig_dup); |
| 731 | error = -EAGAIN; |
| 732 | goto out_preload_end; |
| 733 | } |
| 734 | spin_unlock(&pag->pag_ici_lock); |
| 735 | radix_tree_preload_end(); |
| 736 | |
| 737 | *ipp = ip; |
| 738 | return 0; |
| 739 | |
| 740 | out_preload_end: |
| 741 | spin_unlock(&pag->pag_ici_lock); |
| 742 | radix_tree_preload_end(); |
| 743 | if (lock_flags) |
| 744 | xfs_iunlock(ip, lock_flags); |
| 745 | out_destroy: |
| 746 | __destroy_inode(VFS_I(ip)); |
| 747 | xfs_inode_free(ip); |
| 748 | return error; |
| 749 | } |
| 750 | |
| 751 | /* |
| 752 | * Look up an inode by number in the given file system. The inode is looked up |
| 753 | * in the cache held in each AG. If the inode is found in the cache, initialise |
| 754 | * the vfs inode if necessary. |
| 755 | * |
| 756 | * If it is not in core, read it in from the file system's device, add it to the |
| 757 | * cache and initialise the vfs inode. |
| 758 | * |
| 759 | * The inode is locked according to the value of the lock_flags parameter. |
| 760 | * Inode lookup is only done during metadata operations and not as part of the |
| 761 | * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup. |
| 762 | */ |
| 763 | int |
| 764 | xfs_iget( |
| 765 | struct xfs_mount *mp, |
| 766 | struct xfs_trans *tp, |
| 767 | xfs_ino_t ino, |
| 768 | uint flags, |
| 769 | uint lock_flags, |
| 770 | struct xfs_inode **ipp) |
| 771 | { |
| 772 | struct xfs_inode *ip; |
| 773 | struct xfs_perag *pag; |
| 774 | xfs_agino_t agino; |
| 775 | int error; |
| 776 | |
| 777 | ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); |
| 778 | |
| 779 | /* reject inode numbers outside existing AGs */ |
| 780 | if (!xfs_verify_ino(mp, ino)) |
| 781 | return -EINVAL; |
| 782 | |
| 783 | XFS_STATS_INC(mp, xs_ig_attempts); |
| 784 | |
| 785 | /* get the perag structure and ensure that it's inode capable */ |
| 786 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); |
| 787 | agino = XFS_INO_TO_AGINO(mp, ino); |
| 788 | |
| 789 | again: |
| 790 | error = 0; |
| 791 | rcu_read_lock(); |
| 792 | ip = radix_tree_lookup(&pag->pag_ici_root, agino); |
| 793 | |
| 794 | if (ip) { |
| 795 | error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); |
| 796 | if (error) |
| 797 | goto out_error_or_again; |
| 798 | } else { |
| 799 | rcu_read_unlock(); |
| 800 | if (flags & XFS_IGET_INCORE) { |
| 801 | error = -ENODATA; |
| 802 | goto out_error_or_again; |
| 803 | } |
| 804 | XFS_STATS_INC(mp, xs_ig_missed); |
| 805 | |
| 806 | error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, |
| 807 | flags, lock_flags); |
| 808 | if (error) |
| 809 | goto out_error_or_again; |
| 810 | } |
| 811 | xfs_perag_put(pag); |
| 812 | |
| 813 | *ipp = ip; |
| 814 | |
| 815 | /* |
| 816 | * If we have a real type for an on-disk inode, we can setup the inode |
| 817 | * now. If it's a new inode being created, xfs_init_new_inode will |
| 818 | * handle it. |
| 819 | */ |
| 820 | if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0) |
| 821 | xfs_setup_existing_inode(ip); |
| 822 | return 0; |
| 823 | |
| 824 | out_error_or_again: |
| 825 | if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) && |
| 826 | error == -EAGAIN) { |
| 827 | delay(1); |
| 828 | goto again; |
| 829 | } |
| 830 | xfs_perag_put(pag); |
| 831 | return error; |
| 832 | } |
| 833 | |
| 834 | /* |
| 835 | * Get a metadata inode. |
| 836 | * |
| 837 | * The metafile type must match the file mode exactly, and for files in the |
| 838 | * metadata directory tree, it must match the inode's metatype exactly. |
| 839 | */ |
| 840 | int |
| 841 | xfs_trans_metafile_iget( |
| 842 | struct xfs_trans *tp, |
| 843 | xfs_ino_t ino, |
| 844 | enum xfs_metafile_type metafile_type, |
| 845 | struct xfs_inode **ipp) |
| 846 | { |
| 847 | struct xfs_mount *mp = tp->t_mountp; |
| 848 | struct xfs_inode *ip; |
| 849 | umode_t mode; |
| 850 | int error; |
| 851 | |
| 852 | error = xfs_iget(mp, tp, ino, 0, 0, &ip); |
| 853 | if (error == -EFSCORRUPTED || error == -EINVAL) |
| 854 | goto whine; |
| 855 | if (error) |
| 856 | return error; |
| 857 | |
| 858 | if (VFS_I(ip)->i_nlink == 0) |
| 859 | goto bad_rele; |
| 860 | |
| 861 | if (metafile_type == XFS_METAFILE_DIR) |
| 862 | mode = S_IFDIR; |
| 863 | else |
| 864 | mode = S_IFREG; |
| 865 | if (inode_wrong_type(VFS_I(ip), mode)) |
| 866 | goto bad_rele; |
| 867 | if (xfs_has_metadir(mp)) { |
| 868 | if (!xfs_is_metadir_inode(ip)) |
| 869 | goto bad_rele; |
| 870 | if (metafile_type != ip->i_metatype) |
| 871 | goto bad_rele; |
| 872 | } |
| 873 | |
| 874 | *ipp = ip; |
| 875 | return 0; |
| 876 | bad_rele: |
| 877 | xfs_irele(ip); |
| 878 | whine: |
| 879 | xfs_err(mp, "metadata inode 0x%llx type %u is corrupt", ino, |
| 880 | metafile_type); |
| 881 | xfs_fs_mark_sick(mp, XFS_SICK_FS_METADIR); |
| 882 | return -EFSCORRUPTED; |
| 883 | } |
| 884 | |
| 885 | /* Grab a metadata file if the caller doesn't already have a transaction. */ |
| 886 | int |
| 887 | xfs_metafile_iget( |
| 888 | struct xfs_mount *mp, |
| 889 | xfs_ino_t ino, |
| 890 | enum xfs_metafile_type metafile_type, |
| 891 | struct xfs_inode **ipp) |
| 892 | { |
| 893 | struct xfs_trans *tp; |
| 894 | int error; |
| 895 | |
| 896 | error = xfs_trans_alloc_empty(mp, &tp); |
| 897 | if (error) |
| 898 | return error; |
| 899 | |
| 900 | error = xfs_trans_metafile_iget(tp, ino, metafile_type, ipp); |
| 901 | xfs_trans_cancel(tp); |
| 902 | return error; |
| 903 | } |
| 904 | |
| 905 | /* |
| 906 | * Grab the inode for reclaim exclusively. |
| 907 | * |
| 908 | * We have found this inode via a lookup under RCU, so the inode may have |
| 909 | * already been freed, or it may be in the process of being recycled by |
| 910 | * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode |
| 911 | * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE |
| 912 | * will not be set. Hence we need to check for both these flag conditions to |
| 913 | * avoid inodes that are no longer reclaim candidates. |
| 914 | * |
| 915 | * Note: checking for other state flags here, under the i_flags_lock or not, is |
| 916 | * racy and should be avoided. Those races should be resolved only after we have |
| 917 | * ensured that we are able to reclaim this inode and the world can see that we |
| 918 | * are going to reclaim it. |
| 919 | * |
| 920 | * Return true if we grabbed it, false otherwise. |
| 921 | */ |
| 922 | static bool |
| 923 | xfs_reclaim_igrab( |
| 924 | struct xfs_inode *ip, |
| 925 | struct xfs_icwalk *icw) |
| 926 | { |
| 927 | ASSERT(rcu_read_lock_held()); |
| 928 | |
| 929 | spin_lock(&ip->i_flags_lock); |
| 930 | if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || |
| 931 | __xfs_iflags_test(ip, XFS_IRECLAIM)) { |
| 932 | /* not a reclaim candidate. */ |
| 933 | spin_unlock(&ip->i_flags_lock); |
| 934 | return false; |
| 935 | } |
| 936 | |
| 937 | /* Don't reclaim a sick inode unless the caller asked for it. */ |
| 938 | if (ip->i_sick && |
| 939 | (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) { |
| 940 | spin_unlock(&ip->i_flags_lock); |
| 941 | return false; |
| 942 | } |
| 943 | |
| 944 | __xfs_iflags_set(ip, XFS_IRECLAIM); |
| 945 | spin_unlock(&ip->i_flags_lock); |
| 946 | return true; |
| 947 | } |
| 948 | |
| 949 | /* |
| 950 | * Inode reclaim is non-blocking, so the default action if progress cannot be |
| 951 | * made is to "requeue" the inode for reclaim by unlocking it and clearing the |
| 952 | * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about |
| 953 | * blocking anymore and hence we can wait for the inode to be able to reclaim |
| 954 | * it. |
| 955 | * |
| 956 | * We do no IO here - if callers require inodes to be cleaned they must push the |
| 957 | * AIL first to trigger writeback of dirty inodes. This enables writeback to be |
| 958 | * done in the background in a non-blocking manner, and enables memory reclaim |
| 959 | * to make progress without blocking. |
| 960 | */ |
| 961 | static void |
| 962 | xfs_reclaim_inode( |
| 963 | struct xfs_inode *ip, |
| 964 | struct xfs_perag *pag) |
| 965 | { |
| 966 | xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */ |
| 967 | |
| 968 | if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) |
| 969 | goto out; |
| 970 | if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING)) |
| 971 | goto out_iunlock; |
| 972 | |
| 973 | /* |
| 974 | * Check for log shutdown because aborting the inode can move the log |
| 975 | * tail and corrupt in memory state. This is fine if the log is shut |
| 976 | * down, but if the log is still active and only the mount is shut down |
| 977 | * then the in-memory log tail movement caused by the abort can be |
| 978 | * incorrectly propagated to disk. |
| 979 | */ |
| 980 | if (xlog_is_shutdown(ip->i_mount->m_log)) { |
| 981 | xfs_iunpin_wait(ip); |
| 982 | /* |
| 983 | * Avoid a ABBA deadlock on the inode cluster buffer vs |
| 984 | * concurrent xfs_ifree_cluster() trying to mark the inode |
| 985 | * stale. We don't need the inode locked to run the flush abort |
| 986 | * code, but the flush abort needs to lock the cluster buffer. |
| 987 | */ |
| 988 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 989 | xfs_iflush_shutdown_abort(ip); |
| 990 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 991 | goto reclaim; |
| 992 | } |
| 993 | if (xfs_ipincount(ip)) |
| 994 | goto out_clear_flush; |
| 995 | if (!xfs_inode_clean(ip)) |
| 996 | goto out_clear_flush; |
| 997 | |
| 998 | xfs_iflags_clear(ip, XFS_IFLUSHING); |
| 999 | reclaim: |
| 1000 | trace_xfs_inode_reclaiming(ip); |
| 1001 | |
| 1002 | /* |
| 1003 | * Because we use RCU freeing we need to ensure the inode always appears |
| 1004 | * to be reclaimed with an invalid inode number when in the free state. |
| 1005 | * We do this as early as possible under the ILOCK so that |
| 1006 | * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to |
| 1007 | * detect races with us here. By doing this, we guarantee that once |
| 1008 | * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that |
| 1009 | * it will see either a valid inode that will serialise correctly, or it |
| 1010 | * will see an invalid inode that it can skip. |
| 1011 | */ |
| 1012 | spin_lock(&ip->i_flags_lock); |
| 1013 | ip->i_flags = XFS_IRECLAIM; |
| 1014 | ip->i_ino = 0; |
| 1015 | ip->i_sick = 0; |
| 1016 | ip->i_checked = 0; |
| 1017 | spin_unlock(&ip->i_flags_lock); |
| 1018 | |
| 1019 | ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL); |
| 1020 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1021 | |
| 1022 | XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); |
| 1023 | /* |
| 1024 | * Remove the inode from the per-AG radix tree. |
| 1025 | * |
| 1026 | * Because radix_tree_delete won't complain even if the item was never |
| 1027 | * added to the tree assert that it's been there before to catch |
| 1028 | * problems with the inode life time early on. |
| 1029 | */ |
| 1030 | spin_lock(&pag->pag_ici_lock); |
| 1031 | if (!radix_tree_delete(&pag->pag_ici_root, |
| 1032 | XFS_INO_TO_AGINO(ip->i_mount, ino))) |
| 1033 | ASSERT(0); |
| 1034 | xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG); |
| 1035 | spin_unlock(&pag->pag_ici_lock); |
| 1036 | |
| 1037 | /* |
| 1038 | * Here we do an (almost) spurious inode lock in order to coordinate |
| 1039 | * with inode cache radix tree lookups. This is because the lookup |
| 1040 | * can reference the inodes in the cache without taking references. |
| 1041 | * |
| 1042 | * We make that OK here by ensuring that we wait until the inode is |
| 1043 | * unlocked after the lookup before we go ahead and free it. |
| 1044 | */ |
| 1045 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 1046 | ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot); |
| 1047 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1048 | ASSERT(xfs_inode_clean(ip)); |
| 1049 | |
| 1050 | __xfs_inode_free(ip); |
| 1051 | return; |
| 1052 | |
| 1053 | out_clear_flush: |
| 1054 | xfs_iflags_clear(ip, XFS_IFLUSHING); |
| 1055 | out_iunlock: |
| 1056 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1057 | out: |
| 1058 | xfs_iflags_clear(ip, XFS_IRECLAIM); |
| 1059 | } |
| 1060 | |
| 1061 | /* Reclaim sick inodes if we're unmounting or the fs went down. */ |
| 1062 | static inline bool |
| 1063 | xfs_want_reclaim_sick( |
| 1064 | struct xfs_mount *mp) |
| 1065 | { |
| 1066 | return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) || |
| 1067 | xfs_is_shutdown(mp); |
| 1068 | } |
| 1069 | |
| 1070 | void |
| 1071 | xfs_reclaim_inodes( |
| 1072 | struct xfs_mount *mp) |
| 1073 | { |
| 1074 | struct xfs_icwalk icw = { |
| 1075 | .icw_flags = 0, |
| 1076 | }; |
| 1077 | |
| 1078 | if (xfs_want_reclaim_sick(mp)) |
| 1079 | icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; |
| 1080 | |
| 1081 | while (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) { |
| 1082 | xfs_ail_push_all_sync(mp->m_ail); |
| 1083 | xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); |
| 1084 | } |
| 1085 | } |
| 1086 | |
| 1087 | /* |
| 1088 | * The shrinker infrastructure determines how many inodes we should scan for |
| 1089 | * reclaim. We want as many clean inodes ready to reclaim as possible, so we |
| 1090 | * push the AIL here. We also want to proactively free up memory if we can to |
| 1091 | * minimise the amount of work memory reclaim has to do so we kick the |
| 1092 | * background reclaim if it isn't already scheduled. |
| 1093 | */ |
| 1094 | long |
| 1095 | xfs_reclaim_inodes_nr( |
| 1096 | struct xfs_mount *mp, |
| 1097 | unsigned long nr_to_scan) |
| 1098 | { |
| 1099 | struct xfs_icwalk icw = { |
| 1100 | .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT, |
| 1101 | .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan), |
| 1102 | }; |
| 1103 | |
| 1104 | if (xfs_want_reclaim_sick(mp)) |
| 1105 | icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK; |
| 1106 | |
| 1107 | /* kick background reclaimer and push the AIL */ |
| 1108 | xfs_reclaim_work_queue(mp); |
| 1109 | xfs_ail_push_all(mp->m_ail); |
| 1110 | |
| 1111 | xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw); |
| 1112 | return 0; |
| 1113 | } |
| 1114 | |
| 1115 | /* |
| 1116 | * Return the number of reclaimable inodes in the filesystem for |
| 1117 | * the shrinker to determine how much to reclaim. |
| 1118 | */ |
| 1119 | long |
| 1120 | xfs_reclaim_inodes_count( |
| 1121 | struct xfs_mount *mp) |
| 1122 | { |
| 1123 | XA_STATE (xas, &mp->m_groups[XG_TYPE_AG].xa, 0); |
| 1124 | long reclaimable = 0; |
| 1125 | struct xfs_perag *pag; |
| 1126 | |
| 1127 | rcu_read_lock(); |
| 1128 | xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) { |
| 1129 | trace_xfs_reclaim_inodes_count(pag, _THIS_IP_); |
| 1130 | reclaimable += pag->pag_ici_reclaimable; |
| 1131 | } |
| 1132 | rcu_read_unlock(); |
| 1133 | |
| 1134 | return reclaimable; |
| 1135 | } |
| 1136 | |
| 1137 | STATIC bool |
| 1138 | xfs_icwalk_match_id( |
| 1139 | struct xfs_inode *ip, |
| 1140 | struct xfs_icwalk *icw) |
| 1141 | { |
| 1142 | if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && |
| 1143 | !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) |
| 1144 | return false; |
| 1145 | |
| 1146 | if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && |
| 1147 | !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) |
| 1148 | return false; |
| 1149 | |
| 1150 | if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && |
| 1151 | ip->i_projid != icw->icw_prid) |
| 1152 | return false; |
| 1153 | |
| 1154 | return true; |
| 1155 | } |
| 1156 | |
| 1157 | /* |
| 1158 | * A union-based inode filtering algorithm. Process the inode if any of the |
| 1159 | * criteria match. This is for global/internal scans only. |
| 1160 | */ |
| 1161 | STATIC bool |
| 1162 | xfs_icwalk_match_id_union( |
| 1163 | struct xfs_inode *ip, |
| 1164 | struct xfs_icwalk *icw) |
| 1165 | { |
| 1166 | if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) && |
| 1167 | uid_eq(VFS_I(ip)->i_uid, icw->icw_uid)) |
| 1168 | return true; |
| 1169 | |
| 1170 | if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) && |
| 1171 | gid_eq(VFS_I(ip)->i_gid, icw->icw_gid)) |
| 1172 | return true; |
| 1173 | |
| 1174 | if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) && |
| 1175 | ip->i_projid == icw->icw_prid) |
| 1176 | return true; |
| 1177 | |
| 1178 | return false; |
| 1179 | } |
| 1180 | |
| 1181 | /* |
| 1182 | * Is this inode @ip eligible for eof/cow block reclamation, given some |
| 1183 | * filtering parameters @icw? The inode is eligible if @icw is null or |
| 1184 | * if the predicate functions match. |
| 1185 | */ |
| 1186 | static bool |
| 1187 | xfs_icwalk_match( |
| 1188 | struct xfs_inode *ip, |
| 1189 | struct xfs_icwalk *icw) |
| 1190 | { |
| 1191 | bool match; |
| 1192 | |
| 1193 | if (!icw) |
| 1194 | return true; |
| 1195 | |
| 1196 | if (icw->icw_flags & XFS_ICWALK_FLAG_UNION) |
| 1197 | match = xfs_icwalk_match_id_union(ip, icw); |
| 1198 | else |
| 1199 | match = xfs_icwalk_match_id(ip, icw); |
| 1200 | if (!match) |
| 1201 | return false; |
| 1202 | |
| 1203 | /* skip the inode if the file size is too small */ |
| 1204 | if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) && |
| 1205 | XFS_ISIZE(ip) < icw->icw_min_file_size) |
| 1206 | return false; |
| 1207 | |
| 1208 | return true; |
| 1209 | } |
| 1210 | |
| 1211 | /* |
| 1212 | * This is a fast pass over the inode cache to try to get reclaim moving on as |
| 1213 | * many inodes as possible in a short period of time. It kicks itself every few |
| 1214 | * seconds, as well as being kicked by the inode cache shrinker when memory |
| 1215 | * goes low. |
| 1216 | */ |
| 1217 | void |
| 1218 | xfs_reclaim_worker( |
| 1219 | struct work_struct *work) |
| 1220 | { |
| 1221 | struct xfs_mount *mp = container_of(to_delayed_work(work), |
| 1222 | struct xfs_mount, m_reclaim_work); |
| 1223 | |
| 1224 | xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL); |
| 1225 | xfs_reclaim_work_queue(mp); |
| 1226 | } |
| 1227 | |
| 1228 | STATIC int |
| 1229 | xfs_inode_free_eofblocks( |
| 1230 | struct xfs_inode *ip, |
| 1231 | struct xfs_icwalk *icw, |
| 1232 | unsigned int *lockflags) |
| 1233 | { |
| 1234 | bool wait; |
| 1235 | |
| 1236 | wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); |
| 1237 | |
| 1238 | if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS)) |
| 1239 | return 0; |
| 1240 | |
| 1241 | /* |
| 1242 | * If the mapping is dirty the operation can block and wait for some |
| 1243 | * time. Unless we are waiting, skip it. |
| 1244 | */ |
| 1245 | if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) |
| 1246 | return 0; |
| 1247 | |
| 1248 | if (!xfs_icwalk_match(ip, icw)) |
| 1249 | return 0; |
| 1250 | |
| 1251 | /* |
| 1252 | * If the caller is waiting, return -EAGAIN to keep the background |
| 1253 | * scanner moving and revisit the inode in a subsequent pass. |
| 1254 | */ |
| 1255 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { |
| 1256 | if (wait) |
| 1257 | return -EAGAIN; |
| 1258 | return 0; |
| 1259 | } |
| 1260 | *lockflags |= XFS_IOLOCK_EXCL; |
| 1261 | |
| 1262 | if (xfs_can_free_eofblocks(ip)) |
| 1263 | return xfs_free_eofblocks(ip); |
| 1264 | |
| 1265 | /* inode could be preallocated */ |
| 1266 | trace_xfs_inode_free_eofblocks_invalid(ip); |
| 1267 | xfs_inode_clear_eofblocks_tag(ip); |
| 1268 | return 0; |
| 1269 | } |
| 1270 | |
| 1271 | static void |
| 1272 | xfs_blockgc_set_iflag( |
| 1273 | struct xfs_inode *ip, |
| 1274 | unsigned long iflag) |
| 1275 | { |
| 1276 | struct xfs_mount *mp = ip->i_mount; |
| 1277 | struct xfs_perag *pag; |
| 1278 | |
| 1279 | ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); |
| 1280 | |
| 1281 | /* |
| 1282 | * Don't bother locking the AG and looking up in the radix trees |
| 1283 | * if we already know that we have the tag set. |
| 1284 | */ |
| 1285 | if (ip->i_flags & iflag) |
| 1286 | return; |
| 1287 | spin_lock(&ip->i_flags_lock); |
| 1288 | ip->i_flags |= iflag; |
| 1289 | spin_unlock(&ip->i_flags_lock); |
| 1290 | |
| 1291 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
| 1292 | spin_lock(&pag->pag_ici_lock); |
| 1293 | |
| 1294 | xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), |
| 1295 | XFS_ICI_BLOCKGC_TAG); |
| 1296 | |
| 1297 | spin_unlock(&pag->pag_ici_lock); |
| 1298 | xfs_perag_put(pag); |
| 1299 | } |
| 1300 | |
| 1301 | void |
| 1302 | xfs_inode_set_eofblocks_tag( |
| 1303 | xfs_inode_t *ip) |
| 1304 | { |
| 1305 | trace_xfs_inode_set_eofblocks_tag(ip); |
| 1306 | return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS); |
| 1307 | } |
| 1308 | |
| 1309 | static void |
| 1310 | xfs_blockgc_clear_iflag( |
| 1311 | struct xfs_inode *ip, |
| 1312 | unsigned long iflag) |
| 1313 | { |
| 1314 | struct xfs_mount *mp = ip->i_mount; |
| 1315 | struct xfs_perag *pag; |
| 1316 | bool clear_tag; |
| 1317 | |
| 1318 | ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0); |
| 1319 | |
| 1320 | spin_lock(&ip->i_flags_lock); |
| 1321 | ip->i_flags &= ~iflag; |
| 1322 | clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0; |
| 1323 | spin_unlock(&ip->i_flags_lock); |
| 1324 | |
| 1325 | if (!clear_tag) |
| 1326 | return; |
| 1327 | |
| 1328 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
| 1329 | spin_lock(&pag->pag_ici_lock); |
| 1330 | |
| 1331 | xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), |
| 1332 | XFS_ICI_BLOCKGC_TAG); |
| 1333 | |
| 1334 | spin_unlock(&pag->pag_ici_lock); |
| 1335 | xfs_perag_put(pag); |
| 1336 | } |
| 1337 | |
| 1338 | void |
| 1339 | xfs_inode_clear_eofblocks_tag( |
| 1340 | xfs_inode_t *ip) |
| 1341 | { |
| 1342 | trace_xfs_inode_clear_eofblocks_tag(ip); |
| 1343 | return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS); |
| 1344 | } |
| 1345 | |
| 1346 | /* |
| 1347 | * Prepare to free COW fork blocks from an inode. |
| 1348 | */ |
| 1349 | static bool |
| 1350 | xfs_prep_free_cowblocks( |
| 1351 | struct xfs_inode *ip, |
| 1352 | struct xfs_icwalk *icw) |
| 1353 | { |
| 1354 | bool sync; |
| 1355 | |
| 1356 | sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); |
| 1357 | |
| 1358 | /* |
| 1359 | * Just clear the tag if we have an empty cow fork or none at all. It's |
| 1360 | * possible the inode was fully unshared since it was originally tagged. |
| 1361 | */ |
| 1362 | if (!xfs_inode_has_cow_data(ip)) { |
| 1363 | trace_xfs_inode_free_cowblocks_invalid(ip); |
| 1364 | xfs_inode_clear_cowblocks_tag(ip); |
| 1365 | return false; |
| 1366 | } |
| 1367 | |
| 1368 | /* |
| 1369 | * A cowblocks trim of an inode can have a significant effect on |
| 1370 | * fragmentation even when a reasonable COW extent size hint is set. |
| 1371 | * Therefore, we prefer to not process cowblocks unless they are clean |
| 1372 | * and idle. We can never process a cowblocks inode that is dirty or has |
| 1373 | * in-flight I/O under any circumstances, because outstanding writeback |
| 1374 | * or dio expects targeted COW fork blocks exist through write |
| 1375 | * completion where they can be remapped into the data fork. |
| 1376 | * |
| 1377 | * Therefore, the heuristic used here is to never process inodes |
| 1378 | * currently opened for write from background (i.e. non-sync) scans. For |
| 1379 | * sync scans, use the pagecache/dio state of the inode to ensure we |
| 1380 | * never free COW fork blocks out from under pending I/O. |
| 1381 | */ |
| 1382 | if (!sync && inode_is_open_for_write(VFS_I(ip))) |
| 1383 | return false; |
| 1384 | return xfs_can_free_cowblocks(ip); |
| 1385 | } |
| 1386 | |
| 1387 | /* |
| 1388 | * Automatic CoW Reservation Freeing |
| 1389 | * |
| 1390 | * These functions automatically garbage collect leftover CoW reservations |
| 1391 | * that were made on behalf of a cowextsize hint when we start to run out |
| 1392 | * of quota or when the reservations sit around for too long. If the file |
| 1393 | * has dirty pages or is undergoing writeback, its CoW reservations will |
| 1394 | * be retained. |
| 1395 | * |
| 1396 | * The actual garbage collection piggybacks off the same code that runs |
| 1397 | * the speculative EOF preallocation garbage collector. |
| 1398 | */ |
| 1399 | STATIC int |
| 1400 | xfs_inode_free_cowblocks( |
| 1401 | struct xfs_inode *ip, |
| 1402 | struct xfs_icwalk *icw, |
| 1403 | unsigned int *lockflags) |
| 1404 | { |
| 1405 | bool wait; |
| 1406 | int ret = 0; |
| 1407 | |
| 1408 | wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC); |
| 1409 | |
| 1410 | if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS)) |
| 1411 | return 0; |
| 1412 | |
| 1413 | if (!xfs_prep_free_cowblocks(ip, icw)) |
| 1414 | return 0; |
| 1415 | |
| 1416 | if (!xfs_icwalk_match(ip, icw)) |
| 1417 | return 0; |
| 1418 | |
| 1419 | /* |
| 1420 | * If the caller is waiting, return -EAGAIN to keep the background |
| 1421 | * scanner moving and revisit the inode in a subsequent pass. |
| 1422 | */ |
| 1423 | if (!(*lockflags & XFS_IOLOCK_EXCL) && |
| 1424 | !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { |
| 1425 | if (wait) |
| 1426 | return -EAGAIN; |
| 1427 | return 0; |
| 1428 | } |
| 1429 | *lockflags |= XFS_IOLOCK_EXCL; |
| 1430 | |
| 1431 | if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) { |
| 1432 | if (wait) |
| 1433 | return -EAGAIN; |
| 1434 | return 0; |
| 1435 | } |
| 1436 | *lockflags |= XFS_MMAPLOCK_EXCL; |
| 1437 | |
| 1438 | /* |
| 1439 | * Check again, nobody else should be able to dirty blocks or change |
| 1440 | * the reflink iflag now that we have the first two locks held. |
| 1441 | */ |
| 1442 | if (xfs_prep_free_cowblocks(ip, icw)) |
| 1443 | ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false); |
| 1444 | return ret; |
| 1445 | } |
| 1446 | |
| 1447 | void |
| 1448 | xfs_inode_set_cowblocks_tag( |
| 1449 | xfs_inode_t *ip) |
| 1450 | { |
| 1451 | trace_xfs_inode_set_cowblocks_tag(ip); |
| 1452 | return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS); |
| 1453 | } |
| 1454 | |
| 1455 | void |
| 1456 | xfs_inode_clear_cowblocks_tag( |
| 1457 | xfs_inode_t *ip) |
| 1458 | { |
| 1459 | trace_xfs_inode_clear_cowblocks_tag(ip); |
| 1460 | return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS); |
| 1461 | } |
| 1462 | |
| 1463 | /* Disable post-EOF and CoW block auto-reclamation. */ |
| 1464 | void |
| 1465 | xfs_blockgc_stop( |
| 1466 | struct xfs_mount *mp) |
| 1467 | { |
| 1468 | struct xfs_perag *pag = NULL; |
| 1469 | |
| 1470 | if (!xfs_clear_blockgc_enabled(mp)) |
| 1471 | return; |
| 1472 | |
| 1473 | while ((pag = xfs_perag_next(mp, pag))) |
| 1474 | cancel_delayed_work_sync(&pag->pag_blockgc_work); |
| 1475 | trace_xfs_blockgc_stop(mp, __return_address); |
| 1476 | } |
| 1477 | |
| 1478 | /* Enable post-EOF and CoW block auto-reclamation. */ |
| 1479 | void |
| 1480 | xfs_blockgc_start( |
| 1481 | struct xfs_mount *mp) |
| 1482 | { |
| 1483 | struct xfs_perag *pag = NULL; |
| 1484 | |
| 1485 | if (xfs_set_blockgc_enabled(mp)) |
| 1486 | return; |
| 1487 | |
| 1488 | trace_xfs_blockgc_start(mp, __return_address); |
| 1489 | while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) |
| 1490 | xfs_blockgc_queue(pag); |
| 1491 | } |
| 1492 | |
| 1493 | /* Don't try to run block gc on an inode that's in any of these states. */ |
| 1494 | #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \ |
| 1495 | XFS_NEED_INACTIVE | \ |
| 1496 | XFS_INACTIVATING | \ |
| 1497 | XFS_IRECLAIMABLE | \ |
| 1498 | XFS_IRECLAIM) |
| 1499 | /* |
| 1500 | * Decide if the given @ip is eligible for garbage collection of speculative |
| 1501 | * preallocations, and grab it if so. Returns true if it's ready to go or |
| 1502 | * false if we should just ignore it. |
| 1503 | */ |
| 1504 | static bool |
| 1505 | xfs_blockgc_igrab( |
| 1506 | struct xfs_inode *ip) |
| 1507 | { |
| 1508 | struct inode *inode = VFS_I(ip); |
| 1509 | |
| 1510 | ASSERT(rcu_read_lock_held()); |
| 1511 | |
| 1512 | /* Check for stale RCU freed inode */ |
| 1513 | spin_lock(&ip->i_flags_lock); |
| 1514 | if (!ip->i_ino) |
| 1515 | goto out_unlock_noent; |
| 1516 | |
| 1517 | if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS) |
| 1518 | goto out_unlock_noent; |
| 1519 | spin_unlock(&ip->i_flags_lock); |
| 1520 | |
| 1521 | /* nothing to sync during shutdown */ |
| 1522 | if (xfs_is_shutdown(ip->i_mount)) |
| 1523 | return false; |
| 1524 | |
| 1525 | /* If we can't grab the inode, it must on it's way to reclaim. */ |
| 1526 | if (!igrab(inode)) |
| 1527 | return false; |
| 1528 | |
| 1529 | /* inode is valid */ |
| 1530 | return true; |
| 1531 | |
| 1532 | out_unlock_noent: |
| 1533 | spin_unlock(&ip->i_flags_lock); |
| 1534 | return false; |
| 1535 | } |
| 1536 | |
| 1537 | /* Scan one incore inode for block preallocations that we can remove. */ |
| 1538 | static int |
| 1539 | xfs_blockgc_scan_inode( |
| 1540 | struct xfs_inode *ip, |
| 1541 | struct xfs_icwalk *icw) |
| 1542 | { |
| 1543 | unsigned int lockflags = 0; |
| 1544 | int error; |
| 1545 | |
| 1546 | error = xfs_inode_free_eofblocks(ip, icw, &lockflags); |
| 1547 | if (error) |
| 1548 | goto unlock; |
| 1549 | |
| 1550 | error = xfs_inode_free_cowblocks(ip, icw, &lockflags); |
| 1551 | unlock: |
| 1552 | if (lockflags) |
| 1553 | xfs_iunlock(ip, lockflags); |
| 1554 | xfs_irele(ip); |
| 1555 | return error; |
| 1556 | } |
| 1557 | |
| 1558 | /* Background worker that trims preallocated space. */ |
| 1559 | void |
| 1560 | xfs_blockgc_worker( |
| 1561 | struct work_struct *work) |
| 1562 | { |
| 1563 | struct xfs_perag *pag = container_of(to_delayed_work(work), |
| 1564 | struct xfs_perag, pag_blockgc_work); |
| 1565 | struct xfs_mount *mp = pag_mount(pag); |
| 1566 | int error; |
| 1567 | |
| 1568 | trace_xfs_blockgc_worker(mp, __return_address); |
| 1569 | |
| 1570 | error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL); |
| 1571 | if (error) |
| 1572 | xfs_info(mp, "AG %u preallocation gc worker failed, err=%d", |
| 1573 | pag_agno(pag), error); |
| 1574 | xfs_blockgc_queue(pag); |
| 1575 | } |
| 1576 | |
| 1577 | /* |
| 1578 | * Try to free space in the filesystem by purging inactive inodes, eofblocks |
| 1579 | * and cowblocks. |
| 1580 | */ |
| 1581 | int |
| 1582 | xfs_blockgc_free_space( |
| 1583 | struct xfs_mount *mp, |
| 1584 | struct xfs_icwalk *icw) |
| 1585 | { |
| 1586 | int error; |
| 1587 | |
| 1588 | trace_xfs_blockgc_free_space(mp, icw, _RET_IP_); |
| 1589 | |
| 1590 | error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw); |
| 1591 | if (error) |
| 1592 | return error; |
| 1593 | |
| 1594 | return xfs_inodegc_flush(mp); |
| 1595 | } |
| 1596 | |
| 1597 | /* |
| 1598 | * Reclaim all the free space that we can by scheduling the background blockgc |
| 1599 | * and inodegc workers immediately and waiting for them all to clear. |
| 1600 | */ |
| 1601 | int |
| 1602 | xfs_blockgc_flush_all( |
| 1603 | struct xfs_mount *mp) |
| 1604 | { |
| 1605 | struct xfs_perag *pag = NULL; |
| 1606 | |
| 1607 | trace_xfs_blockgc_flush_all(mp, __return_address); |
| 1608 | |
| 1609 | /* |
| 1610 | * For each blockgc worker, move its queue time up to now. If it wasn't |
| 1611 | * queued, it will not be requeued. Then flush whatever is left. |
| 1612 | */ |
| 1613 | while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) |
| 1614 | mod_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 0); |
| 1615 | |
| 1616 | while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG))) |
| 1617 | flush_delayed_work(&pag->pag_blockgc_work); |
| 1618 | |
| 1619 | return xfs_inodegc_flush(mp); |
| 1620 | } |
| 1621 | |
| 1622 | /* |
| 1623 | * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which |
| 1624 | * quota caused an allocation failure, so we make a best effort by including |
| 1625 | * each quota under low free space conditions (less than 1% free space) in the |
| 1626 | * scan. |
| 1627 | * |
| 1628 | * Callers must not hold any inode's ILOCK. If requesting a synchronous scan |
| 1629 | * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or |
| 1630 | * MMAPLOCK. |
| 1631 | */ |
| 1632 | int |
| 1633 | xfs_blockgc_free_dquots( |
| 1634 | struct xfs_mount *mp, |
| 1635 | struct xfs_dquot *udqp, |
| 1636 | struct xfs_dquot *gdqp, |
| 1637 | struct xfs_dquot *pdqp, |
| 1638 | unsigned int iwalk_flags) |
| 1639 | { |
| 1640 | struct xfs_icwalk icw = {0}; |
| 1641 | bool do_work = false; |
| 1642 | |
| 1643 | if (!udqp && !gdqp && !pdqp) |
| 1644 | return 0; |
| 1645 | |
| 1646 | /* |
| 1647 | * Run a scan to free blocks using the union filter to cover all |
| 1648 | * applicable quotas in a single scan. |
| 1649 | */ |
| 1650 | icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags; |
| 1651 | |
| 1652 | if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) { |
| 1653 | icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id); |
| 1654 | icw.icw_flags |= XFS_ICWALK_FLAG_UID; |
| 1655 | do_work = true; |
| 1656 | } |
| 1657 | |
| 1658 | if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) { |
| 1659 | icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id); |
| 1660 | icw.icw_flags |= XFS_ICWALK_FLAG_GID; |
| 1661 | do_work = true; |
| 1662 | } |
| 1663 | |
| 1664 | if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) { |
| 1665 | icw.icw_prid = pdqp->q_id; |
| 1666 | icw.icw_flags |= XFS_ICWALK_FLAG_PRID; |
| 1667 | do_work = true; |
| 1668 | } |
| 1669 | |
| 1670 | if (!do_work) |
| 1671 | return 0; |
| 1672 | |
| 1673 | return xfs_blockgc_free_space(mp, &icw); |
| 1674 | } |
| 1675 | |
| 1676 | /* Run cow/eofblocks scans on the quotas attached to the inode. */ |
| 1677 | int |
| 1678 | xfs_blockgc_free_quota( |
| 1679 | struct xfs_inode *ip, |
| 1680 | unsigned int iwalk_flags) |
| 1681 | { |
| 1682 | return xfs_blockgc_free_dquots(ip->i_mount, |
| 1683 | xfs_inode_dquot(ip, XFS_DQTYPE_USER), |
| 1684 | xfs_inode_dquot(ip, XFS_DQTYPE_GROUP), |
| 1685 | xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags); |
| 1686 | } |
| 1687 | |
| 1688 | /* XFS Inode Cache Walking Code */ |
| 1689 | |
| 1690 | /* |
| 1691 | * The inode lookup is done in batches to keep the amount of lock traffic and |
| 1692 | * radix tree lookups to a minimum. The batch size is a trade off between |
| 1693 | * lookup reduction and stack usage. This is in the reclaim path, so we can't |
| 1694 | * be too greedy. |
| 1695 | */ |
| 1696 | #define XFS_LOOKUP_BATCH 32 |
| 1697 | |
| 1698 | |
| 1699 | /* |
| 1700 | * Decide if we want to grab this inode in anticipation of doing work towards |
| 1701 | * the goal. |
| 1702 | */ |
| 1703 | static inline bool |
| 1704 | xfs_icwalk_igrab( |
| 1705 | enum xfs_icwalk_goal goal, |
| 1706 | struct xfs_inode *ip, |
| 1707 | struct xfs_icwalk *icw) |
| 1708 | { |
| 1709 | switch (goal) { |
| 1710 | case XFS_ICWALK_BLOCKGC: |
| 1711 | return xfs_blockgc_igrab(ip); |
| 1712 | case XFS_ICWALK_RECLAIM: |
| 1713 | return xfs_reclaim_igrab(ip, icw); |
| 1714 | default: |
| 1715 | return false; |
| 1716 | } |
| 1717 | } |
| 1718 | |
| 1719 | /* |
| 1720 | * Process an inode. Each processing function must handle any state changes |
| 1721 | * made by the icwalk igrab function. Return -EAGAIN to skip an inode. |
| 1722 | */ |
| 1723 | static inline int |
| 1724 | xfs_icwalk_process_inode( |
| 1725 | enum xfs_icwalk_goal goal, |
| 1726 | struct xfs_inode *ip, |
| 1727 | struct xfs_perag *pag, |
| 1728 | struct xfs_icwalk *icw) |
| 1729 | { |
| 1730 | int error = 0; |
| 1731 | |
| 1732 | switch (goal) { |
| 1733 | case XFS_ICWALK_BLOCKGC: |
| 1734 | error = xfs_blockgc_scan_inode(ip, icw); |
| 1735 | break; |
| 1736 | case XFS_ICWALK_RECLAIM: |
| 1737 | xfs_reclaim_inode(ip, pag); |
| 1738 | break; |
| 1739 | } |
| 1740 | return error; |
| 1741 | } |
| 1742 | |
| 1743 | /* |
| 1744 | * For a given per-AG structure @pag and a goal, grab qualifying inodes and |
| 1745 | * process them in some manner. |
| 1746 | */ |
| 1747 | static int |
| 1748 | xfs_icwalk_ag( |
| 1749 | struct xfs_perag *pag, |
| 1750 | enum xfs_icwalk_goal goal, |
| 1751 | struct xfs_icwalk *icw) |
| 1752 | { |
| 1753 | struct xfs_mount *mp = pag_mount(pag); |
| 1754 | uint32_t first_index; |
| 1755 | int last_error = 0; |
| 1756 | int skipped; |
| 1757 | bool done; |
| 1758 | int nr_found; |
| 1759 | |
| 1760 | restart: |
| 1761 | done = false; |
| 1762 | skipped = 0; |
| 1763 | if (goal == XFS_ICWALK_RECLAIM) |
| 1764 | first_index = READ_ONCE(pag->pag_ici_reclaim_cursor); |
| 1765 | else |
| 1766 | first_index = 0; |
| 1767 | nr_found = 0; |
| 1768 | do { |
| 1769 | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; |
| 1770 | int error = 0; |
| 1771 | int i; |
| 1772 | |
| 1773 | rcu_read_lock(); |
| 1774 | |
| 1775 | nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, |
| 1776 | (void **) batch, first_index, |
| 1777 | XFS_LOOKUP_BATCH, goal); |
| 1778 | if (!nr_found) { |
| 1779 | done = true; |
| 1780 | rcu_read_unlock(); |
| 1781 | break; |
| 1782 | } |
| 1783 | |
| 1784 | /* |
| 1785 | * Grab the inodes before we drop the lock. if we found |
| 1786 | * nothing, nr == 0 and the loop will be skipped. |
| 1787 | */ |
| 1788 | for (i = 0; i < nr_found; i++) { |
| 1789 | struct xfs_inode *ip = batch[i]; |
| 1790 | |
| 1791 | if (done || !xfs_icwalk_igrab(goal, ip, icw)) |
| 1792 | batch[i] = NULL; |
| 1793 | |
| 1794 | /* |
| 1795 | * Update the index for the next lookup. Catch |
| 1796 | * overflows into the next AG range which can occur if |
| 1797 | * we have inodes in the last block of the AG and we |
| 1798 | * are currently pointing to the last inode. |
| 1799 | * |
| 1800 | * Because we may see inodes that are from the wrong AG |
| 1801 | * due to RCU freeing and reallocation, only update the |
| 1802 | * index if it lies in this AG. It was a race that lead |
| 1803 | * us to see this inode, so another lookup from the |
| 1804 | * same index will not find it again. |
| 1805 | */ |
| 1806 | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag)) |
| 1807 | continue; |
| 1808 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); |
| 1809 | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) |
| 1810 | done = true; |
| 1811 | } |
| 1812 | |
| 1813 | /* unlock now we've grabbed the inodes. */ |
| 1814 | rcu_read_unlock(); |
| 1815 | |
| 1816 | for (i = 0; i < nr_found; i++) { |
| 1817 | if (!batch[i]) |
| 1818 | continue; |
| 1819 | error = xfs_icwalk_process_inode(goal, batch[i], pag, |
| 1820 | icw); |
| 1821 | if (error == -EAGAIN) { |
| 1822 | skipped++; |
| 1823 | continue; |
| 1824 | } |
| 1825 | if (error && last_error != -EFSCORRUPTED) |
| 1826 | last_error = error; |
| 1827 | } |
| 1828 | |
| 1829 | /* bail out if the filesystem is corrupted. */ |
| 1830 | if (error == -EFSCORRUPTED) |
| 1831 | break; |
| 1832 | |
| 1833 | cond_resched(); |
| 1834 | |
| 1835 | if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) { |
| 1836 | icw->icw_scan_limit -= XFS_LOOKUP_BATCH; |
| 1837 | if (icw->icw_scan_limit <= 0) |
| 1838 | break; |
| 1839 | } |
| 1840 | } while (nr_found && !done); |
| 1841 | |
| 1842 | if (goal == XFS_ICWALK_RECLAIM) { |
| 1843 | if (done) |
| 1844 | first_index = 0; |
| 1845 | WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index); |
| 1846 | } |
| 1847 | |
| 1848 | if (skipped) { |
| 1849 | delay(1); |
| 1850 | goto restart; |
| 1851 | } |
| 1852 | return last_error; |
| 1853 | } |
| 1854 | |
| 1855 | /* Walk all incore inodes to achieve a given goal. */ |
| 1856 | static int |
| 1857 | xfs_icwalk( |
| 1858 | struct xfs_mount *mp, |
| 1859 | enum xfs_icwalk_goal goal, |
| 1860 | struct xfs_icwalk *icw) |
| 1861 | { |
| 1862 | struct xfs_perag *pag = NULL; |
| 1863 | int error = 0; |
| 1864 | int last_error = 0; |
| 1865 | |
| 1866 | while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) { |
| 1867 | error = xfs_icwalk_ag(pag, goal, icw); |
| 1868 | if (error) { |
| 1869 | last_error = error; |
| 1870 | if (error == -EFSCORRUPTED) { |
| 1871 | xfs_perag_rele(pag); |
| 1872 | break; |
| 1873 | } |
| 1874 | } |
| 1875 | } |
| 1876 | return last_error; |
| 1877 | BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID); |
| 1878 | } |
| 1879 | |
| 1880 | #ifdef DEBUG |
| 1881 | static void |
| 1882 | xfs_check_delalloc( |
| 1883 | struct xfs_inode *ip, |
| 1884 | int whichfork) |
| 1885 | { |
| 1886 | struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); |
| 1887 | struct xfs_bmbt_irec got; |
| 1888 | struct xfs_iext_cursor icur; |
| 1889 | |
| 1890 | if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got)) |
| 1891 | return; |
| 1892 | do { |
| 1893 | if (isnullstartblock(got.br_startblock)) { |
| 1894 | xfs_warn(ip->i_mount, |
| 1895 | "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]", |
| 1896 | ip->i_ino, |
| 1897 | whichfork == XFS_DATA_FORK ? "data" : "cow", |
| 1898 | got.br_startoff, got.br_blockcount); |
| 1899 | } |
| 1900 | } while (xfs_iext_next_extent(ifp, &icur, &got)); |
| 1901 | } |
| 1902 | #else |
| 1903 | #define xfs_check_delalloc(ip, whichfork) do { } while (0) |
| 1904 | #endif |
| 1905 | |
| 1906 | /* Schedule the inode for reclaim. */ |
| 1907 | static void |
| 1908 | xfs_inodegc_set_reclaimable( |
| 1909 | struct xfs_inode *ip) |
| 1910 | { |
| 1911 | struct xfs_mount *mp = ip->i_mount; |
| 1912 | struct xfs_perag *pag; |
| 1913 | |
| 1914 | if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) { |
| 1915 | xfs_check_delalloc(ip, XFS_DATA_FORK); |
| 1916 | xfs_check_delalloc(ip, XFS_COW_FORK); |
| 1917 | ASSERT(0); |
| 1918 | } |
| 1919 | |
| 1920 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
| 1921 | spin_lock(&pag->pag_ici_lock); |
| 1922 | spin_lock(&ip->i_flags_lock); |
| 1923 | |
| 1924 | trace_xfs_inode_set_reclaimable(ip); |
| 1925 | ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING); |
| 1926 | ip->i_flags |= XFS_IRECLAIMABLE; |
| 1927 | xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino), |
| 1928 | XFS_ICI_RECLAIM_TAG); |
| 1929 | |
| 1930 | spin_unlock(&ip->i_flags_lock); |
| 1931 | spin_unlock(&pag->pag_ici_lock); |
| 1932 | xfs_perag_put(pag); |
| 1933 | } |
| 1934 | |
| 1935 | /* |
| 1936 | * Free all speculative preallocations and possibly even the inode itself. |
| 1937 | * This is the last chance to make changes to an otherwise unreferenced file |
| 1938 | * before incore reclamation happens. |
| 1939 | */ |
| 1940 | static int |
| 1941 | xfs_inodegc_inactivate( |
| 1942 | struct xfs_inode *ip) |
| 1943 | { |
| 1944 | int error; |
| 1945 | |
| 1946 | trace_xfs_inode_inactivating(ip); |
| 1947 | error = xfs_inactive(ip); |
| 1948 | xfs_inodegc_set_reclaimable(ip); |
| 1949 | return error; |
| 1950 | |
| 1951 | } |
| 1952 | |
| 1953 | void |
| 1954 | xfs_inodegc_worker( |
| 1955 | struct work_struct *work) |
| 1956 | { |
| 1957 | struct xfs_inodegc *gc = container_of(to_delayed_work(work), |
| 1958 | struct xfs_inodegc, work); |
| 1959 | struct llist_node *node = llist_del_all(&gc->list); |
| 1960 | struct xfs_inode *ip, *n; |
| 1961 | struct xfs_mount *mp = gc->mp; |
| 1962 | unsigned int nofs_flag; |
| 1963 | |
| 1964 | /* |
| 1965 | * Clear the cpu mask bit and ensure that we have seen the latest |
| 1966 | * update of the gc structure associated with this CPU. This matches |
| 1967 | * with the release semantics used when setting the cpumask bit in |
| 1968 | * xfs_inodegc_queue. |
| 1969 | */ |
| 1970 | cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask); |
| 1971 | smp_mb__after_atomic(); |
| 1972 | |
| 1973 | WRITE_ONCE(gc->items, 0); |
| 1974 | |
| 1975 | if (!node) |
| 1976 | return; |
| 1977 | |
| 1978 | /* |
| 1979 | * We can allocate memory here while doing writeback on behalf of |
| 1980 | * memory reclaim. To avoid memory allocation deadlocks set the |
| 1981 | * task-wide nofs context for the following operations. |
| 1982 | */ |
| 1983 | nofs_flag = memalloc_nofs_save(); |
| 1984 | |
| 1985 | ip = llist_entry(node, struct xfs_inode, i_gclist); |
| 1986 | trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits)); |
| 1987 | |
| 1988 | WRITE_ONCE(gc->shrinker_hits, 0); |
| 1989 | llist_for_each_entry_safe(ip, n, node, i_gclist) { |
| 1990 | int error; |
| 1991 | |
| 1992 | xfs_iflags_set(ip, XFS_INACTIVATING); |
| 1993 | error = xfs_inodegc_inactivate(ip); |
| 1994 | if (error && !gc->error) |
| 1995 | gc->error = error; |
| 1996 | } |
| 1997 | |
| 1998 | memalloc_nofs_restore(nofs_flag); |
| 1999 | } |
| 2000 | |
| 2001 | /* |
| 2002 | * Expedite all pending inodegc work to run immediately. This does not wait for |
| 2003 | * completion of the work. |
| 2004 | */ |
| 2005 | void |
| 2006 | xfs_inodegc_push( |
| 2007 | struct xfs_mount *mp) |
| 2008 | { |
| 2009 | if (!xfs_is_inodegc_enabled(mp)) |
| 2010 | return; |
| 2011 | trace_xfs_inodegc_push(mp, __return_address); |
| 2012 | xfs_inodegc_queue_all(mp); |
| 2013 | } |
| 2014 | |
| 2015 | /* |
| 2016 | * Force all currently queued inode inactivation work to run immediately and |
| 2017 | * wait for the work to finish. |
| 2018 | */ |
| 2019 | int |
| 2020 | xfs_inodegc_flush( |
| 2021 | struct xfs_mount *mp) |
| 2022 | { |
| 2023 | xfs_inodegc_push(mp); |
| 2024 | trace_xfs_inodegc_flush(mp, __return_address); |
| 2025 | return xfs_inodegc_wait_all(mp); |
| 2026 | } |
| 2027 | |
| 2028 | /* |
| 2029 | * Flush all the pending work and then disable the inode inactivation background |
| 2030 | * workers and wait for them to stop. Caller must hold sb->s_umount to |
| 2031 | * coordinate changes in the inodegc_enabled state. |
| 2032 | */ |
| 2033 | void |
| 2034 | xfs_inodegc_stop( |
| 2035 | struct xfs_mount *mp) |
| 2036 | { |
| 2037 | bool rerun; |
| 2038 | |
| 2039 | if (!xfs_clear_inodegc_enabled(mp)) |
| 2040 | return; |
| 2041 | |
| 2042 | /* |
| 2043 | * Drain all pending inodegc work, including inodes that could be |
| 2044 | * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan |
| 2045 | * threads that sample the inodegc state just prior to us clearing it. |
| 2046 | * The inodegc flag state prevents new threads from queuing more |
| 2047 | * inodes, so we queue pending work items and flush the workqueue until |
| 2048 | * all inodegc lists are empty. IOWs, we cannot use drain_workqueue |
| 2049 | * here because it does not allow other unserialized mechanisms to |
| 2050 | * reschedule inodegc work while this draining is in progress. |
| 2051 | */ |
| 2052 | xfs_inodegc_queue_all(mp); |
| 2053 | do { |
| 2054 | flush_workqueue(mp->m_inodegc_wq); |
| 2055 | rerun = xfs_inodegc_queue_all(mp); |
| 2056 | } while (rerun); |
| 2057 | |
| 2058 | trace_xfs_inodegc_stop(mp, __return_address); |
| 2059 | } |
| 2060 | |
| 2061 | /* |
| 2062 | * Enable the inode inactivation background workers and schedule deferred inode |
| 2063 | * inactivation work if there is any. Caller must hold sb->s_umount to |
| 2064 | * coordinate changes in the inodegc_enabled state. |
| 2065 | */ |
| 2066 | void |
| 2067 | xfs_inodegc_start( |
| 2068 | struct xfs_mount *mp) |
| 2069 | { |
| 2070 | if (xfs_set_inodegc_enabled(mp)) |
| 2071 | return; |
| 2072 | |
| 2073 | trace_xfs_inodegc_start(mp, __return_address); |
| 2074 | xfs_inodegc_queue_all(mp); |
| 2075 | } |
| 2076 | |
| 2077 | #ifdef CONFIG_XFS_RT |
| 2078 | static inline bool |
| 2079 | xfs_inodegc_want_queue_rt_file( |
| 2080 | struct xfs_inode *ip) |
| 2081 | { |
| 2082 | struct xfs_mount *mp = ip->i_mount; |
| 2083 | |
| 2084 | if (!XFS_IS_REALTIME_INODE(ip) || xfs_has_zoned(mp)) |
| 2085 | return false; |
| 2086 | |
| 2087 | if (xfs_compare_freecounter(mp, XC_FREE_RTEXTENTS, |
| 2088 | mp->m_low_rtexts[XFS_LOWSP_5_PCNT], |
| 2089 | XFS_FDBLOCKS_BATCH) < 0) |
| 2090 | return true; |
| 2091 | |
| 2092 | return false; |
| 2093 | } |
| 2094 | #else |
| 2095 | # define xfs_inodegc_want_queue_rt_file(ip) (false) |
| 2096 | #endif /* CONFIG_XFS_RT */ |
| 2097 | |
| 2098 | /* |
| 2099 | * Schedule the inactivation worker when: |
| 2100 | * |
| 2101 | * - We've accumulated more than one inode cluster buffer's worth of inodes. |
| 2102 | * - There is less than 5% free space left. |
| 2103 | * - Any of the quotas for this inode are near an enforcement limit. |
| 2104 | */ |
| 2105 | static inline bool |
| 2106 | xfs_inodegc_want_queue_work( |
| 2107 | struct xfs_inode *ip, |
| 2108 | unsigned int items) |
| 2109 | { |
| 2110 | struct xfs_mount *mp = ip->i_mount; |
| 2111 | |
| 2112 | if (items > mp->m_ino_geo.inodes_per_cluster) |
| 2113 | return true; |
| 2114 | |
| 2115 | if (xfs_compare_freecounter(mp, XC_FREE_BLOCKS, |
| 2116 | mp->m_low_space[XFS_LOWSP_5_PCNT], |
| 2117 | XFS_FDBLOCKS_BATCH) < 0) |
| 2118 | return true; |
| 2119 | |
| 2120 | if (xfs_inodegc_want_queue_rt_file(ip)) |
| 2121 | return true; |
| 2122 | |
| 2123 | if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER)) |
| 2124 | return true; |
| 2125 | |
| 2126 | if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP)) |
| 2127 | return true; |
| 2128 | |
| 2129 | if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ)) |
| 2130 | return true; |
| 2131 | |
| 2132 | return false; |
| 2133 | } |
| 2134 | |
| 2135 | /* |
| 2136 | * Upper bound on the number of inodes in each AG that can be queued for |
| 2137 | * inactivation at any given time, to avoid monopolizing the workqueue. |
| 2138 | */ |
| 2139 | #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK) |
| 2140 | |
| 2141 | /* |
| 2142 | * Make the frontend wait for inactivations when: |
| 2143 | * |
| 2144 | * - Memory shrinkers queued the inactivation worker and it hasn't finished. |
| 2145 | * - The queue depth exceeds the maximum allowable percpu backlog. |
| 2146 | * |
| 2147 | * Note: If we are in a NOFS context here (e.g. current thread is running a |
| 2148 | * transaction) the we don't want to block here as inodegc progress may require |
| 2149 | * filesystem resources we hold to make progress and that could result in a |
| 2150 | * deadlock. Hence we skip out of here if we are in a scoped NOFS context. |
| 2151 | */ |
| 2152 | static inline bool |
| 2153 | xfs_inodegc_want_flush_work( |
| 2154 | struct xfs_inode *ip, |
| 2155 | unsigned int items, |
| 2156 | unsigned int shrinker_hits) |
| 2157 | { |
| 2158 | if (current->flags & PF_MEMALLOC_NOFS) |
| 2159 | return false; |
| 2160 | |
| 2161 | if (shrinker_hits > 0) |
| 2162 | return true; |
| 2163 | |
| 2164 | if (items > XFS_INODEGC_MAX_BACKLOG) |
| 2165 | return true; |
| 2166 | |
| 2167 | return false; |
| 2168 | } |
| 2169 | |
| 2170 | /* |
| 2171 | * Queue a background inactivation worker if there are inodes that need to be |
| 2172 | * inactivated and higher level xfs code hasn't disabled the background |
| 2173 | * workers. |
| 2174 | */ |
| 2175 | static void |
| 2176 | xfs_inodegc_queue( |
| 2177 | struct xfs_inode *ip) |
| 2178 | { |
| 2179 | struct xfs_mount *mp = ip->i_mount; |
| 2180 | struct xfs_inodegc *gc; |
| 2181 | int items; |
| 2182 | unsigned int shrinker_hits; |
| 2183 | unsigned int cpu_nr; |
| 2184 | unsigned long queue_delay = 1; |
| 2185 | |
| 2186 | trace_xfs_inode_set_need_inactive(ip); |
| 2187 | spin_lock(&ip->i_flags_lock); |
| 2188 | ip->i_flags |= XFS_NEED_INACTIVE; |
| 2189 | spin_unlock(&ip->i_flags_lock); |
| 2190 | |
| 2191 | cpu_nr = get_cpu(); |
| 2192 | gc = this_cpu_ptr(mp->m_inodegc); |
| 2193 | llist_add(&ip->i_gclist, &gc->list); |
| 2194 | items = READ_ONCE(gc->items); |
| 2195 | WRITE_ONCE(gc->items, items + 1); |
| 2196 | shrinker_hits = READ_ONCE(gc->shrinker_hits); |
| 2197 | |
| 2198 | /* |
| 2199 | * Ensure the list add is always seen by anyone who finds the cpumask |
| 2200 | * bit set. This effectively gives the cpumask bit set operation |
| 2201 | * release ordering semantics. |
| 2202 | */ |
| 2203 | smp_mb__before_atomic(); |
| 2204 | if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask)) |
| 2205 | cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask); |
| 2206 | |
| 2207 | /* |
| 2208 | * We queue the work while holding the current CPU so that the work |
| 2209 | * is scheduled to run on this CPU. |
| 2210 | */ |
| 2211 | if (!xfs_is_inodegc_enabled(mp)) { |
| 2212 | put_cpu(); |
| 2213 | return; |
| 2214 | } |
| 2215 | |
| 2216 | if (xfs_inodegc_want_queue_work(ip, items)) |
| 2217 | queue_delay = 0; |
| 2218 | |
| 2219 | trace_xfs_inodegc_queue(mp, __return_address); |
| 2220 | mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work, |
| 2221 | queue_delay); |
| 2222 | put_cpu(); |
| 2223 | |
| 2224 | if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) { |
| 2225 | trace_xfs_inodegc_throttle(mp, __return_address); |
| 2226 | flush_delayed_work(&gc->work); |
| 2227 | } |
| 2228 | } |
| 2229 | |
| 2230 | /* |
| 2231 | * We set the inode flag atomically with the radix tree tag. Once we get tag |
| 2232 | * lookups on the radix tree, this inode flag can go away. |
| 2233 | * |
| 2234 | * We always use background reclaim here because even if the inode is clean, it |
| 2235 | * still may be under IO and hence we have wait for IO completion to occur |
| 2236 | * before we can reclaim the inode. The background reclaim path handles this |
| 2237 | * more efficiently than we can here, so simply let background reclaim tear down |
| 2238 | * all inodes. |
| 2239 | */ |
| 2240 | void |
| 2241 | xfs_inode_mark_reclaimable( |
| 2242 | struct xfs_inode *ip) |
| 2243 | { |
| 2244 | struct xfs_mount *mp = ip->i_mount; |
| 2245 | bool need_inactive; |
| 2246 | |
| 2247 | XFS_STATS_INC(mp, vn_reclaim); |
| 2248 | |
| 2249 | /* |
| 2250 | * We should never get here with any of the reclaim flags already set. |
| 2251 | */ |
| 2252 | ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS)); |
| 2253 | |
| 2254 | need_inactive = xfs_inode_needs_inactive(ip); |
| 2255 | if (need_inactive) { |
| 2256 | xfs_inodegc_queue(ip); |
| 2257 | return; |
| 2258 | } |
| 2259 | |
| 2260 | /* Going straight to reclaim, so drop the dquots. */ |
| 2261 | xfs_qm_dqdetach(ip); |
| 2262 | xfs_inodegc_set_reclaimable(ip); |
| 2263 | } |
| 2264 | |
| 2265 | /* |
| 2266 | * Register a phony shrinker so that we can run background inodegc sooner when |
| 2267 | * there's memory pressure. Inactivation does not itself free any memory but |
| 2268 | * it does make inodes reclaimable, which eventually frees memory. |
| 2269 | * |
| 2270 | * The count function, seek value, and batch value are crafted to trigger the |
| 2271 | * scan function during the second round of scanning. Hopefully this means |
| 2272 | * that we reclaimed enough memory that initiating metadata transactions won't |
| 2273 | * make things worse. |
| 2274 | */ |
| 2275 | #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY) |
| 2276 | #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1) |
| 2277 | |
| 2278 | static unsigned long |
| 2279 | xfs_inodegc_shrinker_count( |
| 2280 | struct shrinker *shrink, |
| 2281 | struct shrink_control *sc) |
| 2282 | { |
| 2283 | struct xfs_mount *mp = shrink->private_data; |
| 2284 | struct xfs_inodegc *gc; |
| 2285 | int cpu; |
| 2286 | |
| 2287 | if (!xfs_is_inodegc_enabled(mp)) |
| 2288 | return 0; |
| 2289 | |
| 2290 | for_each_cpu(cpu, &mp->m_inodegc_cpumask) { |
| 2291 | gc = per_cpu_ptr(mp->m_inodegc, cpu); |
| 2292 | if (!llist_empty(&gc->list)) |
| 2293 | return XFS_INODEGC_SHRINKER_COUNT; |
| 2294 | } |
| 2295 | |
| 2296 | return 0; |
| 2297 | } |
| 2298 | |
| 2299 | static unsigned long |
| 2300 | xfs_inodegc_shrinker_scan( |
| 2301 | struct shrinker *shrink, |
| 2302 | struct shrink_control *sc) |
| 2303 | { |
| 2304 | struct xfs_mount *mp = shrink->private_data; |
| 2305 | struct xfs_inodegc *gc; |
| 2306 | int cpu; |
| 2307 | bool no_items = true; |
| 2308 | |
| 2309 | if (!xfs_is_inodegc_enabled(mp)) |
| 2310 | return SHRINK_STOP; |
| 2311 | |
| 2312 | trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address); |
| 2313 | |
| 2314 | for_each_cpu(cpu, &mp->m_inodegc_cpumask) { |
| 2315 | gc = per_cpu_ptr(mp->m_inodegc, cpu); |
| 2316 | if (!llist_empty(&gc->list)) { |
| 2317 | unsigned int h = READ_ONCE(gc->shrinker_hits); |
| 2318 | |
| 2319 | WRITE_ONCE(gc->shrinker_hits, h + 1); |
| 2320 | mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0); |
| 2321 | no_items = false; |
| 2322 | } |
| 2323 | } |
| 2324 | |
| 2325 | /* |
| 2326 | * If there are no inodes to inactivate, we don't want the shrinker |
| 2327 | * to think there's deferred work to call us back about. |
| 2328 | */ |
| 2329 | if (no_items) |
| 2330 | return LONG_MAX; |
| 2331 | |
| 2332 | return SHRINK_STOP; |
| 2333 | } |
| 2334 | |
| 2335 | /* Register a shrinker so we can accelerate inodegc and throttle queuing. */ |
| 2336 | int |
| 2337 | xfs_inodegc_register_shrinker( |
| 2338 | struct xfs_mount *mp) |
| 2339 | { |
| 2340 | mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB, |
| 2341 | "xfs-inodegc:%s", |
| 2342 | mp->m_super->s_id); |
| 2343 | if (!mp->m_inodegc_shrinker) |
| 2344 | return -ENOMEM; |
| 2345 | |
| 2346 | mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count; |
| 2347 | mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan; |
| 2348 | mp->m_inodegc_shrinker->seeks = 0; |
| 2349 | mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH; |
| 2350 | mp->m_inodegc_shrinker->private_data = mp; |
| 2351 | |
| 2352 | shrinker_register(mp->m_inodegc_shrinker); |
| 2353 | |
| 2354 | return 0; |
| 2355 | } |