| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| 4 | * Copyright (c) 2016-2025 Christoph Hellwig. |
| 5 | * All Rights Reserved. |
| 6 | */ |
| 7 | #include "xfs.h" |
| 8 | #include "xfs_shared.h" |
| 9 | #include "xfs_format.h" |
| 10 | #include "xfs_log_format.h" |
| 11 | #include "xfs_trans_resv.h" |
| 12 | #include "xfs_mount.h" |
| 13 | #include "xfs_inode.h" |
| 14 | #include "xfs_trans.h" |
| 15 | #include "xfs_iomap.h" |
| 16 | #include "xfs_trace.h" |
| 17 | #include "xfs_bmap.h" |
| 18 | #include "xfs_bmap_util.h" |
| 19 | #include "xfs_reflink.h" |
| 20 | #include "xfs_errortag.h" |
| 21 | #include "xfs_error.h" |
| 22 | #include "xfs_icache.h" |
| 23 | #include "xfs_zone_alloc.h" |
| 24 | #include "xfs_rtgroup.h" |
| 25 | |
| 26 | struct xfs_writepage_ctx { |
| 27 | struct iomap_writepage_ctx ctx; |
| 28 | unsigned int data_seq; |
| 29 | unsigned int cow_seq; |
| 30 | }; |
| 31 | |
| 32 | static inline struct xfs_writepage_ctx * |
| 33 | XFS_WPC(struct iomap_writepage_ctx *ctx) |
| 34 | { |
| 35 | return container_of(ctx, struct xfs_writepage_ctx, ctx); |
| 36 | } |
| 37 | |
| 38 | /* |
| 39 | * Fast and loose check if this write could update the on-disk inode size. |
| 40 | */ |
| 41 | static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) |
| 42 | { |
| 43 | return ioend->io_offset + ioend->io_size > |
| 44 | XFS_I(ioend->io_inode)->i_disk_size; |
| 45 | } |
| 46 | |
| 47 | /* |
| 48 | * Update on-disk file size now that data has been written to disk. |
| 49 | */ |
| 50 | int |
| 51 | xfs_setfilesize( |
| 52 | struct xfs_inode *ip, |
| 53 | xfs_off_t offset, |
| 54 | size_t size) |
| 55 | { |
| 56 | struct xfs_mount *mp = ip->i_mount; |
| 57 | struct xfs_trans *tp; |
| 58 | xfs_fsize_t isize; |
| 59 | int error; |
| 60 | |
| 61 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); |
| 62 | if (error) |
| 63 | return error; |
| 64 | |
| 65 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 66 | isize = xfs_new_eof(ip, offset + size); |
| 67 | if (!isize) { |
| 68 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 69 | xfs_trans_cancel(tp); |
| 70 | return 0; |
| 71 | } |
| 72 | |
| 73 | trace_xfs_setfilesize(ip, offset, size); |
| 74 | |
| 75 | ip->i_disk_size = isize; |
| 76 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| 77 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 78 | |
| 79 | return xfs_trans_commit(tp); |
| 80 | } |
| 81 | |
| 82 | static void |
| 83 | xfs_ioend_put_open_zones( |
| 84 | struct iomap_ioend *ioend) |
| 85 | { |
| 86 | struct iomap_ioend *tmp; |
| 87 | |
| 88 | /* |
| 89 | * Put the open zone for all ioends merged into this one (if any). |
| 90 | */ |
| 91 | list_for_each_entry(tmp, &ioend->io_list, io_list) |
| 92 | xfs_open_zone_put(tmp->io_private); |
| 93 | |
| 94 | /* |
| 95 | * The main ioend might not have an open zone if the submission failed |
| 96 | * before xfs_zone_alloc_and_submit got called. |
| 97 | */ |
| 98 | if (ioend->io_private) |
| 99 | xfs_open_zone_put(ioend->io_private); |
| 100 | } |
| 101 | |
| 102 | /* |
| 103 | * IO write completion. |
| 104 | */ |
| 105 | STATIC void |
| 106 | xfs_end_ioend( |
| 107 | struct iomap_ioend *ioend) |
| 108 | { |
| 109 | struct xfs_inode *ip = XFS_I(ioend->io_inode); |
| 110 | struct xfs_mount *mp = ip->i_mount; |
| 111 | bool is_zoned = xfs_is_zoned_inode(ip); |
| 112 | xfs_off_t offset = ioend->io_offset; |
| 113 | size_t size = ioend->io_size; |
| 114 | unsigned int nofs_flag; |
| 115 | int error; |
| 116 | |
| 117 | /* |
| 118 | * We can allocate memory here while doing writeback on behalf of |
| 119 | * memory reclaim. To avoid memory allocation deadlocks set the |
| 120 | * task-wide nofs context for the following operations. |
| 121 | */ |
| 122 | nofs_flag = memalloc_nofs_save(); |
| 123 | |
| 124 | /* |
| 125 | * Just clean up the in-memory structures if the fs has been shut down. |
| 126 | */ |
| 127 | if (xfs_is_shutdown(mp)) { |
| 128 | error = -EIO; |
| 129 | goto done; |
| 130 | } |
| 131 | |
| 132 | /* |
| 133 | * Clean up all COW blocks and underlying data fork delalloc blocks on |
| 134 | * I/O error. The delalloc punch is required because this ioend was |
| 135 | * mapped to blocks in the COW fork and the associated pages are no |
| 136 | * longer dirty. If we don't remove delalloc blocks here, they become |
| 137 | * stale and can corrupt free space accounting on unmount. |
| 138 | */ |
| 139 | error = blk_status_to_errno(ioend->io_bio.bi_status); |
| 140 | if (unlikely(error)) { |
| 141 | if (ioend->io_flags & IOMAP_IOEND_SHARED) { |
| 142 | ASSERT(!is_zoned); |
| 143 | xfs_reflink_cancel_cow_range(ip, offset, size, true); |
| 144 | xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, offset, |
| 145 | offset + size, NULL); |
| 146 | } |
| 147 | goto done; |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * Success: commit the COW or unwritten blocks if needed. |
| 152 | */ |
| 153 | if (is_zoned) |
| 154 | error = xfs_zoned_end_io(ip, offset, size, ioend->io_sector, |
| 155 | ioend->io_private, NULLFSBLOCK); |
| 156 | else if (ioend->io_flags & IOMAP_IOEND_SHARED) |
| 157 | error = xfs_reflink_end_cow(ip, offset, size); |
| 158 | else if (ioend->io_flags & IOMAP_IOEND_UNWRITTEN) |
| 159 | error = xfs_iomap_write_unwritten(ip, offset, size, false); |
| 160 | |
| 161 | if (!error && |
| 162 | !(ioend->io_flags & IOMAP_IOEND_DIRECT) && |
| 163 | xfs_ioend_is_append(ioend)) |
| 164 | error = xfs_setfilesize(ip, offset, size); |
| 165 | done: |
| 166 | if (is_zoned) |
| 167 | xfs_ioend_put_open_zones(ioend); |
| 168 | iomap_finish_ioends(ioend, error); |
| 169 | memalloc_nofs_restore(nofs_flag); |
| 170 | } |
| 171 | |
| 172 | /* |
| 173 | * Finish all pending IO completions that require transactional modifications. |
| 174 | * |
| 175 | * We try to merge physical and logically contiguous ioends before completion to |
| 176 | * minimise the number of transactions we need to perform during IO completion. |
| 177 | * Both unwritten extent conversion and COW remapping need to iterate and modify |
| 178 | * one physical extent at a time, so we gain nothing by merging physically |
| 179 | * discontiguous extents here. |
| 180 | * |
| 181 | * The ioend chain length that we can be processing here is largely unbound in |
| 182 | * length and we may have to perform significant amounts of work on each ioend |
| 183 | * to complete it. Hence we have to be careful about holding the CPU for too |
| 184 | * long in this loop. |
| 185 | */ |
| 186 | void |
| 187 | xfs_end_io( |
| 188 | struct work_struct *work) |
| 189 | { |
| 190 | struct xfs_inode *ip = |
| 191 | container_of(work, struct xfs_inode, i_ioend_work); |
| 192 | struct iomap_ioend *ioend; |
| 193 | struct list_head tmp; |
| 194 | unsigned long flags; |
| 195 | |
| 196 | spin_lock_irqsave(&ip->i_ioend_lock, flags); |
| 197 | list_replace_init(&ip->i_ioend_list, &tmp); |
| 198 | spin_unlock_irqrestore(&ip->i_ioend_lock, flags); |
| 199 | |
| 200 | iomap_sort_ioends(&tmp); |
| 201 | while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, |
| 202 | io_list))) { |
| 203 | list_del_init(&ioend->io_list); |
| 204 | iomap_ioend_try_merge(ioend, &tmp); |
| 205 | xfs_end_ioend(ioend); |
| 206 | cond_resched(); |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | void |
| 211 | xfs_end_bio( |
| 212 | struct bio *bio) |
| 213 | { |
| 214 | struct iomap_ioend *ioend = iomap_ioend_from_bio(bio); |
| 215 | struct xfs_inode *ip = XFS_I(ioend->io_inode); |
| 216 | struct xfs_mount *mp = ip->i_mount; |
| 217 | unsigned long flags; |
| 218 | |
| 219 | /* |
| 220 | * For Appends record the actually written block number and set the |
| 221 | * boundary flag if needed. |
| 222 | */ |
| 223 | if (IS_ENABLED(CONFIG_XFS_RT) && bio_is_zone_append(bio)) { |
| 224 | ioend->io_sector = bio->bi_iter.bi_sector; |
| 225 | xfs_mark_rtg_boundary(ioend); |
| 226 | } |
| 227 | |
| 228 | spin_lock_irqsave(&ip->i_ioend_lock, flags); |
| 229 | if (list_empty(&ip->i_ioend_list)) |
| 230 | WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue, |
| 231 | &ip->i_ioend_work)); |
| 232 | list_add_tail(&ioend->io_list, &ip->i_ioend_list); |
| 233 | spin_unlock_irqrestore(&ip->i_ioend_lock, flags); |
| 234 | } |
| 235 | |
| 236 | /* |
| 237 | * Fast revalidation of the cached writeback mapping. Return true if the current |
| 238 | * mapping is valid, false otherwise. |
| 239 | */ |
| 240 | static bool |
| 241 | xfs_imap_valid( |
| 242 | struct iomap_writepage_ctx *wpc, |
| 243 | struct xfs_inode *ip, |
| 244 | loff_t offset) |
| 245 | { |
| 246 | if (offset < wpc->iomap.offset || |
| 247 | offset >= wpc->iomap.offset + wpc->iomap.length) |
| 248 | return false; |
| 249 | /* |
| 250 | * If this is a COW mapping, it is sufficient to check that the mapping |
| 251 | * covers the offset. Be careful to check this first because the caller |
| 252 | * can revalidate a COW mapping without updating the data seqno. |
| 253 | */ |
| 254 | if (wpc->iomap.flags & IOMAP_F_SHARED) |
| 255 | return true; |
| 256 | |
| 257 | /* |
| 258 | * This is not a COW mapping. Check the sequence number of the data fork |
| 259 | * because concurrent changes could have invalidated the extent. Check |
| 260 | * the COW fork because concurrent changes since the last time we |
| 261 | * checked (and found nothing at this offset) could have added |
| 262 | * overlapping blocks. |
| 263 | */ |
| 264 | if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) { |
| 265 | trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap, |
| 266 | XFS_WPC(wpc)->data_seq, XFS_DATA_FORK); |
| 267 | return false; |
| 268 | } |
| 269 | if (xfs_inode_has_cow_data(ip) && |
| 270 | XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) { |
| 271 | trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap, |
| 272 | XFS_WPC(wpc)->cow_seq, XFS_COW_FORK); |
| 273 | return false; |
| 274 | } |
| 275 | return true; |
| 276 | } |
| 277 | |
| 278 | static int |
| 279 | xfs_map_blocks( |
| 280 | struct iomap_writepage_ctx *wpc, |
| 281 | struct inode *inode, |
| 282 | loff_t offset, |
| 283 | unsigned int len) |
| 284 | { |
| 285 | struct xfs_inode *ip = XFS_I(inode); |
| 286 | struct xfs_mount *mp = ip->i_mount; |
| 287 | ssize_t count = i_blocksize(inode); |
| 288 | xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| 289 | xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); |
| 290 | xfs_fileoff_t cow_fsb; |
| 291 | int whichfork; |
| 292 | struct xfs_bmbt_irec imap; |
| 293 | struct xfs_iext_cursor icur; |
| 294 | int retries = 0; |
| 295 | int error = 0; |
| 296 | unsigned int *seq; |
| 297 | |
| 298 | if (xfs_is_shutdown(mp)) |
| 299 | return -EIO; |
| 300 | |
| 301 | XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS); |
| 302 | |
| 303 | /* |
| 304 | * COW fork blocks can overlap data fork blocks even if the blocks |
| 305 | * aren't shared. COW I/O always takes precedent, so we must always |
| 306 | * check for overlap on reflink inodes unless the mapping is already a |
| 307 | * COW one, or the COW fork hasn't changed from the last time we looked |
| 308 | * at it. |
| 309 | * |
| 310 | * It's safe to check the COW fork if_seq here without the ILOCK because |
| 311 | * we've indirectly protected against concurrent updates: writeback has |
| 312 | * the page locked, which prevents concurrent invalidations by reflink |
| 313 | * and directio and prevents concurrent buffered writes to the same |
| 314 | * page. Changes to if_seq always happen under i_lock, which protects |
| 315 | * against concurrent updates and provides a memory barrier on the way |
| 316 | * out that ensures that we always see the current value. |
| 317 | */ |
| 318 | if (xfs_imap_valid(wpc, ip, offset)) |
| 319 | return 0; |
| 320 | |
| 321 | /* |
| 322 | * If we don't have a valid map, now it's time to get a new one for this |
| 323 | * offset. This will convert delayed allocations (including COW ones) |
| 324 | * into real extents. If we return without a valid map, it means we |
| 325 | * landed in a hole and we skip the block. |
| 326 | */ |
| 327 | retry: |
| 328 | cow_fsb = NULLFILEOFF; |
| 329 | whichfork = XFS_DATA_FORK; |
| 330 | xfs_ilock(ip, XFS_ILOCK_SHARED); |
| 331 | ASSERT(!xfs_need_iread_extents(&ip->i_df)); |
| 332 | |
| 333 | /* |
| 334 | * Check if this is offset is covered by a COW extents, and if yes use |
| 335 | * it directly instead of looking up anything in the data fork. |
| 336 | */ |
| 337 | if (xfs_inode_has_cow_data(ip) && |
| 338 | xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) |
| 339 | cow_fsb = imap.br_startoff; |
| 340 | if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { |
| 341 | XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); |
| 342 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 343 | |
| 344 | whichfork = XFS_COW_FORK; |
| 345 | goto allocate_blocks; |
| 346 | } |
| 347 | |
| 348 | /* |
| 349 | * No COW extent overlap. Revalidate now that we may have updated |
| 350 | * ->cow_seq. If the data mapping is still valid, we're done. |
| 351 | */ |
| 352 | if (xfs_imap_valid(wpc, ip, offset)) { |
| 353 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 354 | return 0; |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * If we don't have a valid map, now it's time to get a new one for this |
| 359 | * offset. This will convert delayed allocations (including COW ones) |
| 360 | * into real extents. |
| 361 | */ |
| 362 | if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) |
| 363 | imap.br_startoff = end_fsb; /* fake a hole past EOF */ |
| 364 | XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); |
| 365 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 366 | |
| 367 | /* landed in a hole or beyond EOF? */ |
| 368 | if (imap.br_startoff > offset_fsb) { |
| 369 | imap.br_blockcount = imap.br_startoff - offset_fsb; |
| 370 | imap.br_startoff = offset_fsb; |
| 371 | imap.br_startblock = HOLESTARTBLOCK; |
| 372 | imap.br_state = XFS_EXT_NORM; |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * Truncate to the next COW extent if there is one. This is the only |
| 377 | * opportunity to do this because we can skip COW fork lookups for the |
| 378 | * subsequent blocks in the mapping; however, the requirement to treat |
| 379 | * the COW range separately remains. |
| 380 | */ |
| 381 | if (cow_fsb != NULLFILEOFF && |
| 382 | cow_fsb < imap.br_startoff + imap.br_blockcount) |
| 383 | imap.br_blockcount = cow_fsb - imap.br_startoff; |
| 384 | |
| 385 | /* got a delalloc extent? */ |
| 386 | if (imap.br_startblock != HOLESTARTBLOCK && |
| 387 | isnullstartblock(imap.br_startblock)) |
| 388 | goto allocate_blocks; |
| 389 | |
| 390 | xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq); |
| 391 | trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); |
| 392 | return 0; |
| 393 | allocate_blocks: |
| 394 | /* |
| 395 | * Convert a dellalloc extent to a real one. The current page is held |
| 396 | * locked so nothing could have removed the block backing offset_fsb, |
| 397 | * although it could have moved from the COW to the data fork by another |
| 398 | * thread. |
| 399 | */ |
| 400 | if (whichfork == XFS_COW_FORK) |
| 401 | seq = &XFS_WPC(wpc)->cow_seq; |
| 402 | else |
| 403 | seq = &XFS_WPC(wpc)->data_seq; |
| 404 | |
| 405 | error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, |
| 406 | &wpc->iomap, seq); |
| 407 | if (error) { |
| 408 | /* |
| 409 | * If we failed to find the extent in the COW fork we might have |
| 410 | * raced with a COW to data fork conversion or truncate. |
| 411 | * Restart the lookup to catch the extent in the data fork for |
| 412 | * the former case, but prevent additional retries to avoid |
| 413 | * looping forever for the latter case. |
| 414 | */ |
| 415 | if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) |
| 416 | goto retry; |
| 417 | ASSERT(error != -EAGAIN); |
| 418 | return error; |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * Due to merging the return real extent might be larger than the |
| 423 | * original delalloc one. Trim the return extent to the next COW |
| 424 | * boundary again to force a re-lookup. |
| 425 | */ |
| 426 | if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { |
| 427 | loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb); |
| 428 | |
| 429 | if (cow_offset < wpc->iomap.offset + wpc->iomap.length) |
| 430 | wpc->iomap.length = cow_offset - wpc->iomap.offset; |
| 431 | } |
| 432 | |
| 433 | ASSERT(wpc->iomap.offset <= offset); |
| 434 | ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); |
| 435 | trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); |
| 436 | return 0; |
| 437 | } |
| 438 | |
| 439 | static bool |
| 440 | xfs_ioend_needs_wq_completion( |
| 441 | struct iomap_ioend *ioend) |
| 442 | { |
| 443 | /* Changing inode size requires a transaction. */ |
| 444 | if (xfs_ioend_is_append(ioend)) |
| 445 | return true; |
| 446 | |
| 447 | /* Extent manipulation requires a transaction. */ |
| 448 | if (ioend->io_flags & (IOMAP_IOEND_UNWRITTEN | IOMAP_IOEND_SHARED)) |
| 449 | return true; |
| 450 | |
| 451 | /* Page cache invalidation cannot be done in irq context. */ |
| 452 | if (ioend->io_flags & IOMAP_IOEND_DONTCACHE) |
| 453 | return true; |
| 454 | |
| 455 | return false; |
| 456 | } |
| 457 | |
| 458 | static int |
| 459 | xfs_submit_ioend( |
| 460 | struct iomap_writepage_ctx *wpc, |
| 461 | int status) |
| 462 | { |
| 463 | struct iomap_ioend *ioend = wpc->ioend; |
| 464 | unsigned int nofs_flag; |
| 465 | |
| 466 | /* |
| 467 | * We can allocate memory here while doing writeback on behalf of |
| 468 | * memory reclaim. To avoid memory allocation deadlocks set the |
| 469 | * task-wide nofs context for the following operations. |
| 470 | */ |
| 471 | nofs_flag = memalloc_nofs_save(); |
| 472 | |
| 473 | /* Convert CoW extents to regular */ |
| 474 | if (!status && (ioend->io_flags & IOMAP_IOEND_SHARED)) { |
| 475 | status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), |
| 476 | ioend->io_offset, ioend->io_size); |
| 477 | } |
| 478 | |
| 479 | memalloc_nofs_restore(nofs_flag); |
| 480 | |
| 481 | /* send ioends that might require a transaction to the completion wq */ |
| 482 | if (xfs_ioend_needs_wq_completion(ioend)) |
| 483 | ioend->io_bio.bi_end_io = xfs_end_bio; |
| 484 | |
| 485 | if (status) |
| 486 | return status; |
| 487 | submit_bio(&ioend->io_bio); |
| 488 | return 0; |
| 489 | } |
| 490 | |
| 491 | /* |
| 492 | * If the folio has delalloc blocks on it, the caller is asking us to punch them |
| 493 | * out. If we don't, we can leave a stale delalloc mapping covered by a clean |
| 494 | * page that needs to be dirtied again before the delalloc mapping can be |
| 495 | * converted. This stale delalloc mapping can trip up a later direct I/O read |
| 496 | * operation on the same region. |
| 497 | * |
| 498 | * We prevent this by truncating away the delalloc regions on the folio. Because |
| 499 | * they are delalloc, we can do this without needing a transaction. Indeed - if |
| 500 | * we get ENOSPC errors, we have to be able to do this truncation without a |
| 501 | * transaction as there is no space left for block reservation (typically why |
| 502 | * we see a ENOSPC in writeback). |
| 503 | */ |
| 504 | static void |
| 505 | xfs_discard_folio( |
| 506 | struct folio *folio, |
| 507 | loff_t pos) |
| 508 | { |
| 509 | struct xfs_inode *ip = XFS_I(folio->mapping->host); |
| 510 | struct xfs_mount *mp = ip->i_mount; |
| 511 | |
| 512 | if (xfs_is_shutdown(mp)) |
| 513 | return; |
| 514 | |
| 515 | xfs_alert_ratelimited(mp, |
| 516 | "page discard on page "PTR_FMT", inode 0x%llx, pos %llu.", |
| 517 | folio, ip->i_ino, pos); |
| 518 | |
| 519 | /* |
| 520 | * The end of the punch range is always the offset of the first |
| 521 | * byte of the next folio. Hence the end offset is only dependent on the |
| 522 | * folio itself and not the start offset that is passed in. |
| 523 | */ |
| 524 | xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, pos, |
| 525 | folio_pos(folio) + folio_size(folio), NULL); |
| 526 | } |
| 527 | |
| 528 | static const struct iomap_writeback_ops xfs_writeback_ops = { |
| 529 | .map_blocks = xfs_map_blocks, |
| 530 | .submit_ioend = xfs_submit_ioend, |
| 531 | .discard_folio = xfs_discard_folio, |
| 532 | }; |
| 533 | |
| 534 | struct xfs_zoned_writepage_ctx { |
| 535 | struct iomap_writepage_ctx ctx; |
| 536 | struct xfs_open_zone *open_zone; |
| 537 | }; |
| 538 | |
| 539 | static inline struct xfs_zoned_writepage_ctx * |
| 540 | XFS_ZWPC(struct iomap_writepage_ctx *ctx) |
| 541 | { |
| 542 | return container_of(ctx, struct xfs_zoned_writepage_ctx, ctx); |
| 543 | } |
| 544 | |
| 545 | static int |
| 546 | xfs_zoned_map_blocks( |
| 547 | struct iomap_writepage_ctx *wpc, |
| 548 | struct inode *inode, |
| 549 | loff_t offset, |
| 550 | unsigned int len) |
| 551 | { |
| 552 | struct xfs_inode *ip = XFS_I(inode); |
| 553 | struct xfs_mount *mp = ip->i_mount; |
| 554 | xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); |
| 555 | xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + len); |
| 556 | xfs_filblks_t count_fsb; |
| 557 | struct xfs_bmbt_irec imap, del; |
| 558 | struct xfs_iext_cursor icur; |
| 559 | |
| 560 | if (xfs_is_shutdown(mp)) |
| 561 | return -EIO; |
| 562 | |
| 563 | XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS); |
| 564 | |
| 565 | /* |
| 566 | * All dirty data must be covered by delalloc extents. But truncate can |
| 567 | * remove delalloc extents underneath us or reduce their size. |
| 568 | * Returning a hole tells iomap to not write back any data from this |
| 569 | * range, which is the right thing to do in that case. |
| 570 | * |
| 571 | * Otherwise just tell iomap to treat ranges previously covered by a |
| 572 | * delalloc extent as mapped. The actual block allocation will be done |
| 573 | * just before submitting the bio. |
| 574 | * |
| 575 | * This implies we never map outside folios that are locked or marked |
| 576 | * as under writeback, and thus there is no need check the fork sequence |
| 577 | * count here. |
| 578 | */ |
| 579 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 580 | if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) |
| 581 | imap.br_startoff = end_fsb; /* fake a hole past EOF */ |
| 582 | if (imap.br_startoff > offset_fsb) { |
| 583 | imap.br_blockcount = imap.br_startoff - offset_fsb; |
| 584 | imap.br_startoff = offset_fsb; |
| 585 | imap.br_startblock = HOLESTARTBLOCK; |
| 586 | imap.br_state = XFS_EXT_NORM; |
| 587 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 588 | xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, 0); |
| 589 | return 0; |
| 590 | } |
| 591 | end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount); |
| 592 | count_fsb = end_fsb - offset_fsb; |
| 593 | |
| 594 | del = imap; |
| 595 | xfs_trim_extent(&del, offset_fsb, count_fsb); |
| 596 | xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, &icur, &imap, &del, |
| 597 | XFS_BMAPI_REMAP); |
| 598 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 599 | |
| 600 | wpc->iomap.type = IOMAP_MAPPED; |
| 601 | wpc->iomap.flags = IOMAP_F_DIRTY; |
| 602 | wpc->iomap.bdev = mp->m_rtdev_targp->bt_bdev; |
| 603 | wpc->iomap.offset = offset; |
| 604 | wpc->iomap.length = XFS_FSB_TO_B(mp, count_fsb); |
| 605 | wpc->iomap.flags = IOMAP_F_ANON_WRITE; |
| 606 | |
| 607 | trace_xfs_zoned_map_blocks(ip, offset, wpc->iomap.length); |
| 608 | return 0; |
| 609 | } |
| 610 | |
| 611 | static int |
| 612 | xfs_zoned_submit_ioend( |
| 613 | struct iomap_writepage_ctx *wpc, |
| 614 | int status) |
| 615 | { |
| 616 | wpc->ioend->io_bio.bi_end_io = xfs_end_bio; |
| 617 | if (status) |
| 618 | return status; |
| 619 | xfs_zone_alloc_and_submit(wpc->ioend, &XFS_ZWPC(wpc)->open_zone); |
| 620 | return 0; |
| 621 | } |
| 622 | |
| 623 | static const struct iomap_writeback_ops xfs_zoned_writeback_ops = { |
| 624 | .map_blocks = xfs_zoned_map_blocks, |
| 625 | .submit_ioend = xfs_zoned_submit_ioend, |
| 626 | .discard_folio = xfs_discard_folio, |
| 627 | }; |
| 628 | |
| 629 | STATIC int |
| 630 | xfs_vm_writepages( |
| 631 | struct address_space *mapping, |
| 632 | struct writeback_control *wbc) |
| 633 | { |
| 634 | struct xfs_inode *ip = XFS_I(mapping->host); |
| 635 | |
| 636 | xfs_iflags_clear(ip, XFS_ITRUNCATED); |
| 637 | |
| 638 | if (xfs_is_zoned_inode(ip)) { |
| 639 | struct xfs_zoned_writepage_ctx xc = { }; |
| 640 | int error; |
| 641 | |
| 642 | error = iomap_writepages(mapping, wbc, &xc.ctx, |
| 643 | &xfs_zoned_writeback_ops); |
| 644 | if (xc.open_zone) |
| 645 | xfs_open_zone_put(xc.open_zone); |
| 646 | return error; |
| 647 | } else { |
| 648 | struct xfs_writepage_ctx wpc = { }; |
| 649 | |
| 650 | return iomap_writepages(mapping, wbc, &wpc.ctx, |
| 651 | &xfs_writeback_ops); |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | STATIC int |
| 656 | xfs_dax_writepages( |
| 657 | struct address_space *mapping, |
| 658 | struct writeback_control *wbc) |
| 659 | { |
| 660 | struct xfs_inode *ip = XFS_I(mapping->host); |
| 661 | |
| 662 | xfs_iflags_clear(ip, XFS_ITRUNCATED); |
| 663 | return dax_writeback_mapping_range(mapping, |
| 664 | xfs_inode_buftarg(ip)->bt_daxdev, wbc); |
| 665 | } |
| 666 | |
| 667 | STATIC sector_t |
| 668 | xfs_vm_bmap( |
| 669 | struct address_space *mapping, |
| 670 | sector_t block) |
| 671 | { |
| 672 | struct xfs_inode *ip = XFS_I(mapping->host); |
| 673 | |
| 674 | trace_xfs_vm_bmap(ip); |
| 675 | |
| 676 | /* |
| 677 | * The swap code (ab-)uses ->bmap to get a block mapping and then |
| 678 | * bypasses the file system for actual I/O. We really can't allow |
| 679 | * that on reflinks inodes, so we have to skip out here. And yes, |
| 680 | * 0 is the magic code for a bmap error. |
| 681 | * |
| 682 | * Since we don't pass back blockdev info, we can't return bmap |
| 683 | * information for rt files either. |
| 684 | */ |
| 685 | if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) |
| 686 | return 0; |
| 687 | return iomap_bmap(mapping, block, &xfs_read_iomap_ops); |
| 688 | } |
| 689 | |
| 690 | STATIC int |
| 691 | xfs_vm_read_folio( |
| 692 | struct file *unused, |
| 693 | struct folio *folio) |
| 694 | { |
| 695 | return iomap_read_folio(folio, &xfs_read_iomap_ops); |
| 696 | } |
| 697 | |
| 698 | STATIC void |
| 699 | xfs_vm_readahead( |
| 700 | struct readahead_control *rac) |
| 701 | { |
| 702 | iomap_readahead(rac, &xfs_read_iomap_ops); |
| 703 | } |
| 704 | |
| 705 | static int |
| 706 | xfs_vm_swap_activate( |
| 707 | struct swap_info_struct *sis, |
| 708 | struct file *swap_file, |
| 709 | sector_t *span) |
| 710 | { |
| 711 | struct xfs_inode *ip = XFS_I(file_inode(swap_file)); |
| 712 | |
| 713 | /* |
| 714 | * Swap file activation can race against concurrent shared extent |
| 715 | * removal in files that have been cloned. If this happens, |
| 716 | * iomap_swapfile_iter() can fail because it encountered a shared |
| 717 | * extent even though an operation is in progress to remove those |
| 718 | * shared extents. |
| 719 | * |
| 720 | * This race becomes problematic when we defer extent removal |
| 721 | * operations beyond the end of a syscall (i.e. use async background |
| 722 | * processing algorithms). Users think the extents are no longer |
| 723 | * shared, but iomap_swapfile_iter() still sees them as shared |
| 724 | * because the refcountbt entries for the extents being removed have |
| 725 | * not yet been updated. Hence the swapon call fails unexpectedly. |
| 726 | * |
| 727 | * The race condition is currently most obvious from the unlink() |
| 728 | * operation as extent removal is deferred until after the last |
| 729 | * reference to the inode goes away. We then process the extent |
| 730 | * removal asynchronously, hence triggers the "syscall completed but |
| 731 | * work not done" condition mentioned above. To close this race |
| 732 | * window, we need to flush any pending inodegc operations to ensure |
| 733 | * they have updated the refcountbt records before we try to map the |
| 734 | * swapfile. |
| 735 | */ |
| 736 | xfs_inodegc_flush(ip->i_mount); |
| 737 | |
| 738 | /* |
| 739 | * Direct the swap code to the correct block device when this file |
| 740 | * sits on the RT device. |
| 741 | */ |
| 742 | sis->bdev = xfs_inode_buftarg(ip)->bt_bdev; |
| 743 | |
| 744 | return iomap_swapfile_activate(sis, swap_file, span, |
| 745 | &xfs_read_iomap_ops); |
| 746 | } |
| 747 | |
| 748 | const struct address_space_operations xfs_address_space_operations = { |
| 749 | .read_folio = xfs_vm_read_folio, |
| 750 | .readahead = xfs_vm_readahead, |
| 751 | .writepages = xfs_vm_writepages, |
| 752 | .dirty_folio = iomap_dirty_folio, |
| 753 | .release_folio = iomap_release_folio, |
| 754 | .invalidate_folio = iomap_invalidate_folio, |
| 755 | .bmap = xfs_vm_bmap, |
| 756 | .migrate_folio = filemap_migrate_folio, |
| 757 | .is_partially_uptodate = iomap_is_partially_uptodate, |
| 758 | .error_remove_folio = generic_error_remove_folio, |
| 759 | .swap_activate = xfs_vm_swap_activate, |
| 760 | }; |
| 761 | |
| 762 | const struct address_space_operations xfs_dax_aops = { |
| 763 | .writepages = xfs_dax_writepages, |
| 764 | .dirty_folio = noop_dirty_folio, |
| 765 | .swap_activate = xfs_vm_swap_activate, |
| 766 | }; |