[XFS] use scalable vmap API
[linux-2.6-block.git] / fs / xfs / linux-2.6 / xfs_buf.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36
37static kmem_zone_t *xfs_buf_zone;
38STATIC int xfsbufd(void *);
39STATIC int xfsbufd_wakeup(int, gfp_t);
40STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41static struct shrinker xfs_buf_shake = {
42 .shrink = xfsbufd_wakeup,
43 .seeks = DEFAULT_SEEKS,
44};
45
46static struct workqueue_struct *xfslogd_workqueue;
47struct workqueue_struct *xfsdatad_workqueue;
48
49#ifdef XFS_BUF_TRACE
50void
51xfs_buf_trace(
52 xfs_buf_t *bp,
53 char *id,
54 void *data,
55 void *ra)
56{
57 ktrace_enter(xfs_buf_trace_buf,
58 bp, id,
59 (void *)(unsigned long)bp->b_flags,
60 (void *)(unsigned long)bp->b_hold.counter,
61 (void *)(unsigned long)bp->b_sema.count,
62 (void *)current,
63 data, ra,
64 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66 (void *)(unsigned long)bp->b_buffer_length,
67 NULL, NULL, NULL, NULL, NULL);
68}
69ktrace_t *xfs_buf_trace_buf;
70#define XFS_BUF_TRACE_SIZE 4096
71#define XB_TRACE(bp, id, data) \
72 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
73#else
74#define XB_TRACE(bp, id, data) do { } while (0)
75#endif
76
77#ifdef XFS_BUF_LOCK_TRACKING
78# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
79# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
80# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
81#else
82# define XB_SET_OWNER(bp) do { } while (0)
83# define XB_CLEAR_OWNER(bp) do { } while (0)
84# define XB_GET_OWNER(bp) do { } while (0)
85#endif
86
87#define xb_to_gfp(flags) \
88 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
90
91#define xb_to_km(flags) \
92 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
93
94#define xfs_buf_allocate(flags) \
95 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96#define xfs_buf_deallocate(bp) \
97 kmem_zone_free(xfs_buf_zone, (bp));
98
99/*
100 * Page Region interfaces.
101 *
102 * For pages in filesystems where the blocksize is smaller than the
103 * pagesize, we use the page->private field (long) to hold a bitmap
104 * of uptodate regions within the page.
105 *
106 * Each such region is "bytes per page / bits per long" bytes long.
107 *
108 * NBPPR == number-of-bytes-per-page-region
109 * BTOPR == bytes-to-page-region (rounded up)
110 * BTOPRT == bytes-to-page-region-truncated (rounded down)
111 */
112#if (BITS_PER_LONG == 32)
113#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
114#elif (BITS_PER_LONG == 64)
115#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
116#else
117#error BITS_PER_LONG must be 32 or 64
118#endif
119#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
120#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
122
123STATIC unsigned long
124page_region_mask(
125 size_t offset,
126 size_t length)
127{
128 unsigned long mask;
129 int first, final;
130
131 first = BTOPR(offset);
132 final = BTOPRT(offset + length - 1);
133 first = min(first, final);
134
135 mask = ~0UL;
136 mask <<= BITS_PER_LONG - (final - first);
137 mask >>= BITS_PER_LONG - (final);
138
139 ASSERT(offset + length <= PAGE_CACHE_SIZE);
140 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
141
142 return mask;
143}
144
145STATIC_INLINE void
146set_page_region(
147 struct page *page,
148 size_t offset,
149 size_t length)
150{
151 set_page_private(page,
152 page_private(page) | page_region_mask(offset, length));
153 if (page_private(page) == ~0UL)
154 SetPageUptodate(page);
155}
156
157STATIC_INLINE int
158test_page_region(
159 struct page *page,
160 size_t offset,
161 size_t length)
162{
163 unsigned long mask = page_region_mask(offset, length);
164
165 return (mask && (page_private(page) & mask) == mask);
166}
167
168/*
169 * Internal xfs_buf_t object manipulation
170 */
171
172STATIC void
173_xfs_buf_initialize(
174 xfs_buf_t *bp,
175 xfs_buftarg_t *target,
176 xfs_off_t range_base,
177 size_t range_length,
178 xfs_buf_flags_t flags)
179{
180 /*
181 * We don't want certain flags to appear in b_flags.
182 */
183 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
184
185 memset(bp, 0, sizeof(xfs_buf_t));
186 atomic_set(&bp->b_hold, 1);
187 init_completion(&bp->b_iowait);
188 INIT_LIST_HEAD(&bp->b_list);
189 INIT_LIST_HEAD(&bp->b_hash_list);
190 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
191 XB_SET_OWNER(bp);
192 bp->b_target = target;
193 bp->b_file_offset = range_base;
194 /*
195 * Set buffer_length and count_desired to the same value initially.
196 * I/O routines should use count_desired, which will be the same in
197 * most cases but may be reset (e.g. XFS recovery).
198 */
199 bp->b_buffer_length = bp->b_count_desired = range_length;
200 bp->b_flags = flags;
201 bp->b_bn = XFS_BUF_DADDR_NULL;
202 atomic_set(&bp->b_pin_count, 0);
203 init_waitqueue_head(&bp->b_waiters);
204
205 XFS_STATS_INC(xb_create);
206 XB_TRACE(bp, "initialize", target);
207}
208
209/*
210 * Allocate a page array capable of holding a specified number
211 * of pages, and point the page buf at it.
212 */
213STATIC int
214_xfs_buf_get_pages(
215 xfs_buf_t *bp,
216 int page_count,
217 xfs_buf_flags_t flags)
218{
219 /* Make sure that we have a page list */
220 if (bp->b_pages == NULL) {
221 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
222 bp->b_page_count = page_count;
223 if (page_count <= XB_PAGES) {
224 bp->b_pages = bp->b_page_array;
225 } else {
226 bp->b_pages = kmem_alloc(sizeof(struct page *) *
227 page_count, xb_to_km(flags));
228 if (bp->b_pages == NULL)
229 return -ENOMEM;
230 }
231 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
232 }
233 return 0;
234}
235
236/*
237 * Frees b_pages if it was allocated.
238 */
239STATIC void
240_xfs_buf_free_pages(
241 xfs_buf_t *bp)
242{
243 if (bp->b_pages != bp->b_page_array) {
244 kmem_free(bp->b_pages);
245 }
246}
247
248/*
249 * Releases the specified buffer.
250 *
251 * The modification state of any associated pages is left unchanged.
252 * The buffer most not be on any hash - use xfs_buf_rele instead for
253 * hashed and refcounted buffers
254 */
255void
256xfs_buf_free(
257 xfs_buf_t *bp)
258{
259 XB_TRACE(bp, "free", 0);
260
261 ASSERT(list_empty(&bp->b_hash_list));
262
263 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
264 uint i;
265
266 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
267 vm_unmap_ram(bp->b_addr - bp->b_offset, bp->b_page_count);
268
269 for (i = 0; i < bp->b_page_count; i++) {
270 struct page *page = bp->b_pages[i];
271
272 if (bp->b_flags & _XBF_PAGE_CACHE)
273 ASSERT(!PagePrivate(page));
274 page_cache_release(page);
275 }
276 _xfs_buf_free_pages(bp);
277 }
278
279 xfs_buf_deallocate(bp);
280}
281
282/*
283 * Finds all pages for buffer in question and builds it's page list.
284 */
285STATIC int
286_xfs_buf_lookup_pages(
287 xfs_buf_t *bp,
288 uint flags)
289{
290 struct address_space *mapping = bp->b_target->bt_mapping;
291 size_t blocksize = bp->b_target->bt_bsize;
292 size_t size = bp->b_count_desired;
293 size_t nbytes, offset;
294 gfp_t gfp_mask = xb_to_gfp(flags);
295 unsigned short page_count, i;
296 pgoff_t first;
297 xfs_off_t end;
298 int error;
299
300 end = bp->b_file_offset + bp->b_buffer_length;
301 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
302
303 error = _xfs_buf_get_pages(bp, page_count, flags);
304 if (unlikely(error))
305 return error;
306 bp->b_flags |= _XBF_PAGE_CACHE;
307
308 offset = bp->b_offset;
309 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
310
311 for (i = 0; i < bp->b_page_count; i++) {
312 struct page *page;
313 uint retries = 0;
314
315 retry:
316 page = find_or_create_page(mapping, first + i, gfp_mask);
317 if (unlikely(page == NULL)) {
318 if (flags & XBF_READ_AHEAD) {
319 bp->b_page_count = i;
320 for (i = 0; i < bp->b_page_count; i++)
321 unlock_page(bp->b_pages[i]);
322 return -ENOMEM;
323 }
324
325 /*
326 * This could deadlock.
327 *
328 * But until all the XFS lowlevel code is revamped to
329 * handle buffer allocation failures we can't do much.
330 */
331 if (!(++retries % 100))
332 printk(KERN_ERR
333 "XFS: possible memory allocation "
334 "deadlock in %s (mode:0x%x)\n",
335 __func__, gfp_mask);
336
337 XFS_STATS_INC(xb_page_retries);
338 xfsbufd_wakeup(0, gfp_mask);
339 congestion_wait(WRITE, HZ/50);
340 goto retry;
341 }
342
343 XFS_STATS_INC(xb_page_found);
344
345 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
346 size -= nbytes;
347
348 ASSERT(!PagePrivate(page));
349 if (!PageUptodate(page)) {
350 page_count--;
351 if (blocksize >= PAGE_CACHE_SIZE) {
352 if (flags & XBF_READ)
353 bp->b_flags |= _XBF_PAGE_LOCKED;
354 } else if (!PagePrivate(page)) {
355 if (test_page_region(page, offset, nbytes))
356 page_count++;
357 }
358 }
359
360 bp->b_pages[i] = page;
361 offset = 0;
362 }
363
364 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
365 for (i = 0; i < bp->b_page_count; i++)
366 unlock_page(bp->b_pages[i]);
367 }
368
369 if (page_count == bp->b_page_count)
370 bp->b_flags |= XBF_DONE;
371
372 XB_TRACE(bp, "lookup_pages", (long)page_count);
373 return error;
374}
375
376/*
377 * Map buffer into kernel address-space if nessecary.
378 */
379STATIC int
380_xfs_buf_map_pages(
381 xfs_buf_t *bp,
382 uint flags)
383{
384 /* A single page buffer is always mappable */
385 if (bp->b_page_count == 1) {
386 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
387 bp->b_flags |= XBF_MAPPED;
388 } else if (flags & XBF_MAPPED) {
389 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
390 -1, PAGE_KERNEL);
391 if (unlikely(bp->b_addr == NULL))
392 return -ENOMEM;
393 bp->b_addr += bp->b_offset;
394 bp->b_flags |= XBF_MAPPED;
395 }
396
397 return 0;
398}
399
400/*
401 * Finding and Reading Buffers
402 */
403
404/*
405 * Look up, and creates if absent, a lockable buffer for
406 * a given range of an inode. The buffer is returned
407 * locked. If other overlapping buffers exist, they are
408 * released before the new buffer is created and locked,
409 * which may imply that this call will block until those buffers
410 * are unlocked. No I/O is implied by this call.
411 */
412xfs_buf_t *
413_xfs_buf_find(
414 xfs_buftarg_t *btp, /* block device target */
415 xfs_off_t ioff, /* starting offset of range */
416 size_t isize, /* length of range */
417 xfs_buf_flags_t flags,
418 xfs_buf_t *new_bp)
419{
420 xfs_off_t range_base;
421 size_t range_length;
422 xfs_bufhash_t *hash;
423 xfs_buf_t *bp, *n;
424
425 range_base = (ioff << BBSHIFT);
426 range_length = (isize << BBSHIFT);
427
428 /* Check for IOs smaller than the sector size / not sector aligned */
429 ASSERT(!(range_length < (1 << btp->bt_sshift)));
430 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
431
432 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
433
434 spin_lock(&hash->bh_lock);
435
436 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
437 ASSERT(btp == bp->b_target);
438 if (bp->b_file_offset == range_base &&
439 bp->b_buffer_length == range_length) {
440 /*
441 * If we look at something, bring it to the
442 * front of the list for next time.
443 */
444 atomic_inc(&bp->b_hold);
445 list_move(&bp->b_hash_list, &hash->bh_list);
446 goto found;
447 }
448 }
449
450 /* No match found */
451 if (new_bp) {
452 _xfs_buf_initialize(new_bp, btp, range_base,
453 range_length, flags);
454 new_bp->b_hash = hash;
455 list_add(&new_bp->b_hash_list, &hash->bh_list);
456 } else {
457 XFS_STATS_INC(xb_miss_locked);
458 }
459
460 spin_unlock(&hash->bh_lock);
461 return new_bp;
462
463found:
464 spin_unlock(&hash->bh_lock);
465
466 /* Attempt to get the semaphore without sleeping,
467 * if this does not work then we need to drop the
468 * spinlock and do a hard attempt on the semaphore.
469 */
470 if (down_trylock(&bp->b_sema)) {
471 if (!(flags & XBF_TRYLOCK)) {
472 /* wait for buffer ownership */
473 XB_TRACE(bp, "get_lock", 0);
474 xfs_buf_lock(bp);
475 XFS_STATS_INC(xb_get_locked_waited);
476 } else {
477 /* We asked for a trylock and failed, no need
478 * to look at file offset and length here, we
479 * know that this buffer at least overlaps our
480 * buffer and is locked, therefore our buffer
481 * either does not exist, or is this buffer.
482 */
483 xfs_buf_rele(bp);
484 XFS_STATS_INC(xb_busy_locked);
485 return NULL;
486 }
487 } else {
488 /* trylock worked */
489 XB_SET_OWNER(bp);
490 }
491
492 if (bp->b_flags & XBF_STALE) {
493 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
494 bp->b_flags &= XBF_MAPPED;
495 }
496 XB_TRACE(bp, "got_lock", 0);
497 XFS_STATS_INC(xb_get_locked);
498 return bp;
499}
500
501/*
502 * Assembles a buffer covering the specified range.
503 * Storage in memory for all portions of the buffer will be allocated,
504 * although backing storage may not be.
505 */
506xfs_buf_t *
507xfs_buf_get_flags(
508 xfs_buftarg_t *target,/* target for buffer */
509 xfs_off_t ioff, /* starting offset of range */
510 size_t isize, /* length of range */
511 xfs_buf_flags_t flags)
512{
513 xfs_buf_t *bp, *new_bp;
514 int error = 0, i;
515
516 new_bp = xfs_buf_allocate(flags);
517 if (unlikely(!new_bp))
518 return NULL;
519
520 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
521 if (bp == new_bp) {
522 error = _xfs_buf_lookup_pages(bp, flags);
523 if (error)
524 goto no_buffer;
525 } else {
526 xfs_buf_deallocate(new_bp);
527 if (unlikely(bp == NULL))
528 return NULL;
529 }
530
531 for (i = 0; i < bp->b_page_count; i++)
532 mark_page_accessed(bp->b_pages[i]);
533
534 if (!(bp->b_flags & XBF_MAPPED)) {
535 error = _xfs_buf_map_pages(bp, flags);
536 if (unlikely(error)) {
537 printk(KERN_WARNING "%s: failed to map pages\n",
538 __func__);
539 goto no_buffer;
540 }
541 }
542
543 XFS_STATS_INC(xb_get);
544
545 /*
546 * Always fill in the block number now, the mapped cases can do
547 * their own overlay of this later.
548 */
549 bp->b_bn = ioff;
550 bp->b_count_desired = bp->b_buffer_length;
551
552 XB_TRACE(bp, "get", (unsigned long)flags);
553 return bp;
554
555 no_buffer:
556 if (flags & (XBF_LOCK | XBF_TRYLOCK))
557 xfs_buf_unlock(bp);
558 xfs_buf_rele(bp);
559 return NULL;
560}
561
562STATIC int
563_xfs_buf_read(
564 xfs_buf_t *bp,
565 xfs_buf_flags_t flags)
566{
567 int status;
568
569 XB_TRACE(bp, "_xfs_buf_read", (unsigned long)flags);
570
571 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
572 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
573
574 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
575 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
576 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
577 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
578
579 status = xfs_buf_iorequest(bp);
580 if (!status && !(flags & XBF_ASYNC))
581 status = xfs_buf_iowait(bp);
582 return status;
583}
584
585xfs_buf_t *
586xfs_buf_read_flags(
587 xfs_buftarg_t *target,
588 xfs_off_t ioff,
589 size_t isize,
590 xfs_buf_flags_t flags)
591{
592 xfs_buf_t *bp;
593
594 flags |= XBF_READ;
595
596 bp = xfs_buf_get_flags(target, ioff, isize, flags);
597 if (bp) {
598 if (!XFS_BUF_ISDONE(bp)) {
599 XB_TRACE(bp, "read", (unsigned long)flags);
600 XFS_STATS_INC(xb_get_read);
601 _xfs_buf_read(bp, flags);
602 } else if (flags & XBF_ASYNC) {
603 XB_TRACE(bp, "read_async", (unsigned long)flags);
604 /*
605 * Read ahead call which is already satisfied,
606 * drop the buffer
607 */
608 goto no_buffer;
609 } else {
610 XB_TRACE(bp, "read_done", (unsigned long)flags);
611 /* We do not want read in the flags */
612 bp->b_flags &= ~XBF_READ;
613 }
614 }
615
616 return bp;
617
618 no_buffer:
619 if (flags & (XBF_LOCK | XBF_TRYLOCK))
620 xfs_buf_unlock(bp);
621 xfs_buf_rele(bp);
622 return NULL;
623}
624
625/*
626 * If we are not low on memory then do the readahead in a deadlock
627 * safe manner.
628 */
629void
630xfs_buf_readahead(
631 xfs_buftarg_t *target,
632 xfs_off_t ioff,
633 size_t isize,
634 xfs_buf_flags_t flags)
635{
636 struct backing_dev_info *bdi;
637
638 bdi = target->bt_mapping->backing_dev_info;
639 if (bdi_read_congested(bdi))
640 return;
641
642 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
643 xfs_buf_read_flags(target, ioff, isize, flags);
644}
645
646xfs_buf_t *
647xfs_buf_get_empty(
648 size_t len,
649 xfs_buftarg_t *target)
650{
651 xfs_buf_t *bp;
652
653 bp = xfs_buf_allocate(0);
654 if (bp)
655 _xfs_buf_initialize(bp, target, 0, len, 0);
656 return bp;
657}
658
659static inline struct page *
660mem_to_page(
661 void *addr)
662{
663 if ((!is_vmalloc_addr(addr))) {
664 return virt_to_page(addr);
665 } else {
666 return vmalloc_to_page(addr);
667 }
668}
669
670int
671xfs_buf_associate_memory(
672 xfs_buf_t *bp,
673 void *mem,
674 size_t len)
675{
676 int rval;
677 int i = 0;
678 unsigned long pageaddr;
679 unsigned long offset;
680 size_t buflen;
681 int page_count;
682
683 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
684 offset = (unsigned long)mem - pageaddr;
685 buflen = PAGE_CACHE_ALIGN(len + offset);
686 page_count = buflen >> PAGE_CACHE_SHIFT;
687
688 /* Free any previous set of page pointers */
689 if (bp->b_pages)
690 _xfs_buf_free_pages(bp);
691
692 bp->b_pages = NULL;
693 bp->b_addr = mem;
694
695 rval = _xfs_buf_get_pages(bp, page_count, 0);
696 if (rval)
697 return rval;
698
699 bp->b_offset = offset;
700
701 for (i = 0; i < bp->b_page_count; i++) {
702 bp->b_pages[i] = mem_to_page((void *)pageaddr);
703 pageaddr += PAGE_CACHE_SIZE;
704 }
705
706 bp->b_count_desired = len;
707 bp->b_buffer_length = buflen;
708 bp->b_flags |= XBF_MAPPED;
709 bp->b_flags &= ~_XBF_PAGE_LOCKED;
710
711 return 0;
712}
713
714xfs_buf_t *
715xfs_buf_get_noaddr(
716 size_t len,
717 xfs_buftarg_t *target)
718{
719 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
720 int error, i;
721 xfs_buf_t *bp;
722
723 bp = xfs_buf_allocate(0);
724 if (unlikely(bp == NULL))
725 goto fail;
726 _xfs_buf_initialize(bp, target, 0, len, 0);
727
728 error = _xfs_buf_get_pages(bp, page_count, 0);
729 if (error)
730 goto fail_free_buf;
731
732 for (i = 0; i < page_count; i++) {
733 bp->b_pages[i] = alloc_page(GFP_KERNEL);
734 if (!bp->b_pages[i])
735 goto fail_free_mem;
736 }
737 bp->b_flags |= _XBF_PAGES;
738
739 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
740 if (unlikely(error)) {
741 printk(KERN_WARNING "%s: failed to map pages\n",
742 __func__);
743 goto fail_free_mem;
744 }
745
746 xfs_buf_unlock(bp);
747
748 XB_TRACE(bp, "no_daddr", len);
749 return bp;
750
751 fail_free_mem:
752 while (--i >= 0)
753 __free_page(bp->b_pages[i]);
754 _xfs_buf_free_pages(bp);
755 fail_free_buf:
756 xfs_buf_deallocate(bp);
757 fail:
758 return NULL;
759}
760
761/*
762 * Increment reference count on buffer, to hold the buffer concurrently
763 * with another thread which may release (free) the buffer asynchronously.
764 * Must hold the buffer already to call this function.
765 */
766void
767xfs_buf_hold(
768 xfs_buf_t *bp)
769{
770 atomic_inc(&bp->b_hold);
771 XB_TRACE(bp, "hold", 0);
772}
773
774/*
775 * Releases a hold on the specified buffer. If the
776 * the hold count is 1, calls xfs_buf_free.
777 */
778void
779xfs_buf_rele(
780 xfs_buf_t *bp)
781{
782 xfs_bufhash_t *hash = bp->b_hash;
783
784 XB_TRACE(bp, "rele", bp->b_relse);
785
786 if (unlikely(!hash)) {
787 ASSERT(!bp->b_relse);
788 if (atomic_dec_and_test(&bp->b_hold))
789 xfs_buf_free(bp);
790 return;
791 }
792
793 ASSERT(atomic_read(&bp->b_hold) > 0);
794 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
795 if (bp->b_relse) {
796 atomic_inc(&bp->b_hold);
797 spin_unlock(&hash->bh_lock);
798 (*(bp->b_relse)) (bp);
799 } else if (bp->b_flags & XBF_FS_MANAGED) {
800 spin_unlock(&hash->bh_lock);
801 } else {
802 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
803 list_del_init(&bp->b_hash_list);
804 spin_unlock(&hash->bh_lock);
805 xfs_buf_free(bp);
806 }
807 }
808}
809
810
811/*
812 * Mutual exclusion on buffers. Locking model:
813 *
814 * Buffers associated with inodes for which buffer locking
815 * is not enabled are not protected by semaphores, and are
816 * assumed to be exclusively owned by the caller. There is a
817 * spinlock in the buffer, used by the caller when concurrent
818 * access is possible.
819 */
820
821/*
822 * Locks a buffer object, if it is not already locked.
823 * Note that this in no way locks the underlying pages, so it is only
824 * useful for synchronizing concurrent use of buffer objects, not for
825 * synchronizing independent access to the underlying pages.
826 */
827int
828xfs_buf_cond_lock(
829 xfs_buf_t *bp)
830{
831 int locked;
832
833 locked = down_trylock(&bp->b_sema) == 0;
834 if (locked) {
835 XB_SET_OWNER(bp);
836 }
837 XB_TRACE(bp, "cond_lock", (long)locked);
838 return locked ? 0 : -EBUSY;
839}
840
841#if defined(DEBUG) || defined(XFS_BLI_TRACE)
842int
843xfs_buf_lock_value(
844 xfs_buf_t *bp)
845{
846 return bp->b_sema.count;
847}
848#endif
849
850/*
851 * Locks a buffer object.
852 * Note that this in no way locks the underlying pages, so it is only
853 * useful for synchronizing concurrent use of buffer objects, not for
854 * synchronizing independent access to the underlying pages.
855 */
856void
857xfs_buf_lock(
858 xfs_buf_t *bp)
859{
860 XB_TRACE(bp, "lock", 0);
861 if (atomic_read(&bp->b_io_remaining))
862 blk_run_address_space(bp->b_target->bt_mapping);
863 down(&bp->b_sema);
864 XB_SET_OWNER(bp);
865 XB_TRACE(bp, "locked", 0);
866}
867
868/*
869 * Releases the lock on the buffer object.
870 * If the buffer is marked delwri but is not queued, do so before we
871 * unlock the buffer as we need to set flags correctly. We also need to
872 * take a reference for the delwri queue because the unlocker is going to
873 * drop their's and they don't know we just queued it.
874 */
875void
876xfs_buf_unlock(
877 xfs_buf_t *bp)
878{
879 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
880 atomic_inc(&bp->b_hold);
881 bp->b_flags |= XBF_ASYNC;
882 xfs_buf_delwri_queue(bp, 0);
883 }
884
885 XB_CLEAR_OWNER(bp);
886 up(&bp->b_sema);
887 XB_TRACE(bp, "unlock", 0);
888}
889
890
891/*
892 * Pinning Buffer Storage in Memory
893 * Ensure that no attempt to force a buffer to disk will succeed.
894 */
895void
896xfs_buf_pin(
897 xfs_buf_t *bp)
898{
899 atomic_inc(&bp->b_pin_count);
900 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
901}
902
903void
904xfs_buf_unpin(
905 xfs_buf_t *bp)
906{
907 if (atomic_dec_and_test(&bp->b_pin_count))
908 wake_up_all(&bp->b_waiters);
909 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
910}
911
912int
913xfs_buf_ispin(
914 xfs_buf_t *bp)
915{
916 return atomic_read(&bp->b_pin_count);
917}
918
919STATIC void
920xfs_buf_wait_unpin(
921 xfs_buf_t *bp)
922{
923 DECLARE_WAITQUEUE (wait, current);
924
925 if (atomic_read(&bp->b_pin_count) == 0)
926 return;
927
928 add_wait_queue(&bp->b_waiters, &wait);
929 for (;;) {
930 set_current_state(TASK_UNINTERRUPTIBLE);
931 if (atomic_read(&bp->b_pin_count) == 0)
932 break;
933 if (atomic_read(&bp->b_io_remaining))
934 blk_run_address_space(bp->b_target->bt_mapping);
935 schedule();
936 }
937 remove_wait_queue(&bp->b_waiters, &wait);
938 set_current_state(TASK_RUNNING);
939}
940
941/*
942 * Buffer Utility Routines
943 */
944
945STATIC void
946xfs_buf_iodone_work(
947 struct work_struct *work)
948{
949 xfs_buf_t *bp =
950 container_of(work, xfs_buf_t, b_iodone_work);
951
952 /*
953 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
954 * ordered flag and reissue them. Because we can't tell the higher
955 * layers directly that they should not issue ordered I/O anymore, they
956 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
957 */
958 if ((bp->b_error == EOPNOTSUPP) &&
959 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
960 XB_TRACE(bp, "ordered_retry", bp->b_iodone);
961 bp->b_flags &= ~XBF_ORDERED;
962 bp->b_flags |= _XFS_BARRIER_FAILED;
963 xfs_buf_iorequest(bp);
964 } else if (bp->b_iodone)
965 (*(bp->b_iodone))(bp);
966 else if (bp->b_flags & XBF_ASYNC)
967 xfs_buf_relse(bp);
968}
969
970void
971xfs_buf_ioend(
972 xfs_buf_t *bp,
973 int schedule)
974{
975 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
976 if (bp->b_error == 0)
977 bp->b_flags |= XBF_DONE;
978
979 XB_TRACE(bp, "iodone", bp->b_iodone);
980
981 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
982 if (schedule) {
983 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
984 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
985 } else {
986 xfs_buf_iodone_work(&bp->b_iodone_work);
987 }
988 } else {
989 complete(&bp->b_iowait);
990 }
991}
992
993void
994xfs_buf_ioerror(
995 xfs_buf_t *bp,
996 int error)
997{
998 ASSERT(error >= 0 && error <= 0xffff);
999 bp->b_error = (unsigned short)error;
1000 XB_TRACE(bp, "ioerror", (unsigned long)error);
1001}
1002
1003int
1004xfs_bawrite(
1005 void *mp,
1006 struct xfs_buf *bp)
1007{
1008 XB_TRACE(bp, "bawrite", 0);
1009
1010 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
1011
1012 xfs_buf_delwri_dequeue(bp);
1013
1014 bp->b_flags &= ~(XBF_READ | XBF_DELWRI | XBF_READ_AHEAD);
1015 bp->b_flags |= (XBF_WRITE | XBF_ASYNC | _XBF_RUN_QUEUES);
1016
1017 bp->b_mount = mp;
1018 bp->b_strat = xfs_bdstrat_cb;
1019 return xfs_bdstrat_cb(bp);
1020}
1021
1022void
1023xfs_bdwrite(
1024 void *mp,
1025 struct xfs_buf *bp)
1026{
1027 XB_TRACE(bp, "bdwrite", 0);
1028
1029 bp->b_strat = xfs_bdstrat_cb;
1030 bp->b_mount = mp;
1031
1032 bp->b_flags &= ~XBF_READ;
1033 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1034
1035 xfs_buf_delwri_queue(bp, 1);
1036}
1037
1038STATIC_INLINE void
1039_xfs_buf_ioend(
1040 xfs_buf_t *bp,
1041 int schedule)
1042{
1043 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1044 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1045 xfs_buf_ioend(bp, schedule);
1046 }
1047}
1048
1049STATIC void
1050xfs_buf_bio_end_io(
1051 struct bio *bio,
1052 int error)
1053{
1054 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1055 unsigned int blocksize = bp->b_target->bt_bsize;
1056 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1057
1058 xfs_buf_ioerror(bp, -error);
1059
1060 do {
1061 struct page *page = bvec->bv_page;
1062
1063 ASSERT(!PagePrivate(page));
1064 if (unlikely(bp->b_error)) {
1065 if (bp->b_flags & XBF_READ)
1066 ClearPageUptodate(page);
1067 } else if (blocksize >= PAGE_CACHE_SIZE) {
1068 SetPageUptodate(page);
1069 } else if (!PagePrivate(page) &&
1070 (bp->b_flags & _XBF_PAGE_CACHE)) {
1071 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1072 }
1073
1074 if (--bvec >= bio->bi_io_vec)
1075 prefetchw(&bvec->bv_page->flags);
1076
1077 if (bp->b_flags & _XBF_PAGE_LOCKED)
1078 unlock_page(page);
1079 } while (bvec >= bio->bi_io_vec);
1080
1081 _xfs_buf_ioend(bp, 1);
1082 bio_put(bio);
1083}
1084
1085STATIC void
1086_xfs_buf_ioapply(
1087 xfs_buf_t *bp)
1088{
1089 int rw, map_i, total_nr_pages, nr_pages;
1090 struct bio *bio;
1091 int offset = bp->b_offset;
1092 int size = bp->b_count_desired;
1093 sector_t sector = bp->b_bn;
1094 unsigned int blocksize = bp->b_target->bt_bsize;
1095
1096 total_nr_pages = bp->b_page_count;
1097 map_i = 0;
1098
1099 if (bp->b_flags & XBF_ORDERED) {
1100 ASSERT(!(bp->b_flags & XBF_READ));
1101 rw = WRITE_BARRIER;
1102 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1103 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1104 bp->b_flags &= ~_XBF_RUN_QUEUES;
1105 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1106 } else {
1107 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1108 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1109 }
1110
1111 /* Special code path for reading a sub page size buffer in --
1112 * we populate up the whole page, and hence the other metadata
1113 * in the same page. This optimization is only valid when the
1114 * filesystem block size is not smaller than the page size.
1115 */
1116 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1117 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1118 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1119 (blocksize >= PAGE_CACHE_SIZE)) {
1120 bio = bio_alloc(GFP_NOIO, 1);
1121
1122 bio->bi_bdev = bp->b_target->bt_bdev;
1123 bio->bi_sector = sector - (offset >> BBSHIFT);
1124 bio->bi_end_io = xfs_buf_bio_end_io;
1125 bio->bi_private = bp;
1126
1127 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1128 size = 0;
1129
1130 atomic_inc(&bp->b_io_remaining);
1131
1132 goto submit_io;
1133 }
1134
1135next_chunk:
1136 atomic_inc(&bp->b_io_remaining);
1137 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1138 if (nr_pages > total_nr_pages)
1139 nr_pages = total_nr_pages;
1140
1141 bio = bio_alloc(GFP_NOIO, nr_pages);
1142 bio->bi_bdev = bp->b_target->bt_bdev;
1143 bio->bi_sector = sector;
1144 bio->bi_end_io = xfs_buf_bio_end_io;
1145 bio->bi_private = bp;
1146
1147 for (; size && nr_pages; nr_pages--, map_i++) {
1148 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1149
1150 if (nbytes > size)
1151 nbytes = size;
1152
1153 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1154 if (rbytes < nbytes)
1155 break;
1156
1157 offset = 0;
1158 sector += nbytes >> BBSHIFT;
1159 size -= nbytes;
1160 total_nr_pages--;
1161 }
1162
1163submit_io:
1164 if (likely(bio->bi_size)) {
1165 submit_bio(rw, bio);
1166 if (size)
1167 goto next_chunk;
1168 } else {
1169 bio_put(bio);
1170 xfs_buf_ioerror(bp, EIO);
1171 }
1172}
1173
1174int
1175xfs_buf_iorequest(
1176 xfs_buf_t *bp)
1177{
1178 XB_TRACE(bp, "iorequest", 0);
1179
1180 if (bp->b_flags & XBF_DELWRI) {
1181 xfs_buf_delwri_queue(bp, 1);
1182 return 0;
1183 }
1184
1185 if (bp->b_flags & XBF_WRITE) {
1186 xfs_buf_wait_unpin(bp);
1187 }
1188
1189 xfs_buf_hold(bp);
1190
1191 /* Set the count to 1 initially, this will stop an I/O
1192 * completion callout which happens before we have started
1193 * all the I/O from calling xfs_buf_ioend too early.
1194 */
1195 atomic_set(&bp->b_io_remaining, 1);
1196 _xfs_buf_ioapply(bp);
1197 _xfs_buf_ioend(bp, 0);
1198
1199 xfs_buf_rele(bp);
1200 return 0;
1201}
1202
1203/*
1204 * Waits for I/O to complete on the buffer supplied.
1205 * It returns immediately if no I/O is pending.
1206 * It returns the I/O error code, if any, or 0 if there was no error.
1207 */
1208int
1209xfs_buf_iowait(
1210 xfs_buf_t *bp)
1211{
1212 XB_TRACE(bp, "iowait", 0);
1213 if (atomic_read(&bp->b_io_remaining))
1214 blk_run_address_space(bp->b_target->bt_mapping);
1215 wait_for_completion(&bp->b_iowait);
1216 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1217 return bp->b_error;
1218}
1219
1220xfs_caddr_t
1221xfs_buf_offset(
1222 xfs_buf_t *bp,
1223 size_t offset)
1224{
1225 struct page *page;
1226
1227 if (bp->b_flags & XBF_MAPPED)
1228 return XFS_BUF_PTR(bp) + offset;
1229
1230 offset += bp->b_offset;
1231 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1232 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1233}
1234
1235/*
1236 * Move data into or out of a buffer.
1237 */
1238void
1239xfs_buf_iomove(
1240 xfs_buf_t *bp, /* buffer to process */
1241 size_t boff, /* starting buffer offset */
1242 size_t bsize, /* length to copy */
1243 caddr_t data, /* data address */
1244 xfs_buf_rw_t mode) /* read/write/zero flag */
1245{
1246 size_t bend, cpoff, csize;
1247 struct page *page;
1248
1249 bend = boff + bsize;
1250 while (boff < bend) {
1251 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1252 cpoff = xfs_buf_poff(boff + bp->b_offset);
1253 csize = min_t(size_t,
1254 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1255
1256 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1257
1258 switch (mode) {
1259 case XBRW_ZERO:
1260 memset(page_address(page) + cpoff, 0, csize);
1261 break;
1262 case XBRW_READ:
1263 memcpy(data, page_address(page) + cpoff, csize);
1264 break;
1265 case XBRW_WRITE:
1266 memcpy(page_address(page) + cpoff, data, csize);
1267 }
1268
1269 boff += csize;
1270 data += csize;
1271 }
1272}
1273
1274/*
1275 * Handling of buffer targets (buftargs).
1276 */
1277
1278/*
1279 * Wait for any bufs with callbacks that have been submitted but
1280 * have not yet returned... walk the hash list for the target.
1281 */
1282void
1283xfs_wait_buftarg(
1284 xfs_buftarg_t *btp)
1285{
1286 xfs_buf_t *bp, *n;
1287 xfs_bufhash_t *hash;
1288 uint i;
1289
1290 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1291 hash = &btp->bt_hash[i];
1292again:
1293 spin_lock(&hash->bh_lock);
1294 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1295 ASSERT(btp == bp->b_target);
1296 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1297 spin_unlock(&hash->bh_lock);
1298 /*
1299 * Catch superblock reference count leaks
1300 * immediately
1301 */
1302 BUG_ON(bp->b_bn == 0);
1303 delay(100);
1304 goto again;
1305 }
1306 }
1307 spin_unlock(&hash->bh_lock);
1308 }
1309}
1310
1311/*
1312 * Allocate buffer hash table for a given target.
1313 * For devices containing metadata (i.e. not the log/realtime devices)
1314 * we need to allocate a much larger hash table.
1315 */
1316STATIC void
1317xfs_alloc_bufhash(
1318 xfs_buftarg_t *btp,
1319 int external)
1320{
1321 unsigned int i;
1322
1323 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1324 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1325 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1326 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1327 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1328 spin_lock_init(&btp->bt_hash[i].bh_lock);
1329 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1330 }
1331}
1332
1333STATIC void
1334xfs_free_bufhash(
1335 xfs_buftarg_t *btp)
1336{
1337 kmem_free(btp->bt_hash);
1338 btp->bt_hash = NULL;
1339}
1340
1341/*
1342 * buftarg list for delwrite queue processing
1343 */
1344static LIST_HEAD(xfs_buftarg_list);
1345static DEFINE_SPINLOCK(xfs_buftarg_lock);
1346
1347STATIC void
1348xfs_register_buftarg(
1349 xfs_buftarg_t *btp)
1350{
1351 spin_lock(&xfs_buftarg_lock);
1352 list_add(&btp->bt_list, &xfs_buftarg_list);
1353 spin_unlock(&xfs_buftarg_lock);
1354}
1355
1356STATIC void
1357xfs_unregister_buftarg(
1358 xfs_buftarg_t *btp)
1359{
1360 spin_lock(&xfs_buftarg_lock);
1361 list_del(&btp->bt_list);
1362 spin_unlock(&xfs_buftarg_lock);
1363}
1364
1365void
1366xfs_free_buftarg(
1367 xfs_buftarg_t *btp)
1368{
1369 xfs_flush_buftarg(btp, 1);
1370 xfs_blkdev_issue_flush(btp);
1371 xfs_free_bufhash(btp);
1372 iput(btp->bt_mapping->host);
1373
1374 /* Unregister the buftarg first so that we don't get a
1375 * wakeup finding a non-existent task
1376 */
1377 xfs_unregister_buftarg(btp);
1378 kthread_stop(btp->bt_task);
1379
1380 kmem_free(btp);
1381}
1382
1383STATIC int
1384xfs_setsize_buftarg_flags(
1385 xfs_buftarg_t *btp,
1386 unsigned int blocksize,
1387 unsigned int sectorsize,
1388 int verbose)
1389{
1390 btp->bt_bsize = blocksize;
1391 btp->bt_sshift = ffs(sectorsize) - 1;
1392 btp->bt_smask = sectorsize - 1;
1393
1394 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1395 printk(KERN_WARNING
1396 "XFS: Cannot set_blocksize to %u on device %s\n",
1397 sectorsize, XFS_BUFTARG_NAME(btp));
1398 return EINVAL;
1399 }
1400
1401 if (verbose &&
1402 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1403 printk(KERN_WARNING
1404 "XFS: %u byte sectors in use on device %s. "
1405 "This is suboptimal; %u or greater is ideal.\n",
1406 sectorsize, XFS_BUFTARG_NAME(btp),
1407 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1408 }
1409
1410 return 0;
1411}
1412
1413/*
1414 * When allocating the initial buffer target we have not yet
1415 * read in the superblock, so don't know what sized sectors
1416 * are being used is at this early stage. Play safe.
1417 */
1418STATIC int
1419xfs_setsize_buftarg_early(
1420 xfs_buftarg_t *btp,
1421 struct block_device *bdev)
1422{
1423 return xfs_setsize_buftarg_flags(btp,
1424 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1425}
1426
1427int
1428xfs_setsize_buftarg(
1429 xfs_buftarg_t *btp,
1430 unsigned int blocksize,
1431 unsigned int sectorsize)
1432{
1433 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1434}
1435
1436STATIC int
1437xfs_mapping_buftarg(
1438 xfs_buftarg_t *btp,
1439 struct block_device *bdev)
1440{
1441 struct backing_dev_info *bdi;
1442 struct inode *inode;
1443 struct address_space *mapping;
1444 static const struct address_space_operations mapping_aops = {
1445 .sync_page = block_sync_page,
1446 .migratepage = fail_migrate_page,
1447 };
1448
1449 inode = new_inode(bdev->bd_inode->i_sb);
1450 if (!inode) {
1451 printk(KERN_WARNING
1452 "XFS: Cannot allocate mapping inode for device %s\n",
1453 XFS_BUFTARG_NAME(btp));
1454 return ENOMEM;
1455 }
1456 inode->i_mode = S_IFBLK;
1457 inode->i_bdev = bdev;
1458 inode->i_rdev = bdev->bd_dev;
1459 bdi = blk_get_backing_dev_info(bdev);
1460 if (!bdi)
1461 bdi = &default_backing_dev_info;
1462 mapping = &inode->i_data;
1463 mapping->a_ops = &mapping_aops;
1464 mapping->backing_dev_info = bdi;
1465 mapping_set_gfp_mask(mapping, GFP_NOFS);
1466 btp->bt_mapping = mapping;
1467 return 0;
1468}
1469
1470STATIC int
1471xfs_alloc_delwrite_queue(
1472 xfs_buftarg_t *btp)
1473{
1474 int error = 0;
1475
1476 INIT_LIST_HEAD(&btp->bt_list);
1477 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1478 spin_lock_init(&btp->bt_delwrite_lock);
1479 btp->bt_flags = 0;
1480 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1481 if (IS_ERR(btp->bt_task)) {
1482 error = PTR_ERR(btp->bt_task);
1483 goto out_error;
1484 }
1485 xfs_register_buftarg(btp);
1486out_error:
1487 return error;
1488}
1489
1490xfs_buftarg_t *
1491xfs_alloc_buftarg(
1492 struct block_device *bdev,
1493 int external)
1494{
1495 xfs_buftarg_t *btp;
1496
1497 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1498
1499 btp->bt_dev = bdev->bd_dev;
1500 btp->bt_bdev = bdev;
1501 if (xfs_setsize_buftarg_early(btp, bdev))
1502 goto error;
1503 if (xfs_mapping_buftarg(btp, bdev))
1504 goto error;
1505 if (xfs_alloc_delwrite_queue(btp))
1506 goto error;
1507 xfs_alloc_bufhash(btp, external);
1508 return btp;
1509
1510error:
1511 kmem_free(btp);
1512 return NULL;
1513}
1514
1515
1516/*
1517 * Delayed write buffer handling
1518 */
1519STATIC void
1520xfs_buf_delwri_queue(
1521 xfs_buf_t *bp,
1522 int unlock)
1523{
1524 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1525 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1526
1527 XB_TRACE(bp, "delwri_q", (long)unlock);
1528 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1529
1530 spin_lock(dwlk);
1531 /* If already in the queue, dequeue and place at tail */
1532 if (!list_empty(&bp->b_list)) {
1533 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1534 if (unlock)
1535 atomic_dec(&bp->b_hold);
1536 list_del(&bp->b_list);
1537 }
1538
1539 bp->b_flags |= _XBF_DELWRI_Q;
1540 list_add_tail(&bp->b_list, dwq);
1541 bp->b_queuetime = jiffies;
1542 spin_unlock(dwlk);
1543
1544 if (unlock)
1545 xfs_buf_unlock(bp);
1546}
1547
1548void
1549xfs_buf_delwri_dequeue(
1550 xfs_buf_t *bp)
1551{
1552 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1553 int dequeued = 0;
1554
1555 spin_lock(dwlk);
1556 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1557 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1558 list_del_init(&bp->b_list);
1559 dequeued = 1;
1560 }
1561 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1562 spin_unlock(dwlk);
1563
1564 if (dequeued)
1565 xfs_buf_rele(bp);
1566
1567 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1568}
1569
1570STATIC void
1571xfs_buf_runall_queues(
1572 struct workqueue_struct *queue)
1573{
1574 flush_workqueue(queue);
1575}
1576
1577STATIC int
1578xfsbufd_wakeup(
1579 int priority,
1580 gfp_t mask)
1581{
1582 xfs_buftarg_t *btp;
1583
1584 spin_lock(&xfs_buftarg_lock);
1585 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1586 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1587 continue;
1588 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1589 wake_up_process(btp->bt_task);
1590 }
1591 spin_unlock(&xfs_buftarg_lock);
1592 return 0;
1593}
1594
1595/*
1596 * Move as many buffers as specified to the supplied list
1597 * idicating if we skipped any buffers to prevent deadlocks.
1598 */
1599STATIC int
1600xfs_buf_delwri_split(
1601 xfs_buftarg_t *target,
1602 struct list_head *list,
1603 unsigned long age)
1604{
1605 xfs_buf_t *bp, *n;
1606 struct list_head *dwq = &target->bt_delwrite_queue;
1607 spinlock_t *dwlk = &target->bt_delwrite_lock;
1608 int skipped = 0;
1609 int force;
1610
1611 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1612 INIT_LIST_HEAD(list);
1613 spin_lock(dwlk);
1614 list_for_each_entry_safe(bp, n, dwq, b_list) {
1615 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1616 ASSERT(bp->b_flags & XBF_DELWRI);
1617
1618 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1619 if (!force &&
1620 time_before(jiffies, bp->b_queuetime + age)) {
1621 xfs_buf_unlock(bp);
1622 break;
1623 }
1624
1625 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1626 _XBF_RUN_QUEUES);
1627 bp->b_flags |= XBF_WRITE;
1628 list_move_tail(&bp->b_list, list);
1629 } else
1630 skipped++;
1631 }
1632 spin_unlock(dwlk);
1633
1634 return skipped;
1635
1636}
1637
1638STATIC int
1639xfsbufd(
1640 void *data)
1641{
1642 struct list_head tmp;
1643 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1644 int count;
1645 xfs_buf_t *bp;
1646
1647 current->flags |= PF_MEMALLOC;
1648
1649 set_freezable();
1650
1651 do {
1652 if (unlikely(freezing(current))) {
1653 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1654 refrigerator();
1655 } else {
1656 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1657 }
1658
1659 schedule_timeout_interruptible(
1660 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1661
1662 xfs_buf_delwri_split(target, &tmp,
1663 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1664
1665 count = 0;
1666 while (!list_empty(&tmp)) {
1667 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1668 ASSERT(target == bp->b_target);
1669
1670 list_del_init(&bp->b_list);
1671 xfs_buf_iostrategy(bp);
1672 count++;
1673 }
1674
1675 if (count)
1676 blk_run_address_space(target->bt_mapping);
1677
1678 } while (!kthread_should_stop());
1679
1680 return 0;
1681}
1682
1683/*
1684 * Go through all incore buffers, and release buffers if they belong to
1685 * the given device. This is used in filesystem error handling to
1686 * preserve the consistency of its metadata.
1687 */
1688int
1689xfs_flush_buftarg(
1690 xfs_buftarg_t *target,
1691 int wait)
1692{
1693 struct list_head tmp;
1694 xfs_buf_t *bp, *n;
1695 int pincount = 0;
1696
1697 xfs_buf_runall_queues(xfsdatad_workqueue);
1698 xfs_buf_runall_queues(xfslogd_workqueue);
1699
1700 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1701 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1702
1703 /*
1704 * Dropped the delayed write list lock, now walk the temporary list
1705 */
1706 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1707 ASSERT(target == bp->b_target);
1708 if (wait)
1709 bp->b_flags &= ~XBF_ASYNC;
1710 else
1711 list_del_init(&bp->b_list);
1712
1713 xfs_buf_iostrategy(bp);
1714 }
1715
1716 if (wait)
1717 blk_run_address_space(target->bt_mapping);
1718
1719 /*
1720 * Remaining list items must be flushed before returning
1721 */
1722 while (!list_empty(&tmp)) {
1723 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1724
1725 list_del_init(&bp->b_list);
1726 xfs_iowait(bp);
1727 xfs_buf_relse(bp);
1728 }
1729
1730 return pincount;
1731}
1732
1733int __init
1734xfs_buf_init(void)
1735{
1736#ifdef XFS_BUF_TRACE
1737 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_NOFS);
1738#endif
1739
1740 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1741 KM_ZONE_HWALIGN, NULL);
1742 if (!xfs_buf_zone)
1743 goto out_free_trace_buf;
1744
1745 xfslogd_workqueue = create_workqueue("xfslogd");
1746 if (!xfslogd_workqueue)
1747 goto out_free_buf_zone;
1748
1749 xfsdatad_workqueue = create_workqueue("xfsdatad");
1750 if (!xfsdatad_workqueue)
1751 goto out_destroy_xfslogd_workqueue;
1752
1753 register_shrinker(&xfs_buf_shake);
1754 return 0;
1755
1756 out_destroy_xfslogd_workqueue:
1757 destroy_workqueue(xfslogd_workqueue);
1758 out_free_buf_zone:
1759 kmem_zone_destroy(xfs_buf_zone);
1760 out_free_trace_buf:
1761#ifdef XFS_BUF_TRACE
1762 ktrace_free(xfs_buf_trace_buf);
1763#endif
1764 return -ENOMEM;
1765}
1766
1767void
1768xfs_buf_terminate(void)
1769{
1770 unregister_shrinker(&xfs_buf_shake);
1771 destroy_workqueue(xfsdatad_workqueue);
1772 destroy_workqueue(xfslogd_workqueue);
1773 kmem_zone_destroy(xfs_buf_zone);
1774#ifdef XFS_BUF_TRACE
1775 ktrace_free(xfs_buf_trace_buf);
1776#endif
1777}
1778
1779#ifdef CONFIG_KDB_MODULES
1780struct list_head *
1781xfs_get_buftarg_list(void)
1782{
1783 return &xfs_buftarg_list;
1784}
1785#endif