treewide: kzalloc() -> kcalloc()
[linux-2.6-block.git] / fs / udf / super.c
... / ...
CommitLineData
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/vfs.h>
52#include <linux/vmalloc.h>
53#include <linux/errno.h>
54#include <linux/mount.h>
55#include <linux/seq_file.h>
56#include <linux/bitmap.h>
57#include <linux/crc-itu-t.h>
58#include <linux/log2.h>
59#include <asm/byteorder.h>
60
61#include "udf_sb.h"
62#include "udf_i.h"
63
64#include <linux/init.h>
65#include <linux/uaccess.h>
66
67enum {
68 VDS_POS_PRIMARY_VOL_DESC,
69 VDS_POS_UNALLOC_SPACE_DESC,
70 VDS_POS_LOGICAL_VOL_DESC,
71 VDS_POS_IMP_USE_VOL_DESC,
72 VDS_POS_LENGTH
73};
74
75#define VSD_FIRST_SECTOR_OFFSET 32768
76#define VSD_MAX_SECTOR_OFFSET 0x800000
77
78/*
79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
81 * hopefully don't limit any real use of rewritten inode on write-once media
82 * but avoid looping for too long on corrupted media.
83 */
84#define UDF_MAX_TD_NESTING 64
85#define UDF_MAX_LVID_NESTING 1000
86
87enum { UDF_MAX_LINKS = 0xffff };
88
89/* These are the "meat" - everything else is stuffing */
90static int udf_fill_super(struct super_block *, void *, int);
91static void udf_put_super(struct super_block *);
92static int udf_sync_fs(struct super_block *, int);
93static int udf_remount_fs(struct super_block *, int *, char *);
94static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96 struct kernel_lb_addr *);
97static void udf_load_fileset(struct super_block *, struct buffer_head *,
98 struct kernel_lb_addr *);
99static void udf_open_lvid(struct super_block *);
100static void udf_close_lvid(struct super_block *);
101static unsigned int udf_count_free(struct super_block *);
102static int udf_statfs(struct dentry *, struct kstatfs *);
103static int udf_show_options(struct seq_file *, struct dentry *);
104
105struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106{
107 struct logicalVolIntegrityDesc *lvid;
108 unsigned int partnum;
109 unsigned int offset;
110
111 if (!UDF_SB(sb)->s_lvid_bh)
112 return NULL;
113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 partnum = le32_to_cpu(lvid->numOfPartitions);
115 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116 offsetof(struct logicalVolIntegrityDesc, impUse)) /
117 (2 * sizeof(uint32_t)) < partnum) {
118 udf_err(sb, "Logical volume integrity descriptor corrupted "
119 "(numOfPartitions = %u)!\n", partnum);
120 return NULL;
121 }
122 /* The offset is to skip freeSpaceTable and sizeTable arrays */
123 offset = partnum * 2 * sizeof(uint32_t);
124 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125}
126
127/* UDF filesystem type */
128static struct dentry *udf_mount(struct file_system_type *fs_type,
129 int flags, const char *dev_name, void *data)
130{
131 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132}
133
134static struct file_system_type udf_fstype = {
135 .owner = THIS_MODULE,
136 .name = "udf",
137 .mount = udf_mount,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140};
141MODULE_ALIAS_FS("udf");
142
143static struct kmem_cache *udf_inode_cachep;
144
145static struct inode *udf_alloc_inode(struct super_block *sb)
146{
147 struct udf_inode_info *ei;
148 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149 if (!ei)
150 return NULL;
151
152 ei->i_unique = 0;
153 ei->i_lenExtents = 0;
154 ei->i_next_alloc_block = 0;
155 ei->i_next_alloc_goal = 0;
156 ei->i_strat4096 = 0;
157 init_rwsem(&ei->i_data_sem);
158 ei->cached_extent.lstart = -1;
159 spin_lock_init(&ei->i_extent_cache_lock);
160
161 return &ei->vfs_inode;
162}
163
164static void udf_i_callback(struct rcu_head *head)
165{
166 struct inode *inode = container_of(head, struct inode, i_rcu);
167 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168}
169
170static void udf_destroy_inode(struct inode *inode)
171{
172 call_rcu(&inode->i_rcu, udf_i_callback);
173}
174
175static void init_once(void *foo)
176{
177 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178
179 ei->i_ext.i_data = NULL;
180 inode_init_once(&ei->vfs_inode);
181}
182
183static int __init init_inodecache(void)
184{
185 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186 sizeof(struct udf_inode_info),
187 0, (SLAB_RECLAIM_ACCOUNT |
188 SLAB_MEM_SPREAD |
189 SLAB_ACCOUNT),
190 init_once);
191 if (!udf_inode_cachep)
192 return -ENOMEM;
193 return 0;
194}
195
196static void destroy_inodecache(void)
197{
198 /*
199 * Make sure all delayed rcu free inodes are flushed before we
200 * destroy cache.
201 */
202 rcu_barrier();
203 kmem_cache_destroy(udf_inode_cachep);
204}
205
206/* Superblock operations */
207static const struct super_operations udf_sb_ops = {
208 .alloc_inode = udf_alloc_inode,
209 .destroy_inode = udf_destroy_inode,
210 .write_inode = udf_write_inode,
211 .evict_inode = udf_evict_inode,
212 .put_super = udf_put_super,
213 .sync_fs = udf_sync_fs,
214 .statfs = udf_statfs,
215 .remount_fs = udf_remount_fs,
216 .show_options = udf_show_options,
217};
218
219struct udf_options {
220 unsigned char novrs;
221 unsigned int blocksize;
222 unsigned int session;
223 unsigned int lastblock;
224 unsigned int anchor;
225 unsigned int flags;
226 umode_t umask;
227 kgid_t gid;
228 kuid_t uid;
229 umode_t fmode;
230 umode_t dmode;
231 struct nls_table *nls_map;
232};
233
234static int __init init_udf_fs(void)
235{
236 int err;
237
238 err = init_inodecache();
239 if (err)
240 goto out1;
241 err = register_filesystem(&udf_fstype);
242 if (err)
243 goto out;
244
245 return 0;
246
247out:
248 destroy_inodecache();
249
250out1:
251 return err;
252}
253
254static void __exit exit_udf_fs(void)
255{
256 unregister_filesystem(&udf_fstype);
257 destroy_inodecache();
258}
259
260static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261{
262 struct udf_sb_info *sbi = UDF_SB(sb);
263
264 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265 if (!sbi->s_partmaps) {
266 sbi->s_partitions = 0;
267 return -ENOMEM;
268 }
269
270 sbi->s_partitions = count;
271 return 0;
272}
273
274static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275{
276 int i;
277 int nr_groups = bitmap->s_nr_groups;
278
279 for (i = 0; i < nr_groups; i++)
280 if (bitmap->s_block_bitmap[i])
281 brelse(bitmap->s_block_bitmap[i]);
282
283 kvfree(bitmap);
284}
285
286static void udf_free_partition(struct udf_part_map *map)
287{
288 int i;
289 struct udf_meta_data *mdata;
290
291 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292 iput(map->s_uspace.s_table);
293 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294 iput(map->s_fspace.s_table);
295 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299 if (map->s_partition_type == UDF_SPARABLE_MAP15)
300 for (i = 0; i < 4; i++)
301 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302 else if (map->s_partition_type == UDF_METADATA_MAP25) {
303 mdata = &map->s_type_specific.s_metadata;
304 iput(mdata->s_metadata_fe);
305 mdata->s_metadata_fe = NULL;
306
307 iput(mdata->s_mirror_fe);
308 mdata->s_mirror_fe = NULL;
309
310 iput(mdata->s_bitmap_fe);
311 mdata->s_bitmap_fe = NULL;
312 }
313}
314
315static void udf_sb_free_partitions(struct super_block *sb)
316{
317 struct udf_sb_info *sbi = UDF_SB(sb);
318 int i;
319
320 if (!sbi->s_partmaps)
321 return;
322 for (i = 0; i < sbi->s_partitions; i++)
323 udf_free_partition(&sbi->s_partmaps[i]);
324 kfree(sbi->s_partmaps);
325 sbi->s_partmaps = NULL;
326}
327
328static int udf_show_options(struct seq_file *seq, struct dentry *root)
329{
330 struct super_block *sb = root->d_sb;
331 struct udf_sb_info *sbi = UDF_SB(sb);
332
333 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334 seq_puts(seq, ",nostrict");
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338 seq_puts(seq, ",unhide");
339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340 seq_puts(seq, ",undelete");
341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342 seq_puts(seq, ",noadinicb");
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344 seq_puts(seq, ",shortad");
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346 seq_puts(seq, ",uid=forget");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348 seq_puts(seq, ",gid=forget");
349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353 if (sbi->s_umask != 0)
354 seq_printf(seq, ",umask=%ho", sbi->s_umask);
355 if (sbi->s_fmode != UDF_INVALID_MODE)
356 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357 if (sbi->s_dmode != UDF_INVALID_MODE)
358 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360 seq_printf(seq, ",session=%d", sbi->s_session);
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363 if (sbi->s_anchor != 0)
364 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366 seq_puts(seq, ",utf8");
367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369
370 return 0;
371}
372
373/*
374 * udf_parse_options
375 *
376 * PURPOSE
377 * Parse mount options.
378 *
379 * DESCRIPTION
380 * The following mount options are supported:
381 *
382 * gid= Set the default group.
383 * umask= Set the default umask.
384 * mode= Set the default file permissions.
385 * dmode= Set the default directory permissions.
386 * uid= Set the default user.
387 * bs= Set the block size.
388 * unhide Show otherwise hidden files.
389 * undelete Show deleted files in lists.
390 * adinicb Embed data in the inode (default)
391 * noadinicb Don't embed data in the inode
392 * shortad Use short ad's
393 * longad Use long ad's (default)
394 * nostrict Unset strict conformance
395 * iocharset= Set the NLS character set
396 *
397 * The remaining are for debugging and disaster recovery:
398 *
399 * novrs Skip volume sequence recognition
400 *
401 * The following expect a offset from 0.
402 *
403 * session= Set the CDROM session (default= last session)
404 * anchor= Override standard anchor location. (default= 256)
405 * volume= Override the VolumeDesc location. (unused)
406 * partition= Override the PartitionDesc location. (unused)
407 * lastblock= Set the last block of the filesystem/
408 *
409 * The following expect a offset from the partition root.
410 *
411 * fileset= Override the fileset block location. (unused)
412 * rootdir= Override the root directory location. (unused)
413 * WARNING: overriding the rootdir to a non-directory may
414 * yield highly unpredictable results.
415 *
416 * PRE-CONDITIONS
417 * options Pointer to mount options string.
418 * uopts Pointer to mount options variable.
419 *
420 * POST-CONDITIONS
421 * <return> 1 Mount options parsed okay.
422 * <return> 0 Error parsing mount options.
423 *
424 * HISTORY
425 * July 1, 1997 - Andrew E. Mileski
426 * Written, tested, and released.
427 */
428
429enum {
430 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434 Opt_rootdir, Opt_utf8, Opt_iocharset,
435 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436 Opt_fmode, Opt_dmode
437};
438
439static const match_table_t tokens = {
440 {Opt_novrs, "novrs"},
441 {Opt_nostrict, "nostrict"},
442 {Opt_bs, "bs=%u"},
443 {Opt_unhide, "unhide"},
444 {Opt_undelete, "undelete"},
445 {Opt_noadinicb, "noadinicb"},
446 {Opt_adinicb, "adinicb"},
447 {Opt_shortad, "shortad"},
448 {Opt_longad, "longad"},
449 {Opt_uforget, "uid=forget"},
450 {Opt_uignore, "uid=ignore"},
451 {Opt_gforget, "gid=forget"},
452 {Opt_gignore, "gid=ignore"},
453 {Opt_gid, "gid=%u"},
454 {Opt_uid, "uid=%u"},
455 {Opt_umask, "umask=%o"},
456 {Opt_session, "session=%u"},
457 {Opt_lastblock, "lastblock=%u"},
458 {Opt_anchor, "anchor=%u"},
459 {Opt_volume, "volume=%u"},
460 {Opt_partition, "partition=%u"},
461 {Opt_fileset, "fileset=%u"},
462 {Opt_rootdir, "rootdir=%u"},
463 {Opt_utf8, "utf8"},
464 {Opt_iocharset, "iocharset=%s"},
465 {Opt_fmode, "mode=%o"},
466 {Opt_dmode, "dmode=%o"},
467 {Opt_err, NULL}
468};
469
470static int udf_parse_options(char *options, struct udf_options *uopt,
471 bool remount)
472{
473 char *p;
474 int option;
475
476 uopt->novrs = 0;
477 uopt->session = 0xFFFFFFFF;
478 uopt->lastblock = 0;
479 uopt->anchor = 0;
480
481 if (!options)
482 return 1;
483
484 while ((p = strsep(&options, ",")) != NULL) {
485 substring_t args[MAX_OPT_ARGS];
486 int token;
487 unsigned n;
488 if (!*p)
489 continue;
490
491 token = match_token(p, tokens, args);
492 switch (token) {
493 case Opt_novrs:
494 uopt->novrs = 1;
495 break;
496 case Opt_bs:
497 if (match_int(&args[0], &option))
498 return 0;
499 n = option;
500 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
501 return 0;
502 uopt->blocksize = n;
503 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
504 break;
505 case Opt_unhide:
506 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
507 break;
508 case Opt_undelete:
509 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
510 break;
511 case Opt_noadinicb:
512 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
513 break;
514 case Opt_adinicb:
515 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
516 break;
517 case Opt_shortad:
518 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
519 break;
520 case Opt_longad:
521 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
522 break;
523 case Opt_gid:
524 if (match_int(args, &option))
525 return 0;
526 uopt->gid = make_kgid(current_user_ns(), option);
527 if (!gid_valid(uopt->gid))
528 return 0;
529 uopt->flags |= (1 << UDF_FLAG_GID_SET);
530 break;
531 case Opt_uid:
532 if (match_int(args, &option))
533 return 0;
534 uopt->uid = make_kuid(current_user_ns(), option);
535 if (!uid_valid(uopt->uid))
536 return 0;
537 uopt->flags |= (1 << UDF_FLAG_UID_SET);
538 break;
539 case Opt_umask:
540 if (match_octal(args, &option))
541 return 0;
542 uopt->umask = option;
543 break;
544 case Opt_nostrict:
545 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
546 break;
547 case Opt_session:
548 if (match_int(args, &option))
549 return 0;
550 uopt->session = option;
551 if (!remount)
552 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
553 break;
554 case Opt_lastblock:
555 if (match_int(args, &option))
556 return 0;
557 uopt->lastblock = option;
558 if (!remount)
559 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
560 break;
561 case Opt_anchor:
562 if (match_int(args, &option))
563 return 0;
564 uopt->anchor = option;
565 break;
566 case Opt_volume:
567 case Opt_partition:
568 case Opt_fileset:
569 case Opt_rootdir:
570 /* Ignored (never implemented properly) */
571 break;
572 case Opt_utf8:
573 uopt->flags |= (1 << UDF_FLAG_UTF8);
574 break;
575 case Opt_iocharset:
576 if (!remount) {
577 if (uopt->nls_map)
578 unload_nls(uopt->nls_map);
579 uopt->nls_map = load_nls(args[0].from);
580 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
581 }
582 break;
583 case Opt_uforget:
584 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
585 break;
586 case Opt_uignore:
587 case Opt_gignore:
588 /* These options are superseeded by uid=<number> */
589 break;
590 case Opt_gforget:
591 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
592 break;
593 case Opt_fmode:
594 if (match_octal(args, &option))
595 return 0;
596 uopt->fmode = option & 0777;
597 break;
598 case Opt_dmode:
599 if (match_octal(args, &option))
600 return 0;
601 uopt->dmode = option & 0777;
602 break;
603 default:
604 pr_err("bad mount option \"%s\" or missing value\n", p);
605 return 0;
606 }
607 }
608 return 1;
609}
610
611static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
612{
613 struct udf_options uopt;
614 struct udf_sb_info *sbi = UDF_SB(sb);
615 int error = 0;
616 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
617
618 sync_filesystem(sb);
619 if (lvidiu) {
620 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
621 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
622 return -EACCES;
623 }
624
625 uopt.flags = sbi->s_flags;
626 uopt.uid = sbi->s_uid;
627 uopt.gid = sbi->s_gid;
628 uopt.umask = sbi->s_umask;
629 uopt.fmode = sbi->s_fmode;
630 uopt.dmode = sbi->s_dmode;
631 uopt.nls_map = NULL;
632
633 if (!udf_parse_options(options, &uopt, true))
634 return -EINVAL;
635
636 write_lock(&sbi->s_cred_lock);
637 sbi->s_flags = uopt.flags;
638 sbi->s_uid = uopt.uid;
639 sbi->s_gid = uopt.gid;
640 sbi->s_umask = uopt.umask;
641 sbi->s_fmode = uopt.fmode;
642 sbi->s_dmode = uopt.dmode;
643 write_unlock(&sbi->s_cred_lock);
644
645 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
646 goto out_unlock;
647
648 if (*flags & SB_RDONLY)
649 udf_close_lvid(sb);
650 else
651 udf_open_lvid(sb);
652
653out_unlock:
654 return error;
655}
656
657/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
658/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
659static loff_t udf_check_vsd(struct super_block *sb)
660{
661 struct volStructDesc *vsd = NULL;
662 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
663 int sectorsize;
664 struct buffer_head *bh = NULL;
665 int nsr02 = 0;
666 int nsr03 = 0;
667 struct udf_sb_info *sbi;
668
669 sbi = UDF_SB(sb);
670 if (sb->s_blocksize < sizeof(struct volStructDesc))
671 sectorsize = sizeof(struct volStructDesc);
672 else
673 sectorsize = sb->s_blocksize;
674
675 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
676
677 udf_debug("Starting at sector %u (%lu byte sectors)\n",
678 (unsigned int)(sector >> sb->s_blocksize_bits),
679 sb->s_blocksize);
680 /* Process the sequence (if applicable). The hard limit on the sector
681 * offset is arbitrary, hopefully large enough so that all valid UDF
682 * filesystems will be recognised. There is no mention of an upper
683 * bound to the size of the volume recognition area in the standard.
684 * The limit will prevent the code to read all the sectors of a
685 * specially crafted image (like a bluray disc full of CD001 sectors),
686 * potentially causing minutes or even hours of uninterruptible I/O
687 * activity. This actually happened with uninitialised SSD partitions
688 * (all 0xFF) before the check for the limit and all valid IDs were
689 * added */
690 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
691 sector += sectorsize) {
692 /* Read a block */
693 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
694 if (!bh)
695 break;
696
697 /* Look for ISO descriptors */
698 vsd = (struct volStructDesc *)(bh->b_data +
699 (sector & (sb->s_blocksize - 1)));
700
701 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
702 VSD_STD_ID_LEN)) {
703 switch (vsd->structType) {
704 case 0:
705 udf_debug("ISO9660 Boot Record found\n");
706 break;
707 case 1:
708 udf_debug("ISO9660 Primary Volume Descriptor found\n");
709 break;
710 case 2:
711 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
712 break;
713 case 3:
714 udf_debug("ISO9660 Volume Partition Descriptor found\n");
715 break;
716 case 255:
717 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
718 break;
719 default:
720 udf_debug("ISO9660 VRS (%u) found\n",
721 vsd->structType);
722 break;
723 }
724 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
725 VSD_STD_ID_LEN))
726 ; /* nothing */
727 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
728 VSD_STD_ID_LEN)) {
729 brelse(bh);
730 break;
731 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
732 VSD_STD_ID_LEN))
733 nsr02 = sector;
734 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
735 VSD_STD_ID_LEN))
736 nsr03 = sector;
737 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
738 VSD_STD_ID_LEN))
739 ; /* nothing */
740 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
741 VSD_STD_ID_LEN))
742 ; /* nothing */
743 else {
744 /* invalid id : end of volume recognition area */
745 brelse(bh);
746 break;
747 }
748 brelse(bh);
749 }
750
751 if (nsr03)
752 return nsr03;
753 else if (nsr02)
754 return nsr02;
755 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
756 VSD_FIRST_SECTOR_OFFSET)
757 return -1;
758 else
759 return 0;
760}
761
762static int udf_find_fileset(struct super_block *sb,
763 struct kernel_lb_addr *fileset,
764 struct kernel_lb_addr *root)
765{
766 struct buffer_head *bh = NULL;
767 long lastblock;
768 uint16_t ident;
769 struct udf_sb_info *sbi;
770
771 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
772 fileset->partitionReferenceNum != 0xFFFF) {
773 bh = udf_read_ptagged(sb, fileset, 0, &ident);
774
775 if (!bh) {
776 return 1;
777 } else if (ident != TAG_IDENT_FSD) {
778 brelse(bh);
779 return 1;
780 }
781
782 }
783
784 sbi = UDF_SB(sb);
785 if (!bh) {
786 /* Search backwards through the partitions */
787 struct kernel_lb_addr newfileset;
788
789/* --> cvg: FIXME - is it reasonable? */
790 return 1;
791
792 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
793 (newfileset.partitionReferenceNum != 0xFFFF &&
794 fileset->logicalBlockNum == 0xFFFFFFFF &&
795 fileset->partitionReferenceNum == 0xFFFF);
796 newfileset.partitionReferenceNum--) {
797 lastblock = sbi->s_partmaps
798 [newfileset.partitionReferenceNum]
799 .s_partition_len;
800 newfileset.logicalBlockNum = 0;
801
802 do {
803 bh = udf_read_ptagged(sb, &newfileset, 0,
804 &ident);
805 if (!bh) {
806 newfileset.logicalBlockNum++;
807 continue;
808 }
809
810 switch (ident) {
811 case TAG_IDENT_SBD:
812 {
813 struct spaceBitmapDesc *sp;
814 sp = (struct spaceBitmapDesc *)
815 bh->b_data;
816 newfileset.logicalBlockNum += 1 +
817 ((le32_to_cpu(sp->numOfBytes) +
818 sizeof(struct spaceBitmapDesc)
819 - 1) >> sb->s_blocksize_bits);
820 brelse(bh);
821 break;
822 }
823 case TAG_IDENT_FSD:
824 *fileset = newfileset;
825 break;
826 default:
827 newfileset.logicalBlockNum++;
828 brelse(bh);
829 bh = NULL;
830 break;
831 }
832 } while (newfileset.logicalBlockNum < lastblock &&
833 fileset->logicalBlockNum == 0xFFFFFFFF &&
834 fileset->partitionReferenceNum == 0xFFFF);
835 }
836 }
837
838 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
839 fileset->partitionReferenceNum != 0xFFFF) && bh) {
840 udf_debug("Fileset at block=%u, partition=%u\n",
841 fileset->logicalBlockNum,
842 fileset->partitionReferenceNum);
843
844 sbi->s_partition = fileset->partitionReferenceNum;
845 udf_load_fileset(sb, bh, root);
846 brelse(bh);
847 return 0;
848 }
849 return 1;
850}
851
852/*
853 * Load primary Volume Descriptor Sequence
854 *
855 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
856 * should be tried.
857 */
858static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
859{
860 struct primaryVolDesc *pvoldesc;
861 uint8_t *outstr;
862 struct buffer_head *bh;
863 uint16_t ident;
864 int ret = -ENOMEM;
865
866 outstr = kmalloc(128, GFP_NOFS);
867 if (!outstr)
868 return -ENOMEM;
869
870 bh = udf_read_tagged(sb, block, block, &ident);
871 if (!bh) {
872 ret = -EAGAIN;
873 goto out2;
874 }
875
876 if (ident != TAG_IDENT_PVD) {
877 ret = -EIO;
878 goto out_bh;
879 }
880
881 pvoldesc = (struct primaryVolDesc *)bh->b_data;
882
883 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
884 pvoldesc->recordingDateAndTime)) {
885#ifdef UDFFS_DEBUG
886 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
887 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
888 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
889 ts->minute, le16_to_cpu(ts->typeAndTimezone));
890#endif
891 }
892
893 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
894 if (ret < 0)
895 goto out_bh;
896
897 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
898 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
899
900 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
901 if (ret < 0)
902 goto out_bh;
903
904 outstr[ret] = 0;
905 udf_debug("volSetIdent[] = '%s'\n", outstr);
906
907 ret = 0;
908out_bh:
909 brelse(bh);
910out2:
911 kfree(outstr);
912 return ret;
913}
914
915struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
916 u32 meta_file_loc, u32 partition_ref)
917{
918 struct kernel_lb_addr addr;
919 struct inode *metadata_fe;
920
921 addr.logicalBlockNum = meta_file_loc;
922 addr.partitionReferenceNum = partition_ref;
923
924 metadata_fe = udf_iget_special(sb, &addr);
925
926 if (IS_ERR(metadata_fe)) {
927 udf_warn(sb, "metadata inode efe not found\n");
928 return metadata_fe;
929 }
930 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
931 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
932 iput(metadata_fe);
933 return ERR_PTR(-EIO);
934 }
935
936 return metadata_fe;
937}
938
939static int udf_load_metadata_files(struct super_block *sb, int partition,
940 int type1_index)
941{
942 struct udf_sb_info *sbi = UDF_SB(sb);
943 struct udf_part_map *map;
944 struct udf_meta_data *mdata;
945 struct kernel_lb_addr addr;
946 struct inode *fe;
947
948 map = &sbi->s_partmaps[partition];
949 mdata = &map->s_type_specific.s_metadata;
950 mdata->s_phys_partition_ref = type1_index;
951
952 /* metadata address */
953 udf_debug("Metadata file location: block = %u part = %u\n",
954 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
955
956 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
957 mdata->s_phys_partition_ref);
958 if (IS_ERR(fe)) {
959 /* mirror file entry */
960 udf_debug("Mirror metadata file location: block = %u part = %u\n",
961 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
962
963 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
964 mdata->s_phys_partition_ref);
965
966 if (IS_ERR(fe)) {
967 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
968 return PTR_ERR(fe);
969 }
970 mdata->s_mirror_fe = fe;
971 } else
972 mdata->s_metadata_fe = fe;
973
974
975 /*
976 * bitmap file entry
977 * Note:
978 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
979 */
980 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
981 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
982 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
983
984 udf_debug("Bitmap file location: block = %u part = %u\n",
985 addr.logicalBlockNum, addr.partitionReferenceNum);
986
987 fe = udf_iget_special(sb, &addr);
988 if (IS_ERR(fe)) {
989 if (sb_rdonly(sb))
990 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
991 else {
992 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
993 return PTR_ERR(fe);
994 }
995 } else
996 mdata->s_bitmap_fe = fe;
997 }
998
999 udf_debug("udf_load_metadata_files Ok\n");
1000 return 0;
1001}
1002
1003static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1004 struct kernel_lb_addr *root)
1005{
1006 struct fileSetDesc *fset;
1007
1008 fset = (struct fileSetDesc *)bh->b_data;
1009
1010 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1011
1012 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1013
1014 udf_debug("Rootdir at block=%u, partition=%u\n",
1015 root->logicalBlockNum, root->partitionReferenceNum);
1016}
1017
1018int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1019{
1020 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1021 return DIV_ROUND_UP(map->s_partition_len +
1022 (sizeof(struct spaceBitmapDesc) << 3),
1023 sb->s_blocksize * 8);
1024}
1025
1026static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1027{
1028 struct udf_bitmap *bitmap;
1029 int nr_groups;
1030 int size;
1031
1032 nr_groups = udf_compute_nr_groups(sb, index);
1033 size = sizeof(struct udf_bitmap) +
1034 (sizeof(struct buffer_head *) * nr_groups);
1035
1036 if (size <= PAGE_SIZE)
1037 bitmap = kzalloc(size, GFP_KERNEL);
1038 else
1039 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1040
1041 if (!bitmap)
1042 return NULL;
1043
1044 bitmap->s_nr_groups = nr_groups;
1045 return bitmap;
1046}
1047
1048static int udf_fill_partdesc_info(struct super_block *sb,
1049 struct partitionDesc *p, int p_index)
1050{
1051 struct udf_part_map *map;
1052 struct udf_sb_info *sbi = UDF_SB(sb);
1053 struct partitionHeaderDesc *phd;
1054
1055 map = &sbi->s_partmaps[p_index];
1056
1057 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1058 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1059
1060 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1061 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1062 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1063 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1064 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1065 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1066 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1067 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1068
1069 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1070 p_index, map->s_partition_type,
1071 map->s_partition_root, map->s_partition_len);
1072
1073 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1074 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1075 return 0;
1076
1077 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1078 if (phd->unallocSpaceTable.extLength) {
1079 struct kernel_lb_addr loc = {
1080 .logicalBlockNum = le32_to_cpu(
1081 phd->unallocSpaceTable.extPosition),
1082 .partitionReferenceNum = p_index,
1083 };
1084 struct inode *inode;
1085
1086 inode = udf_iget_special(sb, &loc);
1087 if (IS_ERR(inode)) {
1088 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1089 p_index);
1090 return PTR_ERR(inode);
1091 }
1092 map->s_uspace.s_table = inode;
1093 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1094 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1095 p_index, map->s_uspace.s_table->i_ino);
1096 }
1097
1098 if (phd->unallocSpaceBitmap.extLength) {
1099 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1100 if (!bitmap)
1101 return -ENOMEM;
1102 map->s_uspace.s_bitmap = bitmap;
1103 bitmap->s_extPosition = le32_to_cpu(
1104 phd->unallocSpaceBitmap.extPosition);
1105 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1106 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1107 p_index, bitmap->s_extPosition);
1108 }
1109
1110 if (phd->partitionIntegrityTable.extLength)
1111 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1112
1113 if (phd->freedSpaceTable.extLength) {
1114 struct kernel_lb_addr loc = {
1115 .logicalBlockNum = le32_to_cpu(
1116 phd->freedSpaceTable.extPosition),
1117 .partitionReferenceNum = p_index,
1118 };
1119 struct inode *inode;
1120
1121 inode = udf_iget_special(sb, &loc);
1122 if (IS_ERR(inode)) {
1123 udf_debug("cannot load freedSpaceTable (part %d)\n",
1124 p_index);
1125 return PTR_ERR(inode);
1126 }
1127 map->s_fspace.s_table = inode;
1128 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1129 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1130 p_index, map->s_fspace.s_table->i_ino);
1131 }
1132
1133 if (phd->freedSpaceBitmap.extLength) {
1134 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1135 if (!bitmap)
1136 return -ENOMEM;
1137 map->s_fspace.s_bitmap = bitmap;
1138 bitmap->s_extPosition = le32_to_cpu(
1139 phd->freedSpaceBitmap.extPosition);
1140 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1141 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1142 p_index, bitmap->s_extPosition);
1143 }
1144 return 0;
1145}
1146
1147static void udf_find_vat_block(struct super_block *sb, int p_index,
1148 int type1_index, sector_t start_block)
1149{
1150 struct udf_sb_info *sbi = UDF_SB(sb);
1151 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1152 sector_t vat_block;
1153 struct kernel_lb_addr ino;
1154 struct inode *inode;
1155
1156 /*
1157 * VAT file entry is in the last recorded block. Some broken disks have
1158 * it a few blocks before so try a bit harder...
1159 */
1160 ino.partitionReferenceNum = type1_index;
1161 for (vat_block = start_block;
1162 vat_block >= map->s_partition_root &&
1163 vat_block >= start_block - 3; vat_block--) {
1164 ino.logicalBlockNum = vat_block - map->s_partition_root;
1165 inode = udf_iget_special(sb, &ino);
1166 if (!IS_ERR(inode)) {
1167 sbi->s_vat_inode = inode;
1168 break;
1169 }
1170 }
1171}
1172
1173static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1174{
1175 struct udf_sb_info *sbi = UDF_SB(sb);
1176 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1177 struct buffer_head *bh = NULL;
1178 struct udf_inode_info *vati;
1179 uint32_t pos;
1180 struct virtualAllocationTable20 *vat20;
1181 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1182 sb->s_blocksize_bits;
1183
1184 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1185 if (!sbi->s_vat_inode &&
1186 sbi->s_last_block != blocks - 1) {
1187 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1188 (unsigned long)sbi->s_last_block,
1189 (unsigned long)blocks - 1);
1190 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1191 }
1192 if (!sbi->s_vat_inode)
1193 return -EIO;
1194
1195 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1196 map->s_type_specific.s_virtual.s_start_offset = 0;
1197 map->s_type_specific.s_virtual.s_num_entries =
1198 (sbi->s_vat_inode->i_size - 36) >> 2;
1199 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1200 vati = UDF_I(sbi->s_vat_inode);
1201 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1202 pos = udf_block_map(sbi->s_vat_inode, 0);
1203 bh = sb_bread(sb, pos);
1204 if (!bh)
1205 return -EIO;
1206 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1207 } else {
1208 vat20 = (struct virtualAllocationTable20 *)
1209 vati->i_ext.i_data;
1210 }
1211
1212 map->s_type_specific.s_virtual.s_start_offset =
1213 le16_to_cpu(vat20->lengthHeader);
1214 map->s_type_specific.s_virtual.s_num_entries =
1215 (sbi->s_vat_inode->i_size -
1216 map->s_type_specific.s_virtual.
1217 s_start_offset) >> 2;
1218 brelse(bh);
1219 }
1220 return 0;
1221}
1222
1223/*
1224 * Load partition descriptor block
1225 *
1226 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1227 * sequence.
1228 */
1229static int udf_load_partdesc(struct super_block *sb, sector_t block)
1230{
1231 struct buffer_head *bh;
1232 struct partitionDesc *p;
1233 struct udf_part_map *map;
1234 struct udf_sb_info *sbi = UDF_SB(sb);
1235 int i, type1_idx;
1236 uint16_t partitionNumber;
1237 uint16_t ident;
1238 int ret;
1239
1240 bh = udf_read_tagged(sb, block, block, &ident);
1241 if (!bh)
1242 return -EAGAIN;
1243 if (ident != TAG_IDENT_PD) {
1244 ret = 0;
1245 goto out_bh;
1246 }
1247
1248 p = (struct partitionDesc *)bh->b_data;
1249 partitionNumber = le16_to_cpu(p->partitionNumber);
1250
1251 /* First scan for TYPE1 and SPARABLE partitions */
1252 for (i = 0; i < sbi->s_partitions; i++) {
1253 map = &sbi->s_partmaps[i];
1254 udf_debug("Searching map: (%u == %u)\n",
1255 map->s_partition_num, partitionNumber);
1256 if (map->s_partition_num == partitionNumber &&
1257 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1258 map->s_partition_type == UDF_SPARABLE_MAP15))
1259 break;
1260 }
1261
1262 if (i >= sbi->s_partitions) {
1263 udf_debug("Partition (%u) not found in partition map\n",
1264 partitionNumber);
1265 ret = 0;
1266 goto out_bh;
1267 }
1268
1269 ret = udf_fill_partdesc_info(sb, p, i);
1270 if (ret < 0)
1271 goto out_bh;
1272
1273 /*
1274 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1275 * PHYSICAL partitions are already set up
1276 */
1277 type1_idx = i;
1278#ifdef UDFFS_DEBUG
1279 map = NULL; /* supress 'maybe used uninitialized' warning */
1280#endif
1281 for (i = 0; i < sbi->s_partitions; i++) {
1282 map = &sbi->s_partmaps[i];
1283
1284 if (map->s_partition_num == partitionNumber &&
1285 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1286 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1287 map->s_partition_type == UDF_METADATA_MAP25))
1288 break;
1289 }
1290
1291 if (i >= sbi->s_partitions) {
1292 ret = 0;
1293 goto out_bh;
1294 }
1295
1296 ret = udf_fill_partdesc_info(sb, p, i);
1297 if (ret < 0)
1298 goto out_bh;
1299
1300 if (map->s_partition_type == UDF_METADATA_MAP25) {
1301 ret = udf_load_metadata_files(sb, i, type1_idx);
1302 if (ret < 0) {
1303 udf_err(sb, "error loading MetaData partition map %d\n",
1304 i);
1305 goto out_bh;
1306 }
1307 } else {
1308 /*
1309 * If we have a partition with virtual map, we don't handle
1310 * writing to it (we overwrite blocks instead of relocating
1311 * them).
1312 */
1313 if (!sb_rdonly(sb)) {
1314 ret = -EACCES;
1315 goto out_bh;
1316 }
1317 ret = udf_load_vat(sb, i, type1_idx);
1318 if (ret < 0)
1319 goto out_bh;
1320 }
1321 ret = 0;
1322out_bh:
1323 /* In case loading failed, we handle cleanup in udf_fill_super */
1324 brelse(bh);
1325 return ret;
1326}
1327
1328static int udf_load_sparable_map(struct super_block *sb,
1329 struct udf_part_map *map,
1330 struct sparablePartitionMap *spm)
1331{
1332 uint32_t loc;
1333 uint16_t ident;
1334 struct sparingTable *st;
1335 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1336 int i;
1337 struct buffer_head *bh;
1338
1339 map->s_partition_type = UDF_SPARABLE_MAP15;
1340 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1341 if (!is_power_of_2(sdata->s_packet_len)) {
1342 udf_err(sb, "error loading logical volume descriptor: "
1343 "Invalid packet length %u\n",
1344 (unsigned)sdata->s_packet_len);
1345 return -EIO;
1346 }
1347 if (spm->numSparingTables > 4) {
1348 udf_err(sb, "error loading logical volume descriptor: "
1349 "Too many sparing tables (%d)\n",
1350 (int)spm->numSparingTables);
1351 return -EIO;
1352 }
1353
1354 for (i = 0; i < spm->numSparingTables; i++) {
1355 loc = le32_to_cpu(spm->locSparingTable[i]);
1356 bh = udf_read_tagged(sb, loc, loc, &ident);
1357 if (!bh)
1358 continue;
1359
1360 st = (struct sparingTable *)bh->b_data;
1361 if (ident != 0 ||
1362 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1363 strlen(UDF_ID_SPARING)) ||
1364 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1365 sb->s_blocksize) {
1366 brelse(bh);
1367 continue;
1368 }
1369
1370 sdata->s_spar_map[i] = bh;
1371 }
1372 map->s_partition_func = udf_get_pblock_spar15;
1373 return 0;
1374}
1375
1376static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1377 struct kernel_lb_addr *fileset)
1378{
1379 struct logicalVolDesc *lvd;
1380 int i, offset;
1381 uint8_t type;
1382 struct udf_sb_info *sbi = UDF_SB(sb);
1383 struct genericPartitionMap *gpm;
1384 uint16_t ident;
1385 struct buffer_head *bh;
1386 unsigned int table_len;
1387 int ret;
1388
1389 bh = udf_read_tagged(sb, block, block, &ident);
1390 if (!bh)
1391 return -EAGAIN;
1392 BUG_ON(ident != TAG_IDENT_LVD);
1393 lvd = (struct logicalVolDesc *)bh->b_data;
1394 table_len = le32_to_cpu(lvd->mapTableLength);
1395 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1396 udf_err(sb, "error loading logical volume descriptor: "
1397 "Partition table too long (%u > %lu)\n", table_len,
1398 sb->s_blocksize - sizeof(*lvd));
1399 ret = -EIO;
1400 goto out_bh;
1401 }
1402
1403 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1404 if (ret)
1405 goto out_bh;
1406
1407 for (i = 0, offset = 0;
1408 i < sbi->s_partitions && offset < table_len;
1409 i++, offset += gpm->partitionMapLength) {
1410 struct udf_part_map *map = &sbi->s_partmaps[i];
1411 gpm = (struct genericPartitionMap *)
1412 &(lvd->partitionMaps[offset]);
1413 type = gpm->partitionMapType;
1414 if (type == 1) {
1415 struct genericPartitionMap1 *gpm1 =
1416 (struct genericPartitionMap1 *)gpm;
1417 map->s_partition_type = UDF_TYPE1_MAP15;
1418 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1419 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1420 map->s_partition_func = NULL;
1421 } else if (type == 2) {
1422 struct udfPartitionMap2 *upm2 =
1423 (struct udfPartitionMap2 *)gpm;
1424 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1425 strlen(UDF_ID_VIRTUAL))) {
1426 u16 suf =
1427 le16_to_cpu(((__le16 *)upm2->partIdent.
1428 identSuffix)[0]);
1429 if (suf < 0x0200) {
1430 map->s_partition_type =
1431 UDF_VIRTUAL_MAP15;
1432 map->s_partition_func =
1433 udf_get_pblock_virt15;
1434 } else {
1435 map->s_partition_type =
1436 UDF_VIRTUAL_MAP20;
1437 map->s_partition_func =
1438 udf_get_pblock_virt20;
1439 }
1440 } else if (!strncmp(upm2->partIdent.ident,
1441 UDF_ID_SPARABLE,
1442 strlen(UDF_ID_SPARABLE))) {
1443 ret = udf_load_sparable_map(sb, map,
1444 (struct sparablePartitionMap *)gpm);
1445 if (ret < 0)
1446 goto out_bh;
1447 } else if (!strncmp(upm2->partIdent.ident,
1448 UDF_ID_METADATA,
1449 strlen(UDF_ID_METADATA))) {
1450 struct udf_meta_data *mdata =
1451 &map->s_type_specific.s_metadata;
1452 struct metadataPartitionMap *mdm =
1453 (struct metadataPartitionMap *)
1454 &(lvd->partitionMaps[offset]);
1455 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1456 i, type, UDF_ID_METADATA);
1457
1458 map->s_partition_type = UDF_METADATA_MAP25;
1459 map->s_partition_func = udf_get_pblock_meta25;
1460
1461 mdata->s_meta_file_loc =
1462 le32_to_cpu(mdm->metadataFileLoc);
1463 mdata->s_mirror_file_loc =
1464 le32_to_cpu(mdm->metadataMirrorFileLoc);
1465 mdata->s_bitmap_file_loc =
1466 le32_to_cpu(mdm->metadataBitmapFileLoc);
1467 mdata->s_alloc_unit_size =
1468 le32_to_cpu(mdm->allocUnitSize);
1469 mdata->s_align_unit_size =
1470 le16_to_cpu(mdm->alignUnitSize);
1471 if (mdm->flags & 0x01)
1472 mdata->s_flags |= MF_DUPLICATE_MD;
1473
1474 udf_debug("Metadata Ident suffix=0x%x\n",
1475 le16_to_cpu(*(__le16 *)
1476 mdm->partIdent.identSuffix));
1477 udf_debug("Metadata part num=%u\n",
1478 le16_to_cpu(mdm->partitionNum));
1479 udf_debug("Metadata part alloc unit size=%u\n",
1480 le32_to_cpu(mdm->allocUnitSize));
1481 udf_debug("Metadata file loc=%u\n",
1482 le32_to_cpu(mdm->metadataFileLoc));
1483 udf_debug("Mirror file loc=%u\n",
1484 le32_to_cpu(mdm->metadataMirrorFileLoc));
1485 udf_debug("Bitmap file loc=%u\n",
1486 le32_to_cpu(mdm->metadataBitmapFileLoc));
1487 udf_debug("Flags: %d %u\n",
1488 mdata->s_flags, mdm->flags);
1489 } else {
1490 udf_debug("Unknown ident: %s\n",
1491 upm2->partIdent.ident);
1492 continue;
1493 }
1494 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1495 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1496 }
1497 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1498 i, map->s_partition_num, type, map->s_volumeseqnum);
1499 }
1500
1501 if (fileset) {
1502 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1503
1504 *fileset = lelb_to_cpu(la->extLocation);
1505 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1506 fileset->logicalBlockNum,
1507 fileset->partitionReferenceNum);
1508 }
1509 if (lvd->integritySeqExt.extLength)
1510 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1511 ret = 0;
1512out_bh:
1513 brelse(bh);
1514 return ret;
1515}
1516
1517/*
1518 * Find the prevailing Logical Volume Integrity Descriptor.
1519 */
1520static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1521{
1522 struct buffer_head *bh, *final_bh;
1523 uint16_t ident;
1524 struct udf_sb_info *sbi = UDF_SB(sb);
1525 struct logicalVolIntegrityDesc *lvid;
1526 int indirections = 0;
1527
1528 while (++indirections <= UDF_MAX_LVID_NESTING) {
1529 final_bh = NULL;
1530 while (loc.extLength > 0 &&
1531 (bh = udf_read_tagged(sb, loc.extLocation,
1532 loc.extLocation, &ident))) {
1533 if (ident != TAG_IDENT_LVID) {
1534 brelse(bh);
1535 break;
1536 }
1537
1538 brelse(final_bh);
1539 final_bh = bh;
1540
1541 loc.extLength -= sb->s_blocksize;
1542 loc.extLocation++;
1543 }
1544
1545 if (!final_bh)
1546 return;
1547
1548 brelse(sbi->s_lvid_bh);
1549 sbi->s_lvid_bh = final_bh;
1550
1551 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1552 if (lvid->nextIntegrityExt.extLength == 0)
1553 return;
1554
1555 loc = leea_to_cpu(lvid->nextIntegrityExt);
1556 }
1557
1558 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1559 UDF_MAX_LVID_NESTING);
1560 brelse(sbi->s_lvid_bh);
1561 sbi->s_lvid_bh = NULL;
1562}
1563
1564/*
1565 * Step for reallocation of table of partition descriptor sequence numbers.
1566 * Must be power of 2.
1567 */
1568#define PART_DESC_ALLOC_STEP 32
1569
1570struct desc_seq_scan_data {
1571 struct udf_vds_record vds[VDS_POS_LENGTH];
1572 unsigned int size_part_descs;
1573 struct udf_vds_record *part_descs_loc;
1574};
1575
1576static struct udf_vds_record *handle_partition_descriptor(
1577 struct buffer_head *bh,
1578 struct desc_seq_scan_data *data)
1579{
1580 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1581 int partnum;
1582
1583 partnum = le16_to_cpu(desc->partitionNumber);
1584 if (partnum >= data->size_part_descs) {
1585 struct udf_vds_record *new_loc;
1586 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1587
1588 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1589 if (!new_loc)
1590 return ERR_PTR(-ENOMEM);
1591 memcpy(new_loc, data->part_descs_loc,
1592 data->size_part_descs * sizeof(*new_loc));
1593 kfree(data->part_descs_loc);
1594 data->part_descs_loc = new_loc;
1595 data->size_part_descs = new_size;
1596 }
1597 return &(data->part_descs_loc[partnum]);
1598}
1599
1600
1601static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1602 struct buffer_head *bh, struct desc_seq_scan_data *data)
1603{
1604 switch (ident) {
1605 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1606 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1607 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1608 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1609 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1610 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1611 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1612 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1613 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1614 return handle_partition_descriptor(bh, data);
1615 }
1616 return NULL;
1617}
1618
1619/*
1620 * Process a main/reserve volume descriptor sequence.
1621 * @block First block of first extent of the sequence.
1622 * @lastblock Lastblock of first extent of the sequence.
1623 * @fileset There we store extent containing root fileset
1624 *
1625 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1626 * sequence
1627 */
1628static noinline int udf_process_sequence(
1629 struct super_block *sb,
1630 sector_t block, sector_t lastblock,
1631 struct kernel_lb_addr *fileset)
1632{
1633 struct buffer_head *bh = NULL;
1634 struct udf_vds_record *curr;
1635 struct generic_desc *gd;
1636 struct volDescPtr *vdp;
1637 bool done = false;
1638 uint32_t vdsn;
1639 uint16_t ident;
1640 int ret;
1641 unsigned int indirections = 0;
1642 struct desc_seq_scan_data data;
1643 unsigned int i;
1644
1645 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1646 data.size_part_descs = PART_DESC_ALLOC_STEP;
1647 data.part_descs_loc = kcalloc(data.size_part_descs,
1648 sizeof(*data.part_descs_loc),
1649 GFP_KERNEL);
1650 if (!data.part_descs_loc)
1651 return -ENOMEM;
1652
1653 /*
1654 * Read the main descriptor sequence and find which descriptors
1655 * are in it.
1656 */
1657 for (; (!done && block <= lastblock); block++) {
1658
1659 bh = udf_read_tagged(sb, block, block, &ident);
1660 if (!bh)
1661 break;
1662
1663 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1664 gd = (struct generic_desc *)bh->b_data;
1665 vdsn = le32_to_cpu(gd->volDescSeqNum);
1666 switch (ident) {
1667 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1668 if (++indirections > UDF_MAX_TD_NESTING) {
1669 udf_err(sb, "too many Volume Descriptor "
1670 "Pointers (max %u supported)\n",
1671 UDF_MAX_TD_NESTING);
1672 brelse(bh);
1673 return -EIO;
1674 }
1675
1676 vdp = (struct volDescPtr *)bh->b_data;
1677 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1678 lastblock = le32_to_cpu(
1679 vdp->nextVolDescSeqExt.extLength) >>
1680 sb->s_blocksize_bits;
1681 lastblock += block - 1;
1682 /* For loop is going to increment 'block' again */
1683 block--;
1684 break;
1685 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1686 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1687 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1688 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1689 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1690 curr = get_volume_descriptor_record(ident, bh, &data);
1691 if (IS_ERR(curr)) {
1692 brelse(bh);
1693 return PTR_ERR(curr);
1694 }
1695 /* Descriptor we don't care about? */
1696 if (!curr)
1697 break;
1698 if (vdsn >= curr->volDescSeqNum) {
1699 curr->volDescSeqNum = vdsn;
1700 curr->block = block;
1701 }
1702 break;
1703 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1704 done = true;
1705 break;
1706 }
1707 brelse(bh);
1708 }
1709 /*
1710 * Now read interesting descriptors again and process them
1711 * in a suitable order
1712 */
1713 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1714 udf_err(sb, "Primary Volume Descriptor not found!\n");
1715 return -EAGAIN;
1716 }
1717 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1718 if (ret < 0)
1719 return ret;
1720
1721 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1722 ret = udf_load_logicalvol(sb,
1723 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1724 fileset);
1725 if (ret < 0)
1726 return ret;
1727 }
1728
1729 /* Now handle prevailing Partition Descriptors */
1730 for (i = 0; i < data.size_part_descs; i++) {
1731 if (data.part_descs_loc[i].block) {
1732 ret = udf_load_partdesc(sb,
1733 data.part_descs_loc[i].block);
1734 if (ret < 0)
1735 return ret;
1736 }
1737 }
1738
1739 return 0;
1740}
1741
1742/*
1743 * Load Volume Descriptor Sequence described by anchor in bh
1744 *
1745 * Returns <0 on error, 0 on success
1746 */
1747static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1748 struct kernel_lb_addr *fileset)
1749{
1750 struct anchorVolDescPtr *anchor;
1751 sector_t main_s, main_e, reserve_s, reserve_e;
1752 int ret;
1753
1754 anchor = (struct anchorVolDescPtr *)bh->b_data;
1755
1756 /* Locate the main sequence */
1757 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1758 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1759 main_e = main_e >> sb->s_blocksize_bits;
1760 main_e += main_s - 1;
1761
1762 /* Locate the reserve sequence */
1763 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1764 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1765 reserve_e = reserve_e >> sb->s_blocksize_bits;
1766 reserve_e += reserve_s - 1;
1767
1768 /* Process the main & reserve sequences */
1769 /* responsible for finding the PartitionDesc(s) */
1770 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1771 if (ret != -EAGAIN)
1772 return ret;
1773 udf_sb_free_partitions(sb);
1774 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1775 if (ret < 0) {
1776 udf_sb_free_partitions(sb);
1777 /* No sequence was OK, return -EIO */
1778 if (ret == -EAGAIN)
1779 ret = -EIO;
1780 }
1781 return ret;
1782}
1783
1784/*
1785 * Check whether there is an anchor block in the given block and
1786 * load Volume Descriptor Sequence if so.
1787 *
1788 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1789 * block
1790 */
1791static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1792 struct kernel_lb_addr *fileset)
1793{
1794 struct buffer_head *bh;
1795 uint16_t ident;
1796 int ret;
1797
1798 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1799 udf_fixed_to_variable(block) >=
1800 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1801 return -EAGAIN;
1802
1803 bh = udf_read_tagged(sb, block, block, &ident);
1804 if (!bh)
1805 return -EAGAIN;
1806 if (ident != TAG_IDENT_AVDP) {
1807 brelse(bh);
1808 return -EAGAIN;
1809 }
1810 ret = udf_load_sequence(sb, bh, fileset);
1811 brelse(bh);
1812 return ret;
1813}
1814
1815/*
1816 * Search for an anchor volume descriptor pointer.
1817 *
1818 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1819 * of anchors.
1820 */
1821static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1822 struct kernel_lb_addr *fileset)
1823{
1824 sector_t last[6];
1825 int i;
1826 struct udf_sb_info *sbi = UDF_SB(sb);
1827 int last_count = 0;
1828 int ret;
1829
1830 /* First try user provided anchor */
1831 if (sbi->s_anchor) {
1832 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1833 if (ret != -EAGAIN)
1834 return ret;
1835 }
1836 /*
1837 * according to spec, anchor is in either:
1838 * block 256
1839 * lastblock-256
1840 * lastblock
1841 * however, if the disc isn't closed, it could be 512.
1842 */
1843 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1844 if (ret != -EAGAIN)
1845 return ret;
1846 /*
1847 * The trouble is which block is the last one. Drives often misreport
1848 * this so we try various possibilities.
1849 */
1850 last[last_count++] = *lastblock;
1851 if (*lastblock >= 1)
1852 last[last_count++] = *lastblock - 1;
1853 last[last_count++] = *lastblock + 1;
1854 if (*lastblock >= 2)
1855 last[last_count++] = *lastblock - 2;
1856 if (*lastblock >= 150)
1857 last[last_count++] = *lastblock - 150;
1858 if (*lastblock >= 152)
1859 last[last_count++] = *lastblock - 152;
1860
1861 for (i = 0; i < last_count; i++) {
1862 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1863 sb->s_blocksize_bits)
1864 continue;
1865 ret = udf_check_anchor_block(sb, last[i], fileset);
1866 if (ret != -EAGAIN) {
1867 if (!ret)
1868 *lastblock = last[i];
1869 return ret;
1870 }
1871 if (last[i] < 256)
1872 continue;
1873 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1874 if (ret != -EAGAIN) {
1875 if (!ret)
1876 *lastblock = last[i];
1877 return ret;
1878 }
1879 }
1880
1881 /* Finally try block 512 in case media is open */
1882 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1883}
1884
1885/*
1886 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1887 * area specified by it. The function expects sbi->s_lastblock to be the last
1888 * block on the media.
1889 *
1890 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1891 * was not found.
1892 */
1893static int udf_find_anchor(struct super_block *sb,
1894 struct kernel_lb_addr *fileset)
1895{
1896 struct udf_sb_info *sbi = UDF_SB(sb);
1897 sector_t lastblock = sbi->s_last_block;
1898 int ret;
1899
1900 ret = udf_scan_anchors(sb, &lastblock, fileset);
1901 if (ret != -EAGAIN)
1902 goto out;
1903
1904 /* No anchor found? Try VARCONV conversion of block numbers */
1905 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1906 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1907 /* Firstly, we try to not convert number of the last block */
1908 ret = udf_scan_anchors(sb, &lastblock, fileset);
1909 if (ret != -EAGAIN)
1910 goto out;
1911
1912 lastblock = sbi->s_last_block;
1913 /* Secondly, we try with converted number of the last block */
1914 ret = udf_scan_anchors(sb, &lastblock, fileset);
1915 if (ret < 0) {
1916 /* VARCONV didn't help. Clear it. */
1917 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1918 }
1919out:
1920 if (ret == 0)
1921 sbi->s_last_block = lastblock;
1922 return ret;
1923}
1924
1925/*
1926 * Check Volume Structure Descriptor, find Anchor block and load Volume
1927 * Descriptor Sequence.
1928 *
1929 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1930 * block was not found.
1931 */
1932static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1933 int silent, struct kernel_lb_addr *fileset)
1934{
1935 struct udf_sb_info *sbi = UDF_SB(sb);
1936 loff_t nsr_off;
1937 int ret;
1938
1939 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1940 if (!silent)
1941 udf_warn(sb, "Bad block size\n");
1942 return -EINVAL;
1943 }
1944 sbi->s_last_block = uopt->lastblock;
1945 if (!uopt->novrs) {
1946 /* Check that it is NSR02 compliant */
1947 nsr_off = udf_check_vsd(sb);
1948 if (!nsr_off) {
1949 if (!silent)
1950 udf_warn(sb, "No VRS found\n");
1951 return -EINVAL;
1952 }
1953 if (nsr_off == -1)
1954 udf_debug("Failed to read sector at offset %d. "
1955 "Assuming open disc. Skipping validity "
1956 "check\n", VSD_FIRST_SECTOR_OFFSET);
1957 if (!sbi->s_last_block)
1958 sbi->s_last_block = udf_get_last_block(sb);
1959 } else {
1960 udf_debug("Validity check skipped because of novrs option\n");
1961 }
1962
1963 /* Look for anchor block and load Volume Descriptor Sequence */
1964 sbi->s_anchor = uopt->anchor;
1965 ret = udf_find_anchor(sb, fileset);
1966 if (ret < 0) {
1967 if (!silent && ret == -EAGAIN)
1968 udf_warn(sb, "No anchor found\n");
1969 return ret;
1970 }
1971 return 0;
1972}
1973
1974static void udf_open_lvid(struct super_block *sb)
1975{
1976 struct udf_sb_info *sbi = UDF_SB(sb);
1977 struct buffer_head *bh = sbi->s_lvid_bh;
1978 struct logicalVolIntegrityDesc *lvid;
1979 struct logicalVolIntegrityDescImpUse *lvidiu;
1980 struct timespec ts;
1981
1982 if (!bh)
1983 return;
1984 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1985 lvidiu = udf_sb_lvidiu(sb);
1986 if (!lvidiu)
1987 return;
1988
1989 mutex_lock(&sbi->s_alloc_mutex);
1990 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1991 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1992 ktime_get_real_ts(&ts);
1993 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1994 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1995 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1996 else
1997 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1998
1999 lvid->descTag.descCRC = cpu_to_le16(
2000 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2001 le16_to_cpu(lvid->descTag.descCRCLength)));
2002
2003 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2004 mark_buffer_dirty(bh);
2005 sbi->s_lvid_dirty = 0;
2006 mutex_unlock(&sbi->s_alloc_mutex);
2007 /* Make opening of filesystem visible on the media immediately */
2008 sync_dirty_buffer(bh);
2009}
2010
2011static void udf_close_lvid(struct super_block *sb)
2012{
2013 struct udf_sb_info *sbi = UDF_SB(sb);
2014 struct buffer_head *bh = sbi->s_lvid_bh;
2015 struct logicalVolIntegrityDesc *lvid;
2016 struct logicalVolIntegrityDescImpUse *lvidiu;
2017 struct timespec ts;
2018
2019 if (!bh)
2020 return;
2021 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2022 lvidiu = udf_sb_lvidiu(sb);
2023 if (!lvidiu)
2024 return;
2025
2026 mutex_lock(&sbi->s_alloc_mutex);
2027 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2028 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2029 ktime_get_real_ts(&ts);
2030 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2031 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2032 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2033 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2034 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2035 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2036 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2037 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2038 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2039
2040 lvid->descTag.descCRC = cpu_to_le16(
2041 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2042 le16_to_cpu(lvid->descTag.descCRCLength)));
2043
2044 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2045 /*
2046 * We set buffer uptodate unconditionally here to avoid spurious
2047 * warnings from mark_buffer_dirty() when previous EIO has marked
2048 * the buffer as !uptodate
2049 */
2050 set_buffer_uptodate(bh);
2051 mark_buffer_dirty(bh);
2052 sbi->s_lvid_dirty = 0;
2053 mutex_unlock(&sbi->s_alloc_mutex);
2054 /* Make closing of filesystem visible on the media immediately */
2055 sync_dirty_buffer(bh);
2056}
2057
2058u64 lvid_get_unique_id(struct super_block *sb)
2059{
2060 struct buffer_head *bh;
2061 struct udf_sb_info *sbi = UDF_SB(sb);
2062 struct logicalVolIntegrityDesc *lvid;
2063 struct logicalVolHeaderDesc *lvhd;
2064 u64 uniqueID;
2065 u64 ret;
2066
2067 bh = sbi->s_lvid_bh;
2068 if (!bh)
2069 return 0;
2070
2071 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2072 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2073
2074 mutex_lock(&sbi->s_alloc_mutex);
2075 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2076 if (!(++uniqueID & 0xFFFFFFFF))
2077 uniqueID += 16;
2078 lvhd->uniqueID = cpu_to_le64(uniqueID);
2079 mutex_unlock(&sbi->s_alloc_mutex);
2080 mark_buffer_dirty(bh);
2081
2082 return ret;
2083}
2084
2085static int udf_fill_super(struct super_block *sb, void *options, int silent)
2086{
2087 int ret = -EINVAL;
2088 struct inode *inode = NULL;
2089 struct udf_options uopt;
2090 struct kernel_lb_addr rootdir, fileset;
2091 struct udf_sb_info *sbi;
2092 bool lvid_open = false;
2093
2094 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2095 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2096 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2097 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2098 uopt.umask = 0;
2099 uopt.fmode = UDF_INVALID_MODE;
2100 uopt.dmode = UDF_INVALID_MODE;
2101 uopt.nls_map = NULL;
2102
2103 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2104 if (!sbi)
2105 return -ENOMEM;
2106
2107 sb->s_fs_info = sbi;
2108
2109 mutex_init(&sbi->s_alloc_mutex);
2110
2111 if (!udf_parse_options((char *)options, &uopt, false))
2112 goto parse_options_failure;
2113
2114 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2115 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2116 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2117 goto parse_options_failure;
2118 }
2119 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2120 uopt.nls_map = load_nls_default();
2121 if (!uopt.nls_map)
2122 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2123 else
2124 udf_debug("Using default NLS map\n");
2125 }
2126 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2127 uopt.flags |= (1 << UDF_FLAG_UTF8);
2128
2129 fileset.logicalBlockNum = 0xFFFFFFFF;
2130 fileset.partitionReferenceNum = 0xFFFF;
2131
2132 sbi->s_flags = uopt.flags;
2133 sbi->s_uid = uopt.uid;
2134 sbi->s_gid = uopt.gid;
2135 sbi->s_umask = uopt.umask;
2136 sbi->s_fmode = uopt.fmode;
2137 sbi->s_dmode = uopt.dmode;
2138 sbi->s_nls_map = uopt.nls_map;
2139 rwlock_init(&sbi->s_cred_lock);
2140
2141 if (uopt.session == 0xFFFFFFFF)
2142 sbi->s_session = udf_get_last_session(sb);
2143 else
2144 sbi->s_session = uopt.session;
2145
2146 udf_debug("Multi-session=%d\n", sbi->s_session);
2147
2148 /* Fill in the rest of the superblock */
2149 sb->s_op = &udf_sb_ops;
2150 sb->s_export_op = &udf_export_ops;
2151
2152 sb->s_magic = UDF_SUPER_MAGIC;
2153 sb->s_time_gran = 1000;
2154
2155 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2156 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2157 } else {
2158 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2159 while (uopt.blocksize <= 4096) {
2160 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2161 if (ret < 0) {
2162 if (!silent && ret != -EACCES) {
2163 pr_notice("Scanning with blocksize %u failed\n",
2164 uopt.blocksize);
2165 }
2166 brelse(sbi->s_lvid_bh);
2167 sbi->s_lvid_bh = NULL;
2168 /*
2169 * EACCES is special - we want to propagate to
2170 * upper layers that we cannot handle RW mount.
2171 */
2172 if (ret == -EACCES)
2173 break;
2174 } else
2175 break;
2176
2177 uopt.blocksize <<= 1;
2178 }
2179 }
2180 if (ret < 0) {
2181 if (ret == -EAGAIN) {
2182 udf_warn(sb, "No partition found (1)\n");
2183 ret = -EINVAL;
2184 }
2185 goto error_out;
2186 }
2187
2188 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2189
2190 if (sbi->s_lvid_bh) {
2191 struct logicalVolIntegrityDescImpUse *lvidiu =
2192 udf_sb_lvidiu(sb);
2193 uint16_t minUDFReadRev;
2194 uint16_t minUDFWriteRev;
2195
2196 if (!lvidiu) {
2197 ret = -EINVAL;
2198 goto error_out;
2199 }
2200 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2201 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2202 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2203 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2204 minUDFReadRev,
2205 UDF_MAX_READ_VERSION);
2206 ret = -EINVAL;
2207 goto error_out;
2208 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2209 !sb_rdonly(sb)) {
2210 ret = -EACCES;
2211 goto error_out;
2212 }
2213
2214 sbi->s_udfrev = minUDFWriteRev;
2215
2216 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2217 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2218 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2219 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2220 }
2221
2222 if (!sbi->s_partitions) {
2223 udf_warn(sb, "No partition found (2)\n");
2224 ret = -EINVAL;
2225 goto error_out;
2226 }
2227
2228 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2229 UDF_PART_FLAG_READ_ONLY &&
2230 !sb_rdonly(sb)) {
2231 ret = -EACCES;
2232 goto error_out;
2233 }
2234
2235 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2236 udf_warn(sb, "No fileset found\n");
2237 ret = -EINVAL;
2238 goto error_out;
2239 }
2240
2241 if (!silent) {
2242 struct timestamp ts;
2243 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2244 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2245 sbi->s_volume_ident,
2246 le16_to_cpu(ts.year), ts.month, ts.day,
2247 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2248 }
2249 if (!sb_rdonly(sb)) {
2250 udf_open_lvid(sb);
2251 lvid_open = true;
2252 }
2253
2254 /* Assign the root inode */
2255 /* assign inodes by physical block number */
2256 /* perhaps it's not extensible enough, but for now ... */
2257 inode = udf_iget(sb, &rootdir);
2258 if (IS_ERR(inode)) {
2259 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2260 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2261 ret = PTR_ERR(inode);
2262 goto error_out;
2263 }
2264
2265 /* Allocate a dentry for the root inode */
2266 sb->s_root = d_make_root(inode);
2267 if (!sb->s_root) {
2268 udf_err(sb, "Couldn't allocate root dentry\n");
2269 ret = -ENOMEM;
2270 goto error_out;
2271 }
2272 sb->s_maxbytes = MAX_LFS_FILESIZE;
2273 sb->s_max_links = UDF_MAX_LINKS;
2274 return 0;
2275
2276error_out:
2277 iput(sbi->s_vat_inode);
2278parse_options_failure:
2279 if (uopt.nls_map)
2280 unload_nls(uopt.nls_map);
2281 if (lvid_open)
2282 udf_close_lvid(sb);
2283 brelse(sbi->s_lvid_bh);
2284 udf_sb_free_partitions(sb);
2285 kfree(sbi);
2286 sb->s_fs_info = NULL;
2287
2288 return ret;
2289}
2290
2291void _udf_err(struct super_block *sb, const char *function,
2292 const char *fmt, ...)
2293{
2294 struct va_format vaf;
2295 va_list args;
2296
2297 va_start(args, fmt);
2298
2299 vaf.fmt = fmt;
2300 vaf.va = &args;
2301
2302 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2303
2304 va_end(args);
2305}
2306
2307void _udf_warn(struct super_block *sb, const char *function,
2308 const char *fmt, ...)
2309{
2310 struct va_format vaf;
2311 va_list args;
2312
2313 va_start(args, fmt);
2314
2315 vaf.fmt = fmt;
2316 vaf.va = &args;
2317
2318 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2319
2320 va_end(args);
2321}
2322
2323static void udf_put_super(struct super_block *sb)
2324{
2325 struct udf_sb_info *sbi;
2326
2327 sbi = UDF_SB(sb);
2328
2329 iput(sbi->s_vat_inode);
2330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2331 unload_nls(sbi->s_nls_map);
2332 if (!sb_rdonly(sb))
2333 udf_close_lvid(sb);
2334 brelse(sbi->s_lvid_bh);
2335 udf_sb_free_partitions(sb);
2336 mutex_destroy(&sbi->s_alloc_mutex);
2337 kfree(sb->s_fs_info);
2338 sb->s_fs_info = NULL;
2339}
2340
2341static int udf_sync_fs(struct super_block *sb, int wait)
2342{
2343 struct udf_sb_info *sbi = UDF_SB(sb);
2344
2345 mutex_lock(&sbi->s_alloc_mutex);
2346 if (sbi->s_lvid_dirty) {
2347 /*
2348 * Blockdevice will be synced later so we don't have to submit
2349 * the buffer for IO
2350 */
2351 mark_buffer_dirty(sbi->s_lvid_bh);
2352 sbi->s_lvid_dirty = 0;
2353 }
2354 mutex_unlock(&sbi->s_alloc_mutex);
2355
2356 return 0;
2357}
2358
2359static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2360{
2361 struct super_block *sb = dentry->d_sb;
2362 struct udf_sb_info *sbi = UDF_SB(sb);
2363 struct logicalVolIntegrityDescImpUse *lvidiu;
2364 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2365
2366 lvidiu = udf_sb_lvidiu(sb);
2367 buf->f_type = UDF_SUPER_MAGIC;
2368 buf->f_bsize = sb->s_blocksize;
2369 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2370 buf->f_bfree = udf_count_free(sb);
2371 buf->f_bavail = buf->f_bfree;
2372 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2373 le32_to_cpu(lvidiu->numDirs)) : 0)
2374 + buf->f_bfree;
2375 buf->f_ffree = buf->f_bfree;
2376 buf->f_namelen = UDF_NAME_LEN;
2377 buf->f_fsid.val[0] = (u32)id;
2378 buf->f_fsid.val[1] = (u32)(id >> 32);
2379
2380 return 0;
2381}
2382
2383static unsigned int udf_count_free_bitmap(struct super_block *sb,
2384 struct udf_bitmap *bitmap)
2385{
2386 struct buffer_head *bh = NULL;
2387 unsigned int accum = 0;
2388 int index;
2389 udf_pblk_t block = 0, newblock;
2390 struct kernel_lb_addr loc;
2391 uint32_t bytes;
2392 uint8_t *ptr;
2393 uint16_t ident;
2394 struct spaceBitmapDesc *bm;
2395
2396 loc.logicalBlockNum = bitmap->s_extPosition;
2397 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2398 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2399
2400 if (!bh) {
2401 udf_err(sb, "udf_count_free failed\n");
2402 goto out;
2403 } else if (ident != TAG_IDENT_SBD) {
2404 brelse(bh);
2405 udf_err(sb, "udf_count_free failed\n");
2406 goto out;
2407 }
2408
2409 bm = (struct spaceBitmapDesc *)bh->b_data;
2410 bytes = le32_to_cpu(bm->numOfBytes);
2411 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2412 ptr = (uint8_t *)bh->b_data;
2413
2414 while (bytes > 0) {
2415 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2416 accum += bitmap_weight((const unsigned long *)(ptr + index),
2417 cur_bytes * 8);
2418 bytes -= cur_bytes;
2419 if (bytes) {
2420 brelse(bh);
2421 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2422 bh = udf_tread(sb, newblock);
2423 if (!bh) {
2424 udf_debug("read failed\n");
2425 goto out;
2426 }
2427 index = 0;
2428 ptr = (uint8_t *)bh->b_data;
2429 }
2430 }
2431 brelse(bh);
2432out:
2433 return accum;
2434}
2435
2436static unsigned int udf_count_free_table(struct super_block *sb,
2437 struct inode *table)
2438{
2439 unsigned int accum = 0;
2440 uint32_t elen;
2441 struct kernel_lb_addr eloc;
2442 int8_t etype;
2443 struct extent_position epos;
2444
2445 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2446 epos.block = UDF_I(table)->i_location;
2447 epos.offset = sizeof(struct unallocSpaceEntry);
2448 epos.bh = NULL;
2449
2450 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2451 accum += (elen >> table->i_sb->s_blocksize_bits);
2452
2453 brelse(epos.bh);
2454 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2455
2456 return accum;
2457}
2458
2459static unsigned int udf_count_free(struct super_block *sb)
2460{
2461 unsigned int accum = 0;
2462 struct udf_sb_info *sbi;
2463 struct udf_part_map *map;
2464
2465 sbi = UDF_SB(sb);
2466 if (sbi->s_lvid_bh) {
2467 struct logicalVolIntegrityDesc *lvid =
2468 (struct logicalVolIntegrityDesc *)
2469 sbi->s_lvid_bh->b_data;
2470 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2471 accum = le32_to_cpu(
2472 lvid->freeSpaceTable[sbi->s_partition]);
2473 if (accum == 0xFFFFFFFF)
2474 accum = 0;
2475 }
2476 }
2477
2478 if (accum)
2479 return accum;
2480
2481 map = &sbi->s_partmaps[sbi->s_partition];
2482 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2483 accum += udf_count_free_bitmap(sb,
2484 map->s_uspace.s_bitmap);
2485 }
2486 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2487 accum += udf_count_free_bitmap(sb,
2488 map->s_fspace.s_bitmap);
2489 }
2490 if (accum)
2491 return accum;
2492
2493 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2494 accum += udf_count_free_table(sb,
2495 map->s_uspace.s_table);
2496 }
2497 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2498 accum += udf_count_free_table(sb,
2499 map->s_fspace.s_table);
2500 }
2501
2502 return accum;
2503}
2504
2505MODULE_AUTHOR("Ben Fennema");
2506MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2507MODULE_LICENSE("GPL");
2508module_init(init_udf_fs)
2509module_exit(exit_udf_fs)