udf: use __packed instead of __attribute__ ((packed))
[linux-block.git] / fs / udf / inode.c
... / ...
CommitLineData
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46MODULE_AUTHOR("Ben Fennema");
47MODULE_DESCRIPTION("Universal Disk Format Filesystem");
48MODULE_LICENSE("GPL");
49
50#define EXTENT_MERGE_SIZE 5
51
52static umode_t udf_convert_permissions(struct fileEntry *);
53static int udf_update_inode(struct inode *, int);
54static int udf_sync_inode(struct inode *inode);
55static int udf_alloc_i_data(struct inode *inode, size_t size);
56static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69
70static void __udf_clear_extent_cache(struct inode *inode)
71{
72 struct udf_inode_info *iinfo = UDF_I(inode);
73
74 if (iinfo->cached_extent.lstart != -1) {
75 brelse(iinfo->cached_extent.epos.bh);
76 iinfo->cached_extent.lstart = -1;
77 }
78}
79
80/* Invalidate extent cache */
81static void udf_clear_extent_cache(struct inode *inode)
82{
83 struct udf_inode_info *iinfo = UDF_I(inode);
84
85 spin_lock(&iinfo->i_extent_cache_lock);
86 __udf_clear_extent_cache(inode);
87 spin_unlock(&iinfo->i_extent_cache_lock);
88}
89
90/* Return contents of extent cache */
91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 loff_t *lbcount, struct extent_position *pos)
93{
94 struct udf_inode_info *iinfo = UDF_I(inode);
95 int ret = 0;
96
97 spin_lock(&iinfo->i_extent_cache_lock);
98 if ((iinfo->cached_extent.lstart <= bcount) &&
99 (iinfo->cached_extent.lstart != -1)) {
100 /* Cache hit */
101 *lbcount = iinfo->cached_extent.lstart;
102 memcpy(pos, &iinfo->cached_extent.epos,
103 sizeof(struct extent_position));
104 if (pos->bh)
105 get_bh(pos->bh);
106 ret = 1;
107 }
108 spin_unlock(&iinfo->i_extent_cache_lock);
109 return ret;
110}
111
112/* Add extent to extent cache */
113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 struct extent_position *pos, int next_epos)
115{
116 struct udf_inode_info *iinfo = UDF_I(inode);
117
118 spin_lock(&iinfo->i_extent_cache_lock);
119 /* Invalidate previously cached extent */
120 __udf_clear_extent_cache(inode);
121 if (pos->bh)
122 get_bh(pos->bh);
123 memcpy(&iinfo->cached_extent.epos, pos,
124 sizeof(struct extent_position));
125 iinfo->cached_extent.lstart = estart;
126 if (next_epos)
127 switch (iinfo->i_alloc_type) {
128 case ICBTAG_FLAG_AD_SHORT:
129 iinfo->cached_extent.epos.offset -=
130 sizeof(struct short_ad);
131 break;
132 case ICBTAG_FLAG_AD_LONG:
133 iinfo->cached_extent.epos.offset -=
134 sizeof(struct long_ad);
135 }
136 spin_unlock(&iinfo->i_extent_cache_lock);
137}
138
139void udf_evict_inode(struct inode *inode)
140{
141 struct udf_inode_info *iinfo = UDF_I(inode);
142 int want_delete = 0;
143
144 if (!inode->i_nlink && !is_bad_inode(inode)) {
145 want_delete = 1;
146 udf_setsize(inode, 0);
147 udf_update_inode(inode, IS_SYNC(inode));
148 }
149 truncate_inode_pages_final(&inode->i_data);
150 invalidate_inode_buffers(inode);
151 clear_inode(inode);
152 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
153 inode->i_size != iinfo->i_lenExtents) {
154 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
155 inode->i_ino, inode->i_mode,
156 (unsigned long long)inode->i_size,
157 (unsigned long long)iinfo->i_lenExtents);
158 }
159 kfree(iinfo->i_ext.i_data);
160 iinfo->i_ext.i_data = NULL;
161 udf_clear_extent_cache(inode);
162 if (want_delete) {
163 udf_free_inode(inode);
164 }
165}
166
167static void udf_write_failed(struct address_space *mapping, loff_t to)
168{
169 struct inode *inode = mapping->host;
170 struct udf_inode_info *iinfo = UDF_I(inode);
171 loff_t isize = inode->i_size;
172
173 if (to > isize) {
174 truncate_pagecache(inode, isize);
175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 down_write(&iinfo->i_data_sem);
177 udf_clear_extent_cache(inode);
178 udf_truncate_extents(inode);
179 up_write(&iinfo->i_data_sem);
180 }
181 }
182}
183
184static int udf_writepage(struct page *page, struct writeback_control *wbc)
185{
186 return block_write_full_page(page, udf_get_block, wbc);
187}
188
189static int udf_writepages(struct address_space *mapping,
190 struct writeback_control *wbc)
191{
192 return mpage_writepages(mapping, wbc, udf_get_block);
193}
194
195static int udf_readpage(struct file *file, struct page *page)
196{
197 return mpage_readpage(page, udf_get_block);
198}
199
200static int udf_readpages(struct file *file, struct address_space *mapping,
201 struct list_head *pages, unsigned nr_pages)
202{
203 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
204}
205
206static int udf_write_begin(struct file *file, struct address_space *mapping,
207 loff_t pos, unsigned len, unsigned flags,
208 struct page **pagep, void **fsdata)
209{
210 int ret;
211
212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 if (unlikely(ret))
214 udf_write_failed(mapping, pos + len);
215 return ret;
216}
217
218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219{
220 struct file *file = iocb->ki_filp;
221 struct address_space *mapping = file->f_mapping;
222 struct inode *inode = mapping->host;
223 size_t count = iov_iter_count(iter);
224 ssize_t ret;
225
226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 udf_write_failed(mapping, iocb->ki_pos + count);
229 return ret;
230}
231
232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233{
234 return generic_block_bmap(mapping, block, udf_get_block);
235}
236
237const struct address_space_operations udf_aops = {
238 .readpage = udf_readpage,
239 .readpages = udf_readpages,
240 .writepage = udf_writepage,
241 .writepages = udf_writepages,
242 .write_begin = udf_write_begin,
243 .write_end = generic_write_end,
244 .direct_IO = udf_direct_IO,
245 .bmap = udf_bmap,
246};
247
248/*
249 * Expand file stored in ICB to a normal one-block-file
250 *
251 * This function requires i_data_sem for writing and releases it.
252 * This function requires i_mutex held
253 */
254int udf_expand_file_adinicb(struct inode *inode)
255{
256 struct page *page;
257 char *kaddr;
258 struct udf_inode_info *iinfo = UDF_I(inode);
259 int err;
260 struct writeback_control udf_wbc = {
261 .sync_mode = WB_SYNC_NONE,
262 .nr_to_write = 1,
263 };
264
265 WARN_ON_ONCE(!inode_is_locked(inode));
266 if (!iinfo->i_lenAlloc) {
267 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
268 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
269 else
270 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
271 /* from now on we have normal address_space methods */
272 inode->i_data.a_ops = &udf_aops;
273 up_write(&iinfo->i_data_sem);
274 mark_inode_dirty(inode);
275 return 0;
276 }
277 /*
278 * Release i_data_sem so that we can lock a page - page lock ranks
279 * above i_data_sem. i_mutex still protects us against file changes.
280 */
281 up_write(&iinfo->i_data_sem);
282
283 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
284 if (!page)
285 return -ENOMEM;
286
287 if (!PageUptodate(page)) {
288 kaddr = kmap(page);
289 memset(kaddr + iinfo->i_lenAlloc, 0x00,
290 PAGE_SIZE - iinfo->i_lenAlloc);
291 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
292 iinfo->i_lenAlloc);
293 flush_dcache_page(page);
294 SetPageUptodate(page);
295 kunmap(page);
296 }
297 down_write(&iinfo->i_data_sem);
298 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
299 iinfo->i_lenAlloc);
300 iinfo->i_lenAlloc = 0;
301 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
302 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
303 else
304 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
305 /* from now on we have normal address_space methods */
306 inode->i_data.a_ops = &udf_aops;
307 up_write(&iinfo->i_data_sem);
308 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
309 if (err) {
310 /* Restore everything back so that we don't lose data... */
311 lock_page(page);
312 kaddr = kmap(page);
313 down_write(&iinfo->i_data_sem);
314 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
315 inode->i_size);
316 kunmap(page);
317 unlock_page(page);
318 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319 inode->i_data.a_ops = &udf_adinicb_aops;
320 up_write(&iinfo->i_data_sem);
321 }
322 put_page(page);
323 mark_inode_dirty(inode);
324
325 return err;
326}
327
328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
329 int *err)
330{
331 int newblock;
332 struct buffer_head *dbh = NULL;
333 struct kernel_lb_addr eloc;
334 uint8_t alloctype;
335 struct extent_position epos;
336
337 struct udf_fileident_bh sfibh, dfibh;
338 loff_t f_pos = udf_ext0_offset(inode);
339 int size = udf_ext0_offset(inode) + inode->i_size;
340 struct fileIdentDesc cfi, *sfi, *dfi;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342
343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 alloctype = ICBTAG_FLAG_AD_SHORT;
345 else
346 alloctype = ICBTAG_FLAG_AD_LONG;
347
348 if (!inode->i_size) {
349 iinfo->i_alloc_type = alloctype;
350 mark_inode_dirty(inode);
351 return NULL;
352 }
353
354 /* alloc block, and copy data to it */
355 *block = udf_new_block(inode->i_sb, inode,
356 iinfo->i_location.partitionReferenceNum,
357 iinfo->i_location.logicalBlockNum, err);
358 if (!(*block))
359 return NULL;
360 newblock = udf_get_pblock(inode->i_sb, *block,
361 iinfo->i_location.partitionReferenceNum,
362 0);
363 if (!newblock)
364 return NULL;
365 dbh = udf_tgetblk(inode->i_sb, newblock);
366 if (!dbh)
367 return NULL;
368 lock_buffer(dbh);
369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 set_buffer_uptodate(dbh);
371 unlock_buffer(dbh);
372 mark_buffer_dirty_inode(dbh, inode);
373
374 sfibh.soffset = sfibh.eoffset =
375 f_pos & (inode->i_sb->s_blocksize - 1);
376 sfibh.sbh = sfibh.ebh = NULL;
377 dfibh.soffset = dfibh.eoffset = 0;
378 dfibh.sbh = dfibh.ebh = dbh;
379 while (f_pos < size) {
380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 NULL, NULL, NULL);
383 if (!sfi) {
384 brelse(dbh);
385 return NULL;
386 }
387 iinfo->i_alloc_type = alloctype;
388 sfi->descTag.tagLocation = cpu_to_le32(*block);
389 dfibh.soffset = dfibh.eoffset;
390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 sfi->fileIdent +
394 le16_to_cpu(sfi->lengthOfImpUse))) {
395 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396 brelse(dbh);
397 return NULL;
398 }
399 }
400 mark_buffer_dirty_inode(dbh, inode);
401
402 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
403 iinfo->i_lenAlloc);
404 iinfo->i_lenAlloc = 0;
405 eloc.logicalBlockNum = *block;
406 eloc.partitionReferenceNum =
407 iinfo->i_location.partitionReferenceNum;
408 iinfo->i_lenExtents = inode->i_size;
409 epos.bh = NULL;
410 epos.block = iinfo->i_location;
411 epos.offset = udf_file_entry_alloc_offset(inode);
412 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
413 /* UniqueID stuff */
414
415 brelse(epos.bh);
416 mark_inode_dirty(inode);
417 return dbh;
418}
419
420static int udf_get_block(struct inode *inode, sector_t block,
421 struct buffer_head *bh_result, int create)
422{
423 int err, new;
424 sector_t phys = 0;
425 struct udf_inode_info *iinfo;
426
427 if (!create) {
428 phys = udf_block_map(inode, block);
429 if (phys)
430 map_bh(bh_result, inode->i_sb, phys);
431 return 0;
432 }
433
434 err = -EIO;
435 new = 0;
436 iinfo = UDF_I(inode);
437
438 down_write(&iinfo->i_data_sem);
439 if (block == iinfo->i_next_alloc_block + 1) {
440 iinfo->i_next_alloc_block++;
441 iinfo->i_next_alloc_goal++;
442 }
443
444 udf_clear_extent_cache(inode);
445 phys = inode_getblk(inode, block, &err, &new);
446 if (!phys)
447 goto abort;
448
449 if (new)
450 set_buffer_new(bh_result);
451 map_bh(bh_result, inode->i_sb, phys);
452
453abort:
454 up_write(&iinfo->i_data_sem);
455 return err;
456}
457
458static struct buffer_head *udf_getblk(struct inode *inode, long block,
459 int create, int *err)
460{
461 struct buffer_head *bh;
462 struct buffer_head dummy;
463
464 dummy.b_state = 0;
465 dummy.b_blocknr = -1000;
466 *err = udf_get_block(inode, block, &dummy, create);
467 if (!*err && buffer_mapped(&dummy)) {
468 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
469 if (buffer_new(&dummy)) {
470 lock_buffer(bh);
471 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
472 set_buffer_uptodate(bh);
473 unlock_buffer(bh);
474 mark_buffer_dirty_inode(bh, inode);
475 }
476 return bh;
477 }
478
479 return NULL;
480}
481
482/* Extend the file by 'blocks' blocks, return the number of extents added */
483static int udf_do_extend_file(struct inode *inode,
484 struct extent_position *last_pos,
485 struct kernel_long_ad *last_ext,
486 sector_t blocks)
487{
488 sector_t add;
489 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490 struct super_block *sb = inode->i_sb;
491 struct kernel_lb_addr prealloc_loc = {};
492 int prealloc_len = 0;
493 struct udf_inode_info *iinfo;
494 int err;
495
496 /* The previous extent is fake and we should not extend by anything
497 * - there's nothing to do... */
498 if (!blocks && fake)
499 return 0;
500
501 iinfo = UDF_I(inode);
502 /* Round the last extent up to a multiple of block size */
503 if (last_ext->extLength & (sb->s_blocksize - 1)) {
504 last_ext->extLength =
505 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508 iinfo->i_lenExtents =
509 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
510 ~(sb->s_blocksize - 1);
511 }
512
513 /* Last extent are just preallocated blocks? */
514 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515 EXT_NOT_RECORDED_ALLOCATED) {
516 /* Save the extent so that we can reattach it to the end */
517 prealloc_loc = last_ext->extLocation;
518 prealloc_len = last_ext->extLength;
519 /* Mark the extent as a hole */
520 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522 last_ext->extLocation.logicalBlockNum = 0;
523 last_ext->extLocation.partitionReferenceNum = 0;
524 }
525
526 /* Can we merge with the previous extent? */
527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528 EXT_NOT_RECORDED_NOT_ALLOCATED) {
529 add = ((1 << 30) - sb->s_blocksize -
530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
531 sb->s_blocksize_bits;
532 if (add > blocks)
533 add = blocks;
534 blocks -= add;
535 last_ext->extLength += add << sb->s_blocksize_bits;
536 }
537
538 if (fake) {
539 udf_add_aext(inode, last_pos, &last_ext->extLocation,
540 last_ext->extLength, 1);
541 count++;
542 } else {
543 struct kernel_lb_addr tmploc;
544 uint32_t tmplen;
545
546 udf_write_aext(inode, last_pos, &last_ext->extLocation,
547 last_ext->extLength, 1);
548 /*
549 * We've rewritten the last extent but there may be empty
550 * indirect extent after it - enter it.
551 */
552 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
553 }
554
555 /* Managed to do everything necessary? */
556 if (!blocks)
557 goto out;
558
559 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
560 last_ext->extLocation.logicalBlockNum = 0;
561 last_ext->extLocation.partitionReferenceNum = 0;
562 add = (1 << (30-sb->s_blocksize_bits)) - 1;
563 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
564 (add << sb->s_blocksize_bits);
565
566 /* Create enough extents to cover the whole hole */
567 while (blocks > add) {
568 blocks -= add;
569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 last_ext->extLength, 1);
571 if (err)
572 return err;
573 count++;
574 }
575 if (blocks) {
576 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
577 (blocks << sb->s_blocksize_bits);
578 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
579 last_ext->extLength, 1);
580 if (err)
581 return err;
582 count++;
583 }
584
585out:
586 /* Do we have some preallocated blocks saved? */
587 if (prealloc_len) {
588 err = udf_add_aext(inode, last_pos, &prealloc_loc,
589 prealloc_len, 1);
590 if (err)
591 return err;
592 last_ext->extLocation = prealloc_loc;
593 last_ext->extLength = prealloc_len;
594 count++;
595 }
596
597 /* last_pos should point to the last written extent... */
598 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
599 last_pos->offset -= sizeof(struct short_ad);
600 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
601 last_pos->offset -= sizeof(struct long_ad);
602 else
603 return -EIO;
604
605 return count;
606}
607
608static int udf_extend_file(struct inode *inode, loff_t newsize)
609{
610
611 struct extent_position epos;
612 struct kernel_lb_addr eloc;
613 uint32_t elen;
614 int8_t etype;
615 struct super_block *sb = inode->i_sb;
616 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
617 int adsize;
618 struct udf_inode_info *iinfo = UDF_I(inode);
619 struct kernel_long_ad extent;
620 int err;
621
622 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
623 adsize = sizeof(struct short_ad);
624 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
625 adsize = sizeof(struct long_ad);
626 else
627 BUG();
628
629 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
630
631 /* File has extent covering the new size (could happen when extending
632 * inside a block)? */
633 if (etype != -1)
634 return 0;
635 if (newsize & (sb->s_blocksize - 1))
636 offset++;
637 /* Extended file just to the boundary of the last file block? */
638 if (offset == 0)
639 return 0;
640
641 /* Truncate is extending the file by 'offset' blocks */
642 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
643 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
644 /* File has no extents at all or has empty last
645 * indirect extent! Create a fake extent... */
646 extent.extLocation.logicalBlockNum = 0;
647 extent.extLocation.partitionReferenceNum = 0;
648 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
649 } else {
650 epos.offset -= adsize;
651 etype = udf_next_aext(inode, &epos, &extent.extLocation,
652 &extent.extLength, 0);
653 extent.extLength |= etype << 30;
654 }
655 err = udf_do_extend_file(inode, &epos, &extent, offset);
656 if (err < 0)
657 goto out;
658 err = 0;
659 iinfo->i_lenExtents = newsize;
660out:
661 brelse(epos.bh);
662 return err;
663}
664
665static sector_t inode_getblk(struct inode *inode, sector_t block,
666 int *err, int *new)
667{
668 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
669 struct extent_position prev_epos, cur_epos, next_epos;
670 int count = 0, startnum = 0, endnum = 0;
671 uint32_t elen = 0, tmpelen;
672 struct kernel_lb_addr eloc, tmpeloc;
673 int c = 1;
674 loff_t lbcount = 0, b_off = 0;
675 uint32_t newblocknum, newblock;
676 sector_t offset = 0;
677 int8_t etype;
678 struct udf_inode_info *iinfo = UDF_I(inode);
679 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
680 int lastblock = 0;
681 bool isBeyondEOF;
682
683 *err = 0;
684 *new = 0;
685 prev_epos.offset = udf_file_entry_alloc_offset(inode);
686 prev_epos.block = iinfo->i_location;
687 prev_epos.bh = NULL;
688 cur_epos = next_epos = prev_epos;
689 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
690
691 /* find the extent which contains the block we are looking for.
692 alternate between laarr[0] and laarr[1] for locations of the
693 current extent, and the previous extent */
694 do {
695 if (prev_epos.bh != cur_epos.bh) {
696 brelse(prev_epos.bh);
697 get_bh(cur_epos.bh);
698 prev_epos.bh = cur_epos.bh;
699 }
700 if (cur_epos.bh != next_epos.bh) {
701 brelse(cur_epos.bh);
702 get_bh(next_epos.bh);
703 cur_epos.bh = next_epos.bh;
704 }
705
706 lbcount += elen;
707
708 prev_epos.block = cur_epos.block;
709 cur_epos.block = next_epos.block;
710
711 prev_epos.offset = cur_epos.offset;
712 cur_epos.offset = next_epos.offset;
713
714 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
715 if (etype == -1)
716 break;
717
718 c = !c;
719
720 laarr[c].extLength = (etype << 30) | elen;
721 laarr[c].extLocation = eloc;
722
723 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
724 pgoal = eloc.logicalBlockNum +
725 ((elen + inode->i_sb->s_blocksize - 1) >>
726 inode->i_sb->s_blocksize_bits);
727
728 count++;
729 } while (lbcount + elen <= b_off);
730
731 b_off -= lbcount;
732 offset = b_off >> inode->i_sb->s_blocksize_bits;
733 /*
734 * Move prev_epos and cur_epos into indirect extent if we are at
735 * the pointer to it
736 */
737 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
738 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
739
740 /* if the extent is allocated and recorded, return the block
741 if the extent is not a multiple of the blocksize, round up */
742
743 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
744 if (elen & (inode->i_sb->s_blocksize - 1)) {
745 elen = EXT_RECORDED_ALLOCATED |
746 ((elen + inode->i_sb->s_blocksize - 1) &
747 ~(inode->i_sb->s_blocksize - 1));
748 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
749 }
750 brelse(prev_epos.bh);
751 brelse(cur_epos.bh);
752 brelse(next_epos.bh);
753 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
754 return newblock;
755 }
756
757 /* Are we beyond EOF? */
758 if (etype == -1) {
759 int ret;
760 isBeyondEOF = true;
761 if (count) {
762 if (c)
763 laarr[0] = laarr[1];
764 startnum = 1;
765 } else {
766 /* Create a fake extent when there's not one */
767 memset(&laarr[0].extLocation, 0x00,
768 sizeof(struct kernel_lb_addr));
769 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
770 /* Will udf_do_extend_file() create real extent from
771 a fake one? */
772 startnum = (offset > 0);
773 }
774 /* Create extents for the hole between EOF and offset */
775 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
776 if (ret < 0) {
777 brelse(prev_epos.bh);
778 brelse(cur_epos.bh);
779 brelse(next_epos.bh);
780 *err = ret;
781 return 0;
782 }
783 c = 0;
784 offset = 0;
785 count += ret;
786 /* We are not covered by a preallocated extent? */
787 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
788 EXT_NOT_RECORDED_ALLOCATED) {
789 /* Is there any real extent? - otherwise we overwrite
790 * the fake one... */
791 if (count)
792 c = !c;
793 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
794 inode->i_sb->s_blocksize;
795 memset(&laarr[c].extLocation, 0x00,
796 sizeof(struct kernel_lb_addr));
797 count++;
798 }
799 endnum = c + 1;
800 lastblock = 1;
801 } else {
802 isBeyondEOF = false;
803 endnum = startnum = ((count > 2) ? 2 : count);
804
805 /* if the current extent is in position 0,
806 swap it with the previous */
807 if (!c && count != 1) {
808 laarr[2] = laarr[0];
809 laarr[0] = laarr[1];
810 laarr[1] = laarr[2];
811 c = 1;
812 }
813
814 /* if the current block is located in an extent,
815 read the next extent */
816 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
817 if (etype != -1) {
818 laarr[c + 1].extLength = (etype << 30) | elen;
819 laarr[c + 1].extLocation = eloc;
820 count++;
821 startnum++;
822 endnum++;
823 } else
824 lastblock = 1;
825 }
826
827 /* if the current extent is not recorded but allocated, get the
828 * block in the extent corresponding to the requested block */
829 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
830 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
831 else { /* otherwise, allocate a new block */
832 if (iinfo->i_next_alloc_block == block)
833 goal = iinfo->i_next_alloc_goal;
834
835 if (!goal) {
836 if (!(goal = pgoal)) /* XXX: what was intended here? */
837 goal = iinfo->i_location.logicalBlockNum + 1;
838 }
839
840 newblocknum = udf_new_block(inode->i_sb, inode,
841 iinfo->i_location.partitionReferenceNum,
842 goal, err);
843 if (!newblocknum) {
844 brelse(prev_epos.bh);
845 brelse(cur_epos.bh);
846 brelse(next_epos.bh);
847 *err = -ENOSPC;
848 return 0;
849 }
850 if (isBeyondEOF)
851 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
852 }
853
854 /* if the extent the requsted block is located in contains multiple
855 * blocks, split the extent into at most three extents. blocks prior
856 * to requested block, requested block, and blocks after requested
857 * block */
858 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
859
860 /* We preallocate blocks only for regular files. It also makes sense
861 * for directories but there's a problem when to drop the
862 * preallocation. We might use some delayed work for that but I feel
863 * it's overengineering for a filesystem like UDF. */
864 if (S_ISREG(inode->i_mode))
865 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
866
867 /* merge any continuous blocks in laarr */
868 udf_merge_extents(inode, laarr, &endnum);
869
870 /* write back the new extents, inserting new extents if the new number
871 * of extents is greater than the old number, and deleting extents if
872 * the new number of extents is less than the old number */
873 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
874
875 brelse(prev_epos.bh);
876 brelse(cur_epos.bh);
877 brelse(next_epos.bh);
878
879 newblock = udf_get_pblock(inode->i_sb, newblocknum,
880 iinfo->i_location.partitionReferenceNum, 0);
881 if (!newblock) {
882 *err = -EIO;
883 return 0;
884 }
885 *new = 1;
886 iinfo->i_next_alloc_block = block;
887 iinfo->i_next_alloc_goal = newblocknum;
888 inode->i_ctime = current_time(inode);
889
890 if (IS_SYNC(inode))
891 udf_sync_inode(inode);
892 else
893 mark_inode_dirty(inode);
894
895 return newblock;
896}
897
898static void udf_split_extents(struct inode *inode, int *c, int offset,
899 int newblocknum,
900 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
901 int *endnum)
902{
903 unsigned long blocksize = inode->i_sb->s_blocksize;
904 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
905
906 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
907 (laarr[*c].extLength >> 30) ==
908 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
909 int curr = *c;
910 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
911 blocksize - 1) >> blocksize_bits;
912 int8_t etype = (laarr[curr].extLength >> 30);
913
914 if (blen == 1)
915 ;
916 else if (!offset || blen == offset + 1) {
917 laarr[curr + 2] = laarr[curr + 1];
918 laarr[curr + 1] = laarr[curr];
919 } else {
920 laarr[curr + 3] = laarr[curr + 1];
921 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
922 }
923
924 if (offset) {
925 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
926 udf_free_blocks(inode->i_sb, inode,
927 &laarr[curr].extLocation,
928 0, offset);
929 laarr[curr].extLength =
930 EXT_NOT_RECORDED_NOT_ALLOCATED |
931 (offset << blocksize_bits);
932 laarr[curr].extLocation.logicalBlockNum = 0;
933 laarr[curr].extLocation.
934 partitionReferenceNum = 0;
935 } else
936 laarr[curr].extLength = (etype << 30) |
937 (offset << blocksize_bits);
938 curr++;
939 (*c)++;
940 (*endnum)++;
941 }
942
943 laarr[curr].extLocation.logicalBlockNum = newblocknum;
944 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
945 laarr[curr].extLocation.partitionReferenceNum =
946 UDF_I(inode)->i_location.partitionReferenceNum;
947 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
948 blocksize;
949 curr++;
950
951 if (blen != offset + 1) {
952 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
953 laarr[curr].extLocation.logicalBlockNum +=
954 offset + 1;
955 laarr[curr].extLength = (etype << 30) |
956 ((blen - (offset + 1)) << blocksize_bits);
957 curr++;
958 (*endnum)++;
959 }
960 }
961}
962
963static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
964 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
965 int *endnum)
966{
967 int start, length = 0, currlength = 0, i;
968
969 if (*endnum >= (c + 1)) {
970 if (!lastblock)
971 return;
972 else
973 start = c;
974 } else {
975 if ((laarr[c + 1].extLength >> 30) ==
976 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
977 start = c + 1;
978 length = currlength =
979 (((laarr[c + 1].extLength &
980 UDF_EXTENT_LENGTH_MASK) +
981 inode->i_sb->s_blocksize - 1) >>
982 inode->i_sb->s_blocksize_bits);
983 } else
984 start = c;
985 }
986
987 for (i = start + 1; i <= *endnum; i++) {
988 if (i == *endnum) {
989 if (lastblock)
990 length += UDF_DEFAULT_PREALLOC_BLOCKS;
991 } else if ((laarr[i].extLength >> 30) ==
992 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
993 length += (((laarr[i].extLength &
994 UDF_EXTENT_LENGTH_MASK) +
995 inode->i_sb->s_blocksize - 1) >>
996 inode->i_sb->s_blocksize_bits);
997 } else
998 break;
999 }
1000
1001 if (length) {
1002 int next = laarr[start].extLocation.logicalBlockNum +
1003 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1004 inode->i_sb->s_blocksize - 1) >>
1005 inode->i_sb->s_blocksize_bits);
1006 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1007 laarr[start].extLocation.partitionReferenceNum,
1008 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1009 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1010 currlength);
1011 if (numalloc) {
1012 if (start == (c + 1))
1013 laarr[start].extLength +=
1014 (numalloc <<
1015 inode->i_sb->s_blocksize_bits);
1016 else {
1017 memmove(&laarr[c + 2], &laarr[c + 1],
1018 sizeof(struct long_ad) * (*endnum - (c + 1)));
1019 (*endnum)++;
1020 laarr[c + 1].extLocation.logicalBlockNum = next;
1021 laarr[c + 1].extLocation.partitionReferenceNum =
1022 laarr[c].extLocation.
1023 partitionReferenceNum;
1024 laarr[c + 1].extLength =
1025 EXT_NOT_RECORDED_ALLOCATED |
1026 (numalloc <<
1027 inode->i_sb->s_blocksize_bits);
1028 start = c + 1;
1029 }
1030
1031 for (i = start + 1; numalloc && i < *endnum; i++) {
1032 int elen = ((laarr[i].extLength &
1033 UDF_EXTENT_LENGTH_MASK) +
1034 inode->i_sb->s_blocksize - 1) >>
1035 inode->i_sb->s_blocksize_bits;
1036
1037 if (elen > numalloc) {
1038 laarr[i].extLength -=
1039 (numalloc <<
1040 inode->i_sb->s_blocksize_bits);
1041 numalloc = 0;
1042 } else {
1043 numalloc -= elen;
1044 if (*endnum > (i + 1))
1045 memmove(&laarr[i],
1046 &laarr[i + 1],
1047 sizeof(struct long_ad) *
1048 (*endnum - (i + 1)));
1049 i--;
1050 (*endnum)--;
1051 }
1052 }
1053 UDF_I(inode)->i_lenExtents +=
1054 numalloc << inode->i_sb->s_blocksize_bits;
1055 }
1056 }
1057}
1058
1059static void udf_merge_extents(struct inode *inode,
1060 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1061 int *endnum)
1062{
1063 int i;
1064 unsigned long blocksize = inode->i_sb->s_blocksize;
1065 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1066
1067 for (i = 0; i < (*endnum - 1); i++) {
1068 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1069 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1070
1071 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1072 (((li->extLength >> 30) ==
1073 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1074 ((lip1->extLocation.logicalBlockNum -
1075 li->extLocation.logicalBlockNum) ==
1076 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1077 blocksize - 1) >> blocksize_bits)))) {
1078
1079 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1080 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1081 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1082 lip1->extLength = (lip1->extLength -
1083 (li->extLength &
1084 UDF_EXTENT_LENGTH_MASK) +
1085 UDF_EXTENT_LENGTH_MASK) &
1086 ~(blocksize - 1);
1087 li->extLength = (li->extLength &
1088 UDF_EXTENT_FLAG_MASK) +
1089 (UDF_EXTENT_LENGTH_MASK + 1) -
1090 blocksize;
1091 lip1->extLocation.logicalBlockNum =
1092 li->extLocation.logicalBlockNum +
1093 ((li->extLength &
1094 UDF_EXTENT_LENGTH_MASK) >>
1095 blocksize_bits);
1096 } else {
1097 li->extLength = lip1->extLength +
1098 (((li->extLength &
1099 UDF_EXTENT_LENGTH_MASK) +
1100 blocksize - 1) & ~(blocksize - 1));
1101 if (*endnum > (i + 2))
1102 memmove(&laarr[i + 1], &laarr[i + 2],
1103 sizeof(struct long_ad) *
1104 (*endnum - (i + 2)));
1105 i--;
1106 (*endnum)--;
1107 }
1108 } else if (((li->extLength >> 30) ==
1109 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1110 ((lip1->extLength >> 30) ==
1111 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1112 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1113 ((li->extLength &
1114 UDF_EXTENT_LENGTH_MASK) +
1115 blocksize - 1) >> blocksize_bits);
1116 li->extLocation.logicalBlockNum = 0;
1117 li->extLocation.partitionReferenceNum = 0;
1118
1119 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1120 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1121 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1122 lip1->extLength = (lip1->extLength -
1123 (li->extLength &
1124 UDF_EXTENT_LENGTH_MASK) +
1125 UDF_EXTENT_LENGTH_MASK) &
1126 ~(blocksize - 1);
1127 li->extLength = (li->extLength &
1128 UDF_EXTENT_FLAG_MASK) +
1129 (UDF_EXTENT_LENGTH_MASK + 1) -
1130 blocksize;
1131 } else {
1132 li->extLength = lip1->extLength +
1133 (((li->extLength &
1134 UDF_EXTENT_LENGTH_MASK) +
1135 blocksize - 1) & ~(blocksize - 1));
1136 if (*endnum > (i + 2))
1137 memmove(&laarr[i + 1], &laarr[i + 2],
1138 sizeof(struct long_ad) *
1139 (*endnum - (i + 2)));
1140 i--;
1141 (*endnum)--;
1142 }
1143 } else if ((li->extLength >> 30) ==
1144 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1145 udf_free_blocks(inode->i_sb, inode,
1146 &li->extLocation, 0,
1147 ((li->extLength &
1148 UDF_EXTENT_LENGTH_MASK) +
1149 blocksize - 1) >> blocksize_bits);
1150 li->extLocation.logicalBlockNum = 0;
1151 li->extLocation.partitionReferenceNum = 0;
1152 li->extLength = (li->extLength &
1153 UDF_EXTENT_LENGTH_MASK) |
1154 EXT_NOT_RECORDED_NOT_ALLOCATED;
1155 }
1156 }
1157}
1158
1159static void udf_update_extents(struct inode *inode,
1160 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1161 int startnum, int endnum,
1162 struct extent_position *epos)
1163{
1164 int start = 0, i;
1165 struct kernel_lb_addr tmploc;
1166 uint32_t tmplen;
1167
1168 if (startnum > endnum) {
1169 for (i = 0; i < (startnum - endnum); i++)
1170 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1171 laarr[i].extLength);
1172 } else if (startnum < endnum) {
1173 for (i = 0; i < (endnum - startnum); i++) {
1174 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1175 laarr[i].extLength);
1176 udf_next_aext(inode, epos, &laarr[i].extLocation,
1177 &laarr[i].extLength, 1);
1178 start++;
1179 }
1180 }
1181
1182 for (i = start; i < endnum; i++) {
1183 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1184 udf_write_aext(inode, epos, &laarr[i].extLocation,
1185 laarr[i].extLength, 1);
1186 }
1187}
1188
1189struct buffer_head *udf_bread(struct inode *inode, int block,
1190 int create, int *err)
1191{
1192 struct buffer_head *bh = NULL;
1193
1194 bh = udf_getblk(inode, block, create, err);
1195 if (!bh)
1196 return NULL;
1197
1198 if (buffer_uptodate(bh))
1199 return bh;
1200
1201 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1202
1203 wait_on_buffer(bh);
1204 if (buffer_uptodate(bh))
1205 return bh;
1206
1207 brelse(bh);
1208 *err = -EIO;
1209 return NULL;
1210}
1211
1212int udf_setsize(struct inode *inode, loff_t newsize)
1213{
1214 int err;
1215 struct udf_inode_info *iinfo;
1216 int bsize = 1 << inode->i_blkbits;
1217
1218 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1219 S_ISLNK(inode->i_mode)))
1220 return -EINVAL;
1221 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1222 return -EPERM;
1223
1224 iinfo = UDF_I(inode);
1225 if (newsize > inode->i_size) {
1226 down_write(&iinfo->i_data_sem);
1227 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1228 if (bsize <
1229 (udf_file_entry_alloc_offset(inode) + newsize)) {
1230 err = udf_expand_file_adinicb(inode);
1231 if (err)
1232 return err;
1233 down_write(&iinfo->i_data_sem);
1234 } else {
1235 iinfo->i_lenAlloc = newsize;
1236 goto set_size;
1237 }
1238 }
1239 err = udf_extend_file(inode, newsize);
1240 if (err) {
1241 up_write(&iinfo->i_data_sem);
1242 return err;
1243 }
1244set_size:
1245 truncate_setsize(inode, newsize);
1246 up_write(&iinfo->i_data_sem);
1247 } else {
1248 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1249 down_write(&iinfo->i_data_sem);
1250 udf_clear_extent_cache(inode);
1251 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1252 0x00, bsize - newsize -
1253 udf_file_entry_alloc_offset(inode));
1254 iinfo->i_lenAlloc = newsize;
1255 truncate_setsize(inode, newsize);
1256 up_write(&iinfo->i_data_sem);
1257 goto update_time;
1258 }
1259 err = block_truncate_page(inode->i_mapping, newsize,
1260 udf_get_block);
1261 if (err)
1262 return err;
1263 down_write(&iinfo->i_data_sem);
1264 udf_clear_extent_cache(inode);
1265 truncate_setsize(inode, newsize);
1266 udf_truncate_extents(inode);
1267 up_write(&iinfo->i_data_sem);
1268 }
1269update_time:
1270 inode->i_mtime = inode->i_ctime = current_time(inode);
1271 if (IS_SYNC(inode))
1272 udf_sync_inode(inode);
1273 else
1274 mark_inode_dirty(inode);
1275 return 0;
1276}
1277
1278/*
1279 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1280 * arbitrary - just that we hopefully don't limit any real use of rewritten
1281 * inode on write-once media but avoid looping for too long on corrupted media.
1282 */
1283#define UDF_MAX_ICB_NESTING 1024
1284
1285static int udf_read_inode(struct inode *inode, bool hidden_inode)
1286{
1287 struct buffer_head *bh = NULL;
1288 struct fileEntry *fe;
1289 struct extendedFileEntry *efe;
1290 uint16_t ident;
1291 struct udf_inode_info *iinfo = UDF_I(inode);
1292 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1293 struct kernel_lb_addr *iloc = &iinfo->i_location;
1294 unsigned int link_count;
1295 unsigned int indirections = 0;
1296 int bs = inode->i_sb->s_blocksize;
1297 int ret = -EIO;
1298
1299reread:
1300 if (iloc->logicalBlockNum >=
1301 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1302 udf_debug("block=%d, partition=%d out of range\n",
1303 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1304 return -EIO;
1305 }
1306
1307 /*
1308 * Set defaults, but the inode is still incomplete!
1309 * Note: get_new_inode() sets the following on a new inode:
1310 * i_sb = sb
1311 * i_no = ino
1312 * i_flags = sb->s_flags
1313 * i_state = 0
1314 * clean_inode(): zero fills and sets
1315 * i_count = 1
1316 * i_nlink = 1
1317 * i_op = NULL;
1318 */
1319 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1320 if (!bh) {
1321 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1322 return -EIO;
1323 }
1324
1325 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1326 ident != TAG_IDENT_USE) {
1327 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1328 inode->i_ino, ident);
1329 goto out;
1330 }
1331
1332 fe = (struct fileEntry *)bh->b_data;
1333 efe = (struct extendedFileEntry *)bh->b_data;
1334
1335 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1336 struct buffer_head *ibh;
1337
1338 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1339 if (ident == TAG_IDENT_IE && ibh) {
1340 struct kernel_lb_addr loc;
1341 struct indirectEntry *ie;
1342
1343 ie = (struct indirectEntry *)ibh->b_data;
1344 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1345
1346 if (ie->indirectICB.extLength) {
1347 brelse(ibh);
1348 memcpy(&iinfo->i_location, &loc,
1349 sizeof(struct kernel_lb_addr));
1350 if (++indirections > UDF_MAX_ICB_NESTING) {
1351 udf_err(inode->i_sb,
1352 "too many ICBs in ICB hierarchy"
1353 " (max %d supported)\n",
1354 UDF_MAX_ICB_NESTING);
1355 goto out;
1356 }
1357 brelse(bh);
1358 goto reread;
1359 }
1360 }
1361 brelse(ibh);
1362 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1363 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1364 le16_to_cpu(fe->icbTag.strategyType));
1365 goto out;
1366 }
1367 if (fe->icbTag.strategyType == cpu_to_le16(4))
1368 iinfo->i_strat4096 = 0;
1369 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1370 iinfo->i_strat4096 = 1;
1371
1372 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1373 ICBTAG_FLAG_AD_MASK;
1374 iinfo->i_unique = 0;
1375 iinfo->i_lenEAttr = 0;
1376 iinfo->i_lenExtents = 0;
1377 iinfo->i_lenAlloc = 0;
1378 iinfo->i_next_alloc_block = 0;
1379 iinfo->i_next_alloc_goal = 0;
1380 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1381 iinfo->i_efe = 1;
1382 iinfo->i_use = 0;
1383 ret = udf_alloc_i_data(inode, bs -
1384 sizeof(struct extendedFileEntry));
1385 if (ret)
1386 goto out;
1387 memcpy(iinfo->i_ext.i_data,
1388 bh->b_data + sizeof(struct extendedFileEntry),
1389 bs - sizeof(struct extendedFileEntry));
1390 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1391 iinfo->i_efe = 0;
1392 iinfo->i_use = 0;
1393 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1394 if (ret)
1395 goto out;
1396 memcpy(iinfo->i_ext.i_data,
1397 bh->b_data + sizeof(struct fileEntry),
1398 bs - sizeof(struct fileEntry));
1399 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1400 iinfo->i_efe = 0;
1401 iinfo->i_use = 1;
1402 iinfo->i_lenAlloc = le32_to_cpu(
1403 ((struct unallocSpaceEntry *)bh->b_data)->
1404 lengthAllocDescs);
1405 ret = udf_alloc_i_data(inode, bs -
1406 sizeof(struct unallocSpaceEntry));
1407 if (ret)
1408 goto out;
1409 memcpy(iinfo->i_ext.i_data,
1410 bh->b_data + sizeof(struct unallocSpaceEntry),
1411 bs - sizeof(struct unallocSpaceEntry));
1412 return 0;
1413 }
1414
1415 ret = -EIO;
1416 read_lock(&sbi->s_cred_lock);
1417 i_uid_write(inode, le32_to_cpu(fe->uid));
1418 if (!uid_valid(inode->i_uid) ||
1419 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1420 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1421 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1422
1423 i_gid_write(inode, le32_to_cpu(fe->gid));
1424 if (!gid_valid(inode->i_gid) ||
1425 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1426 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1427 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1428
1429 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1430 sbi->s_fmode != UDF_INVALID_MODE)
1431 inode->i_mode = sbi->s_fmode;
1432 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1433 sbi->s_dmode != UDF_INVALID_MODE)
1434 inode->i_mode = sbi->s_dmode;
1435 else
1436 inode->i_mode = udf_convert_permissions(fe);
1437 inode->i_mode &= ~sbi->s_umask;
1438 read_unlock(&sbi->s_cred_lock);
1439
1440 link_count = le16_to_cpu(fe->fileLinkCount);
1441 if (!link_count) {
1442 if (!hidden_inode) {
1443 ret = -ESTALE;
1444 goto out;
1445 }
1446 link_count = 1;
1447 }
1448 set_nlink(inode, link_count);
1449
1450 inode->i_size = le64_to_cpu(fe->informationLength);
1451 iinfo->i_lenExtents = inode->i_size;
1452
1453 if (iinfo->i_efe == 0) {
1454 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1455 (inode->i_sb->s_blocksize_bits - 9);
1456
1457 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1458 inode->i_atime = sbi->s_record_time;
1459
1460 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1461 fe->modificationTime))
1462 inode->i_mtime = sbi->s_record_time;
1463
1464 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1465 inode->i_ctime = sbi->s_record_time;
1466
1467 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1468 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1469 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1470 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1471 } else {
1472 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1473 (inode->i_sb->s_blocksize_bits - 9);
1474
1475 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1476 inode->i_atime = sbi->s_record_time;
1477
1478 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1479 efe->modificationTime))
1480 inode->i_mtime = sbi->s_record_time;
1481
1482 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1483 iinfo->i_crtime = sbi->s_record_time;
1484
1485 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1486 inode->i_ctime = sbi->s_record_time;
1487
1488 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1489 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1490 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1491 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1492 }
1493 inode->i_generation = iinfo->i_unique;
1494
1495 /*
1496 * Sanity check length of allocation descriptors and extended attrs to
1497 * avoid integer overflows
1498 */
1499 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1500 goto out;
1501 /* Now do exact checks */
1502 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1503 goto out;
1504 /* Sanity checks for files in ICB so that we don't get confused later */
1505 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1506 /*
1507 * For file in ICB data is stored in allocation descriptor
1508 * so sizes should match
1509 */
1510 if (iinfo->i_lenAlloc != inode->i_size)
1511 goto out;
1512 /* File in ICB has to fit in there... */
1513 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1514 goto out;
1515 }
1516
1517 switch (fe->icbTag.fileType) {
1518 case ICBTAG_FILE_TYPE_DIRECTORY:
1519 inode->i_op = &udf_dir_inode_operations;
1520 inode->i_fop = &udf_dir_operations;
1521 inode->i_mode |= S_IFDIR;
1522 inc_nlink(inode);
1523 break;
1524 case ICBTAG_FILE_TYPE_REALTIME:
1525 case ICBTAG_FILE_TYPE_REGULAR:
1526 case ICBTAG_FILE_TYPE_UNDEF:
1527 case ICBTAG_FILE_TYPE_VAT20:
1528 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1529 inode->i_data.a_ops = &udf_adinicb_aops;
1530 else
1531 inode->i_data.a_ops = &udf_aops;
1532 inode->i_op = &udf_file_inode_operations;
1533 inode->i_fop = &udf_file_operations;
1534 inode->i_mode |= S_IFREG;
1535 break;
1536 case ICBTAG_FILE_TYPE_BLOCK:
1537 inode->i_mode |= S_IFBLK;
1538 break;
1539 case ICBTAG_FILE_TYPE_CHAR:
1540 inode->i_mode |= S_IFCHR;
1541 break;
1542 case ICBTAG_FILE_TYPE_FIFO:
1543 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1544 break;
1545 case ICBTAG_FILE_TYPE_SOCKET:
1546 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1547 break;
1548 case ICBTAG_FILE_TYPE_SYMLINK:
1549 inode->i_data.a_ops = &udf_symlink_aops;
1550 inode->i_op = &udf_symlink_inode_operations;
1551 inode_nohighmem(inode);
1552 inode->i_mode = S_IFLNK | S_IRWXUGO;
1553 break;
1554 case ICBTAG_FILE_TYPE_MAIN:
1555 udf_debug("METADATA FILE-----\n");
1556 break;
1557 case ICBTAG_FILE_TYPE_MIRROR:
1558 udf_debug("METADATA MIRROR FILE-----\n");
1559 break;
1560 case ICBTAG_FILE_TYPE_BITMAP:
1561 udf_debug("METADATA BITMAP FILE-----\n");
1562 break;
1563 default:
1564 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1565 inode->i_ino, fe->icbTag.fileType);
1566 goto out;
1567 }
1568 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1569 struct deviceSpec *dsea =
1570 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1571 if (dsea) {
1572 init_special_inode(inode, inode->i_mode,
1573 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1574 le32_to_cpu(dsea->minorDeviceIdent)));
1575 /* Developer ID ??? */
1576 } else
1577 goto out;
1578 }
1579 ret = 0;
1580out:
1581 brelse(bh);
1582 return ret;
1583}
1584
1585static int udf_alloc_i_data(struct inode *inode, size_t size)
1586{
1587 struct udf_inode_info *iinfo = UDF_I(inode);
1588 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1589
1590 if (!iinfo->i_ext.i_data) {
1591 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1592 inode->i_ino);
1593 return -ENOMEM;
1594 }
1595
1596 return 0;
1597}
1598
1599static umode_t udf_convert_permissions(struct fileEntry *fe)
1600{
1601 umode_t mode;
1602 uint32_t permissions;
1603 uint32_t flags;
1604
1605 permissions = le32_to_cpu(fe->permissions);
1606 flags = le16_to_cpu(fe->icbTag.flags);
1607
1608 mode = ((permissions) & S_IRWXO) |
1609 ((permissions >> 2) & S_IRWXG) |
1610 ((permissions >> 4) & S_IRWXU) |
1611 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1612 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1613 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1614
1615 return mode;
1616}
1617
1618int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1619{
1620 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1621}
1622
1623static int udf_sync_inode(struct inode *inode)
1624{
1625 return udf_update_inode(inode, 1);
1626}
1627
1628static int udf_update_inode(struct inode *inode, int do_sync)
1629{
1630 struct buffer_head *bh = NULL;
1631 struct fileEntry *fe;
1632 struct extendedFileEntry *efe;
1633 uint64_t lb_recorded;
1634 uint32_t udfperms;
1635 uint16_t icbflags;
1636 uint16_t crclen;
1637 int err = 0;
1638 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1639 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1640 struct udf_inode_info *iinfo = UDF_I(inode);
1641
1642 bh = udf_tgetblk(inode->i_sb,
1643 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1644 if (!bh) {
1645 udf_debug("getblk failure\n");
1646 return -EIO;
1647 }
1648
1649 lock_buffer(bh);
1650 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1651 fe = (struct fileEntry *)bh->b_data;
1652 efe = (struct extendedFileEntry *)bh->b_data;
1653
1654 if (iinfo->i_use) {
1655 struct unallocSpaceEntry *use =
1656 (struct unallocSpaceEntry *)bh->b_data;
1657
1658 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1659 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1660 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1661 sizeof(struct unallocSpaceEntry));
1662 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1663 crclen = sizeof(struct unallocSpaceEntry);
1664
1665 goto finish;
1666 }
1667
1668 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1669 fe->uid = cpu_to_le32(-1);
1670 else
1671 fe->uid = cpu_to_le32(i_uid_read(inode));
1672
1673 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1674 fe->gid = cpu_to_le32(-1);
1675 else
1676 fe->gid = cpu_to_le32(i_gid_read(inode));
1677
1678 udfperms = ((inode->i_mode & S_IRWXO)) |
1679 ((inode->i_mode & S_IRWXG) << 2) |
1680 ((inode->i_mode & S_IRWXU) << 4);
1681
1682 udfperms |= (le32_to_cpu(fe->permissions) &
1683 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1684 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1685 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1686 fe->permissions = cpu_to_le32(udfperms);
1687
1688 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1689 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1690 else
1691 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1692
1693 fe->informationLength = cpu_to_le64(inode->i_size);
1694
1695 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1696 struct regid *eid;
1697 struct deviceSpec *dsea =
1698 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1699 if (!dsea) {
1700 dsea = (struct deviceSpec *)
1701 udf_add_extendedattr(inode,
1702 sizeof(struct deviceSpec) +
1703 sizeof(struct regid), 12, 0x3);
1704 dsea->attrType = cpu_to_le32(12);
1705 dsea->attrSubtype = 1;
1706 dsea->attrLength = cpu_to_le32(
1707 sizeof(struct deviceSpec) +
1708 sizeof(struct regid));
1709 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1710 }
1711 eid = (struct regid *)dsea->impUse;
1712 memset(eid, 0, sizeof(struct regid));
1713 strcpy(eid->ident, UDF_ID_DEVELOPER);
1714 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1715 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1716 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1717 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1718 }
1719
1720 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1721 lb_recorded = 0; /* No extents => no blocks! */
1722 else
1723 lb_recorded =
1724 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1725 (blocksize_bits - 9);
1726
1727 if (iinfo->i_efe == 0) {
1728 memcpy(bh->b_data + sizeof(struct fileEntry),
1729 iinfo->i_ext.i_data,
1730 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1731 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1732
1733 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1734 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1735 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1736 memset(&(fe->impIdent), 0, sizeof(struct regid));
1737 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1738 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1739 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1740 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1741 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1742 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1743 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1744 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1745 crclen = sizeof(struct fileEntry);
1746 } else {
1747 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1748 iinfo->i_ext.i_data,
1749 inode->i_sb->s_blocksize -
1750 sizeof(struct extendedFileEntry));
1751 efe->objectSize = cpu_to_le64(inode->i_size);
1752 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1753
1754 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1755 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1756 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1757 iinfo->i_crtime = inode->i_atime;
1758
1759 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1760 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1761 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1762 iinfo->i_crtime = inode->i_mtime;
1763
1764 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1765 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1766 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1767 iinfo->i_crtime = inode->i_ctime;
1768
1769 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1770 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1771 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1772 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1773
1774 memset(&(efe->impIdent), 0, sizeof(struct regid));
1775 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1776 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1777 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1778 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1779 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1780 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1781 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1782 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1783 crclen = sizeof(struct extendedFileEntry);
1784 }
1785
1786finish:
1787 if (iinfo->i_strat4096) {
1788 fe->icbTag.strategyType = cpu_to_le16(4096);
1789 fe->icbTag.strategyParameter = cpu_to_le16(1);
1790 fe->icbTag.numEntries = cpu_to_le16(2);
1791 } else {
1792 fe->icbTag.strategyType = cpu_to_le16(4);
1793 fe->icbTag.numEntries = cpu_to_le16(1);
1794 }
1795
1796 if (iinfo->i_use)
1797 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1798 else if (S_ISDIR(inode->i_mode))
1799 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1800 else if (S_ISREG(inode->i_mode))
1801 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1802 else if (S_ISLNK(inode->i_mode))
1803 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1804 else if (S_ISBLK(inode->i_mode))
1805 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1806 else if (S_ISCHR(inode->i_mode))
1807 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1808 else if (S_ISFIFO(inode->i_mode))
1809 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1810 else if (S_ISSOCK(inode->i_mode))
1811 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1812
1813 icbflags = iinfo->i_alloc_type |
1814 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1815 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1816 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1817 (le16_to_cpu(fe->icbTag.flags) &
1818 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1819 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1820
1821 fe->icbTag.flags = cpu_to_le16(icbflags);
1822 if (sbi->s_udfrev >= 0x0200)
1823 fe->descTag.descVersion = cpu_to_le16(3);
1824 else
1825 fe->descTag.descVersion = cpu_to_le16(2);
1826 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1827 fe->descTag.tagLocation = cpu_to_le32(
1828 iinfo->i_location.logicalBlockNum);
1829 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1830 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1831 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1832 crclen));
1833 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1834
1835 set_buffer_uptodate(bh);
1836 unlock_buffer(bh);
1837
1838 /* write the data blocks */
1839 mark_buffer_dirty(bh);
1840 if (do_sync) {
1841 sync_dirty_buffer(bh);
1842 if (buffer_write_io_error(bh)) {
1843 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1844 inode->i_ino);
1845 err = -EIO;
1846 }
1847 }
1848 brelse(bh);
1849
1850 return err;
1851}
1852
1853struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1854 bool hidden_inode)
1855{
1856 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1857 struct inode *inode = iget_locked(sb, block);
1858 int err;
1859
1860 if (!inode)
1861 return ERR_PTR(-ENOMEM);
1862
1863 if (!(inode->i_state & I_NEW))
1864 return inode;
1865
1866 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1867 err = udf_read_inode(inode, hidden_inode);
1868 if (err < 0) {
1869 iget_failed(inode);
1870 return ERR_PTR(err);
1871 }
1872 unlock_new_inode(inode);
1873
1874 return inode;
1875}
1876
1877int udf_setup_indirect_aext(struct inode *inode, int block,
1878 struct extent_position *epos)
1879{
1880 struct super_block *sb = inode->i_sb;
1881 struct buffer_head *bh;
1882 struct allocExtDesc *aed;
1883 struct extent_position nepos;
1884 struct kernel_lb_addr neloc;
1885 int ver, adsize;
1886
1887 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1888 adsize = sizeof(struct short_ad);
1889 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1890 adsize = sizeof(struct long_ad);
1891 else
1892 return -EIO;
1893
1894 neloc.logicalBlockNum = block;
1895 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1896
1897 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1898 if (!bh)
1899 return -EIO;
1900 lock_buffer(bh);
1901 memset(bh->b_data, 0x00, sb->s_blocksize);
1902 set_buffer_uptodate(bh);
1903 unlock_buffer(bh);
1904 mark_buffer_dirty_inode(bh, inode);
1905
1906 aed = (struct allocExtDesc *)(bh->b_data);
1907 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1908 aed->previousAllocExtLocation =
1909 cpu_to_le32(epos->block.logicalBlockNum);
1910 }
1911 aed->lengthAllocDescs = cpu_to_le32(0);
1912 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1913 ver = 3;
1914 else
1915 ver = 2;
1916 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1917 sizeof(struct tag));
1918
1919 nepos.block = neloc;
1920 nepos.offset = sizeof(struct allocExtDesc);
1921 nepos.bh = bh;
1922
1923 /*
1924 * Do we have to copy current last extent to make space for indirect
1925 * one?
1926 */
1927 if (epos->offset + adsize > sb->s_blocksize) {
1928 struct kernel_lb_addr cp_loc;
1929 uint32_t cp_len;
1930 int cp_type;
1931
1932 epos->offset -= adsize;
1933 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1934 cp_len |= ((uint32_t)cp_type) << 30;
1935
1936 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1937 udf_write_aext(inode, epos, &nepos.block,
1938 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1939 } else {
1940 __udf_add_aext(inode, epos, &nepos.block,
1941 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1942 }
1943
1944 brelse(epos->bh);
1945 *epos = nepos;
1946
1947 return 0;
1948}
1949
1950/*
1951 * Append extent at the given position - should be the first free one in inode
1952 * / indirect extent. This function assumes there is enough space in the inode
1953 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1954 */
1955int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1956 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1957{
1958 struct udf_inode_info *iinfo = UDF_I(inode);
1959 struct allocExtDesc *aed;
1960 int adsize;
1961
1962 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1963 adsize = sizeof(struct short_ad);
1964 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1965 adsize = sizeof(struct long_ad);
1966 else
1967 return -EIO;
1968
1969 if (!epos->bh) {
1970 WARN_ON(iinfo->i_lenAlloc !=
1971 epos->offset - udf_file_entry_alloc_offset(inode));
1972 } else {
1973 aed = (struct allocExtDesc *)epos->bh->b_data;
1974 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1975 epos->offset - sizeof(struct allocExtDesc));
1976 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1977 }
1978
1979 udf_write_aext(inode, epos, eloc, elen, inc);
1980
1981 if (!epos->bh) {
1982 iinfo->i_lenAlloc += adsize;
1983 mark_inode_dirty(inode);
1984 } else {
1985 aed = (struct allocExtDesc *)epos->bh->b_data;
1986 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1987 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1988 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1989 udf_update_tag(epos->bh->b_data,
1990 epos->offset + (inc ? 0 : adsize));
1991 else
1992 udf_update_tag(epos->bh->b_data,
1993 sizeof(struct allocExtDesc));
1994 mark_buffer_dirty_inode(epos->bh, inode);
1995 }
1996
1997 return 0;
1998}
1999
2000/*
2001 * Append extent at given position - should be the first free one in inode
2002 * / indirect extent. Takes care of allocating and linking indirect blocks.
2003 */
2004int udf_add_aext(struct inode *inode, struct extent_position *epos,
2005 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2006{
2007 int adsize;
2008 struct super_block *sb = inode->i_sb;
2009
2010 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2011 adsize = sizeof(struct short_ad);
2012 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2013 adsize = sizeof(struct long_ad);
2014 else
2015 return -EIO;
2016
2017 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2018 int err;
2019 int new_block;
2020
2021 new_block = udf_new_block(sb, NULL,
2022 epos->block.partitionReferenceNum,
2023 epos->block.logicalBlockNum, &err);
2024 if (!new_block)
2025 return -ENOSPC;
2026
2027 err = udf_setup_indirect_aext(inode, new_block, epos);
2028 if (err)
2029 return err;
2030 }
2031
2032 return __udf_add_aext(inode, epos, eloc, elen, inc);
2033}
2034
2035void udf_write_aext(struct inode *inode, struct extent_position *epos,
2036 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2037{
2038 int adsize;
2039 uint8_t *ptr;
2040 struct short_ad *sad;
2041 struct long_ad *lad;
2042 struct udf_inode_info *iinfo = UDF_I(inode);
2043
2044 if (!epos->bh)
2045 ptr = iinfo->i_ext.i_data + epos->offset -
2046 udf_file_entry_alloc_offset(inode) +
2047 iinfo->i_lenEAttr;
2048 else
2049 ptr = epos->bh->b_data + epos->offset;
2050
2051 switch (iinfo->i_alloc_type) {
2052 case ICBTAG_FLAG_AD_SHORT:
2053 sad = (struct short_ad *)ptr;
2054 sad->extLength = cpu_to_le32(elen);
2055 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2056 adsize = sizeof(struct short_ad);
2057 break;
2058 case ICBTAG_FLAG_AD_LONG:
2059 lad = (struct long_ad *)ptr;
2060 lad->extLength = cpu_to_le32(elen);
2061 lad->extLocation = cpu_to_lelb(*eloc);
2062 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2063 adsize = sizeof(struct long_ad);
2064 break;
2065 default:
2066 return;
2067 }
2068
2069 if (epos->bh) {
2070 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2071 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2072 struct allocExtDesc *aed =
2073 (struct allocExtDesc *)epos->bh->b_data;
2074 udf_update_tag(epos->bh->b_data,
2075 le32_to_cpu(aed->lengthAllocDescs) +
2076 sizeof(struct allocExtDesc));
2077 }
2078 mark_buffer_dirty_inode(epos->bh, inode);
2079 } else {
2080 mark_inode_dirty(inode);
2081 }
2082
2083 if (inc)
2084 epos->offset += adsize;
2085}
2086
2087/*
2088 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2089 * someone does some weird stuff.
2090 */
2091#define UDF_MAX_INDIR_EXTS 16
2092
2093int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2094 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2095{
2096 int8_t etype;
2097 unsigned int indirections = 0;
2098
2099 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2100 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2101 int block;
2102
2103 if (++indirections > UDF_MAX_INDIR_EXTS) {
2104 udf_err(inode->i_sb,
2105 "too many indirect extents in inode %lu\n",
2106 inode->i_ino);
2107 return -1;
2108 }
2109
2110 epos->block = *eloc;
2111 epos->offset = sizeof(struct allocExtDesc);
2112 brelse(epos->bh);
2113 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2114 epos->bh = udf_tread(inode->i_sb, block);
2115 if (!epos->bh) {
2116 udf_debug("reading block %d failed!\n", block);
2117 return -1;
2118 }
2119 }
2120
2121 return etype;
2122}
2123
2124int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2125 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2126{
2127 int alen;
2128 int8_t etype;
2129 uint8_t *ptr;
2130 struct short_ad *sad;
2131 struct long_ad *lad;
2132 struct udf_inode_info *iinfo = UDF_I(inode);
2133
2134 if (!epos->bh) {
2135 if (!epos->offset)
2136 epos->offset = udf_file_entry_alloc_offset(inode);
2137 ptr = iinfo->i_ext.i_data + epos->offset -
2138 udf_file_entry_alloc_offset(inode) +
2139 iinfo->i_lenEAttr;
2140 alen = udf_file_entry_alloc_offset(inode) +
2141 iinfo->i_lenAlloc;
2142 } else {
2143 if (!epos->offset)
2144 epos->offset = sizeof(struct allocExtDesc);
2145 ptr = epos->bh->b_data + epos->offset;
2146 alen = sizeof(struct allocExtDesc) +
2147 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2148 lengthAllocDescs);
2149 }
2150
2151 switch (iinfo->i_alloc_type) {
2152 case ICBTAG_FLAG_AD_SHORT:
2153 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2154 if (!sad)
2155 return -1;
2156 etype = le32_to_cpu(sad->extLength) >> 30;
2157 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2158 eloc->partitionReferenceNum =
2159 iinfo->i_location.partitionReferenceNum;
2160 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2161 break;
2162 case ICBTAG_FLAG_AD_LONG:
2163 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2164 if (!lad)
2165 return -1;
2166 etype = le32_to_cpu(lad->extLength) >> 30;
2167 *eloc = lelb_to_cpu(lad->extLocation);
2168 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2169 break;
2170 default:
2171 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2172 return -1;
2173 }
2174
2175 return etype;
2176}
2177
2178static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2179 struct kernel_lb_addr neloc, uint32_t nelen)
2180{
2181 struct kernel_lb_addr oeloc;
2182 uint32_t oelen;
2183 int8_t etype;
2184
2185 if (epos.bh)
2186 get_bh(epos.bh);
2187
2188 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2189 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2190 neloc = oeloc;
2191 nelen = (etype << 30) | oelen;
2192 }
2193 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2194 brelse(epos.bh);
2195
2196 return (nelen >> 30);
2197}
2198
2199int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2200 struct kernel_lb_addr eloc, uint32_t elen)
2201{
2202 struct extent_position oepos;
2203 int adsize;
2204 int8_t etype;
2205 struct allocExtDesc *aed;
2206 struct udf_inode_info *iinfo;
2207
2208 if (epos.bh) {
2209 get_bh(epos.bh);
2210 get_bh(epos.bh);
2211 }
2212
2213 iinfo = UDF_I(inode);
2214 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2215 adsize = sizeof(struct short_ad);
2216 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2217 adsize = sizeof(struct long_ad);
2218 else
2219 adsize = 0;
2220
2221 oepos = epos;
2222 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2223 return -1;
2224
2225 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2226 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2227 if (oepos.bh != epos.bh) {
2228 oepos.block = epos.block;
2229 brelse(oepos.bh);
2230 get_bh(epos.bh);
2231 oepos.bh = epos.bh;
2232 oepos.offset = epos.offset - adsize;
2233 }
2234 }
2235 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2236 elen = 0;
2237
2238 if (epos.bh != oepos.bh) {
2239 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2240 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2241 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2242 if (!oepos.bh) {
2243 iinfo->i_lenAlloc -= (adsize * 2);
2244 mark_inode_dirty(inode);
2245 } else {
2246 aed = (struct allocExtDesc *)oepos.bh->b_data;
2247 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2248 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2249 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2250 udf_update_tag(oepos.bh->b_data,
2251 oepos.offset - (2 * adsize));
2252 else
2253 udf_update_tag(oepos.bh->b_data,
2254 sizeof(struct allocExtDesc));
2255 mark_buffer_dirty_inode(oepos.bh, inode);
2256 }
2257 } else {
2258 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2259 if (!oepos.bh) {
2260 iinfo->i_lenAlloc -= adsize;
2261 mark_inode_dirty(inode);
2262 } else {
2263 aed = (struct allocExtDesc *)oepos.bh->b_data;
2264 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2265 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2266 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2267 udf_update_tag(oepos.bh->b_data,
2268 epos.offset - adsize);
2269 else
2270 udf_update_tag(oepos.bh->b_data,
2271 sizeof(struct allocExtDesc));
2272 mark_buffer_dirty_inode(oepos.bh, inode);
2273 }
2274 }
2275
2276 brelse(epos.bh);
2277 brelse(oepos.bh);
2278
2279 return (elen >> 30);
2280}
2281
2282int8_t inode_bmap(struct inode *inode, sector_t block,
2283 struct extent_position *pos, struct kernel_lb_addr *eloc,
2284 uint32_t *elen, sector_t *offset)
2285{
2286 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2287 loff_t lbcount = 0, bcount =
2288 (loff_t) block << blocksize_bits;
2289 int8_t etype;
2290 struct udf_inode_info *iinfo;
2291
2292 iinfo = UDF_I(inode);
2293 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2294 pos->offset = 0;
2295 pos->block = iinfo->i_location;
2296 pos->bh = NULL;
2297 }
2298 *elen = 0;
2299 do {
2300 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2301 if (etype == -1) {
2302 *offset = (bcount - lbcount) >> blocksize_bits;
2303 iinfo->i_lenExtents = lbcount;
2304 return -1;
2305 }
2306 lbcount += *elen;
2307 } while (lbcount <= bcount);
2308 /* update extent cache */
2309 udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2310 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2311
2312 return etype;
2313}
2314
2315long udf_block_map(struct inode *inode, sector_t block)
2316{
2317 struct kernel_lb_addr eloc;
2318 uint32_t elen;
2319 sector_t offset;
2320 struct extent_position epos = {};
2321 int ret;
2322
2323 down_read(&UDF_I(inode)->i_data_sem);
2324
2325 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2326 (EXT_RECORDED_ALLOCATED >> 30))
2327 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2328 else
2329 ret = 0;
2330
2331 up_read(&UDF_I(inode)->i_data_sem);
2332 brelse(epos.bh);
2333
2334 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2335 return udf_fixed_to_variable(ret);
2336 else
2337 return ret;
2338}