fs/superblock: unregister sb shrinker before ->kill_sb()
[linux-2.6-block.git] / fs / super.c
... / ...
CommitLineData
1/*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23#include <linux/export.h>
24#include <linux/slab.h>
25#include <linux/acct.h>
26#include <linux/blkdev.h>
27#include <linux/mount.h>
28#include <linux/security.h>
29#include <linux/writeback.h> /* for the emergency remount stuff */
30#include <linux/idr.h>
31#include <linux/mutex.h>
32#include <linux/backing-dev.h>
33#include <linux/rculist_bl.h>
34#include <linux/cleancache.h>
35#include <linux/fsnotify.h>
36#include <linux/lockdep.h>
37#include "internal.h"
38
39
40LIST_HEAD(super_blocks);
41DEFINE_SPINLOCK(sb_lock);
42
43static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
47};
48
49/*
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
55 */
56static unsigned long super_cache_scan(struct shrinker *shrink,
57 struct shrink_control *sc)
58{
59 struct super_block *sb;
60 long fs_objects = 0;
61 long total_objects;
62 long freed = 0;
63 long dentries;
64 long inodes;
65
66 sb = container_of(shrink, struct super_block, s_shrink);
67
68 /*
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
71 */
72 if (!(sc->gfp_mask & __GFP_FS))
73 return SHRINK_STOP;
74
75 if (!grab_super_passive(sb))
76 return SHRINK_STOP;
77
78 if (sb->s_op->nr_cached_objects)
79 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
80
81 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
82 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
83 total_objects = dentries + inodes + fs_objects + 1;
84
85 /* proportion the scan between the caches */
86 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
87 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
88
89 /*
90 * prune the dcache first as the icache is pinned by it, then
91 * prune the icache, followed by the filesystem specific caches
92 */
93 freed = prune_dcache_sb(sb, dentries, sc->nid);
94 freed += prune_icache_sb(sb, inodes, sc->nid);
95
96 if (fs_objects) {
97 fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
98 total_objects);
99 freed += sb->s_op->free_cached_objects(sb, fs_objects,
100 sc->nid);
101 }
102
103 drop_super(sb);
104 return freed;
105}
106
107static unsigned long super_cache_count(struct shrinker *shrink,
108 struct shrink_control *sc)
109{
110 struct super_block *sb;
111 long total_objects = 0;
112
113 sb = container_of(shrink, struct super_block, s_shrink);
114
115 if (!grab_super_passive(sb))
116 return 0;
117
118 if (sb->s_op && sb->s_op->nr_cached_objects)
119 total_objects = sb->s_op->nr_cached_objects(sb,
120 sc->nid);
121
122 total_objects += list_lru_count_node(&sb->s_dentry_lru,
123 sc->nid);
124 total_objects += list_lru_count_node(&sb->s_inode_lru,
125 sc->nid);
126
127 total_objects = vfs_pressure_ratio(total_objects);
128 drop_super(sb);
129 return total_objects;
130}
131
132/**
133 * destroy_super - frees a superblock
134 * @s: superblock to free
135 *
136 * Frees a superblock.
137 */
138static void destroy_super(struct super_block *s)
139{
140 int i;
141 list_lru_destroy(&s->s_dentry_lru);
142 list_lru_destroy(&s->s_inode_lru);
143 for (i = 0; i < SB_FREEZE_LEVELS; i++)
144 percpu_counter_destroy(&s->s_writers.counter[i]);
145 security_sb_free(s);
146 WARN_ON(!list_empty(&s->s_mounts));
147 kfree(s->s_subtype);
148 kfree(s->s_options);
149 kfree_rcu(s, rcu);
150}
151
152/**
153 * alloc_super - create new superblock
154 * @type: filesystem type superblock should belong to
155 * @flags: the mount flags
156 *
157 * Allocates and initializes a new &struct super_block. alloc_super()
158 * returns a pointer new superblock or %NULL if allocation had failed.
159 */
160static struct super_block *alloc_super(struct file_system_type *type, int flags)
161{
162 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
163 static const struct super_operations default_op;
164 int i;
165
166 if (!s)
167 return NULL;
168
169 INIT_LIST_HEAD(&s->s_mounts);
170
171 if (security_sb_alloc(s))
172 goto fail;
173
174 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
175 if (percpu_counter_init(&s->s_writers.counter[i], 0) < 0)
176 goto fail;
177 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
178 &type->s_writers_key[i], 0);
179 }
180 init_waitqueue_head(&s->s_writers.wait);
181 init_waitqueue_head(&s->s_writers.wait_unfrozen);
182 s->s_flags = flags;
183 s->s_bdi = &default_backing_dev_info;
184 INIT_HLIST_NODE(&s->s_instances);
185 INIT_HLIST_BL_HEAD(&s->s_anon);
186 INIT_LIST_HEAD(&s->s_inodes);
187
188 if (list_lru_init(&s->s_dentry_lru))
189 goto fail;
190 if (list_lru_init(&s->s_inode_lru))
191 goto fail;
192
193 init_rwsem(&s->s_umount);
194 lockdep_set_class(&s->s_umount, &type->s_umount_key);
195 /*
196 * sget() can have s_umount recursion.
197 *
198 * When it cannot find a suitable sb, it allocates a new
199 * one (this one), and tries again to find a suitable old
200 * one.
201 *
202 * In case that succeeds, it will acquire the s_umount
203 * lock of the old one. Since these are clearly distrinct
204 * locks, and this object isn't exposed yet, there's no
205 * risk of deadlocks.
206 *
207 * Annotate this by putting this lock in a different
208 * subclass.
209 */
210 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
211 s->s_count = 1;
212 atomic_set(&s->s_active, 1);
213 mutex_init(&s->s_vfs_rename_mutex);
214 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
215 mutex_init(&s->s_dquot.dqio_mutex);
216 mutex_init(&s->s_dquot.dqonoff_mutex);
217 init_rwsem(&s->s_dquot.dqptr_sem);
218 s->s_maxbytes = MAX_NON_LFS;
219 s->s_op = &default_op;
220 s->s_time_gran = 1000000000;
221 s->cleancache_poolid = -1;
222
223 s->s_shrink.seeks = DEFAULT_SEEKS;
224 s->s_shrink.scan_objects = super_cache_scan;
225 s->s_shrink.count_objects = super_cache_count;
226 s->s_shrink.batch = 1024;
227 s->s_shrink.flags = SHRINKER_NUMA_AWARE;
228 return s;
229
230fail:
231 destroy_super(s);
232 return NULL;
233}
234
235/* Superblock refcounting */
236
237/*
238 * Drop a superblock's refcount. The caller must hold sb_lock.
239 */
240static void __put_super(struct super_block *sb)
241{
242 if (!--sb->s_count) {
243 list_del_init(&sb->s_list);
244 destroy_super(sb);
245 }
246}
247
248/**
249 * put_super - drop a temporary reference to superblock
250 * @sb: superblock in question
251 *
252 * Drops a temporary reference, frees superblock if there's no
253 * references left.
254 */
255static void put_super(struct super_block *sb)
256{
257 spin_lock(&sb_lock);
258 __put_super(sb);
259 spin_unlock(&sb_lock);
260}
261
262
263/**
264 * deactivate_locked_super - drop an active reference to superblock
265 * @s: superblock to deactivate
266 *
267 * Drops an active reference to superblock, converting it into a temprory
268 * one if there is no other active references left. In that case we
269 * tell fs driver to shut it down and drop the temporary reference we
270 * had just acquired.
271 *
272 * Caller holds exclusive lock on superblock; that lock is released.
273 */
274void deactivate_locked_super(struct super_block *s)
275{
276 struct file_system_type *fs = s->s_type;
277 if (atomic_dec_and_test(&s->s_active)) {
278 cleancache_invalidate_fs(s);
279 unregister_shrinker(&s->s_shrink);
280 fs->kill_sb(s);
281
282 put_filesystem(fs);
283 put_super(s);
284 } else {
285 up_write(&s->s_umount);
286 }
287}
288
289EXPORT_SYMBOL(deactivate_locked_super);
290
291/**
292 * deactivate_super - drop an active reference to superblock
293 * @s: superblock to deactivate
294 *
295 * Variant of deactivate_locked_super(), except that superblock is *not*
296 * locked by caller. If we are going to drop the final active reference,
297 * lock will be acquired prior to that.
298 */
299void deactivate_super(struct super_block *s)
300{
301 if (!atomic_add_unless(&s->s_active, -1, 1)) {
302 down_write(&s->s_umount);
303 deactivate_locked_super(s);
304 }
305}
306
307EXPORT_SYMBOL(deactivate_super);
308
309/**
310 * grab_super - acquire an active reference
311 * @s: reference we are trying to make active
312 *
313 * Tries to acquire an active reference. grab_super() is used when we
314 * had just found a superblock in super_blocks or fs_type->fs_supers
315 * and want to turn it into a full-blown active reference. grab_super()
316 * is called with sb_lock held and drops it. Returns 1 in case of
317 * success, 0 if we had failed (superblock contents was already dead or
318 * dying when grab_super() had been called). Note that this is only
319 * called for superblocks not in rundown mode (== ones still on ->fs_supers
320 * of their type), so increment of ->s_count is OK here.
321 */
322static int grab_super(struct super_block *s) __releases(sb_lock)
323{
324 s->s_count++;
325 spin_unlock(&sb_lock);
326 down_write(&s->s_umount);
327 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
328 put_super(s);
329 return 1;
330 }
331 up_write(&s->s_umount);
332 put_super(s);
333 return 0;
334}
335
336/*
337 * grab_super_passive - acquire a passive reference
338 * @sb: reference we are trying to grab
339 *
340 * Tries to acquire a passive reference. This is used in places where we
341 * cannot take an active reference but we need to ensure that the
342 * superblock does not go away while we are working on it. It returns
343 * false if a reference was not gained, and returns true with the s_umount
344 * lock held in read mode if a reference is gained. On successful return,
345 * the caller must drop the s_umount lock and the passive reference when
346 * done.
347 */
348bool grab_super_passive(struct super_block *sb)
349{
350 spin_lock(&sb_lock);
351 if (hlist_unhashed(&sb->s_instances)) {
352 spin_unlock(&sb_lock);
353 return false;
354 }
355
356 sb->s_count++;
357 spin_unlock(&sb_lock);
358
359 if (down_read_trylock(&sb->s_umount)) {
360 if (sb->s_root && (sb->s_flags & MS_BORN))
361 return true;
362 up_read(&sb->s_umount);
363 }
364
365 put_super(sb);
366 return false;
367}
368
369/**
370 * generic_shutdown_super - common helper for ->kill_sb()
371 * @sb: superblock to kill
372 *
373 * generic_shutdown_super() does all fs-independent work on superblock
374 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
375 * that need destruction out of superblock, call generic_shutdown_super()
376 * and release aforementioned objects. Note: dentries and inodes _are_
377 * taken care of and do not need specific handling.
378 *
379 * Upon calling this function, the filesystem may no longer alter or
380 * rearrange the set of dentries belonging to this super_block, nor may it
381 * change the attachments of dentries to inodes.
382 */
383void generic_shutdown_super(struct super_block *sb)
384{
385 const struct super_operations *sop = sb->s_op;
386
387 if (sb->s_root) {
388 shrink_dcache_for_umount(sb);
389 sync_filesystem(sb);
390 sb->s_flags &= ~MS_ACTIVE;
391
392 fsnotify_unmount_inodes(&sb->s_inodes);
393
394 evict_inodes(sb);
395
396 if (sb->s_dio_done_wq) {
397 destroy_workqueue(sb->s_dio_done_wq);
398 sb->s_dio_done_wq = NULL;
399 }
400
401 if (sop->put_super)
402 sop->put_super(sb);
403
404 if (!list_empty(&sb->s_inodes)) {
405 printk("VFS: Busy inodes after unmount of %s. "
406 "Self-destruct in 5 seconds. Have a nice day...\n",
407 sb->s_id);
408 }
409 }
410 spin_lock(&sb_lock);
411 /* should be initialized for __put_super_and_need_restart() */
412 hlist_del_init(&sb->s_instances);
413 spin_unlock(&sb_lock);
414 up_write(&sb->s_umount);
415}
416
417EXPORT_SYMBOL(generic_shutdown_super);
418
419/**
420 * sget - find or create a superblock
421 * @type: filesystem type superblock should belong to
422 * @test: comparison callback
423 * @set: setup callback
424 * @flags: mount flags
425 * @data: argument to each of them
426 */
427struct super_block *sget(struct file_system_type *type,
428 int (*test)(struct super_block *,void *),
429 int (*set)(struct super_block *,void *),
430 int flags,
431 void *data)
432{
433 struct super_block *s = NULL;
434 struct super_block *old;
435 int err;
436
437retry:
438 spin_lock(&sb_lock);
439 if (test) {
440 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
441 if (!test(old, data))
442 continue;
443 if (!grab_super(old))
444 goto retry;
445 if (s) {
446 up_write(&s->s_umount);
447 destroy_super(s);
448 s = NULL;
449 }
450 return old;
451 }
452 }
453 if (!s) {
454 spin_unlock(&sb_lock);
455 s = alloc_super(type, flags);
456 if (!s)
457 return ERR_PTR(-ENOMEM);
458 goto retry;
459 }
460
461 err = set(s, data);
462 if (err) {
463 spin_unlock(&sb_lock);
464 up_write(&s->s_umount);
465 destroy_super(s);
466 return ERR_PTR(err);
467 }
468 s->s_type = type;
469 strlcpy(s->s_id, type->name, sizeof(s->s_id));
470 list_add_tail(&s->s_list, &super_blocks);
471 hlist_add_head(&s->s_instances, &type->fs_supers);
472 spin_unlock(&sb_lock);
473 get_filesystem(type);
474 register_shrinker(&s->s_shrink);
475 return s;
476}
477
478EXPORT_SYMBOL(sget);
479
480void drop_super(struct super_block *sb)
481{
482 up_read(&sb->s_umount);
483 put_super(sb);
484}
485
486EXPORT_SYMBOL(drop_super);
487
488/**
489 * iterate_supers - call function for all active superblocks
490 * @f: function to call
491 * @arg: argument to pass to it
492 *
493 * Scans the superblock list and calls given function, passing it
494 * locked superblock and given argument.
495 */
496void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
497{
498 struct super_block *sb, *p = NULL;
499
500 spin_lock(&sb_lock);
501 list_for_each_entry(sb, &super_blocks, s_list) {
502 if (hlist_unhashed(&sb->s_instances))
503 continue;
504 sb->s_count++;
505 spin_unlock(&sb_lock);
506
507 down_read(&sb->s_umount);
508 if (sb->s_root && (sb->s_flags & MS_BORN))
509 f(sb, arg);
510 up_read(&sb->s_umount);
511
512 spin_lock(&sb_lock);
513 if (p)
514 __put_super(p);
515 p = sb;
516 }
517 if (p)
518 __put_super(p);
519 spin_unlock(&sb_lock);
520}
521
522/**
523 * iterate_supers_type - call function for superblocks of given type
524 * @type: fs type
525 * @f: function to call
526 * @arg: argument to pass to it
527 *
528 * Scans the superblock list and calls given function, passing it
529 * locked superblock and given argument.
530 */
531void iterate_supers_type(struct file_system_type *type,
532 void (*f)(struct super_block *, void *), void *arg)
533{
534 struct super_block *sb, *p = NULL;
535
536 spin_lock(&sb_lock);
537 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
538 sb->s_count++;
539 spin_unlock(&sb_lock);
540
541 down_read(&sb->s_umount);
542 if (sb->s_root && (sb->s_flags & MS_BORN))
543 f(sb, arg);
544 up_read(&sb->s_umount);
545
546 spin_lock(&sb_lock);
547 if (p)
548 __put_super(p);
549 p = sb;
550 }
551 if (p)
552 __put_super(p);
553 spin_unlock(&sb_lock);
554}
555
556EXPORT_SYMBOL(iterate_supers_type);
557
558/**
559 * get_super - get the superblock of a device
560 * @bdev: device to get the superblock for
561 *
562 * Scans the superblock list and finds the superblock of the file system
563 * mounted on the device given. %NULL is returned if no match is found.
564 */
565
566struct super_block *get_super(struct block_device *bdev)
567{
568 struct super_block *sb;
569
570 if (!bdev)
571 return NULL;
572
573 spin_lock(&sb_lock);
574rescan:
575 list_for_each_entry(sb, &super_blocks, s_list) {
576 if (hlist_unhashed(&sb->s_instances))
577 continue;
578 if (sb->s_bdev == bdev) {
579 sb->s_count++;
580 spin_unlock(&sb_lock);
581 down_read(&sb->s_umount);
582 /* still alive? */
583 if (sb->s_root && (sb->s_flags & MS_BORN))
584 return sb;
585 up_read(&sb->s_umount);
586 /* nope, got unmounted */
587 spin_lock(&sb_lock);
588 __put_super(sb);
589 goto rescan;
590 }
591 }
592 spin_unlock(&sb_lock);
593 return NULL;
594}
595
596EXPORT_SYMBOL(get_super);
597
598/**
599 * get_super_thawed - get thawed superblock of a device
600 * @bdev: device to get the superblock for
601 *
602 * Scans the superblock list and finds the superblock of the file system
603 * mounted on the device. The superblock is returned once it is thawed
604 * (or immediately if it was not frozen). %NULL is returned if no match
605 * is found.
606 */
607struct super_block *get_super_thawed(struct block_device *bdev)
608{
609 while (1) {
610 struct super_block *s = get_super(bdev);
611 if (!s || s->s_writers.frozen == SB_UNFROZEN)
612 return s;
613 up_read(&s->s_umount);
614 wait_event(s->s_writers.wait_unfrozen,
615 s->s_writers.frozen == SB_UNFROZEN);
616 put_super(s);
617 }
618}
619EXPORT_SYMBOL(get_super_thawed);
620
621/**
622 * get_active_super - get an active reference to the superblock of a device
623 * @bdev: device to get the superblock for
624 *
625 * Scans the superblock list and finds the superblock of the file system
626 * mounted on the device given. Returns the superblock with an active
627 * reference or %NULL if none was found.
628 */
629struct super_block *get_active_super(struct block_device *bdev)
630{
631 struct super_block *sb;
632
633 if (!bdev)
634 return NULL;
635
636restart:
637 spin_lock(&sb_lock);
638 list_for_each_entry(sb, &super_blocks, s_list) {
639 if (hlist_unhashed(&sb->s_instances))
640 continue;
641 if (sb->s_bdev == bdev) {
642 if (!grab_super(sb))
643 goto restart;
644 up_write(&sb->s_umount);
645 return sb;
646 }
647 }
648 spin_unlock(&sb_lock);
649 return NULL;
650}
651
652struct super_block *user_get_super(dev_t dev)
653{
654 struct super_block *sb;
655
656 spin_lock(&sb_lock);
657rescan:
658 list_for_each_entry(sb, &super_blocks, s_list) {
659 if (hlist_unhashed(&sb->s_instances))
660 continue;
661 if (sb->s_dev == dev) {
662 sb->s_count++;
663 spin_unlock(&sb_lock);
664 down_read(&sb->s_umount);
665 /* still alive? */
666 if (sb->s_root && (sb->s_flags & MS_BORN))
667 return sb;
668 up_read(&sb->s_umount);
669 /* nope, got unmounted */
670 spin_lock(&sb_lock);
671 __put_super(sb);
672 goto rescan;
673 }
674 }
675 spin_unlock(&sb_lock);
676 return NULL;
677}
678
679/**
680 * do_remount_sb - asks filesystem to change mount options.
681 * @sb: superblock in question
682 * @flags: numeric part of options
683 * @data: the rest of options
684 * @force: whether or not to force the change
685 *
686 * Alters the mount options of a mounted file system.
687 */
688int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
689{
690 int retval;
691 int remount_ro;
692
693 if (sb->s_writers.frozen != SB_UNFROZEN)
694 return -EBUSY;
695
696#ifdef CONFIG_BLOCK
697 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
698 return -EACCES;
699#endif
700
701 if (flags & MS_RDONLY)
702 acct_auto_close(sb);
703 shrink_dcache_sb(sb);
704
705 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
706
707 /* If we are remounting RDONLY and current sb is read/write,
708 make sure there are no rw files opened */
709 if (remount_ro) {
710 if (force) {
711 sb->s_readonly_remount = 1;
712 smp_wmb();
713 } else {
714 retval = sb_prepare_remount_readonly(sb);
715 if (retval)
716 return retval;
717 }
718 }
719
720 if (sb->s_op->remount_fs) {
721 retval = sb->s_op->remount_fs(sb, &flags, data);
722 if (retval) {
723 if (!force)
724 goto cancel_readonly;
725 /* If forced remount, go ahead despite any errors */
726 WARN(1, "forced remount of a %s fs returned %i\n",
727 sb->s_type->name, retval);
728 }
729 }
730 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
731 /* Needs to be ordered wrt mnt_is_readonly() */
732 smp_wmb();
733 sb->s_readonly_remount = 0;
734
735 /*
736 * Some filesystems modify their metadata via some other path than the
737 * bdev buffer cache (eg. use a private mapping, or directories in
738 * pagecache, etc). Also file data modifications go via their own
739 * mappings. So If we try to mount readonly then copy the filesystem
740 * from bdev, we could get stale data, so invalidate it to give a best
741 * effort at coherency.
742 */
743 if (remount_ro && sb->s_bdev)
744 invalidate_bdev(sb->s_bdev);
745 return 0;
746
747cancel_readonly:
748 sb->s_readonly_remount = 0;
749 return retval;
750}
751
752static void do_emergency_remount(struct work_struct *work)
753{
754 struct super_block *sb, *p = NULL;
755
756 spin_lock(&sb_lock);
757 list_for_each_entry(sb, &super_blocks, s_list) {
758 if (hlist_unhashed(&sb->s_instances))
759 continue;
760 sb->s_count++;
761 spin_unlock(&sb_lock);
762 down_write(&sb->s_umount);
763 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
764 !(sb->s_flags & MS_RDONLY)) {
765 /*
766 * What lock protects sb->s_flags??
767 */
768 do_remount_sb(sb, MS_RDONLY, NULL, 1);
769 }
770 up_write(&sb->s_umount);
771 spin_lock(&sb_lock);
772 if (p)
773 __put_super(p);
774 p = sb;
775 }
776 if (p)
777 __put_super(p);
778 spin_unlock(&sb_lock);
779 kfree(work);
780 printk("Emergency Remount complete\n");
781}
782
783void emergency_remount(void)
784{
785 struct work_struct *work;
786
787 work = kmalloc(sizeof(*work), GFP_ATOMIC);
788 if (work) {
789 INIT_WORK(work, do_emergency_remount);
790 schedule_work(work);
791 }
792}
793
794/*
795 * Unnamed block devices are dummy devices used by virtual
796 * filesystems which don't use real block-devices. -- jrs
797 */
798
799static DEFINE_IDA(unnamed_dev_ida);
800static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
801/* Many userspace utilities consider an FSID of 0 invalid.
802 * Always return at least 1 from get_anon_bdev.
803 */
804static int unnamed_dev_start = 1;
805
806int get_anon_bdev(dev_t *p)
807{
808 int dev;
809 int error;
810
811 retry:
812 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
813 return -ENOMEM;
814 spin_lock(&unnamed_dev_lock);
815 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
816 if (!error)
817 unnamed_dev_start = dev + 1;
818 spin_unlock(&unnamed_dev_lock);
819 if (error == -EAGAIN)
820 /* We raced and lost with another CPU. */
821 goto retry;
822 else if (error)
823 return -EAGAIN;
824
825 if (dev == (1 << MINORBITS)) {
826 spin_lock(&unnamed_dev_lock);
827 ida_remove(&unnamed_dev_ida, dev);
828 if (unnamed_dev_start > dev)
829 unnamed_dev_start = dev;
830 spin_unlock(&unnamed_dev_lock);
831 return -EMFILE;
832 }
833 *p = MKDEV(0, dev & MINORMASK);
834 return 0;
835}
836EXPORT_SYMBOL(get_anon_bdev);
837
838void free_anon_bdev(dev_t dev)
839{
840 int slot = MINOR(dev);
841 spin_lock(&unnamed_dev_lock);
842 ida_remove(&unnamed_dev_ida, slot);
843 if (slot < unnamed_dev_start)
844 unnamed_dev_start = slot;
845 spin_unlock(&unnamed_dev_lock);
846}
847EXPORT_SYMBOL(free_anon_bdev);
848
849int set_anon_super(struct super_block *s, void *data)
850{
851 int error = get_anon_bdev(&s->s_dev);
852 if (!error)
853 s->s_bdi = &noop_backing_dev_info;
854 return error;
855}
856
857EXPORT_SYMBOL(set_anon_super);
858
859void kill_anon_super(struct super_block *sb)
860{
861 dev_t dev = sb->s_dev;
862 generic_shutdown_super(sb);
863 free_anon_bdev(dev);
864}
865
866EXPORT_SYMBOL(kill_anon_super);
867
868void kill_litter_super(struct super_block *sb)
869{
870 if (sb->s_root)
871 d_genocide(sb->s_root);
872 kill_anon_super(sb);
873}
874
875EXPORT_SYMBOL(kill_litter_super);
876
877static int ns_test_super(struct super_block *sb, void *data)
878{
879 return sb->s_fs_info == data;
880}
881
882static int ns_set_super(struct super_block *sb, void *data)
883{
884 sb->s_fs_info = data;
885 return set_anon_super(sb, NULL);
886}
887
888struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
889 void *data, int (*fill_super)(struct super_block *, void *, int))
890{
891 struct super_block *sb;
892
893 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
894 if (IS_ERR(sb))
895 return ERR_CAST(sb);
896
897 if (!sb->s_root) {
898 int err;
899 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
900 if (err) {
901 deactivate_locked_super(sb);
902 return ERR_PTR(err);
903 }
904
905 sb->s_flags |= MS_ACTIVE;
906 }
907
908 return dget(sb->s_root);
909}
910
911EXPORT_SYMBOL(mount_ns);
912
913#ifdef CONFIG_BLOCK
914static int set_bdev_super(struct super_block *s, void *data)
915{
916 s->s_bdev = data;
917 s->s_dev = s->s_bdev->bd_dev;
918
919 /*
920 * We set the bdi here to the queue backing, file systems can
921 * overwrite this in ->fill_super()
922 */
923 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
924 return 0;
925}
926
927static int test_bdev_super(struct super_block *s, void *data)
928{
929 return (void *)s->s_bdev == data;
930}
931
932struct dentry *mount_bdev(struct file_system_type *fs_type,
933 int flags, const char *dev_name, void *data,
934 int (*fill_super)(struct super_block *, void *, int))
935{
936 struct block_device *bdev;
937 struct super_block *s;
938 fmode_t mode = FMODE_READ | FMODE_EXCL;
939 int error = 0;
940
941 if (!(flags & MS_RDONLY))
942 mode |= FMODE_WRITE;
943
944 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
945 if (IS_ERR(bdev))
946 return ERR_CAST(bdev);
947
948 /*
949 * once the super is inserted into the list by sget, s_umount
950 * will protect the lockfs code from trying to start a snapshot
951 * while we are mounting
952 */
953 mutex_lock(&bdev->bd_fsfreeze_mutex);
954 if (bdev->bd_fsfreeze_count > 0) {
955 mutex_unlock(&bdev->bd_fsfreeze_mutex);
956 error = -EBUSY;
957 goto error_bdev;
958 }
959 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
960 bdev);
961 mutex_unlock(&bdev->bd_fsfreeze_mutex);
962 if (IS_ERR(s))
963 goto error_s;
964
965 if (s->s_root) {
966 if ((flags ^ s->s_flags) & MS_RDONLY) {
967 deactivate_locked_super(s);
968 error = -EBUSY;
969 goto error_bdev;
970 }
971
972 /*
973 * s_umount nests inside bd_mutex during
974 * __invalidate_device(). blkdev_put() acquires
975 * bd_mutex and can't be called under s_umount. Drop
976 * s_umount temporarily. This is safe as we're
977 * holding an active reference.
978 */
979 up_write(&s->s_umount);
980 blkdev_put(bdev, mode);
981 down_write(&s->s_umount);
982 } else {
983 char b[BDEVNAME_SIZE];
984
985 s->s_mode = mode;
986 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
987 sb_set_blocksize(s, block_size(bdev));
988 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
989 if (error) {
990 deactivate_locked_super(s);
991 goto error;
992 }
993
994 s->s_flags |= MS_ACTIVE;
995 bdev->bd_super = s;
996 }
997
998 return dget(s->s_root);
999
1000error_s:
1001 error = PTR_ERR(s);
1002error_bdev:
1003 blkdev_put(bdev, mode);
1004error:
1005 return ERR_PTR(error);
1006}
1007EXPORT_SYMBOL(mount_bdev);
1008
1009void kill_block_super(struct super_block *sb)
1010{
1011 struct block_device *bdev = sb->s_bdev;
1012 fmode_t mode = sb->s_mode;
1013
1014 bdev->bd_super = NULL;
1015 generic_shutdown_super(sb);
1016 sync_blockdev(bdev);
1017 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1018 blkdev_put(bdev, mode | FMODE_EXCL);
1019}
1020
1021EXPORT_SYMBOL(kill_block_super);
1022#endif
1023
1024struct dentry *mount_nodev(struct file_system_type *fs_type,
1025 int flags, void *data,
1026 int (*fill_super)(struct super_block *, void *, int))
1027{
1028 int error;
1029 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1030
1031 if (IS_ERR(s))
1032 return ERR_CAST(s);
1033
1034 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1035 if (error) {
1036 deactivate_locked_super(s);
1037 return ERR_PTR(error);
1038 }
1039 s->s_flags |= MS_ACTIVE;
1040 return dget(s->s_root);
1041}
1042EXPORT_SYMBOL(mount_nodev);
1043
1044static int compare_single(struct super_block *s, void *p)
1045{
1046 return 1;
1047}
1048
1049struct dentry *mount_single(struct file_system_type *fs_type,
1050 int flags, void *data,
1051 int (*fill_super)(struct super_block *, void *, int))
1052{
1053 struct super_block *s;
1054 int error;
1055
1056 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1057 if (IS_ERR(s))
1058 return ERR_CAST(s);
1059 if (!s->s_root) {
1060 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1061 if (error) {
1062 deactivate_locked_super(s);
1063 return ERR_PTR(error);
1064 }
1065 s->s_flags |= MS_ACTIVE;
1066 } else {
1067 do_remount_sb(s, flags, data, 0);
1068 }
1069 return dget(s->s_root);
1070}
1071EXPORT_SYMBOL(mount_single);
1072
1073struct dentry *
1074mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1075{
1076 struct dentry *root;
1077 struct super_block *sb;
1078 char *secdata = NULL;
1079 int error = -ENOMEM;
1080
1081 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1082 secdata = alloc_secdata();
1083 if (!secdata)
1084 goto out;
1085
1086 error = security_sb_copy_data(data, secdata);
1087 if (error)
1088 goto out_free_secdata;
1089 }
1090
1091 root = type->mount(type, flags, name, data);
1092 if (IS_ERR(root)) {
1093 error = PTR_ERR(root);
1094 goto out_free_secdata;
1095 }
1096 sb = root->d_sb;
1097 BUG_ON(!sb);
1098 WARN_ON(!sb->s_bdi);
1099 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1100 sb->s_flags |= MS_BORN;
1101
1102 error = security_sb_kern_mount(sb, flags, secdata);
1103 if (error)
1104 goto out_sb;
1105
1106 /*
1107 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1108 * but s_maxbytes was an unsigned long long for many releases. Throw
1109 * this warning for a little while to try and catch filesystems that
1110 * violate this rule.
1111 */
1112 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1113 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1114
1115 up_write(&sb->s_umount);
1116 free_secdata(secdata);
1117 return root;
1118out_sb:
1119 dput(root);
1120 deactivate_locked_super(sb);
1121out_free_secdata:
1122 free_secdata(secdata);
1123out:
1124 return ERR_PTR(error);
1125}
1126
1127/*
1128 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1129 * instead.
1130 */
1131void __sb_end_write(struct super_block *sb, int level)
1132{
1133 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1134 /*
1135 * Make sure s_writers are updated before we wake up waiters in
1136 * freeze_super().
1137 */
1138 smp_mb();
1139 if (waitqueue_active(&sb->s_writers.wait))
1140 wake_up(&sb->s_writers.wait);
1141 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1142}
1143EXPORT_SYMBOL(__sb_end_write);
1144
1145#ifdef CONFIG_LOCKDEP
1146/*
1147 * We want lockdep to tell us about possible deadlocks with freezing but
1148 * it's it bit tricky to properly instrument it. Getting a freeze protection
1149 * works as getting a read lock but there are subtle problems. XFS for example
1150 * gets freeze protection on internal level twice in some cases, which is OK
1151 * only because we already hold a freeze protection also on higher level. Due
1152 * to these cases we have to tell lockdep we are doing trylock when we
1153 * already hold a freeze protection for a higher freeze level.
1154 */
1155static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1156 unsigned long ip)
1157{
1158 int i;
1159
1160 if (!trylock) {
1161 for (i = 0; i < level - 1; i++)
1162 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1163 trylock = true;
1164 break;
1165 }
1166 }
1167 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1168}
1169#endif
1170
1171/*
1172 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1173 * instead.
1174 */
1175int __sb_start_write(struct super_block *sb, int level, bool wait)
1176{
1177retry:
1178 if (unlikely(sb->s_writers.frozen >= level)) {
1179 if (!wait)
1180 return 0;
1181 wait_event(sb->s_writers.wait_unfrozen,
1182 sb->s_writers.frozen < level);
1183 }
1184
1185#ifdef CONFIG_LOCKDEP
1186 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1187#endif
1188 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1189 /*
1190 * Make sure counter is updated before we check for frozen.
1191 * freeze_super() first sets frozen and then checks the counter.
1192 */
1193 smp_mb();
1194 if (unlikely(sb->s_writers.frozen >= level)) {
1195 __sb_end_write(sb, level);
1196 goto retry;
1197 }
1198 return 1;
1199}
1200EXPORT_SYMBOL(__sb_start_write);
1201
1202/**
1203 * sb_wait_write - wait until all writers to given file system finish
1204 * @sb: the super for which we wait
1205 * @level: type of writers we wait for (normal vs page fault)
1206 *
1207 * This function waits until there are no writers of given type to given file
1208 * system. Caller of this function should make sure there can be no new writers
1209 * of type @level before calling this function. Otherwise this function can
1210 * livelock.
1211 */
1212static void sb_wait_write(struct super_block *sb, int level)
1213{
1214 s64 writers;
1215
1216 /*
1217 * We just cycle-through lockdep here so that it does not complain
1218 * about returning with lock to userspace
1219 */
1220 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1221 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1222
1223 do {
1224 DEFINE_WAIT(wait);
1225
1226 /*
1227 * We use a barrier in prepare_to_wait() to separate setting
1228 * of frozen and checking of the counter
1229 */
1230 prepare_to_wait(&sb->s_writers.wait, &wait,
1231 TASK_UNINTERRUPTIBLE);
1232
1233 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1234 if (writers)
1235 schedule();
1236
1237 finish_wait(&sb->s_writers.wait, &wait);
1238 } while (writers);
1239}
1240
1241/**
1242 * freeze_super - lock the filesystem and force it into a consistent state
1243 * @sb: the super to lock
1244 *
1245 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1246 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1247 * -EBUSY.
1248 *
1249 * During this function, sb->s_writers.frozen goes through these values:
1250 *
1251 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1252 *
1253 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1254 * writes should be blocked, though page faults are still allowed. We wait for
1255 * all writes to complete and then proceed to the next stage.
1256 *
1257 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1258 * but internal fs threads can still modify the filesystem (although they
1259 * should not dirty new pages or inodes), writeback can run etc. After waiting
1260 * for all running page faults we sync the filesystem which will clean all
1261 * dirty pages and inodes (no new dirty pages or inodes can be created when
1262 * sync is running).
1263 *
1264 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1265 * modification are blocked (e.g. XFS preallocation truncation on inode
1266 * reclaim). This is usually implemented by blocking new transactions for
1267 * filesystems that have them and need this additional guard. After all
1268 * internal writers are finished we call ->freeze_fs() to finish filesystem
1269 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1270 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1271 *
1272 * sb->s_writers.frozen is protected by sb->s_umount.
1273 */
1274int freeze_super(struct super_block *sb)
1275{
1276 int ret;
1277
1278 atomic_inc(&sb->s_active);
1279 down_write(&sb->s_umount);
1280 if (sb->s_writers.frozen != SB_UNFROZEN) {
1281 deactivate_locked_super(sb);
1282 return -EBUSY;
1283 }
1284
1285 if (!(sb->s_flags & MS_BORN)) {
1286 up_write(&sb->s_umount);
1287 return 0; /* sic - it's "nothing to do" */
1288 }
1289
1290 if (sb->s_flags & MS_RDONLY) {
1291 /* Nothing to do really... */
1292 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1293 up_write(&sb->s_umount);
1294 return 0;
1295 }
1296
1297 /* From now on, no new normal writers can start */
1298 sb->s_writers.frozen = SB_FREEZE_WRITE;
1299 smp_wmb();
1300
1301 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1302 up_write(&sb->s_umount);
1303
1304 sb_wait_write(sb, SB_FREEZE_WRITE);
1305
1306 /* Now we go and block page faults... */
1307 down_write(&sb->s_umount);
1308 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1309 smp_wmb();
1310
1311 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1312
1313 /* All writers are done so after syncing there won't be dirty data */
1314 sync_filesystem(sb);
1315
1316 /* Now wait for internal filesystem counter */
1317 sb->s_writers.frozen = SB_FREEZE_FS;
1318 smp_wmb();
1319 sb_wait_write(sb, SB_FREEZE_FS);
1320
1321 if (sb->s_op->freeze_fs) {
1322 ret = sb->s_op->freeze_fs(sb);
1323 if (ret) {
1324 printk(KERN_ERR
1325 "VFS:Filesystem freeze failed\n");
1326 sb->s_writers.frozen = SB_UNFROZEN;
1327 smp_wmb();
1328 wake_up(&sb->s_writers.wait_unfrozen);
1329 deactivate_locked_super(sb);
1330 return ret;
1331 }
1332 }
1333 /*
1334 * This is just for debugging purposes so that fs can warn if it
1335 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1336 */
1337 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1338 up_write(&sb->s_umount);
1339 return 0;
1340}
1341EXPORT_SYMBOL(freeze_super);
1342
1343/**
1344 * thaw_super -- unlock filesystem
1345 * @sb: the super to thaw
1346 *
1347 * Unlocks the filesystem and marks it writeable again after freeze_super().
1348 */
1349int thaw_super(struct super_block *sb)
1350{
1351 int error;
1352
1353 down_write(&sb->s_umount);
1354 if (sb->s_writers.frozen == SB_UNFROZEN) {
1355 up_write(&sb->s_umount);
1356 return -EINVAL;
1357 }
1358
1359 if (sb->s_flags & MS_RDONLY)
1360 goto out;
1361
1362 if (sb->s_op->unfreeze_fs) {
1363 error = sb->s_op->unfreeze_fs(sb);
1364 if (error) {
1365 printk(KERN_ERR
1366 "VFS:Filesystem thaw failed\n");
1367 up_write(&sb->s_umount);
1368 return error;
1369 }
1370 }
1371
1372out:
1373 sb->s_writers.frozen = SB_UNFROZEN;
1374 smp_wmb();
1375 wake_up(&sb->s_writers.wait_unfrozen);
1376 deactivate_locked_super(sb);
1377
1378 return 0;
1379}
1380EXPORT_SYMBOL(thaw_super);