media: staging: media: use relevant lock
[linux-2.6-block.git] / fs / super.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24#include <linux/export.h>
25#include <linux/slab.h>
26#include <linux/blkdev.h>
27#include <linux/mount.h>
28#include <linux/security.h>
29#include <linux/writeback.h> /* for the emergency remount stuff */
30#include <linux/idr.h>
31#include <linux/mutex.h>
32#include <linux/backing-dev.h>
33#include <linux/rculist_bl.h>
34#include <linux/cleancache.h>
35#include <linux/fsnotify.h>
36#include <linux/lockdep.h>
37#include <linux/user_namespace.h>
38#include "internal.h"
39
40static int thaw_super_locked(struct super_block *sb);
41
42static LIST_HEAD(super_blocks);
43static DEFINE_SPINLOCK(sb_lock);
44
45static char *sb_writers_name[SB_FREEZE_LEVELS] = {
46 "sb_writers",
47 "sb_pagefaults",
48 "sb_internal",
49};
50
51/*
52 * One thing we have to be careful of with a per-sb shrinker is that we don't
53 * drop the last active reference to the superblock from within the shrinker.
54 * If that happens we could trigger unregistering the shrinker from within the
55 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
56 * take a passive reference to the superblock to avoid this from occurring.
57 */
58static unsigned long super_cache_scan(struct shrinker *shrink,
59 struct shrink_control *sc)
60{
61 struct super_block *sb;
62 long fs_objects = 0;
63 long total_objects;
64 long freed = 0;
65 long dentries;
66 long inodes;
67
68 sb = container_of(shrink, struct super_block, s_shrink);
69
70 /*
71 * Deadlock avoidance. We may hold various FS locks, and we don't want
72 * to recurse into the FS that called us in clear_inode() and friends..
73 */
74 if (!(sc->gfp_mask & __GFP_FS))
75 return SHRINK_STOP;
76
77 if (!trylock_super(sb))
78 return SHRINK_STOP;
79
80 if (sb->s_op->nr_cached_objects)
81 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
82
83 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
84 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
85 total_objects = dentries + inodes + fs_objects + 1;
86 if (!total_objects)
87 total_objects = 1;
88
89 /* proportion the scan between the caches */
90 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
91 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
92 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
93
94 /*
95 * prune the dcache first as the icache is pinned by it, then
96 * prune the icache, followed by the filesystem specific caches
97 *
98 * Ensure that we always scan at least one object - memcg kmem
99 * accounting uses this to fully empty the caches.
100 */
101 sc->nr_to_scan = dentries + 1;
102 freed = prune_dcache_sb(sb, sc);
103 sc->nr_to_scan = inodes + 1;
104 freed += prune_icache_sb(sb, sc);
105
106 if (fs_objects) {
107 sc->nr_to_scan = fs_objects + 1;
108 freed += sb->s_op->free_cached_objects(sb, sc);
109 }
110
111 up_read(&sb->s_umount);
112 return freed;
113}
114
115static unsigned long super_cache_count(struct shrinker *shrink,
116 struct shrink_control *sc)
117{
118 struct super_block *sb;
119 long total_objects = 0;
120
121 sb = container_of(shrink, struct super_block, s_shrink);
122
123 /*
124 * Don't call trylock_super as it is a potential
125 * scalability bottleneck. The counts could get updated
126 * between super_cache_count and super_cache_scan anyway.
127 * Call to super_cache_count with shrinker_rwsem held
128 * ensures the safety of call to list_lru_shrink_count() and
129 * s_op->nr_cached_objects().
130 */
131 if (sb->s_op && sb->s_op->nr_cached_objects)
132 total_objects = sb->s_op->nr_cached_objects(sb, sc);
133
134 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
135 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
136
137 total_objects = vfs_pressure_ratio(total_objects);
138 return total_objects;
139}
140
141static void destroy_super_work(struct work_struct *work)
142{
143 struct super_block *s = container_of(work, struct super_block,
144 destroy_work);
145 int i;
146
147 for (i = 0; i < SB_FREEZE_LEVELS; i++)
148 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
149 kfree(s);
150}
151
152static void destroy_super_rcu(struct rcu_head *head)
153{
154 struct super_block *s = container_of(head, struct super_block, rcu);
155 INIT_WORK(&s->destroy_work, destroy_super_work);
156 schedule_work(&s->destroy_work);
157}
158
159/* Free a superblock that has never been seen by anyone */
160static void destroy_unused_super(struct super_block *s)
161{
162 if (!s)
163 return;
164 up_write(&s->s_umount);
165 list_lru_destroy(&s->s_dentry_lru);
166 list_lru_destroy(&s->s_inode_lru);
167 security_sb_free(s);
168 put_user_ns(s->s_user_ns);
169 kfree(s->s_subtype);
170 free_prealloced_shrinker(&s->s_shrink);
171 /* no delays needed */
172 destroy_super_work(&s->destroy_work);
173}
174
175/**
176 * alloc_super - create new superblock
177 * @type: filesystem type superblock should belong to
178 * @flags: the mount flags
179 * @user_ns: User namespace for the super_block
180 *
181 * Allocates and initializes a new &struct super_block. alloc_super()
182 * returns a pointer new superblock or %NULL if allocation had failed.
183 */
184static struct super_block *alloc_super(struct file_system_type *type, int flags,
185 struct user_namespace *user_ns)
186{
187 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
188 static const struct super_operations default_op;
189 int i;
190
191 if (!s)
192 return NULL;
193
194 INIT_LIST_HEAD(&s->s_mounts);
195 s->s_user_ns = get_user_ns(user_ns);
196 init_rwsem(&s->s_umount);
197 lockdep_set_class(&s->s_umount, &type->s_umount_key);
198 /*
199 * sget() can have s_umount recursion.
200 *
201 * When it cannot find a suitable sb, it allocates a new
202 * one (this one), and tries again to find a suitable old
203 * one.
204 *
205 * In case that succeeds, it will acquire the s_umount
206 * lock of the old one. Since these are clearly distrinct
207 * locks, and this object isn't exposed yet, there's no
208 * risk of deadlocks.
209 *
210 * Annotate this by putting this lock in a different
211 * subclass.
212 */
213 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
214
215 if (security_sb_alloc(s))
216 goto fail;
217
218 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
219 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
220 sb_writers_name[i],
221 &type->s_writers_key[i]))
222 goto fail;
223 }
224 init_waitqueue_head(&s->s_writers.wait_unfrozen);
225 s->s_bdi = &noop_backing_dev_info;
226 s->s_flags = flags;
227 if (s->s_user_ns != &init_user_ns)
228 s->s_iflags |= SB_I_NODEV;
229 INIT_HLIST_NODE(&s->s_instances);
230 INIT_HLIST_BL_HEAD(&s->s_roots);
231 mutex_init(&s->s_sync_lock);
232 INIT_LIST_HEAD(&s->s_inodes);
233 spin_lock_init(&s->s_inode_list_lock);
234 INIT_LIST_HEAD(&s->s_inodes_wb);
235 spin_lock_init(&s->s_inode_wblist_lock);
236
237 if (list_lru_init_memcg(&s->s_dentry_lru))
238 goto fail;
239 if (list_lru_init_memcg(&s->s_inode_lru))
240 goto fail;
241 s->s_count = 1;
242 atomic_set(&s->s_active, 1);
243 mutex_init(&s->s_vfs_rename_mutex);
244 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
245 init_rwsem(&s->s_dquot.dqio_sem);
246 s->s_maxbytes = MAX_NON_LFS;
247 s->s_op = &default_op;
248 s->s_time_gran = 1000000000;
249 s->cleancache_poolid = CLEANCACHE_NO_POOL;
250
251 s->s_shrink.seeks = DEFAULT_SEEKS;
252 s->s_shrink.scan_objects = super_cache_scan;
253 s->s_shrink.count_objects = super_cache_count;
254 s->s_shrink.batch = 1024;
255 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
256 if (prealloc_shrinker(&s->s_shrink))
257 goto fail;
258 return s;
259
260fail:
261 destroy_unused_super(s);
262 return NULL;
263}
264
265/* Superblock refcounting */
266
267/*
268 * Drop a superblock's refcount. The caller must hold sb_lock.
269 */
270static void __put_super(struct super_block *s)
271{
272 if (!--s->s_count) {
273 list_del_init(&s->s_list);
274 WARN_ON(s->s_dentry_lru.node);
275 WARN_ON(s->s_inode_lru.node);
276 WARN_ON(!list_empty(&s->s_mounts));
277 security_sb_free(s);
278 put_user_ns(s->s_user_ns);
279 kfree(s->s_subtype);
280 call_rcu(&s->rcu, destroy_super_rcu);
281 }
282}
283
284/**
285 * put_super - drop a temporary reference to superblock
286 * @sb: superblock in question
287 *
288 * Drops a temporary reference, frees superblock if there's no
289 * references left.
290 */
291static void put_super(struct super_block *sb)
292{
293 spin_lock(&sb_lock);
294 __put_super(sb);
295 spin_unlock(&sb_lock);
296}
297
298
299/**
300 * deactivate_locked_super - drop an active reference to superblock
301 * @s: superblock to deactivate
302 *
303 * Drops an active reference to superblock, converting it into a temporary
304 * one if there is no other active references left. In that case we
305 * tell fs driver to shut it down and drop the temporary reference we
306 * had just acquired.
307 *
308 * Caller holds exclusive lock on superblock; that lock is released.
309 */
310void deactivate_locked_super(struct super_block *s)
311{
312 struct file_system_type *fs = s->s_type;
313 if (atomic_dec_and_test(&s->s_active)) {
314 cleancache_invalidate_fs(s);
315 unregister_shrinker(&s->s_shrink);
316 fs->kill_sb(s);
317
318 /*
319 * Since list_lru_destroy() may sleep, we cannot call it from
320 * put_super(), where we hold the sb_lock. Therefore we destroy
321 * the lru lists right now.
322 */
323 list_lru_destroy(&s->s_dentry_lru);
324 list_lru_destroy(&s->s_inode_lru);
325
326 put_filesystem(fs);
327 put_super(s);
328 } else {
329 up_write(&s->s_umount);
330 }
331}
332
333EXPORT_SYMBOL(deactivate_locked_super);
334
335/**
336 * deactivate_super - drop an active reference to superblock
337 * @s: superblock to deactivate
338 *
339 * Variant of deactivate_locked_super(), except that superblock is *not*
340 * locked by caller. If we are going to drop the final active reference,
341 * lock will be acquired prior to that.
342 */
343void deactivate_super(struct super_block *s)
344{
345 if (!atomic_add_unless(&s->s_active, -1, 1)) {
346 down_write(&s->s_umount);
347 deactivate_locked_super(s);
348 }
349}
350
351EXPORT_SYMBOL(deactivate_super);
352
353/**
354 * grab_super - acquire an active reference
355 * @s: reference we are trying to make active
356 *
357 * Tries to acquire an active reference. grab_super() is used when we
358 * had just found a superblock in super_blocks or fs_type->fs_supers
359 * and want to turn it into a full-blown active reference. grab_super()
360 * is called with sb_lock held and drops it. Returns 1 in case of
361 * success, 0 if we had failed (superblock contents was already dead or
362 * dying when grab_super() had been called). Note that this is only
363 * called for superblocks not in rundown mode (== ones still on ->fs_supers
364 * of their type), so increment of ->s_count is OK here.
365 */
366static int grab_super(struct super_block *s) __releases(sb_lock)
367{
368 s->s_count++;
369 spin_unlock(&sb_lock);
370 down_write(&s->s_umount);
371 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
372 put_super(s);
373 return 1;
374 }
375 up_write(&s->s_umount);
376 put_super(s);
377 return 0;
378}
379
380/*
381 * trylock_super - try to grab ->s_umount shared
382 * @sb: reference we are trying to grab
383 *
384 * Try to prevent fs shutdown. This is used in places where we
385 * cannot take an active reference but we need to ensure that the
386 * filesystem is not shut down while we are working on it. It returns
387 * false if we cannot acquire s_umount or if we lose the race and
388 * filesystem already got into shutdown, and returns true with the s_umount
389 * lock held in read mode in case of success. On successful return,
390 * the caller must drop the s_umount lock when done.
391 *
392 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
393 * The reason why it's safe is that we are OK with doing trylock instead
394 * of down_read(). There's a couple of places that are OK with that, but
395 * it's very much not a general-purpose interface.
396 */
397bool trylock_super(struct super_block *sb)
398{
399 if (down_read_trylock(&sb->s_umount)) {
400 if (!hlist_unhashed(&sb->s_instances) &&
401 sb->s_root && (sb->s_flags & SB_BORN))
402 return true;
403 up_read(&sb->s_umount);
404 }
405
406 return false;
407}
408
409/**
410 * generic_shutdown_super - common helper for ->kill_sb()
411 * @sb: superblock to kill
412 *
413 * generic_shutdown_super() does all fs-independent work on superblock
414 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
415 * that need destruction out of superblock, call generic_shutdown_super()
416 * and release aforementioned objects. Note: dentries and inodes _are_
417 * taken care of and do not need specific handling.
418 *
419 * Upon calling this function, the filesystem may no longer alter or
420 * rearrange the set of dentries belonging to this super_block, nor may it
421 * change the attachments of dentries to inodes.
422 */
423void generic_shutdown_super(struct super_block *sb)
424{
425 const struct super_operations *sop = sb->s_op;
426
427 if (sb->s_root) {
428 shrink_dcache_for_umount(sb);
429 sync_filesystem(sb);
430 sb->s_flags &= ~SB_ACTIVE;
431
432 fsnotify_unmount_inodes(sb);
433 cgroup_writeback_umount();
434
435 evict_inodes(sb);
436
437 if (sb->s_dio_done_wq) {
438 destroy_workqueue(sb->s_dio_done_wq);
439 sb->s_dio_done_wq = NULL;
440 }
441
442 if (sop->put_super)
443 sop->put_super(sb);
444
445 if (!list_empty(&sb->s_inodes)) {
446 printk("VFS: Busy inodes after unmount of %s. "
447 "Self-destruct in 5 seconds. Have a nice day...\n",
448 sb->s_id);
449 }
450 }
451 spin_lock(&sb_lock);
452 /* should be initialized for __put_super_and_need_restart() */
453 hlist_del_init(&sb->s_instances);
454 spin_unlock(&sb_lock);
455 up_write(&sb->s_umount);
456 if (sb->s_bdi != &noop_backing_dev_info) {
457 bdi_put(sb->s_bdi);
458 sb->s_bdi = &noop_backing_dev_info;
459 }
460}
461
462EXPORT_SYMBOL(generic_shutdown_super);
463
464/**
465 * sget_userns - find or create a superblock
466 * @type: filesystem type superblock should belong to
467 * @test: comparison callback
468 * @set: setup callback
469 * @flags: mount flags
470 * @user_ns: User namespace for the super_block
471 * @data: argument to each of them
472 */
473struct super_block *sget_userns(struct file_system_type *type,
474 int (*test)(struct super_block *,void *),
475 int (*set)(struct super_block *,void *),
476 int flags, struct user_namespace *user_ns,
477 void *data)
478{
479 struct super_block *s = NULL;
480 struct super_block *old;
481 int err;
482
483 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
484 !(type->fs_flags & FS_USERNS_MOUNT) &&
485 !capable(CAP_SYS_ADMIN))
486 return ERR_PTR(-EPERM);
487retry:
488 spin_lock(&sb_lock);
489 if (test) {
490 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
491 if (!test(old, data))
492 continue;
493 if (user_ns != old->s_user_ns) {
494 spin_unlock(&sb_lock);
495 destroy_unused_super(s);
496 return ERR_PTR(-EBUSY);
497 }
498 if (!grab_super(old))
499 goto retry;
500 destroy_unused_super(s);
501 return old;
502 }
503 }
504 if (!s) {
505 spin_unlock(&sb_lock);
506 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
507 if (!s)
508 return ERR_PTR(-ENOMEM);
509 goto retry;
510 }
511
512 err = set(s, data);
513 if (err) {
514 spin_unlock(&sb_lock);
515 destroy_unused_super(s);
516 return ERR_PTR(err);
517 }
518 s->s_type = type;
519 strlcpy(s->s_id, type->name, sizeof(s->s_id));
520 list_add_tail(&s->s_list, &super_blocks);
521 hlist_add_head(&s->s_instances, &type->fs_supers);
522 spin_unlock(&sb_lock);
523 get_filesystem(type);
524 register_shrinker_prepared(&s->s_shrink);
525 return s;
526}
527
528EXPORT_SYMBOL(sget_userns);
529
530/**
531 * sget - find or create a superblock
532 * @type: filesystem type superblock should belong to
533 * @test: comparison callback
534 * @set: setup callback
535 * @flags: mount flags
536 * @data: argument to each of them
537 */
538struct super_block *sget(struct file_system_type *type,
539 int (*test)(struct super_block *,void *),
540 int (*set)(struct super_block *,void *),
541 int flags,
542 void *data)
543{
544 struct user_namespace *user_ns = current_user_ns();
545
546 /* We don't yet pass the user namespace of the parent
547 * mount through to here so always use &init_user_ns
548 * until that changes.
549 */
550 if (flags & SB_SUBMOUNT)
551 user_ns = &init_user_ns;
552
553 /* Ensure the requestor has permissions over the target filesystem */
554 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
555 return ERR_PTR(-EPERM);
556
557 return sget_userns(type, test, set, flags, user_ns, data);
558}
559
560EXPORT_SYMBOL(sget);
561
562void drop_super(struct super_block *sb)
563{
564 up_read(&sb->s_umount);
565 put_super(sb);
566}
567
568EXPORT_SYMBOL(drop_super);
569
570void drop_super_exclusive(struct super_block *sb)
571{
572 up_write(&sb->s_umount);
573 put_super(sb);
574}
575EXPORT_SYMBOL(drop_super_exclusive);
576
577static void __iterate_supers(void (*f)(struct super_block *))
578{
579 struct super_block *sb, *p = NULL;
580
581 spin_lock(&sb_lock);
582 list_for_each_entry(sb, &super_blocks, s_list) {
583 if (hlist_unhashed(&sb->s_instances))
584 continue;
585 sb->s_count++;
586 spin_unlock(&sb_lock);
587
588 f(sb);
589
590 spin_lock(&sb_lock);
591 if (p)
592 __put_super(p);
593 p = sb;
594 }
595 if (p)
596 __put_super(p);
597 spin_unlock(&sb_lock);
598}
599/**
600 * iterate_supers - call function for all active superblocks
601 * @f: function to call
602 * @arg: argument to pass to it
603 *
604 * Scans the superblock list and calls given function, passing it
605 * locked superblock and given argument.
606 */
607void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
608{
609 struct super_block *sb, *p = NULL;
610
611 spin_lock(&sb_lock);
612 list_for_each_entry(sb, &super_blocks, s_list) {
613 if (hlist_unhashed(&sb->s_instances))
614 continue;
615 sb->s_count++;
616 spin_unlock(&sb_lock);
617
618 down_read(&sb->s_umount);
619 if (sb->s_root && (sb->s_flags & SB_BORN))
620 f(sb, arg);
621 up_read(&sb->s_umount);
622
623 spin_lock(&sb_lock);
624 if (p)
625 __put_super(p);
626 p = sb;
627 }
628 if (p)
629 __put_super(p);
630 spin_unlock(&sb_lock);
631}
632
633/**
634 * iterate_supers_type - call function for superblocks of given type
635 * @type: fs type
636 * @f: function to call
637 * @arg: argument to pass to it
638 *
639 * Scans the superblock list and calls given function, passing it
640 * locked superblock and given argument.
641 */
642void iterate_supers_type(struct file_system_type *type,
643 void (*f)(struct super_block *, void *), void *arg)
644{
645 struct super_block *sb, *p = NULL;
646
647 spin_lock(&sb_lock);
648 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
649 sb->s_count++;
650 spin_unlock(&sb_lock);
651
652 down_read(&sb->s_umount);
653 if (sb->s_root && (sb->s_flags & SB_BORN))
654 f(sb, arg);
655 up_read(&sb->s_umount);
656
657 spin_lock(&sb_lock);
658 if (p)
659 __put_super(p);
660 p = sb;
661 }
662 if (p)
663 __put_super(p);
664 spin_unlock(&sb_lock);
665}
666
667EXPORT_SYMBOL(iterate_supers_type);
668
669static struct super_block *__get_super(struct block_device *bdev, bool excl)
670{
671 struct super_block *sb;
672
673 if (!bdev)
674 return NULL;
675
676 spin_lock(&sb_lock);
677rescan:
678 list_for_each_entry(sb, &super_blocks, s_list) {
679 if (hlist_unhashed(&sb->s_instances))
680 continue;
681 if (sb->s_bdev == bdev) {
682 sb->s_count++;
683 spin_unlock(&sb_lock);
684 if (!excl)
685 down_read(&sb->s_umount);
686 else
687 down_write(&sb->s_umount);
688 /* still alive? */
689 if (sb->s_root && (sb->s_flags & SB_BORN))
690 return sb;
691 if (!excl)
692 up_read(&sb->s_umount);
693 else
694 up_write(&sb->s_umount);
695 /* nope, got unmounted */
696 spin_lock(&sb_lock);
697 __put_super(sb);
698 goto rescan;
699 }
700 }
701 spin_unlock(&sb_lock);
702 return NULL;
703}
704
705/**
706 * get_super - get the superblock of a device
707 * @bdev: device to get the superblock for
708 *
709 * Scans the superblock list and finds the superblock of the file system
710 * mounted on the device given. %NULL is returned if no match is found.
711 */
712struct super_block *get_super(struct block_device *bdev)
713{
714 return __get_super(bdev, false);
715}
716EXPORT_SYMBOL(get_super);
717
718static struct super_block *__get_super_thawed(struct block_device *bdev,
719 bool excl)
720{
721 while (1) {
722 struct super_block *s = __get_super(bdev, excl);
723 if (!s || s->s_writers.frozen == SB_UNFROZEN)
724 return s;
725 if (!excl)
726 up_read(&s->s_umount);
727 else
728 up_write(&s->s_umount);
729 wait_event(s->s_writers.wait_unfrozen,
730 s->s_writers.frozen == SB_UNFROZEN);
731 put_super(s);
732 }
733}
734
735/**
736 * get_super_thawed - get thawed superblock of a device
737 * @bdev: device to get the superblock for
738 *
739 * Scans the superblock list and finds the superblock of the file system
740 * mounted on the device. The superblock is returned once it is thawed
741 * (or immediately if it was not frozen). %NULL is returned if no match
742 * is found.
743 */
744struct super_block *get_super_thawed(struct block_device *bdev)
745{
746 return __get_super_thawed(bdev, false);
747}
748EXPORT_SYMBOL(get_super_thawed);
749
750/**
751 * get_super_exclusive_thawed - get thawed superblock of a device
752 * @bdev: device to get the superblock for
753 *
754 * Scans the superblock list and finds the superblock of the file system
755 * mounted on the device. The superblock is returned once it is thawed
756 * (or immediately if it was not frozen) and s_umount semaphore is held
757 * in exclusive mode. %NULL is returned if no match is found.
758 */
759struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
760{
761 return __get_super_thawed(bdev, true);
762}
763EXPORT_SYMBOL(get_super_exclusive_thawed);
764
765/**
766 * get_active_super - get an active reference to the superblock of a device
767 * @bdev: device to get the superblock for
768 *
769 * Scans the superblock list and finds the superblock of the file system
770 * mounted on the device given. Returns the superblock with an active
771 * reference or %NULL if none was found.
772 */
773struct super_block *get_active_super(struct block_device *bdev)
774{
775 struct super_block *sb;
776
777 if (!bdev)
778 return NULL;
779
780restart:
781 spin_lock(&sb_lock);
782 list_for_each_entry(sb, &super_blocks, s_list) {
783 if (hlist_unhashed(&sb->s_instances))
784 continue;
785 if (sb->s_bdev == bdev) {
786 if (!grab_super(sb))
787 goto restart;
788 up_write(&sb->s_umount);
789 return sb;
790 }
791 }
792 spin_unlock(&sb_lock);
793 return NULL;
794}
795
796struct super_block *user_get_super(dev_t dev)
797{
798 struct super_block *sb;
799
800 spin_lock(&sb_lock);
801rescan:
802 list_for_each_entry(sb, &super_blocks, s_list) {
803 if (hlist_unhashed(&sb->s_instances))
804 continue;
805 if (sb->s_dev == dev) {
806 sb->s_count++;
807 spin_unlock(&sb_lock);
808 down_read(&sb->s_umount);
809 /* still alive? */
810 if (sb->s_root && (sb->s_flags & SB_BORN))
811 return sb;
812 up_read(&sb->s_umount);
813 /* nope, got unmounted */
814 spin_lock(&sb_lock);
815 __put_super(sb);
816 goto rescan;
817 }
818 }
819 spin_unlock(&sb_lock);
820 return NULL;
821}
822
823/**
824 * do_remount_sb - asks filesystem to change mount options.
825 * @sb: superblock in question
826 * @sb_flags: revised superblock flags
827 * @data: the rest of options
828 * @force: whether or not to force the change
829 *
830 * Alters the mount options of a mounted file system.
831 */
832int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
833{
834 int retval;
835 int remount_ro;
836
837 if (sb->s_writers.frozen != SB_UNFROZEN)
838 return -EBUSY;
839
840#ifdef CONFIG_BLOCK
841 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
842 return -EACCES;
843#endif
844
845 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
846
847 if (remount_ro) {
848 if (!hlist_empty(&sb->s_pins)) {
849 up_write(&sb->s_umount);
850 group_pin_kill(&sb->s_pins);
851 down_write(&sb->s_umount);
852 if (!sb->s_root)
853 return 0;
854 if (sb->s_writers.frozen != SB_UNFROZEN)
855 return -EBUSY;
856 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
857 }
858 }
859 shrink_dcache_sb(sb);
860
861 /* If we are remounting RDONLY and current sb is read/write,
862 make sure there are no rw files opened */
863 if (remount_ro) {
864 if (force) {
865 sb->s_readonly_remount = 1;
866 smp_wmb();
867 } else {
868 retval = sb_prepare_remount_readonly(sb);
869 if (retval)
870 return retval;
871 }
872 }
873
874 if (sb->s_op->remount_fs) {
875 retval = sb->s_op->remount_fs(sb, &sb_flags, data);
876 if (retval) {
877 if (!force)
878 goto cancel_readonly;
879 /* If forced remount, go ahead despite any errors */
880 WARN(1, "forced remount of a %s fs returned %i\n",
881 sb->s_type->name, retval);
882 }
883 }
884 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
885 /* Needs to be ordered wrt mnt_is_readonly() */
886 smp_wmb();
887 sb->s_readonly_remount = 0;
888
889 /*
890 * Some filesystems modify their metadata via some other path than the
891 * bdev buffer cache (eg. use a private mapping, or directories in
892 * pagecache, etc). Also file data modifications go via their own
893 * mappings. So If we try to mount readonly then copy the filesystem
894 * from bdev, we could get stale data, so invalidate it to give a best
895 * effort at coherency.
896 */
897 if (remount_ro && sb->s_bdev)
898 invalidate_bdev(sb->s_bdev);
899 return 0;
900
901cancel_readonly:
902 sb->s_readonly_remount = 0;
903 return retval;
904}
905
906static void do_emergency_remount_callback(struct super_block *sb)
907{
908 down_write(&sb->s_umount);
909 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
910 !sb_rdonly(sb)) {
911 /*
912 * What lock protects sb->s_flags??
913 */
914 do_remount_sb(sb, SB_RDONLY, NULL, 1);
915 }
916 up_write(&sb->s_umount);
917}
918
919static void do_emergency_remount(struct work_struct *work)
920{
921 __iterate_supers(do_emergency_remount_callback);
922 kfree(work);
923 printk("Emergency Remount complete\n");
924}
925
926void emergency_remount(void)
927{
928 struct work_struct *work;
929
930 work = kmalloc(sizeof(*work), GFP_ATOMIC);
931 if (work) {
932 INIT_WORK(work, do_emergency_remount);
933 schedule_work(work);
934 }
935}
936
937static void do_thaw_all_callback(struct super_block *sb)
938{
939 down_write(&sb->s_umount);
940 if (sb->s_root && sb->s_flags & MS_BORN) {
941 emergency_thaw_bdev(sb);
942 thaw_super_locked(sb);
943 } else {
944 up_write(&sb->s_umount);
945 }
946}
947
948static void do_thaw_all(struct work_struct *work)
949{
950 __iterate_supers(do_thaw_all_callback);
951 kfree(work);
952 printk(KERN_WARNING "Emergency Thaw complete\n");
953}
954
955/**
956 * emergency_thaw_all -- forcibly thaw every frozen filesystem
957 *
958 * Used for emergency unfreeze of all filesystems via SysRq
959 */
960void emergency_thaw_all(void)
961{
962 struct work_struct *work;
963
964 work = kmalloc(sizeof(*work), GFP_ATOMIC);
965 if (work) {
966 INIT_WORK(work, do_thaw_all);
967 schedule_work(work);
968 }
969}
970
971/*
972 * Unnamed block devices are dummy devices used by virtual
973 * filesystems which don't use real block-devices. -- jrs
974 */
975
976static DEFINE_IDA(unnamed_dev_ida);
977static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
978/* Many userspace utilities consider an FSID of 0 invalid.
979 * Always return at least 1 from get_anon_bdev.
980 */
981static int unnamed_dev_start = 1;
982
983int get_anon_bdev(dev_t *p)
984{
985 int dev;
986 int error;
987
988 retry:
989 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
990 return -ENOMEM;
991 spin_lock(&unnamed_dev_lock);
992 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
993 if (!error)
994 unnamed_dev_start = dev + 1;
995 spin_unlock(&unnamed_dev_lock);
996 if (error == -EAGAIN)
997 /* We raced and lost with another CPU. */
998 goto retry;
999 else if (error)
1000 return -EAGAIN;
1001
1002 if (dev >= (1 << MINORBITS)) {
1003 spin_lock(&unnamed_dev_lock);
1004 ida_remove(&unnamed_dev_ida, dev);
1005 if (unnamed_dev_start > dev)
1006 unnamed_dev_start = dev;
1007 spin_unlock(&unnamed_dev_lock);
1008 return -EMFILE;
1009 }
1010 *p = MKDEV(0, dev & MINORMASK);
1011 return 0;
1012}
1013EXPORT_SYMBOL(get_anon_bdev);
1014
1015void free_anon_bdev(dev_t dev)
1016{
1017 int slot = MINOR(dev);
1018 spin_lock(&unnamed_dev_lock);
1019 ida_remove(&unnamed_dev_ida, slot);
1020 if (slot < unnamed_dev_start)
1021 unnamed_dev_start = slot;
1022 spin_unlock(&unnamed_dev_lock);
1023}
1024EXPORT_SYMBOL(free_anon_bdev);
1025
1026int set_anon_super(struct super_block *s, void *data)
1027{
1028 return get_anon_bdev(&s->s_dev);
1029}
1030
1031EXPORT_SYMBOL(set_anon_super);
1032
1033void kill_anon_super(struct super_block *sb)
1034{
1035 dev_t dev = sb->s_dev;
1036 generic_shutdown_super(sb);
1037 free_anon_bdev(dev);
1038}
1039
1040EXPORT_SYMBOL(kill_anon_super);
1041
1042void kill_litter_super(struct super_block *sb)
1043{
1044 if (sb->s_root)
1045 d_genocide(sb->s_root);
1046 kill_anon_super(sb);
1047}
1048
1049EXPORT_SYMBOL(kill_litter_super);
1050
1051static int ns_test_super(struct super_block *sb, void *data)
1052{
1053 return sb->s_fs_info == data;
1054}
1055
1056static int ns_set_super(struct super_block *sb, void *data)
1057{
1058 sb->s_fs_info = data;
1059 return set_anon_super(sb, NULL);
1060}
1061
1062struct dentry *mount_ns(struct file_system_type *fs_type,
1063 int flags, void *data, void *ns, struct user_namespace *user_ns,
1064 int (*fill_super)(struct super_block *, void *, int))
1065{
1066 struct super_block *sb;
1067
1068 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1069 * over the namespace.
1070 */
1071 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1072 return ERR_PTR(-EPERM);
1073
1074 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1075 user_ns, ns);
1076 if (IS_ERR(sb))
1077 return ERR_CAST(sb);
1078
1079 if (!sb->s_root) {
1080 int err;
1081 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1082 if (err) {
1083 deactivate_locked_super(sb);
1084 return ERR_PTR(err);
1085 }
1086
1087 sb->s_flags |= SB_ACTIVE;
1088 }
1089
1090 return dget(sb->s_root);
1091}
1092
1093EXPORT_SYMBOL(mount_ns);
1094
1095#ifdef CONFIG_BLOCK
1096static int set_bdev_super(struct super_block *s, void *data)
1097{
1098 s->s_bdev = data;
1099 s->s_dev = s->s_bdev->bd_dev;
1100 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1101
1102 return 0;
1103}
1104
1105static int test_bdev_super(struct super_block *s, void *data)
1106{
1107 return (void *)s->s_bdev == data;
1108}
1109
1110struct dentry *mount_bdev(struct file_system_type *fs_type,
1111 int flags, const char *dev_name, void *data,
1112 int (*fill_super)(struct super_block *, void *, int))
1113{
1114 struct block_device *bdev;
1115 struct super_block *s;
1116 fmode_t mode = FMODE_READ | FMODE_EXCL;
1117 int error = 0;
1118
1119 if (!(flags & SB_RDONLY))
1120 mode |= FMODE_WRITE;
1121
1122 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1123 if (IS_ERR(bdev))
1124 return ERR_CAST(bdev);
1125
1126 /*
1127 * once the super is inserted into the list by sget, s_umount
1128 * will protect the lockfs code from trying to start a snapshot
1129 * while we are mounting
1130 */
1131 mutex_lock(&bdev->bd_fsfreeze_mutex);
1132 if (bdev->bd_fsfreeze_count > 0) {
1133 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1134 error = -EBUSY;
1135 goto error_bdev;
1136 }
1137 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1138 bdev);
1139 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1140 if (IS_ERR(s))
1141 goto error_s;
1142
1143 if (s->s_root) {
1144 if ((flags ^ s->s_flags) & SB_RDONLY) {
1145 deactivate_locked_super(s);
1146 error = -EBUSY;
1147 goto error_bdev;
1148 }
1149
1150 /*
1151 * s_umount nests inside bd_mutex during
1152 * __invalidate_device(). blkdev_put() acquires
1153 * bd_mutex and can't be called under s_umount. Drop
1154 * s_umount temporarily. This is safe as we're
1155 * holding an active reference.
1156 */
1157 up_write(&s->s_umount);
1158 blkdev_put(bdev, mode);
1159 down_write(&s->s_umount);
1160 } else {
1161 s->s_mode = mode;
1162 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1163 sb_set_blocksize(s, block_size(bdev));
1164 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1165 if (error) {
1166 deactivate_locked_super(s);
1167 goto error;
1168 }
1169
1170 s->s_flags |= SB_ACTIVE;
1171 bdev->bd_super = s;
1172 }
1173
1174 return dget(s->s_root);
1175
1176error_s:
1177 error = PTR_ERR(s);
1178error_bdev:
1179 blkdev_put(bdev, mode);
1180error:
1181 return ERR_PTR(error);
1182}
1183EXPORT_SYMBOL(mount_bdev);
1184
1185void kill_block_super(struct super_block *sb)
1186{
1187 struct block_device *bdev = sb->s_bdev;
1188 fmode_t mode = sb->s_mode;
1189
1190 bdev->bd_super = NULL;
1191 generic_shutdown_super(sb);
1192 sync_blockdev(bdev);
1193 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1194 blkdev_put(bdev, mode | FMODE_EXCL);
1195}
1196
1197EXPORT_SYMBOL(kill_block_super);
1198#endif
1199
1200struct dentry *mount_nodev(struct file_system_type *fs_type,
1201 int flags, void *data,
1202 int (*fill_super)(struct super_block *, void *, int))
1203{
1204 int error;
1205 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1206
1207 if (IS_ERR(s))
1208 return ERR_CAST(s);
1209
1210 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1211 if (error) {
1212 deactivate_locked_super(s);
1213 return ERR_PTR(error);
1214 }
1215 s->s_flags |= SB_ACTIVE;
1216 return dget(s->s_root);
1217}
1218EXPORT_SYMBOL(mount_nodev);
1219
1220static int compare_single(struct super_block *s, void *p)
1221{
1222 return 1;
1223}
1224
1225struct dentry *mount_single(struct file_system_type *fs_type,
1226 int flags, void *data,
1227 int (*fill_super)(struct super_block *, void *, int))
1228{
1229 struct super_block *s;
1230 int error;
1231
1232 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1233 if (IS_ERR(s))
1234 return ERR_CAST(s);
1235 if (!s->s_root) {
1236 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1237 if (error) {
1238 deactivate_locked_super(s);
1239 return ERR_PTR(error);
1240 }
1241 s->s_flags |= SB_ACTIVE;
1242 } else {
1243 do_remount_sb(s, flags, data, 0);
1244 }
1245 return dget(s->s_root);
1246}
1247EXPORT_SYMBOL(mount_single);
1248
1249struct dentry *
1250mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1251{
1252 struct dentry *root;
1253 struct super_block *sb;
1254 char *secdata = NULL;
1255 int error = -ENOMEM;
1256
1257 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1258 secdata = alloc_secdata();
1259 if (!secdata)
1260 goto out;
1261
1262 error = security_sb_copy_data(data, secdata);
1263 if (error)
1264 goto out_free_secdata;
1265 }
1266
1267 root = type->mount(type, flags, name, data);
1268 if (IS_ERR(root)) {
1269 error = PTR_ERR(root);
1270 goto out_free_secdata;
1271 }
1272 sb = root->d_sb;
1273 BUG_ON(!sb);
1274 WARN_ON(!sb->s_bdi);
1275 sb->s_flags |= SB_BORN;
1276
1277 error = security_sb_kern_mount(sb, flags, secdata);
1278 if (error)
1279 goto out_sb;
1280
1281 /*
1282 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1283 * but s_maxbytes was an unsigned long long for many releases. Throw
1284 * this warning for a little while to try and catch filesystems that
1285 * violate this rule.
1286 */
1287 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1288 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1289
1290 up_write(&sb->s_umount);
1291 free_secdata(secdata);
1292 return root;
1293out_sb:
1294 dput(root);
1295 deactivate_locked_super(sb);
1296out_free_secdata:
1297 free_secdata(secdata);
1298out:
1299 return ERR_PTR(error);
1300}
1301
1302/*
1303 * Setup private BDI for given superblock. It gets automatically cleaned up
1304 * in generic_shutdown_super().
1305 */
1306int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1307{
1308 struct backing_dev_info *bdi;
1309 int err;
1310 va_list args;
1311
1312 bdi = bdi_alloc(GFP_KERNEL);
1313 if (!bdi)
1314 return -ENOMEM;
1315
1316 bdi->name = sb->s_type->name;
1317
1318 va_start(args, fmt);
1319 err = bdi_register_va(bdi, fmt, args);
1320 va_end(args);
1321 if (err) {
1322 bdi_put(bdi);
1323 return err;
1324 }
1325 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1326 sb->s_bdi = bdi;
1327
1328 return 0;
1329}
1330EXPORT_SYMBOL(super_setup_bdi_name);
1331
1332/*
1333 * Setup private BDI for given superblock. I gets automatically cleaned up
1334 * in generic_shutdown_super().
1335 */
1336int super_setup_bdi(struct super_block *sb)
1337{
1338 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1339
1340 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1341 atomic_long_inc_return(&bdi_seq));
1342}
1343EXPORT_SYMBOL(super_setup_bdi);
1344
1345/*
1346 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1347 * instead.
1348 */
1349void __sb_end_write(struct super_block *sb, int level)
1350{
1351 percpu_up_read(sb->s_writers.rw_sem + level-1);
1352}
1353EXPORT_SYMBOL(__sb_end_write);
1354
1355/*
1356 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1357 * instead.
1358 */
1359int __sb_start_write(struct super_block *sb, int level, bool wait)
1360{
1361 bool force_trylock = false;
1362 int ret = 1;
1363
1364#ifdef CONFIG_LOCKDEP
1365 /*
1366 * We want lockdep to tell us about possible deadlocks with freezing
1367 * but it's it bit tricky to properly instrument it. Getting a freeze
1368 * protection works as getting a read lock but there are subtle
1369 * problems. XFS for example gets freeze protection on internal level
1370 * twice in some cases, which is OK only because we already hold a
1371 * freeze protection also on higher level. Due to these cases we have
1372 * to use wait == F (trylock mode) which must not fail.
1373 */
1374 if (wait) {
1375 int i;
1376
1377 for (i = 0; i < level - 1; i++)
1378 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1379 force_trylock = true;
1380 break;
1381 }
1382 }
1383#endif
1384 if (wait && !force_trylock)
1385 percpu_down_read(sb->s_writers.rw_sem + level-1);
1386 else
1387 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1388
1389 WARN_ON(force_trylock && !ret);
1390 return ret;
1391}
1392EXPORT_SYMBOL(__sb_start_write);
1393
1394/**
1395 * sb_wait_write - wait until all writers to given file system finish
1396 * @sb: the super for which we wait
1397 * @level: type of writers we wait for (normal vs page fault)
1398 *
1399 * This function waits until there are no writers of given type to given file
1400 * system.
1401 */
1402static void sb_wait_write(struct super_block *sb, int level)
1403{
1404 percpu_down_write(sb->s_writers.rw_sem + level-1);
1405}
1406
1407/*
1408 * We are going to return to userspace and forget about these locks, the
1409 * ownership goes to the caller of thaw_super() which does unlock().
1410 */
1411static void lockdep_sb_freeze_release(struct super_block *sb)
1412{
1413 int level;
1414
1415 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1416 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1417}
1418
1419/*
1420 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1421 */
1422static void lockdep_sb_freeze_acquire(struct super_block *sb)
1423{
1424 int level;
1425
1426 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1427 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1428}
1429
1430static void sb_freeze_unlock(struct super_block *sb)
1431{
1432 int level;
1433
1434 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1435 percpu_up_write(sb->s_writers.rw_sem + level);
1436}
1437
1438/**
1439 * freeze_super - lock the filesystem and force it into a consistent state
1440 * @sb: the super to lock
1441 *
1442 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1443 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1444 * -EBUSY.
1445 *
1446 * During this function, sb->s_writers.frozen goes through these values:
1447 *
1448 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1449 *
1450 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1451 * writes should be blocked, though page faults are still allowed. We wait for
1452 * all writes to complete and then proceed to the next stage.
1453 *
1454 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1455 * but internal fs threads can still modify the filesystem (although they
1456 * should not dirty new pages or inodes), writeback can run etc. After waiting
1457 * for all running page faults we sync the filesystem which will clean all
1458 * dirty pages and inodes (no new dirty pages or inodes can be created when
1459 * sync is running).
1460 *
1461 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1462 * modification are blocked (e.g. XFS preallocation truncation on inode
1463 * reclaim). This is usually implemented by blocking new transactions for
1464 * filesystems that have them and need this additional guard. After all
1465 * internal writers are finished we call ->freeze_fs() to finish filesystem
1466 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1467 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1468 *
1469 * sb->s_writers.frozen is protected by sb->s_umount.
1470 */
1471int freeze_super(struct super_block *sb)
1472{
1473 int ret;
1474
1475 atomic_inc(&sb->s_active);
1476 down_write(&sb->s_umount);
1477 if (sb->s_writers.frozen != SB_UNFROZEN) {
1478 deactivate_locked_super(sb);
1479 return -EBUSY;
1480 }
1481
1482 if (!(sb->s_flags & SB_BORN)) {
1483 up_write(&sb->s_umount);
1484 return 0; /* sic - it's "nothing to do" */
1485 }
1486
1487 if (sb_rdonly(sb)) {
1488 /* Nothing to do really... */
1489 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1490 up_write(&sb->s_umount);
1491 return 0;
1492 }
1493
1494 sb->s_writers.frozen = SB_FREEZE_WRITE;
1495 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1496 up_write(&sb->s_umount);
1497 sb_wait_write(sb, SB_FREEZE_WRITE);
1498 down_write(&sb->s_umount);
1499
1500 /* Now we go and block page faults... */
1501 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1502 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1503
1504 /* All writers are done so after syncing there won't be dirty data */
1505 sync_filesystem(sb);
1506
1507 /* Now wait for internal filesystem counter */
1508 sb->s_writers.frozen = SB_FREEZE_FS;
1509 sb_wait_write(sb, SB_FREEZE_FS);
1510
1511 if (sb->s_op->freeze_fs) {
1512 ret = sb->s_op->freeze_fs(sb);
1513 if (ret) {
1514 printk(KERN_ERR
1515 "VFS:Filesystem freeze failed\n");
1516 sb->s_writers.frozen = SB_UNFROZEN;
1517 sb_freeze_unlock(sb);
1518 wake_up(&sb->s_writers.wait_unfrozen);
1519 deactivate_locked_super(sb);
1520 return ret;
1521 }
1522 }
1523 /*
1524 * For debugging purposes so that fs can warn if it sees write activity
1525 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1526 */
1527 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1528 lockdep_sb_freeze_release(sb);
1529 up_write(&sb->s_umount);
1530 return 0;
1531}
1532EXPORT_SYMBOL(freeze_super);
1533
1534/**
1535 * thaw_super -- unlock filesystem
1536 * @sb: the super to thaw
1537 *
1538 * Unlocks the filesystem and marks it writeable again after freeze_super().
1539 */
1540static int thaw_super_locked(struct super_block *sb)
1541{
1542 int error;
1543
1544 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1545 up_write(&sb->s_umount);
1546 return -EINVAL;
1547 }
1548
1549 if (sb_rdonly(sb)) {
1550 sb->s_writers.frozen = SB_UNFROZEN;
1551 goto out;
1552 }
1553
1554 lockdep_sb_freeze_acquire(sb);
1555
1556 if (sb->s_op->unfreeze_fs) {
1557 error = sb->s_op->unfreeze_fs(sb);
1558 if (error) {
1559 printk(KERN_ERR
1560 "VFS:Filesystem thaw failed\n");
1561 lockdep_sb_freeze_release(sb);
1562 up_write(&sb->s_umount);
1563 return error;
1564 }
1565 }
1566
1567 sb->s_writers.frozen = SB_UNFROZEN;
1568 sb_freeze_unlock(sb);
1569out:
1570 wake_up(&sb->s_writers.wait_unfrozen);
1571 deactivate_locked_super(sb);
1572 return 0;
1573}
1574
1575int thaw_super(struct super_block *sb)
1576{
1577 down_write(&sb->s_umount);
1578 return thaw_super_locked(sb);
1579}
1580EXPORT_SYMBOL(thaw_super);