| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * linux/fs/pipe.c |
| 4 | * |
| 5 | * Copyright (C) 1991, 1992, 1999 Linus Torvalds |
| 6 | */ |
| 7 | |
| 8 | #include <linux/mm.h> |
| 9 | #include <linux/file.h> |
| 10 | #include <linux/poll.h> |
| 11 | #include <linux/slab.h> |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/fs.h> |
| 15 | #include <linux/log2.h> |
| 16 | #include <linux/mount.h> |
| 17 | #include <linux/pseudo_fs.h> |
| 18 | #include <linux/magic.h> |
| 19 | #include <linux/pipe_fs_i.h> |
| 20 | #include <linux/uio.h> |
| 21 | #include <linux/highmem.h> |
| 22 | #include <linux/pagemap.h> |
| 23 | #include <linux/audit.h> |
| 24 | #include <linux/syscalls.h> |
| 25 | #include <linux/fcntl.h> |
| 26 | #include <linux/memcontrol.h> |
| 27 | #include <linux/watch_queue.h> |
| 28 | #include <linux/sysctl.h> |
| 29 | #include <linux/sort.h> |
| 30 | |
| 31 | #include <linux/uaccess.h> |
| 32 | #include <asm/ioctls.h> |
| 33 | |
| 34 | #include "internal.h" |
| 35 | |
| 36 | /* |
| 37 | * New pipe buffers will be restricted to this size while the user is exceeding |
| 38 | * their pipe buffer quota. The general pipe use case needs at least two |
| 39 | * buffers: one for data yet to be read, and one for new data. If this is less |
| 40 | * than two, then a write to a non-empty pipe may block even if the pipe is not |
| 41 | * full. This can occur with GNU make jobserver or similar uses of pipes as |
| 42 | * semaphores: multiple processes may be waiting to write tokens back to the |
| 43 | * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. |
| 44 | * |
| 45 | * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their |
| 46 | * own risk, namely: pipe writes to non-full pipes may block until the pipe is |
| 47 | * emptied. |
| 48 | */ |
| 49 | #define PIPE_MIN_DEF_BUFFERS 2 |
| 50 | |
| 51 | /* |
| 52 | * The max size that a non-root user is allowed to grow the pipe. Can |
| 53 | * be set by root in /proc/sys/fs/pipe-max-size |
| 54 | */ |
| 55 | static unsigned int pipe_max_size = 1048576; |
| 56 | |
| 57 | /* Maximum allocatable pages per user. Hard limit is unset by default, soft |
| 58 | * matches default values. |
| 59 | */ |
| 60 | static unsigned long pipe_user_pages_hard; |
| 61 | static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; |
| 62 | |
| 63 | /* |
| 64 | * We use head and tail indices that aren't masked off, except at the point of |
| 65 | * dereference, but rather they're allowed to wrap naturally. This means there |
| 66 | * isn't a dead spot in the buffer, but the ring has to be a power of two and |
| 67 | * <= 2^31. |
| 68 | * -- David Howells 2019-09-23. |
| 69 | * |
| 70 | * Reads with count = 0 should always return 0. |
| 71 | * -- Julian Bradfield 1999-06-07. |
| 72 | * |
| 73 | * FIFOs and Pipes now generate SIGIO for both readers and writers. |
| 74 | * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 |
| 75 | * |
| 76 | * pipe_read & write cleanup |
| 77 | * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 |
| 78 | */ |
| 79 | |
| 80 | #ifdef CONFIG_PROVE_LOCKING |
| 81 | static int pipe_lock_cmp_fn(const struct lockdep_map *a, |
| 82 | const struct lockdep_map *b) |
| 83 | { |
| 84 | return cmp_int((unsigned long) a, (unsigned long) b); |
| 85 | } |
| 86 | #endif |
| 87 | |
| 88 | void pipe_lock(struct pipe_inode_info *pipe) |
| 89 | { |
| 90 | if (pipe->files) |
| 91 | mutex_lock(&pipe->mutex); |
| 92 | } |
| 93 | EXPORT_SYMBOL(pipe_lock); |
| 94 | |
| 95 | void pipe_unlock(struct pipe_inode_info *pipe) |
| 96 | { |
| 97 | if (pipe->files) |
| 98 | mutex_unlock(&pipe->mutex); |
| 99 | } |
| 100 | EXPORT_SYMBOL(pipe_unlock); |
| 101 | |
| 102 | void pipe_double_lock(struct pipe_inode_info *pipe1, |
| 103 | struct pipe_inode_info *pipe2) |
| 104 | { |
| 105 | BUG_ON(pipe1 == pipe2); |
| 106 | |
| 107 | if (pipe1 > pipe2) |
| 108 | swap(pipe1, pipe2); |
| 109 | |
| 110 | pipe_lock(pipe1); |
| 111 | pipe_lock(pipe2); |
| 112 | } |
| 113 | |
| 114 | static struct page *anon_pipe_get_page(struct pipe_inode_info *pipe) |
| 115 | { |
| 116 | for (int i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { |
| 117 | if (pipe->tmp_page[i]) { |
| 118 | struct page *page = pipe->tmp_page[i]; |
| 119 | pipe->tmp_page[i] = NULL; |
| 120 | return page; |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | return alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); |
| 125 | } |
| 126 | |
| 127 | static void anon_pipe_put_page(struct pipe_inode_info *pipe, |
| 128 | struct page *page) |
| 129 | { |
| 130 | if (page_count(page) == 1) { |
| 131 | for (int i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { |
| 132 | if (!pipe->tmp_page[i]) { |
| 133 | pipe->tmp_page[i] = page; |
| 134 | return; |
| 135 | } |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | put_page(page); |
| 140 | } |
| 141 | |
| 142 | static void anon_pipe_buf_release(struct pipe_inode_info *pipe, |
| 143 | struct pipe_buffer *buf) |
| 144 | { |
| 145 | struct page *page = buf->page; |
| 146 | |
| 147 | anon_pipe_put_page(pipe, page); |
| 148 | } |
| 149 | |
| 150 | static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, |
| 151 | struct pipe_buffer *buf) |
| 152 | { |
| 153 | struct page *page = buf->page; |
| 154 | |
| 155 | if (page_count(page) != 1) |
| 156 | return false; |
| 157 | memcg_kmem_uncharge_page(page, 0); |
| 158 | __SetPageLocked(page); |
| 159 | return true; |
| 160 | } |
| 161 | |
| 162 | /** |
| 163 | * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer |
| 164 | * @pipe: the pipe that the buffer belongs to |
| 165 | * @buf: the buffer to attempt to steal |
| 166 | * |
| 167 | * Description: |
| 168 | * This function attempts to steal the &struct page attached to |
| 169 | * @buf. If successful, this function returns 0 and returns with |
| 170 | * the page locked. The caller may then reuse the page for whatever |
| 171 | * he wishes; the typical use is insertion into a different file |
| 172 | * page cache. |
| 173 | */ |
| 174 | bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, |
| 175 | struct pipe_buffer *buf) |
| 176 | { |
| 177 | struct page *page = buf->page; |
| 178 | |
| 179 | /* |
| 180 | * A reference of one is golden, that means that the owner of this |
| 181 | * page is the only one holding a reference to it. lock the page |
| 182 | * and return OK. |
| 183 | */ |
| 184 | if (page_count(page) == 1) { |
| 185 | lock_page(page); |
| 186 | return true; |
| 187 | } |
| 188 | return false; |
| 189 | } |
| 190 | EXPORT_SYMBOL(generic_pipe_buf_try_steal); |
| 191 | |
| 192 | /** |
| 193 | * generic_pipe_buf_get - get a reference to a &struct pipe_buffer |
| 194 | * @pipe: the pipe that the buffer belongs to |
| 195 | * @buf: the buffer to get a reference to |
| 196 | * |
| 197 | * Description: |
| 198 | * This function grabs an extra reference to @buf. It's used in |
| 199 | * the tee() system call, when we duplicate the buffers in one |
| 200 | * pipe into another. |
| 201 | */ |
| 202 | bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) |
| 203 | { |
| 204 | return try_get_page(buf->page); |
| 205 | } |
| 206 | EXPORT_SYMBOL(generic_pipe_buf_get); |
| 207 | |
| 208 | /** |
| 209 | * generic_pipe_buf_release - put a reference to a &struct pipe_buffer |
| 210 | * @pipe: the pipe that the buffer belongs to |
| 211 | * @buf: the buffer to put a reference to |
| 212 | * |
| 213 | * Description: |
| 214 | * This function releases a reference to @buf. |
| 215 | */ |
| 216 | void generic_pipe_buf_release(struct pipe_inode_info *pipe, |
| 217 | struct pipe_buffer *buf) |
| 218 | { |
| 219 | put_page(buf->page); |
| 220 | } |
| 221 | EXPORT_SYMBOL(generic_pipe_buf_release); |
| 222 | |
| 223 | static const struct pipe_buf_operations anon_pipe_buf_ops = { |
| 224 | .release = anon_pipe_buf_release, |
| 225 | .try_steal = anon_pipe_buf_try_steal, |
| 226 | .get = generic_pipe_buf_get, |
| 227 | }; |
| 228 | |
| 229 | /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ |
| 230 | static inline bool pipe_readable(const struct pipe_inode_info *pipe) |
| 231 | { |
| 232 | union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) }; |
| 233 | unsigned int writers = READ_ONCE(pipe->writers); |
| 234 | |
| 235 | return !pipe_empty(idx.head, idx.tail) || !writers; |
| 236 | } |
| 237 | |
| 238 | static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe, |
| 239 | struct pipe_buffer *buf, |
| 240 | unsigned int tail) |
| 241 | { |
| 242 | pipe_buf_release(pipe, buf); |
| 243 | |
| 244 | /* |
| 245 | * If the pipe has a watch_queue, we need additional protection |
| 246 | * by the spinlock because notifications get posted with only |
| 247 | * this spinlock, no mutex |
| 248 | */ |
| 249 | if (pipe_has_watch_queue(pipe)) { |
| 250 | spin_lock_irq(&pipe->rd_wait.lock); |
| 251 | #ifdef CONFIG_WATCH_QUEUE |
| 252 | if (buf->flags & PIPE_BUF_FLAG_LOSS) |
| 253 | pipe->note_loss = true; |
| 254 | #endif |
| 255 | pipe->tail = ++tail; |
| 256 | spin_unlock_irq(&pipe->rd_wait.lock); |
| 257 | return tail; |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * Without a watch_queue, we can simply increment the tail |
| 262 | * without the spinlock - the mutex is enough. |
| 263 | */ |
| 264 | pipe->tail = ++tail; |
| 265 | return tail; |
| 266 | } |
| 267 | |
| 268 | static ssize_t |
| 269 | anon_pipe_read(struct kiocb *iocb, struct iov_iter *to) |
| 270 | { |
| 271 | size_t total_len = iov_iter_count(to); |
| 272 | struct file *filp = iocb->ki_filp; |
| 273 | struct pipe_inode_info *pipe = filp->private_data; |
| 274 | bool wake_writer = false, wake_next_reader = false; |
| 275 | ssize_t ret; |
| 276 | |
| 277 | /* Null read succeeds. */ |
| 278 | if (unlikely(total_len == 0)) |
| 279 | return 0; |
| 280 | |
| 281 | ret = 0; |
| 282 | mutex_lock(&pipe->mutex); |
| 283 | |
| 284 | /* |
| 285 | * We only wake up writers if the pipe was full when we started reading |
| 286 | * and it is no longer full after reading to avoid unnecessary wakeups. |
| 287 | * |
| 288 | * But when we do wake up writers, we do so using a sync wakeup |
| 289 | * (WF_SYNC), because we want them to get going and generate more |
| 290 | * data for us. |
| 291 | */ |
| 292 | for (;;) { |
| 293 | /* Read ->head with a barrier vs post_one_notification() */ |
| 294 | unsigned int head = smp_load_acquire(&pipe->head); |
| 295 | unsigned int tail = pipe->tail; |
| 296 | |
| 297 | #ifdef CONFIG_WATCH_QUEUE |
| 298 | if (pipe->note_loss) { |
| 299 | struct watch_notification n; |
| 300 | |
| 301 | if (total_len < 8) { |
| 302 | if (ret == 0) |
| 303 | ret = -ENOBUFS; |
| 304 | break; |
| 305 | } |
| 306 | |
| 307 | n.type = WATCH_TYPE_META; |
| 308 | n.subtype = WATCH_META_LOSS_NOTIFICATION; |
| 309 | n.info = watch_sizeof(n); |
| 310 | if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { |
| 311 | if (ret == 0) |
| 312 | ret = -EFAULT; |
| 313 | break; |
| 314 | } |
| 315 | ret += sizeof(n); |
| 316 | total_len -= sizeof(n); |
| 317 | pipe->note_loss = false; |
| 318 | } |
| 319 | #endif |
| 320 | |
| 321 | if (!pipe_empty(head, tail)) { |
| 322 | struct pipe_buffer *buf = pipe_buf(pipe, tail); |
| 323 | size_t chars = buf->len; |
| 324 | size_t written; |
| 325 | int error; |
| 326 | |
| 327 | if (chars > total_len) { |
| 328 | if (buf->flags & PIPE_BUF_FLAG_WHOLE) { |
| 329 | if (ret == 0) |
| 330 | ret = -ENOBUFS; |
| 331 | break; |
| 332 | } |
| 333 | chars = total_len; |
| 334 | } |
| 335 | |
| 336 | error = pipe_buf_confirm(pipe, buf); |
| 337 | if (error) { |
| 338 | if (!ret) |
| 339 | ret = error; |
| 340 | break; |
| 341 | } |
| 342 | |
| 343 | written = copy_page_to_iter(buf->page, buf->offset, chars, to); |
| 344 | if (unlikely(written < chars)) { |
| 345 | if (!ret) |
| 346 | ret = -EFAULT; |
| 347 | break; |
| 348 | } |
| 349 | ret += chars; |
| 350 | buf->offset += chars; |
| 351 | buf->len -= chars; |
| 352 | |
| 353 | /* Was it a packet buffer? Clean up and exit */ |
| 354 | if (buf->flags & PIPE_BUF_FLAG_PACKET) { |
| 355 | total_len = chars; |
| 356 | buf->len = 0; |
| 357 | } |
| 358 | |
| 359 | if (!buf->len) { |
| 360 | wake_writer |= pipe_full(head, tail, pipe->max_usage); |
| 361 | tail = pipe_update_tail(pipe, buf, tail); |
| 362 | } |
| 363 | total_len -= chars; |
| 364 | if (!total_len) |
| 365 | break; /* common path: read succeeded */ |
| 366 | if (!pipe_empty(head, tail)) /* More to do? */ |
| 367 | continue; |
| 368 | } |
| 369 | |
| 370 | if (!pipe->writers) |
| 371 | break; |
| 372 | if (ret) |
| 373 | break; |
| 374 | if ((filp->f_flags & O_NONBLOCK) || |
| 375 | (iocb->ki_flags & IOCB_NOWAIT)) { |
| 376 | ret = -EAGAIN; |
| 377 | break; |
| 378 | } |
| 379 | mutex_unlock(&pipe->mutex); |
| 380 | /* |
| 381 | * We only get here if we didn't actually read anything. |
| 382 | * |
| 383 | * But because we didn't read anything, at this point we can |
| 384 | * just return directly with -ERESTARTSYS if we're interrupted, |
| 385 | * since we've done any required wakeups and there's no need |
| 386 | * to mark anything accessed. And we've dropped the lock. |
| 387 | */ |
| 388 | if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) |
| 389 | return -ERESTARTSYS; |
| 390 | |
| 391 | wake_next_reader = true; |
| 392 | mutex_lock(&pipe->mutex); |
| 393 | } |
| 394 | if (pipe_is_empty(pipe)) |
| 395 | wake_next_reader = false; |
| 396 | mutex_unlock(&pipe->mutex); |
| 397 | |
| 398 | if (wake_writer) |
| 399 | wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); |
| 400 | if (wake_next_reader) |
| 401 | wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); |
| 402 | kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); |
| 403 | return ret; |
| 404 | } |
| 405 | |
| 406 | static ssize_t |
| 407 | fifo_pipe_read(struct kiocb *iocb, struct iov_iter *to) |
| 408 | { |
| 409 | int ret = anon_pipe_read(iocb, to); |
| 410 | if (ret > 0) |
| 411 | file_accessed(iocb->ki_filp); |
| 412 | return ret; |
| 413 | } |
| 414 | |
| 415 | static inline int is_packetized(struct file *file) |
| 416 | { |
| 417 | return (file->f_flags & O_DIRECT) != 0; |
| 418 | } |
| 419 | |
| 420 | /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ |
| 421 | static inline bool pipe_writable(const struct pipe_inode_info *pipe) |
| 422 | { |
| 423 | union pipe_index idx = { .head_tail = READ_ONCE(pipe->head_tail) }; |
| 424 | unsigned int max_usage = READ_ONCE(pipe->max_usage); |
| 425 | |
| 426 | return !pipe_full(idx.head, idx.tail, max_usage) || |
| 427 | !READ_ONCE(pipe->readers); |
| 428 | } |
| 429 | |
| 430 | static ssize_t |
| 431 | anon_pipe_write(struct kiocb *iocb, struct iov_iter *from) |
| 432 | { |
| 433 | struct file *filp = iocb->ki_filp; |
| 434 | struct pipe_inode_info *pipe = filp->private_data; |
| 435 | unsigned int head; |
| 436 | ssize_t ret = 0; |
| 437 | size_t total_len = iov_iter_count(from); |
| 438 | ssize_t chars; |
| 439 | bool was_empty = false; |
| 440 | bool wake_next_writer = false; |
| 441 | |
| 442 | /* |
| 443 | * Reject writing to watch queue pipes before the point where we lock |
| 444 | * the pipe. |
| 445 | * Otherwise, lockdep would be unhappy if the caller already has another |
| 446 | * pipe locked. |
| 447 | * If we had to support locking a normal pipe and a notification pipe at |
| 448 | * the same time, we could set up lockdep annotations for that, but |
| 449 | * since we don't actually need that, it's simpler to just bail here. |
| 450 | */ |
| 451 | if (pipe_has_watch_queue(pipe)) |
| 452 | return -EXDEV; |
| 453 | |
| 454 | /* Null write succeeds. */ |
| 455 | if (unlikely(total_len == 0)) |
| 456 | return 0; |
| 457 | |
| 458 | mutex_lock(&pipe->mutex); |
| 459 | |
| 460 | if (!pipe->readers) { |
| 461 | send_sig(SIGPIPE, current, 0); |
| 462 | ret = -EPIPE; |
| 463 | goto out; |
| 464 | } |
| 465 | |
| 466 | /* |
| 467 | * If it wasn't empty we try to merge new data into |
| 468 | * the last buffer. |
| 469 | * |
| 470 | * That naturally merges small writes, but it also |
| 471 | * page-aligns the rest of the writes for large writes |
| 472 | * spanning multiple pages. |
| 473 | */ |
| 474 | head = pipe->head; |
| 475 | was_empty = pipe_empty(head, pipe->tail); |
| 476 | chars = total_len & (PAGE_SIZE-1); |
| 477 | if (chars && !was_empty) { |
| 478 | struct pipe_buffer *buf = pipe_buf(pipe, head - 1); |
| 479 | int offset = buf->offset + buf->len; |
| 480 | |
| 481 | if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && |
| 482 | offset + chars <= PAGE_SIZE) { |
| 483 | ret = pipe_buf_confirm(pipe, buf); |
| 484 | if (ret) |
| 485 | goto out; |
| 486 | |
| 487 | ret = copy_page_from_iter(buf->page, offset, chars, from); |
| 488 | if (unlikely(ret < chars)) { |
| 489 | ret = -EFAULT; |
| 490 | goto out; |
| 491 | } |
| 492 | |
| 493 | buf->len += ret; |
| 494 | if (!iov_iter_count(from)) |
| 495 | goto out; |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | for (;;) { |
| 500 | if (!pipe->readers) { |
| 501 | send_sig(SIGPIPE, current, 0); |
| 502 | if (!ret) |
| 503 | ret = -EPIPE; |
| 504 | break; |
| 505 | } |
| 506 | |
| 507 | head = pipe->head; |
| 508 | if (!pipe_full(head, pipe->tail, pipe->max_usage)) { |
| 509 | struct pipe_buffer *buf; |
| 510 | struct page *page; |
| 511 | int copied; |
| 512 | |
| 513 | page = anon_pipe_get_page(pipe); |
| 514 | if (unlikely(!page)) { |
| 515 | if (!ret) |
| 516 | ret = -ENOMEM; |
| 517 | break; |
| 518 | } |
| 519 | |
| 520 | copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); |
| 521 | if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { |
| 522 | anon_pipe_put_page(pipe, page); |
| 523 | if (!ret) |
| 524 | ret = -EFAULT; |
| 525 | break; |
| 526 | } |
| 527 | |
| 528 | pipe->head = head + 1; |
| 529 | /* Insert it into the buffer array */ |
| 530 | buf = pipe_buf(pipe, head); |
| 531 | buf->page = page; |
| 532 | buf->ops = &anon_pipe_buf_ops; |
| 533 | buf->offset = 0; |
| 534 | if (is_packetized(filp)) |
| 535 | buf->flags = PIPE_BUF_FLAG_PACKET; |
| 536 | else |
| 537 | buf->flags = PIPE_BUF_FLAG_CAN_MERGE; |
| 538 | |
| 539 | buf->len = copied; |
| 540 | ret += copied; |
| 541 | |
| 542 | if (!iov_iter_count(from)) |
| 543 | break; |
| 544 | |
| 545 | continue; |
| 546 | } |
| 547 | |
| 548 | /* Wait for buffer space to become available. */ |
| 549 | if ((filp->f_flags & O_NONBLOCK) || |
| 550 | (iocb->ki_flags & IOCB_NOWAIT)) { |
| 551 | if (!ret) |
| 552 | ret = -EAGAIN; |
| 553 | break; |
| 554 | } |
| 555 | if (signal_pending(current)) { |
| 556 | if (!ret) |
| 557 | ret = -ERESTARTSYS; |
| 558 | break; |
| 559 | } |
| 560 | |
| 561 | /* |
| 562 | * We're going to release the pipe lock and wait for more |
| 563 | * space. We wake up any readers if necessary, and then |
| 564 | * after waiting we need to re-check whether the pipe |
| 565 | * become empty while we dropped the lock. |
| 566 | */ |
| 567 | mutex_unlock(&pipe->mutex); |
| 568 | if (was_empty) |
| 569 | wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); |
| 570 | kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
| 571 | wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); |
| 572 | mutex_lock(&pipe->mutex); |
| 573 | was_empty = pipe_is_empty(pipe); |
| 574 | wake_next_writer = true; |
| 575 | } |
| 576 | out: |
| 577 | if (pipe_is_full(pipe)) |
| 578 | wake_next_writer = false; |
| 579 | mutex_unlock(&pipe->mutex); |
| 580 | |
| 581 | /* |
| 582 | * If we do do a wakeup event, we do a 'sync' wakeup, because we |
| 583 | * want the reader to start processing things asap, rather than |
| 584 | * leave the data pending. |
| 585 | * |
| 586 | * This is particularly important for small writes, because of |
| 587 | * how (for example) the GNU make jobserver uses small writes to |
| 588 | * wake up pending jobs |
| 589 | * |
| 590 | * Epoll nonsensically wants a wakeup whether the pipe |
| 591 | * was already empty or not. |
| 592 | */ |
| 593 | if (was_empty || pipe->poll_usage) |
| 594 | wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); |
| 595 | kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
| 596 | if (wake_next_writer) |
| 597 | wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); |
| 598 | return ret; |
| 599 | } |
| 600 | |
| 601 | static ssize_t |
| 602 | fifo_pipe_write(struct kiocb *iocb, struct iov_iter *from) |
| 603 | { |
| 604 | int ret = anon_pipe_write(iocb, from); |
| 605 | if (ret > 0) { |
| 606 | struct file *filp = iocb->ki_filp; |
| 607 | if (sb_start_write_trylock(file_inode(filp)->i_sb)) { |
| 608 | int err = file_update_time(filp); |
| 609 | if (err) |
| 610 | ret = err; |
| 611 | sb_end_write(file_inode(filp)->i_sb); |
| 612 | } |
| 613 | } |
| 614 | return ret; |
| 615 | } |
| 616 | |
| 617 | static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) |
| 618 | { |
| 619 | struct pipe_inode_info *pipe = filp->private_data; |
| 620 | unsigned int count, head, tail; |
| 621 | |
| 622 | switch (cmd) { |
| 623 | case FIONREAD: |
| 624 | mutex_lock(&pipe->mutex); |
| 625 | count = 0; |
| 626 | head = pipe->head; |
| 627 | tail = pipe->tail; |
| 628 | |
| 629 | while (!pipe_empty(head, tail)) { |
| 630 | count += pipe_buf(pipe, tail)->len; |
| 631 | tail++; |
| 632 | } |
| 633 | mutex_unlock(&pipe->mutex); |
| 634 | |
| 635 | return put_user(count, (int __user *)arg); |
| 636 | |
| 637 | #ifdef CONFIG_WATCH_QUEUE |
| 638 | case IOC_WATCH_QUEUE_SET_SIZE: { |
| 639 | int ret; |
| 640 | mutex_lock(&pipe->mutex); |
| 641 | ret = watch_queue_set_size(pipe, arg); |
| 642 | mutex_unlock(&pipe->mutex); |
| 643 | return ret; |
| 644 | } |
| 645 | |
| 646 | case IOC_WATCH_QUEUE_SET_FILTER: |
| 647 | return watch_queue_set_filter( |
| 648 | pipe, (struct watch_notification_filter __user *)arg); |
| 649 | #endif |
| 650 | |
| 651 | default: |
| 652 | return -ENOIOCTLCMD; |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | /* No kernel lock held - fine */ |
| 657 | static __poll_t |
| 658 | pipe_poll(struct file *filp, poll_table *wait) |
| 659 | { |
| 660 | __poll_t mask; |
| 661 | struct pipe_inode_info *pipe = filp->private_data; |
| 662 | union pipe_index idx; |
| 663 | |
| 664 | /* Epoll has some historical nasty semantics, this enables them */ |
| 665 | WRITE_ONCE(pipe->poll_usage, true); |
| 666 | |
| 667 | /* |
| 668 | * Reading pipe state only -- no need for acquiring the semaphore. |
| 669 | * |
| 670 | * But because this is racy, the code has to add the |
| 671 | * entry to the poll table _first_ .. |
| 672 | */ |
| 673 | if (filp->f_mode & FMODE_READ) |
| 674 | poll_wait(filp, &pipe->rd_wait, wait); |
| 675 | if (filp->f_mode & FMODE_WRITE) |
| 676 | poll_wait(filp, &pipe->wr_wait, wait); |
| 677 | |
| 678 | /* |
| 679 | * .. and only then can you do the racy tests. That way, |
| 680 | * if something changes and you got it wrong, the poll |
| 681 | * table entry will wake you up and fix it. |
| 682 | */ |
| 683 | idx.head_tail = READ_ONCE(pipe->head_tail); |
| 684 | |
| 685 | mask = 0; |
| 686 | if (filp->f_mode & FMODE_READ) { |
| 687 | if (!pipe_empty(idx.head, idx.tail)) |
| 688 | mask |= EPOLLIN | EPOLLRDNORM; |
| 689 | if (!pipe->writers && filp->f_pipe != pipe->w_counter) |
| 690 | mask |= EPOLLHUP; |
| 691 | } |
| 692 | |
| 693 | if (filp->f_mode & FMODE_WRITE) { |
| 694 | if (!pipe_full(idx.head, idx.tail, pipe->max_usage)) |
| 695 | mask |= EPOLLOUT | EPOLLWRNORM; |
| 696 | /* |
| 697 | * Most Unices do not set EPOLLERR for FIFOs but on Linux they |
| 698 | * behave exactly like pipes for poll(). |
| 699 | */ |
| 700 | if (!pipe->readers) |
| 701 | mask |= EPOLLERR; |
| 702 | } |
| 703 | |
| 704 | return mask; |
| 705 | } |
| 706 | |
| 707 | static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) |
| 708 | { |
| 709 | int kill = 0; |
| 710 | |
| 711 | spin_lock(&inode->i_lock); |
| 712 | if (!--pipe->files) { |
| 713 | inode->i_pipe = NULL; |
| 714 | kill = 1; |
| 715 | } |
| 716 | spin_unlock(&inode->i_lock); |
| 717 | |
| 718 | if (kill) |
| 719 | free_pipe_info(pipe); |
| 720 | } |
| 721 | |
| 722 | static int |
| 723 | pipe_release(struct inode *inode, struct file *file) |
| 724 | { |
| 725 | struct pipe_inode_info *pipe = file->private_data; |
| 726 | |
| 727 | mutex_lock(&pipe->mutex); |
| 728 | if (file->f_mode & FMODE_READ) |
| 729 | pipe->readers--; |
| 730 | if (file->f_mode & FMODE_WRITE) |
| 731 | pipe->writers--; |
| 732 | |
| 733 | /* Was that the last reader or writer, but not the other side? */ |
| 734 | if (!pipe->readers != !pipe->writers) { |
| 735 | wake_up_interruptible_all(&pipe->rd_wait); |
| 736 | wake_up_interruptible_all(&pipe->wr_wait); |
| 737 | kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); |
| 738 | kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); |
| 739 | } |
| 740 | mutex_unlock(&pipe->mutex); |
| 741 | |
| 742 | put_pipe_info(inode, pipe); |
| 743 | return 0; |
| 744 | } |
| 745 | |
| 746 | static int |
| 747 | pipe_fasync(int fd, struct file *filp, int on) |
| 748 | { |
| 749 | struct pipe_inode_info *pipe = filp->private_data; |
| 750 | int retval = 0; |
| 751 | |
| 752 | mutex_lock(&pipe->mutex); |
| 753 | if (filp->f_mode & FMODE_READ) |
| 754 | retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); |
| 755 | if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { |
| 756 | retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); |
| 757 | if (retval < 0 && (filp->f_mode & FMODE_READ)) |
| 758 | /* this can happen only if on == T */ |
| 759 | fasync_helper(-1, filp, 0, &pipe->fasync_readers); |
| 760 | } |
| 761 | mutex_unlock(&pipe->mutex); |
| 762 | return retval; |
| 763 | } |
| 764 | |
| 765 | unsigned long account_pipe_buffers(struct user_struct *user, |
| 766 | unsigned long old, unsigned long new) |
| 767 | { |
| 768 | return atomic_long_add_return(new - old, &user->pipe_bufs); |
| 769 | } |
| 770 | |
| 771 | bool too_many_pipe_buffers_soft(unsigned long user_bufs) |
| 772 | { |
| 773 | unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); |
| 774 | |
| 775 | return soft_limit && user_bufs > soft_limit; |
| 776 | } |
| 777 | |
| 778 | bool too_many_pipe_buffers_hard(unsigned long user_bufs) |
| 779 | { |
| 780 | unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); |
| 781 | |
| 782 | return hard_limit && user_bufs > hard_limit; |
| 783 | } |
| 784 | |
| 785 | bool pipe_is_unprivileged_user(void) |
| 786 | { |
| 787 | return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); |
| 788 | } |
| 789 | |
| 790 | struct pipe_inode_info *alloc_pipe_info(void) |
| 791 | { |
| 792 | struct pipe_inode_info *pipe; |
| 793 | unsigned long pipe_bufs = PIPE_DEF_BUFFERS; |
| 794 | struct user_struct *user = get_current_user(); |
| 795 | unsigned long user_bufs; |
| 796 | unsigned int max_size = READ_ONCE(pipe_max_size); |
| 797 | |
| 798 | pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); |
| 799 | if (pipe == NULL) |
| 800 | goto out_free_uid; |
| 801 | |
| 802 | if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) |
| 803 | pipe_bufs = max_size >> PAGE_SHIFT; |
| 804 | |
| 805 | user_bufs = account_pipe_buffers(user, 0, pipe_bufs); |
| 806 | |
| 807 | if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { |
| 808 | user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS); |
| 809 | pipe_bufs = PIPE_MIN_DEF_BUFFERS; |
| 810 | } |
| 811 | |
| 812 | if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) |
| 813 | goto out_revert_acct; |
| 814 | |
| 815 | pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), |
| 816 | GFP_KERNEL_ACCOUNT); |
| 817 | |
| 818 | if (pipe->bufs) { |
| 819 | init_waitqueue_head(&pipe->rd_wait); |
| 820 | init_waitqueue_head(&pipe->wr_wait); |
| 821 | pipe->r_counter = pipe->w_counter = 1; |
| 822 | pipe->max_usage = pipe_bufs; |
| 823 | pipe->ring_size = pipe_bufs; |
| 824 | pipe->nr_accounted = pipe_bufs; |
| 825 | pipe->user = user; |
| 826 | mutex_init(&pipe->mutex); |
| 827 | lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL); |
| 828 | return pipe; |
| 829 | } |
| 830 | |
| 831 | out_revert_acct: |
| 832 | (void) account_pipe_buffers(user, pipe_bufs, 0); |
| 833 | kfree(pipe); |
| 834 | out_free_uid: |
| 835 | free_uid(user); |
| 836 | return NULL; |
| 837 | } |
| 838 | |
| 839 | void free_pipe_info(struct pipe_inode_info *pipe) |
| 840 | { |
| 841 | unsigned int i; |
| 842 | |
| 843 | #ifdef CONFIG_WATCH_QUEUE |
| 844 | if (pipe->watch_queue) |
| 845 | watch_queue_clear(pipe->watch_queue); |
| 846 | #endif |
| 847 | |
| 848 | (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); |
| 849 | free_uid(pipe->user); |
| 850 | for (i = 0; i < pipe->ring_size; i++) { |
| 851 | struct pipe_buffer *buf = pipe->bufs + i; |
| 852 | if (buf->ops) |
| 853 | pipe_buf_release(pipe, buf); |
| 854 | } |
| 855 | #ifdef CONFIG_WATCH_QUEUE |
| 856 | if (pipe->watch_queue) |
| 857 | put_watch_queue(pipe->watch_queue); |
| 858 | #endif |
| 859 | for (i = 0; i < ARRAY_SIZE(pipe->tmp_page); i++) { |
| 860 | if (pipe->tmp_page[i]) |
| 861 | __free_page(pipe->tmp_page[i]); |
| 862 | } |
| 863 | kfree(pipe->bufs); |
| 864 | kfree(pipe); |
| 865 | } |
| 866 | |
| 867 | static struct vfsmount *pipe_mnt __ro_after_init; |
| 868 | |
| 869 | /* |
| 870 | * pipefs_dname() is called from d_path(). |
| 871 | */ |
| 872 | static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) |
| 873 | { |
| 874 | return dynamic_dname(buffer, buflen, "pipe:[%lu]", |
| 875 | d_inode(dentry)->i_ino); |
| 876 | } |
| 877 | |
| 878 | static const struct dentry_operations pipefs_dentry_operations = { |
| 879 | .d_dname = pipefs_dname, |
| 880 | }; |
| 881 | |
| 882 | static const struct file_operations pipeanon_fops; |
| 883 | |
| 884 | static struct inode * get_pipe_inode(void) |
| 885 | { |
| 886 | struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); |
| 887 | struct pipe_inode_info *pipe; |
| 888 | |
| 889 | if (!inode) |
| 890 | goto fail_inode; |
| 891 | |
| 892 | inode->i_ino = get_next_ino(); |
| 893 | |
| 894 | pipe = alloc_pipe_info(); |
| 895 | if (!pipe) |
| 896 | goto fail_iput; |
| 897 | |
| 898 | inode->i_pipe = pipe; |
| 899 | pipe->files = 2; |
| 900 | pipe->readers = pipe->writers = 1; |
| 901 | inode->i_fop = &pipeanon_fops; |
| 902 | |
| 903 | /* |
| 904 | * Mark the inode dirty from the very beginning, |
| 905 | * that way it will never be moved to the dirty |
| 906 | * list because "mark_inode_dirty()" will think |
| 907 | * that it already _is_ on the dirty list. |
| 908 | */ |
| 909 | inode->i_state = I_DIRTY; |
| 910 | inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; |
| 911 | inode->i_uid = current_fsuid(); |
| 912 | inode->i_gid = current_fsgid(); |
| 913 | simple_inode_init_ts(inode); |
| 914 | |
| 915 | return inode; |
| 916 | |
| 917 | fail_iput: |
| 918 | iput(inode); |
| 919 | |
| 920 | fail_inode: |
| 921 | return NULL; |
| 922 | } |
| 923 | |
| 924 | int create_pipe_files(struct file **res, int flags) |
| 925 | { |
| 926 | struct inode *inode = get_pipe_inode(); |
| 927 | struct file *f; |
| 928 | int error; |
| 929 | |
| 930 | if (!inode) |
| 931 | return -ENFILE; |
| 932 | |
| 933 | if (flags & O_NOTIFICATION_PIPE) { |
| 934 | error = watch_queue_init(inode->i_pipe); |
| 935 | if (error) { |
| 936 | free_pipe_info(inode->i_pipe); |
| 937 | iput(inode); |
| 938 | return error; |
| 939 | } |
| 940 | } |
| 941 | |
| 942 | f = alloc_file_pseudo(inode, pipe_mnt, "", |
| 943 | O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), |
| 944 | &pipeanon_fops); |
| 945 | if (IS_ERR(f)) { |
| 946 | free_pipe_info(inode->i_pipe); |
| 947 | iput(inode); |
| 948 | return PTR_ERR(f); |
| 949 | } |
| 950 | |
| 951 | f->private_data = inode->i_pipe; |
| 952 | f->f_pipe = 0; |
| 953 | |
| 954 | res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), |
| 955 | &pipeanon_fops); |
| 956 | if (IS_ERR(res[0])) { |
| 957 | put_pipe_info(inode, inode->i_pipe); |
| 958 | fput(f); |
| 959 | return PTR_ERR(res[0]); |
| 960 | } |
| 961 | res[0]->private_data = inode->i_pipe; |
| 962 | res[0]->f_pipe = 0; |
| 963 | res[1] = f; |
| 964 | stream_open(inode, res[0]); |
| 965 | stream_open(inode, res[1]); |
| 966 | |
| 967 | /* pipe groks IOCB_NOWAIT */ |
| 968 | res[0]->f_mode |= FMODE_NOWAIT; |
| 969 | res[1]->f_mode |= FMODE_NOWAIT; |
| 970 | |
| 971 | /* |
| 972 | * Disable permission and pre-content events, but enable legacy |
| 973 | * inotify events for legacy users. |
| 974 | */ |
| 975 | file_set_fsnotify_mode(res[0], FMODE_NONOTIFY_PERM); |
| 976 | file_set_fsnotify_mode(res[1], FMODE_NONOTIFY_PERM); |
| 977 | return 0; |
| 978 | } |
| 979 | |
| 980 | static int __do_pipe_flags(int *fd, struct file **files, int flags) |
| 981 | { |
| 982 | int error; |
| 983 | int fdw, fdr; |
| 984 | |
| 985 | if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) |
| 986 | return -EINVAL; |
| 987 | |
| 988 | error = create_pipe_files(files, flags); |
| 989 | if (error) |
| 990 | return error; |
| 991 | |
| 992 | error = get_unused_fd_flags(flags); |
| 993 | if (error < 0) |
| 994 | goto err_read_pipe; |
| 995 | fdr = error; |
| 996 | |
| 997 | error = get_unused_fd_flags(flags); |
| 998 | if (error < 0) |
| 999 | goto err_fdr; |
| 1000 | fdw = error; |
| 1001 | |
| 1002 | audit_fd_pair(fdr, fdw); |
| 1003 | fd[0] = fdr; |
| 1004 | fd[1] = fdw; |
| 1005 | return 0; |
| 1006 | |
| 1007 | err_fdr: |
| 1008 | put_unused_fd(fdr); |
| 1009 | err_read_pipe: |
| 1010 | fput(files[0]); |
| 1011 | fput(files[1]); |
| 1012 | return error; |
| 1013 | } |
| 1014 | |
| 1015 | int do_pipe_flags(int *fd, int flags) |
| 1016 | { |
| 1017 | struct file *files[2]; |
| 1018 | int error = __do_pipe_flags(fd, files, flags); |
| 1019 | if (!error) { |
| 1020 | fd_install(fd[0], files[0]); |
| 1021 | fd_install(fd[1], files[1]); |
| 1022 | } |
| 1023 | return error; |
| 1024 | } |
| 1025 | |
| 1026 | /* |
| 1027 | * sys_pipe() is the normal C calling standard for creating |
| 1028 | * a pipe. It's not the way Unix traditionally does this, though. |
| 1029 | */ |
| 1030 | static int do_pipe2(int __user *fildes, int flags) |
| 1031 | { |
| 1032 | struct file *files[2]; |
| 1033 | int fd[2]; |
| 1034 | int error; |
| 1035 | |
| 1036 | error = __do_pipe_flags(fd, files, flags); |
| 1037 | if (!error) { |
| 1038 | if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { |
| 1039 | fput(files[0]); |
| 1040 | fput(files[1]); |
| 1041 | put_unused_fd(fd[0]); |
| 1042 | put_unused_fd(fd[1]); |
| 1043 | error = -EFAULT; |
| 1044 | } else { |
| 1045 | fd_install(fd[0], files[0]); |
| 1046 | fd_install(fd[1], files[1]); |
| 1047 | } |
| 1048 | } |
| 1049 | return error; |
| 1050 | } |
| 1051 | |
| 1052 | SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) |
| 1053 | { |
| 1054 | return do_pipe2(fildes, flags); |
| 1055 | } |
| 1056 | |
| 1057 | SYSCALL_DEFINE1(pipe, int __user *, fildes) |
| 1058 | { |
| 1059 | return do_pipe2(fildes, 0); |
| 1060 | } |
| 1061 | |
| 1062 | /* |
| 1063 | * This is the stupid "wait for pipe to be readable or writable" |
| 1064 | * model. |
| 1065 | * |
| 1066 | * See pipe_read/write() for the proper kind of exclusive wait, |
| 1067 | * but that requires that we wake up any other readers/writers |
| 1068 | * if we then do not end up reading everything (ie the whole |
| 1069 | * "wake_next_reader/writer" logic in pipe_read/write()). |
| 1070 | */ |
| 1071 | void pipe_wait_readable(struct pipe_inode_info *pipe) |
| 1072 | { |
| 1073 | pipe_unlock(pipe); |
| 1074 | wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); |
| 1075 | pipe_lock(pipe); |
| 1076 | } |
| 1077 | |
| 1078 | void pipe_wait_writable(struct pipe_inode_info *pipe) |
| 1079 | { |
| 1080 | pipe_unlock(pipe); |
| 1081 | wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); |
| 1082 | pipe_lock(pipe); |
| 1083 | } |
| 1084 | |
| 1085 | /* |
| 1086 | * This depends on both the wait (here) and the wakeup (wake_up_partner) |
| 1087 | * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot |
| 1088 | * race with the count check and waitqueue prep. |
| 1089 | * |
| 1090 | * Normally in order to avoid races, you'd do the prepare_to_wait() first, |
| 1091 | * then check the condition you're waiting for, and only then sleep. But |
| 1092 | * because of the pipe lock, we can check the condition before being on |
| 1093 | * the wait queue. |
| 1094 | * |
| 1095 | * We use the 'rd_wait' waitqueue for pipe partner waiting. |
| 1096 | */ |
| 1097 | static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) |
| 1098 | { |
| 1099 | DEFINE_WAIT(rdwait); |
| 1100 | int cur = *cnt; |
| 1101 | |
| 1102 | while (cur == *cnt) { |
| 1103 | prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); |
| 1104 | pipe_unlock(pipe); |
| 1105 | schedule(); |
| 1106 | finish_wait(&pipe->rd_wait, &rdwait); |
| 1107 | pipe_lock(pipe); |
| 1108 | if (signal_pending(current)) |
| 1109 | break; |
| 1110 | } |
| 1111 | return cur == *cnt ? -ERESTARTSYS : 0; |
| 1112 | } |
| 1113 | |
| 1114 | static void wake_up_partner(struct pipe_inode_info *pipe) |
| 1115 | { |
| 1116 | wake_up_interruptible_all(&pipe->rd_wait); |
| 1117 | } |
| 1118 | |
| 1119 | static int fifo_open(struct inode *inode, struct file *filp) |
| 1120 | { |
| 1121 | bool is_pipe = inode->i_fop == &pipeanon_fops; |
| 1122 | struct pipe_inode_info *pipe; |
| 1123 | int ret; |
| 1124 | |
| 1125 | filp->f_pipe = 0; |
| 1126 | |
| 1127 | spin_lock(&inode->i_lock); |
| 1128 | if (inode->i_pipe) { |
| 1129 | pipe = inode->i_pipe; |
| 1130 | pipe->files++; |
| 1131 | spin_unlock(&inode->i_lock); |
| 1132 | } else { |
| 1133 | spin_unlock(&inode->i_lock); |
| 1134 | pipe = alloc_pipe_info(); |
| 1135 | if (!pipe) |
| 1136 | return -ENOMEM; |
| 1137 | pipe->files = 1; |
| 1138 | spin_lock(&inode->i_lock); |
| 1139 | if (unlikely(inode->i_pipe)) { |
| 1140 | inode->i_pipe->files++; |
| 1141 | spin_unlock(&inode->i_lock); |
| 1142 | free_pipe_info(pipe); |
| 1143 | pipe = inode->i_pipe; |
| 1144 | } else { |
| 1145 | inode->i_pipe = pipe; |
| 1146 | spin_unlock(&inode->i_lock); |
| 1147 | } |
| 1148 | } |
| 1149 | filp->private_data = pipe; |
| 1150 | /* OK, we have a pipe and it's pinned down */ |
| 1151 | |
| 1152 | mutex_lock(&pipe->mutex); |
| 1153 | |
| 1154 | /* We can only do regular read/write on fifos */ |
| 1155 | stream_open(inode, filp); |
| 1156 | |
| 1157 | switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { |
| 1158 | case FMODE_READ: |
| 1159 | /* |
| 1160 | * O_RDONLY |
| 1161 | * POSIX.1 says that O_NONBLOCK means return with the FIFO |
| 1162 | * opened, even when there is no process writing the FIFO. |
| 1163 | */ |
| 1164 | pipe->r_counter++; |
| 1165 | if (pipe->readers++ == 0) |
| 1166 | wake_up_partner(pipe); |
| 1167 | |
| 1168 | if (!is_pipe && !pipe->writers) { |
| 1169 | if ((filp->f_flags & O_NONBLOCK)) { |
| 1170 | /* suppress EPOLLHUP until we have |
| 1171 | * seen a writer */ |
| 1172 | filp->f_pipe = pipe->w_counter; |
| 1173 | } else { |
| 1174 | if (wait_for_partner(pipe, &pipe->w_counter)) |
| 1175 | goto err_rd; |
| 1176 | } |
| 1177 | } |
| 1178 | break; |
| 1179 | |
| 1180 | case FMODE_WRITE: |
| 1181 | /* |
| 1182 | * O_WRONLY |
| 1183 | * POSIX.1 says that O_NONBLOCK means return -1 with |
| 1184 | * errno=ENXIO when there is no process reading the FIFO. |
| 1185 | */ |
| 1186 | ret = -ENXIO; |
| 1187 | if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) |
| 1188 | goto err; |
| 1189 | |
| 1190 | pipe->w_counter++; |
| 1191 | if (!pipe->writers++) |
| 1192 | wake_up_partner(pipe); |
| 1193 | |
| 1194 | if (!is_pipe && !pipe->readers) { |
| 1195 | if (wait_for_partner(pipe, &pipe->r_counter)) |
| 1196 | goto err_wr; |
| 1197 | } |
| 1198 | break; |
| 1199 | |
| 1200 | case FMODE_READ | FMODE_WRITE: |
| 1201 | /* |
| 1202 | * O_RDWR |
| 1203 | * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. |
| 1204 | * This implementation will NEVER block on a O_RDWR open, since |
| 1205 | * the process can at least talk to itself. |
| 1206 | */ |
| 1207 | |
| 1208 | pipe->readers++; |
| 1209 | pipe->writers++; |
| 1210 | pipe->r_counter++; |
| 1211 | pipe->w_counter++; |
| 1212 | if (pipe->readers == 1 || pipe->writers == 1) |
| 1213 | wake_up_partner(pipe); |
| 1214 | break; |
| 1215 | |
| 1216 | default: |
| 1217 | ret = -EINVAL; |
| 1218 | goto err; |
| 1219 | } |
| 1220 | |
| 1221 | /* Ok! */ |
| 1222 | mutex_unlock(&pipe->mutex); |
| 1223 | return 0; |
| 1224 | |
| 1225 | err_rd: |
| 1226 | if (!--pipe->readers) |
| 1227 | wake_up_interruptible(&pipe->wr_wait); |
| 1228 | ret = -ERESTARTSYS; |
| 1229 | goto err; |
| 1230 | |
| 1231 | err_wr: |
| 1232 | if (!--pipe->writers) |
| 1233 | wake_up_interruptible_all(&pipe->rd_wait); |
| 1234 | ret = -ERESTARTSYS; |
| 1235 | goto err; |
| 1236 | |
| 1237 | err: |
| 1238 | mutex_unlock(&pipe->mutex); |
| 1239 | |
| 1240 | put_pipe_info(inode, pipe); |
| 1241 | return ret; |
| 1242 | } |
| 1243 | |
| 1244 | const struct file_operations pipefifo_fops = { |
| 1245 | .open = fifo_open, |
| 1246 | .read_iter = fifo_pipe_read, |
| 1247 | .write_iter = fifo_pipe_write, |
| 1248 | .poll = pipe_poll, |
| 1249 | .unlocked_ioctl = pipe_ioctl, |
| 1250 | .release = pipe_release, |
| 1251 | .fasync = pipe_fasync, |
| 1252 | .splice_write = iter_file_splice_write, |
| 1253 | }; |
| 1254 | |
| 1255 | static const struct file_operations pipeanon_fops = { |
| 1256 | .open = fifo_open, |
| 1257 | .read_iter = anon_pipe_read, |
| 1258 | .write_iter = anon_pipe_write, |
| 1259 | .poll = pipe_poll, |
| 1260 | .unlocked_ioctl = pipe_ioctl, |
| 1261 | .release = pipe_release, |
| 1262 | .fasync = pipe_fasync, |
| 1263 | .splice_write = iter_file_splice_write, |
| 1264 | }; |
| 1265 | |
| 1266 | /* |
| 1267 | * Currently we rely on the pipe array holding a power-of-2 number |
| 1268 | * of pages. Returns 0 on error. |
| 1269 | */ |
| 1270 | unsigned int round_pipe_size(unsigned int size) |
| 1271 | { |
| 1272 | if (size > (1U << 31)) |
| 1273 | return 0; |
| 1274 | |
| 1275 | /* Minimum pipe size, as required by POSIX */ |
| 1276 | if (size < PAGE_SIZE) |
| 1277 | return PAGE_SIZE; |
| 1278 | |
| 1279 | return roundup_pow_of_two(size); |
| 1280 | } |
| 1281 | |
| 1282 | /* |
| 1283 | * Resize the pipe ring to a number of slots. |
| 1284 | * |
| 1285 | * Note the pipe can be reduced in capacity, but only if the current |
| 1286 | * occupancy doesn't exceed nr_slots; if it does, EBUSY will be |
| 1287 | * returned instead. |
| 1288 | */ |
| 1289 | int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) |
| 1290 | { |
| 1291 | struct pipe_buffer *bufs; |
| 1292 | unsigned int head, tail, mask, n; |
| 1293 | |
| 1294 | /* nr_slots larger than limits of pipe->{head,tail} */ |
| 1295 | if (unlikely(nr_slots > (pipe_index_t)-1u)) |
| 1296 | return -EINVAL; |
| 1297 | |
| 1298 | bufs = kcalloc(nr_slots, sizeof(*bufs), |
| 1299 | GFP_KERNEL_ACCOUNT | __GFP_NOWARN); |
| 1300 | if (unlikely(!bufs)) |
| 1301 | return -ENOMEM; |
| 1302 | |
| 1303 | spin_lock_irq(&pipe->rd_wait.lock); |
| 1304 | mask = pipe->ring_size - 1; |
| 1305 | head = pipe->head; |
| 1306 | tail = pipe->tail; |
| 1307 | |
| 1308 | n = pipe_occupancy(head, tail); |
| 1309 | if (nr_slots < n) { |
| 1310 | spin_unlock_irq(&pipe->rd_wait.lock); |
| 1311 | kfree(bufs); |
| 1312 | return -EBUSY; |
| 1313 | } |
| 1314 | |
| 1315 | /* |
| 1316 | * The pipe array wraps around, so just start the new one at zero |
| 1317 | * and adjust the indices. |
| 1318 | */ |
| 1319 | if (n > 0) { |
| 1320 | unsigned int h = head & mask; |
| 1321 | unsigned int t = tail & mask; |
| 1322 | if (h > t) { |
| 1323 | memcpy(bufs, pipe->bufs + t, |
| 1324 | n * sizeof(struct pipe_buffer)); |
| 1325 | } else { |
| 1326 | unsigned int tsize = pipe->ring_size - t; |
| 1327 | if (h > 0) |
| 1328 | memcpy(bufs + tsize, pipe->bufs, |
| 1329 | h * sizeof(struct pipe_buffer)); |
| 1330 | memcpy(bufs, pipe->bufs + t, |
| 1331 | tsize * sizeof(struct pipe_buffer)); |
| 1332 | } |
| 1333 | } |
| 1334 | |
| 1335 | head = n; |
| 1336 | tail = 0; |
| 1337 | |
| 1338 | kfree(pipe->bufs); |
| 1339 | pipe->bufs = bufs; |
| 1340 | pipe->ring_size = nr_slots; |
| 1341 | if (pipe->max_usage > nr_slots) |
| 1342 | pipe->max_usage = nr_slots; |
| 1343 | pipe->tail = tail; |
| 1344 | pipe->head = head; |
| 1345 | |
| 1346 | if (!pipe_has_watch_queue(pipe)) { |
| 1347 | pipe->max_usage = nr_slots; |
| 1348 | pipe->nr_accounted = nr_slots; |
| 1349 | } |
| 1350 | |
| 1351 | spin_unlock_irq(&pipe->rd_wait.lock); |
| 1352 | |
| 1353 | /* This might have made more room for writers */ |
| 1354 | wake_up_interruptible(&pipe->wr_wait); |
| 1355 | return 0; |
| 1356 | } |
| 1357 | |
| 1358 | /* |
| 1359 | * Allocate a new array of pipe buffers and copy the info over. Returns the |
| 1360 | * pipe size if successful, or return -ERROR on error. |
| 1361 | */ |
| 1362 | static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg) |
| 1363 | { |
| 1364 | unsigned long user_bufs; |
| 1365 | unsigned int nr_slots, size; |
| 1366 | long ret = 0; |
| 1367 | |
| 1368 | if (pipe_has_watch_queue(pipe)) |
| 1369 | return -EBUSY; |
| 1370 | |
| 1371 | size = round_pipe_size(arg); |
| 1372 | nr_slots = size >> PAGE_SHIFT; |
| 1373 | |
| 1374 | if (!nr_slots) |
| 1375 | return -EINVAL; |
| 1376 | |
| 1377 | /* |
| 1378 | * If trying to increase the pipe capacity, check that an |
| 1379 | * unprivileged user is not trying to exceed various limits |
| 1380 | * (soft limit check here, hard limit check just below). |
| 1381 | * Decreasing the pipe capacity is always permitted, even |
| 1382 | * if the user is currently over a limit. |
| 1383 | */ |
| 1384 | if (nr_slots > pipe->max_usage && |
| 1385 | size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) |
| 1386 | return -EPERM; |
| 1387 | |
| 1388 | user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); |
| 1389 | |
| 1390 | if (nr_slots > pipe->max_usage && |
| 1391 | (too_many_pipe_buffers_hard(user_bufs) || |
| 1392 | too_many_pipe_buffers_soft(user_bufs)) && |
| 1393 | pipe_is_unprivileged_user()) { |
| 1394 | ret = -EPERM; |
| 1395 | goto out_revert_acct; |
| 1396 | } |
| 1397 | |
| 1398 | ret = pipe_resize_ring(pipe, nr_slots); |
| 1399 | if (ret < 0) |
| 1400 | goto out_revert_acct; |
| 1401 | |
| 1402 | return pipe->max_usage * PAGE_SIZE; |
| 1403 | |
| 1404 | out_revert_acct: |
| 1405 | (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); |
| 1406 | return ret; |
| 1407 | } |
| 1408 | |
| 1409 | /* |
| 1410 | * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is |
| 1411 | * not enough to verify that this is a pipe. |
| 1412 | */ |
| 1413 | struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) |
| 1414 | { |
| 1415 | struct pipe_inode_info *pipe = file->private_data; |
| 1416 | |
| 1417 | if (!pipe) |
| 1418 | return NULL; |
| 1419 | if (file->f_op != &pipefifo_fops && file->f_op != &pipeanon_fops) |
| 1420 | return NULL; |
| 1421 | if (for_splice && pipe_has_watch_queue(pipe)) |
| 1422 | return NULL; |
| 1423 | return pipe; |
| 1424 | } |
| 1425 | |
| 1426 | long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg) |
| 1427 | { |
| 1428 | struct pipe_inode_info *pipe; |
| 1429 | long ret; |
| 1430 | |
| 1431 | pipe = get_pipe_info(file, false); |
| 1432 | if (!pipe) |
| 1433 | return -EBADF; |
| 1434 | |
| 1435 | mutex_lock(&pipe->mutex); |
| 1436 | |
| 1437 | switch (cmd) { |
| 1438 | case F_SETPIPE_SZ: |
| 1439 | ret = pipe_set_size(pipe, arg); |
| 1440 | break; |
| 1441 | case F_GETPIPE_SZ: |
| 1442 | ret = pipe->max_usage * PAGE_SIZE; |
| 1443 | break; |
| 1444 | default: |
| 1445 | ret = -EINVAL; |
| 1446 | break; |
| 1447 | } |
| 1448 | |
| 1449 | mutex_unlock(&pipe->mutex); |
| 1450 | return ret; |
| 1451 | } |
| 1452 | |
| 1453 | static const struct super_operations pipefs_ops = { |
| 1454 | .destroy_inode = free_inode_nonrcu, |
| 1455 | .statfs = simple_statfs, |
| 1456 | }; |
| 1457 | |
| 1458 | /* |
| 1459 | * pipefs should _never_ be mounted by userland - too much of security hassle, |
| 1460 | * no real gain from having the whole file system mounted. So we don't need |
| 1461 | * any operations on the root directory. However, we need a non-trivial |
| 1462 | * d_name - pipe: will go nicely and kill the special-casing in procfs. |
| 1463 | */ |
| 1464 | |
| 1465 | static int pipefs_init_fs_context(struct fs_context *fc) |
| 1466 | { |
| 1467 | struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); |
| 1468 | if (!ctx) |
| 1469 | return -ENOMEM; |
| 1470 | ctx->ops = &pipefs_ops; |
| 1471 | ctx->dops = &pipefs_dentry_operations; |
| 1472 | return 0; |
| 1473 | } |
| 1474 | |
| 1475 | static struct file_system_type pipe_fs_type = { |
| 1476 | .name = "pipefs", |
| 1477 | .init_fs_context = pipefs_init_fs_context, |
| 1478 | .kill_sb = kill_anon_super, |
| 1479 | }; |
| 1480 | |
| 1481 | #ifdef CONFIG_SYSCTL |
| 1482 | static int do_proc_dopipe_max_size_conv(unsigned long *lvalp, |
| 1483 | unsigned int *valp, |
| 1484 | int write, void *data) |
| 1485 | { |
| 1486 | if (write) { |
| 1487 | unsigned int val; |
| 1488 | |
| 1489 | val = round_pipe_size(*lvalp); |
| 1490 | if (val == 0) |
| 1491 | return -EINVAL; |
| 1492 | |
| 1493 | *valp = val; |
| 1494 | } else { |
| 1495 | unsigned int val = *valp; |
| 1496 | *lvalp = (unsigned long) val; |
| 1497 | } |
| 1498 | |
| 1499 | return 0; |
| 1500 | } |
| 1501 | |
| 1502 | static int proc_dopipe_max_size(const struct ctl_table *table, int write, |
| 1503 | void *buffer, size_t *lenp, loff_t *ppos) |
| 1504 | { |
| 1505 | return do_proc_douintvec(table, write, buffer, lenp, ppos, |
| 1506 | do_proc_dopipe_max_size_conv, NULL); |
| 1507 | } |
| 1508 | |
| 1509 | static const struct ctl_table fs_pipe_sysctls[] = { |
| 1510 | { |
| 1511 | .procname = "pipe-max-size", |
| 1512 | .data = &pipe_max_size, |
| 1513 | .maxlen = sizeof(pipe_max_size), |
| 1514 | .mode = 0644, |
| 1515 | .proc_handler = proc_dopipe_max_size, |
| 1516 | }, |
| 1517 | { |
| 1518 | .procname = "pipe-user-pages-hard", |
| 1519 | .data = &pipe_user_pages_hard, |
| 1520 | .maxlen = sizeof(pipe_user_pages_hard), |
| 1521 | .mode = 0644, |
| 1522 | .proc_handler = proc_doulongvec_minmax, |
| 1523 | }, |
| 1524 | { |
| 1525 | .procname = "pipe-user-pages-soft", |
| 1526 | .data = &pipe_user_pages_soft, |
| 1527 | .maxlen = sizeof(pipe_user_pages_soft), |
| 1528 | .mode = 0644, |
| 1529 | .proc_handler = proc_doulongvec_minmax, |
| 1530 | }, |
| 1531 | }; |
| 1532 | #endif |
| 1533 | |
| 1534 | static int __init init_pipe_fs(void) |
| 1535 | { |
| 1536 | int err = register_filesystem(&pipe_fs_type); |
| 1537 | |
| 1538 | if (!err) { |
| 1539 | pipe_mnt = kern_mount(&pipe_fs_type); |
| 1540 | if (IS_ERR(pipe_mnt)) { |
| 1541 | err = PTR_ERR(pipe_mnt); |
| 1542 | unregister_filesystem(&pipe_fs_type); |
| 1543 | } |
| 1544 | } |
| 1545 | #ifdef CONFIG_SYSCTL |
| 1546 | register_sysctl_init("fs", fs_pipe_sysctls); |
| 1547 | #endif |
| 1548 | return err; |
| 1549 | } |
| 1550 | |
| 1551 | fs_initcall(init_pipe_fs); |