Merge tag 'csky-for-linus-4.20-fixup-dtb' of https://github.com/c-sky/csky-linux
[linux-block.git] / fs / nfsd / nfscache.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Request reply cache. This is currently a global cache, but this may
4 * change in the future and be a per-client cache.
5 *
6 * This code is heavily inspired by the 44BSD implementation, although
7 * it does things a bit differently.
8 *
9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10 */
11
12#include <linux/slab.h>
13#include <linux/vmalloc.h>
14#include <linux/sunrpc/addr.h>
15#include <linux/highmem.h>
16#include <linux/log2.h>
17#include <linux/hash.h>
18#include <net/checksum.h>
19
20#include "nfsd.h"
21#include "cache.h"
22
23#define NFSDDBG_FACILITY NFSDDBG_REPCACHE
24
25/*
26 * We use this value to determine the number of hash buckets from the max
27 * cache size, the idea being that when the cache is at its maximum number
28 * of entries, then this should be the average number of entries per bucket.
29 */
30#define TARGET_BUCKET_SIZE 64
31
32struct nfsd_drc_bucket {
33 struct rb_root rb_head;
34 struct list_head lru_head;
35 spinlock_t cache_lock;
36};
37
38static struct nfsd_drc_bucket *drc_hashtbl;
39static struct kmem_cache *drc_slab;
40
41/* max number of entries allowed in the cache */
42static unsigned int max_drc_entries;
43
44/* number of significant bits in the hash value */
45static unsigned int maskbits;
46static unsigned int drc_hashsize;
47
48/*
49 * Stats and other tracking of on the duplicate reply cache. All of these and
50 * the "rc" fields in nfsdstats are protected by the cache_lock
51 */
52
53/* total number of entries */
54static atomic_t num_drc_entries;
55
56/* cache misses due only to checksum comparison failures */
57static unsigned int payload_misses;
58
59/* amount of memory (in bytes) currently consumed by the DRC */
60static unsigned int drc_mem_usage;
61
62/* longest hash chain seen */
63static unsigned int longest_chain;
64
65/* size of cache when we saw the longest hash chain */
66static unsigned int longest_chain_cachesize;
67
68static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
69static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
70 struct shrink_control *sc);
71static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
72 struct shrink_control *sc);
73
74static struct shrinker nfsd_reply_cache_shrinker = {
75 .scan_objects = nfsd_reply_cache_scan,
76 .count_objects = nfsd_reply_cache_count,
77 .seeks = 1,
78};
79
80/*
81 * Put a cap on the size of the DRC based on the amount of available
82 * low memory in the machine.
83 *
84 * 64MB: 8192
85 * 128MB: 11585
86 * 256MB: 16384
87 * 512MB: 23170
88 * 1GB: 32768
89 * 2GB: 46340
90 * 4GB: 65536
91 * 8GB: 92681
92 * 16GB: 131072
93 *
94 * ...with a hard cap of 256k entries. In the worst case, each entry will be
95 * ~1k, so the above numbers should give a rough max of the amount of memory
96 * used in k.
97 */
98static unsigned int
99nfsd_cache_size_limit(void)
100{
101 unsigned int limit;
102 unsigned long low_pages = totalram_pages - totalhigh_pages;
103
104 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
105 return min_t(unsigned int, limit, 256*1024);
106}
107
108/*
109 * Compute the number of hash buckets we need. Divide the max cachesize by
110 * the "target" max bucket size, and round up to next power of two.
111 */
112static unsigned int
113nfsd_hashsize(unsigned int limit)
114{
115 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
116}
117
118static u32
119nfsd_cache_hash(__be32 xid)
120{
121 return hash_32(be32_to_cpu(xid), maskbits);
122}
123
124static struct svc_cacherep *
125nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum)
126{
127 struct svc_cacherep *rp;
128
129 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
130 if (rp) {
131 rp->c_state = RC_UNUSED;
132 rp->c_type = RC_NOCACHE;
133 RB_CLEAR_NODE(&rp->c_node);
134 INIT_LIST_HEAD(&rp->c_lru);
135
136 memset(&rp->c_key, 0, sizeof(rp->c_key));
137 rp->c_key.k_xid = rqstp->rq_xid;
138 rp->c_key.k_proc = rqstp->rq_proc;
139 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
140 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
141 rp->c_key.k_prot = rqstp->rq_prot;
142 rp->c_key.k_vers = rqstp->rq_vers;
143 rp->c_key.k_len = rqstp->rq_arg.len;
144 rp->c_key.k_csum = csum;
145 }
146 return rp;
147}
148
149static void
150nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
151{
152 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
153 drc_mem_usage -= rp->c_replvec.iov_len;
154 kfree(rp->c_replvec.iov_base);
155 }
156 if (rp->c_state != RC_UNUSED) {
157 rb_erase(&rp->c_node, &b->rb_head);
158 list_del(&rp->c_lru);
159 atomic_dec(&num_drc_entries);
160 drc_mem_usage -= sizeof(*rp);
161 }
162 kmem_cache_free(drc_slab, rp);
163}
164
165static void
166nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
167{
168 spin_lock(&b->cache_lock);
169 nfsd_reply_cache_free_locked(b, rp);
170 spin_unlock(&b->cache_lock);
171}
172
173int nfsd_reply_cache_init(void)
174{
175 unsigned int hashsize;
176 unsigned int i;
177 int status = 0;
178
179 max_drc_entries = nfsd_cache_size_limit();
180 atomic_set(&num_drc_entries, 0);
181 hashsize = nfsd_hashsize(max_drc_entries);
182 maskbits = ilog2(hashsize);
183
184 status = register_shrinker(&nfsd_reply_cache_shrinker);
185 if (status)
186 return status;
187
188 drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
189 0, 0, NULL);
190 if (!drc_slab)
191 goto out_nomem;
192
193 drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL);
194 if (!drc_hashtbl) {
195 drc_hashtbl = vzalloc(array_size(hashsize,
196 sizeof(*drc_hashtbl)));
197 if (!drc_hashtbl)
198 goto out_nomem;
199 }
200
201 for (i = 0; i < hashsize; i++) {
202 INIT_LIST_HEAD(&drc_hashtbl[i].lru_head);
203 spin_lock_init(&drc_hashtbl[i].cache_lock);
204 }
205 drc_hashsize = hashsize;
206
207 return 0;
208out_nomem:
209 printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
210 nfsd_reply_cache_shutdown();
211 return -ENOMEM;
212}
213
214void nfsd_reply_cache_shutdown(void)
215{
216 struct svc_cacherep *rp;
217 unsigned int i;
218
219 unregister_shrinker(&nfsd_reply_cache_shrinker);
220
221 for (i = 0; i < drc_hashsize; i++) {
222 struct list_head *head = &drc_hashtbl[i].lru_head;
223 while (!list_empty(head)) {
224 rp = list_first_entry(head, struct svc_cacherep, c_lru);
225 nfsd_reply_cache_free_locked(&drc_hashtbl[i], rp);
226 }
227 }
228
229 kvfree(drc_hashtbl);
230 drc_hashtbl = NULL;
231 drc_hashsize = 0;
232
233 kmem_cache_destroy(drc_slab);
234 drc_slab = NULL;
235}
236
237/*
238 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
239 * not already scheduled.
240 */
241static void
242lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
243{
244 rp->c_timestamp = jiffies;
245 list_move_tail(&rp->c_lru, &b->lru_head);
246}
247
248static long
249prune_bucket(struct nfsd_drc_bucket *b)
250{
251 struct svc_cacherep *rp, *tmp;
252 long freed = 0;
253
254 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
255 /*
256 * Don't free entries attached to calls that are still
257 * in-progress, but do keep scanning the list.
258 */
259 if (rp->c_state == RC_INPROG)
260 continue;
261 if (atomic_read(&num_drc_entries) <= max_drc_entries &&
262 time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
263 break;
264 nfsd_reply_cache_free_locked(b, rp);
265 freed++;
266 }
267 return freed;
268}
269
270/*
271 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
272 * Also prune the oldest ones when the total exceeds the max number of entries.
273 */
274static long
275prune_cache_entries(void)
276{
277 unsigned int i;
278 long freed = 0;
279
280 for (i = 0; i < drc_hashsize; i++) {
281 struct nfsd_drc_bucket *b = &drc_hashtbl[i];
282
283 if (list_empty(&b->lru_head))
284 continue;
285 spin_lock(&b->cache_lock);
286 freed += prune_bucket(b);
287 spin_unlock(&b->cache_lock);
288 }
289 return freed;
290}
291
292static unsigned long
293nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
294{
295 return atomic_read(&num_drc_entries);
296}
297
298static unsigned long
299nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
300{
301 return prune_cache_entries();
302}
303/*
304 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
305 */
306static __wsum
307nfsd_cache_csum(struct svc_rqst *rqstp)
308{
309 int idx;
310 unsigned int base;
311 __wsum csum;
312 struct xdr_buf *buf = &rqstp->rq_arg;
313 const unsigned char *p = buf->head[0].iov_base;
314 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
315 RC_CSUMLEN);
316 size_t len = min(buf->head[0].iov_len, csum_len);
317
318 /* rq_arg.head first */
319 csum = csum_partial(p, len, 0);
320 csum_len -= len;
321
322 /* Continue into page array */
323 idx = buf->page_base / PAGE_SIZE;
324 base = buf->page_base & ~PAGE_MASK;
325 while (csum_len) {
326 p = page_address(buf->pages[idx]) + base;
327 len = min_t(size_t, PAGE_SIZE - base, csum_len);
328 csum = csum_partial(p, len, csum);
329 csum_len -= len;
330 base = 0;
331 ++idx;
332 }
333 return csum;
334}
335
336static int
337nfsd_cache_key_cmp(const struct svc_cacherep *key, const struct svc_cacherep *rp)
338{
339 if (key->c_key.k_xid == rp->c_key.k_xid &&
340 key->c_key.k_csum != rp->c_key.k_csum)
341 ++payload_misses;
342
343 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
344}
345
346/*
347 * Search the request hash for an entry that matches the given rqstp.
348 * Must be called with cache_lock held. Returns the found entry or
349 * inserts an empty key on failure.
350 */
351static struct svc_cacherep *
352nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key)
353{
354 struct svc_cacherep *rp, *ret = key;
355 struct rb_node **p = &b->rb_head.rb_node,
356 *parent = NULL;
357 unsigned int entries = 0;
358 int cmp;
359
360 while (*p != NULL) {
361 ++entries;
362 parent = *p;
363 rp = rb_entry(parent, struct svc_cacherep, c_node);
364
365 cmp = nfsd_cache_key_cmp(key, rp);
366 if (cmp < 0)
367 p = &parent->rb_left;
368 else if (cmp > 0)
369 p = &parent->rb_right;
370 else {
371 ret = rp;
372 goto out;
373 }
374 }
375 rb_link_node(&key->c_node, parent, p);
376 rb_insert_color(&key->c_node, &b->rb_head);
377out:
378 /* tally hash chain length stats */
379 if (entries > longest_chain) {
380 longest_chain = entries;
381 longest_chain_cachesize = atomic_read(&num_drc_entries);
382 } else if (entries == longest_chain) {
383 /* prefer to keep the smallest cachesize possible here */
384 longest_chain_cachesize = min_t(unsigned int,
385 longest_chain_cachesize,
386 atomic_read(&num_drc_entries));
387 }
388
389 lru_put_end(b, ret);
390 return ret;
391}
392
393/*
394 * Try to find an entry matching the current call in the cache. When none
395 * is found, we try to grab the oldest expired entry off the LRU list. If
396 * a suitable one isn't there, then drop the cache_lock and allocate a
397 * new one, then search again in case one got inserted while this thread
398 * didn't hold the lock.
399 */
400int
401nfsd_cache_lookup(struct svc_rqst *rqstp)
402{
403 struct svc_cacherep *rp, *found;
404 __be32 xid = rqstp->rq_xid;
405 __wsum csum;
406 u32 hash = nfsd_cache_hash(xid);
407 struct nfsd_drc_bucket *b = &drc_hashtbl[hash];
408 int type = rqstp->rq_cachetype;
409 int rtn = RC_DOIT;
410
411 rqstp->rq_cacherep = NULL;
412 if (type == RC_NOCACHE) {
413 nfsdstats.rcnocache++;
414 return rtn;
415 }
416
417 csum = nfsd_cache_csum(rqstp);
418
419 /*
420 * Since the common case is a cache miss followed by an insert,
421 * preallocate an entry.
422 */
423 rp = nfsd_reply_cache_alloc(rqstp, csum);
424 if (!rp) {
425 dprintk("nfsd: unable to allocate DRC entry!\n");
426 return rtn;
427 }
428
429 spin_lock(&b->cache_lock);
430 found = nfsd_cache_insert(b, rp);
431 if (found != rp) {
432 nfsd_reply_cache_free_locked(NULL, rp);
433 rp = found;
434 goto found_entry;
435 }
436
437 nfsdstats.rcmisses++;
438 rqstp->rq_cacherep = rp;
439 rp->c_state = RC_INPROG;
440
441 atomic_inc(&num_drc_entries);
442 drc_mem_usage += sizeof(*rp);
443
444 /* go ahead and prune the cache */
445 prune_bucket(b);
446 out:
447 spin_unlock(&b->cache_lock);
448 return rtn;
449
450found_entry:
451 /* We found a matching entry which is either in progress or done. */
452 nfsdstats.rchits++;
453 rtn = RC_DROPIT;
454
455 /* Request being processed */
456 if (rp->c_state == RC_INPROG)
457 goto out;
458
459 /* From the hall of fame of impractical attacks:
460 * Is this a user who tries to snoop on the cache? */
461 rtn = RC_DOIT;
462 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
463 goto out;
464
465 /* Compose RPC reply header */
466 switch (rp->c_type) {
467 case RC_NOCACHE:
468 break;
469 case RC_REPLSTAT:
470 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
471 rtn = RC_REPLY;
472 break;
473 case RC_REPLBUFF:
474 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
475 goto out; /* should not happen */
476 rtn = RC_REPLY;
477 break;
478 default:
479 printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
480 nfsd_reply_cache_free_locked(b, rp);
481 }
482
483 goto out;
484}
485
486/*
487 * Update a cache entry. This is called from nfsd_dispatch when
488 * the procedure has been executed and the complete reply is in
489 * rqstp->rq_res.
490 *
491 * We're copying around data here rather than swapping buffers because
492 * the toplevel loop requires max-sized buffers, which would be a waste
493 * of memory for a cache with a max reply size of 100 bytes (diropokres).
494 *
495 * If we should start to use different types of cache entries tailored
496 * specifically for attrstat and fh's, we may save even more space.
497 *
498 * Also note that a cachetype of RC_NOCACHE can legally be passed when
499 * nfsd failed to encode a reply that otherwise would have been cached.
500 * In this case, nfsd_cache_update is called with statp == NULL.
501 */
502void
503nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
504{
505 struct svc_cacherep *rp = rqstp->rq_cacherep;
506 struct kvec *resv = &rqstp->rq_res.head[0], *cachv;
507 u32 hash;
508 struct nfsd_drc_bucket *b;
509 int len;
510 size_t bufsize = 0;
511
512 if (!rp)
513 return;
514
515 hash = nfsd_cache_hash(rp->c_key.k_xid);
516 b = &drc_hashtbl[hash];
517
518 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
519 len >>= 2;
520
521 /* Don't cache excessive amounts of data and XDR failures */
522 if (!statp || len > (256 >> 2)) {
523 nfsd_reply_cache_free(b, rp);
524 return;
525 }
526
527 switch (cachetype) {
528 case RC_REPLSTAT:
529 if (len != 1)
530 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
531 rp->c_replstat = *statp;
532 break;
533 case RC_REPLBUFF:
534 cachv = &rp->c_replvec;
535 bufsize = len << 2;
536 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
537 if (!cachv->iov_base) {
538 nfsd_reply_cache_free(b, rp);
539 return;
540 }
541 cachv->iov_len = bufsize;
542 memcpy(cachv->iov_base, statp, bufsize);
543 break;
544 case RC_NOCACHE:
545 nfsd_reply_cache_free(b, rp);
546 return;
547 }
548 spin_lock(&b->cache_lock);
549 drc_mem_usage += bufsize;
550 lru_put_end(b, rp);
551 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
552 rp->c_type = cachetype;
553 rp->c_state = RC_DONE;
554 spin_unlock(&b->cache_lock);
555 return;
556}
557
558/*
559 * Copy cached reply to current reply buffer. Should always fit.
560 * FIXME as reply is in a page, we should just attach the page, and
561 * keep a refcount....
562 */
563static int
564nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
565{
566 struct kvec *vec = &rqstp->rq_res.head[0];
567
568 if (vec->iov_len + data->iov_len > PAGE_SIZE) {
569 printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
570 data->iov_len);
571 return 0;
572 }
573 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
574 vec->iov_len += data->iov_len;
575 return 1;
576}
577
578/*
579 * Note that fields may be added, removed or reordered in the future. Programs
580 * scraping this file for info should test the labels to ensure they're
581 * getting the correct field.
582 */
583static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
584{
585 seq_printf(m, "max entries: %u\n", max_drc_entries);
586 seq_printf(m, "num entries: %u\n",
587 atomic_read(&num_drc_entries));
588 seq_printf(m, "hash buckets: %u\n", 1 << maskbits);
589 seq_printf(m, "mem usage: %u\n", drc_mem_usage);
590 seq_printf(m, "cache hits: %u\n", nfsdstats.rchits);
591 seq_printf(m, "cache misses: %u\n", nfsdstats.rcmisses);
592 seq_printf(m, "not cached: %u\n", nfsdstats.rcnocache);
593 seq_printf(m, "payload misses: %u\n", payload_misses);
594 seq_printf(m, "longest chain len: %u\n", longest_chain);
595 seq_printf(m, "cachesize at longest: %u\n", longest_chain_cachesize);
596 return 0;
597}
598
599int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
600{
601 return single_open(file, nfsd_reply_cache_stats_show, NULL);
602}