nfs4.1: Add SP4_MACH_CRED stateid support
[linux-block.git] / fs / nfs / write.c
... / ...
CommitLineData
1/*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/mm.h>
12#include <linux/pagemap.h>
13#include <linux/file.h>
14#include <linux/writeback.h>
15#include <linux/swap.h>
16#include <linux/migrate.h>
17
18#include <linux/sunrpc/clnt.h>
19#include <linux/nfs_fs.h>
20#include <linux/nfs_mount.h>
21#include <linux/nfs_page.h>
22#include <linux/backing-dev.h>
23#include <linux/export.h>
24
25#include <asm/uaccess.h>
26
27#include "delegation.h"
28#include "internal.h"
29#include "iostat.h"
30#include "nfs4_fs.h"
31#include "fscache.h"
32#include "pnfs.h"
33
34#include "nfstrace.h"
35
36#define NFSDBG_FACILITY NFSDBG_PAGECACHE
37
38#define MIN_POOL_WRITE (32)
39#define MIN_POOL_COMMIT (4)
40
41/*
42 * Local function declarations
43 */
44static void nfs_redirty_request(struct nfs_page *req);
45static const struct rpc_call_ops nfs_write_common_ops;
46static const struct rpc_call_ops nfs_commit_ops;
47static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
48static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
49
50static struct kmem_cache *nfs_wdata_cachep;
51static mempool_t *nfs_wdata_mempool;
52static struct kmem_cache *nfs_cdata_cachep;
53static mempool_t *nfs_commit_mempool;
54
55struct nfs_commit_data *nfs_commitdata_alloc(void)
56{
57 struct nfs_commit_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
58
59 if (p) {
60 memset(p, 0, sizeof(*p));
61 INIT_LIST_HEAD(&p->pages);
62 }
63 return p;
64}
65EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
66
67void nfs_commit_free(struct nfs_commit_data *p)
68{
69 mempool_free(p, nfs_commit_mempool);
70}
71EXPORT_SYMBOL_GPL(nfs_commit_free);
72
73struct nfs_write_header *nfs_writehdr_alloc(void)
74{
75 struct nfs_write_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
76
77 if (p) {
78 struct nfs_pgio_header *hdr = &p->header;
79
80 memset(p, 0, sizeof(*p));
81 INIT_LIST_HEAD(&hdr->pages);
82 INIT_LIST_HEAD(&hdr->rpc_list);
83 spin_lock_init(&hdr->lock);
84 atomic_set(&hdr->refcnt, 0);
85 hdr->verf = &p->verf;
86 }
87 return p;
88}
89EXPORT_SYMBOL_GPL(nfs_writehdr_alloc);
90
91static struct nfs_write_data *nfs_writedata_alloc(struct nfs_pgio_header *hdr,
92 unsigned int pagecount)
93{
94 struct nfs_write_data *data, *prealloc;
95
96 prealloc = &container_of(hdr, struct nfs_write_header, header)->rpc_data;
97 if (prealloc->header == NULL)
98 data = prealloc;
99 else
100 data = kzalloc(sizeof(*data), GFP_KERNEL);
101 if (!data)
102 goto out;
103
104 if (nfs_pgarray_set(&data->pages, pagecount)) {
105 data->header = hdr;
106 atomic_inc(&hdr->refcnt);
107 } else {
108 if (data != prealloc)
109 kfree(data);
110 data = NULL;
111 }
112out:
113 return data;
114}
115
116void nfs_writehdr_free(struct nfs_pgio_header *hdr)
117{
118 struct nfs_write_header *whdr = container_of(hdr, struct nfs_write_header, header);
119 mempool_free(whdr, nfs_wdata_mempool);
120}
121EXPORT_SYMBOL_GPL(nfs_writehdr_free);
122
123void nfs_writedata_release(struct nfs_write_data *wdata)
124{
125 struct nfs_pgio_header *hdr = wdata->header;
126 struct nfs_write_header *write_header = container_of(hdr, struct nfs_write_header, header);
127
128 put_nfs_open_context(wdata->args.context);
129 if (wdata->pages.pagevec != wdata->pages.page_array)
130 kfree(wdata->pages.pagevec);
131 if (wdata == &write_header->rpc_data) {
132 wdata->header = NULL;
133 wdata = NULL;
134 }
135 if (atomic_dec_and_test(&hdr->refcnt))
136 hdr->completion_ops->completion(hdr);
137 /* Note: we only free the rpc_task after callbacks are done.
138 * See the comment in rpc_free_task() for why
139 */
140 kfree(wdata);
141}
142EXPORT_SYMBOL_GPL(nfs_writedata_release);
143
144static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
145{
146 ctx->error = error;
147 smp_wmb();
148 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
149}
150
151static struct nfs_page *
152nfs_page_find_request_locked(struct nfs_inode *nfsi, struct page *page)
153{
154 struct nfs_page *req = NULL;
155
156 if (PagePrivate(page))
157 req = (struct nfs_page *)page_private(page);
158 else if (unlikely(PageSwapCache(page))) {
159 struct nfs_page *freq, *t;
160
161 /* Linearly search the commit list for the correct req */
162 list_for_each_entry_safe(freq, t, &nfsi->commit_info.list, wb_list) {
163 if (freq->wb_page == page) {
164 req = freq;
165 break;
166 }
167 }
168 }
169
170 if (req)
171 kref_get(&req->wb_kref);
172
173 return req;
174}
175
176static struct nfs_page *nfs_page_find_request(struct page *page)
177{
178 struct inode *inode = page_file_mapping(page)->host;
179 struct nfs_page *req = NULL;
180
181 spin_lock(&inode->i_lock);
182 req = nfs_page_find_request_locked(NFS_I(inode), page);
183 spin_unlock(&inode->i_lock);
184 return req;
185}
186
187/* Adjust the file length if we're writing beyond the end */
188static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
189{
190 struct inode *inode = page_file_mapping(page)->host;
191 loff_t end, i_size;
192 pgoff_t end_index;
193
194 spin_lock(&inode->i_lock);
195 i_size = i_size_read(inode);
196 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
197 if (i_size > 0 && page_file_index(page) < end_index)
198 goto out;
199 end = page_file_offset(page) + ((loff_t)offset+count);
200 if (i_size >= end)
201 goto out;
202 i_size_write(inode, end);
203 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
204out:
205 spin_unlock(&inode->i_lock);
206}
207
208/* A writeback failed: mark the page as bad, and invalidate the page cache */
209static void nfs_set_pageerror(struct page *page)
210{
211 nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page));
212}
213
214/* We can set the PG_uptodate flag if we see that a write request
215 * covers the full page.
216 */
217static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
218{
219 if (PageUptodate(page))
220 return;
221 if (base != 0)
222 return;
223 if (count != nfs_page_length(page))
224 return;
225 SetPageUptodate(page);
226}
227
228static int wb_priority(struct writeback_control *wbc)
229{
230 if (wbc->for_reclaim)
231 return FLUSH_HIGHPRI | FLUSH_STABLE;
232 if (wbc->for_kupdate || wbc->for_background)
233 return FLUSH_LOWPRI | FLUSH_COND_STABLE;
234 return FLUSH_COND_STABLE;
235}
236
237/*
238 * NFS congestion control
239 */
240
241int nfs_congestion_kb;
242
243#define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
244#define NFS_CONGESTION_OFF_THRESH \
245 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
246
247static void nfs_set_page_writeback(struct page *page)
248{
249 struct nfs_server *nfss = NFS_SERVER(page_file_mapping(page)->host);
250 int ret = test_set_page_writeback(page);
251
252 WARN_ON_ONCE(ret != 0);
253
254 if (atomic_long_inc_return(&nfss->writeback) >
255 NFS_CONGESTION_ON_THRESH) {
256 set_bdi_congested(&nfss->backing_dev_info,
257 BLK_RW_ASYNC);
258 }
259}
260
261static void nfs_end_page_writeback(struct page *page)
262{
263 struct inode *inode = page_file_mapping(page)->host;
264 struct nfs_server *nfss = NFS_SERVER(inode);
265
266 end_page_writeback(page);
267 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
268 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
269}
270
271static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
272{
273 struct inode *inode = page_file_mapping(page)->host;
274 struct nfs_page *req;
275 int ret;
276
277 spin_lock(&inode->i_lock);
278 for (;;) {
279 req = nfs_page_find_request_locked(NFS_I(inode), page);
280 if (req == NULL)
281 break;
282 if (nfs_lock_request(req))
283 break;
284 /* Note: If we hold the page lock, as is the case in nfs_writepage,
285 * then the call to nfs_lock_request() will always
286 * succeed provided that someone hasn't already marked the
287 * request as dirty (in which case we don't care).
288 */
289 spin_unlock(&inode->i_lock);
290 if (!nonblock)
291 ret = nfs_wait_on_request(req);
292 else
293 ret = -EAGAIN;
294 nfs_release_request(req);
295 if (ret != 0)
296 return ERR_PTR(ret);
297 spin_lock(&inode->i_lock);
298 }
299 spin_unlock(&inode->i_lock);
300 return req;
301}
302
303/*
304 * Find an associated nfs write request, and prepare to flush it out
305 * May return an error if the user signalled nfs_wait_on_request().
306 */
307static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
308 struct page *page, bool nonblock)
309{
310 struct nfs_page *req;
311 int ret = 0;
312
313 req = nfs_find_and_lock_request(page, nonblock);
314 if (!req)
315 goto out;
316 ret = PTR_ERR(req);
317 if (IS_ERR(req))
318 goto out;
319
320 nfs_set_page_writeback(page);
321 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
322
323 ret = 0;
324 if (!nfs_pageio_add_request(pgio, req)) {
325 nfs_redirty_request(req);
326 ret = pgio->pg_error;
327 }
328out:
329 return ret;
330}
331
332static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
333{
334 struct inode *inode = page_file_mapping(page)->host;
335 int ret;
336
337 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
338 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
339
340 nfs_pageio_cond_complete(pgio, page_file_index(page));
341 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
342 if (ret == -EAGAIN) {
343 redirty_page_for_writepage(wbc, page);
344 ret = 0;
345 }
346 return ret;
347}
348
349/*
350 * Write an mmapped page to the server.
351 */
352static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
353{
354 struct nfs_pageio_descriptor pgio;
355 int err;
356
357 NFS_PROTO(page_file_mapping(page)->host)->write_pageio_init(&pgio,
358 page->mapping->host,
359 wb_priority(wbc),
360 &nfs_async_write_completion_ops);
361 err = nfs_do_writepage(page, wbc, &pgio);
362 nfs_pageio_complete(&pgio);
363 if (err < 0)
364 return err;
365 if (pgio.pg_error < 0)
366 return pgio.pg_error;
367 return 0;
368}
369
370int nfs_writepage(struct page *page, struct writeback_control *wbc)
371{
372 int ret;
373
374 ret = nfs_writepage_locked(page, wbc);
375 unlock_page(page);
376 return ret;
377}
378
379static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
380{
381 int ret;
382
383 ret = nfs_do_writepage(page, wbc, data);
384 unlock_page(page);
385 return ret;
386}
387
388int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
389{
390 struct inode *inode = mapping->host;
391 unsigned long *bitlock = &NFS_I(inode)->flags;
392 struct nfs_pageio_descriptor pgio;
393 int err;
394
395 /* Stop dirtying of new pages while we sync */
396 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
397 nfs_wait_bit_killable, TASK_KILLABLE);
398 if (err)
399 goto out_err;
400
401 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
402
403 NFS_PROTO(inode)->write_pageio_init(&pgio, inode, wb_priority(wbc), &nfs_async_write_completion_ops);
404 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
405 nfs_pageio_complete(&pgio);
406
407 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
408 smp_mb__after_clear_bit();
409 wake_up_bit(bitlock, NFS_INO_FLUSHING);
410
411 if (err < 0)
412 goto out_err;
413 err = pgio.pg_error;
414 if (err < 0)
415 goto out_err;
416 return 0;
417out_err:
418 return err;
419}
420
421/*
422 * Insert a write request into an inode
423 */
424static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
425{
426 struct nfs_inode *nfsi = NFS_I(inode);
427
428 /* Lock the request! */
429 nfs_lock_request(req);
430
431 spin_lock(&inode->i_lock);
432 if (!nfsi->npages && NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
433 inode->i_version++;
434 /*
435 * Swap-space should not get truncated. Hence no need to plug the race
436 * with invalidate/truncate.
437 */
438 if (likely(!PageSwapCache(req->wb_page))) {
439 set_bit(PG_MAPPED, &req->wb_flags);
440 SetPagePrivate(req->wb_page);
441 set_page_private(req->wb_page, (unsigned long)req);
442 }
443 nfsi->npages++;
444 kref_get(&req->wb_kref);
445 spin_unlock(&inode->i_lock);
446}
447
448/*
449 * Remove a write request from an inode
450 */
451static void nfs_inode_remove_request(struct nfs_page *req)
452{
453 struct inode *inode = req->wb_context->dentry->d_inode;
454 struct nfs_inode *nfsi = NFS_I(inode);
455
456 spin_lock(&inode->i_lock);
457 if (likely(!PageSwapCache(req->wb_page))) {
458 set_page_private(req->wb_page, 0);
459 ClearPagePrivate(req->wb_page);
460 clear_bit(PG_MAPPED, &req->wb_flags);
461 }
462 nfsi->npages--;
463 spin_unlock(&inode->i_lock);
464 nfs_release_request(req);
465}
466
467static void
468nfs_mark_request_dirty(struct nfs_page *req)
469{
470 __set_page_dirty_nobuffers(req->wb_page);
471}
472
473#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
474/**
475 * nfs_request_add_commit_list - add request to a commit list
476 * @req: pointer to a struct nfs_page
477 * @dst: commit list head
478 * @cinfo: holds list lock and accounting info
479 *
480 * This sets the PG_CLEAN bit, updates the cinfo count of
481 * number of outstanding requests requiring a commit as well as
482 * the MM page stats.
483 *
484 * The caller must _not_ hold the cinfo->lock, but must be
485 * holding the nfs_page lock.
486 */
487void
488nfs_request_add_commit_list(struct nfs_page *req, struct list_head *dst,
489 struct nfs_commit_info *cinfo)
490{
491 set_bit(PG_CLEAN, &(req)->wb_flags);
492 spin_lock(cinfo->lock);
493 nfs_list_add_request(req, dst);
494 cinfo->mds->ncommit++;
495 spin_unlock(cinfo->lock);
496 if (!cinfo->dreq) {
497 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
498 inc_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info,
499 BDI_RECLAIMABLE);
500 __mark_inode_dirty(req->wb_context->dentry->d_inode,
501 I_DIRTY_DATASYNC);
502 }
503}
504EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
505
506/**
507 * nfs_request_remove_commit_list - Remove request from a commit list
508 * @req: pointer to a nfs_page
509 * @cinfo: holds list lock and accounting info
510 *
511 * This clears the PG_CLEAN bit, and updates the cinfo's count of
512 * number of outstanding requests requiring a commit
513 * It does not update the MM page stats.
514 *
515 * The caller _must_ hold the cinfo->lock and the nfs_page lock.
516 */
517void
518nfs_request_remove_commit_list(struct nfs_page *req,
519 struct nfs_commit_info *cinfo)
520{
521 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
522 return;
523 nfs_list_remove_request(req);
524 cinfo->mds->ncommit--;
525}
526EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
527
528static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
529 struct inode *inode)
530{
531 cinfo->lock = &inode->i_lock;
532 cinfo->mds = &NFS_I(inode)->commit_info;
533 cinfo->ds = pnfs_get_ds_info(inode);
534 cinfo->dreq = NULL;
535 cinfo->completion_ops = &nfs_commit_completion_ops;
536}
537
538void nfs_init_cinfo(struct nfs_commit_info *cinfo,
539 struct inode *inode,
540 struct nfs_direct_req *dreq)
541{
542 if (dreq)
543 nfs_init_cinfo_from_dreq(cinfo, dreq);
544 else
545 nfs_init_cinfo_from_inode(cinfo, inode);
546}
547EXPORT_SYMBOL_GPL(nfs_init_cinfo);
548
549/*
550 * Add a request to the inode's commit list.
551 */
552void
553nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
554 struct nfs_commit_info *cinfo)
555{
556 if (pnfs_mark_request_commit(req, lseg, cinfo))
557 return;
558 nfs_request_add_commit_list(req, &cinfo->mds->list, cinfo);
559}
560
561static void
562nfs_clear_page_commit(struct page *page)
563{
564 dec_zone_page_state(page, NR_UNSTABLE_NFS);
565 dec_bdi_stat(page_file_mapping(page)->backing_dev_info, BDI_RECLAIMABLE);
566}
567
568static void
569nfs_clear_request_commit(struct nfs_page *req)
570{
571 if (test_bit(PG_CLEAN, &req->wb_flags)) {
572 struct inode *inode = req->wb_context->dentry->d_inode;
573 struct nfs_commit_info cinfo;
574
575 nfs_init_cinfo_from_inode(&cinfo, inode);
576 if (!pnfs_clear_request_commit(req, &cinfo)) {
577 spin_lock(cinfo.lock);
578 nfs_request_remove_commit_list(req, &cinfo);
579 spin_unlock(cinfo.lock);
580 }
581 nfs_clear_page_commit(req->wb_page);
582 }
583}
584
585static inline
586int nfs_write_need_commit(struct nfs_write_data *data)
587{
588 if (data->verf.committed == NFS_DATA_SYNC)
589 return data->header->lseg == NULL;
590 return data->verf.committed != NFS_FILE_SYNC;
591}
592
593#else
594static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
595 struct inode *inode)
596{
597}
598
599void nfs_init_cinfo(struct nfs_commit_info *cinfo,
600 struct inode *inode,
601 struct nfs_direct_req *dreq)
602{
603}
604
605void
606nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
607 struct nfs_commit_info *cinfo)
608{
609}
610
611static void
612nfs_clear_request_commit(struct nfs_page *req)
613{
614}
615
616static inline
617int nfs_write_need_commit(struct nfs_write_data *data)
618{
619 return 0;
620}
621
622#endif
623
624static void nfs_write_completion(struct nfs_pgio_header *hdr)
625{
626 struct nfs_commit_info cinfo;
627 unsigned long bytes = 0;
628
629 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
630 goto out;
631 nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
632 while (!list_empty(&hdr->pages)) {
633 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
634
635 bytes += req->wb_bytes;
636 nfs_list_remove_request(req);
637 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
638 (hdr->good_bytes < bytes)) {
639 nfs_set_pageerror(req->wb_page);
640 nfs_context_set_write_error(req->wb_context, hdr->error);
641 goto remove_req;
642 }
643 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
644 nfs_mark_request_dirty(req);
645 goto next;
646 }
647 if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
648 memcpy(&req->wb_verf, &hdr->verf->verifier, sizeof(req->wb_verf));
649 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
650 goto next;
651 }
652remove_req:
653 nfs_inode_remove_request(req);
654next:
655 nfs_unlock_request(req);
656 nfs_end_page_writeback(req->wb_page);
657 nfs_release_request(req);
658 }
659out:
660 hdr->release(hdr);
661}
662
663#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
664static unsigned long
665nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
666{
667 return cinfo->mds->ncommit;
668}
669
670/* cinfo->lock held by caller */
671int
672nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
673 struct nfs_commit_info *cinfo, int max)
674{
675 struct nfs_page *req, *tmp;
676 int ret = 0;
677
678 list_for_each_entry_safe(req, tmp, src, wb_list) {
679 if (!nfs_lock_request(req))
680 continue;
681 kref_get(&req->wb_kref);
682 if (cond_resched_lock(cinfo->lock))
683 list_safe_reset_next(req, tmp, wb_list);
684 nfs_request_remove_commit_list(req, cinfo);
685 nfs_list_add_request(req, dst);
686 ret++;
687 if ((ret == max) && !cinfo->dreq)
688 break;
689 }
690 return ret;
691}
692
693/*
694 * nfs_scan_commit - Scan an inode for commit requests
695 * @inode: NFS inode to scan
696 * @dst: mds destination list
697 * @cinfo: mds and ds lists of reqs ready to commit
698 *
699 * Moves requests from the inode's 'commit' request list.
700 * The requests are *not* checked to ensure that they form a contiguous set.
701 */
702int
703nfs_scan_commit(struct inode *inode, struct list_head *dst,
704 struct nfs_commit_info *cinfo)
705{
706 int ret = 0;
707
708 spin_lock(cinfo->lock);
709 if (cinfo->mds->ncommit > 0) {
710 const int max = INT_MAX;
711
712 ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
713 cinfo, max);
714 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
715 }
716 spin_unlock(cinfo->lock);
717 return ret;
718}
719
720#else
721static unsigned long nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
722{
723 return 0;
724}
725
726int nfs_scan_commit(struct inode *inode, struct list_head *dst,
727 struct nfs_commit_info *cinfo)
728{
729 return 0;
730}
731#endif
732
733/*
734 * Search for an existing write request, and attempt to update
735 * it to reflect a new dirty region on a given page.
736 *
737 * If the attempt fails, then the existing request is flushed out
738 * to disk.
739 */
740static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
741 struct page *page,
742 unsigned int offset,
743 unsigned int bytes)
744{
745 struct nfs_page *req;
746 unsigned int rqend;
747 unsigned int end;
748 int error;
749
750 if (!PagePrivate(page))
751 return NULL;
752
753 end = offset + bytes;
754 spin_lock(&inode->i_lock);
755
756 for (;;) {
757 req = nfs_page_find_request_locked(NFS_I(inode), page);
758 if (req == NULL)
759 goto out_unlock;
760
761 rqend = req->wb_offset + req->wb_bytes;
762 /*
763 * Tell the caller to flush out the request if
764 * the offsets are non-contiguous.
765 * Note: nfs_flush_incompatible() will already
766 * have flushed out requests having wrong owners.
767 */
768 if (offset > rqend
769 || end < req->wb_offset)
770 goto out_flushme;
771
772 if (nfs_lock_request(req))
773 break;
774
775 /* The request is locked, so wait and then retry */
776 spin_unlock(&inode->i_lock);
777 error = nfs_wait_on_request(req);
778 nfs_release_request(req);
779 if (error != 0)
780 goto out_err;
781 spin_lock(&inode->i_lock);
782 }
783
784 /* Okay, the request matches. Update the region */
785 if (offset < req->wb_offset) {
786 req->wb_offset = offset;
787 req->wb_pgbase = offset;
788 }
789 if (end > rqend)
790 req->wb_bytes = end - req->wb_offset;
791 else
792 req->wb_bytes = rqend - req->wb_offset;
793out_unlock:
794 spin_unlock(&inode->i_lock);
795 if (req)
796 nfs_clear_request_commit(req);
797 return req;
798out_flushme:
799 spin_unlock(&inode->i_lock);
800 nfs_release_request(req);
801 error = nfs_wb_page(inode, page);
802out_err:
803 return ERR_PTR(error);
804}
805
806/*
807 * Try to update an existing write request, or create one if there is none.
808 *
809 * Note: Should always be called with the Page Lock held to prevent races
810 * if we have to add a new request. Also assumes that the caller has
811 * already called nfs_flush_incompatible() if necessary.
812 */
813static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
814 struct page *page, unsigned int offset, unsigned int bytes)
815{
816 struct inode *inode = page_file_mapping(page)->host;
817 struct nfs_page *req;
818
819 req = nfs_try_to_update_request(inode, page, offset, bytes);
820 if (req != NULL)
821 goto out;
822 req = nfs_create_request(ctx, inode, page, offset, bytes);
823 if (IS_ERR(req))
824 goto out;
825 nfs_inode_add_request(inode, req);
826out:
827 return req;
828}
829
830static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
831 unsigned int offset, unsigned int count)
832{
833 struct nfs_page *req;
834
835 req = nfs_setup_write_request(ctx, page, offset, count);
836 if (IS_ERR(req))
837 return PTR_ERR(req);
838 /* Update file length */
839 nfs_grow_file(page, offset, count);
840 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
841 nfs_mark_request_dirty(req);
842 nfs_unlock_and_release_request(req);
843 return 0;
844}
845
846int nfs_flush_incompatible(struct file *file, struct page *page)
847{
848 struct nfs_open_context *ctx = nfs_file_open_context(file);
849 struct nfs_lock_context *l_ctx;
850 struct nfs_page *req;
851 int do_flush, status;
852 /*
853 * Look for a request corresponding to this page. If there
854 * is one, and it belongs to another file, we flush it out
855 * before we try to copy anything into the page. Do this
856 * due to the lack of an ACCESS-type call in NFSv2.
857 * Also do the same if we find a request from an existing
858 * dropped page.
859 */
860 do {
861 req = nfs_page_find_request(page);
862 if (req == NULL)
863 return 0;
864 l_ctx = req->wb_lock_context;
865 do_flush = req->wb_page != page || req->wb_context != ctx;
866 if (l_ctx) {
867 do_flush |= l_ctx->lockowner.l_owner != current->files
868 || l_ctx->lockowner.l_pid != current->tgid;
869 }
870 nfs_release_request(req);
871 if (!do_flush)
872 return 0;
873 status = nfs_wb_page(page_file_mapping(page)->host, page);
874 } while (status == 0);
875 return status;
876}
877
878/*
879 * Avoid buffered writes when a open context credential's key would
880 * expire soon.
881 *
882 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
883 *
884 * Return 0 and set a credential flag which triggers the inode to flush
885 * and performs NFS_FILE_SYNC writes if the key will expired within
886 * RPC_KEY_EXPIRE_TIMEO.
887 */
888int
889nfs_key_timeout_notify(struct file *filp, struct inode *inode)
890{
891 struct nfs_open_context *ctx = nfs_file_open_context(filp);
892 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
893
894 return rpcauth_key_timeout_notify(auth, ctx->cred);
895}
896
897/*
898 * Test if the open context credential key is marked to expire soon.
899 */
900bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx)
901{
902 return rpcauth_cred_key_to_expire(ctx->cred);
903}
904
905/*
906 * If the page cache is marked as unsafe or invalid, then we can't rely on
907 * the PageUptodate() flag. In this case, we will need to turn off
908 * write optimisations that depend on the page contents being correct.
909 */
910static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
911{
912 if (nfs_have_delegated_attributes(inode))
913 goto out;
914 if (NFS_I(inode)->cache_validity & (NFS_INO_INVALID_DATA|NFS_INO_REVAL_PAGECACHE))
915 return false;
916out:
917 return PageUptodate(page) != 0;
918}
919
920/* If we know the page is up to date, and we're not using byte range locks (or
921 * if we have the whole file locked for writing), it may be more efficient to
922 * extend the write to cover the entire page in order to avoid fragmentation
923 * inefficiencies.
924 *
925 * If the file is opened for synchronous writes or if we have a write delegation
926 * from the server then we can just skip the rest of the checks.
927 */
928static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
929{
930 if (file->f_flags & O_DSYNC)
931 return 0;
932 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
933 return 1;
934 if (nfs_write_pageuptodate(page, inode) && (inode->i_flock == NULL ||
935 (inode->i_flock->fl_start == 0 &&
936 inode->i_flock->fl_end == OFFSET_MAX &&
937 inode->i_flock->fl_type != F_RDLCK)))
938 return 1;
939 return 0;
940}
941
942/*
943 * Update and possibly write a cached page of an NFS file.
944 *
945 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
946 * things with a page scheduled for an RPC call (e.g. invalidate it).
947 */
948int nfs_updatepage(struct file *file, struct page *page,
949 unsigned int offset, unsigned int count)
950{
951 struct nfs_open_context *ctx = nfs_file_open_context(file);
952 struct inode *inode = page_file_mapping(page)->host;
953 int status = 0;
954
955 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
956
957 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
958 file->f_path.dentry->d_parent->d_name.name,
959 file->f_path.dentry->d_name.name, count,
960 (long long)(page_file_offset(page) + offset));
961
962 if (nfs_can_extend_write(file, page, inode)) {
963 count = max(count + offset, nfs_page_length(page));
964 offset = 0;
965 }
966
967 status = nfs_writepage_setup(ctx, page, offset, count);
968 if (status < 0)
969 nfs_set_pageerror(page);
970 else
971 __set_page_dirty_nobuffers(page);
972
973 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
974 status, (long long)i_size_read(inode));
975 return status;
976}
977
978static int flush_task_priority(int how)
979{
980 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
981 case FLUSH_HIGHPRI:
982 return RPC_PRIORITY_HIGH;
983 case FLUSH_LOWPRI:
984 return RPC_PRIORITY_LOW;
985 }
986 return RPC_PRIORITY_NORMAL;
987}
988
989int nfs_initiate_write(struct rpc_clnt *clnt,
990 struct nfs_write_data *data,
991 const struct rpc_call_ops *call_ops,
992 int how, int flags)
993{
994 struct inode *inode = data->header->inode;
995 int priority = flush_task_priority(how);
996 struct rpc_task *task;
997 struct rpc_message msg = {
998 .rpc_argp = &data->args,
999 .rpc_resp = &data->res,
1000 .rpc_cred = data->header->cred,
1001 };
1002 struct rpc_task_setup task_setup_data = {
1003 .rpc_client = clnt,
1004 .task = &data->task,
1005 .rpc_message = &msg,
1006 .callback_ops = call_ops,
1007 .callback_data = data,
1008 .workqueue = nfsiod_workqueue,
1009 .flags = RPC_TASK_ASYNC | flags,
1010 .priority = priority,
1011 };
1012 int ret = 0;
1013
1014 /* Set up the initial task struct. */
1015 NFS_PROTO(inode)->write_setup(data, &msg);
1016
1017 dprintk("NFS: %5u initiated write call "
1018 "(req %s/%lld, %u bytes @ offset %llu)\n",
1019 data->task.tk_pid,
1020 inode->i_sb->s_id,
1021 (long long)NFS_FILEID(inode),
1022 data->args.count,
1023 (unsigned long long)data->args.offset);
1024
1025 task = rpc_run_task(&task_setup_data);
1026 if (IS_ERR(task)) {
1027 ret = PTR_ERR(task);
1028 goto out;
1029 }
1030 if (how & FLUSH_SYNC) {
1031 ret = rpc_wait_for_completion_task(task);
1032 if (ret == 0)
1033 ret = task->tk_status;
1034 }
1035 rpc_put_task(task);
1036out:
1037 return ret;
1038}
1039EXPORT_SYMBOL_GPL(nfs_initiate_write);
1040
1041/*
1042 * Set up the argument/result storage required for the RPC call.
1043 */
1044static void nfs_write_rpcsetup(struct nfs_write_data *data,
1045 unsigned int count, unsigned int offset,
1046 int how, struct nfs_commit_info *cinfo)
1047{
1048 struct nfs_page *req = data->header->req;
1049
1050 /* Set up the RPC argument and reply structs
1051 * NB: take care not to mess about with data->commit et al. */
1052
1053 data->args.fh = NFS_FH(data->header->inode);
1054 data->args.offset = req_offset(req) + offset;
1055 /* pnfs_set_layoutcommit needs this */
1056 data->mds_offset = data->args.offset;
1057 data->args.pgbase = req->wb_pgbase + offset;
1058 data->args.pages = data->pages.pagevec;
1059 data->args.count = count;
1060 data->args.context = get_nfs_open_context(req->wb_context);
1061 data->args.lock_context = req->wb_lock_context;
1062 data->args.stable = NFS_UNSTABLE;
1063 switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
1064 case 0:
1065 break;
1066 case FLUSH_COND_STABLE:
1067 if (nfs_reqs_to_commit(cinfo))
1068 break;
1069 default:
1070 data->args.stable = NFS_FILE_SYNC;
1071 }
1072
1073 data->res.fattr = &data->fattr;
1074 data->res.count = count;
1075 data->res.verf = &data->verf;
1076 nfs_fattr_init(&data->fattr);
1077}
1078
1079static int nfs_do_write(struct nfs_write_data *data,
1080 const struct rpc_call_ops *call_ops,
1081 int how)
1082{
1083 struct inode *inode = data->header->inode;
1084
1085 return nfs_initiate_write(NFS_CLIENT(inode), data, call_ops, how, 0);
1086}
1087
1088static int nfs_do_multiple_writes(struct list_head *head,
1089 const struct rpc_call_ops *call_ops,
1090 int how)
1091{
1092 struct nfs_write_data *data;
1093 int ret = 0;
1094
1095 while (!list_empty(head)) {
1096 int ret2;
1097
1098 data = list_first_entry(head, struct nfs_write_data, list);
1099 list_del_init(&data->list);
1100
1101 ret2 = nfs_do_write(data, call_ops, how);
1102 if (ret == 0)
1103 ret = ret2;
1104 }
1105 return ret;
1106}
1107
1108/* If a nfs_flush_* function fails, it should remove reqs from @head and
1109 * call this on each, which will prepare them to be retried on next
1110 * writeback using standard nfs.
1111 */
1112static void nfs_redirty_request(struct nfs_page *req)
1113{
1114 nfs_mark_request_dirty(req);
1115 nfs_unlock_request(req);
1116 nfs_end_page_writeback(req->wb_page);
1117 nfs_release_request(req);
1118}
1119
1120static void nfs_async_write_error(struct list_head *head)
1121{
1122 struct nfs_page *req;
1123
1124 while (!list_empty(head)) {
1125 req = nfs_list_entry(head->next);
1126 nfs_list_remove_request(req);
1127 nfs_redirty_request(req);
1128 }
1129}
1130
1131static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1132 .error_cleanup = nfs_async_write_error,
1133 .completion = nfs_write_completion,
1134};
1135
1136static void nfs_flush_error(struct nfs_pageio_descriptor *desc,
1137 struct nfs_pgio_header *hdr)
1138{
1139 set_bit(NFS_IOHDR_REDO, &hdr->flags);
1140 while (!list_empty(&hdr->rpc_list)) {
1141 struct nfs_write_data *data = list_first_entry(&hdr->rpc_list,
1142 struct nfs_write_data, list);
1143 list_del(&data->list);
1144 nfs_writedata_release(data);
1145 }
1146 desc->pg_completion_ops->error_cleanup(&desc->pg_list);
1147}
1148
1149/*
1150 * Generate multiple small requests to write out a single
1151 * contiguous dirty area on one page.
1152 */
1153static int nfs_flush_multi(struct nfs_pageio_descriptor *desc,
1154 struct nfs_pgio_header *hdr)
1155{
1156 struct nfs_page *req = hdr->req;
1157 struct page *page = req->wb_page;
1158 struct nfs_write_data *data;
1159 size_t wsize = desc->pg_bsize, nbytes;
1160 unsigned int offset;
1161 int requests = 0;
1162 struct nfs_commit_info cinfo;
1163
1164 nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq);
1165
1166 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1167 (desc->pg_moreio || nfs_reqs_to_commit(&cinfo) ||
1168 desc->pg_count > wsize))
1169 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1170
1171
1172 offset = 0;
1173 nbytes = desc->pg_count;
1174 do {
1175 size_t len = min(nbytes, wsize);
1176
1177 data = nfs_writedata_alloc(hdr, 1);
1178 if (!data) {
1179 nfs_flush_error(desc, hdr);
1180 return -ENOMEM;
1181 }
1182 data->pages.pagevec[0] = page;
1183 nfs_write_rpcsetup(data, len, offset, desc->pg_ioflags, &cinfo);
1184 list_add(&data->list, &hdr->rpc_list);
1185 requests++;
1186 nbytes -= len;
1187 offset += len;
1188 } while (nbytes != 0);
1189 nfs_list_remove_request(req);
1190 nfs_list_add_request(req, &hdr->pages);
1191 desc->pg_rpc_callops = &nfs_write_common_ops;
1192 return 0;
1193}
1194
1195/*
1196 * Create an RPC task for the given write request and kick it.
1197 * The page must have been locked by the caller.
1198 *
1199 * It may happen that the page we're passed is not marked dirty.
1200 * This is the case if nfs_updatepage detects a conflicting request
1201 * that has been written but not committed.
1202 */
1203static int nfs_flush_one(struct nfs_pageio_descriptor *desc,
1204 struct nfs_pgio_header *hdr)
1205{
1206 struct nfs_page *req;
1207 struct page **pages;
1208 struct nfs_write_data *data;
1209 struct list_head *head = &desc->pg_list;
1210 struct nfs_commit_info cinfo;
1211
1212 data = nfs_writedata_alloc(hdr, nfs_page_array_len(desc->pg_base,
1213 desc->pg_count));
1214 if (!data) {
1215 nfs_flush_error(desc, hdr);
1216 return -ENOMEM;
1217 }
1218
1219 nfs_init_cinfo(&cinfo, desc->pg_inode, desc->pg_dreq);
1220 pages = data->pages.pagevec;
1221 while (!list_empty(head)) {
1222 req = nfs_list_entry(head->next);
1223 nfs_list_remove_request(req);
1224 nfs_list_add_request(req, &hdr->pages);
1225 *pages++ = req->wb_page;
1226 }
1227
1228 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1229 (desc->pg_moreio || nfs_reqs_to_commit(&cinfo)))
1230 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1231
1232 /* Set up the argument struct */
1233 nfs_write_rpcsetup(data, desc->pg_count, 0, desc->pg_ioflags, &cinfo);
1234 list_add(&data->list, &hdr->rpc_list);
1235 desc->pg_rpc_callops = &nfs_write_common_ops;
1236 return 0;
1237}
1238
1239int nfs_generic_flush(struct nfs_pageio_descriptor *desc,
1240 struct nfs_pgio_header *hdr)
1241{
1242 if (desc->pg_bsize < PAGE_CACHE_SIZE)
1243 return nfs_flush_multi(desc, hdr);
1244 return nfs_flush_one(desc, hdr);
1245}
1246EXPORT_SYMBOL_GPL(nfs_generic_flush);
1247
1248static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1249{
1250 struct nfs_write_header *whdr;
1251 struct nfs_pgio_header *hdr;
1252 int ret;
1253
1254 whdr = nfs_writehdr_alloc();
1255 if (!whdr) {
1256 desc->pg_completion_ops->error_cleanup(&desc->pg_list);
1257 return -ENOMEM;
1258 }
1259 hdr = &whdr->header;
1260 nfs_pgheader_init(desc, hdr, nfs_writehdr_free);
1261 atomic_inc(&hdr->refcnt);
1262 ret = nfs_generic_flush(desc, hdr);
1263 if (ret == 0)
1264 ret = nfs_do_multiple_writes(&hdr->rpc_list,
1265 desc->pg_rpc_callops,
1266 desc->pg_ioflags);
1267 if (atomic_dec_and_test(&hdr->refcnt))
1268 hdr->completion_ops->completion(hdr);
1269 return ret;
1270}
1271
1272static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1273 .pg_test = nfs_generic_pg_test,
1274 .pg_doio = nfs_generic_pg_writepages,
1275};
1276
1277void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1278 struct inode *inode, int ioflags,
1279 const struct nfs_pgio_completion_ops *compl_ops)
1280{
1281 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops, compl_ops,
1282 NFS_SERVER(inode)->wsize, ioflags);
1283}
1284EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1285
1286void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1287{
1288 pgio->pg_ops = &nfs_pageio_write_ops;
1289 pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1290}
1291EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1292
1293
1294void nfs_write_prepare(struct rpc_task *task, void *calldata)
1295{
1296 struct nfs_write_data *data = calldata;
1297 int err;
1298 err = NFS_PROTO(data->header->inode)->write_rpc_prepare(task, data);
1299 if (err)
1300 rpc_exit(task, err);
1301}
1302
1303void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1304{
1305 struct nfs_commit_data *data = calldata;
1306
1307 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1308}
1309
1310/*
1311 * Handle a write reply that flushes a whole page.
1312 *
1313 * FIXME: There is an inherent race with invalidate_inode_pages and
1314 * writebacks since the page->count is kept > 1 for as long
1315 * as the page has a write request pending.
1316 */
1317static void nfs_writeback_done_common(struct rpc_task *task, void *calldata)
1318{
1319 struct nfs_write_data *data = calldata;
1320
1321 nfs_writeback_done(task, data);
1322}
1323
1324static void nfs_writeback_release_common(void *calldata)
1325{
1326 struct nfs_write_data *data = calldata;
1327 struct nfs_pgio_header *hdr = data->header;
1328 int status = data->task.tk_status;
1329
1330 if ((status >= 0) && nfs_write_need_commit(data)) {
1331 spin_lock(&hdr->lock);
1332 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags))
1333 ; /* Do nothing */
1334 else if (!test_and_set_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags))
1335 memcpy(hdr->verf, &data->verf, sizeof(*hdr->verf));
1336 else if (memcmp(hdr->verf, &data->verf, sizeof(*hdr->verf)))
1337 set_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags);
1338 spin_unlock(&hdr->lock);
1339 }
1340 nfs_writedata_release(data);
1341}
1342
1343static const struct rpc_call_ops nfs_write_common_ops = {
1344 .rpc_call_prepare = nfs_write_prepare,
1345 .rpc_call_done = nfs_writeback_done_common,
1346 .rpc_release = nfs_writeback_release_common,
1347};
1348
1349
1350/*
1351 * This function is called when the WRITE call is complete.
1352 */
1353void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1354{
1355 struct nfs_writeargs *argp = &data->args;
1356 struct nfs_writeres *resp = &data->res;
1357 struct inode *inode = data->header->inode;
1358 int status;
1359
1360 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1361 task->tk_pid, task->tk_status);
1362
1363 /*
1364 * ->write_done will attempt to use post-op attributes to detect
1365 * conflicting writes by other clients. A strict interpretation
1366 * of close-to-open would allow us to continue caching even if
1367 * another writer had changed the file, but some applications
1368 * depend on tighter cache coherency when writing.
1369 */
1370 status = NFS_PROTO(inode)->write_done(task, data);
1371 if (status != 0)
1372 return;
1373 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1374
1375#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
1376 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1377 /* We tried a write call, but the server did not
1378 * commit data to stable storage even though we
1379 * requested it.
1380 * Note: There is a known bug in Tru64 < 5.0 in which
1381 * the server reports NFS_DATA_SYNC, but performs
1382 * NFS_FILE_SYNC. We therefore implement this checking
1383 * as a dprintk() in order to avoid filling syslog.
1384 */
1385 static unsigned long complain;
1386
1387 /* Note this will print the MDS for a DS write */
1388 if (time_before(complain, jiffies)) {
1389 dprintk("NFS: faulty NFS server %s:"
1390 " (committed = %d) != (stable = %d)\n",
1391 NFS_SERVER(inode)->nfs_client->cl_hostname,
1392 resp->verf->committed, argp->stable);
1393 complain = jiffies + 300 * HZ;
1394 }
1395 }
1396#endif
1397 if (task->tk_status < 0)
1398 nfs_set_pgio_error(data->header, task->tk_status, argp->offset);
1399 else if (resp->count < argp->count) {
1400 static unsigned long complain;
1401
1402 /* This a short write! */
1403 nfs_inc_stats(inode, NFSIOS_SHORTWRITE);
1404
1405 /* Has the server at least made some progress? */
1406 if (resp->count == 0) {
1407 if (time_before(complain, jiffies)) {
1408 printk(KERN_WARNING
1409 "NFS: Server wrote zero bytes, expected %u.\n",
1410 argp->count);
1411 complain = jiffies + 300 * HZ;
1412 }
1413 nfs_set_pgio_error(data->header, -EIO, argp->offset);
1414 task->tk_status = -EIO;
1415 return;
1416 }
1417 /* Was this an NFSv2 write or an NFSv3 stable write? */
1418 if (resp->verf->committed != NFS_UNSTABLE) {
1419 /* Resend from where the server left off */
1420 data->mds_offset += resp->count;
1421 argp->offset += resp->count;
1422 argp->pgbase += resp->count;
1423 argp->count -= resp->count;
1424 } else {
1425 /* Resend as a stable write in order to avoid
1426 * headaches in the case of a server crash.
1427 */
1428 argp->stable = NFS_FILE_SYNC;
1429 }
1430 rpc_restart_call_prepare(task);
1431 }
1432}
1433
1434
1435#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
1436static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1437{
1438 int ret;
1439
1440 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1441 return 1;
1442 if (!may_wait)
1443 return 0;
1444 ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1445 NFS_INO_COMMIT,
1446 nfs_wait_bit_killable,
1447 TASK_KILLABLE);
1448 return (ret < 0) ? ret : 1;
1449}
1450
1451static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1452{
1453 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1454 smp_mb__after_clear_bit();
1455 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1456}
1457
1458void nfs_commitdata_release(struct nfs_commit_data *data)
1459{
1460 put_nfs_open_context(data->context);
1461 nfs_commit_free(data);
1462}
1463EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1464
1465int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1466 const struct rpc_call_ops *call_ops,
1467 int how, int flags)
1468{
1469 struct rpc_task *task;
1470 int priority = flush_task_priority(how);
1471 struct rpc_message msg = {
1472 .rpc_argp = &data->args,
1473 .rpc_resp = &data->res,
1474 .rpc_cred = data->cred,
1475 };
1476 struct rpc_task_setup task_setup_data = {
1477 .task = &data->task,
1478 .rpc_client = clnt,
1479 .rpc_message = &msg,
1480 .callback_ops = call_ops,
1481 .callback_data = data,
1482 .workqueue = nfsiod_workqueue,
1483 .flags = RPC_TASK_ASYNC | flags,
1484 .priority = priority,
1485 };
1486 /* Set up the initial task struct. */
1487 NFS_PROTO(data->inode)->commit_setup(data, &msg);
1488
1489 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1490
1491 task = rpc_run_task(&task_setup_data);
1492 if (IS_ERR(task))
1493 return PTR_ERR(task);
1494 if (how & FLUSH_SYNC)
1495 rpc_wait_for_completion_task(task);
1496 rpc_put_task(task);
1497 return 0;
1498}
1499EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1500
1501/*
1502 * Set up the argument/result storage required for the RPC call.
1503 */
1504void nfs_init_commit(struct nfs_commit_data *data,
1505 struct list_head *head,
1506 struct pnfs_layout_segment *lseg,
1507 struct nfs_commit_info *cinfo)
1508{
1509 struct nfs_page *first = nfs_list_entry(head->next);
1510 struct inode *inode = first->wb_context->dentry->d_inode;
1511
1512 /* Set up the RPC argument and reply structs
1513 * NB: take care not to mess about with data->commit et al. */
1514
1515 list_splice_init(head, &data->pages);
1516
1517 data->inode = inode;
1518 data->cred = first->wb_context->cred;
1519 data->lseg = lseg; /* reference transferred */
1520 data->mds_ops = &nfs_commit_ops;
1521 data->completion_ops = cinfo->completion_ops;
1522 data->dreq = cinfo->dreq;
1523
1524 data->args.fh = NFS_FH(data->inode);
1525 /* Note: we always request a commit of the entire inode */
1526 data->args.offset = 0;
1527 data->args.count = 0;
1528 data->context = get_nfs_open_context(first->wb_context);
1529 data->res.fattr = &data->fattr;
1530 data->res.verf = &data->verf;
1531 nfs_fattr_init(&data->fattr);
1532}
1533EXPORT_SYMBOL_GPL(nfs_init_commit);
1534
1535void nfs_retry_commit(struct list_head *page_list,
1536 struct pnfs_layout_segment *lseg,
1537 struct nfs_commit_info *cinfo)
1538{
1539 struct nfs_page *req;
1540
1541 while (!list_empty(page_list)) {
1542 req = nfs_list_entry(page_list->next);
1543 nfs_list_remove_request(req);
1544 nfs_mark_request_commit(req, lseg, cinfo);
1545 if (!cinfo->dreq) {
1546 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1547 dec_bdi_stat(page_file_mapping(req->wb_page)->backing_dev_info,
1548 BDI_RECLAIMABLE);
1549 }
1550 nfs_unlock_and_release_request(req);
1551 }
1552}
1553EXPORT_SYMBOL_GPL(nfs_retry_commit);
1554
1555/*
1556 * Commit dirty pages
1557 */
1558static int
1559nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1560 struct nfs_commit_info *cinfo)
1561{
1562 struct nfs_commit_data *data;
1563
1564 data = nfs_commitdata_alloc();
1565
1566 if (!data)
1567 goto out_bad;
1568
1569 /* Set up the argument struct */
1570 nfs_init_commit(data, head, NULL, cinfo);
1571 atomic_inc(&cinfo->mds->rpcs_out);
1572 return nfs_initiate_commit(NFS_CLIENT(inode), data, data->mds_ops,
1573 how, 0);
1574 out_bad:
1575 nfs_retry_commit(head, NULL, cinfo);
1576 cinfo->completion_ops->error_cleanup(NFS_I(inode));
1577 return -ENOMEM;
1578}
1579
1580/*
1581 * COMMIT call returned
1582 */
1583static void nfs_commit_done(struct rpc_task *task, void *calldata)
1584{
1585 struct nfs_commit_data *data = calldata;
1586
1587 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1588 task->tk_pid, task->tk_status);
1589
1590 /* Call the NFS version-specific code */
1591 NFS_PROTO(data->inode)->commit_done(task, data);
1592}
1593
1594static void nfs_commit_release_pages(struct nfs_commit_data *data)
1595{
1596 struct nfs_page *req;
1597 int status = data->task.tk_status;
1598 struct nfs_commit_info cinfo;
1599
1600 while (!list_empty(&data->pages)) {
1601 req = nfs_list_entry(data->pages.next);
1602 nfs_list_remove_request(req);
1603 nfs_clear_page_commit(req->wb_page);
1604
1605 dprintk("NFS: commit (%s/%lld %d@%lld)",
1606 req->wb_context->dentry->d_sb->s_id,
1607 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1608 req->wb_bytes,
1609 (long long)req_offset(req));
1610 if (status < 0) {
1611 nfs_context_set_write_error(req->wb_context, status);
1612 nfs_inode_remove_request(req);
1613 dprintk(", error = %d\n", status);
1614 goto next;
1615 }
1616
1617 /* Okay, COMMIT succeeded, apparently. Check the verifier
1618 * returned by the server against all stored verfs. */
1619 if (!memcmp(&req->wb_verf, &data->verf.verifier, sizeof(req->wb_verf))) {
1620 /* We have a match */
1621 nfs_inode_remove_request(req);
1622 dprintk(" OK\n");
1623 goto next;
1624 }
1625 /* We have a mismatch. Write the page again */
1626 dprintk(" mismatch\n");
1627 nfs_mark_request_dirty(req);
1628 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1629 next:
1630 nfs_unlock_and_release_request(req);
1631 }
1632 nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1633 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
1634 nfs_commit_clear_lock(NFS_I(data->inode));
1635}
1636
1637static void nfs_commit_release(void *calldata)
1638{
1639 struct nfs_commit_data *data = calldata;
1640
1641 data->completion_ops->completion(data);
1642 nfs_commitdata_release(calldata);
1643}
1644
1645static const struct rpc_call_ops nfs_commit_ops = {
1646 .rpc_call_prepare = nfs_commit_prepare,
1647 .rpc_call_done = nfs_commit_done,
1648 .rpc_release = nfs_commit_release,
1649};
1650
1651static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1652 .completion = nfs_commit_release_pages,
1653 .error_cleanup = nfs_commit_clear_lock,
1654};
1655
1656int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1657 int how, struct nfs_commit_info *cinfo)
1658{
1659 int status;
1660
1661 status = pnfs_commit_list(inode, head, how, cinfo);
1662 if (status == PNFS_NOT_ATTEMPTED)
1663 status = nfs_commit_list(inode, head, how, cinfo);
1664 return status;
1665}
1666
1667int nfs_commit_inode(struct inode *inode, int how)
1668{
1669 LIST_HEAD(head);
1670 struct nfs_commit_info cinfo;
1671 int may_wait = how & FLUSH_SYNC;
1672 int res;
1673
1674 res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1675 if (res <= 0)
1676 goto out_mark_dirty;
1677 nfs_init_cinfo_from_inode(&cinfo, inode);
1678 res = nfs_scan_commit(inode, &head, &cinfo);
1679 if (res) {
1680 int error;
1681
1682 error = nfs_generic_commit_list(inode, &head, how, &cinfo);
1683 if (error < 0)
1684 return error;
1685 if (!may_wait)
1686 goto out_mark_dirty;
1687 error = wait_on_bit(&NFS_I(inode)->flags,
1688 NFS_INO_COMMIT,
1689 nfs_wait_bit_killable,
1690 TASK_KILLABLE);
1691 if (error < 0)
1692 return error;
1693 } else
1694 nfs_commit_clear_lock(NFS_I(inode));
1695 return res;
1696 /* Note: If we exit without ensuring that the commit is complete,
1697 * we must mark the inode as dirty. Otherwise, future calls to
1698 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1699 * that the data is on the disk.
1700 */
1701out_mark_dirty:
1702 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1703 return res;
1704}
1705
1706static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1707{
1708 struct nfs_inode *nfsi = NFS_I(inode);
1709 int flags = FLUSH_SYNC;
1710 int ret = 0;
1711
1712 /* no commits means nothing needs to be done */
1713 if (!nfsi->commit_info.ncommit)
1714 return ret;
1715
1716 if (wbc->sync_mode == WB_SYNC_NONE) {
1717 /* Don't commit yet if this is a non-blocking flush and there
1718 * are a lot of outstanding writes for this mapping.
1719 */
1720 if (nfsi->commit_info.ncommit <= (nfsi->npages >> 1))
1721 goto out_mark_dirty;
1722
1723 /* don't wait for the COMMIT response */
1724 flags = 0;
1725 }
1726
1727 ret = nfs_commit_inode(inode, flags);
1728 if (ret >= 0) {
1729 if (wbc->sync_mode == WB_SYNC_NONE) {
1730 if (ret < wbc->nr_to_write)
1731 wbc->nr_to_write -= ret;
1732 else
1733 wbc->nr_to_write = 0;
1734 }
1735 return 0;
1736 }
1737out_mark_dirty:
1738 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1739 return ret;
1740}
1741#else
1742static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1743{
1744 return 0;
1745}
1746#endif
1747
1748int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1749{
1750 return nfs_commit_unstable_pages(inode, wbc);
1751}
1752EXPORT_SYMBOL_GPL(nfs_write_inode);
1753
1754/*
1755 * flush the inode to disk.
1756 */
1757int nfs_wb_all(struct inode *inode)
1758{
1759 struct writeback_control wbc = {
1760 .sync_mode = WB_SYNC_ALL,
1761 .nr_to_write = LONG_MAX,
1762 .range_start = 0,
1763 .range_end = LLONG_MAX,
1764 };
1765 int ret;
1766
1767 trace_nfs_writeback_inode_enter(inode);
1768
1769 ret = sync_inode(inode, &wbc);
1770
1771 trace_nfs_writeback_inode_exit(inode, ret);
1772 return ret;
1773}
1774EXPORT_SYMBOL_GPL(nfs_wb_all);
1775
1776int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1777{
1778 struct nfs_page *req;
1779 int ret = 0;
1780
1781 for (;;) {
1782 wait_on_page_writeback(page);
1783 req = nfs_page_find_request(page);
1784 if (req == NULL)
1785 break;
1786 if (nfs_lock_request(req)) {
1787 nfs_clear_request_commit(req);
1788 nfs_inode_remove_request(req);
1789 /*
1790 * In case nfs_inode_remove_request has marked the
1791 * page as being dirty
1792 */
1793 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1794 nfs_unlock_and_release_request(req);
1795 break;
1796 }
1797 ret = nfs_wait_on_request(req);
1798 nfs_release_request(req);
1799 if (ret < 0)
1800 break;
1801 }
1802 return ret;
1803}
1804
1805/*
1806 * Write back all requests on one page - we do this before reading it.
1807 */
1808int nfs_wb_page(struct inode *inode, struct page *page)
1809{
1810 loff_t range_start = page_file_offset(page);
1811 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1812 struct writeback_control wbc = {
1813 .sync_mode = WB_SYNC_ALL,
1814 .nr_to_write = 0,
1815 .range_start = range_start,
1816 .range_end = range_end,
1817 };
1818 int ret;
1819
1820 trace_nfs_writeback_page_enter(inode);
1821
1822 for (;;) {
1823 wait_on_page_writeback(page);
1824 if (clear_page_dirty_for_io(page)) {
1825 ret = nfs_writepage_locked(page, &wbc);
1826 if (ret < 0)
1827 goto out_error;
1828 continue;
1829 }
1830 ret = 0;
1831 if (!PagePrivate(page))
1832 break;
1833 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1834 if (ret < 0)
1835 goto out_error;
1836 }
1837out_error:
1838 trace_nfs_writeback_page_exit(inode, ret);
1839 return ret;
1840}
1841
1842#ifdef CONFIG_MIGRATION
1843int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1844 struct page *page, enum migrate_mode mode)
1845{
1846 /*
1847 * If PagePrivate is set, then the page is currently associated with
1848 * an in-progress read or write request. Don't try to migrate it.
1849 *
1850 * FIXME: we could do this in principle, but we'll need a way to ensure
1851 * that we can safely release the inode reference while holding
1852 * the page lock.
1853 */
1854 if (PagePrivate(page))
1855 return -EBUSY;
1856
1857 if (!nfs_fscache_release_page(page, GFP_KERNEL))
1858 return -EBUSY;
1859
1860 return migrate_page(mapping, newpage, page, mode);
1861}
1862#endif
1863
1864int __init nfs_init_writepagecache(void)
1865{
1866 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1867 sizeof(struct nfs_write_header),
1868 0, SLAB_HWCACHE_ALIGN,
1869 NULL);
1870 if (nfs_wdata_cachep == NULL)
1871 return -ENOMEM;
1872
1873 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1874 nfs_wdata_cachep);
1875 if (nfs_wdata_mempool == NULL)
1876 goto out_destroy_write_cache;
1877
1878 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
1879 sizeof(struct nfs_commit_data),
1880 0, SLAB_HWCACHE_ALIGN,
1881 NULL);
1882 if (nfs_cdata_cachep == NULL)
1883 goto out_destroy_write_mempool;
1884
1885 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1886 nfs_cdata_cachep);
1887 if (nfs_commit_mempool == NULL)
1888 goto out_destroy_commit_cache;
1889
1890 /*
1891 * NFS congestion size, scale with available memory.
1892 *
1893 * 64MB: 8192k
1894 * 128MB: 11585k
1895 * 256MB: 16384k
1896 * 512MB: 23170k
1897 * 1GB: 32768k
1898 * 2GB: 46340k
1899 * 4GB: 65536k
1900 * 8GB: 92681k
1901 * 16GB: 131072k
1902 *
1903 * This allows larger machines to have larger/more transfers.
1904 * Limit the default to 256M
1905 */
1906 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1907 if (nfs_congestion_kb > 256*1024)
1908 nfs_congestion_kb = 256*1024;
1909
1910 return 0;
1911
1912out_destroy_commit_cache:
1913 kmem_cache_destroy(nfs_cdata_cachep);
1914out_destroy_write_mempool:
1915 mempool_destroy(nfs_wdata_mempool);
1916out_destroy_write_cache:
1917 kmem_cache_destroy(nfs_wdata_cachep);
1918 return -ENOMEM;
1919}
1920
1921void nfs_destroy_writepagecache(void)
1922{
1923 mempool_destroy(nfs_commit_mempool);
1924 kmem_cache_destroy(nfs_cdata_cachep);
1925 mempool_destroy(nfs_wdata_mempool);
1926 kmem_cache_destroy(nfs_wdata_cachep);
1927}
1928