NFS: copy symlinks into page cache before sending NFS SYMLINK request
[linux-2.6-block.git] / fs / nfs / nfs4proc.c
... / ...
CommitLineData
1/*
2 * fs/nfs/nfs4proc.c
3 *
4 * Client-side procedure declarations for NFSv4.
5 *
6 * Copyright (c) 2002 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Kendrick Smith <kmsmith@umich.edu>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38#include <linux/mm.h>
39#include <linux/utsname.h>
40#include <linux/delay.h>
41#include <linux/errno.h>
42#include <linux/string.h>
43#include <linux/sunrpc/clnt.h>
44#include <linux/nfs.h>
45#include <linux/nfs4.h>
46#include <linux/nfs_fs.h>
47#include <linux/nfs_page.h>
48#include <linux/smp_lock.h>
49#include <linux/namei.h>
50#include <linux/mount.h>
51
52#include "nfs4_fs.h"
53#include "delegation.h"
54#include "iostat.h"
55
56#define NFSDBG_FACILITY NFSDBG_PROC
57
58#define NFS4_POLL_RETRY_MIN (1*HZ)
59#define NFS4_POLL_RETRY_MAX (15*HZ)
60
61struct nfs4_opendata;
62static int _nfs4_proc_open(struct nfs4_opendata *data);
63static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp);
68
69/* Prevent leaks of NFSv4 errors into userland */
70int nfs4_map_errors(int err)
71{
72 if (err < -1000) {
73 dprintk("%s could not handle NFSv4 error %d\n",
74 __FUNCTION__, -err);
75 return -EIO;
76 }
77 return err;
78}
79
80/*
81 * This is our standard bitmap for GETATTR requests.
82 */
83const u32 nfs4_fattr_bitmap[2] = {
84 FATTR4_WORD0_TYPE
85 | FATTR4_WORD0_CHANGE
86 | FATTR4_WORD0_SIZE
87 | FATTR4_WORD0_FSID
88 | FATTR4_WORD0_FILEID,
89 FATTR4_WORD1_MODE
90 | FATTR4_WORD1_NUMLINKS
91 | FATTR4_WORD1_OWNER
92 | FATTR4_WORD1_OWNER_GROUP
93 | FATTR4_WORD1_RAWDEV
94 | FATTR4_WORD1_SPACE_USED
95 | FATTR4_WORD1_TIME_ACCESS
96 | FATTR4_WORD1_TIME_METADATA
97 | FATTR4_WORD1_TIME_MODIFY
98};
99
100const u32 nfs4_statfs_bitmap[2] = {
101 FATTR4_WORD0_FILES_AVAIL
102 | FATTR4_WORD0_FILES_FREE
103 | FATTR4_WORD0_FILES_TOTAL,
104 FATTR4_WORD1_SPACE_AVAIL
105 | FATTR4_WORD1_SPACE_FREE
106 | FATTR4_WORD1_SPACE_TOTAL
107};
108
109const u32 nfs4_pathconf_bitmap[2] = {
110 FATTR4_WORD0_MAXLINK
111 | FATTR4_WORD0_MAXNAME,
112 0
113};
114
115const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
116 | FATTR4_WORD0_MAXREAD
117 | FATTR4_WORD0_MAXWRITE
118 | FATTR4_WORD0_LEASE_TIME,
119 0
120};
121
122const u32 nfs4_fs_locations_bitmap[2] = {
123 FATTR4_WORD0_TYPE
124 | FATTR4_WORD0_CHANGE
125 | FATTR4_WORD0_SIZE
126 | FATTR4_WORD0_FSID
127 | FATTR4_WORD0_FILEID
128 | FATTR4_WORD0_FS_LOCATIONS,
129 FATTR4_WORD1_MODE
130 | FATTR4_WORD1_NUMLINKS
131 | FATTR4_WORD1_OWNER
132 | FATTR4_WORD1_OWNER_GROUP
133 | FATTR4_WORD1_RAWDEV
134 | FATTR4_WORD1_SPACE_USED
135 | FATTR4_WORD1_TIME_ACCESS
136 | FATTR4_WORD1_TIME_METADATA
137 | FATTR4_WORD1_TIME_MODIFY
138 | FATTR4_WORD1_MOUNTED_ON_FILEID
139};
140
141static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry,
142 struct nfs4_readdir_arg *readdir)
143{
144 u32 *start, *p;
145
146 BUG_ON(readdir->count < 80);
147 if (cookie > 2) {
148 readdir->cookie = cookie;
149 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
150 return;
151 }
152
153 readdir->cookie = 0;
154 memset(&readdir->verifier, 0, sizeof(readdir->verifier));
155 if (cookie == 2)
156 return;
157
158 /*
159 * NFSv4 servers do not return entries for '.' and '..'
160 * Therefore, we fake these entries here. We let '.'
161 * have cookie 0 and '..' have cookie 1. Note that
162 * when talking to the server, we always send cookie 0
163 * instead of 1 or 2.
164 */
165 start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0);
166
167 if (cookie == 0) {
168 *p++ = xdr_one; /* next */
169 *p++ = xdr_zero; /* cookie, first word */
170 *p++ = xdr_one; /* cookie, second word */
171 *p++ = xdr_one; /* entry len */
172 memcpy(p, ".\0\0\0", 4); /* entry */
173 p++;
174 *p++ = xdr_one; /* bitmap length */
175 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
176 *p++ = htonl(8); /* attribute buffer length */
177 p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
178 }
179
180 *p++ = xdr_one; /* next */
181 *p++ = xdr_zero; /* cookie, first word */
182 *p++ = xdr_two; /* cookie, second word */
183 *p++ = xdr_two; /* entry len */
184 memcpy(p, "..\0\0", 4); /* entry */
185 p++;
186 *p++ = xdr_one; /* bitmap length */
187 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
188 *p++ = htonl(8); /* attribute buffer length */
189 p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
190
191 readdir->pgbase = (char *)p - (char *)start;
192 readdir->count -= readdir->pgbase;
193 kunmap_atomic(start, KM_USER0);
194}
195
196static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
197{
198 struct nfs_client *clp = server->nfs_client;
199 spin_lock(&clp->cl_lock);
200 if (time_before(clp->cl_last_renewal,timestamp))
201 clp->cl_last_renewal = timestamp;
202 spin_unlock(&clp->cl_lock);
203}
204
205static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
206{
207 struct nfs_inode *nfsi = NFS_I(dir);
208
209 spin_lock(&dir->i_lock);
210 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
211 if (cinfo->before == nfsi->change_attr && cinfo->atomic)
212 nfsi->change_attr = cinfo->after;
213 spin_unlock(&dir->i_lock);
214}
215
216struct nfs4_opendata {
217 atomic_t count;
218 struct nfs_openargs o_arg;
219 struct nfs_openres o_res;
220 struct nfs_open_confirmargs c_arg;
221 struct nfs_open_confirmres c_res;
222 struct nfs_fattr f_attr;
223 struct nfs_fattr dir_attr;
224 struct dentry *dentry;
225 struct dentry *dir;
226 struct nfs4_state_owner *owner;
227 struct iattr attrs;
228 unsigned long timestamp;
229 int rpc_status;
230 int cancelled;
231};
232
233static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
234 struct nfs4_state_owner *sp, int flags,
235 const struct iattr *attrs)
236{
237 struct dentry *parent = dget_parent(dentry);
238 struct inode *dir = parent->d_inode;
239 struct nfs_server *server = NFS_SERVER(dir);
240 struct nfs4_opendata *p;
241
242 p = kzalloc(sizeof(*p), GFP_KERNEL);
243 if (p == NULL)
244 goto err;
245 p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
246 if (p->o_arg.seqid == NULL)
247 goto err_free;
248 atomic_set(&p->count, 1);
249 p->dentry = dget(dentry);
250 p->dir = parent;
251 p->owner = sp;
252 atomic_inc(&sp->so_count);
253 p->o_arg.fh = NFS_FH(dir);
254 p->o_arg.open_flags = flags,
255 p->o_arg.clientid = server->nfs_client->cl_clientid;
256 p->o_arg.id = sp->so_id;
257 p->o_arg.name = &dentry->d_name;
258 p->o_arg.server = server;
259 p->o_arg.bitmask = server->attr_bitmask;
260 p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
261 p->o_res.f_attr = &p->f_attr;
262 p->o_res.dir_attr = &p->dir_attr;
263 p->o_res.server = server;
264 nfs_fattr_init(&p->f_attr);
265 nfs_fattr_init(&p->dir_attr);
266 if (flags & O_EXCL) {
267 u32 *s = (u32 *) p->o_arg.u.verifier.data;
268 s[0] = jiffies;
269 s[1] = current->pid;
270 } else if (flags & O_CREAT) {
271 p->o_arg.u.attrs = &p->attrs;
272 memcpy(&p->attrs, attrs, sizeof(p->attrs));
273 }
274 p->c_arg.fh = &p->o_res.fh;
275 p->c_arg.stateid = &p->o_res.stateid;
276 p->c_arg.seqid = p->o_arg.seqid;
277 return p;
278err_free:
279 kfree(p);
280err:
281 dput(parent);
282 return NULL;
283}
284
285static void nfs4_opendata_free(struct nfs4_opendata *p)
286{
287 if (p != NULL && atomic_dec_and_test(&p->count)) {
288 nfs_free_seqid(p->o_arg.seqid);
289 nfs4_put_state_owner(p->owner);
290 dput(p->dir);
291 dput(p->dentry);
292 kfree(p);
293 }
294}
295
296/* Helper for asynchronous RPC calls */
297static int nfs4_call_async(struct rpc_clnt *clnt,
298 const struct rpc_call_ops *tk_ops, void *calldata)
299{
300 struct rpc_task *task;
301
302 if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
303 return -ENOMEM;
304 rpc_execute(task);
305 return 0;
306}
307
308static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
309{
310 sigset_t oldset;
311 int ret;
312
313 rpc_clnt_sigmask(task->tk_client, &oldset);
314 ret = rpc_wait_for_completion_task(task);
315 rpc_clnt_sigunmask(task->tk_client, &oldset);
316 return ret;
317}
318
319static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
320{
321 switch (open_flags) {
322 case FMODE_WRITE:
323 state->n_wronly++;
324 break;
325 case FMODE_READ:
326 state->n_rdonly++;
327 break;
328 case FMODE_READ|FMODE_WRITE:
329 state->n_rdwr++;
330 }
331}
332
333static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
334{
335 struct inode *inode = state->inode;
336
337 open_flags &= (FMODE_READ|FMODE_WRITE);
338 /* Protect against nfs4_find_state_byowner() */
339 spin_lock(&state->owner->so_lock);
340 spin_lock(&inode->i_lock);
341 memcpy(&state->stateid, stateid, sizeof(state->stateid));
342 update_open_stateflags(state, open_flags);
343 nfs4_state_set_mode_locked(state, state->state | open_flags);
344 spin_unlock(&inode->i_lock);
345 spin_unlock(&state->owner->so_lock);
346}
347
348static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
349{
350 struct inode *inode;
351 struct nfs4_state *state = NULL;
352
353 if (!(data->f_attr.valid & NFS_ATTR_FATTR))
354 goto out;
355 inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
356 if (IS_ERR(inode))
357 goto out;
358 state = nfs4_get_open_state(inode, data->owner);
359 if (state == NULL)
360 goto put_inode;
361 update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
362put_inode:
363 iput(inode);
364out:
365 return state;
366}
367
368static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
369{
370 struct nfs_inode *nfsi = NFS_I(state->inode);
371 struct nfs_open_context *ctx;
372
373 spin_lock(&state->inode->i_lock);
374 list_for_each_entry(ctx, &nfsi->open_files, list) {
375 if (ctx->state != state)
376 continue;
377 get_nfs_open_context(ctx);
378 spin_unlock(&state->inode->i_lock);
379 return ctx;
380 }
381 spin_unlock(&state->inode->i_lock);
382 return ERR_PTR(-ENOENT);
383}
384
385static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
386{
387 int ret;
388
389 opendata->o_arg.open_flags = openflags;
390 ret = _nfs4_proc_open(opendata);
391 if (ret != 0)
392 return ret;
393 memcpy(stateid->data, opendata->o_res.stateid.data,
394 sizeof(stateid->data));
395 return 0;
396}
397
398static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
399{
400 nfs4_stateid stateid;
401 struct nfs4_state *newstate;
402 int mode = 0;
403 int delegation = 0;
404 int ret;
405
406 /* memory barrier prior to reading state->n_* */
407 smp_rmb();
408 if (state->n_rdwr != 0) {
409 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
410 if (ret != 0)
411 return ret;
412 mode |= FMODE_READ|FMODE_WRITE;
413 if (opendata->o_res.delegation_type != 0)
414 delegation = opendata->o_res.delegation_type;
415 smp_rmb();
416 }
417 if (state->n_wronly != 0) {
418 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
419 if (ret != 0)
420 return ret;
421 mode |= FMODE_WRITE;
422 if (opendata->o_res.delegation_type != 0)
423 delegation = opendata->o_res.delegation_type;
424 smp_rmb();
425 }
426 if (state->n_rdonly != 0) {
427 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
428 if (ret != 0)
429 return ret;
430 mode |= FMODE_READ;
431 }
432 clear_bit(NFS_DELEGATED_STATE, &state->flags);
433 if (mode == 0)
434 return 0;
435 if (opendata->o_res.delegation_type == 0)
436 opendata->o_res.delegation_type = delegation;
437 opendata->o_arg.open_flags |= mode;
438 newstate = nfs4_opendata_to_nfs4_state(opendata);
439 if (newstate != NULL) {
440 if (opendata->o_res.delegation_type != 0) {
441 struct nfs_inode *nfsi = NFS_I(newstate->inode);
442 int delegation_flags = 0;
443 if (nfsi->delegation)
444 delegation_flags = nfsi->delegation->flags;
445 if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
446 nfs_inode_set_delegation(newstate->inode,
447 opendata->owner->so_cred,
448 &opendata->o_res);
449 else
450 nfs_inode_reclaim_delegation(newstate->inode,
451 opendata->owner->so_cred,
452 &opendata->o_res);
453 }
454 nfs4_close_state(newstate, opendata->o_arg.open_flags);
455 }
456 if (newstate != state)
457 return -ESTALE;
458 return 0;
459}
460
461/*
462 * OPEN_RECLAIM:
463 * reclaim state on the server after a reboot.
464 */
465static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
466{
467 struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
468 struct nfs4_opendata *opendata;
469 int delegation_type = 0;
470 int status;
471
472 if (delegation != NULL) {
473 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
474 memcpy(&state->stateid, &delegation->stateid,
475 sizeof(state->stateid));
476 set_bit(NFS_DELEGATED_STATE, &state->flags);
477 return 0;
478 }
479 delegation_type = delegation->type;
480 }
481 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
482 if (opendata == NULL)
483 return -ENOMEM;
484 opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
485 opendata->o_arg.fh = NFS_FH(state->inode);
486 nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
487 opendata->o_arg.u.delegation_type = delegation_type;
488 status = nfs4_open_recover(opendata, state);
489 nfs4_opendata_free(opendata);
490 return status;
491}
492
493static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
494{
495 struct nfs_server *server = NFS_SERVER(state->inode);
496 struct nfs4_exception exception = { };
497 int err;
498 do {
499 err = _nfs4_do_open_reclaim(sp, state, dentry);
500 if (err != -NFS4ERR_DELAY)
501 break;
502 nfs4_handle_exception(server, err, &exception);
503 } while (exception.retry);
504 return err;
505}
506
507static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
508{
509 struct nfs_open_context *ctx;
510 int ret;
511
512 ctx = nfs4_state_find_open_context(state);
513 if (IS_ERR(ctx))
514 return PTR_ERR(ctx);
515 ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
516 put_nfs_open_context(ctx);
517 return ret;
518}
519
520static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
521{
522 struct nfs4_state_owner *sp = state->owner;
523 struct nfs4_opendata *opendata;
524 int ret;
525
526 if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
527 return 0;
528 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
529 if (opendata == NULL)
530 return -ENOMEM;
531 opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
532 memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
533 sizeof(opendata->o_arg.u.delegation.data));
534 ret = nfs4_open_recover(opendata, state);
535 nfs4_opendata_free(opendata);
536 return ret;
537}
538
539int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
540{
541 struct nfs4_exception exception = { };
542 struct nfs_server *server = NFS_SERVER(dentry->d_inode);
543 int err;
544 do {
545 err = _nfs4_open_delegation_recall(dentry, state);
546 switch (err) {
547 case 0:
548 return err;
549 case -NFS4ERR_STALE_CLIENTID:
550 case -NFS4ERR_STALE_STATEID:
551 case -NFS4ERR_EXPIRED:
552 /* Don't recall a delegation if it was lost */
553 nfs4_schedule_state_recovery(server->nfs_client);
554 return err;
555 }
556 err = nfs4_handle_exception(server, err, &exception);
557 } while (exception.retry);
558 return err;
559}
560
561static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
562{
563 struct nfs4_opendata *data = calldata;
564 struct rpc_message msg = {
565 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
566 .rpc_argp = &data->c_arg,
567 .rpc_resp = &data->c_res,
568 .rpc_cred = data->owner->so_cred,
569 };
570 data->timestamp = jiffies;
571 rpc_call_setup(task, &msg, 0);
572}
573
574static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
575{
576 struct nfs4_opendata *data = calldata;
577
578 data->rpc_status = task->tk_status;
579 if (RPC_ASSASSINATED(task))
580 return;
581 if (data->rpc_status == 0) {
582 memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
583 sizeof(data->o_res.stateid.data));
584 renew_lease(data->o_res.server, data->timestamp);
585 }
586 nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
587 nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
588}
589
590static void nfs4_open_confirm_release(void *calldata)
591{
592 struct nfs4_opendata *data = calldata;
593 struct nfs4_state *state = NULL;
594
595 /* If this request hasn't been cancelled, do nothing */
596 if (data->cancelled == 0)
597 goto out_free;
598 /* In case of error, no cleanup! */
599 if (data->rpc_status != 0)
600 goto out_free;
601 nfs_confirm_seqid(&data->owner->so_seqid, 0);
602 state = nfs4_opendata_to_nfs4_state(data);
603 if (state != NULL)
604 nfs4_close_state(state, data->o_arg.open_flags);
605out_free:
606 nfs4_opendata_free(data);
607}
608
609static const struct rpc_call_ops nfs4_open_confirm_ops = {
610 .rpc_call_prepare = nfs4_open_confirm_prepare,
611 .rpc_call_done = nfs4_open_confirm_done,
612 .rpc_release = nfs4_open_confirm_release,
613};
614
615/*
616 * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
617 */
618static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
619{
620 struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
621 struct rpc_task *task;
622 int status;
623
624 atomic_inc(&data->count);
625 /*
626 * If rpc_run_task() ends up calling ->rpc_release(), we
627 * want to ensure that it takes the 'error' code path.
628 */
629 data->rpc_status = -ENOMEM;
630 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
631 if (IS_ERR(task))
632 return PTR_ERR(task);
633 status = nfs4_wait_for_completion_rpc_task(task);
634 if (status != 0) {
635 data->cancelled = 1;
636 smp_wmb();
637 } else
638 status = data->rpc_status;
639 rpc_release_task(task);
640 return status;
641}
642
643static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
644{
645 struct nfs4_opendata *data = calldata;
646 struct nfs4_state_owner *sp = data->owner;
647 struct rpc_message msg = {
648 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
649 .rpc_argp = &data->o_arg,
650 .rpc_resp = &data->o_res,
651 .rpc_cred = sp->so_cred,
652 };
653
654 if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
655 return;
656 /* Update sequence id. */
657 data->o_arg.id = sp->so_id;
658 data->o_arg.clientid = sp->so_client->cl_clientid;
659 if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
660 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
661 data->timestamp = jiffies;
662 rpc_call_setup(task, &msg, 0);
663}
664
665static void nfs4_open_done(struct rpc_task *task, void *calldata)
666{
667 struct nfs4_opendata *data = calldata;
668
669 data->rpc_status = task->tk_status;
670 if (RPC_ASSASSINATED(task))
671 return;
672 if (task->tk_status == 0) {
673 switch (data->o_res.f_attr->mode & S_IFMT) {
674 case S_IFREG:
675 break;
676 case S_IFLNK:
677 data->rpc_status = -ELOOP;
678 break;
679 case S_IFDIR:
680 data->rpc_status = -EISDIR;
681 break;
682 default:
683 data->rpc_status = -ENOTDIR;
684 }
685 renew_lease(data->o_res.server, data->timestamp);
686 }
687 nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
688}
689
690static void nfs4_open_release(void *calldata)
691{
692 struct nfs4_opendata *data = calldata;
693 struct nfs4_state *state = NULL;
694
695 /* If this request hasn't been cancelled, do nothing */
696 if (data->cancelled == 0)
697 goto out_free;
698 /* In case of error, no cleanup! */
699 if (data->rpc_status != 0)
700 goto out_free;
701 /* In case we need an open_confirm, no cleanup! */
702 if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
703 goto out_free;
704 nfs_confirm_seqid(&data->owner->so_seqid, 0);
705 state = nfs4_opendata_to_nfs4_state(data);
706 if (state != NULL)
707 nfs4_close_state(state, data->o_arg.open_flags);
708out_free:
709 nfs4_opendata_free(data);
710}
711
712static const struct rpc_call_ops nfs4_open_ops = {
713 .rpc_call_prepare = nfs4_open_prepare,
714 .rpc_call_done = nfs4_open_done,
715 .rpc_release = nfs4_open_release,
716};
717
718/*
719 * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
720 */
721static int _nfs4_proc_open(struct nfs4_opendata *data)
722{
723 struct inode *dir = data->dir->d_inode;
724 struct nfs_server *server = NFS_SERVER(dir);
725 struct nfs_openargs *o_arg = &data->o_arg;
726 struct nfs_openres *o_res = &data->o_res;
727 struct rpc_task *task;
728 int status;
729
730 atomic_inc(&data->count);
731 /*
732 * If rpc_run_task() ends up calling ->rpc_release(), we
733 * want to ensure that it takes the 'error' code path.
734 */
735 data->rpc_status = -ENOMEM;
736 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
737 if (IS_ERR(task))
738 return PTR_ERR(task);
739 status = nfs4_wait_for_completion_rpc_task(task);
740 if (status != 0) {
741 data->cancelled = 1;
742 smp_wmb();
743 } else
744 status = data->rpc_status;
745 rpc_release_task(task);
746 if (status != 0)
747 return status;
748
749 if (o_arg->open_flags & O_CREAT) {
750 update_changeattr(dir, &o_res->cinfo);
751 nfs_post_op_update_inode(dir, o_res->dir_attr);
752 } else
753 nfs_refresh_inode(dir, o_res->dir_attr);
754 if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
755 status = _nfs4_proc_open_confirm(data);
756 if (status != 0)
757 return status;
758 }
759 nfs_confirm_seqid(&data->owner->so_seqid, 0);
760 if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
761 return server->nfs_client->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
762 return 0;
763}
764
765static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
766{
767 struct nfs_access_entry cache;
768 int mask = 0;
769 int status;
770
771 if (openflags & FMODE_READ)
772 mask |= MAY_READ;
773 if (openflags & FMODE_WRITE)
774 mask |= MAY_WRITE;
775 status = nfs_access_get_cached(inode, cred, &cache);
776 if (status == 0)
777 goto out;
778
779 /* Be clever: ask server to check for all possible rights */
780 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
781 cache.cred = cred;
782 cache.jiffies = jiffies;
783 status = _nfs4_proc_access(inode, &cache);
784 if (status != 0)
785 return status;
786 nfs_access_add_cache(inode, &cache);
787out:
788 if ((cache.mask & mask) == mask)
789 return 0;
790 return -EACCES;
791}
792
793int nfs4_recover_expired_lease(struct nfs_server *server)
794{
795 struct nfs_client *clp = server->nfs_client;
796
797 if (test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
798 nfs4_schedule_state_recovery(clp);
799 return nfs4_wait_clnt_recover(server->client, clp);
800}
801
802/*
803 * OPEN_EXPIRED:
804 * reclaim state on the server after a network partition.
805 * Assumes caller holds the appropriate lock
806 */
807static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
808{
809 struct inode *inode = state->inode;
810 struct nfs_delegation *delegation = NFS_I(inode)->delegation;
811 struct nfs4_opendata *opendata;
812 int openflags = state->state & (FMODE_READ|FMODE_WRITE);
813 int ret;
814
815 if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
816 ret = _nfs4_do_access(inode, sp->so_cred, openflags);
817 if (ret < 0)
818 return ret;
819 memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
820 set_bit(NFS_DELEGATED_STATE, &state->flags);
821 return 0;
822 }
823 opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
824 if (opendata == NULL)
825 return -ENOMEM;
826 ret = nfs4_open_recover(opendata, state);
827 if (ret == -ESTALE) {
828 /* Invalidate the state owner so we don't ever use it again */
829 nfs4_drop_state_owner(sp);
830 d_drop(dentry);
831 }
832 nfs4_opendata_free(opendata);
833 return ret;
834}
835
836static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
837{
838 struct nfs_server *server = NFS_SERVER(dentry->d_inode);
839 struct nfs4_exception exception = { };
840 int err;
841
842 do {
843 err = _nfs4_open_expired(sp, state, dentry);
844 if (err == -NFS4ERR_DELAY)
845 nfs4_handle_exception(server, err, &exception);
846 } while (exception.retry);
847 return err;
848}
849
850static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
851{
852 struct nfs_open_context *ctx;
853 int ret;
854
855 ctx = nfs4_state_find_open_context(state);
856 if (IS_ERR(ctx))
857 return PTR_ERR(ctx);
858 ret = nfs4_do_open_expired(sp, state, ctx->dentry);
859 put_nfs_open_context(ctx);
860 return ret;
861}
862
863/*
864 * Returns a referenced nfs4_state if there is an open delegation on the file
865 */
866static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
867{
868 struct nfs_delegation *delegation;
869 struct nfs_server *server = NFS_SERVER(inode);
870 struct nfs_client *clp = server->nfs_client;
871 struct nfs_inode *nfsi = NFS_I(inode);
872 struct nfs4_state_owner *sp = NULL;
873 struct nfs4_state *state = NULL;
874 int open_flags = flags & (FMODE_READ|FMODE_WRITE);
875 int err;
876
877 err = -ENOMEM;
878 if (!(sp = nfs4_get_state_owner(server, cred))) {
879 dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
880 return err;
881 }
882 err = nfs4_recover_expired_lease(server);
883 if (err != 0)
884 goto out_put_state_owner;
885 /* Protect against reboot recovery - NOTE ORDER! */
886 down_read(&clp->cl_sem);
887 /* Protect against delegation recall */
888 down_read(&nfsi->rwsem);
889 delegation = NFS_I(inode)->delegation;
890 err = -ENOENT;
891 if (delegation == NULL || (delegation->type & open_flags) != open_flags)
892 goto out_err;
893 err = -ENOMEM;
894 state = nfs4_get_open_state(inode, sp);
895 if (state == NULL)
896 goto out_err;
897
898 err = -ENOENT;
899 if ((state->state & open_flags) == open_flags) {
900 spin_lock(&inode->i_lock);
901 update_open_stateflags(state, open_flags);
902 spin_unlock(&inode->i_lock);
903 goto out_ok;
904 } else if (state->state != 0)
905 goto out_put_open_state;
906
907 lock_kernel();
908 err = _nfs4_do_access(inode, cred, open_flags);
909 unlock_kernel();
910 if (err != 0)
911 goto out_put_open_state;
912 set_bit(NFS_DELEGATED_STATE, &state->flags);
913 update_open_stateid(state, &delegation->stateid, open_flags);
914out_ok:
915 nfs4_put_state_owner(sp);
916 up_read(&nfsi->rwsem);
917 up_read(&clp->cl_sem);
918 *res = state;
919 return 0;
920out_put_open_state:
921 nfs4_put_open_state(state);
922out_err:
923 up_read(&nfsi->rwsem);
924 up_read(&clp->cl_sem);
925 if (err != -EACCES)
926 nfs_inode_return_delegation(inode);
927out_put_state_owner:
928 nfs4_put_state_owner(sp);
929 return err;
930}
931
932static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
933{
934 struct nfs4_exception exception = { };
935 struct nfs4_state *res = ERR_PTR(-EIO);
936 int err;
937
938 do {
939 err = _nfs4_open_delegated(inode, flags, cred, &res);
940 if (err == 0)
941 break;
942 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
943 err, &exception));
944 } while (exception.retry);
945 return res;
946}
947
948/*
949 * Returns a referenced nfs4_state
950 */
951static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
952{
953 struct nfs4_state_owner *sp;
954 struct nfs4_state *state = NULL;
955 struct nfs_server *server = NFS_SERVER(dir);
956 struct nfs_client *clp = server->nfs_client;
957 struct nfs4_opendata *opendata;
958 int status;
959
960 /* Protect against reboot recovery conflicts */
961 status = -ENOMEM;
962 if (!(sp = nfs4_get_state_owner(server, cred))) {
963 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
964 goto out_err;
965 }
966 status = nfs4_recover_expired_lease(server);
967 if (status != 0)
968 goto err_put_state_owner;
969 down_read(&clp->cl_sem);
970 status = -ENOMEM;
971 opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
972 if (opendata == NULL)
973 goto err_release_rwsem;
974
975 status = _nfs4_proc_open(opendata);
976 if (status != 0)
977 goto err_opendata_free;
978
979 status = -ENOMEM;
980 state = nfs4_opendata_to_nfs4_state(opendata);
981 if (state == NULL)
982 goto err_opendata_free;
983 if (opendata->o_res.delegation_type != 0)
984 nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
985 nfs4_opendata_free(opendata);
986 nfs4_put_state_owner(sp);
987 up_read(&clp->cl_sem);
988 *res = state;
989 return 0;
990err_opendata_free:
991 nfs4_opendata_free(opendata);
992err_release_rwsem:
993 up_read(&clp->cl_sem);
994err_put_state_owner:
995 nfs4_put_state_owner(sp);
996out_err:
997 *res = NULL;
998 return status;
999}
1000
1001
1002static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
1003{
1004 struct nfs4_exception exception = { };
1005 struct nfs4_state *res;
1006 int status;
1007
1008 do {
1009 status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
1010 if (status == 0)
1011 break;
1012 /* NOTE: BAD_SEQID means the server and client disagree about the
1013 * book-keeping w.r.t. state-changing operations
1014 * (OPEN/CLOSE/LOCK/LOCKU...)
1015 * It is actually a sign of a bug on the client or on the server.
1016 *
1017 * If we receive a BAD_SEQID error in the particular case of
1018 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1019 * have unhashed the old state_owner for us, and that we can
1020 * therefore safely retry using a new one. We should still warn
1021 * the user though...
1022 */
1023 if (status == -NFS4ERR_BAD_SEQID) {
1024 printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1025 exception.retry = 1;
1026 continue;
1027 }
1028 /*
1029 * BAD_STATEID on OPEN means that the server cancelled our
1030 * state before it received the OPEN_CONFIRM.
1031 * Recover by retrying the request as per the discussion
1032 * on Page 181 of RFC3530.
1033 */
1034 if (status == -NFS4ERR_BAD_STATEID) {
1035 exception.retry = 1;
1036 continue;
1037 }
1038 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1039 status, &exception));
1040 } while (exception.retry);
1041 return res;
1042}
1043
1044static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1045 struct iattr *sattr, struct nfs4_state *state)
1046{
1047 struct nfs_server *server = NFS_SERVER(inode);
1048 struct nfs_setattrargs arg = {
1049 .fh = NFS_FH(inode),
1050 .iap = sattr,
1051 .server = server,
1052 .bitmask = server->attr_bitmask,
1053 };
1054 struct nfs_setattrres res = {
1055 .fattr = fattr,
1056 .server = server,
1057 };
1058 struct rpc_message msg = {
1059 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1060 .rpc_argp = &arg,
1061 .rpc_resp = &res,
1062 };
1063 unsigned long timestamp = jiffies;
1064 int status;
1065
1066 nfs_fattr_init(fattr);
1067
1068 if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1069 /* Use that stateid */
1070 } else if (state != NULL) {
1071 msg.rpc_cred = state->owner->so_cred;
1072 nfs4_copy_stateid(&arg.stateid, state, current->files);
1073 } else
1074 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1075
1076 status = rpc_call_sync(server->client, &msg, 0);
1077 if (status == 0 && state != NULL)
1078 renew_lease(server, timestamp);
1079 return status;
1080}
1081
1082static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1083 struct iattr *sattr, struct nfs4_state *state)
1084{
1085 struct nfs_server *server = NFS_SERVER(inode);
1086 struct nfs4_exception exception = { };
1087 int err;
1088 do {
1089 err = nfs4_handle_exception(server,
1090 _nfs4_do_setattr(inode, fattr, sattr, state),
1091 &exception);
1092 } while (exception.retry);
1093 return err;
1094}
1095
1096struct nfs4_closedata {
1097 struct inode *inode;
1098 struct nfs4_state *state;
1099 struct nfs_closeargs arg;
1100 struct nfs_closeres res;
1101 struct nfs_fattr fattr;
1102 unsigned long timestamp;
1103};
1104
1105static void nfs4_free_closedata(void *data)
1106{
1107 struct nfs4_closedata *calldata = data;
1108 struct nfs4_state_owner *sp = calldata->state->owner;
1109
1110 nfs4_put_open_state(calldata->state);
1111 nfs_free_seqid(calldata->arg.seqid);
1112 nfs4_put_state_owner(sp);
1113 kfree(calldata);
1114}
1115
1116static void nfs4_close_done(struct rpc_task *task, void *data)
1117{
1118 struct nfs4_closedata *calldata = data;
1119 struct nfs4_state *state = calldata->state;
1120 struct nfs_server *server = NFS_SERVER(calldata->inode);
1121
1122 if (RPC_ASSASSINATED(task))
1123 return;
1124 /* hmm. we are done with the inode, and in the process of freeing
1125 * the state_owner. we keep this around to process errors
1126 */
1127 nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1128 switch (task->tk_status) {
1129 case 0:
1130 memcpy(&state->stateid, &calldata->res.stateid,
1131 sizeof(state->stateid));
1132 renew_lease(server, calldata->timestamp);
1133 break;
1134 case -NFS4ERR_STALE_STATEID:
1135 case -NFS4ERR_EXPIRED:
1136 nfs4_schedule_state_recovery(server->nfs_client);
1137 break;
1138 default:
1139 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1140 rpc_restart_call(task);
1141 return;
1142 }
1143 }
1144 nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1145}
1146
1147static void nfs4_close_prepare(struct rpc_task *task, void *data)
1148{
1149 struct nfs4_closedata *calldata = data;
1150 struct nfs4_state *state = calldata->state;
1151 struct rpc_message msg = {
1152 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1153 .rpc_argp = &calldata->arg,
1154 .rpc_resp = &calldata->res,
1155 .rpc_cred = state->owner->so_cred,
1156 };
1157 int mode = 0, old_mode;
1158
1159 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1160 return;
1161 /* Recalculate the new open mode in case someone reopened the file
1162 * while we were waiting in line to be scheduled.
1163 */
1164 spin_lock(&state->owner->so_lock);
1165 spin_lock(&calldata->inode->i_lock);
1166 mode = old_mode = state->state;
1167 if (state->n_rdwr == 0) {
1168 if (state->n_rdonly == 0)
1169 mode &= ~FMODE_READ;
1170 if (state->n_wronly == 0)
1171 mode &= ~FMODE_WRITE;
1172 }
1173 nfs4_state_set_mode_locked(state, mode);
1174 spin_unlock(&calldata->inode->i_lock);
1175 spin_unlock(&state->owner->so_lock);
1176 if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1177 /* Note: exit _without_ calling nfs4_close_done */
1178 task->tk_action = NULL;
1179 return;
1180 }
1181 nfs_fattr_init(calldata->res.fattr);
1182 if (mode != 0)
1183 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1184 calldata->arg.open_flags = mode;
1185 calldata->timestamp = jiffies;
1186 rpc_call_setup(task, &msg, 0);
1187}
1188
1189static const struct rpc_call_ops nfs4_close_ops = {
1190 .rpc_call_prepare = nfs4_close_prepare,
1191 .rpc_call_done = nfs4_close_done,
1192 .rpc_release = nfs4_free_closedata,
1193};
1194
1195/*
1196 * It is possible for data to be read/written from a mem-mapped file
1197 * after the sys_close call (which hits the vfs layer as a flush).
1198 * This means that we can't safely call nfsv4 close on a file until
1199 * the inode is cleared. This in turn means that we are not good
1200 * NFSv4 citizens - we do not indicate to the server to update the file's
1201 * share state even when we are done with one of the three share
1202 * stateid's in the inode.
1203 *
1204 * NOTE: Caller must be holding the sp->so_owner semaphore!
1205 */
1206int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
1207{
1208 struct nfs_server *server = NFS_SERVER(inode);
1209 struct nfs4_closedata *calldata;
1210 int status = -ENOMEM;
1211
1212 calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1213 if (calldata == NULL)
1214 goto out;
1215 calldata->inode = inode;
1216 calldata->state = state;
1217 calldata->arg.fh = NFS_FH(inode);
1218 calldata->arg.stateid = &state->stateid;
1219 /* Serialization for the sequence id */
1220 calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1221 if (calldata->arg.seqid == NULL)
1222 goto out_free_calldata;
1223 calldata->arg.bitmask = server->attr_bitmask;
1224 calldata->res.fattr = &calldata->fattr;
1225 calldata->res.server = server;
1226
1227 status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1228 if (status == 0)
1229 goto out;
1230
1231 nfs_free_seqid(calldata->arg.seqid);
1232out_free_calldata:
1233 kfree(calldata);
1234out:
1235 return status;
1236}
1237
1238static int nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1239{
1240 struct file *filp;
1241
1242 filp = lookup_instantiate_filp(nd, dentry, NULL);
1243 if (!IS_ERR(filp)) {
1244 struct nfs_open_context *ctx;
1245 ctx = (struct nfs_open_context *)filp->private_data;
1246 ctx->state = state;
1247 return 0;
1248 }
1249 nfs4_close_state(state, nd->intent.open.flags);
1250 return PTR_ERR(filp);
1251}
1252
1253struct dentry *
1254nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1255{
1256 struct iattr attr;
1257 struct rpc_cred *cred;
1258 struct nfs4_state *state;
1259 struct dentry *res;
1260
1261 if (nd->flags & LOOKUP_CREATE) {
1262 attr.ia_mode = nd->intent.open.create_mode;
1263 attr.ia_valid = ATTR_MODE;
1264 if (!IS_POSIXACL(dir))
1265 attr.ia_mode &= ~current->fs->umask;
1266 } else {
1267 attr.ia_valid = 0;
1268 BUG_ON(nd->intent.open.flags & O_CREAT);
1269 }
1270
1271 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1272 if (IS_ERR(cred))
1273 return (struct dentry *)cred;
1274 state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1275 put_rpccred(cred);
1276 if (IS_ERR(state)) {
1277 if (PTR_ERR(state) == -ENOENT)
1278 d_add(dentry, NULL);
1279 return (struct dentry *)state;
1280 }
1281 res = d_add_unique(dentry, igrab(state->inode));
1282 if (res != NULL)
1283 dentry = res;
1284 nfs4_intent_set_file(nd, dentry, state);
1285 return res;
1286}
1287
1288int
1289nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1290{
1291 struct rpc_cred *cred;
1292 struct nfs4_state *state;
1293
1294 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1295 if (IS_ERR(cred))
1296 return PTR_ERR(cred);
1297 state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1298 if (IS_ERR(state))
1299 state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1300 put_rpccred(cred);
1301 if (IS_ERR(state)) {
1302 switch (PTR_ERR(state)) {
1303 case -EPERM:
1304 case -EACCES:
1305 case -EDQUOT:
1306 case -ENOSPC:
1307 case -EROFS:
1308 lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1309 return 1;
1310 case -ENOENT:
1311 if (dentry->d_inode == NULL)
1312 return 1;
1313 }
1314 goto out_drop;
1315 }
1316 if (state->inode == dentry->d_inode) {
1317 nfs4_intent_set_file(nd, dentry, state);
1318 return 1;
1319 }
1320 nfs4_close_state(state, openflags);
1321out_drop:
1322 d_drop(dentry);
1323 return 0;
1324}
1325
1326
1327static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1328{
1329 struct nfs4_server_caps_res res = {};
1330 struct rpc_message msg = {
1331 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1332 .rpc_argp = fhandle,
1333 .rpc_resp = &res,
1334 };
1335 int status;
1336
1337 status = rpc_call_sync(server->client, &msg, 0);
1338 if (status == 0) {
1339 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1340 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1341 server->caps |= NFS_CAP_ACLS;
1342 if (res.has_links != 0)
1343 server->caps |= NFS_CAP_HARDLINKS;
1344 if (res.has_symlinks != 0)
1345 server->caps |= NFS_CAP_SYMLINKS;
1346 server->acl_bitmask = res.acl_bitmask;
1347 }
1348 return status;
1349}
1350
1351int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1352{
1353 struct nfs4_exception exception = { };
1354 int err;
1355 do {
1356 err = nfs4_handle_exception(server,
1357 _nfs4_server_capabilities(server, fhandle),
1358 &exception);
1359 } while (exception.retry);
1360 return err;
1361}
1362
1363static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1364 struct nfs_fsinfo *info)
1365{
1366 struct nfs4_lookup_root_arg args = {
1367 .bitmask = nfs4_fattr_bitmap,
1368 };
1369 struct nfs4_lookup_res res = {
1370 .server = server,
1371 .fattr = info->fattr,
1372 .fh = fhandle,
1373 };
1374 struct rpc_message msg = {
1375 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1376 .rpc_argp = &args,
1377 .rpc_resp = &res,
1378 };
1379 nfs_fattr_init(info->fattr);
1380 return rpc_call_sync(server->client, &msg, 0);
1381}
1382
1383static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1384 struct nfs_fsinfo *info)
1385{
1386 struct nfs4_exception exception = { };
1387 int err;
1388 do {
1389 err = nfs4_handle_exception(server,
1390 _nfs4_lookup_root(server, fhandle, info),
1391 &exception);
1392 } while (exception.retry);
1393 return err;
1394}
1395
1396/*
1397 * get the file handle for the "/" directory on the server
1398 */
1399static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1400 struct nfs_fsinfo *info)
1401{
1402 int status;
1403
1404 status = nfs4_lookup_root(server, fhandle, info);
1405 if (status == 0)
1406 status = nfs4_server_capabilities(server, fhandle);
1407 if (status == 0)
1408 status = nfs4_do_fsinfo(server, fhandle, info);
1409 return nfs4_map_errors(status);
1410}
1411
1412/*
1413 * Get locations and (maybe) other attributes of a referral.
1414 * Note that we'll actually follow the referral later when
1415 * we detect fsid mismatch in inode revalidation
1416 */
1417static int nfs4_get_referral(struct inode *dir, struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
1418{
1419 int status = -ENOMEM;
1420 struct page *page = NULL;
1421 struct nfs4_fs_locations *locations = NULL;
1422 struct dentry dentry = {};
1423
1424 page = alloc_page(GFP_KERNEL);
1425 if (page == NULL)
1426 goto out;
1427 locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
1428 if (locations == NULL)
1429 goto out;
1430
1431 dentry.d_name.name = name->name;
1432 dentry.d_name.len = name->len;
1433 status = nfs4_proc_fs_locations(dir, &dentry, locations, page);
1434 if (status != 0)
1435 goto out;
1436 /* Make sure server returned a different fsid for the referral */
1437 if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
1438 dprintk("%s: server did not return a different fsid for a referral at %s\n", __FUNCTION__, name->name);
1439 status = -EIO;
1440 goto out;
1441 }
1442
1443 memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
1444 fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
1445 if (!fattr->mode)
1446 fattr->mode = S_IFDIR;
1447 memset(fhandle, 0, sizeof(struct nfs_fh));
1448out:
1449 if (page)
1450 __free_page(page);
1451 if (locations)
1452 kfree(locations);
1453 return status;
1454}
1455
1456static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1457{
1458 struct nfs4_getattr_arg args = {
1459 .fh = fhandle,
1460 .bitmask = server->attr_bitmask,
1461 };
1462 struct nfs4_getattr_res res = {
1463 .fattr = fattr,
1464 .server = server,
1465 };
1466 struct rpc_message msg = {
1467 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1468 .rpc_argp = &args,
1469 .rpc_resp = &res,
1470 };
1471
1472 nfs_fattr_init(fattr);
1473 return rpc_call_sync(server->client, &msg, 0);
1474}
1475
1476static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1477{
1478 struct nfs4_exception exception = { };
1479 int err;
1480 do {
1481 err = nfs4_handle_exception(server,
1482 _nfs4_proc_getattr(server, fhandle, fattr),
1483 &exception);
1484 } while (exception.retry);
1485 return err;
1486}
1487
1488/*
1489 * The file is not closed if it is opened due to the a request to change
1490 * the size of the file. The open call will not be needed once the
1491 * VFS layer lookup-intents are implemented.
1492 *
1493 * Close is called when the inode is destroyed.
1494 * If we haven't opened the file for O_WRONLY, we
1495 * need to in the size_change case to obtain a stateid.
1496 *
1497 * Got race?
1498 * Because OPEN is always done by name in nfsv4, it is
1499 * possible that we opened a different file by the same
1500 * name. We can recognize this race condition, but we
1501 * can't do anything about it besides returning an error.
1502 *
1503 * This will be fixed with VFS changes (lookup-intent).
1504 */
1505static int
1506nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1507 struct iattr *sattr)
1508{
1509 struct rpc_cred *cred;
1510 struct inode *inode = dentry->d_inode;
1511 struct nfs_open_context *ctx;
1512 struct nfs4_state *state = NULL;
1513 int status;
1514
1515 nfs_fattr_init(fattr);
1516
1517 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1518 if (IS_ERR(cred))
1519 return PTR_ERR(cred);
1520
1521 /* Search for an existing open(O_WRITE) file */
1522 ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1523 if (ctx != NULL)
1524 state = ctx->state;
1525
1526 status = nfs4_do_setattr(inode, fattr, sattr, state);
1527 if (status == 0)
1528 nfs_setattr_update_inode(inode, sattr);
1529 if (ctx != NULL)
1530 put_nfs_open_context(ctx);
1531 put_rpccred(cred);
1532 return status;
1533}
1534
1535static int _nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1536 struct qstr *name, struct nfs_fh *fhandle,
1537 struct nfs_fattr *fattr)
1538{
1539 int status;
1540 struct nfs4_lookup_arg args = {
1541 .bitmask = server->attr_bitmask,
1542 .dir_fh = dirfh,
1543 .name = name,
1544 };
1545 struct nfs4_lookup_res res = {
1546 .server = server,
1547 .fattr = fattr,
1548 .fh = fhandle,
1549 };
1550 struct rpc_message msg = {
1551 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1552 .rpc_argp = &args,
1553 .rpc_resp = &res,
1554 };
1555
1556 nfs_fattr_init(fattr);
1557
1558 dprintk("NFS call lookupfh %s\n", name->name);
1559 status = rpc_call_sync(server->client, &msg, 0);
1560 dprintk("NFS reply lookupfh: %d\n", status);
1561 if (status == -NFS4ERR_MOVED)
1562 status = -EREMOTE;
1563 return status;
1564}
1565
1566static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1567 struct qstr *name, struct nfs_fh *fhandle,
1568 struct nfs_fattr *fattr)
1569{
1570 struct nfs4_exception exception = { };
1571 int err;
1572 do {
1573 err = nfs4_handle_exception(server,
1574 _nfs4_proc_lookupfh(server, dirfh, name,
1575 fhandle, fattr),
1576 &exception);
1577 } while (exception.retry);
1578 return err;
1579}
1580
1581static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1582 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1583{
1584 int status;
1585 struct nfs_server *server = NFS_SERVER(dir);
1586 struct nfs4_lookup_arg args = {
1587 .bitmask = server->attr_bitmask,
1588 .dir_fh = NFS_FH(dir),
1589 .name = name,
1590 };
1591 struct nfs4_lookup_res res = {
1592 .server = server,
1593 .fattr = fattr,
1594 .fh = fhandle,
1595 };
1596 struct rpc_message msg = {
1597 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1598 .rpc_argp = &args,
1599 .rpc_resp = &res,
1600 };
1601
1602 nfs_fattr_init(fattr);
1603
1604 dprintk("NFS call lookup %s\n", name->name);
1605 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1606 if (status == -NFS4ERR_MOVED)
1607 status = nfs4_get_referral(dir, name, fattr, fhandle);
1608 dprintk("NFS reply lookup: %d\n", status);
1609 return status;
1610}
1611
1612static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1613{
1614 struct nfs4_exception exception = { };
1615 int err;
1616 do {
1617 err = nfs4_handle_exception(NFS_SERVER(dir),
1618 _nfs4_proc_lookup(dir, name, fhandle, fattr),
1619 &exception);
1620 } while (exception.retry);
1621 return err;
1622}
1623
1624static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1625{
1626 struct nfs4_accessargs args = {
1627 .fh = NFS_FH(inode),
1628 };
1629 struct nfs4_accessres res = { 0 };
1630 struct rpc_message msg = {
1631 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1632 .rpc_argp = &args,
1633 .rpc_resp = &res,
1634 .rpc_cred = entry->cred,
1635 };
1636 int mode = entry->mask;
1637 int status;
1638
1639 /*
1640 * Determine which access bits we want to ask for...
1641 */
1642 if (mode & MAY_READ)
1643 args.access |= NFS4_ACCESS_READ;
1644 if (S_ISDIR(inode->i_mode)) {
1645 if (mode & MAY_WRITE)
1646 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1647 if (mode & MAY_EXEC)
1648 args.access |= NFS4_ACCESS_LOOKUP;
1649 } else {
1650 if (mode & MAY_WRITE)
1651 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1652 if (mode & MAY_EXEC)
1653 args.access |= NFS4_ACCESS_EXECUTE;
1654 }
1655 status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1656 if (!status) {
1657 entry->mask = 0;
1658 if (res.access & NFS4_ACCESS_READ)
1659 entry->mask |= MAY_READ;
1660 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1661 entry->mask |= MAY_WRITE;
1662 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1663 entry->mask |= MAY_EXEC;
1664 }
1665 return status;
1666}
1667
1668static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1669{
1670 struct nfs4_exception exception = { };
1671 int err;
1672 do {
1673 err = nfs4_handle_exception(NFS_SERVER(inode),
1674 _nfs4_proc_access(inode, entry),
1675 &exception);
1676 } while (exception.retry);
1677 return err;
1678}
1679
1680/*
1681 * TODO: For the time being, we don't try to get any attributes
1682 * along with any of the zero-copy operations READ, READDIR,
1683 * READLINK, WRITE.
1684 *
1685 * In the case of the first three, we want to put the GETATTR
1686 * after the read-type operation -- this is because it is hard
1687 * to predict the length of a GETATTR response in v4, and thus
1688 * align the READ data correctly. This means that the GETATTR
1689 * may end up partially falling into the page cache, and we should
1690 * shift it into the 'tail' of the xdr_buf before processing.
1691 * To do this efficiently, we need to know the total length
1692 * of data received, which doesn't seem to be available outside
1693 * of the RPC layer.
1694 *
1695 * In the case of WRITE, we also want to put the GETATTR after
1696 * the operation -- in this case because we want to make sure
1697 * we get the post-operation mtime and size. This means that
1698 * we can't use xdr_encode_pages() as written: we need a variant
1699 * of it which would leave room in the 'tail' iovec.
1700 *
1701 * Both of these changes to the XDR layer would in fact be quite
1702 * minor, but I decided to leave them for a subsequent patch.
1703 */
1704static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1705 unsigned int pgbase, unsigned int pglen)
1706{
1707 struct nfs4_readlink args = {
1708 .fh = NFS_FH(inode),
1709 .pgbase = pgbase,
1710 .pglen = pglen,
1711 .pages = &page,
1712 };
1713 struct rpc_message msg = {
1714 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1715 .rpc_argp = &args,
1716 .rpc_resp = NULL,
1717 };
1718
1719 return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1720}
1721
1722static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1723 unsigned int pgbase, unsigned int pglen)
1724{
1725 struct nfs4_exception exception = { };
1726 int err;
1727 do {
1728 err = nfs4_handle_exception(NFS_SERVER(inode),
1729 _nfs4_proc_readlink(inode, page, pgbase, pglen),
1730 &exception);
1731 } while (exception.retry);
1732 return err;
1733}
1734
1735static int _nfs4_proc_read(struct nfs_read_data *rdata)
1736{
1737 int flags = rdata->flags;
1738 struct inode *inode = rdata->inode;
1739 struct nfs_fattr *fattr = rdata->res.fattr;
1740 struct nfs_server *server = NFS_SERVER(inode);
1741 struct rpc_message msg = {
1742 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
1743 .rpc_argp = &rdata->args,
1744 .rpc_resp = &rdata->res,
1745 .rpc_cred = rdata->cred,
1746 };
1747 unsigned long timestamp = jiffies;
1748 int status;
1749
1750 dprintk("NFS call read %d @ %Ld\n", rdata->args.count,
1751 (long long) rdata->args.offset);
1752
1753 nfs_fattr_init(fattr);
1754 status = rpc_call_sync(server->client, &msg, flags);
1755 if (!status)
1756 renew_lease(server, timestamp);
1757 dprintk("NFS reply read: %d\n", status);
1758 return status;
1759}
1760
1761static int nfs4_proc_read(struct nfs_read_data *rdata)
1762{
1763 struct nfs4_exception exception = { };
1764 int err;
1765 do {
1766 err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1767 _nfs4_proc_read(rdata),
1768 &exception);
1769 } while (exception.retry);
1770 return err;
1771}
1772
1773static int _nfs4_proc_write(struct nfs_write_data *wdata)
1774{
1775 int rpcflags = wdata->flags;
1776 struct inode *inode = wdata->inode;
1777 struct nfs_fattr *fattr = wdata->res.fattr;
1778 struct nfs_server *server = NFS_SERVER(inode);
1779 struct rpc_message msg = {
1780 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1781 .rpc_argp = &wdata->args,
1782 .rpc_resp = &wdata->res,
1783 .rpc_cred = wdata->cred,
1784 };
1785 int status;
1786
1787 dprintk("NFS call write %d @ %Ld\n", wdata->args.count,
1788 (long long) wdata->args.offset);
1789
1790 wdata->args.bitmask = server->attr_bitmask;
1791 wdata->res.server = server;
1792 wdata->timestamp = jiffies;
1793 nfs_fattr_init(fattr);
1794 status = rpc_call_sync(server->client, &msg, rpcflags);
1795 dprintk("NFS reply write: %d\n", status);
1796 if (status < 0)
1797 return status;
1798 renew_lease(server, wdata->timestamp);
1799 nfs_post_op_update_inode(inode, fattr);
1800 return wdata->res.count;
1801}
1802
1803static int nfs4_proc_write(struct nfs_write_data *wdata)
1804{
1805 struct nfs4_exception exception = { };
1806 int err;
1807 do {
1808 err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1809 _nfs4_proc_write(wdata),
1810 &exception);
1811 } while (exception.retry);
1812 return err;
1813}
1814
1815static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1816{
1817 struct inode *inode = cdata->inode;
1818 struct nfs_fattr *fattr = cdata->res.fattr;
1819 struct nfs_server *server = NFS_SERVER(inode);
1820 struct rpc_message msg = {
1821 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1822 .rpc_argp = &cdata->args,
1823 .rpc_resp = &cdata->res,
1824 .rpc_cred = cdata->cred,
1825 };
1826 int status;
1827
1828 dprintk("NFS call commit %d @ %Ld\n", cdata->args.count,
1829 (long long) cdata->args.offset);
1830
1831 cdata->args.bitmask = server->attr_bitmask;
1832 cdata->res.server = server;
1833 cdata->timestamp = jiffies;
1834 nfs_fattr_init(fattr);
1835 status = rpc_call_sync(server->client, &msg, 0);
1836 if (status >= 0)
1837 renew_lease(server, cdata->timestamp);
1838 dprintk("NFS reply commit: %d\n", status);
1839 if (status >= 0)
1840 nfs_post_op_update_inode(inode, fattr);
1841 return status;
1842}
1843
1844static int nfs4_proc_commit(struct nfs_write_data *cdata)
1845{
1846 struct nfs4_exception exception = { };
1847 int err;
1848 do {
1849 err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1850 _nfs4_proc_commit(cdata),
1851 &exception);
1852 } while (exception.retry);
1853 return err;
1854}
1855
1856/*
1857 * Got race?
1858 * We will need to arrange for the VFS layer to provide an atomic open.
1859 * Until then, this create/open method is prone to inefficiency and race
1860 * conditions due to the lookup, create, and open VFS calls from sys_open()
1861 * placed on the wire.
1862 *
1863 * Given the above sorry state of affairs, I'm simply sending an OPEN.
1864 * The file will be opened again in the subsequent VFS open call
1865 * (nfs4_proc_file_open).
1866 *
1867 * The open for read will just hang around to be used by any process that
1868 * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1869 */
1870
1871static int
1872nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1873 int flags, struct nameidata *nd)
1874{
1875 struct nfs4_state *state;
1876 struct rpc_cred *cred;
1877 int status = 0;
1878
1879 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1880 if (IS_ERR(cred)) {
1881 status = PTR_ERR(cred);
1882 goto out;
1883 }
1884 state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1885 put_rpccred(cred);
1886 if (IS_ERR(state)) {
1887 status = PTR_ERR(state);
1888 goto out;
1889 }
1890 d_instantiate(dentry, igrab(state->inode));
1891 if (flags & O_EXCL) {
1892 struct nfs_fattr fattr;
1893 status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1894 if (status == 0)
1895 nfs_setattr_update_inode(state->inode, sattr);
1896 }
1897 if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1898 status = nfs4_intent_set_file(nd, dentry, state);
1899 else
1900 nfs4_close_state(state, flags);
1901out:
1902 return status;
1903}
1904
1905static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1906{
1907 struct nfs_server *server = NFS_SERVER(dir);
1908 struct nfs4_remove_arg args = {
1909 .fh = NFS_FH(dir),
1910 .name = name,
1911 .bitmask = server->attr_bitmask,
1912 };
1913 struct nfs_fattr dir_attr;
1914 struct nfs4_remove_res res = {
1915 .server = server,
1916 .dir_attr = &dir_attr,
1917 };
1918 struct rpc_message msg = {
1919 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1920 .rpc_argp = &args,
1921 .rpc_resp = &res,
1922 };
1923 int status;
1924
1925 nfs_fattr_init(res.dir_attr);
1926 status = rpc_call_sync(server->client, &msg, 0);
1927 if (status == 0) {
1928 update_changeattr(dir, &res.cinfo);
1929 nfs_post_op_update_inode(dir, res.dir_attr);
1930 }
1931 return status;
1932}
1933
1934static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1935{
1936 struct nfs4_exception exception = { };
1937 int err;
1938 do {
1939 err = nfs4_handle_exception(NFS_SERVER(dir),
1940 _nfs4_proc_remove(dir, name),
1941 &exception);
1942 } while (exception.retry);
1943 return err;
1944}
1945
1946struct unlink_desc {
1947 struct nfs4_remove_arg args;
1948 struct nfs4_remove_res res;
1949 struct nfs_fattr dir_attr;
1950};
1951
1952static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1953 struct qstr *name)
1954{
1955 struct nfs_server *server = NFS_SERVER(dir->d_inode);
1956 struct unlink_desc *up;
1957
1958 up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1959 if (!up)
1960 return -ENOMEM;
1961
1962 up->args.fh = NFS_FH(dir->d_inode);
1963 up->args.name = name;
1964 up->args.bitmask = server->attr_bitmask;
1965 up->res.server = server;
1966 up->res.dir_attr = &up->dir_attr;
1967
1968 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1969 msg->rpc_argp = &up->args;
1970 msg->rpc_resp = &up->res;
1971 return 0;
1972}
1973
1974static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1975{
1976 struct rpc_message *msg = &task->tk_msg;
1977 struct unlink_desc *up;
1978
1979 if (msg->rpc_resp != NULL) {
1980 up = container_of(msg->rpc_resp, struct unlink_desc, res);
1981 update_changeattr(dir->d_inode, &up->res.cinfo);
1982 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1983 kfree(up);
1984 msg->rpc_resp = NULL;
1985 msg->rpc_argp = NULL;
1986 }
1987 return 0;
1988}
1989
1990static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1991 struct inode *new_dir, struct qstr *new_name)
1992{
1993 struct nfs_server *server = NFS_SERVER(old_dir);
1994 struct nfs4_rename_arg arg = {
1995 .old_dir = NFS_FH(old_dir),
1996 .new_dir = NFS_FH(new_dir),
1997 .old_name = old_name,
1998 .new_name = new_name,
1999 .bitmask = server->attr_bitmask,
2000 };
2001 struct nfs_fattr old_fattr, new_fattr;
2002 struct nfs4_rename_res res = {
2003 .server = server,
2004 .old_fattr = &old_fattr,
2005 .new_fattr = &new_fattr,
2006 };
2007 struct rpc_message msg = {
2008 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
2009 .rpc_argp = &arg,
2010 .rpc_resp = &res,
2011 };
2012 int status;
2013
2014 nfs_fattr_init(res.old_fattr);
2015 nfs_fattr_init(res.new_fattr);
2016 status = rpc_call_sync(server->client, &msg, 0);
2017
2018 if (!status) {
2019 update_changeattr(old_dir, &res.old_cinfo);
2020 nfs_post_op_update_inode(old_dir, res.old_fattr);
2021 update_changeattr(new_dir, &res.new_cinfo);
2022 nfs_post_op_update_inode(new_dir, res.new_fattr);
2023 }
2024 return status;
2025}
2026
2027static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
2028 struct inode *new_dir, struct qstr *new_name)
2029{
2030 struct nfs4_exception exception = { };
2031 int err;
2032 do {
2033 err = nfs4_handle_exception(NFS_SERVER(old_dir),
2034 _nfs4_proc_rename(old_dir, old_name,
2035 new_dir, new_name),
2036 &exception);
2037 } while (exception.retry);
2038 return err;
2039}
2040
2041static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2042{
2043 struct nfs_server *server = NFS_SERVER(inode);
2044 struct nfs4_link_arg arg = {
2045 .fh = NFS_FH(inode),
2046 .dir_fh = NFS_FH(dir),
2047 .name = name,
2048 .bitmask = server->attr_bitmask,
2049 };
2050 struct nfs_fattr fattr, dir_attr;
2051 struct nfs4_link_res res = {
2052 .server = server,
2053 .fattr = &fattr,
2054 .dir_attr = &dir_attr,
2055 };
2056 struct rpc_message msg = {
2057 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
2058 .rpc_argp = &arg,
2059 .rpc_resp = &res,
2060 };
2061 int status;
2062
2063 nfs_fattr_init(res.fattr);
2064 nfs_fattr_init(res.dir_attr);
2065 status = rpc_call_sync(server->client, &msg, 0);
2066 if (!status) {
2067 update_changeattr(dir, &res.cinfo);
2068 nfs_post_op_update_inode(dir, res.dir_attr);
2069 nfs_post_op_update_inode(inode, res.fattr);
2070 }
2071
2072 return status;
2073}
2074
2075static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2076{
2077 struct nfs4_exception exception = { };
2078 int err;
2079 do {
2080 err = nfs4_handle_exception(NFS_SERVER(inode),
2081 _nfs4_proc_link(inode, dir, name),
2082 &exception);
2083 } while (exception.retry);
2084 return err;
2085}
2086
2087static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2088 struct qstr *path, struct iattr *sattr)
2089{
2090 struct nfs_server *server = NFS_SERVER(dir);
2091 struct nfs_fh fhandle;
2092 struct nfs_fattr fattr, dir_fattr;
2093 struct nfs4_create_arg arg = {
2094 .dir_fh = NFS_FH(dir),
2095 .server = server,
2096 .name = &dentry->d_name,
2097 .attrs = sattr,
2098 .ftype = NF4LNK,
2099 .bitmask = server->attr_bitmask,
2100 };
2101 struct nfs4_create_res res = {
2102 .server = server,
2103 .fh = &fhandle,
2104 .fattr = &fattr,
2105 .dir_fattr = &dir_fattr,
2106 };
2107 struct rpc_message msg = {
2108 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2109 .rpc_argp = &arg,
2110 .rpc_resp = &res,
2111 };
2112 int status;
2113
2114 if (path->len > NFS4_MAXPATHLEN)
2115 return -ENAMETOOLONG;
2116
2117 arg.u.symlink = path;
2118 nfs_fattr_init(&fattr);
2119 nfs_fattr_init(&dir_fattr);
2120
2121 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2122 if (!status) {
2123 update_changeattr(dir, &res.dir_cinfo);
2124 nfs_post_op_update_inode(dir, res.dir_fattr);
2125 status = nfs_instantiate(dentry, &fhandle, &fattr);
2126 }
2127 return status;
2128}
2129
2130static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2131 struct qstr *path, struct iattr *sattr)
2132{
2133 struct nfs4_exception exception = { };
2134 int err;
2135 do {
2136 err = nfs4_handle_exception(NFS_SERVER(dir),
2137 _nfs4_proc_symlink(dir, dentry, path, sattr),
2138 &exception);
2139 } while (exception.retry);
2140 return err;
2141}
2142
2143static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2144 struct iattr *sattr)
2145{
2146 struct nfs_server *server = NFS_SERVER(dir);
2147 struct nfs_fh fhandle;
2148 struct nfs_fattr fattr, dir_fattr;
2149 struct nfs4_create_arg arg = {
2150 .dir_fh = NFS_FH(dir),
2151 .server = server,
2152 .name = &dentry->d_name,
2153 .attrs = sattr,
2154 .ftype = NF4DIR,
2155 .bitmask = server->attr_bitmask,
2156 };
2157 struct nfs4_create_res res = {
2158 .server = server,
2159 .fh = &fhandle,
2160 .fattr = &fattr,
2161 .dir_fattr = &dir_fattr,
2162 };
2163 struct rpc_message msg = {
2164 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2165 .rpc_argp = &arg,
2166 .rpc_resp = &res,
2167 };
2168 int status;
2169
2170 nfs_fattr_init(&fattr);
2171 nfs_fattr_init(&dir_fattr);
2172
2173 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2174 if (!status) {
2175 update_changeattr(dir, &res.dir_cinfo);
2176 nfs_post_op_update_inode(dir, res.dir_fattr);
2177 status = nfs_instantiate(dentry, &fhandle, &fattr);
2178 }
2179 return status;
2180}
2181
2182static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2183 struct iattr *sattr)
2184{
2185 struct nfs4_exception exception = { };
2186 int err;
2187 do {
2188 err = nfs4_handle_exception(NFS_SERVER(dir),
2189 _nfs4_proc_mkdir(dir, dentry, sattr),
2190 &exception);
2191 } while (exception.retry);
2192 return err;
2193}
2194
2195static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2196 u64 cookie, struct page *page, unsigned int count, int plus)
2197{
2198 struct inode *dir = dentry->d_inode;
2199 struct nfs4_readdir_arg args = {
2200 .fh = NFS_FH(dir),
2201 .pages = &page,
2202 .pgbase = 0,
2203 .count = count,
2204 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2205 };
2206 struct nfs4_readdir_res res;
2207 struct rpc_message msg = {
2208 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2209 .rpc_argp = &args,
2210 .rpc_resp = &res,
2211 .rpc_cred = cred,
2212 };
2213 int status;
2214
2215 dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2216 dentry->d_parent->d_name.name,
2217 dentry->d_name.name,
2218 (unsigned long long)cookie);
2219 lock_kernel();
2220 nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2221 res.pgbase = args.pgbase;
2222 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2223 if (status == 0)
2224 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2225 unlock_kernel();
2226 dprintk("%s: returns %d\n", __FUNCTION__, status);
2227 return status;
2228}
2229
2230static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2231 u64 cookie, struct page *page, unsigned int count, int plus)
2232{
2233 struct nfs4_exception exception = { };
2234 int err;
2235 do {
2236 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2237 _nfs4_proc_readdir(dentry, cred, cookie,
2238 page, count, plus),
2239 &exception);
2240 } while (exception.retry);
2241 return err;
2242}
2243
2244static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2245 struct iattr *sattr, dev_t rdev)
2246{
2247 struct nfs_server *server = NFS_SERVER(dir);
2248 struct nfs_fh fh;
2249 struct nfs_fattr fattr, dir_fattr;
2250 struct nfs4_create_arg arg = {
2251 .dir_fh = NFS_FH(dir),
2252 .server = server,
2253 .name = &dentry->d_name,
2254 .attrs = sattr,
2255 .bitmask = server->attr_bitmask,
2256 };
2257 struct nfs4_create_res res = {
2258 .server = server,
2259 .fh = &fh,
2260 .fattr = &fattr,
2261 .dir_fattr = &dir_fattr,
2262 };
2263 struct rpc_message msg = {
2264 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2265 .rpc_argp = &arg,
2266 .rpc_resp = &res,
2267 };
2268 int status;
2269 int mode = sattr->ia_mode;
2270
2271 nfs_fattr_init(&fattr);
2272 nfs_fattr_init(&dir_fattr);
2273
2274 BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2275 BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2276 if (S_ISFIFO(mode))
2277 arg.ftype = NF4FIFO;
2278 else if (S_ISBLK(mode)) {
2279 arg.ftype = NF4BLK;
2280 arg.u.device.specdata1 = MAJOR(rdev);
2281 arg.u.device.specdata2 = MINOR(rdev);
2282 }
2283 else if (S_ISCHR(mode)) {
2284 arg.ftype = NF4CHR;
2285 arg.u.device.specdata1 = MAJOR(rdev);
2286 arg.u.device.specdata2 = MINOR(rdev);
2287 }
2288 else
2289 arg.ftype = NF4SOCK;
2290
2291 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2292 if (status == 0) {
2293 update_changeattr(dir, &res.dir_cinfo);
2294 nfs_post_op_update_inode(dir, res.dir_fattr);
2295 status = nfs_instantiate(dentry, &fh, &fattr);
2296 }
2297 return status;
2298}
2299
2300static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2301 struct iattr *sattr, dev_t rdev)
2302{
2303 struct nfs4_exception exception = { };
2304 int err;
2305 do {
2306 err = nfs4_handle_exception(NFS_SERVER(dir),
2307 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2308 &exception);
2309 } while (exception.retry);
2310 return err;
2311}
2312
2313static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2314 struct nfs_fsstat *fsstat)
2315{
2316 struct nfs4_statfs_arg args = {
2317 .fh = fhandle,
2318 .bitmask = server->attr_bitmask,
2319 };
2320 struct rpc_message msg = {
2321 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2322 .rpc_argp = &args,
2323 .rpc_resp = fsstat,
2324 };
2325
2326 nfs_fattr_init(fsstat->fattr);
2327 return rpc_call_sync(server->client, &msg, 0);
2328}
2329
2330static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2331{
2332 struct nfs4_exception exception = { };
2333 int err;
2334 do {
2335 err = nfs4_handle_exception(server,
2336 _nfs4_proc_statfs(server, fhandle, fsstat),
2337 &exception);
2338 } while (exception.retry);
2339 return err;
2340}
2341
2342static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2343 struct nfs_fsinfo *fsinfo)
2344{
2345 struct nfs4_fsinfo_arg args = {
2346 .fh = fhandle,
2347 .bitmask = server->attr_bitmask,
2348 };
2349 struct rpc_message msg = {
2350 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2351 .rpc_argp = &args,
2352 .rpc_resp = fsinfo,
2353 };
2354
2355 return rpc_call_sync(server->client, &msg, 0);
2356}
2357
2358static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2359{
2360 struct nfs4_exception exception = { };
2361 int err;
2362
2363 do {
2364 err = nfs4_handle_exception(server,
2365 _nfs4_do_fsinfo(server, fhandle, fsinfo),
2366 &exception);
2367 } while (exception.retry);
2368 return err;
2369}
2370
2371static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2372{
2373 nfs_fattr_init(fsinfo->fattr);
2374 return nfs4_do_fsinfo(server, fhandle, fsinfo);
2375}
2376
2377static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2378 struct nfs_pathconf *pathconf)
2379{
2380 struct nfs4_pathconf_arg args = {
2381 .fh = fhandle,
2382 .bitmask = server->attr_bitmask,
2383 };
2384 struct rpc_message msg = {
2385 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2386 .rpc_argp = &args,
2387 .rpc_resp = pathconf,
2388 };
2389
2390 /* None of the pathconf attributes are mandatory to implement */
2391 if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2392 memset(pathconf, 0, sizeof(*pathconf));
2393 return 0;
2394 }
2395
2396 nfs_fattr_init(pathconf->fattr);
2397 return rpc_call_sync(server->client, &msg, 0);
2398}
2399
2400static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2401 struct nfs_pathconf *pathconf)
2402{
2403 struct nfs4_exception exception = { };
2404 int err;
2405
2406 do {
2407 err = nfs4_handle_exception(server,
2408 _nfs4_proc_pathconf(server, fhandle, pathconf),
2409 &exception);
2410 } while (exception.retry);
2411 return err;
2412}
2413
2414static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2415{
2416 struct nfs_server *server = NFS_SERVER(data->inode);
2417
2418 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2419 rpc_restart_call(task);
2420 return -EAGAIN;
2421 }
2422 if (task->tk_status > 0)
2423 renew_lease(server, data->timestamp);
2424 return 0;
2425}
2426
2427static void nfs4_proc_read_setup(struct nfs_read_data *data)
2428{
2429 struct rpc_message msg = {
2430 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2431 .rpc_argp = &data->args,
2432 .rpc_resp = &data->res,
2433 .rpc_cred = data->cred,
2434 };
2435
2436 data->timestamp = jiffies;
2437
2438 rpc_call_setup(&data->task, &msg, 0);
2439}
2440
2441static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2442{
2443 struct inode *inode = data->inode;
2444
2445 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2446 rpc_restart_call(task);
2447 return -EAGAIN;
2448 }
2449 if (task->tk_status >= 0) {
2450 renew_lease(NFS_SERVER(inode), data->timestamp);
2451 nfs_post_op_update_inode(inode, data->res.fattr);
2452 }
2453 return 0;
2454}
2455
2456static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2457{
2458 struct rpc_message msg = {
2459 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2460 .rpc_argp = &data->args,
2461 .rpc_resp = &data->res,
2462 .rpc_cred = data->cred,
2463 };
2464 struct inode *inode = data->inode;
2465 struct nfs_server *server = NFS_SERVER(inode);
2466 int stable;
2467
2468 if (how & FLUSH_STABLE) {
2469 if (!NFS_I(inode)->ncommit)
2470 stable = NFS_FILE_SYNC;
2471 else
2472 stable = NFS_DATA_SYNC;
2473 } else
2474 stable = NFS_UNSTABLE;
2475 data->args.stable = stable;
2476 data->args.bitmask = server->attr_bitmask;
2477 data->res.server = server;
2478
2479 data->timestamp = jiffies;
2480
2481 /* Finalize the task. */
2482 rpc_call_setup(&data->task, &msg, 0);
2483}
2484
2485static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2486{
2487 struct inode *inode = data->inode;
2488
2489 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2490 rpc_restart_call(task);
2491 return -EAGAIN;
2492 }
2493 if (task->tk_status >= 0)
2494 nfs_post_op_update_inode(inode, data->res.fattr);
2495 return 0;
2496}
2497
2498static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2499{
2500 struct rpc_message msg = {
2501 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2502 .rpc_argp = &data->args,
2503 .rpc_resp = &data->res,
2504 .rpc_cred = data->cred,
2505 };
2506 struct nfs_server *server = NFS_SERVER(data->inode);
2507
2508 data->args.bitmask = server->attr_bitmask;
2509 data->res.server = server;
2510
2511 rpc_call_setup(&data->task, &msg, 0);
2512}
2513
2514/*
2515 * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2516 * standalone procedure for queueing an asynchronous RENEW.
2517 */
2518static void nfs4_renew_done(struct rpc_task *task, void *data)
2519{
2520 struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
2521 unsigned long timestamp = (unsigned long)data;
2522
2523 if (task->tk_status < 0) {
2524 switch (task->tk_status) {
2525 case -NFS4ERR_STALE_CLIENTID:
2526 case -NFS4ERR_EXPIRED:
2527 case -NFS4ERR_CB_PATH_DOWN:
2528 nfs4_schedule_state_recovery(clp);
2529 }
2530 return;
2531 }
2532 spin_lock(&clp->cl_lock);
2533 if (time_before(clp->cl_last_renewal,timestamp))
2534 clp->cl_last_renewal = timestamp;
2535 spin_unlock(&clp->cl_lock);
2536}
2537
2538static const struct rpc_call_ops nfs4_renew_ops = {
2539 .rpc_call_done = nfs4_renew_done,
2540};
2541
2542int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
2543{
2544 struct rpc_message msg = {
2545 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2546 .rpc_argp = clp,
2547 .rpc_cred = cred,
2548 };
2549
2550 return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2551 &nfs4_renew_ops, (void *)jiffies);
2552}
2553
2554int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
2555{
2556 struct rpc_message msg = {
2557 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2558 .rpc_argp = clp,
2559 .rpc_cred = cred,
2560 };
2561 unsigned long now = jiffies;
2562 int status;
2563
2564 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2565 if (status < 0)
2566 return status;
2567 spin_lock(&clp->cl_lock);
2568 if (time_before(clp->cl_last_renewal,now))
2569 clp->cl_last_renewal = now;
2570 spin_unlock(&clp->cl_lock);
2571 return 0;
2572}
2573
2574static inline int nfs4_server_supports_acls(struct nfs_server *server)
2575{
2576 return (server->caps & NFS_CAP_ACLS)
2577 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2578 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2579}
2580
2581/* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2582 * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2583 * the stack.
2584 */
2585#define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2586
2587static void buf_to_pages(const void *buf, size_t buflen,
2588 struct page **pages, unsigned int *pgbase)
2589{
2590 const void *p = buf;
2591
2592 *pgbase = offset_in_page(buf);
2593 p -= *pgbase;
2594 while (p < buf + buflen) {
2595 *(pages++) = virt_to_page(p);
2596 p += PAGE_CACHE_SIZE;
2597 }
2598}
2599
2600struct nfs4_cached_acl {
2601 int cached;
2602 size_t len;
2603 char data[0];
2604};
2605
2606static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2607{
2608 struct nfs_inode *nfsi = NFS_I(inode);
2609
2610 spin_lock(&inode->i_lock);
2611 kfree(nfsi->nfs4_acl);
2612 nfsi->nfs4_acl = acl;
2613 spin_unlock(&inode->i_lock);
2614}
2615
2616static void nfs4_zap_acl_attr(struct inode *inode)
2617{
2618 nfs4_set_cached_acl(inode, NULL);
2619}
2620
2621static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2622{
2623 struct nfs_inode *nfsi = NFS_I(inode);
2624 struct nfs4_cached_acl *acl;
2625 int ret = -ENOENT;
2626
2627 spin_lock(&inode->i_lock);
2628 acl = nfsi->nfs4_acl;
2629 if (acl == NULL)
2630 goto out;
2631 if (buf == NULL) /* user is just asking for length */
2632 goto out_len;
2633 if (acl->cached == 0)
2634 goto out;
2635 ret = -ERANGE; /* see getxattr(2) man page */
2636 if (acl->len > buflen)
2637 goto out;
2638 memcpy(buf, acl->data, acl->len);
2639out_len:
2640 ret = acl->len;
2641out:
2642 spin_unlock(&inode->i_lock);
2643 return ret;
2644}
2645
2646static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2647{
2648 struct nfs4_cached_acl *acl;
2649
2650 if (buf && acl_len <= PAGE_SIZE) {
2651 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2652 if (acl == NULL)
2653 goto out;
2654 acl->cached = 1;
2655 memcpy(acl->data, buf, acl_len);
2656 } else {
2657 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2658 if (acl == NULL)
2659 goto out;
2660 acl->cached = 0;
2661 }
2662 acl->len = acl_len;
2663out:
2664 nfs4_set_cached_acl(inode, acl);
2665}
2666
2667static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2668{
2669 struct page *pages[NFS4ACL_MAXPAGES];
2670 struct nfs_getaclargs args = {
2671 .fh = NFS_FH(inode),
2672 .acl_pages = pages,
2673 .acl_len = buflen,
2674 };
2675 size_t resp_len = buflen;
2676 void *resp_buf;
2677 struct rpc_message msg = {
2678 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2679 .rpc_argp = &args,
2680 .rpc_resp = &resp_len,
2681 };
2682 struct page *localpage = NULL;
2683 int ret;
2684
2685 if (buflen < PAGE_SIZE) {
2686 /* As long as we're doing a round trip to the server anyway,
2687 * let's be prepared for a page of acl data. */
2688 localpage = alloc_page(GFP_KERNEL);
2689 resp_buf = page_address(localpage);
2690 if (localpage == NULL)
2691 return -ENOMEM;
2692 args.acl_pages[0] = localpage;
2693 args.acl_pgbase = 0;
2694 resp_len = args.acl_len = PAGE_SIZE;
2695 } else {
2696 resp_buf = buf;
2697 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2698 }
2699 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2700 if (ret)
2701 goto out_free;
2702 if (resp_len > args.acl_len)
2703 nfs4_write_cached_acl(inode, NULL, resp_len);
2704 else
2705 nfs4_write_cached_acl(inode, resp_buf, resp_len);
2706 if (buf) {
2707 ret = -ERANGE;
2708 if (resp_len > buflen)
2709 goto out_free;
2710 if (localpage)
2711 memcpy(buf, resp_buf, resp_len);
2712 }
2713 ret = resp_len;
2714out_free:
2715 if (localpage)
2716 __free_page(localpage);
2717 return ret;
2718}
2719
2720static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2721{
2722 struct nfs4_exception exception = { };
2723 ssize_t ret;
2724 do {
2725 ret = __nfs4_get_acl_uncached(inode, buf, buflen);
2726 if (ret >= 0)
2727 break;
2728 ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
2729 } while (exception.retry);
2730 return ret;
2731}
2732
2733static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2734{
2735 struct nfs_server *server = NFS_SERVER(inode);
2736 int ret;
2737
2738 if (!nfs4_server_supports_acls(server))
2739 return -EOPNOTSUPP;
2740 ret = nfs_revalidate_inode(server, inode);
2741 if (ret < 0)
2742 return ret;
2743 ret = nfs4_read_cached_acl(inode, buf, buflen);
2744 if (ret != -ENOENT)
2745 return ret;
2746 return nfs4_get_acl_uncached(inode, buf, buflen);
2747}
2748
2749static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2750{
2751 struct nfs_server *server = NFS_SERVER(inode);
2752 struct page *pages[NFS4ACL_MAXPAGES];
2753 struct nfs_setaclargs arg = {
2754 .fh = NFS_FH(inode),
2755 .acl_pages = pages,
2756 .acl_len = buflen,
2757 };
2758 struct rpc_message msg = {
2759 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2760 .rpc_argp = &arg,
2761 .rpc_resp = NULL,
2762 };
2763 int ret;
2764
2765 if (!nfs4_server_supports_acls(server))
2766 return -EOPNOTSUPP;
2767 nfs_inode_return_delegation(inode);
2768 buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2769 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2770 if (ret == 0)
2771 nfs4_write_cached_acl(inode, buf, buflen);
2772 return ret;
2773}
2774
2775static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2776{
2777 struct nfs4_exception exception = { };
2778 int err;
2779 do {
2780 err = nfs4_handle_exception(NFS_SERVER(inode),
2781 __nfs4_proc_set_acl(inode, buf, buflen),
2782 &exception);
2783 } while (exception.retry);
2784 return err;
2785}
2786
2787static int
2788nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2789{
2790 struct nfs_client *clp = server->nfs_client;
2791
2792 if (!clp || task->tk_status >= 0)
2793 return 0;
2794 switch(task->tk_status) {
2795 case -NFS4ERR_STALE_CLIENTID:
2796 case -NFS4ERR_STALE_STATEID:
2797 case -NFS4ERR_EXPIRED:
2798 rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2799 nfs4_schedule_state_recovery(clp);
2800 if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2801 rpc_wake_up_task(task);
2802 task->tk_status = 0;
2803 return -EAGAIN;
2804 case -NFS4ERR_DELAY:
2805 nfs_inc_server_stats((struct nfs_server *) server,
2806 NFSIOS_DELAY);
2807 case -NFS4ERR_GRACE:
2808 rpc_delay(task, NFS4_POLL_RETRY_MAX);
2809 task->tk_status = 0;
2810 return -EAGAIN;
2811 case -NFS4ERR_OLD_STATEID:
2812 task->tk_status = 0;
2813 return -EAGAIN;
2814 }
2815 task->tk_status = nfs4_map_errors(task->tk_status);
2816 return 0;
2817}
2818
2819static int nfs4_wait_bit_interruptible(void *word)
2820{
2821 if (signal_pending(current))
2822 return -ERESTARTSYS;
2823 schedule();
2824 return 0;
2825}
2826
2827static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp)
2828{
2829 sigset_t oldset;
2830 int res;
2831
2832 might_sleep();
2833
2834 rpc_clnt_sigmask(clnt, &oldset);
2835 res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2836 nfs4_wait_bit_interruptible,
2837 TASK_INTERRUPTIBLE);
2838 rpc_clnt_sigunmask(clnt, &oldset);
2839 return res;
2840}
2841
2842static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2843{
2844 sigset_t oldset;
2845 int res = 0;
2846
2847 might_sleep();
2848
2849 if (*timeout <= 0)
2850 *timeout = NFS4_POLL_RETRY_MIN;
2851 if (*timeout > NFS4_POLL_RETRY_MAX)
2852 *timeout = NFS4_POLL_RETRY_MAX;
2853 rpc_clnt_sigmask(clnt, &oldset);
2854 if (clnt->cl_intr) {
2855 schedule_timeout_interruptible(*timeout);
2856 if (signalled())
2857 res = -ERESTARTSYS;
2858 } else
2859 schedule_timeout_uninterruptible(*timeout);
2860 rpc_clnt_sigunmask(clnt, &oldset);
2861 *timeout <<= 1;
2862 return res;
2863}
2864
2865/* This is the error handling routine for processes that are allowed
2866 * to sleep.
2867 */
2868int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2869{
2870 struct nfs_client *clp = server->nfs_client;
2871 int ret = errorcode;
2872
2873 exception->retry = 0;
2874 switch(errorcode) {
2875 case 0:
2876 return 0;
2877 case -NFS4ERR_STALE_CLIENTID:
2878 case -NFS4ERR_STALE_STATEID:
2879 case -NFS4ERR_EXPIRED:
2880 nfs4_schedule_state_recovery(clp);
2881 ret = nfs4_wait_clnt_recover(server->client, clp);
2882 if (ret == 0)
2883 exception->retry = 1;
2884 break;
2885 case -NFS4ERR_GRACE:
2886 case -NFS4ERR_DELAY:
2887 ret = nfs4_delay(server->client, &exception->timeout);
2888 if (ret != 0)
2889 break;
2890 case -NFS4ERR_OLD_STATEID:
2891 exception->retry = 1;
2892 }
2893 /* We failed to handle the error */
2894 return nfs4_map_errors(ret);
2895}
2896
2897int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2898{
2899 nfs4_verifier sc_verifier;
2900 struct nfs4_setclientid setclientid = {
2901 .sc_verifier = &sc_verifier,
2902 .sc_prog = program,
2903 };
2904 struct rpc_message msg = {
2905 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2906 .rpc_argp = &setclientid,
2907 .rpc_resp = clp,
2908 .rpc_cred = cred,
2909 };
2910 u32 *p;
2911 int loop = 0;
2912 int status;
2913
2914 p = (u32*)sc_verifier.data;
2915 *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2916 *p = htonl((u32)clp->cl_boot_time.tv_nsec);
2917
2918 for(;;) {
2919 setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2920 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2921 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.sin_addr),
2922 cred->cr_ops->cr_name,
2923 clp->cl_id_uniquifier);
2924 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2925 sizeof(setclientid.sc_netid), "tcp");
2926 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2927 sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2928 clp->cl_ipaddr, port >> 8, port & 255);
2929
2930 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2931 if (status != -NFS4ERR_CLID_INUSE)
2932 break;
2933 if (signalled())
2934 break;
2935 if (loop++ & 1)
2936 ssleep(clp->cl_lease_time + 1);
2937 else
2938 if (++clp->cl_id_uniquifier == 0)
2939 break;
2940 }
2941 return status;
2942}
2943
2944static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2945{
2946 struct nfs_fsinfo fsinfo;
2947 struct rpc_message msg = {
2948 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2949 .rpc_argp = clp,
2950 .rpc_resp = &fsinfo,
2951 .rpc_cred = cred,
2952 };
2953 unsigned long now;
2954 int status;
2955
2956 now = jiffies;
2957 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2958 if (status == 0) {
2959 spin_lock(&clp->cl_lock);
2960 clp->cl_lease_time = fsinfo.lease_time * HZ;
2961 clp->cl_last_renewal = now;
2962 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2963 spin_unlock(&clp->cl_lock);
2964 }
2965 return status;
2966}
2967
2968int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2969{
2970 long timeout;
2971 int err;
2972 do {
2973 err = _nfs4_proc_setclientid_confirm(clp, cred);
2974 switch (err) {
2975 case 0:
2976 return err;
2977 case -NFS4ERR_RESOURCE:
2978 /* The IBM lawyers misread another document! */
2979 case -NFS4ERR_DELAY:
2980 err = nfs4_delay(clp->cl_rpcclient, &timeout);
2981 }
2982 } while (err == 0);
2983 return err;
2984}
2985
2986struct nfs4_delegreturndata {
2987 struct nfs4_delegreturnargs args;
2988 struct nfs4_delegreturnres res;
2989 struct nfs_fh fh;
2990 nfs4_stateid stateid;
2991 struct rpc_cred *cred;
2992 unsigned long timestamp;
2993 struct nfs_fattr fattr;
2994 int rpc_status;
2995};
2996
2997static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
2998{
2999 struct nfs4_delegreturndata *data = calldata;
3000 struct rpc_message msg = {
3001 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
3002 .rpc_argp = &data->args,
3003 .rpc_resp = &data->res,
3004 .rpc_cred = data->cred,
3005 };
3006 nfs_fattr_init(data->res.fattr);
3007 rpc_call_setup(task, &msg, 0);
3008}
3009
3010static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
3011{
3012 struct nfs4_delegreturndata *data = calldata;
3013 data->rpc_status = task->tk_status;
3014 if (data->rpc_status == 0)
3015 renew_lease(data->res.server, data->timestamp);
3016}
3017
3018static void nfs4_delegreturn_release(void *calldata)
3019{
3020 struct nfs4_delegreturndata *data = calldata;
3021
3022 put_rpccred(data->cred);
3023 kfree(calldata);
3024}
3025
3026static const struct rpc_call_ops nfs4_delegreturn_ops = {
3027 .rpc_call_prepare = nfs4_delegreturn_prepare,
3028 .rpc_call_done = nfs4_delegreturn_done,
3029 .rpc_release = nfs4_delegreturn_release,
3030};
3031
3032static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3033{
3034 struct nfs4_delegreturndata *data;
3035 struct nfs_server *server = NFS_SERVER(inode);
3036 struct rpc_task *task;
3037 int status;
3038
3039 data = kmalloc(sizeof(*data), GFP_KERNEL);
3040 if (data == NULL)
3041 return -ENOMEM;
3042 data->args.fhandle = &data->fh;
3043 data->args.stateid = &data->stateid;
3044 data->args.bitmask = server->attr_bitmask;
3045 nfs_copy_fh(&data->fh, NFS_FH(inode));
3046 memcpy(&data->stateid, stateid, sizeof(data->stateid));
3047 data->res.fattr = &data->fattr;
3048 data->res.server = server;
3049 data->cred = get_rpccred(cred);
3050 data->timestamp = jiffies;
3051 data->rpc_status = 0;
3052
3053 task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
3054 if (IS_ERR(task))
3055 return PTR_ERR(task);
3056 status = nfs4_wait_for_completion_rpc_task(task);
3057 if (status == 0) {
3058 status = data->rpc_status;
3059 if (status == 0)
3060 nfs_post_op_update_inode(inode, &data->fattr);
3061 }
3062 rpc_release_task(task);
3063 return status;
3064}
3065
3066int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3067{
3068 struct nfs_server *server = NFS_SERVER(inode);
3069 struct nfs4_exception exception = { };
3070 int err;
3071 do {
3072 err = _nfs4_proc_delegreturn(inode, cred, stateid);
3073 switch (err) {
3074 case -NFS4ERR_STALE_STATEID:
3075 case -NFS4ERR_EXPIRED:
3076 nfs4_schedule_state_recovery(server->nfs_client);
3077 case 0:
3078 return 0;
3079 }
3080 err = nfs4_handle_exception(server, err, &exception);
3081 } while (exception.retry);
3082 return err;
3083}
3084
3085#define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3086#define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3087
3088/*
3089 * sleep, with exponential backoff, and retry the LOCK operation.
3090 */
3091static unsigned long
3092nfs4_set_lock_task_retry(unsigned long timeout)
3093{
3094 schedule_timeout_interruptible(timeout);
3095 timeout <<= 1;
3096 if (timeout > NFS4_LOCK_MAXTIMEOUT)
3097 return NFS4_LOCK_MAXTIMEOUT;
3098 return timeout;
3099}
3100
3101static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3102{
3103 struct inode *inode = state->inode;
3104 struct nfs_server *server = NFS_SERVER(inode);
3105 struct nfs_client *clp = server->nfs_client;
3106 struct nfs_lockt_args arg = {
3107 .fh = NFS_FH(inode),
3108 .fl = request,
3109 };
3110 struct nfs_lockt_res res = {
3111 .denied = request,
3112 };
3113 struct rpc_message msg = {
3114 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3115 .rpc_argp = &arg,
3116 .rpc_resp = &res,
3117 .rpc_cred = state->owner->so_cred,
3118 };
3119 struct nfs4_lock_state *lsp;
3120 int status;
3121
3122 down_read(&clp->cl_sem);
3123 arg.lock_owner.clientid = clp->cl_clientid;
3124 status = nfs4_set_lock_state(state, request);
3125 if (status != 0)
3126 goto out;
3127 lsp = request->fl_u.nfs4_fl.owner;
3128 arg.lock_owner.id = lsp->ls_id;
3129 status = rpc_call_sync(server->client, &msg, 0);
3130 switch (status) {
3131 case 0:
3132 request->fl_type = F_UNLCK;
3133 break;
3134 case -NFS4ERR_DENIED:
3135 status = 0;
3136 }
3137out:
3138 up_read(&clp->cl_sem);
3139 return status;
3140}
3141
3142static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3143{
3144 struct nfs4_exception exception = { };
3145 int err;
3146
3147 do {
3148 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3149 _nfs4_proc_getlk(state, cmd, request),
3150 &exception);
3151 } while (exception.retry);
3152 return err;
3153}
3154
3155static int do_vfs_lock(struct file *file, struct file_lock *fl)
3156{
3157 int res = 0;
3158 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3159 case FL_POSIX:
3160 res = posix_lock_file_wait(file, fl);
3161 break;
3162 case FL_FLOCK:
3163 res = flock_lock_file_wait(file, fl);
3164 break;
3165 default:
3166 BUG();
3167 }
3168 return res;
3169}
3170
3171struct nfs4_unlockdata {
3172 struct nfs_locku_args arg;
3173 struct nfs_locku_res res;
3174 struct nfs4_lock_state *lsp;
3175 struct nfs_open_context *ctx;
3176 struct file_lock fl;
3177 const struct nfs_server *server;
3178 unsigned long timestamp;
3179};
3180
3181static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3182 struct nfs_open_context *ctx,
3183 struct nfs4_lock_state *lsp,
3184 struct nfs_seqid *seqid)
3185{
3186 struct nfs4_unlockdata *p;
3187 struct inode *inode = lsp->ls_state->inode;
3188
3189 p = kmalloc(sizeof(*p), GFP_KERNEL);
3190 if (p == NULL)
3191 return NULL;
3192 p->arg.fh = NFS_FH(inode);
3193 p->arg.fl = &p->fl;
3194 p->arg.seqid = seqid;
3195 p->arg.stateid = &lsp->ls_stateid;
3196 p->lsp = lsp;
3197 atomic_inc(&lsp->ls_count);
3198 /* Ensure we don't close file until we're done freeing locks! */
3199 p->ctx = get_nfs_open_context(ctx);
3200 memcpy(&p->fl, fl, sizeof(p->fl));
3201 p->server = NFS_SERVER(inode);
3202 return p;
3203}
3204
3205static void nfs4_locku_release_calldata(void *data)
3206{
3207 struct nfs4_unlockdata *calldata = data;
3208 nfs_free_seqid(calldata->arg.seqid);
3209 nfs4_put_lock_state(calldata->lsp);
3210 put_nfs_open_context(calldata->ctx);
3211 kfree(calldata);
3212}
3213
3214static void nfs4_locku_done(struct rpc_task *task, void *data)
3215{
3216 struct nfs4_unlockdata *calldata = data;
3217
3218 if (RPC_ASSASSINATED(task))
3219 return;
3220 nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3221 switch (task->tk_status) {
3222 case 0:
3223 memcpy(calldata->lsp->ls_stateid.data,
3224 calldata->res.stateid.data,
3225 sizeof(calldata->lsp->ls_stateid.data));
3226 renew_lease(calldata->server, calldata->timestamp);
3227 break;
3228 case -NFS4ERR_STALE_STATEID:
3229 case -NFS4ERR_EXPIRED:
3230 nfs4_schedule_state_recovery(calldata->server->nfs_client);
3231 break;
3232 default:
3233 if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3234 rpc_restart_call(task);
3235 }
3236 }
3237}
3238
3239static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3240{
3241 struct nfs4_unlockdata *calldata = data;
3242 struct rpc_message msg = {
3243 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3244 .rpc_argp = &calldata->arg,
3245 .rpc_resp = &calldata->res,
3246 .rpc_cred = calldata->lsp->ls_state->owner->so_cred,
3247 };
3248
3249 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3250 return;
3251 if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3252 /* Note: exit _without_ running nfs4_locku_done */
3253 task->tk_action = NULL;
3254 return;
3255 }
3256 calldata->timestamp = jiffies;
3257 rpc_call_setup(task, &msg, 0);
3258}
3259
3260static const struct rpc_call_ops nfs4_locku_ops = {
3261 .rpc_call_prepare = nfs4_locku_prepare,
3262 .rpc_call_done = nfs4_locku_done,
3263 .rpc_release = nfs4_locku_release_calldata,
3264};
3265
3266static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3267 struct nfs_open_context *ctx,
3268 struct nfs4_lock_state *lsp,
3269 struct nfs_seqid *seqid)
3270{
3271 struct nfs4_unlockdata *data;
3272
3273 data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3274 if (data == NULL) {
3275 nfs_free_seqid(seqid);
3276 return ERR_PTR(-ENOMEM);
3277 }
3278
3279 return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3280}
3281
3282static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3283{
3284 struct nfs_seqid *seqid;
3285 struct nfs4_lock_state *lsp;
3286 struct rpc_task *task;
3287 int status = 0;
3288
3289 status = nfs4_set_lock_state(state, request);
3290 /* Unlock _before_ we do the RPC call */
3291 request->fl_flags |= FL_EXISTS;
3292 if (do_vfs_lock(request->fl_file, request) == -ENOENT)
3293 goto out;
3294 if (status != 0)
3295 goto out;
3296 /* Is this a delegated lock? */
3297 if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3298 goto out;
3299 lsp = request->fl_u.nfs4_fl.owner;
3300 seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3301 status = -ENOMEM;
3302 if (seqid == NULL)
3303 goto out;
3304 task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3305 status = PTR_ERR(task);
3306 if (IS_ERR(task))
3307 goto out;
3308 status = nfs4_wait_for_completion_rpc_task(task);
3309 rpc_release_task(task);
3310out:
3311 return status;
3312}
3313
3314struct nfs4_lockdata {
3315 struct nfs_lock_args arg;
3316 struct nfs_lock_res res;
3317 struct nfs4_lock_state *lsp;
3318 struct nfs_open_context *ctx;
3319 struct file_lock fl;
3320 unsigned long timestamp;
3321 int rpc_status;
3322 int cancelled;
3323};
3324
3325static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3326 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3327{
3328 struct nfs4_lockdata *p;
3329 struct inode *inode = lsp->ls_state->inode;
3330 struct nfs_server *server = NFS_SERVER(inode);
3331
3332 p = kzalloc(sizeof(*p), GFP_KERNEL);
3333 if (p == NULL)
3334 return NULL;
3335
3336 p->arg.fh = NFS_FH(inode);
3337 p->arg.fl = &p->fl;
3338 p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3339 if (p->arg.lock_seqid == NULL)
3340 goto out_free;
3341 p->arg.lock_stateid = &lsp->ls_stateid;
3342 p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
3343 p->arg.lock_owner.id = lsp->ls_id;
3344 p->lsp = lsp;
3345 atomic_inc(&lsp->ls_count);
3346 p->ctx = get_nfs_open_context(ctx);
3347 memcpy(&p->fl, fl, sizeof(p->fl));
3348 return p;
3349out_free:
3350 kfree(p);
3351 return NULL;
3352}
3353
3354static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3355{
3356 struct nfs4_lockdata *data = calldata;
3357 struct nfs4_state *state = data->lsp->ls_state;
3358 struct nfs4_state_owner *sp = state->owner;
3359 struct rpc_message msg = {
3360 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3361 .rpc_argp = &data->arg,
3362 .rpc_resp = &data->res,
3363 .rpc_cred = sp->so_cred,
3364 };
3365
3366 if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3367 return;
3368 dprintk("%s: begin!\n", __FUNCTION__);
3369 /* Do we need to do an open_to_lock_owner? */
3370 if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3371 data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3372 if (data->arg.open_seqid == NULL) {
3373 data->rpc_status = -ENOMEM;
3374 task->tk_action = NULL;
3375 goto out;
3376 }
3377 data->arg.open_stateid = &state->stateid;
3378 data->arg.new_lock_owner = 1;
3379 }
3380 data->timestamp = jiffies;
3381 rpc_call_setup(task, &msg, 0);
3382out:
3383 dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3384}
3385
3386static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3387{
3388 struct nfs4_lockdata *data = calldata;
3389
3390 dprintk("%s: begin!\n", __FUNCTION__);
3391
3392 data->rpc_status = task->tk_status;
3393 if (RPC_ASSASSINATED(task))
3394 goto out;
3395 if (data->arg.new_lock_owner != 0) {
3396 nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3397 if (data->rpc_status == 0)
3398 nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3399 else
3400 goto out;
3401 }
3402 if (data->rpc_status == 0) {
3403 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3404 sizeof(data->lsp->ls_stateid.data));
3405 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3406 renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3407 }
3408 nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3409out:
3410 dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3411}
3412
3413static void nfs4_lock_release(void *calldata)
3414{
3415 struct nfs4_lockdata *data = calldata;
3416
3417 dprintk("%s: begin!\n", __FUNCTION__);
3418 if (data->arg.open_seqid != NULL)
3419 nfs_free_seqid(data->arg.open_seqid);
3420 if (data->cancelled != 0) {
3421 struct rpc_task *task;
3422 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3423 data->arg.lock_seqid);
3424 if (!IS_ERR(task))
3425 rpc_release_task(task);
3426 dprintk("%s: cancelling lock!\n", __FUNCTION__);
3427 } else
3428 nfs_free_seqid(data->arg.lock_seqid);
3429 nfs4_put_lock_state(data->lsp);
3430 put_nfs_open_context(data->ctx);
3431 kfree(data);
3432 dprintk("%s: done!\n", __FUNCTION__);
3433}
3434
3435static const struct rpc_call_ops nfs4_lock_ops = {
3436 .rpc_call_prepare = nfs4_lock_prepare,
3437 .rpc_call_done = nfs4_lock_done,
3438 .rpc_release = nfs4_lock_release,
3439};
3440
3441static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3442{
3443 struct nfs4_lockdata *data;
3444 struct rpc_task *task;
3445 int ret;
3446
3447 dprintk("%s: begin!\n", __FUNCTION__);
3448 data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3449 fl->fl_u.nfs4_fl.owner);
3450 if (data == NULL)
3451 return -ENOMEM;
3452 if (IS_SETLKW(cmd))
3453 data->arg.block = 1;
3454 if (reclaim != 0)
3455 data->arg.reclaim = 1;
3456 task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3457 &nfs4_lock_ops, data);
3458 if (IS_ERR(task))
3459 return PTR_ERR(task);
3460 ret = nfs4_wait_for_completion_rpc_task(task);
3461 if (ret == 0) {
3462 ret = data->rpc_status;
3463 if (ret == -NFS4ERR_DENIED)
3464 ret = -EAGAIN;
3465 } else
3466 data->cancelled = 1;
3467 rpc_release_task(task);
3468 dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3469 return ret;
3470}
3471
3472static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3473{
3474 struct nfs_server *server = NFS_SERVER(state->inode);
3475 struct nfs4_exception exception = { };
3476 int err;
3477
3478 do {
3479 /* Cache the lock if possible... */
3480 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3481 return 0;
3482 err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3483 if (err != -NFS4ERR_DELAY)
3484 break;
3485 nfs4_handle_exception(server, err, &exception);
3486 } while (exception.retry);
3487 return err;
3488}
3489
3490static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3491{
3492 struct nfs_server *server = NFS_SERVER(state->inode);
3493 struct nfs4_exception exception = { };
3494 int err;
3495
3496 err = nfs4_set_lock_state(state, request);
3497 if (err != 0)
3498 return err;
3499 do {
3500 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3501 return 0;
3502 err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3503 if (err != -NFS4ERR_DELAY)
3504 break;
3505 nfs4_handle_exception(server, err, &exception);
3506 } while (exception.retry);
3507 return err;
3508}
3509
3510static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3511{
3512 struct nfs_client *clp = state->owner->so_client;
3513 unsigned char fl_flags = request->fl_flags;
3514 int status;
3515
3516 /* Is this a delegated open? */
3517 status = nfs4_set_lock_state(state, request);
3518 if (status != 0)
3519 goto out;
3520 request->fl_flags |= FL_ACCESS;
3521 status = do_vfs_lock(request->fl_file, request);
3522 if (status < 0)
3523 goto out;
3524 down_read(&clp->cl_sem);
3525 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3526 struct nfs_inode *nfsi = NFS_I(state->inode);
3527 /* Yes: cache locks! */
3528 down_read(&nfsi->rwsem);
3529 /* ...but avoid races with delegation recall... */
3530 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3531 request->fl_flags = fl_flags & ~FL_SLEEP;
3532 status = do_vfs_lock(request->fl_file, request);
3533 up_read(&nfsi->rwsem);
3534 goto out_unlock;
3535 }
3536 up_read(&nfsi->rwsem);
3537 }
3538 status = _nfs4_do_setlk(state, cmd, request, 0);
3539 if (status != 0)
3540 goto out_unlock;
3541 /* Note: we always want to sleep here! */
3542 request->fl_flags = fl_flags | FL_SLEEP;
3543 if (do_vfs_lock(request->fl_file, request) < 0)
3544 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3545out_unlock:
3546 up_read(&clp->cl_sem);
3547out:
3548 request->fl_flags = fl_flags;
3549 return status;
3550}
3551
3552static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3553{
3554 struct nfs4_exception exception = { };
3555 int err;
3556
3557 do {
3558 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3559 _nfs4_proc_setlk(state, cmd, request),
3560 &exception);
3561 } while (exception.retry);
3562 return err;
3563}
3564
3565static int
3566nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3567{
3568 struct nfs_open_context *ctx;
3569 struct nfs4_state *state;
3570 unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3571 int status;
3572
3573 /* verify open state */
3574 ctx = (struct nfs_open_context *)filp->private_data;
3575 state = ctx->state;
3576
3577 if (request->fl_start < 0 || request->fl_end < 0)
3578 return -EINVAL;
3579
3580 if (IS_GETLK(cmd))
3581 return nfs4_proc_getlk(state, F_GETLK, request);
3582
3583 if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3584 return -EINVAL;
3585
3586 if (request->fl_type == F_UNLCK)
3587 return nfs4_proc_unlck(state, cmd, request);
3588
3589 do {
3590 status = nfs4_proc_setlk(state, cmd, request);
3591 if ((status != -EAGAIN) || IS_SETLK(cmd))
3592 break;
3593 timeout = nfs4_set_lock_task_retry(timeout);
3594 status = -ERESTARTSYS;
3595 if (signalled())
3596 break;
3597 } while(status < 0);
3598 return status;
3599}
3600
3601int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3602{
3603 struct nfs_server *server = NFS_SERVER(state->inode);
3604 struct nfs4_exception exception = { };
3605 int err;
3606
3607 err = nfs4_set_lock_state(state, fl);
3608 if (err != 0)
3609 goto out;
3610 do {
3611 err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3612 if (err != -NFS4ERR_DELAY)
3613 break;
3614 err = nfs4_handle_exception(server, err, &exception);
3615 } while (exception.retry);
3616out:
3617 return err;
3618}
3619
3620#define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3621
3622int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3623 size_t buflen, int flags)
3624{
3625 struct inode *inode = dentry->d_inode;
3626
3627 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3628 return -EOPNOTSUPP;
3629
3630 if (!S_ISREG(inode->i_mode) &&
3631 (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3632 return -EPERM;
3633
3634 return nfs4_proc_set_acl(inode, buf, buflen);
3635}
3636
3637/* The getxattr man page suggests returning -ENODATA for unknown attributes,
3638 * and that's what we'll do for e.g. user attributes that haven't been set.
3639 * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3640 * attributes in kernel-managed attribute namespaces. */
3641ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3642 size_t buflen)
3643{
3644 struct inode *inode = dentry->d_inode;
3645
3646 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3647 return -EOPNOTSUPP;
3648
3649 return nfs4_proc_get_acl(inode, buf, buflen);
3650}
3651
3652ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3653{
3654 size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3655
3656 if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3657 return 0;
3658 if (buf && buflen < len)
3659 return -ERANGE;
3660 if (buf)
3661 memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3662 return len;
3663}
3664
3665int nfs4_proc_fs_locations(struct inode *dir, struct dentry *dentry,
3666 struct nfs4_fs_locations *fs_locations, struct page *page)
3667{
3668 struct nfs_server *server = NFS_SERVER(dir);
3669 u32 bitmask[2] = {
3670 [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3671 [1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3672 };
3673 struct nfs4_fs_locations_arg args = {
3674 .dir_fh = NFS_FH(dir),
3675 .name = &dentry->d_name,
3676 .page = page,
3677 .bitmask = bitmask,
3678 };
3679 struct rpc_message msg = {
3680 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3681 .rpc_argp = &args,
3682 .rpc_resp = fs_locations,
3683 };
3684 int status;
3685
3686 dprintk("%s: start\n", __FUNCTION__);
3687 fs_locations->fattr.valid = 0;
3688 fs_locations->server = server;
3689 fs_locations->nlocations = 0;
3690 status = rpc_call_sync(server->client, &msg, 0);
3691 dprintk("%s: returned status = %d\n", __FUNCTION__, status);
3692 return status;
3693}
3694
3695struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3696 .recover_open = nfs4_open_reclaim,
3697 .recover_lock = nfs4_lock_reclaim,
3698};
3699
3700struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3701 .recover_open = nfs4_open_expired,
3702 .recover_lock = nfs4_lock_expired,
3703};
3704
3705static struct inode_operations nfs4_file_inode_operations = {
3706 .permission = nfs_permission,
3707 .getattr = nfs_getattr,
3708 .setattr = nfs_setattr,
3709 .getxattr = nfs4_getxattr,
3710 .setxattr = nfs4_setxattr,
3711 .listxattr = nfs4_listxattr,
3712};
3713
3714const struct nfs_rpc_ops nfs_v4_clientops = {
3715 .version = 4, /* protocol version */
3716 .dentry_ops = &nfs4_dentry_operations,
3717 .dir_inode_ops = &nfs4_dir_inode_operations,
3718 .file_inode_ops = &nfs4_file_inode_operations,
3719 .getroot = nfs4_proc_get_root,
3720 .getattr = nfs4_proc_getattr,
3721 .setattr = nfs4_proc_setattr,
3722 .lookupfh = nfs4_proc_lookupfh,
3723 .lookup = nfs4_proc_lookup,
3724 .access = nfs4_proc_access,
3725 .readlink = nfs4_proc_readlink,
3726 .read = nfs4_proc_read,
3727 .write = nfs4_proc_write,
3728 .commit = nfs4_proc_commit,
3729 .create = nfs4_proc_create,
3730 .remove = nfs4_proc_remove,
3731 .unlink_setup = nfs4_proc_unlink_setup,
3732 .unlink_done = nfs4_proc_unlink_done,
3733 .rename = nfs4_proc_rename,
3734 .link = nfs4_proc_link,
3735 .symlink = nfs4_proc_symlink,
3736 .mkdir = nfs4_proc_mkdir,
3737 .rmdir = nfs4_proc_remove,
3738 .readdir = nfs4_proc_readdir,
3739 .mknod = nfs4_proc_mknod,
3740 .statfs = nfs4_proc_statfs,
3741 .fsinfo = nfs4_proc_fsinfo,
3742 .pathconf = nfs4_proc_pathconf,
3743 .set_capabilities = nfs4_server_capabilities,
3744 .decode_dirent = nfs4_decode_dirent,
3745 .read_setup = nfs4_proc_read_setup,
3746 .read_done = nfs4_read_done,
3747 .write_setup = nfs4_proc_write_setup,
3748 .write_done = nfs4_write_done,
3749 .commit_setup = nfs4_proc_commit_setup,
3750 .commit_done = nfs4_commit_done,
3751 .file_open = nfs_open,
3752 .file_release = nfs_release,
3753 .lock = nfs4_proc_lock,
3754 .clear_acl_cache = nfs4_zap_acl_attr,
3755};
3756
3757/*
3758 * Local variables:
3759 * c-basic-offset: 8
3760 * End:
3761 */