NFS: Add label lifecycle management
[linux-block.git] / fs / nfs / dir.c
... / ...
CommitLineData
1/*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/errno.h>
23#include <linux/stat.h>
24#include <linux/fcntl.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/mm.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/nfs_fs.h>
31#include <linux/nfs_mount.h>
32#include <linux/pagemap.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/sched.h>
37#include <linux/kmemleak.h>
38#include <linux/xattr.h>
39
40#include "delegation.h"
41#include "iostat.h"
42#include "internal.h"
43#include "fscache.h"
44
45/* #define NFS_DEBUG_VERBOSE 1 */
46
47static int nfs_opendir(struct inode *, struct file *);
48static int nfs_closedir(struct inode *, struct file *);
49static int nfs_readdir(struct file *, void *, filldir_t);
50static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
51static loff_t nfs_llseek_dir(struct file *, loff_t, int);
52static void nfs_readdir_clear_array(struct page*);
53
54const struct file_operations nfs_dir_operations = {
55 .llseek = nfs_llseek_dir,
56 .read = generic_read_dir,
57 .readdir = nfs_readdir,
58 .open = nfs_opendir,
59 .release = nfs_closedir,
60 .fsync = nfs_fsync_dir,
61};
62
63const struct address_space_operations nfs_dir_aops = {
64 .freepage = nfs_readdir_clear_array,
65};
66
67static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
68{
69 struct nfs_open_dir_context *ctx;
70 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
71 if (ctx != NULL) {
72 ctx->duped = 0;
73 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
74 ctx->dir_cookie = 0;
75 ctx->dup_cookie = 0;
76 ctx->cred = get_rpccred(cred);
77 return ctx;
78 }
79 return ERR_PTR(-ENOMEM);
80}
81
82static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
83{
84 put_rpccred(ctx->cred);
85 kfree(ctx);
86}
87
88/*
89 * Open file
90 */
91static int
92nfs_opendir(struct inode *inode, struct file *filp)
93{
94 int res = 0;
95 struct nfs_open_dir_context *ctx;
96 struct rpc_cred *cred;
97
98 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
99 filp->f_path.dentry->d_parent->d_name.name,
100 filp->f_path.dentry->d_name.name);
101
102 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
103
104 cred = rpc_lookup_cred();
105 if (IS_ERR(cred))
106 return PTR_ERR(cred);
107 ctx = alloc_nfs_open_dir_context(inode, cred);
108 if (IS_ERR(ctx)) {
109 res = PTR_ERR(ctx);
110 goto out;
111 }
112 filp->private_data = ctx;
113 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
114 /* This is a mountpoint, so d_revalidate will never
115 * have been called, so we need to refresh the
116 * inode (for close-open consistency) ourselves.
117 */
118 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
119 }
120out:
121 put_rpccred(cred);
122 return res;
123}
124
125static int
126nfs_closedir(struct inode *inode, struct file *filp)
127{
128 put_nfs_open_dir_context(filp->private_data);
129 return 0;
130}
131
132struct nfs_cache_array_entry {
133 u64 cookie;
134 u64 ino;
135 struct qstr string;
136 unsigned char d_type;
137};
138
139struct nfs_cache_array {
140 int size;
141 int eof_index;
142 u64 last_cookie;
143 struct nfs_cache_array_entry array[0];
144};
145
146typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
147typedef struct {
148 struct file *file;
149 struct page *page;
150 unsigned long page_index;
151 u64 *dir_cookie;
152 u64 last_cookie;
153 loff_t current_index;
154 decode_dirent_t decode;
155
156 unsigned long timestamp;
157 unsigned long gencount;
158 unsigned int cache_entry_index;
159 unsigned int plus:1;
160 unsigned int eof:1;
161} nfs_readdir_descriptor_t;
162
163/*
164 * The caller is responsible for calling nfs_readdir_release_array(page)
165 */
166static
167struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
168{
169 void *ptr;
170 if (page == NULL)
171 return ERR_PTR(-EIO);
172 ptr = kmap(page);
173 if (ptr == NULL)
174 return ERR_PTR(-ENOMEM);
175 return ptr;
176}
177
178static
179void nfs_readdir_release_array(struct page *page)
180{
181 kunmap(page);
182}
183
184/*
185 * we are freeing strings created by nfs_add_to_readdir_array()
186 */
187static
188void nfs_readdir_clear_array(struct page *page)
189{
190 struct nfs_cache_array *array;
191 int i;
192
193 array = kmap_atomic(page);
194 for (i = 0; i < array->size; i++)
195 kfree(array->array[i].string.name);
196 kunmap_atomic(array);
197}
198
199/*
200 * the caller is responsible for freeing qstr.name
201 * when called by nfs_readdir_add_to_array, the strings will be freed in
202 * nfs_clear_readdir_array()
203 */
204static
205int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
206{
207 string->len = len;
208 string->name = kmemdup(name, len, GFP_KERNEL);
209 if (string->name == NULL)
210 return -ENOMEM;
211 /*
212 * Avoid a kmemleak false positive. The pointer to the name is stored
213 * in a page cache page which kmemleak does not scan.
214 */
215 kmemleak_not_leak(string->name);
216 string->hash = full_name_hash(name, len);
217 return 0;
218}
219
220static
221int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
222{
223 struct nfs_cache_array *array = nfs_readdir_get_array(page);
224 struct nfs_cache_array_entry *cache_entry;
225 int ret;
226
227 if (IS_ERR(array))
228 return PTR_ERR(array);
229
230 cache_entry = &array->array[array->size];
231
232 /* Check that this entry lies within the page bounds */
233 ret = -ENOSPC;
234 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
235 goto out;
236
237 cache_entry->cookie = entry->prev_cookie;
238 cache_entry->ino = entry->ino;
239 cache_entry->d_type = entry->d_type;
240 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
241 if (ret)
242 goto out;
243 array->last_cookie = entry->cookie;
244 array->size++;
245 if (entry->eof != 0)
246 array->eof_index = array->size;
247out:
248 nfs_readdir_release_array(page);
249 return ret;
250}
251
252static
253int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
254{
255 loff_t diff = desc->file->f_pos - desc->current_index;
256 unsigned int index;
257
258 if (diff < 0)
259 goto out_eof;
260 if (diff >= array->size) {
261 if (array->eof_index >= 0)
262 goto out_eof;
263 return -EAGAIN;
264 }
265
266 index = (unsigned int)diff;
267 *desc->dir_cookie = array->array[index].cookie;
268 desc->cache_entry_index = index;
269 return 0;
270out_eof:
271 desc->eof = 1;
272 return -EBADCOOKIE;
273}
274
275static
276int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
277{
278 int i;
279 loff_t new_pos;
280 int status = -EAGAIN;
281
282 for (i = 0; i < array->size; i++) {
283 if (array->array[i].cookie == *desc->dir_cookie) {
284 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
285 struct nfs_open_dir_context *ctx = desc->file->private_data;
286
287 new_pos = desc->current_index + i;
288 if (ctx->attr_gencount != nfsi->attr_gencount
289 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
290 ctx->duped = 0;
291 ctx->attr_gencount = nfsi->attr_gencount;
292 } else if (new_pos < desc->file->f_pos) {
293 if (ctx->duped > 0
294 && ctx->dup_cookie == *desc->dir_cookie) {
295 if (printk_ratelimit()) {
296 pr_notice("NFS: directory %s/%s contains a readdir loop."
297 "Please contact your server vendor. "
298 "The file: %s has duplicate cookie %llu\n",
299 desc->file->f_dentry->d_parent->d_name.name,
300 desc->file->f_dentry->d_name.name,
301 array->array[i].string.name,
302 *desc->dir_cookie);
303 }
304 status = -ELOOP;
305 goto out;
306 }
307 ctx->dup_cookie = *desc->dir_cookie;
308 ctx->duped = -1;
309 }
310 desc->file->f_pos = new_pos;
311 desc->cache_entry_index = i;
312 return 0;
313 }
314 }
315 if (array->eof_index >= 0) {
316 status = -EBADCOOKIE;
317 if (*desc->dir_cookie == array->last_cookie)
318 desc->eof = 1;
319 }
320out:
321 return status;
322}
323
324static
325int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
326{
327 struct nfs_cache_array *array;
328 int status;
329
330 array = nfs_readdir_get_array(desc->page);
331 if (IS_ERR(array)) {
332 status = PTR_ERR(array);
333 goto out;
334 }
335
336 if (*desc->dir_cookie == 0)
337 status = nfs_readdir_search_for_pos(array, desc);
338 else
339 status = nfs_readdir_search_for_cookie(array, desc);
340
341 if (status == -EAGAIN) {
342 desc->last_cookie = array->last_cookie;
343 desc->current_index += array->size;
344 desc->page_index++;
345 }
346 nfs_readdir_release_array(desc->page);
347out:
348 return status;
349}
350
351/* Fill a page with xdr information before transferring to the cache page */
352static
353int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
354 struct nfs_entry *entry, struct file *file, struct inode *inode)
355{
356 struct nfs_open_dir_context *ctx = file->private_data;
357 struct rpc_cred *cred = ctx->cred;
358 unsigned long timestamp, gencount;
359 int error;
360
361 again:
362 timestamp = jiffies;
363 gencount = nfs_inc_attr_generation_counter();
364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365 NFS_SERVER(inode)->dtsize, desc->plus);
366 if (error < 0) {
367 /* We requested READDIRPLUS, but the server doesn't grok it */
368 if (error == -ENOTSUPP && desc->plus) {
369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
371 desc->plus = 0;
372 goto again;
373 }
374 goto error;
375 }
376 desc->timestamp = timestamp;
377 desc->gencount = gencount;
378error:
379 return error;
380}
381
382static int xdr_decode(nfs_readdir_descriptor_t *desc,
383 struct nfs_entry *entry, struct xdr_stream *xdr)
384{
385 int error;
386
387 error = desc->decode(xdr, entry, desc->plus);
388 if (error)
389 return error;
390 entry->fattr->time_start = desc->timestamp;
391 entry->fattr->gencount = desc->gencount;
392 return 0;
393}
394
395static
396int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
397{
398 if (dentry->d_inode == NULL)
399 goto different;
400 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
401 goto different;
402 return 1;
403different:
404 return 0;
405}
406
407static
408bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
409{
410 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
411 return false;
412 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
413 return true;
414 if (filp->f_pos == 0)
415 return true;
416 return false;
417}
418
419/*
420 * This function is called by the lookup code to request the use of
421 * readdirplus to accelerate any future lookups in the same
422 * directory.
423 */
424static
425void nfs_advise_use_readdirplus(struct inode *dir)
426{
427 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
428}
429
430static
431void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
432{
433 struct qstr filename = QSTR_INIT(entry->name, entry->len);
434 struct dentry *dentry;
435 struct dentry *alias;
436 struct inode *dir = parent->d_inode;
437 struct inode *inode;
438
439 if (filename.name[0] == '.') {
440 if (filename.len == 1)
441 return;
442 if (filename.len == 2 && filename.name[1] == '.')
443 return;
444 }
445 filename.hash = full_name_hash(filename.name, filename.len);
446
447 dentry = d_lookup(parent, &filename);
448 if (dentry != NULL) {
449 if (nfs_same_file(dentry, entry)) {
450 nfs_refresh_inode(dentry->d_inode, entry->fattr);
451 goto out;
452 } else {
453 if (d_invalidate(dentry) != 0)
454 goto out;
455 dput(dentry);
456 }
457 }
458
459 dentry = d_alloc(parent, &filename);
460 if (dentry == NULL)
461 return;
462
463 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
464 if (IS_ERR(inode))
465 goto out;
466
467 alias = d_materialise_unique(dentry, inode);
468 if (IS_ERR(alias))
469 goto out;
470 else if (alias) {
471 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
472 dput(alias);
473 } else
474 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
475
476out:
477 dput(dentry);
478}
479
480/* Perform conversion from xdr to cache array */
481static
482int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
483 struct page **xdr_pages, struct page *page, unsigned int buflen)
484{
485 struct xdr_stream stream;
486 struct xdr_buf buf;
487 struct page *scratch;
488 struct nfs_cache_array *array;
489 unsigned int count = 0;
490 int status;
491
492 scratch = alloc_page(GFP_KERNEL);
493 if (scratch == NULL)
494 return -ENOMEM;
495
496 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
497 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
498
499 do {
500 status = xdr_decode(desc, entry, &stream);
501 if (status != 0) {
502 if (status == -EAGAIN)
503 status = 0;
504 break;
505 }
506
507 count++;
508
509 if (desc->plus != 0)
510 nfs_prime_dcache(desc->file->f_path.dentry, entry);
511
512 status = nfs_readdir_add_to_array(entry, page);
513 if (status != 0)
514 break;
515 } while (!entry->eof);
516
517 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
518 array = nfs_readdir_get_array(page);
519 if (!IS_ERR(array)) {
520 array->eof_index = array->size;
521 status = 0;
522 nfs_readdir_release_array(page);
523 } else
524 status = PTR_ERR(array);
525 }
526
527 put_page(scratch);
528 return status;
529}
530
531static
532void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
533{
534 unsigned int i;
535 for (i = 0; i < npages; i++)
536 put_page(pages[i]);
537}
538
539static
540void nfs_readdir_free_large_page(void *ptr, struct page **pages,
541 unsigned int npages)
542{
543 nfs_readdir_free_pagearray(pages, npages);
544}
545
546/*
547 * nfs_readdir_large_page will allocate pages that must be freed with a call
548 * to nfs_readdir_free_large_page
549 */
550static
551int nfs_readdir_large_page(struct page **pages, unsigned int npages)
552{
553 unsigned int i;
554
555 for (i = 0; i < npages; i++) {
556 struct page *page = alloc_page(GFP_KERNEL);
557 if (page == NULL)
558 goto out_freepages;
559 pages[i] = page;
560 }
561 return 0;
562
563out_freepages:
564 nfs_readdir_free_pagearray(pages, i);
565 return -ENOMEM;
566}
567
568static
569int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
570{
571 struct page *pages[NFS_MAX_READDIR_PAGES];
572 void *pages_ptr = NULL;
573 struct nfs_entry entry;
574 struct file *file = desc->file;
575 struct nfs_cache_array *array;
576 int status = -ENOMEM;
577 unsigned int array_size = ARRAY_SIZE(pages);
578
579 entry.prev_cookie = 0;
580 entry.cookie = desc->last_cookie;
581 entry.eof = 0;
582 entry.fh = nfs_alloc_fhandle();
583 entry.fattr = nfs_alloc_fattr();
584 entry.server = NFS_SERVER(inode);
585 if (entry.fh == NULL || entry.fattr == NULL)
586 goto out;
587
588 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
589 if (IS_ERR(entry.label)) {
590 status = PTR_ERR(entry.label);
591 goto out;
592 }
593
594 array = nfs_readdir_get_array(page);
595 if (IS_ERR(array)) {
596 status = PTR_ERR(array);
597 goto out_label_free;
598 }
599 memset(array, 0, sizeof(struct nfs_cache_array));
600 array->eof_index = -1;
601
602 status = nfs_readdir_large_page(pages, array_size);
603 if (status < 0)
604 goto out_release_array;
605 do {
606 unsigned int pglen;
607 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
608
609 if (status < 0)
610 break;
611 pglen = status;
612 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
613 if (status < 0) {
614 if (status == -ENOSPC)
615 status = 0;
616 break;
617 }
618 } while (array->eof_index < 0);
619
620 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
621out_release_array:
622 nfs_readdir_release_array(page);
623out_label_free:
624 nfs4_label_free(entry.label);
625out:
626 nfs_free_fattr(entry.fattr);
627 nfs_free_fhandle(entry.fh);
628 return status;
629}
630
631/*
632 * Now we cache directories properly, by converting xdr information
633 * to an array that can be used for lookups later. This results in
634 * fewer cache pages, since we can store more information on each page.
635 * We only need to convert from xdr once so future lookups are much simpler
636 */
637static
638int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
639{
640 struct inode *inode = file_inode(desc->file);
641 int ret;
642
643 ret = nfs_readdir_xdr_to_array(desc, page, inode);
644 if (ret < 0)
645 goto error;
646 SetPageUptodate(page);
647
648 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
649 /* Should never happen */
650 nfs_zap_mapping(inode, inode->i_mapping);
651 }
652 unlock_page(page);
653 return 0;
654 error:
655 unlock_page(page);
656 return ret;
657}
658
659static
660void cache_page_release(nfs_readdir_descriptor_t *desc)
661{
662 if (!desc->page->mapping)
663 nfs_readdir_clear_array(desc->page);
664 page_cache_release(desc->page);
665 desc->page = NULL;
666}
667
668static
669struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
670{
671 return read_cache_page(file_inode(desc->file)->i_mapping,
672 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
673}
674
675/*
676 * Returns 0 if desc->dir_cookie was found on page desc->page_index
677 */
678static
679int find_cache_page(nfs_readdir_descriptor_t *desc)
680{
681 int res;
682
683 desc->page = get_cache_page(desc);
684 if (IS_ERR(desc->page))
685 return PTR_ERR(desc->page);
686
687 res = nfs_readdir_search_array(desc);
688 if (res != 0)
689 cache_page_release(desc);
690 return res;
691}
692
693/* Search for desc->dir_cookie from the beginning of the page cache */
694static inline
695int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
696{
697 int res;
698
699 if (desc->page_index == 0) {
700 desc->current_index = 0;
701 desc->last_cookie = 0;
702 }
703 do {
704 res = find_cache_page(desc);
705 } while (res == -EAGAIN);
706 return res;
707}
708
709/*
710 * Once we've found the start of the dirent within a page: fill 'er up...
711 */
712static
713int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
714 filldir_t filldir)
715{
716 struct file *file = desc->file;
717 int i = 0;
718 int res = 0;
719 struct nfs_cache_array *array = NULL;
720 struct nfs_open_dir_context *ctx = file->private_data;
721
722 array = nfs_readdir_get_array(desc->page);
723 if (IS_ERR(array)) {
724 res = PTR_ERR(array);
725 goto out;
726 }
727
728 for (i = desc->cache_entry_index; i < array->size; i++) {
729 struct nfs_cache_array_entry *ent;
730
731 ent = &array->array[i];
732 if (filldir(dirent, ent->string.name, ent->string.len,
733 file->f_pos, nfs_compat_user_ino64(ent->ino),
734 ent->d_type) < 0) {
735 desc->eof = 1;
736 break;
737 }
738 file->f_pos++;
739 if (i < (array->size-1))
740 *desc->dir_cookie = array->array[i+1].cookie;
741 else
742 *desc->dir_cookie = array->last_cookie;
743 if (ctx->duped != 0)
744 ctx->duped = 1;
745 }
746 if (array->eof_index >= 0)
747 desc->eof = 1;
748
749 nfs_readdir_release_array(desc->page);
750out:
751 cache_page_release(desc);
752 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
753 (unsigned long long)*desc->dir_cookie, res);
754 return res;
755}
756
757/*
758 * If we cannot find a cookie in our cache, we suspect that this is
759 * because it points to a deleted file, so we ask the server to return
760 * whatever it thinks is the next entry. We then feed this to filldir.
761 * If all goes well, we should then be able to find our way round the
762 * cache on the next call to readdir_search_pagecache();
763 *
764 * NOTE: we cannot add the anonymous page to the pagecache because
765 * the data it contains might not be page aligned. Besides,
766 * we should already have a complete representation of the
767 * directory in the page cache by the time we get here.
768 */
769static inline
770int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
771 filldir_t filldir)
772{
773 struct page *page = NULL;
774 int status;
775 struct inode *inode = file_inode(desc->file);
776 struct nfs_open_dir_context *ctx = desc->file->private_data;
777
778 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
779 (unsigned long long)*desc->dir_cookie);
780
781 page = alloc_page(GFP_HIGHUSER);
782 if (!page) {
783 status = -ENOMEM;
784 goto out;
785 }
786
787 desc->page_index = 0;
788 desc->last_cookie = *desc->dir_cookie;
789 desc->page = page;
790 ctx->duped = 0;
791
792 status = nfs_readdir_xdr_to_array(desc, page, inode);
793 if (status < 0)
794 goto out_release;
795
796 status = nfs_do_filldir(desc, dirent, filldir);
797
798 out:
799 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
800 __func__, status);
801 return status;
802 out_release:
803 cache_page_release(desc);
804 goto out;
805}
806
807/* The file offset position represents the dirent entry number. A
808 last cookie cache takes care of the common case of reading the
809 whole directory.
810 */
811static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
812{
813 struct dentry *dentry = filp->f_path.dentry;
814 struct inode *inode = dentry->d_inode;
815 nfs_readdir_descriptor_t my_desc,
816 *desc = &my_desc;
817 struct nfs_open_dir_context *dir_ctx = filp->private_data;
818 int res;
819
820 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
821 dentry->d_parent->d_name.name, dentry->d_name.name,
822 (long long)filp->f_pos);
823 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
824
825 /*
826 * filp->f_pos points to the dirent entry number.
827 * *desc->dir_cookie has the cookie for the next entry. We have
828 * to either find the entry with the appropriate number or
829 * revalidate the cookie.
830 */
831 memset(desc, 0, sizeof(*desc));
832
833 desc->file = filp;
834 desc->dir_cookie = &dir_ctx->dir_cookie;
835 desc->decode = NFS_PROTO(inode)->decode_dirent;
836 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
837
838 nfs_block_sillyrename(dentry);
839 res = nfs_revalidate_mapping(inode, filp->f_mapping);
840 if (res < 0)
841 goto out;
842
843 do {
844 res = readdir_search_pagecache(desc);
845
846 if (res == -EBADCOOKIE) {
847 res = 0;
848 /* This means either end of directory */
849 if (*desc->dir_cookie && desc->eof == 0) {
850 /* Or that the server has 'lost' a cookie */
851 res = uncached_readdir(desc, dirent, filldir);
852 if (res == 0)
853 continue;
854 }
855 break;
856 }
857 if (res == -ETOOSMALL && desc->plus) {
858 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
859 nfs_zap_caches(inode);
860 desc->page_index = 0;
861 desc->plus = 0;
862 desc->eof = 0;
863 continue;
864 }
865 if (res < 0)
866 break;
867
868 res = nfs_do_filldir(desc, dirent, filldir);
869 if (res < 0)
870 break;
871 } while (!desc->eof);
872out:
873 nfs_unblock_sillyrename(dentry);
874 if (res > 0)
875 res = 0;
876 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
877 dentry->d_parent->d_name.name, dentry->d_name.name,
878 res);
879 return res;
880}
881
882static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
883{
884 struct dentry *dentry = filp->f_path.dentry;
885 struct inode *inode = dentry->d_inode;
886 struct nfs_open_dir_context *dir_ctx = filp->private_data;
887
888 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
889 dentry->d_parent->d_name.name,
890 dentry->d_name.name,
891 offset, whence);
892
893 mutex_lock(&inode->i_mutex);
894 switch (whence) {
895 case 1:
896 offset += filp->f_pos;
897 case 0:
898 if (offset >= 0)
899 break;
900 default:
901 offset = -EINVAL;
902 goto out;
903 }
904 if (offset != filp->f_pos) {
905 filp->f_pos = offset;
906 dir_ctx->dir_cookie = 0;
907 dir_ctx->duped = 0;
908 }
909out:
910 mutex_unlock(&inode->i_mutex);
911 return offset;
912}
913
914/*
915 * All directory operations under NFS are synchronous, so fsync()
916 * is a dummy operation.
917 */
918static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
919 int datasync)
920{
921 struct dentry *dentry = filp->f_path.dentry;
922 struct inode *inode = dentry->d_inode;
923
924 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
925 dentry->d_parent->d_name.name, dentry->d_name.name,
926 datasync);
927
928 mutex_lock(&inode->i_mutex);
929 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
930 mutex_unlock(&inode->i_mutex);
931 return 0;
932}
933
934/**
935 * nfs_force_lookup_revalidate - Mark the directory as having changed
936 * @dir - pointer to directory inode
937 *
938 * This forces the revalidation code in nfs_lookup_revalidate() to do a
939 * full lookup on all child dentries of 'dir' whenever a change occurs
940 * on the server that might have invalidated our dcache.
941 *
942 * The caller should be holding dir->i_lock
943 */
944void nfs_force_lookup_revalidate(struct inode *dir)
945{
946 NFS_I(dir)->cache_change_attribute++;
947}
948EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
949
950/*
951 * A check for whether or not the parent directory has changed.
952 * In the case it has, we assume that the dentries are untrustworthy
953 * and may need to be looked up again.
954 */
955static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
956{
957 if (IS_ROOT(dentry))
958 return 1;
959 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
960 return 0;
961 if (!nfs_verify_change_attribute(dir, dentry->d_time))
962 return 0;
963 /* Revalidate nfsi->cache_change_attribute before we declare a match */
964 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
965 return 0;
966 if (!nfs_verify_change_attribute(dir, dentry->d_time))
967 return 0;
968 return 1;
969}
970
971/*
972 * Use intent information to check whether or not we're going to do
973 * an O_EXCL create using this path component.
974 */
975static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
976{
977 if (NFS_PROTO(dir)->version == 2)
978 return 0;
979 return flags & LOOKUP_EXCL;
980}
981
982/*
983 * Inode and filehandle revalidation for lookups.
984 *
985 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
986 * or if the intent information indicates that we're about to open this
987 * particular file and the "nocto" mount flag is not set.
988 *
989 */
990static
991int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
992{
993 struct nfs_server *server = NFS_SERVER(inode);
994 int ret;
995
996 if (IS_AUTOMOUNT(inode))
997 return 0;
998 /* VFS wants an on-the-wire revalidation */
999 if (flags & LOOKUP_REVAL)
1000 goto out_force;
1001 /* This is an open(2) */
1002 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1003 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1004 goto out_force;
1005out:
1006 return (inode->i_nlink == 0) ? -ENOENT : 0;
1007out_force:
1008 ret = __nfs_revalidate_inode(server, inode);
1009 if (ret != 0)
1010 return ret;
1011 goto out;
1012}
1013
1014/*
1015 * We judge how long we want to trust negative
1016 * dentries by looking at the parent inode mtime.
1017 *
1018 * If parent mtime has changed, we revalidate, else we wait for a
1019 * period corresponding to the parent's attribute cache timeout value.
1020 */
1021static inline
1022int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1023 unsigned int flags)
1024{
1025 /* Don't revalidate a negative dentry if we're creating a new file */
1026 if (flags & LOOKUP_CREATE)
1027 return 0;
1028 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1029 return 1;
1030 return !nfs_check_verifier(dir, dentry);
1031}
1032
1033/*
1034 * This is called every time the dcache has a lookup hit,
1035 * and we should check whether we can really trust that
1036 * lookup.
1037 *
1038 * NOTE! The hit can be a negative hit too, don't assume
1039 * we have an inode!
1040 *
1041 * If the parent directory is seen to have changed, we throw out the
1042 * cached dentry and do a new lookup.
1043 */
1044static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1045{
1046 struct inode *dir;
1047 struct inode *inode;
1048 struct dentry *parent;
1049 struct nfs_fh *fhandle = NULL;
1050 struct nfs_fattr *fattr = NULL;
1051 struct nfs4_label *label = NULL;
1052 int error;
1053
1054 if (flags & LOOKUP_RCU)
1055 return -ECHILD;
1056
1057 parent = dget_parent(dentry);
1058 dir = parent->d_inode;
1059 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1060 inode = dentry->d_inode;
1061
1062 if (!inode) {
1063 if (nfs_neg_need_reval(dir, dentry, flags))
1064 goto out_bad;
1065 goto out_valid_noent;
1066 }
1067
1068 if (is_bad_inode(inode)) {
1069 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1070 __func__, dentry->d_parent->d_name.name,
1071 dentry->d_name.name);
1072 goto out_bad;
1073 }
1074
1075 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1076 goto out_set_verifier;
1077
1078 /* Force a full look up iff the parent directory has changed */
1079 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1080 if (nfs_lookup_verify_inode(inode, flags))
1081 goto out_zap_parent;
1082 goto out_valid;
1083 }
1084
1085 if (NFS_STALE(inode))
1086 goto out_bad;
1087
1088 error = -ENOMEM;
1089 fhandle = nfs_alloc_fhandle();
1090 fattr = nfs_alloc_fattr();
1091 if (fhandle == NULL || fattr == NULL)
1092 goto out_error;
1093
1094 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1095 if (IS_ERR(label))
1096 goto out_error;
1097
1098 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1099 if (error)
1100 goto out_bad;
1101 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1102 goto out_bad;
1103 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1104 goto out_bad;
1105
1106 nfs_free_fattr(fattr);
1107 nfs_free_fhandle(fhandle);
1108 nfs4_label_free(label);
1109
1110out_set_verifier:
1111 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1112 out_valid:
1113 /* Success: notify readdir to use READDIRPLUS */
1114 nfs_advise_use_readdirplus(dir);
1115 out_valid_noent:
1116 dput(parent);
1117 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1118 __func__, dentry->d_parent->d_name.name,
1119 dentry->d_name.name);
1120 return 1;
1121out_zap_parent:
1122 nfs_zap_caches(dir);
1123 out_bad:
1124 nfs_free_fattr(fattr);
1125 nfs_free_fhandle(fhandle);
1126 nfs4_label_free(label);
1127 nfs_mark_for_revalidate(dir);
1128 if (inode && S_ISDIR(inode->i_mode)) {
1129 /* Purge readdir caches. */
1130 nfs_zap_caches(inode);
1131 /* If we have submounts, don't unhash ! */
1132 if (have_submounts(dentry))
1133 goto out_valid;
1134 if (dentry->d_flags & DCACHE_DISCONNECTED)
1135 goto out_valid;
1136 shrink_dcache_parent(dentry);
1137 }
1138 d_drop(dentry);
1139 dput(parent);
1140 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1141 __func__, dentry->d_parent->d_name.name,
1142 dentry->d_name.name);
1143 return 0;
1144out_error:
1145 nfs_free_fattr(fattr);
1146 nfs_free_fhandle(fhandle);
1147 nfs4_label_free(label);
1148 dput(parent);
1149 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1150 __func__, dentry->d_parent->d_name.name,
1151 dentry->d_name.name, error);
1152 return error;
1153}
1154
1155/*
1156 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1157 * when we don't really care about the dentry name. This is called when a
1158 * pathwalk ends on a dentry that was not found via a normal lookup in the
1159 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1160 *
1161 * In this situation, we just want to verify that the inode itself is OK
1162 * since the dentry might have changed on the server.
1163 */
1164static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1165{
1166 int error;
1167 struct inode *inode = dentry->d_inode;
1168
1169 /*
1170 * I believe we can only get a negative dentry here in the case of a
1171 * procfs-style symlink. Just assume it's correct for now, but we may
1172 * eventually need to do something more here.
1173 */
1174 if (!inode) {
1175 dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n",
1176 __func__, dentry->d_parent->d_name.name,
1177 dentry->d_name.name);
1178 return 1;
1179 }
1180
1181 if (is_bad_inode(inode)) {
1182 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1183 __func__, dentry->d_parent->d_name.name,
1184 dentry->d_name.name);
1185 return 0;
1186 }
1187
1188 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1189 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1190 __func__, inode->i_ino, error ? "invalid" : "valid");
1191 return !error;
1192}
1193
1194/*
1195 * This is called from dput() when d_count is going to 0.
1196 */
1197static int nfs_dentry_delete(const struct dentry *dentry)
1198{
1199 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1200 dentry->d_parent->d_name.name, dentry->d_name.name,
1201 dentry->d_flags);
1202
1203 /* Unhash any dentry with a stale inode */
1204 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1205 return 1;
1206
1207 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1208 /* Unhash it, so that ->d_iput() would be called */
1209 return 1;
1210 }
1211 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1212 /* Unhash it, so that ancestors of killed async unlink
1213 * files will be cleaned up during umount */
1214 return 1;
1215 }
1216 return 0;
1217
1218}
1219
1220/* Ensure that we revalidate inode->i_nlink */
1221static void nfs_drop_nlink(struct inode *inode)
1222{
1223 spin_lock(&inode->i_lock);
1224 /* drop the inode if we're reasonably sure this is the last link */
1225 if (inode->i_nlink == 1)
1226 clear_nlink(inode);
1227 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1228 spin_unlock(&inode->i_lock);
1229}
1230
1231/*
1232 * Called when the dentry loses inode.
1233 * We use it to clean up silly-renamed files.
1234 */
1235static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1236{
1237 if (S_ISDIR(inode->i_mode))
1238 /* drop any readdir cache as it could easily be old */
1239 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1240
1241 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1242 nfs_complete_unlink(dentry, inode);
1243 nfs_drop_nlink(inode);
1244 }
1245 iput(inode);
1246}
1247
1248static void nfs_d_release(struct dentry *dentry)
1249{
1250 /* free cached devname value, if it survived that far */
1251 if (unlikely(dentry->d_fsdata)) {
1252 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1253 WARN_ON(1);
1254 else
1255 kfree(dentry->d_fsdata);
1256 }
1257}
1258
1259const struct dentry_operations nfs_dentry_operations = {
1260 .d_revalidate = nfs_lookup_revalidate,
1261 .d_weak_revalidate = nfs_weak_revalidate,
1262 .d_delete = nfs_dentry_delete,
1263 .d_iput = nfs_dentry_iput,
1264 .d_automount = nfs_d_automount,
1265 .d_release = nfs_d_release,
1266};
1267EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1268
1269struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1270{
1271 struct dentry *res;
1272 struct dentry *parent;
1273 struct inode *inode = NULL;
1274 struct nfs_fh *fhandle = NULL;
1275 struct nfs_fattr *fattr = NULL;
1276 struct nfs4_label *label = NULL;
1277 int error;
1278
1279 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1280 dentry->d_parent->d_name.name, dentry->d_name.name);
1281 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1282
1283 res = ERR_PTR(-ENAMETOOLONG);
1284 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1285 goto out;
1286
1287 /*
1288 * If we're doing an exclusive create, optimize away the lookup
1289 * but don't hash the dentry.
1290 */
1291 if (nfs_is_exclusive_create(dir, flags)) {
1292 d_instantiate(dentry, NULL);
1293 res = NULL;
1294 goto out;
1295 }
1296
1297 res = ERR_PTR(-ENOMEM);
1298 fhandle = nfs_alloc_fhandle();
1299 fattr = nfs_alloc_fattr();
1300 if (fhandle == NULL || fattr == NULL)
1301 goto out;
1302
1303 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1304 if (IS_ERR(label))
1305 goto out;
1306
1307 parent = dentry->d_parent;
1308 /* Protect against concurrent sillydeletes */
1309 nfs_block_sillyrename(parent);
1310 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1311 if (error == -ENOENT)
1312 goto no_entry;
1313 if (error < 0) {
1314 res = ERR_PTR(error);
1315 goto out_unblock_sillyrename;
1316 }
1317 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1318 res = ERR_CAST(inode);
1319 if (IS_ERR(res))
1320 goto out_unblock_sillyrename;
1321
1322 /* Success: notify readdir to use READDIRPLUS */
1323 nfs_advise_use_readdirplus(dir);
1324
1325no_entry:
1326 res = d_materialise_unique(dentry, inode);
1327 if (res != NULL) {
1328 if (IS_ERR(res))
1329 goto out_unblock_sillyrename;
1330 dentry = res;
1331 }
1332 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1333out_unblock_sillyrename:
1334 nfs_unblock_sillyrename(parent);
1335 nfs4_label_free(label);
1336out:
1337 nfs_free_fattr(fattr);
1338 nfs_free_fhandle(fhandle);
1339 return res;
1340}
1341EXPORT_SYMBOL_GPL(nfs_lookup);
1342
1343#if IS_ENABLED(CONFIG_NFS_V4)
1344static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1345
1346const struct dentry_operations nfs4_dentry_operations = {
1347 .d_revalidate = nfs4_lookup_revalidate,
1348 .d_delete = nfs_dentry_delete,
1349 .d_iput = nfs_dentry_iput,
1350 .d_automount = nfs_d_automount,
1351 .d_release = nfs_d_release,
1352};
1353EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1354
1355static fmode_t flags_to_mode(int flags)
1356{
1357 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1358 if ((flags & O_ACCMODE) != O_WRONLY)
1359 res |= FMODE_READ;
1360 if ((flags & O_ACCMODE) != O_RDONLY)
1361 res |= FMODE_WRITE;
1362 return res;
1363}
1364
1365static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1366{
1367 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1368}
1369
1370static int do_open(struct inode *inode, struct file *filp)
1371{
1372 nfs_fscache_set_inode_cookie(inode, filp);
1373 return 0;
1374}
1375
1376static int nfs_finish_open(struct nfs_open_context *ctx,
1377 struct dentry *dentry,
1378 struct file *file, unsigned open_flags,
1379 int *opened)
1380{
1381 int err;
1382
1383 if (ctx->dentry != dentry) {
1384 dput(ctx->dentry);
1385 ctx->dentry = dget(dentry);
1386 }
1387
1388 /* If the open_intent is for execute, we have an extra check to make */
1389 if (ctx->mode & FMODE_EXEC) {
1390 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags);
1391 if (err < 0)
1392 goto out;
1393 }
1394
1395 err = finish_open(file, dentry, do_open, opened);
1396 if (err)
1397 goto out;
1398 nfs_file_set_open_context(file, ctx);
1399
1400out:
1401 put_nfs_open_context(ctx);
1402 return err;
1403}
1404
1405int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1406 struct file *file, unsigned open_flags,
1407 umode_t mode, int *opened)
1408{
1409 struct nfs_open_context *ctx;
1410 struct dentry *res;
1411 struct iattr attr = { .ia_valid = ATTR_OPEN };
1412 struct inode *inode;
1413 int err;
1414
1415 /* Expect a negative dentry */
1416 BUG_ON(dentry->d_inode);
1417
1418 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1419 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1420
1421 /* NFS only supports OPEN on regular files */
1422 if ((open_flags & O_DIRECTORY)) {
1423 if (!d_unhashed(dentry)) {
1424 /*
1425 * Hashed negative dentry with O_DIRECTORY: dentry was
1426 * revalidated and is fine, no need to perform lookup
1427 * again
1428 */
1429 return -ENOENT;
1430 }
1431 goto no_open;
1432 }
1433
1434 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1435 return -ENAMETOOLONG;
1436
1437 if (open_flags & O_CREAT) {
1438 attr.ia_valid |= ATTR_MODE;
1439 attr.ia_mode = mode & ~current_umask();
1440 }
1441 if (open_flags & O_TRUNC) {
1442 attr.ia_valid |= ATTR_SIZE;
1443 attr.ia_size = 0;
1444 }
1445
1446 ctx = create_nfs_open_context(dentry, open_flags);
1447 err = PTR_ERR(ctx);
1448 if (IS_ERR(ctx))
1449 goto out;
1450
1451 nfs_block_sillyrename(dentry->d_parent);
1452 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1453 d_drop(dentry);
1454 if (IS_ERR(inode)) {
1455 nfs_unblock_sillyrename(dentry->d_parent);
1456 put_nfs_open_context(ctx);
1457 err = PTR_ERR(inode);
1458 switch (err) {
1459 case -ENOENT:
1460 d_add(dentry, NULL);
1461 break;
1462 case -EISDIR:
1463 case -ENOTDIR:
1464 goto no_open;
1465 case -ELOOP:
1466 if (!(open_flags & O_NOFOLLOW))
1467 goto no_open;
1468 break;
1469 /* case -EINVAL: */
1470 default:
1471 break;
1472 }
1473 goto out;
1474 }
1475 res = d_add_unique(dentry, inode);
1476 if (res != NULL)
1477 dentry = res;
1478
1479 nfs_unblock_sillyrename(dentry->d_parent);
1480 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1481
1482 err = nfs_finish_open(ctx, dentry, file, open_flags, opened);
1483
1484 dput(res);
1485out:
1486 return err;
1487
1488no_open:
1489 res = nfs_lookup(dir, dentry, 0);
1490 err = PTR_ERR(res);
1491 if (IS_ERR(res))
1492 goto out;
1493
1494 return finish_no_open(file, res);
1495}
1496EXPORT_SYMBOL_GPL(nfs_atomic_open);
1497
1498static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1499{
1500 struct dentry *parent = NULL;
1501 struct inode *inode;
1502 struct inode *dir;
1503 int ret = 0;
1504
1505 if (flags & LOOKUP_RCU)
1506 return -ECHILD;
1507
1508 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1509 goto no_open;
1510 if (d_mountpoint(dentry))
1511 goto no_open;
1512 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1513 goto no_open;
1514
1515 inode = dentry->d_inode;
1516 parent = dget_parent(dentry);
1517 dir = parent->d_inode;
1518
1519 /* We can't create new files in nfs_open_revalidate(), so we
1520 * optimize away revalidation of negative dentries.
1521 */
1522 if (inode == NULL) {
1523 if (!nfs_neg_need_reval(dir, dentry, flags))
1524 ret = 1;
1525 goto out;
1526 }
1527
1528 /* NFS only supports OPEN on regular files */
1529 if (!S_ISREG(inode->i_mode))
1530 goto no_open_dput;
1531 /* We cannot do exclusive creation on a positive dentry */
1532 if (flags & LOOKUP_EXCL)
1533 goto no_open_dput;
1534
1535 /* Let f_op->open() actually open (and revalidate) the file */
1536 ret = 1;
1537
1538out:
1539 dput(parent);
1540 return ret;
1541
1542no_open_dput:
1543 dput(parent);
1544no_open:
1545 return nfs_lookup_revalidate(dentry, flags);
1546}
1547
1548#endif /* CONFIG_NFSV4 */
1549
1550/*
1551 * Code common to create, mkdir, and mknod.
1552 */
1553int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1554 struct nfs_fattr *fattr,
1555 struct nfs4_label *label)
1556{
1557 struct dentry *parent = dget_parent(dentry);
1558 struct inode *dir = parent->d_inode;
1559 struct inode *inode;
1560 int error = -EACCES;
1561
1562 d_drop(dentry);
1563
1564 /* We may have been initialized further down */
1565 if (dentry->d_inode)
1566 goto out;
1567 if (fhandle->size == 0) {
1568 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1569 if (error)
1570 goto out_error;
1571 }
1572 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1573 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1574 struct nfs_server *server = NFS_SB(dentry->d_sb);
1575 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1576 if (error < 0)
1577 goto out_error;
1578 }
1579 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1580 error = PTR_ERR(inode);
1581 if (IS_ERR(inode))
1582 goto out_error;
1583 d_add(dentry, inode);
1584out:
1585 dput(parent);
1586 return 0;
1587out_error:
1588 nfs_mark_for_revalidate(dir);
1589 dput(parent);
1590 return error;
1591}
1592EXPORT_SYMBOL_GPL(nfs_instantiate);
1593
1594/*
1595 * Following a failed create operation, we drop the dentry rather
1596 * than retain a negative dentry. This avoids a problem in the event
1597 * that the operation succeeded on the server, but an error in the
1598 * reply path made it appear to have failed.
1599 */
1600int nfs_create(struct inode *dir, struct dentry *dentry,
1601 umode_t mode, bool excl)
1602{
1603 struct iattr attr;
1604 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1605 int error;
1606
1607 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1608 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1609
1610 attr.ia_mode = mode;
1611 attr.ia_valid = ATTR_MODE;
1612
1613 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1614 if (error != 0)
1615 goto out_err;
1616 return 0;
1617out_err:
1618 d_drop(dentry);
1619 return error;
1620}
1621EXPORT_SYMBOL_GPL(nfs_create);
1622
1623/*
1624 * See comments for nfs_proc_create regarding failed operations.
1625 */
1626int
1627nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1628{
1629 struct iattr attr;
1630 int status;
1631
1632 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1633 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1634
1635 if (!new_valid_dev(rdev))
1636 return -EINVAL;
1637
1638 attr.ia_mode = mode;
1639 attr.ia_valid = ATTR_MODE;
1640
1641 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1642 if (status != 0)
1643 goto out_err;
1644 return 0;
1645out_err:
1646 d_drop(dentry);
1647 return status;
1648}
1649EXPORT_SYMBOL_GPL(nfs_mknod);
1650
1651/*
1652 * See comments for nfs_proc_create regarding failed operations.
1653 */
1654int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1655{
1656 struct iattr attr;
1657 int error;
1658
1659 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1660 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1661
1662 attr.ia_valid = ATTR_MODE;
1663 attr.ia_mode = mode | S_IFDIR;
1664
1665 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1666 if (error != 0)
1667 goto out_err;
1668 return 0;
1669out_err:
1670 d_drop(dentry);
1671 return error;
1672}
1673EXPORT_SYMBOL_GPL(nfs_mkdir);
1674
1675static void nfs_dentry_handle_enoent(struct dentry *dentry)
1676{
1677 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1678 d_delete(dentry);
1679}
1680
1681int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1682{
1683 int error;
1684
1685 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1686 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1687
1688 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1689 /* Ensure the VFS deletes this inode */
1690 if (error == 0 && dentry->d_inode != NULL)
1691 clear_nlink(dentry->d_inode);
1692 else if (error == -ENOENT)
1693 nfs_dentry_handle_enoent(dentry);
1694
1695 return error;
1696}
1697EXPORT_SYMBOL_GPL(nfs_rmdir);
1698
1699/*
1700 * Remove a file after making sure there are no pending writes,
1701 * and after checking that the file has only one user.
1702 *
1703 * We invalidate the attribute cache and free the inode prior to the operation
1704 * to avoid possible races if the server reuses the inode.
1705 */
1706static int nfs_safe_remove(struct dentry *dentry)
1707{
1708 struct inode *dir = dentry->d_parent->d_inode;
1709 struct inode *inode = dentry->d_inode;
1710 int error = -EBUSY;
1711
1712 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1713 dentry->d_parent->d_name.name, dentry->d_name.name);
1714
1715 /* If the dentry was sillyrenamed, we simply call d_delete() */
1716 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1717 error = 0;
1718 goto out;
1719 }
1720
1721 if (inode != NULL) {
1722 NFS_PROTO(inode)->return_delegation(inode);
1723 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1724 if (error == 0)
1725 nfs_drop_nlink(inode);
1726 } else
1727 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1728 if (error == -ENOENT)
1729 nfs_dentry_handle_enoent(dentry);
1730out:
1731 return error;
1732}
1733
1734/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1735 * belongs to an active ".nfs..." file and we return -EBUSY.
1736 *
1737 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1738 */
1739int nfs_unlink(struct inode *dir, struct dentry *dentry)
1740{
1741 int error;
1742 int need_rehash = 0;
1743
1744 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1745 dir->i_ino, dentry->d_name.name);
1746
1747 spin_lock(&dentry->d_lock);
1748 if (dentry->d_count > 1) {
1749 spin_unlock(&dentry->d_lock);
1750 /* Start asynchronous writeout of the inode */
1751 write_inode_now(dentry->d_inode, 0);
1752 error = nfs_sillyrename(dir, dentry);
1753 return error;
1754 }
1755 if (!d_unhashed(dentry)) {
1756 __d_drop(dentry);
1757 need_rehash = 1;
1758 }
1759 spin_unlock(&dentry->d_lock);
1760 error = nfs_safe_remove(dentry);
1761 if (!error || error == -ENOENT) {
1762 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1763 } else if (need_rehash)
1764 d_rehash(dentry);
1765 return error;
1766}
1767EXPORT_SYMBOL_GPL(nfs_unlink);
1768
1769/*
1770 * To create a symbolic link, most file systems instantiate a new inode,
1771 * add a page to it containing the path, then write it out to the disk
1772 * using prepare_write/commit_write.
1773 *
1774 * Unfortunately the NFS client can't create the in-core inode first
1775 * because it needs a file handle to create an in-core inode (see
1776 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1777 * symlink request has completed on the server.
1778 *
1779 * So instead we allocate a raw page, copy the symname into it, then do
1780 * the SYMLINK request with the page as the buffer. If it succeeds, we
1781 * now have a new file handle and can instantiate an in-core NFS inode
1782 * and move the raw page into its mapping.
1783 */
1784int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1785{
1786 struct pagevec lru_pvec;
1787 struct page *page;
1788 char *kaddr;
1789 struct iattr attr;
1790 unsigned int pathlen = strlen(symname);
1791 int error;
1792
1793 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1794 dir->i_ino, dentry->d_name.name, symname);
1795
1796 if (pathlen > PAGE_SIZE)
1797 return -ENAMETOOLONG;
1798
1799 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1800 attr.ia_valid = ATTR_MODE;
1801
1802 page = alloc_page(GFP_HIGHUSER);
1803 if (!page)
1804 return -ENOMEM;
1805
1806 kaddr = kmap_atomic(page);
1807 memcpy(kaddr, symname, pathlen);
1808 if (pathlen < PAGE_SIZE)
1809 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1810 kunmap_atomic(kaddr);
1811
1812 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1813 if (error != 0) {
1814 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1815 dir->i_sb->s_id, dir->i_ino,
1816 dentry->d_name.name, symname, error);
1817 d_drop(dentry);
1818 __free_page(page);
1819 return error;
1820 }
1821
1822 /*
1823 * No big deal if we can't add this page to the page cache here.
1824 * READLINK will get the missing page from the server if needed.
1825 */
1826 pagevec_init(&lru_pvec, 0);
1827 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1828 GFP_KERNEL)) {
1829 pagevec_add(&lru_pvec, page);
1830 pagevec_lru_add_file(&lru_pvec);
1831 SetPageUptodate(page);
1832 unlock_page(page);
1833 } else
1834 __free_page(page);
1835
1836 return 0;
1837}
1838EXPORT_SYMBOL_GPL(nfs_symlink);
1839
1840int
1841nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1842{
1843 struct inode *inode = old_dentry->d_inode;
1844 int error;
1845
1846 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1847 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1848 dentry->d_parent->d_name.name, dentry->d_name.name);
1849
1850 NFS_PROTO(inode)->return_delegation(inode);
1851
1852 d_drop(dentry);
1853 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1854 if (error == 0) {
1855 ihold(inode);
1856 d_add(dentry, inode);
1857 }
1858 return error;
1859}
1860EXPORT_SYMBOL_GPL(nfs_link);
1861
1862/*
1863 * RENAME
1864 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1865 * different file handle for the same inode after a rename (e.g. when
1866 * moving to a different directory). A fail-safe method to do so would
1867 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1868 * rename the old file using the sillyrename stuff. This way, the original
1869 * file in old_dir will go away when the last process iput()s the inode.
1870 *
1871 * FIXED.
1872 *
1873 * It actually works quite well. One needs to have the possibility for
1874 * at least one ".nfs..." file in each directory the file ever gets
1875 * moved or linked to which happens automagically with the new
1876 * implementation that only depends on the dcache stuff instead of
1877 * using the inode layer
1878 *
1879 * Unfortunately, things are a little more complicated than indicated
1880 * above. For a cross-directory move, we want to make sure we can get
1881 * rid of the old inode after the operation. This means there must be
1882 * no pending writes (if it's a file), and the use count must be 1.
1883 * If these conditions are met, we can drop the dentries before doing
1884 * the rename.
1885 */
1886int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1887 struct inode *new_dir, struct dentry *new_dentry)
1888{
1889 struct inode *old_inode = old_dentry->d_inode;
1890 struct inode *new_inode = new_dentry->d_inode;
1891 struct dentry *dentry = NULL, *rehash = NULL;
1892 int error = -EBUSY;
1893
1894 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1895 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1896 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1897 new_dentry->d_count);
1898
1899 /*
1900 * For non-directories, check whether the target is busy and if so,
1901 * make a copy of the dentry and then do a silly-rename. If the
1902 * silly-rename succeeds, the copied dentry is hashed and becomes
1903 * the new target.
1904 */
1905 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1906 /*
1907 * To prevent any new references to the target during the
1908 * rename, we unhash the dentry in advance.
1909 */
1910 if (!d_unhashed(new_dentry)) {
1911 d_drop(new_dentry);
1912 rehash = new_dentry;
1913 }
1914
1915 if (new_dentry->d_count > 2) {
1916 int err;
1917
1918 /* copy the target dentry's name */
1919 dentry = d_alloc(new_dentry->d_parent,
1920 &new_dentry->d_name);
1921 if (!dentry)
1922 goto out;
1923
1924 /* silly-rename the existing target ... */
1925 err = nfs_sillyrename(new_dir, new_dentry);
1926 if (err)
1927 goto out;
1928
1929 new_dentry = dentry;
1930 rehash = NULL;
1931 new_inode = NULL;
1932 }
1933 }
1934
1935 NFS_PROTO(old_inode)->return_delegation(old_inode);
1936 if (new_inode != NULL)
1937 NFS_PROTO(new_inode)->return_delegation(new_inode);
1938
1939 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1940 new_dir, &new_dentry->d_name);
1941 nfs_mark_for_revalidate(old_inode);
1942out:
1943 if (rehash)
1944 d_rehash(rehash);
1945 if (!error) {
1946 if (new_inode != NULL)
1947 nfs_drop_nlink(new_inode);
1948 d_move(old_dentry, new_dentry);
1949 nfs_set_verifier(new_dentry,
1950 nfs_save_change_attribute(new_dir));
1951 } else if (error == -ENOENT)
1952 nfs_dentry_handle_enoent(old_dentry);
1953
1954 /* new dentry created? */
1955 if (dentry)
1956 dput(dentry);
1957 return error;
1958}
1959EXPORT_SYMBOL_GPL(nfs_rename);
1960
1961static DEFINE_SPINLOCK(nfs_access_lru_lock);
1962static LIST_HEAD(nfs_access_lru_list);
1963static atomic_long_t nfs_access_nr_entries;
1964
1965static void nfs_access_free_entry(struct nfs_access_entry *entry)
1966{
1967 put_rpccred(entry->cred);
1968 kfree(entry);
1969 smp_mb__before_atomic_dec();
1970 atomic_long_dec(&nfs_access_nr_entries);
1971 smp_mb__after_atomic_dec();
1972}
1973
1974static void nfs_access_free_list(struct list_head *head)
1975{
1976 struct nfs_access_entry *cache;
1977
1978 while (!list_empty(head)) {
1979 cache = list_entry(head->next, struct nfs_access_entry, lru);
1980 list_del(&cache->lru);
1981 nfs_access_free_entry(cache);
1982 }
1983}
1984
1985int nfs_access_cache_shrinker(struct shrinker *shrink,
1986 struct shrink_control *sc)
1987{
1988 LIST_HEAD(head);
1989 struct nfs_inode *nfsi, *next;
1990 struct nfs_access_entry *cache;
1991 int nr_to_scan = sc->nr_to_scan;
1992 gfp_t gfp_mask = sc->gfp_mask;
1993
1994 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1995 return (nr_to_scan == 0) ? 0 : -1;
1996
1997 spin_lock(&nfs_access_lru_lock);
1998 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1999 struct inode *inode;
2000
2001 if (nr_to_scan-- == 0)
2002 break;
2003 inode = &nfsi->vfs_inode;
2004 spin_lock(&inode->i_lock);
2005 if (list_empty(&nfsi->access_cache_entry_lru))
2006 goto remove_lru_entry;
2007 cache = list_entry(nfsi->access_cache_entry_lru.next,
2008 struct nfs_access_entry, lru);
2009 list_move(&cache->lru, &head);
2010 rb_erase(&cache->rb_node, &nfsi->access_cache);
2011 if (!list_empty(&nfsi->access_cache_entry_lru))
2012 list_move_tail(&nfsi->access_cache_inode_lru,
2013 &nfs_access_lru_list);
2014 else {
2015remove_lru_entry:
2016 list_del_init(&nfsi->access_cache_inode_lru);
2017 smp_mb__before_clear_bit();
2018 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2019 smp_mb__after_clear_bit();
2020 }
2021 spin_unlock(&inode->i_lock);
2022 }
2023 spin_unlock(&nfs_access_lru_lock);
2024 nfs_access_free_list(&head);
2025 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2026}
2027
2028static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2029{
2030 struct rb_root *root_node = &nfsi->access_cache;
2031 struct rb_node *n;
2032 struct nfs_access_entry *entry;
2033
2034 /* Unhook entries from the cache */
2035 while ((n = rb_first(root_node)) != NULL) {
2036 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2037 rb_erase(n, root_node);
2038 list_move(&entry->lru, head);
2039 }
2040 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2041}
2042
2043void nfs_access_zap_cache(struct inode *inode)
2044{
2045 LIST_HEAD(head);
2046
2047 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2048 return;
2049 /* Remove from global LRU init */
2050 spin_lock(&nfs_access_lru_lock);
2051 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2052 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2053
2054 spin_lock(&inode->i_lock);
2055 __nfs_access_zap_cache(NFS_I(inode), &head);
2056 spin_unlock(&inode->i_lock);
2057 spin_unlock(&nfs_access_lru_lock);
2058 nfs_access_free_list(&head);
2059}
2060EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2061
2062static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2063{
2064 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2065 struct nfs_access_entry *entry;
2066
2067 while (n != NULL) {
2068 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2069
2070 if (cred < entry->cred)
2071 n = n->rb_left;
2072 else if (cred > entry->cred)
2073 n = n->rb_right;
2074 else
2075 return entry;
2076 }
2077 return NULL;
2078}
2079
2080static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2081{
2082 struct nfs_inode *nfsi = NFS_I(inode);
2083 struct nfs_access_entry *cache;
2084 int err = -ENOENT;
2085
2086 spin_lock(&inode->i_lock);
2087 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2088 goto out_zap;
2089 cache = nfs_access_search_rbtree(inode, cred);
2090 if (cache == NULL)
2091 goto out;
2092 if (!nfs_have_delegated_attributes(inode) &&
2093 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2094 goto out_stale;
2095 res->jiffies = cache->jiffies;
2096 res->cred = cache->cred;
2097 res->mask = cache->mask;
2098 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2099 err = 0;
2100out:
2101 spin_unlock(&inode->i_lock);
2102 return err;
2103out_stale:
2104 rb_erase(&cache->rb_node, &nfsi->access_cache);
2105 list_del(&cache->lru);
2106 spin_unlock(&inode->i_lock);
2107 nfs_access_free_entry(cache);
2108 return -ENOENT;
2109out_zap:
2110 spin_unlock(&inode->i_lock);
2111 nfs_access_zap_cache(inode);
2112 return -ENOENT;
2113}
2114
2115static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2116{
2117 struct nfs_inode *nfsi = NFS_I(inode);
2118 struct rb_root *root_node = &nfsi->access_cache;
2119 struct rb_node **p = &root_node->rb_node;
2120 struct rb_node *parent = NULL;
2121 struct nfs_access_entry *entry;
2122
2123 spin_lock(&inode->i_lock);
2124 while (*p != NULL) {
2125 parent = *p;
2126 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2127
2128 if (set->cred < entry->cred)
2129 p = &parent->rb_left;
2130 else if (set->cred > entry->cred)
2131 p = &parent->rb_right;
2132 else
2133 goto found;
2134 }
2135 rb_link_node(&set->rb_node, parent, p);
2136 rb_insert_color(&set->rb_node, root_node);
2137 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2138 spin_unlock(&inode->i_lock);
2139 return;
2140found:
2141 rb_replace_node(parent, &set->rb_node, root_node);
2142 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2143 list_del(&entry->lru);
2144 spin_unlock(&inode->i_lock);
2145 nfs_access_free_entry(entry);
2146}
2147
2148void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2149{
2150 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2151 if (cache == NULL)
2152 return;
2153 RB_CLEAR_NODE(&cache->rb_node);
2154 cache->jiffies = set->jiffies;
2155 cache->cred = get_rpccred(set->cred);
2156 cache->mask = set->mask;
2157
2158 nfs_access_add_rbtree(inode, cache);
2159
2160 /* Update accounting */
2161 smp_mb__before_atomic_inc();
2162 atomic_long_inc(&nfs_access_nr_entries);
2163 smp_mb__after_atomic_inc();
2164
2165 /* Add inode to global LRU list */
2166 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2167 spin_lock(&nfs_access_lru_lock);
2168 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2169 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2170 &nfs_access_lru_list);
2171 spin_unlock(&nfs_access_lru_lock);
2172 }
2173}
2174EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2175
2176void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2177{
2178 entry->mask = 0;
2179 if (access_result & NFS4_ACCESS_READ)
2180 entry->mask |= MAY_READ;
2181 if (access_result &
2182 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2183 entry->mask |= MAY_WRITE;
2184 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2185 entry->mask |= MAY_EXEC;
2186}
2187EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2188
2189static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2190{
2191 struct nfs_access_entry cache;
2192 int status;
2193
2194 status = nfs_access_get_cached(inode, cred, &cache);
2195 if (status == 0)
2196 goto out;
2197
2198 /* Be clever: ask server to check for all possible rights */
2199 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2200 cache.cred = cred;
2201 cache.jiffies = jiffies;
2202 status = NFS_PROTO(inode)->access(inode, &cache);
2203 if (status != 0) {
2204 if (status == -ESTALE) {
2205 nfs_zap_caches(inode);
2206 if (!S_ISDIR(inode->i_mode))
2207 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2208 }
2209 return status;
2210 }
2211 nfs_access_add_cache(inode, &cache);
2212out:
2213 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2214 return 0;
2215 return -EACCES;
2216}
2217
2218static int nfs_open_permission_mask(int openflags)
2219{
2220 int mask = 0;
2221
2222 if (openflags & __FMODE_EXEC) {
2223 /* ONLY check exec rights */
2224 mask = MAY_EXEC;
2225 } else {
2226 if ((openflags & O_ACCMODE) != O_WRONLY)
2227 mask |= MAY_READ;
2228 if ((openflags & O_ACCMODE) != O_RDONLY)
2229 mask |= MAY_WRITE;
2230 }
2231
2232 return mask;
2233}
2234
2235int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2236{
2237 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2238}
2239EXPORT_SYMBOL_GPL(nfs_may_open);
2240
2241int nfs_permission(struct inode *inode, int mask)
2242{
2243 struct rpc_cred *cred;
2244 int res = 0;
2245
2246 if (mask & MAY_NOT_BLOCK)
2247 return -ECHILD;
2248
2249 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2250
2251 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2252 goto out;
2253 /* Is this sys_access() ? */
2254 if (mask & (MAY_ACCESS | MAY_CHDIR))
2255 goto force_lookup;
2256
2257 switch (inode->i_mode & S_IFMT) {
2258 case S_IFLNK:
2259 goto out;
2260 case S_IFREG:
2261 /* NFSv4 has atomic_open... */
2262 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2263 && (mask & MAY_OPEN)
2264 && !(mask & MAY_EXEC))
2265 goto out;
2266 break;
2267 case S_IFDIR:
2268 /*
2269 * Optimize away all write operations, since the server
2270 * will check permissions when we perform the op.
2271 */
2272 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2273 goto out;
2274 }
2275
2276force_lookup:
2277 if (!NFS_PROTO(inode)->access)
2278 goto out_notsup;
2279
2280 cred = rpc_lookup_cred();
2281 if (!IS_ERR(cred)) {
2282 res = nfs_do_access(inode, cred, mask);
2283 put_rpccred(cred);
2284 } else
2285 res = PTR_ERR(cred);
2286out:
2287 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2288 res = -EACCES;
2289
2290 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2291 inode->i_sb->s_id, inode->i_ino, mask, res);
2292 return res;
2293out_notsup:
2294 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2295 if (res == 0)
2296 res = generic_permission(inode, mask);
2297 goto out;
2298}
2299EXPORT_SYMBOL_GPL(nfs_permission);
2300
2301/*
2302 * Local variables:
2303 * version-control: t
2304 * kept-new-versions: 5
2305 * End:
2306 */