| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/fs/namespace.c |
| 4 | * |
| 5 | * (C) Copyright Al Viro 2000, 2001 |
| 6 | * |
| 7 | * Based on code from fs/super.c, copyright Linus Torvalds and others. |
| 8 | * Heavily rewritten. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/syscalls.h> |
| 12 | #include <linux/export.h> |
| 13 | #include <linux/capability.h> |
| 14 | #include <linux/mnt_namespace.h> |
| 15 | #include <linux/user_namespace.h> |
| 16 | #include <linux/namei.h> |
| 17 | #include <linux/security.h> |
| 18 | #include <linux/cred.h> |
| 19 | #include <linux/idr.h> |
| 20 | #include <linux/init.h> /* init_rootfs */ |
| 21 | #include <linux/fs_struct.h> /* get_fs_root et.al. */ |
| 22 | #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ |
| 23 | #include <linux/file.h> |
| 24 | #include <linux/uaccess.h> |
| 25 | #include <linux/proc_ns.h> |
| 26 | #include <linux/magic.h> |
| 27 | #include <linux/memblock.h> |
| 28 | #include <linux/proc_fs.h> |
| 29 | #include <linux/task_work.h> |
| 30 | #include <linux/sched/task.h> |
| 31 | #include <uapi/linux/mount.h> |
| 32 | #include <linux/fs_context.h> |
| 33 | #include <linux/shmem_fs.h> |
| 34 | #include <linux/mnt_idmapping.h> |
| 35 | #include <linux/pidfs.h> |
| 36 | |
| 37 | #include "pnode.h" |
| 38 | #include "internal.h" |
| 39 | |
| 40 | /* Maximum number of mounts in a mount namespace */ |
| 41 | static unsigned int sysctl_mount_max __read_mostly = 100000; |
| 42 | |
| 43 | static unsigned int m_hash_mask __ro_after_init; |
| 44 | static unsigned int m_hash_shift __ro_after_init; |
| 45 | static unsigned int mp_hash_mask __ro_after_init; |
| 46 | static unsigned int mp_hash_shift __ro_after_init; |
| 47 | |
| 48 | static __initdata unsigned long mhash_entries; |
| 49 | static int __init set_mhash_entries(char *str) |
| 50 | { |
| 51 | if (!str) |
| 52 | return 0; |
| 53 | mhash_entries = simple_strtoul(str, &str, 0); |
| 54 | return 1; |
| 55 | } |
| 56 | __setup("mhash_entries=", set_mhash_entries); |
| 57 | |
| 58 | static __initdata unsigned long mphash_entries; |
| 59 | static int __init set_mphash_entries(char *str) |
| 60 | { |
| 61 | if (!str) |
| 62 | return 0; |
| 63 | mphash_entries = simple_strtoul(str, &str, 0); |
| 64 | return 1; |
| 65 | } |
| 66 | __setup("mphash_entries=", set_mphash_entries); |
| 67 | |
| 68 | static u64 event; |
| 69 | static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC); |
| 70 | static DEFINE_IDA(mnt_group_ida); |
| 71 | |
| 72 | /* Don't allow confusion with old 32bit mount ID */ |
| 73 | #define MNT_UNIQUE_ID_OFFSET (1ULL << 31) |
| 74 | static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET; |
| 75 | |
| 76 | static struct hlist_head *mount_hashtable __ro_after_init; |
| 77 | static struct hlist_head *mountpoint_hashtable __ro_after_init; |
| 78 | static struct kmem_cache *mnt_cache __ro_after_init; |
| 79 | static DECLARE_RWSEM(namespace_sem); |
| 80 | static HLIST_HEAD(unmounted); /* protected by namespace_sem */ |
| 81 | static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ |
| 82 | static DEFINE_SEQLOCK(mnt_ns_tree_lock); |
| 83 | |
| 84 | #ifdef CONFIG_FSNOTIFY |
| 85 | LIST_HEAD(notify_list); /* protected by namespace_sem */ |
| 86 | #endif |
| 87 | static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */ |
| 88 | static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */ |
| 89 | |
| 90 | enum mount_kattr_flags_t { |
| 91 | MOUNT_KATTR_RECURSE = (1 << 0), |
| 92 | MOUNT_KATTR_IDMAP_REPLACE = (1 << 1), |
| 93 | }; |
| 94 | |
| 95 | struct mount_kattr { |
| 96 | unsigned int attr_set; |
| 97 | unsigned int attr_clr; |
| 98 | unsigned int propagation; |
| 99 | unsigned int lookup_flags; |
| 100 | enum mount_kattr_flags_t kflags; |
| 101 | struct user_namespace *mnt_userns; |
| 102 | struct mnt_idmap *mnt_idmap; |
| 103 | }; |
| 104 | |
| 105 | /* /sys/fs */ |
| 106 | struct kobject *fs_kobj __ro_after_init; |
| 107 | EXPORT_SYMBOL_GPL(fs_kobj); |
| 108 | |
| 109 | /* |
| 110 | * vfsmount lock may be taken for read to prevent changes to the |
| 111 | * vfsmount hash, ie. during mountpoint lookups or walking back |
| 112 | * up the tree. |
| 113 | * |
| 114 | * It should be taken for write in all cases where the vfsmount |
| 115 | * tree or hash is modified or when a vfsmount structure is modified. |
| 116 | */ |
| 117 | __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); |
| 118 | |
| 119 | static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node) |
| 120 | { |
| 121 | if (!node) |
| 122 | return NULL; |
| 123 | return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node); |
| 124 | } |
| 125 | |
| 126 | static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b) |
| 127 | { |
| 128 | struct mnt_namespace *ns_a = node_to_mnt_ns(a); |
| 129 | struct mnt_namespace *ns_b = node_to_mnt_ns(b); |
| 130 | u64 seq_a = ns_a->seq; |
| 131 | u64 seq_b = ns_b->seq; |
| 132 | |
| 133 | if (seq_a < seq_b) |
| 134 | return -1; |
| 135 | if (seq_a > seq_b) |
| 136 | return 1; |
| 137 | return 0; |
| 138 | } |
| 139 | |
| 140 | static inline void mnt_ns_tree_write_lock(void) |
| 141 | { |
| 142 | write_seqlock(&mnt_ns_tree_lock); |
| 143 | } |
| 144 | |
| 145 | static inline void mnt_ns_tree_write_unlock(void) |
| 146 | { |
| 147 | write_sequnlock(&mnt_ns_tree_lock); |
| 148 | } |
| 149 | |
| 150 | static void mnt_ns_tree_add(struct mnt_namespace *ns) |
| 151 | { |
| 152 | struct rb_node *node, *prev; |
| 153 | |
| 154 | mnt_ns_tree_write_lock(); |
| 155 | node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp); |
| 156 | /* |
| 157 | * If there's no previous entry simply add it after the |
| 158 | * head and if there is add it after the previous entry. |
| 159 | */ |
| 160 | prev = rb_prev(&ns->mnt_ns_tree_node); |
| 161 | if (!prev) |
| 162 | list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list); |
| 163 | else |
| 164 | list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list); |
| 165 | mnt_ns_tree_write_unlock(); |
| 166 | |
| 167 | WARN_ON_ONCE(node); |
| 168 | } |
| 169 | |
| 170 | static void mnt_ns_release(struct mnt_namespace *ns) |
| 171 | { |
| 172 | /* keep alive for {list,stat}mount() */ |
| 173 | if (refcount_dec_and_test(&ns->passive)) { |
| 174 | fsnotify_mntns_delete(ns); |
| 175 | put_user_ns(ns->user_ns); |
| 176 | kfree(ns); |
| 177 | } |
| 178 | } |
| 179 | DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T)) |
| 180 | |
| 181 | static void mnt_ns_release_rcu(struct rcu_head *rcu) |
| 182 | { |
| 183 | mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu)); |
| 184 | } |
| 185 | |
| 186 | static void mnt_ns_tree_remove(struct mnt_namespace *ns) |
| 187 | { |
| 188 | /* remove from global mount namespace list */ |
| 189 | if (!is_anon_ns(ns)) { |
| 190 | mnt_ns_tree_write_lock(); |
| 191 | rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree); |
| 192 | list_bidir_del_rcu(&ns->mnt_ns_list); |
| 193 | mnt_ns_tree_write_unlock(); |
| 194 | } |
| 195 | |
| 196 | call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu); |
| 197 | } |
| 198 | |
| 199 | static int mnt_ns_find(const void *key, const struct rb_node *node) |
| 200 | { |
| 201 | const u64 mnt_ns_id = *(u64 *)key; |
| 202 | const struct mnt_namespace *ns = node_to_mnt_ns(node); |
| 203 | |
| 204 | if (mnt_ns_id < ns->seq) |
| 205 | return -1; |
| 206 | if (mnt_ns_id > ns->seq) |
| 207 | return 1; |
| 208 | return 0; |
| 209 | } |
| 210 | |
| 211 | /* |
| 212 | * Lookup a mount namespace by id and take a passive reference count. Taking a |
| 213 | * passive reference means the mount namespace can be emptied if e.g., the last |
| 214 | * task holding an active reference exits. To access the mounts of the |
| 215 | * namespace the @namespace_sem must first be acquired. If the namespace has |
| 216 | * already shut down before acquiring @namespace_sem, {list,stat}mount() will |
| 217 | * see that the mount rbtree of the namespace is empty. |
| 218 | * |
| 219 | * Note the lookup is lockless protected by a sequence counter. We only |
| 220 | * need to guard against false negatives as false positives aren't |
| 221 | * possible. So if we didn't find a mount namespace and the sequence |
| 222 | * counter has changed we need to retry. If the sequence counter is |
| 223 | * still the same we know the search actually failed. |
| 224 | */ |
| 225 | static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id) |
| 226 | { |
| 227 | struct mnt_namespace *ns; |
| 228 | struct rb_node *node; |
| 229 | unsigned int seq; |
| 230 | |
| 231 | guard(rcu)(); |
| 232 | do { |
| 233 | seq = read_seqbegin(&mnt_ns_tree_lock); |
| 234 | node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find); |
| 235 | if (node) |
| 236 | break; |
| 237 | } while (read_seqretry(&mnt_ns_tree_lock, seq)); |
| 238 | |
| 239 | if (!node) |
| 240 | return NULL; |
| 241 | |
| 242 | /* |
| 243 | * The last reference count is put with RCU delay so we can |
| 244 | * unconditonally acquire a reference here. |
| 245 | */ |
| 246 | ns = node_to_mnt_ns(node); |
| 247 | refcount_inc(&ns->passive); |
| 248 | return ns; |
| 249 | } |
| 250 | |
| 251 | static inline void lock_mount_hash(void) |
| 252 | { |
| 253 | write_seqlock(&mount_lock); |
| 254 | } |
| 255 | |
| 256 | static inline void unlock_mount_hash(void) |
| 257 | { |
| 258 | write_sequnlock(&mount_lock); |
| 259 | } |
| 260 | |
| 261 | static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) |
| 262 | { |
| 263 | unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); |
| 264 | tmp += ((unsigned long)dentry / L1_CACHE_BYTES); |
| 265 | tmp = tmp + (tmp >> m_hash_shift); |
| 266 | return &mount_hashtable[tmp & m_hash_mask]; |
| 267 | } |
| 268 | |
| 269 | static inline struct hlist_head *mp_hash(struct dentry *dentry) |
| 270 | { |
| 271 | unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); |
| 272 | tmp = tmp + (tmp >> mp_hash_shift); |
| 273 | return &mountpoint_hashtable[tmp & mp_hash_mask]; |
| 274 | } |
| 275 | |
| 276 | static int mnt_alloc_id(struct mount *mnt) |
| 277 | { |
| 278 | int res; |
| 279 | |
| 280 | xa_lock(&mnt_id_xa); |
| 281 | res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL); |
| 282 | if (!res) |
| 283 | mnt->mnt_id_unique = ++mnt_id_ctr; |
| 284 | xa_unlock(&mnt_id_xa); |
| 285 | return res; |
| 286 | } |
| 287 | |
| 288 | static void mnt_free_id(struct mount *mnt) |
| 289 | { |
| 290 | xa_erase(&mnt_id_xa, mnt->mnt_id); |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * Allocate a new peer group ID |
| 295 | */ |
| 296 | static int mnt_alloc_group_id(struct mount *mnt) |
| 297 | { |
| 298 | int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); |
| 299 | |
| 300 | if (res < 0) |
| 301 | return res; |
| 302 | mnt->mnt_group_id = res; |
| 303 | return 0; |
| 304 | } |
| 305 | |
| 306 | /* |
| 307 | * Release a peer group ID |
| 308 | */ |
| 309 | void mnt_release_group_id(struct mount *mnt) |
| 310 | { |
| 311 | ida_free(&mnt_group_ida, mnt->mnt_group_id); |
| 312 | mnt->mnt_group_id = 0; |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * vfsmount lock must be held for read |
| 317 | */ |
| 318 | static inline void mnt_add_count(struct mount *mnt, int n) |
| 319 | { |
| 320 | #ifdef CONFIG_SMP |
| 321 | this_cpu_add(mnt->mnt_pcp->mnt_count, n); |
| 322 | #else |
| 323 | preempt_disable(); |
| 324 | mnt->mnt_count += n; |
| 325 | preempt_enable(); |
| 326 | #endif |
| 327 | } |
| 328 | |
| 329 | /* |
| 330 | * vfsmount lock must be held for write |
| 331 | */ |
| 332 | int mnt_get_count(struct mount *mnt) |
| 333 | { |
| 334 | #ifdef CONFIG_SMP |
| 335 | int count = 0; |
| 336 | int cpu; |
| 337 | |
| 338 | for_each_possible_cpu(cpu) { |
| 339 | count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; |
| 340 | } |
| 341 | |
| 342 | return count; |
| 343 | #else |
| 344 | return mnt->mnt_count; |
| 345 | #endif |
| 346 | } |
| 347 | |
| 348 | static struct mount *alloc_vfsmnt(const char *name) |
| 349 | { |
| 350 | struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); |
| 351 | if (mnt) { |
| 352 | int err; |
| 353 | |
| 354 | err = mnt_alloc_id(mnt); |
| 355 | if (err) |
| 356 | goto out_free_cache; |
| 357 | |
| 358 | if (name) |
| 359 | mnt->mnt_devname = kstrdup_const(name, |
| 360 | GFP_KERNEL_ACCOUNT); |
| 361 | else |
| 362 | mnt->mnt_devname = "none"; |
| 363 | if (!mnt->mnt_devname) |
| 364 | goto out_free_id; |
| 365 | |
| 366 | #ifdef CONFIG_SMP |
| 367 | mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); |
| 368 | if (!mnt->mnt_pcp) |
| 369 | goto out_free_devname; |
| 370 | |
| 371 | this_cpu_add(mnt->mnt_pcp->mnt_count, 1); |
| 372 | #else |
| 373 | mnt->mnt_count = 1; |
| 374 | mnt->mnt_writers = 0; |
| 375 | #endif |
| 376 | |
| 377 | INIT_HLIST_NODE(&mnt->mnt_hash); |
| 378 | INIT_LIST_HEAD(&mnt->mnt_child); |
| 379 | INIT_LIST_HEAD(&mnt->mnt_mounts); |
| 380 | INIT_LIST_HEAD(&mnt->mnt_list); |
| 381 | INIT_LIST_HEAD(&mnt->mnt_expire); |
| 382 | INIT_LIST_HEAD(&mnt->mnt_share); |
| 383 | INIT_LIST_HEAD(&mnt->mnt_slave_list); |
| 384 | INIT_LIST_HEAD(&mnt->mnt_slave); |
| 385 | INIT_HLIST_NODE(&mnt->mnt_mp_list); |
| 386 | INIT_LIST_HEAD(&mnt->mnt_umounting); |
| 387 | INIT_HLIST_HEAD(&mnt->mnt_stuck_children); |
| 388 | RB_CLEAR_NODE(&mnt->mnt_node); |
| 389 | mnt->mnt.mnt_idmap = &nop_mnt_idmap; |
| 390 | } |
| 391 | return mnt; |
| 392 | |
| 393 | #ifdef CONFIG_SMP |
| 394 | out_free_devname: |
| 395 | kfree_const(mnt->mnt_devname); |
| 396 | #endif |
| 397 | out_free_id: |
| 398 | mnt_free_id(mnt); |
| 399 | out_free_cache: |
| 400 | kmem_cache_free(mnt_cache, mnt); |
| 401 | return NULL; |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * Most r/o checks on a fs are for operations that take |
| 406 | * discrete amounts of time, like a write() or unlink(). |
| 407 | * We must keep track of when those operations start |
| 408 | * (for permission checks) and when they end, so that |
| 409 | * we can determine when writes are able to occur to |
| 410 | * a filesystem. |
| 411 | */ |
| 412 | /* |
| 413 | * __mnt_is_readonly: check whether a mount is read-only |
| 414 | * @mnt: the mount to check for its write status |
| 415 | * |
| 416 | * This shouldn't be used directly ouside of the VFS. |
| 417 | * It does not guarantee that the filesystem will stay |
| 418 | * r/w, just that it is right *now*. This can not and |
| 419 | * should not be used in place of IS_RDONLY(inode). |
| 420 | * mnt_want/drop_write() will _keep_ the filesystem |
| 421 | * r/w. |
| 422 | */ |
| 423 | bool __mnt_is_readonly(struct vfsmount *mnt) |
| 424 | { |
| 425 | return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); |
| 426 | } |
| 427 | EXPORT_SYMBOL_GPL(__mnt_is_readonly); |
| 428 | |
| 429 | static inline void mnt_inc_writers(struct mount *mnt) |
| 430 | { |
| 431 | #ifdef CONFIG_SMP |
| 432 | this_cpu_inc(mnt->mnt_pcp->mnt_writers); |
| 433 | #else |
| 434 | mnt->mnt_writers++; |
| 435 | #endif |
| 436 | } |
| 437 | |
| 438 | static inline void mnt_dec_writers(struct mount *mnt) |
| 439 | { |
| 440 | #ifdef CONFIG_SMP |
| 441 | this_cpu_dec(mnt->mnt_pcp->mnt_writers); |
| 442 | #else |
| 443 | mnt->mnt_writers--; |
| 444 | #endif |
| 445 | } |
| 446 | |
| 447 | static unsigned int mnt_get_writers(struct mount *mnt) |
| 448 | { |
| 449 | #ifdef CONFIG_SMP |
| 450 | unsigned int count = 0; |
| 451 | int cpu; |
| 452 | |
| 453 | for_each_possible_cpu(cpu) { |
| 454 | count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; |
| 455 | } |
| 456 | |
| 457 | return count; |
| 458 | #else |
| 459 | return mnt->mnt_writers; |
| 460 | #endif |
| 461 | } |
| 462 | |
| 463 | static int mnt_is_readonly(struct vfsmount *mnt) |
| 464 | { |
| 465 | if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) |
| 466 | return 1; |
| 467 | /* |
| 468 | * The barrier pairs with the barrier in sb_start_ro_state_change() |
| 469 | * making sure if we don't see s_readonly_remount set yet, we also will |
| 470 | * not see any superblock / mount flag changes done by remount. |
| 471 | * It also pairs with the barrier in sb_end_ro_state_change() |
| 472 | * assuring that if we see s_readonly_remount already cleared, we will |
| 473 | * see the values of superblock / mount flags updated by remount. |
| 474 | */ |
| 475 | smp_rmb(); |
| 476 | return __mnt_is_readonly(mnt); |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * Most r/o & frozen checks on a fs are for operations that take discrete |
| 481 | * amounts of time, like a write() or unlink(). We must keep track of when |
| 482 | * those operations start (for permission checks) and when they end, so that we |
| 483 | * can determine when writes are able to occur to a filesystem. |
| 484 | */ |
| 485 | /** |
| 486 | * mnt_get_write_access - get write access to a mount without freeze protection |
| 487 | * @m: the mount on which to take a write |
| 488 | * |
| 489 | * This tells the low-level filesystem that a write is about to be performed to |
| 490 | * it, and makes sure that writes are allowed (mnt it read-write) before |
| 491 | * returning success. This operation does not protect against filesystem being |
| 492 | * frozen. When the write operation is finished, mnt_put_write_access() must be |
| 493 | * called. This is effectively a refcount. |
| 494 | */ |
| 495 | int mnt_get_write_access(struct vfsmount *m) |
| 496 | { |
| 497 | struct mount *mnt = real_mount(m); |
| 498 | int ret = 0; |
| 499 | |
| 500 | preempt_disable(); |
| 501 | mnt_inc_writers(mnt); |
| 502 | /* |
| 503 | * The store to mnt_inc_writers must be visible before we pass |
| 504 | * MNT_WRITE_HOLD loop below, so that the slowpath can see our |
| 505 | * incremented count after it has set MNT_WRITE_HOLD. |
| 506 | */ |
| 507 | smp_mb(); |
| 508 | might_lock(&mount_lock.lock); |
| 509 | while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { |
| 510 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { |
| 511 | cpu_relax(); |
| 512 | } else { |
| 513 | /* |
| 514 | * This prevents priority inversion, if the task |
| 515 | * setting MNT_WRITE_HOLD got preempted on a remote |
| 516 | * CPU, and it prevents life lock if the task setting |
| 517 | * MNT_WRITE_HOLD has a lower priority and is bound to |
| 518 | * the same CPU as the task that is spinning here. |
| 519 | */ |
| 520 | preempt_enable(); |
| 521 | lock_mount_hash(); |
| 522 | unlock_mount_hash(); |
| 523 | preempt_disable(); |
| 524 | } |
| 525 | } |
| 526 | /* |
| 527 | * The barrier pairs with the barrier sb_start_ro_state_change() making |
| 528 | * sure that if we see MNT_WRITE_HOLD cleared, we will also see |
| 529 | * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in |
| 530 | * mnt_is_readonly() and bail in case we are racing with remount |
| 531 | * read-only. |
| 532 | */ |
| 533 | smp_rmb(); |
| 534 | if (mnt_is_readonly(m)) { |
| 535 | mnt_dec_writers(mnt); |
| 536 | ret = -EROFS; |
| 537 | } |
| 538 | preempt_enable(); |
| 539 | |
| 540 | return ret; |
| 541 | } |
| 542 | EXPORT_SYMBOL_GPL(mnt_get_write_access); |
| 543 | |
| 544 | /** |
| 545 | * mnt_want_write - get write access to a mount |
| 546 | * @m: the mount on which to take a write |
| 547 | * |
| 548 | * This tells the low-level filesystem that a write is about to be performed to |
| 549 | * it, and makes sure that writes are allowed (mount is read-write, filesystem |
| 550 | * is not frozen) before returning success. When the write operation is |
| 551 | * finished, mnt_drop_write() must be called. This is effectively a refcount. |
| 552 | */ |
| 553 | int mnt_want_write(struct vfsmount *m) |
| 554 | { |
| 555 | int ret; |
| 556 | |
| 557 | sb_start_write(m->mnt_sb); |
| 558 | ret = mnt_get_write_access(m); |
| 559 | if (ret) |
| 560 | sb_end_write(m->mnt_sb); |
| 561 | return ret; |
| 562 | } |
| 563 | EXPORT_SYMBOL_GPL(mnt_want_write); |
| 564 | |
| 565 | /** |
| 566 | * mnt_get_write_access_file - get write access to a file's mount |
| 567 | * @file: the file who's mount on which to take a write |
| 568 | * |
| 569 | * This is like mnt_get_write_access, but if @file is already open for write it |
| 570 | * skips incrementing mnt_writers (since the open file already has a reference) |
| 571 | * and instead only does the check for emergency r/o remounts. This must be |
| 572 | * paired with mnt_put_write_access_file. |
| 573 | */ |
| 574 | int mnt_get_write_access_file(struct file *file) |
| 575 | { |
| 576 | if (file->f_mode & FMODE_WRITER) { |
| 577 | /* |
| 578 | * Superblock may have become readonly while there are still |
| 579 | * writable fd's, e.g. due to a fs error with errors=remount-ro |
| 580 | */ |
| 581 | if (__mnt_is_readonly(file->f_path.mnt)) |
| 582 | return -EROFS; |
| 583 | return 0; |
| 584 | } |
| 585 | return mnt_get_write_access(file->f_path.mnt); |
| 586 | } |
| 587 | |
| 588 | /** |
| 589 | * mnt_want_write_file - get write access to a file's mount |
| 590 | * @file: the file who's mount on which to take a write |
| 591 | * |
| 592 | * This is like mnt_want_write, but if the file is already open for writing it |
| 593 | * skips incrementing mnt_writers (since the open file already has a reference) |
| 594 | * and instead only does the freeze protection and the check for emergency r/o |
| 595 | * remounts. This must be paired with mnt_drop_write_file. |
| 596 | */ |
| 597 | int mnt_want_write_file(struct file *file) |
| 598 | { |
| 599 | int ret; |
| 600 | |
| 601 | sb_start_write(file_inode(file)->i_sb); |
| 602 | ret = mnt_get_write_access_file(file); |
| 603 | if (ret) |
| 604 | sb_end_write(file_inode(file)->i_sb); |
| 605 | return ret; |
| 606 | } |
| 607 | EXPORT_SYMBOL_GPL(mnt_want_write_file); |
| 608 | |
| 609 | /** |
| 610 | * mnt_put_write_access - give up write access to a mount |
| 611 | * @mnt: the mount on which to give up write access |
| 612 | * |
| 613 | * Tells the low-level filesystem that we are done |
| 614 | * performing writes to it. Must be matched with |
| 615 | * mnt_get_write_access() call above. |
| 616 | */ |
| 617 | void mnt_put_write_access(struct vfsmount *mnt) |
| 618 | { |
| 619 | preempt_disable(); |
| 620 | mnt_dec_writers(real_mount(mnt)); |
| 621 | preempt_enable(); |
| 622 | } |
| 623 | EXPORT_SYMBOL_GPL(mnt_put_write_access); |
| 624 | |
| 625 | /** |
| 626 | * mnt_drop_write - give up write access to a mount |
| 627 | * @mnt: the mount on which to give up write access |
| 628 | * |
| 629 | * Tells the low-level filesystem that we are done performing writes to it and |
| 630 | * also allows filesystem to be frozen again. Must be matched with |
| 631 | * mnt_want_write() call above. |
| 632 | */ |
| 633 | void mnt_drop_write(struct vfsmount *mnt) |
| 634 | { |
| 635 | mnt_put_write_access(mnt); |
| 636 | sb_end_write(mnt->mnt_sb); |
| 637 | } |
| 638 | EXPORT_SYMBOL_GPL(mnt_drop_write); |
| 639 | |
| 640 | void mnt_put_write_access_file(struct file *file) |
| 641 | { |
| 642 | if (!(file->f_mode & FMODE_WRITER)) |
| 643 | mnt_put_write_access(file->f_path.mnt); |
| 644 | } |
| 645 | |
| 646 | void mnt_drop_write_file(struct file *file) |
| 647 | { |
| 648 | mnt_put_write_access_file(file); |
| 649 | sb_end_write(file_inode(file)->i_sb); |
| 650 | } |
| 651 | EXPORT_SYMBOL(mnt_drop_write_file); |
| 652 | |
| 653 | /** |
| 654 | * mnt_hold_writers - prevent write access to the given mount |
| 655 | * @mnt: mnt to prevent write access to |
| 656 | * |
| 657 | * Prevents write access to @mnt if there are no active writers for @mnt. |
| 658 | * This function needs to be called and return successfully before changing |
| 659 | * properties of @mnt that need to remain stable for callers with write access |
| 660 | * to @mnt. |
| 661 | * |
| 662 | * After this functions has been called successfully callers must pair it with |
| 663 | * a call to mnt_unhold_writers() in order to stop preventing write access to |
| 664 | * @mnt. |
| 665 | * |
| 666 | * Context: This function expects lock_mount_hash() to be held serializing |
| 667 | * setting MNT_WRITE_HOLD. |
| 668 | * Return: On success 0 is returned. |
| 669 | * On error, -EBUSY is returned. |
| 670 | */ |
| 671 | static inline int mnt_hold_writers(struct mount *mnt) |
| 672 | { |
| 673 | mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; |
| 674 | /* |
| 675 | * After storing MNT_WRITE_HOLD, we'll read the counters. This store |
| 676 | * should be visible before we do. |
| 677 | */ |
| 678 | smp_mb(); |
| 679 | |
| 680 | /* |
| 681 | * With writers on hold, if this value is zero, then there are |
| 682 | * definitely no active writers (although held writers may subsequently |
| 683 | * increment the count, they'll have to wait, and decrement it after |
| 684 | * seeing MNT_READONLY). |
| 685 | * |
| 686 | * It is OK to have counter incremented on one CPU and decremented on |
| 687 | * another: the sum will add up correctly. The danger would be when we |
| 688 | * sum up each counter, if we read a counter before it is incremented, |
| 689 | * but then read another CPU's count which it has been subsequently |
| 690 | * decremented from -- we would see more decrements than we should. |
| 691 | * MNT_WRITE_HOLD protects against this scenario, because |
| 692 | * mnt_want_write first increments count, then smp_mb, then spins on |
| 693 | * MNT_WRITE_HOLD, so it can't be decremented by another CPU while |
| 694 | * we're counting up here. |
| 695 | */ |
| 696 | if (mnt_get_writers(mnt) > 0) |
| 697 | return -EBUSY; |
| 698 | |
| 699 | return 0; |
| 700 | } |
| 701 | |
| 702 | /** |
| 703 | * mnt_unhold_writers - stop preventing write access to the given mount |
| 704 | * @mnt: mnt to stop preventing write access to |
| 705 | * |
| 706 | * Stop preventing write access to @mnt allowing callers to gain write access |
| 707 | * to @mnt again. |
| 708 | * |
| 709 | * This function can only be called after a successful call to |
| 710 | * mnt_hold_writers(). |
| 711 | * |
| 712 | * Context: This function expects lock_mount_hash() to be held. |
| 713 | */ |
| 714 | static inline void mnt_unhold_writers(struct mount *mnt) |
| 715 | { |
| 716 | /* |
| 717 | * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers |
| 718 | * that become unheld will see MNT_READONLY. |
| 719 | */ |
| 720 | smp_wmb(); |
| 721 | mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; |
| 722 | } |
| 723 | |
| 724 | static int mnt_make_readonly(struct mount *mnt) |
| 725 | { |
| 726 | int ret; |
| 727 | |
| 728 | ret = mnt_hold_writers(mnt); |
| 729 | if (!ret) |
| 730 | mnt->mnt.mnt_flags |= MNT_READONLY; |
| 731 | mnt_unhold_writers(mnt); |
| 732 | return ret; |
| 733 | } |
| 734 | |
| 735 | int sb_prepare_remount_readonly(struct super_block *sb) |
| 736 | { |
| 737 | struct mount *mnt; |
| 738 | int err = 0; |
| 739 | |
| 740 | /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ |
| 741 | if (atomic_long_read(&sb->s_remove_count)) |
| 742 | return -EBUSY; |
| 743 | |
| 744 | lock_mount_hash(); |
| 745 | list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { |
| 746 | if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { |
| 747 | err = mnt_hold_writers(mnt); |
| 748 | if (err) |
| 749 | break; |
| 750 | } |
| 751 | } |
| 752 | if (!err && atomic_long_read(&sb->s_remove_count)) |
| 753 | err = -EBUSY; |
| 754 | |
| 755 | if (!err) |
| 756 | sb_start_ro_state_change(sb); |
| 757 | list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { |
| 758 | if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) |
| 759 | mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; |
| 760 | } |
| 761 | unlock_mount_hash(); |
| 762 | |
| 763 | return err; |
| 764 | } |
| 765 | |
| 766 | static void free_vfsmnt(struct mount *mnt) |
| 767 | { |
| 768 | mnt_idmap_put(mnt_idmap(&mnt->mnt)); |
| 769 | kfree_const(mnt->mnt_devname); |
| 770 | #ifdef CONFIG_SMP |
| 771 | free_percpu(mnt->mnt_pcp); |
| 772 | #endif |
| 773 | kmem_cache_free(mnt_cache, mnt); |
| 774 | } |
| 775 | |
| 776 | static void delayed_free_vfsmnt(struct rcu_head *head) |
| 777 | { |
| 778 | free_vfsmnt(container_of(head, struct mount, mnt_rcu)); |
| 779 | } |
| 780 | |
| 781 | /* call under rcu_read_lock */ |
| 782 | int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) |
| 783 | { |
| 784 | struct mount *mnt; |
| 785 | if (read_seqretry(&mount_lock, seq)) |
| 786 | return 1; |
| 787 | if (bastard == NULL) |
| 788 | return 0; |
| 789 | mnt = real_mount(bastard); |
| 790 | mnt_add_count(mnt, 1); |
| 791 | smp_mb(); // see mntput_no_expire() and do_umount() |
| 792 | if (likely(!read_seqretry(&mount_lock, seq))) |
| 793 | return 0; |
| 794 | lock_mount_hash(); |
| 795 | if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) { |
| 796 | mnt_add_count(mnt, -1); |
| 797 | unlock_mount_hash(); |
| 798 | return 1; |
| 799 | } |
| 800 | unlock_mount_hash(); |
| 801 | /* caller will mntput() */ |
| 802 | return -1; |
| 803 | } |
| 804 | |
| 805 | /* call under rcu_read_lock */ |
| 806 | static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) |
| 807 | { |
| 808 | int res = __legitimize_mnt(bastard, seq); |
| 809 | if (likely(!res)) |
| 810 | return true; |
| 811 | if (unlikely(res < 0)) { |
| 812 | rcu_read_unlock(); |
| 813 | mntput(bastard); |
| 814 | rcu_read_lock(); |
| 815 | } |
| 816 | return false; |
| 817 | } |
| 818 | |
| 819 | /** |
| 820 | * __lookup_mnt - find first child mount |
| 821 | * @mnt: parent mount |
| 822 | * @dentry: mountpoint |
| 823 | * |
| 824 | * If @mnt has a child mount @c mounted @dentry find and return it. |
| 825 | * |
| 826 | * Note that the child mount @c need not be unique. There are cases |
| 827 | * where shadow mounts are created. For example, during mount |
| 828 | * propagation when a source mount @mnt whose root got overmounted by a |
| 829 | * mount @o after path lookup but before @namespace_sem could be |
| 830 | * acquired gets copied and propagated. So @mnt gets copied including |
| 831 | * @o. When @mnt is propagated to a destination mount @d that already |
| 832 | * has another mount @n mounted at the same mountpoint then the source |
| 833 | * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on |
| 834 | * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt |
| 835 | * on @dentry. |
| 836 | * |
| 837 | * Return: The first child of @mnt mounted @dentry or NULL. |
| 838 | */ |
| 839 | struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) |
| 840 | { |
| 841 | struct hlist_head *head = m_hash(mnt, dentry); |
| 842 | struct mount *p; |
| 843 | |
| 844 | hlist_for_each_entry_rcu(p, head, mnt_hash) |
| 845 | if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) |
| 846 | return p; |
| 847 | return NULL; |
| 848 | } |
| 849 | |
| 850 | /* |
| 851 | * lookup_mnt - Return the first child mount mounted at path |
| 852 | * |
| 853 | * "First" means first mounted chronologically. If you create the |
| 854 | * following mounts: |
| 855 | * |
| 856 | * mount /dev/sda1 /mnt |
| 857 | * mount /dev/sda2 /mnt |
| 858 | * mount /dev/sda3 /mnt |
| 859 | * |
| 860 | * Then lookup_mnt() on the base /mnt dentry in the root mount will |
| 861 | * return successively the root dentry and vfsmount of /dev/sda1, then |
| 862 | * /dev/sda2, then /dev/sda3, then NULL. |
| 863 | * |
| 864 | * lookup_mnt takes a reference to the found vfsmount. |
| 865 | */ |
| 866 | struct vfsmount *lookup_mnt(const struct path *path) |
| 867 | { |
| 868 | struct mount *child_mnt; |
| 869 | struct vfsmount *m; |
| 870 | unsigned seq; |
| 871 | |
| 872 | rcu_read_lock(); |
| 873 | do { |
| 874 | seq = read_seqbegin(&mount_lock); |
| 875 | child_mnt = __lookup_mnt(path->mnt, path->dentry); |
| 876 | m = child_mnt ? &child_mnt->mnt : NULL; |
| 877 | } while (!legitimize_mnt(m, seq)); |
| 878 | rcu_read_unlock(); |
| 879 | return m; |
| 880 | } |
| 881 | |
| 882 | /* |
| 883 | * __is_local_mountpoint - Test to see if dentry is a mountpoint in the |
| 884 | * current mount namespace. |
| 885 | * |
| 886 | * The common case is dentries are not mountpoints at all and that |
| 887 | * test is handled inline. For the slow case when we are actually |
| 888 | * dealing with a mountpoint of some kind, walk through all of the |
| 889 | * mounts in the current mount namespace and test to see if the dentry |
| 890 | * is a mountpoint. |
| 891 | * |
| 892 | * The mount_hashtable is not usable in the context because we |
| 893 | * need to identify all mounts that may be in the current mount |
| 894 | * namespace not just a mount that happens to have some specified |
| 895 | * parent mount. |
| 896 | */ |
| 897 | bool __is_local_mountpoint(struct dentry *dentry) |
| 898 | { |
| 899 | struct mnt_namespace *ns = current->nsproxy->mnt_ns; |
| 900 | struct mount *mnt, *n; |
| 901 | bool is_covered = false; |
| 902 | |
| 903 | down_read(&namespace_sem); |
| 904 | rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { |
| 905 | is_covered = (mnt->mnt_mountpoint == dentry); |
| 906 | if (is_covered) |
| 907 | break; |
| 908 | } |
| 909 | up_read(&namespace_sem); |
| 910 | |
| 911 | return is_covered; |
| 912 | } |
| 913 | |
| 914 | static struct mountpoint *lookup_mountpoint(struct dentry *dentry) |
| 915 | { |
| 916 | struct hlist_head *chain = mp_hash(dentry); |
| 917 | struct mountpoint *mp; |
| 918 | |
| 919 | hlist_for_each_entry(mp, chain, m_hash) { |
| 920 | if (mp->m_dentry == dentry) { |
| 921 | mp->m_count++; |
| 922 | return mp; |
| 923 | } |
| 924 | } |
| 925 | return NULL; |
| 926 | } |
| 927 | |
| 928 | static struct mountpoint *get_mountpoint(struct dentry *dentry) |
| 929 | { |
| 930 | struct mountpoint *mp, *new = NULL; |
| 931 | int ret; |
| 932 | |
| 933 | if (d_mountpoint(dentry)) { |
| 934 | /* might be worth a WARN_ON() */ |
| 935 | if (d_unlinked(dentry)) |
| 936 | return ERR_PTR(-ENOENT); |
| 937 | mountpoint: |
| 938 | read_seqlock_excl(&mount_lock); |
| 939 | mp = lookup_mountpoint(dentry); |
| 940 | read_sequnlock_excl(&mount_lock); |
| 941 | if (mp) |
| 942 | goto done; |
| 943 | } |
| 944 | |
| 945 | if (!new) |
| 946 | new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); |
| 947 | if (!new) |
| 948 | return ERR_PTR(-ENOMEM); |
| 949 | |
| 950 | |
| 951 | /* Exactly one processes may set d_mounted */ |
| 952 | ret = d_set_mounted(dentry); |
| 953 | |
| 954 | /* Someone else set d_mounted? */ |
| 955 | if (ret == -EBUSY) |
| 956 | goto mountpoint; |
| 957 | |
| 958 | /* The dentry is not available as a mountpoint? */ |
| 959 | mp = ERR_PTR(ret); |
| 960 | if (ret) |
| 961 | goto done; |
| 962 | |
| 963 | /* Add the new mountpoint to the hash table */ |
| 964 | read_seqlock_excl(&mount_lock); |
| 965 | new->m_dentry = dget(dentry); |
| 966 | new->m_count = 1; |
| 967 | hlist_add_head(&new->m_hash, mp_hash(dentry)); |
| 968 | INIT_HLIST_HEAD(&new->m_list); |
| 969 | read_sequnlock_excl(&mount_lock); |
| 970 | |
| 971 | mp = new; |
| 972 | new = NULL; |
| 973 | done: |
| 974 | kfree(new); |
| 975 | return mp; |
| 976 | } |
| 977 | |
| 978 | /* |
| 979 | * vfsmount lock must be held. Additionally, the caller is responsible |
| 980 | * for serializing calls for given disposal list. |
| 981 | */ |
| 982 | static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) |
| 983 | { |
| 984 | if (!--mp->m_count) { |
| 985 | struct dentry *dentry = mp->m_dentry; |
| 986 | BUG_ON(!hlist_empty(&mp->m_list)); |
| 987 | spin_lock(&dentry->d_lock); |
| 988 | dentry->d_flags &= ~DCACHE_MOUNTED; |
| 989 | spin_unlock(&dentry->d_lock); |
| 990 | dput_to_list(dentry, list); |
| 991 | hlist_del(&mp->m_hash); |
| 992 | kfree(mp); |
| 993 | } |
| 994 | } |
| 995 | |
| 996 | /* called with namespace_lock and vfsmount lock */ |
| 997 | static void put_mountpoint(struct mountpoint *mp) |
| 998 | { |
| 999 | __put_mountpoint(mp, &ex_mountpoints); |
| 1000 | } |
| 1001 | |
| 1002 | static inline int check_mnt(struct mount *mnt) |
| 1003 | { |
| 1004 | return mnt->mnt_ns == current->nsproxy->mnt_ns; |
| 1005 | } |
| 1006 | |
| 1007 | static inline bool check_anonymous_mnt(struct mount *mnt) |
| 1008 | { |
| 1009 | u64 seq; |
| 1010 | |
| 1011 | if (!is_anon_ns(mnt->mnt_ns)) |
| 1012 | return false; |
| 1013 | |
| 1014 | seq = mnt->mnt_ns->seq_origin; |
| 1015 | return !seq || (seq == current->nsproxy->mnt_ns->seq); |
| 1016 | } |
| 1017 | |
| 1018 | /* |
| 1019 | * vfsmount lock must be held for write |
| 1020 | */ |
| 1021 | static void touch_mnt_namespace(struct mnt_namespace *ns) |
| 1022 | { |
| 1023 | if (ns) { |
| 1024 | ns->event = ++event; |
| 1025 | wake_up_interruptible(&ns->poll); |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | /* |
| 1030 | * vfsmount lock must be held for write |
| 1031 | */ |
| 1032 | static void __touch_mnt_namespace(struct mnt_namespace *ns) |
| 1033 | { |
| 1034 | if (ns && ns->event != event) { |
| 1035 | ns->event = event; |
| 1036 | wake_up_interruptible(&ns->poll); |
| 1037 | } |
| 1038 | } |
| 1039 | |
| 1040 | /* |
| 1041 | * vfsmount lock must be held for write |
| 1042 | */ |
| 1043 | static struct mountpoint *unhash_mnt(struct mount *mnt) |
| 1044 | { |
| 1045 | struct mountpoint *mp; |
| 1046 | mnt->mnt_parent = mnt; |
| 1047 | mnt->mnt_mountpoint = mnt->mnt.mnt_root; |
| 1048 | list_del_init(&mnt->mnt_child); |
| 1049 | hlist_del_init_rcu(&mnt->mnt_hash); |
| 1050 | hlist_del_init(&mnt->mnt_mp_list); |
| 1051 | mp = mnt->mnt_mp; |
| 1052 | mnt->mnt_mp = NULL; |
| 1053 | return mp; |
| 1054 | } |
| 1055 | |
| 1056 | /* |
| 1057 | * vfsmount lock must be held for write |
| 1058 | */ |
| 1059 | static void umount_mnt(struct mount *mnt) |
| 1060 | { |
| 1061 | put_mountpoint(unhash_mnt(mnt)); |
| 1062 | } |
| 1063 | |
| 1064 | /* |
| 1065 | * vfsmount lock must be held for write |
| 1066 | */ |
| 1067 | void mnt_set_mountpoint(struct mount *mnt, |
| 1068 | struct mountpoint *mp, |
| 1069 | struct mount *child_mnt) |
| 1070 | { |
| 1071 | mp->m_count++; |
| 1072 | mnt_add_count(mnt, 1); /* essentially, that's mntget */ |
| 1073 | child_mnt->mnt_mountpoint = mp->m_dentry; |
| 1074 | child_mnt->mnt_parent = mnt; |
| 1075 | child_mnt->mnt_mp = mp; |
| 1076 | hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); |
| 1077 | } |
| 1078 | |
| 1079 | /** |
| 1080 | * mnt_set_mountpoint_beneath - mount a mount beneath another one |
| 1081 | * |
| 1082 | * @new_parent: the source mount |
| 1083 | * @top_mnt: the mount beneath which @new_parent is mounted |
| 1084 | * @new_mp: the new mountpoint of @top_mnt on @new_parent |
| 1085 | * |
| 1086 | * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and |
| 1087 | * parent @top_mnt->mnt_parent and mount it on top of @new_parent at |
| 1088 | * @new_mp. And mount @new_parent on the old parent and old |
| 1089 | * mountpoint of @top_mnt. |
| 1090 | * |
| 1091 | * Context: This function expects namespace_lock() and lock_mount_hash() |
| 1092 | * to have been acquired in that order. |
| 1093 | */ |
| 1094 | static void mnt_set_mountpoint_beneath(struct mount *new_parent, |
| 1095 | struct mount *top_mnt, |
| 1096 | struct mountpoint *new_mp) |
| 1097 | { |
| 1098 | struct mount *old_top_parent = top_mnt->mnt_parent; |
| 1099 | struct mountpoint *old_top_mp = top_mnt->mnt_mp; |
| 1100 | |
| 1101 | mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); |
| 1102 | mnt_change_mountpoint(new_parent, new_mp, top_mnt); |
| 1103 | } |
| 1104 | |
| 1105 | |
| 1106 | static void __attach_mnt(struct mount *mnt, struct mount *parent) |
| 1107 | { |
| 1108 | hlist_add_head_rcu(&mnt->mnt_hash, |
| 1109 | m_hash(&parent->mnt, mnt->mnt_mountpoint)); |
| 1110 | list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); |
| 1111 | } |
| 1112 | |
| 1113 | /** |
| 1114 | * attach_mnt - mount a mount, attach to @mount_hashtable and parent's |
| 1115 | * list of child mounts |
| 1116 | * @parent: the parent |
| 1117 | * @mnt: the new mount |
| 1118 | * @mp: the new mountpoint |
| 1119 | * @beneath: whether to mount @mnt beneath or on top of @parent |
| 1120 | * |
| 1121 | * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt |
| 1122 | * to @parent's child mount list and to @mount_hashtable. |
| 1123 | * |
| 1124 | * If @beneath is true, remove @mnt from its current parent and |
| 1125 | * mountpoint and mount it on @mp on @parent, and mount @parent on the |
| 1126 | * old parent and old mountpoint of @mnt. Finally, attach @parent to |
| 1127 | * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. |
| 1128 | * |
| 1129 | * Note, when __attach_mnt() is called @mnt->mnt_parent already points |
| 1130 | * to the correct parent. |
| 1131 | * |
| 1132 | * Context: This function expects namespace_lock() and lock_mount_hash() |
| 1133 | * to have been acquired in that order. |
| 1134 | */ |
| 1135 | static void attach_mnt(struct mount *mnt, struct mount *parent, |
| 1136 | struct mountpoint *mp, bool beneath) |
| 1137 | { |
| 1138 | if (beneath) |
| 1139 | mnt_set_mountpoint_beneath(mnt, parent, mp); |
| 1140 | else |
| 1141 | mnt_set_mountpoint(parent, mp, mnt); |
| 1142 | /* |
| 1143 | * Note, @mnt->mnt_parent has to be used. If @mnt was mounted |
| 1144 | * beneath @parent then @mnt will need to be attached to |
| 1145 | * @parent's old parent, not @parent. IOW, @mnt->mnt_parent |
| 1146 | * isn't the same mount as @parent. |
| 1147 | */ |
| 1148 | __attach_mnt(mnt, mnt->mnt_parent); |
| 1149 | } |
| 1150 | |
| 1151 | void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) |
| 1152 | { |
| 1153 | struct mountpoint *old_mp = mnt->mnt_mp; |
| 1154 | struct mount *old_parent = mnt->mnt_parent; |
| 1155 | |
| 1156 | list_del_init(&mnt->mnt_child); |
| 1157 | hlist_del_init(&mnt->mnt_mp_list); |
| 1158 | hlist_del_init_rcu(&mnt->mnt_hash); |
| 1159 | |
| 1160 | attach_mnt(mnt, parent, mp, false); |
| 1161 | |
| 1162 | put_mountpoint(old_mp); |
| 1163 | mnt_add_count(old_parent, -1); |
| 1164 | } |
| 1165 | |
| 1166 | static inline struct mount *node_to_mount(struct rb_node *node) |
| 1167 | { |
| 1168 | return node ? rb_entry(node, struct mount, mnt_node) : NULL; |
| 1169 | } |
| 1170 | |
| 1171 | static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) |
| 1172 | { |
| 1173 | struct rb_node **link = &ns->mounts.rb_node; |
| 1174 | struct rb_node *parent = NULL; |
| 1175 | bool mnt_first_node = true, mnt_last_node = true; |
| 1176 | |
| 1177 | WARN_ON(mnt_ns_attached(mnt)); |
| 1178 | mnt->mnt_ns = ns; |
| 1179 | while (*link) { |
| 1180 | parent = *link; |
| 1181 | if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) { |
| 1182 | link = &parent->rb_left; |
| 1183 | mnt_last_node = false; |
| 1184 | } else { |
| 1185 | link = &parent->rb_right; |
| 1186 | mnt_first_node = false; |
| 1187 | } |
| 1188 | } |
| 1189 | |
| 1190 | if (mnt_last_node) |
| 1191 | ns->mnt_last_node = &mnt->mnt_node; |
| 1192 | if (mnt_first_node) |
| 1193 | ns->mnt_first_node = &mnt->mnt_node; |
| 1194 | rb_link_node(&mnt->mnt_node, parent, link); |
| 1195 | rb_insert_color(&mnt->mnt_node, &ns->mounts); |
| 1196 | |
| 1197 | mnt_notify_add(mnt); |
| 1198 | } |
| 1199 | |
| 1200 | /* |
| 1201 | * vfsmount lock must be held for write |
| 1202 | */ |
| 1203 | static void commit_tree(struct mount *mnt) |
| 1204 | { |
| 1205 | struct mount *parent = mnt->mnt_parent; |
| 1206 | struct mount *m; |
| 1207 | LIST_HEAD(head); |
| 1208 | struct mnt_namespace *n = parent->mnt_ns; |
| 1209 | |
| 1210 | BUG_ON(parent == mnt); |
| 1211 | |
| 1212 | list_add_tail(&head, &mnt->mnt_list); |
| 1213 | while (!list_empty(&head)) { |
| 1214 | m = list_first_entry(&head, typeof(*m), mnt_list); |
| 1215 | list_del(&m->mnt_list); |
| 1216 | |
| 1217 | mnt_add_to_ns(n, m); |
| 1218 | } |
| 1219 | n->nr_mounts += n->pending_mounts; |
| 1220 | n->pending_mounts = 0; |
| 1221 | |
| 1222 | __attach_mnt(mnt, parent); |
| 1223 | touch_mnt_namespace(n); |
| 1224 | } |
| 1225 | |
| 1226 | static struct mount *next_mnt(struct mount *p, struct mount *root) |
| 1227 | { |
| 1228 | struct list_head *next = p->mnt_mounts.next; |
| 1229 | if (next == &p->mnt_mounts) { |
| 1230 | while (1) { |
| 1231 | if (p == root) |
| 1232 | return NULL; |
| 1233 | next = p->mnt_child.next; |
| 1234 | if (next != &p->mnt_parent->mnt_mounts) |
| 1235 | break; |
| 1236 | p = p->mnt_parent; |
| 1237 | } |
| 1238 | } |
| 1239 | return list_entry(next, struct mount, mnt_child); |
| 1240 | } |
| 1241 | |
| 1242 | static struct mount *skip_mnt_tree(struct mount *p) |
| 1243 | { |
| 1244 | struct list_head *prev = p->mnt_mounts.prev; |
| 1245 | while (prev != &p->mnt_mounts) { |
| 1246 | p = list_entry(prev, struct mount, mnt_child); |
| 1247 | prev = p->mnt_mounts.prev; |
| 1248 | } |
| 1249 | return p; |
| 1250 | } |
| 1251 | |
| 1252 | /** |
| 1253 | * vfs_create_mount - Create a mount for a configured superblock |
| 1254 | * @fc: The configuration context with the superblock attached |
| 1255 | * |
| 1256 | * Create a mount to an already configured superblock. If necessary, the |
| 1257 | * caller should invoke vfs_get_tree() before calling this. |
| 1258 | * |
| 1259 | * Note that this does not attach the mount to anything. |
| 1260 | */ |
| 1261 | struct vfsmount *vfs_create_mount(struct fs_context *fc) |
| 1262 | { |
| 1263 | struct mount *mnt; |
| 1264 | |
| 1265 | if (!fc->root) |
| 1266 | return ERR_PTR(-EINVAL); |
| 1267 | |
| 1268 | mnt = alloc_vfsmnt(fc->source); |
| 1269 | if (!mnt) |
| 1270 | return ERR_PTR(-ENOMEM); |
| 1271 | |
| 1272 | if (fc->sb_flags & SB_KERNMOUNT) |
| 1273 | mnt->mnt.mnt_flags = MNT_INTERNAL; |
| 1274 | |
| 1275 | atomic_inc(&fc->root->d_sb->s_active); |
| 1276 | mnt->mnt.mnt_sb = fc->root->d_sb; |
| 1277 | mnt->mnt.mnt_root = dget(fc->root); |
| 1278 | mnt->mnt_mountpoint = mnt->mnt.mnt_root; |
| 1279 | mnt->mnt_parent = mnt; |
| 1280 | |
| 1281 | lock_mount_hash(); |
| 1282 | list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); |
| 1283 | unlock_mount_hash(); |
| 1284 | return &mnt->mnt; |
| 1285 | } |
| 1286 | EXPORT_SYMBOL(vfs_create_mount); |
| 1287 | |
| 1288 | struct vfsmount *fc_mount(struct fs_context *fc) |
| 1289 | { |
| 1290 | int err = vfs_get_tree(fc); |
| 1291 | if (!err) { |
| 1292 | up_write(&fc->root->d_sb->s_umount); |
| 1293 | return vfs_create_mount(fc); |
| 1294 | } |
| 1295 | return ERR_PTR(err); |
| 1296 | } |
| 1297 | EXPORT_SYMBOL(fc_mount); |
| 1298 | |
| 1299 | struct vfsmount *vfs_kern_mount(struct file_system_type *type, |
| 1300 | int flags, const char *name, |
| 1301 | void *data) |
| 1302 | { |
| 1303 | struct fs_context *fc; |
| 1304 | struct vfsmount *mnt; |
| 1305 | int ret = 0; |
| 1306 | |
| 1307 | if (!type) |
| 1308 | return ERR_PTR(-EINVAL); |
| 1309 | |
| 1310 | fc = fs_context_for_mount(type, flags); |
| 1311 | if (IS_ERR(fc)) |
| 1312 | return ERR_CAST(fc); |
| 1313 | |
| 1314 | if (name) |
| 1315 | ret = vfs_parse_fs_string(fc, "source", |
| 1316 | name, strlen(name)); |
| 1317 | if (!ret) |
| 1318 | ret = parse_monolithic_mount_data(fc, data); |
| 1319 | if (!ret) |
| 1320 | mnt = fc_mount(fc); |
| 1321 | else |
| 1322 | mnt = ERR_PTR(ret); |
| 1323 | |
| 1324 | put_fs_context(fc); |
| 1325 | return mnt; |
| 1326 | } |
| 1327 | EXPORT_SYMBOL_GPL(vfs_kern_mount); |
| 1328 | |
| 1329 | static struct mount *clone_mnt(struct mount *old, struct dentry *root, |
| 1330 | int flag) |
| 1331 | { |
| 1332 | struct super_block *sb = old->mnt.mnt_sb; |
| 1333 | struct mount *mnt; |
| 1334 | int err; |
| 1335 | |
| 1336 | mnt = alloc_vfsmnt(old->mnt_devname); |
| 1337 | if (!mnt) |
| 1338 | return ERR_PTR(-ENOMEM); |
| 1339 | |
| 1340 | if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) |
| 1341 | mnt->mnt_group_id = 0; /* not a peer of original */ |
| 1342 | else |
| 1343 | mnt->mnt_group_id = old->mnt_group_id; |
| 1344 | |
| 1345 | if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { |
| 1346 | err = mnt_alloc_group_id(mnt); |
| 1347 | if (err) |
| 1348 | goto out_free; |
| 1349 | } |
| 1350 | |
| 1351 | mnt->mnt.mnt_flags = old->mnt.mnt_flags; |
| 1352 | mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); |
| 1353 | |
| 1354 | atomic_inc(&sb->s_active); |
| 1355 | mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); |
| 1356 | |
| 1357 | mnt->mnt.mnt_sb = sb; |
| 1358 | mnt->mnt.mnt_root = dget(root); |
| 1359 | mnt->mnt_mountpoint = mnt->mnt.mnt_root; |
| 1360 | mnt->mnt_parent = mnt; |
| 1361 | lock_mount_hash(); |
| 1362 | list_add_tail(&mnt->mnt_instance, &sb->s_mounts); |
| 1363 | unlock_mount_hash(); |
| 1364 | |
| 1365 | if ((flag & CL_SLAVE) || |
| 1366 | ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { |
| 1367 | list_add(&mnt->mnt_slave, &old->mnt_slave_list); |
| 1368 | mnt->mnt_master = old; |
| 1369 | CLEAR_MNT_SHARED(mnt); |
| 1370 | } else if (!(flag & CL_PRIVATE)) { |
| 1371 | if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) |
| 1372 | list_add(&mnt->mnt_share, &old->mnt_share); |
| 1373 | if (IS_MNT_SLAVE(old)) |
| 1374 | list_add(&mnt->mnt_slave, &old->mnt_slave); |
| 1375 | mnt->mnt_master = old->mnt_master; |
| 1376 | } else { |
| 1377 | CLEAR_MNT_SHARED(mnt); |
| 1378 | } |
| 1379 | if (flag & CL_MAKE_SHARED) |
| 1380 | set_mnt_shared(mnt); |
| 1381 | |
| 1382 | /* stick the duplicate mount on the same expiry list |
| 1383 | * as the original if that was on one */ |
| 1384 | if (flag & CL_EXPIRE) { |
| 1385 | if (!list_empty(&old->mnt_expire)) |
| 1386 | list_add(&mnt->mnt_expire, &old->mnt_expire); |
| 1387 | } |
| 1388 | |
| 1389 | return mnt; |
| 1390 | |
| 1391 | out_free: |
| 1392 | mnt_free_id(mnt); |
| 1393 | free_vfsmnt(mnt); |
| 1394 | return ERR_PTR(err); |
| 1395 | } |
| 1396 | |
| 1397 | static void cleanup_mnt(struct mount *mnt) |
| 1398 | { |
| 1399 | struct hlist_node *p; |
| 1400 | struct mount *m; |
| 1401 | /* |
| 1402 | * The warning here probably indicates that somebody messed |
| 1403 | * up a mnt_want/drop_write() pair. If this happens, the |
| 1404 | * filesystem was probably unable to make r/w->r/o transitions. |
| 1405 | * The locking used to deal with mnt_count decrement provides barriers, |
| 1406 | * so mnt_get_writers() below is safe. |
| 1407 | */ |
| 1408 | WARN_ON(mnt_get_writers(mnt)); |
| 1409 | if (unlikely(mnt->mnt_pins.first)) |
| 1410 | mnt_pin_kill(mnt); |
| 1411 | hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { |
| 1412 | hlist_del(&m->mnt_umount); |
| 1413 | mntput(&m->mnt); |
| 1414 | } |
| 1415 | fsnotify_vfsmount_delete(&mnt->mnt); |
| 1416 | dput(mnt->mnt.mnt_root); |
| 1417 | deactivate_super(mnt->mnt.mnt_sb); |
| 1418 | mnt_free_id(mnt); |
| 1419 | call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); |
| 1420 | } |
| 1421 | |
| 1422 | static void __cleanup_mnt(struct rcu_head *head) |
| 1423 | { |
| 1424 | cleanup_mnt(container_of(head, struct mount, mnt_rcu)); |
| 1425 | } |
| 1426 | |
| 1427 | static LLIST_HEAD(delayed_mntput_list); |
| 1428 | static void delayed_mntput(struct work_struct *unused) |
| 1429 | { |
| 1430 | struct llist_node *node = llist_del_all(&delayed_mntput_list); |
| 1431 | struct mount *m, *t; |
| 1432 | |
| 1433 | llist_for_each_entry_safe(m, t, node, mnt_llist) |
| 1434 | cleanup_mnt(m); |
| 1435 | } |
| 1436 | static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); |
| 1437 | |
| 1438 | static void mntput_no_expire(struct mount *mnt) |
| 1439 | { |
| 1440 | LIST_HEAD(list); |
| 1441 | int count; |
| 1442 | |
| 1443 | rcu_read_lock(); |
| 1444 | if (likely(READ_ONCE(mnt->mnt_ns))) { |
| 1445 | /* |
| 1446 | * Since we don't do lock_mount_hash() here, |
| 1447 | * ->mnt_ns can change under us. However, if it's |
| 1448 | * non-NULL, then there's a reference that won't |
| 1449 | * be dropped until after an RCU delay done after |
| 1450 | * turning ->mnt_ns NULL. So if we observe it |
| 1451 | * non-NULL under rcu_read_lock(), the reference |
| 1452 | * we are dropping is not the final one. |
| 1453 | */ |
| 1454 | mnt_add_count(mnt, -1); |
| 1455 | rcu_read_unlock(); |
| 1456 | return; |
| 1457 | } |
| 1458 | lock_mount_hash(); |
| 1459 | /* |
| 1460 | * make sure that if __legitimize_mnt() has not seen us grab |
| 1461 | * mount_lock, we'll see their refcount increment here. |
| 1462 | */ |
| 1463 | smp_mb(); |
| 1464 | mnt_add_count(mnt, -1); |
| 1465 | count = mnt_get_count(mnt); |
| 1466 | if (count != 0) { |
| 1467 | WARN_ON(count < 0); |
| 1468 | rcu_read_unlock(); |
| 1469 | unlock_mount_hash(); |
| 1470 | return; |
| 1471 | } |
| 1472 | if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { |
| 1473 | rcu_read_unlock(); |
| 1474 | unlock_mount_hash(); |
| 1475 | return; |
| 1476 | } |
| 1477 | mnt->mnt.mnt_flags |= MNT_DOOMED; |
| 1478 | rcu_read_unlock(); |
| 1479 | |
| 1480 | list_del(&mnt->mnt_instance); |
| 1481 | |
| 1482 | if (unlikely(!list_empty(&mnt->mnt_mounts))) { |
| 1483 | struct mount *p, *tmp; |
| 1484 | list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { |
| 1485 | __put_mountpoint(unhash_mnt(p), &list); |
| 1486 | hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); |
| 1487 | } |
| 1488 | } |
| 1489 | unlock_mount_hash(); |
| 1490 | shrink_dentry_list(&list); |
| 1491 | |
| 1492 | if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { |
| 1493 | struct task_struct *task = current; |
| 1494 | if (likely(!(task->flags & PF_KTHREAD))) { |
| 1495 | init_task_work(&mnt->mnt_rcu, __cleanup_mnt); |
| 1496 | if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) |
| 1497 | return; |
| 1498 | } |
| 1499 | if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) |
| 1500 | schedule_delayed_work(&delayed_mntput_work, 1); |
| 1501 | return; |
| 1502 | } |
| 1503 | cleanup_mnt(mnt); |
| 1504 | } |
| 1505 | |
| 1506 | void mntput(struct vfsmount *mnt) |
| 1507 | { |
| 1508 | if (mnt) { |
| 1509 | struct mount *m = real_mount(mnt); |
| 1510 | /* avoid cacheline pingpong */ |
| 1511 | if (unlikely(m->mnt_expiry_mark)) |
| 1512 | WRITE_ONCE(m->mnt_expiry_mark, 0); |
| 1513 | mntput_no_expire(m); |
| 1514 | } |
| 1515 | } |
| 1516 | EXPORT_SYMBOL(mntput); |
| 1517 | |
| 1518 | struct vfsmount *mntget(struct vfsmount *mnt) |
| 1519 | { |
| 1520 | if (mnt) |
| 1521 | mnt_add_count(real_mount(mnt), 1); |
| 1522 | return mnt; |
| 1523 | } |
| 1524 | EXPORT_SYMBOL(mntget); |
| 1525 | |
| 1526 | /* |
| 1527 | * Make a mount point inaccessible to new lookups. |
| 1528 | * Because there may still be current users, the caller MUST WAIT |
| 1529 | * for an RCU grace period before destroying the mount point. |
| 1530 | */ |
| 1531 | void mnt_make_shortterm(struct vfsmount *mnt) |
| 1532 | { |
| 1533 | if (mnt) |
| 1534 | real_mount(mnt)->mnt_ns = NULL; |
| 1535 | } |
| 1536 | |
| 1537 | /** |
| 1538 | * path_is_mountpoint() - Check if path is a mount in the current namespace. |
| 1539 | * @path: path to check |
| 1540 | * |
| 1541 | * d_mountpoint() can only be used reliably to establish if a dentry is |
| 1542 | * not mounted in any namespace and that common case is handled inline. |
| 1543 | * d_mountpoint() isn't aware of the possibility there may be multiple |
| 1544 | * mounts using a given dentry in a different namespace. This function |
| 1545 | * checks if the passed in path is a mountpoint rather than the dentry |
| 1546 | * alone. |
| 1547 | */ |
| 1548 | bool path_is_mountpoint(const struct path *path) |
| 1549 | { |
| 1550 | unsigned seq; |
| 1551 | bool res; |
| 1552 | |
| 1553 | if (!d_mountpoint(path->dentry)) |
| 1554 | return false; |
| 1555 | |
| 1556 | rcu_read_lock(); |
| 1557 | do { |
| 1558 | seq = read_seqbegin(&mount_lock); |
| 1559 | res = __path_is_mountpoint(path); |
| 1560 | } while (read_seqretry(&mount_lock, seq)); |
| 1561 | rcu_read_unlock(); |
| 1562 | |
| 1563 | return res; |
| 1564 | } |
| 1565 | EXPORT_SYMBOL(path_is_mountpoint); |
| 1566 | |
| 1567 | struct vfsmount *mnt_clone_internal(const struct path *path) |
| 1568 | { |
| 1569 | struct mount *p; |
| 1570 | p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); |
| 1571 | if (IS_ERR(p)) |
| 1572 | return ERR_CAST(p); |
| 1573 | p->mnt.mnt_flags |= MNT_INTERNAL; |
| 1574 | return &p->mnt; |
| 1575 | } |
| 1576 | |
| 1577 | /* |
| 1578 | * Returns the mount which either has the specified mnt_id, or has the next |
| 1579 | * smallest id afer the specified one. |
| 1580 | */ |
| 1581 | static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) |
| 1582 | { |
| 1583 | struct rb_node *node = ns->mounts.rb_node; |
| 1584 | struct mount *ret = NULL; |
| 1585 | |
| 1586 | while (node) { |
| 1587 | struct mount *m = node_to_mount(node); |
| 1588 | |
| 1589 | if (mnt_id <= m->mnt_id_unique) { |
| 1590 | ret = node_to_mount(node); |
| 1591 | if (mnt_id == m->mnt_id_unique) |
| 1592 | break; |
| 1593 | node = node->rb_left; |
| 1594 | } else { |
| 1595 | node = node->rb_right; |
| 1596 | } |
| 1597 | } |
| 1598 | return ret; |
| 1599 | } |
| 1600 | |
| 1601 | /* |
| 1602 | * Returns the mount which either has the specified mnt_id, or has the next |
| 1603 | * greater id before the specified one. |
| 1604 | */ |
| 1605 | static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id) |
| 1606 | { |
| 1607 | struct rb_node *node = ns->mounts.rb_node; |
| 1608 | struct mount *ret = NULL; |
| 1609 | |
| 1610 | while (node) { |
| 1611 | struct mount *m = node_to_mount(node); |
| 1612 | |
| 1613 | if (mnt_id >= m->mnt_id_unique) { |
| 1614 | ret = node_to_mount(node); |
| 1615 | if (mnt_id == m->mnt_id_unique) |
| 1616 | break; |
| 1617 | node = node->rb_right; |
| 1618 | } else { |
| 1619 | node = node->rb_left; |
| 1620 | } |
| 1621 | } |
| 1622 | return ret; |
| 1623 | } |
| 1624 | |
| 1625 | #ifdef CONFIG_PROC_FS |
| 1626 | |
| 1627 | /* iterator; we want it to have access to namespace_sem, thus here... */ |
| 1628 | static void *m_start(struct seq_file *m, loff_t *pos) |
| 1629 | { |
| 1630 | struct proc_mounts *p = m->private; |
| 1631 | |
| 1632 | down_read(&namespace_sem); |
| 1633 | |
| 1634 | return mnt_find_id_at(p->ns, *pos); |
| 1635 | } |
| 1636 | |
| 1637 | static void *m_next(struct seq_file *m, void *v, loff_t *pos) |
| 1638 | { |
| 1639 | struct mount *next = NULL, *mnt = v; |
| 1640 | struct rb_node *node = rb_next(&mnt->mnt_node); |
| 1641 | |
| 1642 | ++*pos; |
| 1643 | if (node) { |
| 1644 | next = node_to_mount(node); |
| 1645 | *pos = next->mnt_id_unique; |
| 1646 | } |
| 1647 | return next; |
| 1648 | } |
| 1649 | |
| 1650 | static void m_stop(struct seq_file *m, void *v) |
| 1651 | { |
| 1652 | up_read(&namespace_sem); |
| 1653 | } |
| 1654 | |
| 1655 | static int m_show(struct seq_file *m, void *v) |
| 1656 | { |
| 1657 | struct proc_mounts *p = m->private; |
| 1658 | struct mount *r = v; |
| 1659 | return p->show(m, &r->mnt); |
| 1660 | } |
| 1661 | |
| 1662 | const struct seq_operations mounts_op = { |
| 1663 | .start = m_start, |
| 1664 | .next = m_next, |
| 1665 | .stop = m_stop, |
| 1666 | .show = m_show, |
| 1667 | }; |
| 1668 | |
| 1669 | #endif /* CONFIG_PROC_FS */ |
| 1670 | |
| 1671 | /** |
| 1672 | * may_umount_tree - check if a mount tree is busy |
| 1673 | * @m: root of mount tree |
| 1674 | * |
| 1675 | * This is called to check if a tree of mounts has any |
| 1676 | * open files, pwds, chroots or sub mounts that are |
| 1677 | * busy. |
| 1678 | */ |
| 1679 | int may_umount_tree(struct vfsmount *m) |
| 1680 | { |
| 1681 | struct mount *mnt = real_mount(m); |
| 1682 | int actual_refs = 0; |
| 1683 | int minimum_refs = 0; |
| 1684 | struct mount *p; |
| 1685 | BUG_ON(!m); |
| 1686 | |
| 1687 | /* write lock needed for mnt_get_count */ |
| 1688 | lock_mount_hash(); |
| 1689 | for (p = mnt; p; p = next_mnt(p, mnt)) { |
| 1690 | actual_refs += mnt_get_count(p); |
| 1691 | minimum_refs += 2; |
| 1692 | } |
| 1693 | unlock_mount_hash(); |
| 1694 | |
| 1695 | if (actual_refs > minimum_refs) |
| 1696 | return 0; |
| 1697 | |
| 1698 | return 1; |
| 1699 | } |
| 1700 | |
| 1701 | EXPORT_SYMBOL(may_umount_tree); |
| 1702 | |
| 1703 | /** |
| 1704 | * may_umount - check if a mount point is busy |
| 1705 | * @mnt: root of mount |
| 1706 | * |
| 1707 | * This is called to check if a mount point has any |
| 1708 | * open files, pwds, chroots or sub mounts. If the |
| 1709 | * mount has sub mounts this will return busy |
| 1710 | * regardless of whether the sub mounts are busy. |
| 1711 | * |
| 1712 | * Doesn't take quota and stuff into account. IOW, in some cases it will |
| 1713 | * give false negatives. The main reason why it's here is that we need |
| 1714 | * a non-destructive way to look for easily umountable filesystems. |
| 1715 | */ |
| 1716 | int may_umount(struct vfsmount *mnt) |
| 1717 | { |
| 1718 | int ret = 1; |
| 1719 | down_read(&namespace_sem); |
| 1720 | lock_mount_hash(); |
| 1721 | if (propagate_mount_busy(real_mount(mnt), 2)) |
| 1722 | ret = 0; |
| 1723 | unlock_mount_hash(); |
| 1724 | up_read(&namespace_sem); |
| 1725 | return ret; |
| 1726 | } |
| 1727 | |
| 1728 | EXPORT_SYMBOL(may_umount); |
| 1729 | |
| 1730 | #ifdef CONFIG_FSNOTIFY |
| 1731 | static void mnt_notify(struct mount *p) |
| 1732 | { |
| 1733 | if (!p->prev_ns && p->mnt_ns) { |
| 1734 | fsnotify_mnt_attach(p->mnt_ns, &p->mnt); |
| 1735 | } else if (p->prev_ns && !p->mnt_ns) { |
| 1736 | fsnotify_mnt_detach(p->prev_ns, &p->mnt); |
| 1737 | } else if (p->prev_ns == p->mnt_ns) { |
| 1738 | fsnotify_mnt_move(p->mnt_ns, &p->mnt); |
| 1739 | } else { |
| 1740 | fsnotify_mnt_detach(p->prev_ns, &p->mnt); |
| 1741 | fsnotify_mnt_attach(p->mnt_ns, &p->mnt); |
| 1742 | } |
| 1743 | p->prev_ns = p->mnt_ns; |
| 1744 | } |
| 1745 | |
| 1746 | static void notify_mnt_list(void) |
| 1747 | { |
| 1748 | struct mount *m, *tmp; |
| 1749 | /* |
| 1750 | * Notify about mounts that were added/reparented/detached/remain |
| 1751 | * connected after unmount. |
| 1752 | */ |
| 1753 | list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) { |
| 1754 | mnt_notify(m); |
| 1755 | list_del_init(&m->to_notify); |
| 1756 | } |
| 1757 | } |
| 1758 | |
| 1759 | static bool need_notify_mnt_list(void) |
| 1760 | { |
| 1761 | return !list_empty(¬ify_list); |
| 1762 | } |
| 1763 | #else |
| 1764 | static void notify_mnt_list(void) |
| 1765 | { |
| 1766 | } |
| 1767 | |
| 1768 | static bool need_notify_mnt_list(void) |
| 1769 | { |
| 1770 | return false; |
| 1771 | } |
| 1772 | #endif |
| 1773 | |
| 1774 | static void namespace_unlock(void) |
| 1775 | { |
| 1776 | struct hlist_head head; |
| 1777 | struct hlist_node *p; |
| 1778 | struct mount *m; |
| 1779 | LIST_HEAD(list); |
| 1780 | |
| 1781 | hlist_move_list(&unmounted, &head); |
| 1782 | list_splice_init(&ex_mountpoints, &list); |
| 1783 | |
| 1784 | if (need_notify_mnt_list()) { |
| 1785 | /* |
| 1786 | * No point blocking out concurrent readers while notifications |
| 1787 | * are sent. This will also allow statmount()/listmount() to run |
| 1788 | * concurrently. |
| 1789 | */ |
| 1790 | downgrade_write(&namespace_sem); |
| 1791 | notify_mnt_list(); |
| 1792 | up_read(&namespace_sem); |
| 1793 | } else { |
| 1794 | up_write(&namespace_sem); |
| 1795 | } |
| 1796 | |
| 1797 | shrink_dentry_list(&list); |
| 1798 | |
| 1799 | if (likely(hlist_empty(&head))) |
| 1800 | return; |
| 1801 | |
| 1802 | synchronize_rcu_expedited(); |
| 1803 | |
| 1804 | hlist_for_each_entry_safe(m, p, &head, mnt_umount) { |
| 1805 | hlist_del(&m->mnt_umount); |
| 1806 | mntput(&m->mnt); |
| 1807 | } |
| 1808 | } |
| 1809 | |
| 1810 | static inline void namespace_lock(void) |
| 1811 | { |
| 1812 | down_write(&namespace_sem); |
| 1813 | } |
| 1814 | |
| 1815 | DEFINE_GUARD(namespace_lock, struct rw_semaphore *, namespace_lock(), namespace_unlock()) |
| 1816 | |
| 1817 | enum umount_tree_flags { |
| 1818 | UMOUNT_SYNC = 1, |
| 1819 | UMOUNT_PROPAGATE = 2, |
| 1820 | UMOUNT_CONNECTED = 4, |
| 1821 | }; |
| 1822 | |
| 1823 | static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) |
| 1824 | { |
| 1825 | /* Leaving mounts connected is only valid for lazy umounts */ |
| 1826 | if (how & UMOUNT_SYNC) |
| 1827 | return true; |
| 1828 | |
| 1829 | /* A mount without a parent has nothing to be connected to */ |
| 1830 | if (!mnt_has_parent(mnt)) |
| 1831 | return true; |
| 1832 | |
| 1833 | /* Because the reference counting rules change when mounts are |
| 1834 | * unmounted and connected, umounted mounts may not be |
| 1835 | * connected to mounted mounts. |
| 1836 | */ |
| 1837 | if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) |
| 1838 | return true; |
| 1839 | |
| 1840 | /* Has it been requested that the mount remain connected? */ |
| 1841 | if (how & UMOUNT_CONNECTED) |
| 1842 | return false; |
| 1843 | |
| 1844 | /* Is the mount locked such that it needs to remain connected? */ |
| 1845 | if (IS_MNT_LOCKED(mnt)) |
| 1846 | return false; |
| 1847 | |
| 1848 | /* By default disconnect the mount */ |
| 1849 | return true; |
| 1850 | } |
| 1851 | |
| 1852 | /* |
| 1853 | * mount_lock must be held |
| 1854 | * namespace_sem must be held for write |
| 1855 | */ |
| 1856 | static void umount_tree(struct mount *mnt, enum umount_tree_flags how) |
| 1857 | { |
| 1858 | LIST_HEAD(tmp_list); |
| 1859 | struct mount *p; |
| 1860 | |
| 1861 | if (how & UMOUNT_PROPAGATE) |
| 1862 | propagate_mount_unlock(mnt); |
| 1863 | |
| 1864 | /* Gather the mounts to umount */ |
| 1865 | for (p = mnt; p; p = next_mnt(p, mnt)) { |
| 1866 | p->mnt.mnt_flags |= MNT_UMOUNT; |
| 1867 | if (mnt_ns_attached(p)) |
| 1868 | move_from_ns(p, &tmp_list); |
| 1869 | else |
| 1870 | list_move(&p->mnt_list, &tmp_list); |
| 1871 | } |
| 1872 | |
| 1873 | /* Hide the mounts from mnt_mounts */ |
| 1874 | list_for_each_entry(p, &tmp_list, mnt_list) { |
| 1875 | list_del_init(&p->mnt_child); |
| 1876 | } |
| 1877 | |
| 1878 | /* Add propagated mounts to the tmp_list */ |
| 1879 | if (how & UMOUNT_PROPAGATE) |
| 1880 | propagate_umount(&tmp_list); |
| 1881 | |
| 1882 | while (!list_empty(&tmp_list)) { |
| 1883 | struct mnt_namespace *ns; |
| 1884 | bool disconnect; |
| 1885 | p = list_first_entry(&tmp_list, struct mount, mnt_list); |
| 1886 | list_del_init(&p->mnt_expire); |
| 1887 | list_del_init(&p->mnt_list); |
| 1888 | ns = p->mnt_ns; |
| 1889 | if (ns) { |
| 1890 | ns->nr_mounts--; |
| 1891 | __touch_mnt_namespace(ns); |
| 1892 | } |
| 1893 | p->mnt_ns = NULL; |
| 1894 | if (how & UMOUNT_SYNC) |
| 1895 | p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; |
| 1896 | |
| 1897 | disconnect = disconnect_mount(p, how); |
| 1898 | if (mnt_has_parent(p)) { |
| 1899 | mnt_add_count(p->mnt_parent, -1); |
| 1900 | if (!disconnect) { |
| 1901 | /* Don't forget about p */ |
| 1902 | list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); |
| 1903 | } else { |
| 1904 | umount_mnt(p); |
| 1905 | } |
| 1906 | } |
| 1907 | change_mnt_propagation(p, MS_PRIVATE); |
| 1908 | if (disconnect) |
| 1909 | hlist_add_head(&p->mnt_umount, &unmounted); |
| 1910 | |
| 1911 | /* |
| 1912 | * At this point p->mnt_ns is NULL, notification will be queued |
| 1913 | * only if |
| 1914 | * |
| 1915 | * - p->prev_ns is non-NULL *and* |
| 1916 | * - p->prev_ns->n_fsnotify_marks is non-NULL |
| 1917 | * |
| 1918 | * This will preclude queuing the mount if this is a cleanup |
| 1919 | * after a failed copy_tree() or destruction of an anonymous |
| 1920 | * namespace, etc. |
| 1921 | */ |
| 1922 | mnt_notify_add(p); |
| 1923 | } |
| 1924 | } |
| 1925 | |
| 1926 | static void shrink_submounts(struct mount *mnt); |
| 1927 | |
| 1928 | static int do_umount_root(struct super_block *sb) |
| 1929 | { |
| 1930 | int ret = 0; |
| 1931 | |
| 1932 | down_write(&sb->s_umount); |
| 1933 | if (!sb_rdonly(sb)) { |
| 1934 | struct fs_context *fc; |
| 1935 | |
| 1936 | fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, |
| 1937 | SB_RDONLY); |
| 1938 | if (IS_ERR(fc)) { |
| 1939 | ret = PTR_ERR(fc); |
| 1940 | } else { |
| 1941 | ret = parse_monolithic_mount_data(fc, NULL); |
| 1942 | if (!ret) |
| 1943 | ret = reconfigure_super(fc); |
| 1944 | put_fs_context(fc); |
| 1945 | } |
| 1946 | } |
| 1947 | up_write(&sb->s_umount); |
| 1948 | return ret; |
| 1949 | } |
| 1950 | |
| 1951 | static int do_umount(struct mount *mnt, int flags) |
| 1952 | { |
| 1953 | struct super_block *sb = mnt->mnt.mnt_sb; |
| 1954 | int retval; |
| 1955 | |
| 1956 | retval = security_sb_umount(&mnt->mnt, flags); |
| 1957 | if (retval) |
| 1958 | return retval; |
| 1959 | |
| 1960 | /* |
| 1961 | * Allow userspace to request a mountpoint be expired rather than |
| 1962 | * unmounting unconditionally. Unmount only happens if: |
| 1963 | * (1) the mark is already set (the mark is cleared by mntput()) |
| 1964 | * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] |
| 1965 | */ |
| 1966 | if (flags & MNT_EXPIRE) { |
| 1967 | if (&mnt->mnt == current->fs->root.mnt || |
| 1968 | flags & (MNT_FORCE | MNT_DETACH)) |
| 1969 | return -EINVAL; |
| 1970 | |
| 1971 | /* |
| 1972 | * probably don't strictly need the lock here if we examined |
| 1973 | * all race cases, but it's a slowpath. |
| 1974 | */ |
| 1975 | lock_mount_hash(); |
| 1976 | if (mnt_get_count(mnt) != 2) { |
| 1977 | unlock_mount_hash(); |
| 1978 | return -EBUSY; |
| 1979 | } |
| 1980 | unlock_mount_hash(); |
| 1981 | |
| 1982 | if (!xchg(&mnt->mnt_expiry_mark, 1)) |
| 1983 | return -EAGAIN; |
| 1984 | } |
| 1985 | |
| 1986 | /* |
| 1987 | * If we may have to abort operations to get out of this |
| 1988 | * mount, and they will themselves hold resources we must |
| 1989 | * allow the fs to do things. In the Unix tradition of |
| 1990 | * 'Gee thats tricky lets do it in userspace' the umount_begin |
| 1991 | * might fail to complete on the first run through as other tasks |
| 1992 | * must return, and the like. Thats for the mount program to worry |
| 1993 | * about for the moment. |
| 1994 | */ |
| 1995 | |
| 1996 | if (flags & MNT_FORCE && sb->s_op->umount_begin) { |
| 1997 | sb->s_op->umount_begin(sb); |
| 1998 | } |
| 1999 | |
| 2000 | /* |
| 2001 | * No sense to grab the lock for this test, but test itself looks |
| 2002 | * somewhat bogus. Suggestions for better replacement? |
| 2003 | * Ho-hum... In principle, we might treat that as umount + switch |
| 2004 | * to rootfs. GC would eventually take care of the old vfsmount. |
| 2005 | * Actually it makes sense, especially if rootfs would contain a |
| 2006 | * /reboot - static binary that would close all descriptors and |
| 2007 | * call reboot(9). Then init(8) could umount root and exec /reboot. |
| 2008 | */ |
| 2009 | if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { |
| 2010 | /* |
| 2011 | * Special case for "unmounting" root ... |
| 2012 | * we just try to remount it readonly. |
| 2013 | */ |
| 2014 | if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) |
| 2015 | return -EPERM; |
| 2016 | return do_umount_root(sb); |
| 2017 | } |
| 2018 | |
| 2019 | namespace_lock(); |
| 2020 | lock_mount_hash(); |
| 2021 | |
| 2022 | /* Recheck MNT_LOCKED with the locks held */ |
| 2023 | retval = -EINVAL; |
| 2024 | if (mnt->mnt.mnt_flags & MNT_LOCKED) |
| 2025 | goto out; |
| 2026 | |
| 2027 | event++; |
| 2028 | if (flags & MNT_DETACH) { |
| 2029 | if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list)) |
| 2030 | umount_tree(mnt, UMOUNT_PROPAGATE); |
| 2031 | retval = 0; |
| 2032 | } else { |
| 2033 | smp_mb(); // paired with __legitimize_mnt() |
| 2034 | shrink_submounts(mnt); |
| 2035 | retval = -EBUSY; |
| 2036 | if (!propagate_mount_busy(mnt, 2)) { |
| 2037 | if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list)) |
| 2038 | umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); |
| 2039 | retval = 0; |
| 2040 | } |
| 2041 | } |
| 2042 | out: |
| 2043 | unlock_mount_hash(); |
| 2044 | namespace_unlock(); |
| 2045 | return retval; |
| 2046 | } |
| 2047 | |
| 2048 | /* |
| 2049 | * __detach_mounts - lazily unmount all mounts on the specified dentry |
| 2050 | * |
| 2051 | * During unlink, rmdir, and d_drop it is possible to loose the path |
| 2052 | * to an existing mountpoint, and wind up leaking the mount. |
| 2053 | * detach_mounts allows lazily unmounting those mounts instead of |
| 2054 | * leaking them. |
| 2055 | * |
| 2056 | * The caller may hold dentry->d_inode->i_mutex. |
| 2057 | */ |
| 2058 | void __detach_mounts(struct dentry *dentry) |
| 2059 | { |
| 2060 | struct mountpoint *mp; |
| 2061 | struct mount *mnt; |
| 2062 | |
| 2063 | namespace_lock(); |
| 2064 | lock_mount_hash(); |
| 2065 | mp = lookup_mountpoint(dentry); |
| 2066 | if (!mp) |
| 2067 | goto out_unlock; |
| 2068 | |
| 2069 | event++; |
| 2070 | while (!hlist_empty(&mp->m_list)) { |
| 2071 | mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); |
| 2072 | if (mnt->mnt.mnt_flags & MNT_UMOUNT) { |
| 2073 | umount_mnt(mnt); |
| 2074 | hlist_add_head(&mnt->mnt_umount, &unmounted); |
| 2075 | } |
| 2076 | else umount_tree(mnt, UMOUNT_CONNECTED); |
| 2077 | } |
| 2078 | put_mountpoint(mp); |
| 2079 | out_unlock: |
| 2080 | unlock_mount_hash(); |
| 2081 | namespace_unlock(); |
| 2082 | } |
| 2083 | |
| 2084 | /* |
| 2085 | * Is the caller allowed to modify his namespace? |
| 2086 | */ |
| 2087 | bool may_mount(void) |
| 2088 | { |
| 2089 | return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); |
| 2090 | } |
| 2091 | |
| 2092 | static void warn_mandlock(void) |
| 2093 | { |
| 2094 | pr_warn_once("=======================================================\n" |
| 2095 | "WARNING: The mand mount option has been deprecated and\n" |
| 2096 | " and is ignored by this kernel. Remove the mand\n" |
| 2097 | " option from the mount to silence this warning.\n" |
| 2098 | "=======================================================\n"); |
| 2099 | } |
| 2100 | |
| 2101 | static int can_umount(const struct path *path, int flags) |
| 2102 | { |
| 2103 | struct mount *mnt = real_mount(path->mnt); |
| 2104 | struct super_block *sb = path->dentry->d_sb; |
| 2105 | |
| 2106 | if (!may_mount()) |
| 2107 | return -EPERM; |
| 2108 | if (!path_mounted(path)) |
| 2109 | return -EINVAL; |
| 2110 | if (!check_mnt(mnt)) |
| 2111 | return -EINVAL; |
| 2112 | if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ |
| 2113 | return -EINVAL; |
| 2114 | if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) |
| 2115 | return -EPERM; |
| 2116 | return 0; |
| 2117 | } |
| 2118 | |
| 2119 | // caller is responsible for flags being sane |
| 2120 | int path_umount(struct path *path, int flags) |
| 2121 | { |
| 2122 | struct mount *mnt = real_mount(path->mnt); |
| 2123 | int ret; |
| 2124 | |
| 2125 | ret = can_umount(path, flags); |
| 2126 | if (!ret) |
| 2127 | ret = do_umount(mnt, flags); |
| 2128 | |
| 2129 | /* we mustn't call path_put() as that would clear mnt_expiry_mark */ |
| 2130 | dput(path->dentry); |
| 2131 | mntput_no_expire(mnt); |
| 2132 | return ret; |
| 2133 | } |
| 2134 | |
| 2135 | static int ksys_umount(char __user *name, int flags) |
| 2136 | { |
| 2137 | int lookup_flags = LOOKUP_MOUNTPOINT; |
| 2138 | struct path path; |
| 2139 | int ret; |
| 2140 | |
| 2141 | // basic validity checks done first |
| 2142 | if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) |
| 2143 | return -EINVAL; |
| 2144 | |
| 2145 | if (!(flags & UMOUNT_NOFOLLOW)) |
| 2146 | lookup_flags |= LOOKUP_FOLLOW; |
| 2147 | ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); |
| 2148 | if (ret) |
| 2149 | return ret; |
| 2150 | return path_umount(&path, flags); |
| 2151 | } |
| 2152 | |
| 2153 | SYSCALL_DEFINE2(umount, char __user *, name, int, flags) |
| 2154 | { |
| 2155 | return ksys_umount(name, flags); |
| 2156 | } |
| 2157 | |
| 2158 | #ifdef __ARCH_WANT_SYS_OLDUMOUNT |
| 2159 | |
| 2160 | /* |
| 2161 | * The 2.0 compatible umount. No flags. |
| 2162 | */ |
| 2163 | SYSCALL_DEFINE1(oldumount, char __user *, name) |
| 2164 | { |
| 2165 | return ksys_umount(name, 0); |
| 2166 | } |
| 2167 | |
| 2168 | #endif |
| 2169 | |
| 2170 | static bool is_mnt_ns_file(struct dentry *dentry) |
| 2171 | { |
| 2172 | struct ns_common *ns; |
| 2173 | |
| 2174 | /* Is this a proxy for a mount namespace? */ |
| 2175 | if (dentry->d_op != &ns_dentry_operations) |
| 2176 | return false; |
| 2177 | |
| 2178 | ns = d_inode(dentry)->i_private; |
| 2179 | |
| 2180 | return ns->ops == &mntns_operations; |
| 2181 | } |
| 2182 | |
| 2183 | struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) |
| 2184 | { |
| 2185 | return &mnt->ns; |
| 2186 | } |
| 2187 | |
| 2188 | struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous) |
| 2189 | { |
| 2190 | guard(rcu)(); |
| 2191 | |
| 2192 | for (;;) { |
| 2193 | struct list_head *list; |
| 2194 | |
| 2195 | if (previous) |
| 2196 | list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list)); |
| 2197 | else |
| 2198 | list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list)); |
| 2199 | if (list_is_head(list, &mnt_ns_list)) |
| 2200 | return ERR_PTR(-ENOENT); |
| 2201 | |
| 2202 | mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list); |
| 2203 | |
| 2204 | /* |
| 2205 | * The last passive reference count is put with RCU |
| 2206 | * delay so accessing the mount namespace is not just |
| 2207 | * safe but all relevant members are still valid. |
| 2208 | */ |
| 2209 | if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN)) |
| 2210 | continue; |
| 2211 | |
| 2212 | /* |
| 2213 | * We need an active reference count as we're persisting |
| 2214 | * the mount namespace and it might already be on its |
| 2215 | * deathbed. |
| 2216 | */ |
| 2217 | if (!refcount_inc_not_zero(&mntns->ns.count)) |
| 2218 | continue; |
| 2219 | |
| 2220 | return mntns; |
| 2221 | } |
| 2222 | } |
| 2223 | |
| 2224 | struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry) |
| 2225 | { |
| 2226 | if (!is_mnt_ns_file(dentry)) |
| 2227 | return NULL; |
| 2228 | |
| 2229 | return to_mnt_ns(get_proc_ns(dentry->d_inode)); |
| 2230 | } |
| 2231 | |
| 2232 | static bool mnt_ns_loop(struct dentry *dentry) |
| 2233 | { |
| 2234 | /* Could bind mounting the mount namespace inode cause a |
| 2235 | * mount namespace loop? |
| 2236 | */ |
| 2237 | struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry); |
| 2238 | |
| 2239 | if (!mnt_ns) |
| 2240 | return false; |
| 2241 | |
| 2242 | return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; |
| 2243 | } |
| 2244 | |
| 2245 | struct mount *copy_tree(struct mount *src_root, struct dentry *dentry, |
| 2246 | int flag) |
| 2247 | { |
| 2248 | struct mount *res, *src_parent, *src_root_child, *src_mnt, |
| 2249 | *dst_parent, *dst_mnt; |
| 2250 | |
| 2251 | if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root)) |
| 2252 | return ERR_PTR(-EINVAL); |
| 2253 | |
| 2254 | if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) |
| 2255 | return ERR_PTR(-EINVAL); |
| 2256 | |
| 2257 | res = dst_mnt = clone_mnt(src_root, dentry, flag); |
| 2258 | if (IS_ERR(dst_mnt)) |
| 2259 | return dst_mnt; |
| 2260 | |
| 2261 | src_parent = src_root; |
| 2262 | dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint; |
| 2263 | |
| 2264 | list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) { |
| 2265 | if (!is_subdir(src_root_child->mnt_mountpoint, dentry)) |
| 2266 | continue; |
| 2267 | |
| 2268 | for (src_mnt = src_root_child; src_mnt; |
| 2269 | src_mnt = next_mnt(src_mnt, src_root_child)) { |
| 2270 | if (!(flag & CL_COPY_UNBINDABLE) && |
| 2271 | IS_MNT_UNBINDABLE(src_mnt)) { |
| 2272 | if (src_mnt->mnt.mnt_flags & MNT_LOCKED) { |
| 2273 | /* Both unbindable and locked. */ |
| 2274 | dst_mnt = ERR_PTR(-EPERM); |
| 2275 | goto out; |
| 2276 | } else { |
| 2277 | src_mnt = skip_mnt_tree(src_mnt); |
| 2278 | continue; |
| 2279 | } |
| 2280 | } |
| 2281 | if (!(flag & CL_COPY_MNT_NS_FILE) && |
| 2282 | is_mnt_ns_file(src_mnt->mnt.mnt_root)) { |
| 2283 | src_mnt = skip_mnt_tree(src_mnt); |
| 2284 | continue; |
| 2285 | } |
| 2286 | while (src_parent != src_mnt->mnt_parent) { |
| 2287 | src_parent = src_parent->mnt_parent; |
| 2288 | dst_mnt = dst_mnt->mnt_parent; |
| 2289 | } |
| 2290 | |
| 2291 | src_parent = src_mnt; |
| 2292 | dst_parent = dst_mnt; |
| 2293 | dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag); |
| 2294 | if (IS_ERR(dst_mnt)) |
| 2295 | goto out; |
| 2296 | lock_mount_hash(); |
| 2297 | list_add_tail(&dst_mnt->mnt_list, &res->mnt_list); |
| 2298 | attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false); |
| 2299 | unlock_mount_hash(); |
| 2300 | } |
| 2301 | } |
| 2302 | return res; |
| 2303 | |
| 2304 | out: |
| 2305 | if (res) { |
| 2306 | lock_mount_hash(); |
| 2307 | umount_tree(res, UMOUNT_SYNC); |
| 2308 | unlock_mount_hash(); |
| 2309 | } |
| 2310 | return dst_mnt; |
| 2311 | } |
| 2312 | |
| 2313 | static inline bool extend_array(struct path **res, struct path **to_free, |
| 2314 | unsigned n, unsigned *count, unsigned new_count) |
| 2315 | { |
| 2316 | struct path *p; |
| 2317 | |
| 2318 | if (likely(n < *count)) |
| 2319 | return true; |
| 2320 | p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL); |
| 2321 | if (p && *count) |
| 2322 | memcpy(p, *res, *count * sizeof(struct path)); |
| 2323 | *count = new_count; |
| 2324 | kfree(*to_free); |
| 2325 | *to_free = *res = p; |
| 2326 | return p; |
| 2327 | } |
| 2328 | |
| 2329 | struct path *collect_paths(const struct path *path, |
| 2330 | struct path *prealloc, unsigned count) |
| 2331 | { |
| 2332 | struct mount *root = real_mount(path->mnt); |
| 2333 | struct mount *child; |
| 2334 | struct path *res = prealloc, *to_free = NULL; |
| 2335 | unsigned n = 0; |
| 2336 | |
| 2337 | guard(rwsem_read)(&namespace_sem); |
| 2338 | |
| 2339 | if (!check_mnt(root)) |
| 2340 | return ERR_PTR(-EINVAL); |
| 2341 | if (!extend_array(&res, &to_free, 0, &count, 32)) |
| 2342 | return ERR_PTR(-ENOMEM); |
| 2343 | res[n++] = *path; |
| 2344 | list_for_each_entry(child, &root->mnt_mounts, mnt_child) { |
| 2345 | if (!is_subdir(child->mnt_mountpoint, path->dentry)) |
| 2346 | continue; |
| 2347 | for (struct mount *m = child; m; m = next_mnt(m, child)) { |
| 2348 | if (!extend_array(&res, &to_free, n, &count, 2 * count)) |
| 2349 | return ERR_PTR(-ENOMEM); |
| 2350 | res[n].mnt = &m->mnt; |
| 2351 | res[n].dentry = m->mnt.mnt_root; |
| 2352 | n++; |
| 2353 | } |
| 2354 | } |
| 2355 | if (!extend_array(&res, &to_free, n, &count, count + 1)) |
| 2356 | return ERR_PTR(-ENOMEM); |
| 2357 | memset(res + n, 0, (count - n) * sizeof(struct path)); |
| 2358 | for (struct path *p = res; p->mnt; p++) |
| 2359 | path_get(p); |
| 2360 | return res; |
| 2361 | } |
| 2362 | |
| 2363 | void drop_collected_paths(struct path *paths, struct path *prealloc) |
| 2364 | { |
| 2365 | for (struct path *p = paths; p->mnt; p++) |
| 2366 | path_put(p); |
| 2367 | if (paths != prealloc) |
| 2368 | kfree(paths); |
| 2369 | } |
| 2370 | |
| 2371 | static void free_mnt_ns(struct mnt_namespace *); |
| 2372 | static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); |
| 2373 | |
| 2374 | static inline bool must_dissolve(struct mnt_namespace *mnt_ns) |
| 2375 | { |
| 2376 | /* |
| 2377 | * This mount belonged to an anonymous mount namespace |
| 2378 | * but was moved to a non-anonymous mount namespace and |
| 2379 | * then unmounted. |
| 2380 | */ |
| 2381 | if (unlikely(!mnt_ns)) |
| 2382 | return false; |
| 2383 | |
| 2384 | /* |
| 2385 | * This mount belongs to a non-anonymous mount namespace |
| 2386 | * and we know that such a mount can never transition to |
| 2387 | * an anonymous mount namespace again. |
| 2388 | */ |
| 2389 | if (!is_anon_ns(mnt_ns)) { |
| 2390 | /* |
| 2391 | * A detached mount either belongs to an anonymous mount |
| 2392 | * namespace or a non-anonymous mount namespace. It |
| 2393 | * should never belong to something purely internal. |
| 2394 | */ |
| 2395 | VFS_WARN_ON_ONCE(mnt_ns == MNT_NS_INTERNAL); |
| 2396 | return false; |
| 2397 | } |
| 2398 | |
| 2399 | return true; |
| 2400 | } |
| 2401 | |
| 2402 | void dissolve_on_fput(struct vfsmount *mnt) |
| 2403 | { |
| 2404 | struct mnt_namespace *ns; |
| 2405 | struct mount *m = real_mount(mnt); |
| 2406 | |
| 2407 | scoped_guard(rcu) { |
| 2408 | if (!must_dissolve(READ_ONCE(m->mnt_ns))) |
| 2409 | return; |
| 2410 | } |
| 2411 | |
| 2412 | scoped_guard(namespace_lock, &namespace_sem) { |
| 2413 | ns = m->mnt_ns; |
| 2414 | if (!must_dissolve(ns)) |
| 2415 | return; |
| 2416 | |
| 2417 | /* |
| 2418 | * After must_dissolve() we know that this is a detached |
| 2419 | * mount in an anonymous mount namespace. |
| 2420 | * |
| 2421 | * Now when mnt_has_parent() reports that this mount |
| 2422 | * tree has a parent, we know that this anonymous mount |
| 2423 | * tree has been moved to another anonymous mount |
| 2424 | * namespace. |
| 2425 | * |
| 2426 | * So when closing this file we cannot unmount the mount |
| 2427 | * tree. This will be done when the file referring to |
| 2428 | * the root of the anonymous mount namespace will be |
| 2429 | * closed (It could already be closed but it would sync |
| 2430 | * on @namespace_sem and wait for us to finish.). |
| 2431 | */ |
| 2432 | if (mnt_has_parent(m)) |
| 2433 | return; |
| 2434 | |
| 2435 | lock_mount_hash(); |
| 2436 | umount_tree(m, UMOUNT_CONNECTED); |
| 2437 | unlock_mount_hash(); |
| 2438 | } |
| 2439 | |
| 2440 | /* Make sure we notice when we leak mounts. */ |
| 2441 | VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); |
| 2442 | free_mnt_ns(ns); |
| 2443 | } |
| 2444 | |
| 2445 | static bool __has_locked_children(struct mount *mnt, struct dentry *dentry) |
| 2446 | { |
| 2447 | struct mount *child; |
| 2448 | |
| 2449 | list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { |
| 2450 | if (!is_subdir(child->mnt_mountpoint, dentry)) |
| 2451 | continue; |
| 2452 | |
| 2453 | if (child->mnt.mnt_flags & MNT_LOCKED) |
| 2454 | return true; |
| 2455 | } |
| 2456 | return false; |
| 2457 | } |
| 2458 | |
| 2459 | bool has_locked_children(struct mount *mnt, struct dentry *dentry) |
| 2460 | { |
| 2461 | bool res; |
| 2462 | |
| 2463 | read_seqlock_excl(&mount_lock); |
| 2464 | res = __has_locked_children(mnt, dentry); |
| 2465 | read_sequnlock_excl(&mount_lock); |
| 2466 | return res; |
| 2467 | } |
| 2468 | |
| 2469 | /* |
| 2470 | * Check that there aren't references to earlier/same mount namespaces in the |
| 2471 | * specified subtree. Such references can act as pins for mount namespaces |
| 2472 | * that aren't checked by the mount-cycle checking code, thereby allowing |
| 2473 | * cycles to be made. |
| 2474 | */ |
| 2475 | static bool check_for_nsfs_mounts(struct mount *subtree) |
| 2476 | { |
| 2477 | struct mount *p; |
| 2478 | bool ret = false; |
| 2479 | |
| 2480 | lock_mount_hash(); |
| 2481 | for (p = subtree; p; p = next_mnt(p, subtree)) |
| 2482 | if (mnt_ns_loop(p->mnt.mnt_root)) |
| 2483 | goto out; |
| 2484 | |
| 2485 | ret = true; |
| 2486 | out: |
| 2487 | unlock_mount_hash(); |
| 2488 | return ret; |
| 2489 | } |
| 2490 | |
| 2491 | /** |
| 2492 | * clone_private_mount - create a private clone of a path |
| 2493 | * @path: path to clone |
| 2494 | * |
| 2495 | * This creates a new vfsmount, which will be the clone of @path. The new mount |
| 2496 | * will not be attached anywhere in the namespace and will be private (i.e. |
| 2497 | * changes to the originating mount won't be propagated into this). |
| 2498 | * |
| 2499 | * This assumes caller has called or done the equivalent of may_mount(). |
| 2500 | * |
| 2501 | * Release with mntput(). |
| 2502 | */ |
| 2503 | struct vfsmount *clone_private_mount(const struct path *path) |
| 2504 | { |
| 2505 | struct mount *old_mnt = real_mount(path->mnt); |
| 2506 | struct mount *new_mnt; |
| 2507 | |
| 2508 | guard(rwsem_read)(&namespace_sem); |
| 2509 | |
| 2510 | if (IS_MNT_UNBINDABLE(old_mnt)) |
| 2511 | return ERR_PTR(-EINVAL); |
| 2512 | |
| 2513 | /* |
| 2514 | * Make sure the source mount is acceptable. |
| 2515 | * Anything mounted in our mount namespace is allowed. |
| 2516 | * Otherwise, it must be the root of an anonymous mount |
| 2517 | * namespace, and we need to make sure no namespace |
| 2518 | * loops get created. |
| 2519 | */ |
| 2520 | if (!check_mnt(old_mnt)) { |
| 2521 | if (!is_mounted(&old_mnt->mnt) || |
| 2522 | !is_anon_ns(old_mnt->mnt_ns) || |
| 2523 | mnt_has_parent(old_mnt)) |
| 2524 | return ERR_PTR(-EINVAL); |
| 2525 | |
| 2526 | if (!check_for_nsfs_mounts(old_mnt)) |
| 2527 | return ERR_PTR(-EINVAL); |
| 2528 | } |
| 2529 | |
| 2530 | if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN)) |
| 2531 | return ERR_PTR(-EPERM); |
| 2532 | |
| 2533 | if (__has_locked_children(old_mnt, path->dentry)) |
| 2534 | return ERR_PTR(-EINVAL); |
| 2535 | |
| 2536 | new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); |
| 2537 | if (IS_ERR(new_mnt)) |
| 2538 | return ERR_PTR(-EINVAL); |
| 2539 | |
| 2540 | /* Longterm mount to be removed by kern_unmount*() */ |
| 2541 | new_mnt->mnt_ns = MNT_NS_INTERNAL; |
| 2542 | return &new_mnt->mnt; |
| 2543 | } |
| 2544 | EXPORT_SYMBOL_GPL(clone_private_mount); |
| 2545 | |
| 2546 | static void lock_mnt_tree(struct mount *mnt) |
| 2547 | { |
| 2548 | struct mount *p; |
| 2549 | |
| 2550 | for (p = mnt; p; p = next_mnt(p, mnt)) { |
| 2551 | int flags = p->mnt.mnt_flags; |
| 2552 | /* Don't allow unprivileged users to change mount flags */ |
| 2553 | flags |= MNT_LOCK_ATIME; |
| 2554 | |
| 2555 | if (flags & MNT_READONLY) |
| 2556 | flags |= MNT_LOCK_READONLY; |
| 2557 | |
| 2558 | if (flags & MNT_NODEV) |
| 2559 | flags |= MNT_LOCK_NODEV; |
| 2560 | |
| 2561 | if (flags & MNT_NOSUID) |
| 2562 | flags |= MNT_LOCK_NOSUID; |
| 2563 | |
| 2564 | if (flags & MNT_NOEXEC) |
| 2565 | flags |= MNT_LOCK_NOEXEC; |
| 2566 | /* Don't allow unprivileged users to reveal what is under a mount */ |
| 2567 | if (list_empty(&p->mnt_expire)) |
| 2568 | flags |= MNT_LOCKED; |
| 2569 | p->mnt.mnt_flags = flags; |
| 2570 | } |
| 2571 | } |
| 2572 | |
| 2573 | static void cleanup_group_ids(struct mount *mnt, struct mount *end) |
| 2574 | { |
| 2575 | struct mount *p; |
| 2576 | |
| 2577 | for (p = mnt; p != end; p = next_mnt(p, mnt)) { |
| 2578 | if (p->mnt_group_id && !IS_MNT_SHARED(p)) |
| 2579 | mnt_release_group_id(p); |
| 2580 | } |
| 2581 | } |
| 2582 | |
| 2583 | static int invent_group_ids(struct mount *mnt, bool recurse) |
| 2584 | { |
| 2585 | struct mount *p; |
| 2586 | |
| 2587 | for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { |
| 2588 | if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { |
| 2589 | int err = mnt_alloc_group_id(p); |
| 2590 | if (err) { |
| 2591 | cleanup_group_ids(mnt, p); |
| 2592 | return err; |
| 2593 | } |
| 2594 | } |
| 2595 | } |
| 2596 | |
| 2597 | return 0; |
| 2598 | } |
| 2599 | |
| 2600 | int count_mounts(struct mnt_namespace *ns, struct mount *mnt) |
| 2601 | { |
| 2602 | unsigned int max = READ_ONCE(sysctl_mount_max); |
| 2603 | unsigned int mounts = 0; |
| 2604 | struct mount *p; |
| 2605 | |
| 2606 | if (ns->nr_mounts >= max) |
| 2607 | return -ENOSPC; |
| 2608 | max -= ns->nr_mounts; |
| 2609 | if (ns->pending_mounts >= max) |
| 2610 | return -ENOSPC; |
| 2611 | max -= ns->pending_mounts; |
| 2612 | |
| 2613 | for (p = mnt; p; p = next_mnt(p, mnt)) |
| 2614 | mounts++; |
| 2615 | |
| 2616 | if (mounts > max) |
| 2617 | return -ENOSPC; |
| 2618 | |
| 2619 | ns->pending_mounts += mounts; |
| 2620 | return 0; |
| 2621 | } |
| 2622 | |
| 2623 | enum mnt_tree_flags_t { |
| 2624 | MNT_TREE_MOVE = BIT(0), |
| 2625 | MNT_TREE_BENEATH = BIT(1), |
| 2626 | MNT_TREE_PROPAGATION = BIT(2), |
| 2627 | }; |
| 2628 | |
| 2629 | /** |
| 2630 | * attach_recursive_mnt - attach a source mount tree |
| 2631 | * @source_mnt: mount tree to be attached |
| 2632 | * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath |
| 2633 | * @dest_mp: the mountpoint @source_mnt will be mounted at |
| 2634 | * @flags: modify how @source_mnt is supposed to be attached |
| 2635 | * |
| 2636 | * NOTE: in the table below explains the semantics when a source mount |
| 2637 | * of a given type is attached to a destination mount of a given type. |
| 2638 | * --------------------------------------------------------------------------- |
| 2639 | * | BIND MOUNT OPERATION | |
| 2640 | * |************************************************************************** |
| 2641 | * | source-->| shared | private | slave | unbindable | |
| 2642 | * | dest | | | | | |
| 2643 | * | | | | | | | |
| 2644 | * | v | | | | | |
| 2645 | * |************************************************************************** |
| 2646 | * | shared | shared (++) | shared (+) | shared(+++)| invalid | |
| 2647 | * | | | | | | |
| 2648 | * |non-shared| shared (+) | private | slave (*) | invalid | |
| 2649 | * *************************************************************************** |
| 2650 | * A bind operation clones the source mount and mounts the clone on the |
| 2651 | * destination mount. |
| 2652 | * |
| 2653 | * (++) the cloned mount is propagated to all the mounts in the propagation |
| 2654 | * tree of the destination mount and the cloned mount is added to |
| 2655 | * the peer group of the source mount. |
| 2656 | * (+) the cloned mount is created under the destination mount and is marked |
| 2657 | * as shared. The cloned mount is added to the peer group of the source |
| 2658 | * mount. |
| 2659 | * (+++) the mount is propagated to all the mounts in the propagation tree |
| 2660 | * of the destination mount and the cloned mount is made slave |
| 2661 | * of the same master as that of the source mount. The cloned mount |
| 2662 | * is marked as 'shared and slave'. |
| 2663 | * (*) the cloned mount is made a slave of the same master as that of the |
| 2664 | * source mount. |
| 2665 | * |
| 2666 | * --------------------------------------------------------------------------- |
| 2667 | * | MOVE MOUNT OPERATION | |
| 2668 | * |************************************************************************** |
| 2669 | * | source-->| shared | private | slave | unbindable | |
| 2670 | * | dest | | | | | |
| 2671 | * | | | | | | | |
| 2672 | * | v | | | | | |
| 2673 | * |************************************************************************** |
| 2674 | * | shared | shared (+) | shared (+) | shared(+++) | invalid | |
| 2675 | * | | | | | | |
| 2676 | * |non-shared| shared (+*) | private | slave (*) | unbindable | |
| 2677 | * *************************************************************************** |
| 2678 | * |
| 2679 | * (+) the mount is moved to the destination. And is then propagated to |
| 2680 | * all the mounts in the propagation tree of the destination mount. |
| 2681 | * (+*) the mount is moved to the destination. |
| 2682 | * (+++) the mount is moved to the destination and is then propagated to |
| 2683 | * all the mounts belonging to the destination mount's propagation tree. |
| 2684 | * the mount is marked as 'shared and slave'. |
| 2685 | * (*) the mount continues to be a slave at the new location. |
| 2686 | * |
| 2687 | * if the source mount is a tree, the operations explained above is |
| 2688 | * applied to each mount in the tree. |
| 2689 | * Must be called without spinlocks held, since this function can sleep |
| 2690 | * in allocations. |
| 2691 | * |
| 2692 | * Context: The function expects namespace_lock() to be held. |
| 2693 | * Return: If @source_mnt was successfully attached 0 is returned. |
| 2694 | * Otherwise a negative error code is returned. |
| 2695 | */ |
| 2696 | static int attach_recursive_mnt(struct mount *source_mnt, |
| 2697 | struct mount *top_mnt, |
| 2698 | struct mountpoint *dest_mp, |
| 2699 | enum mnt_tree_flags_t flags) |
| 2700 | { |
| 2701 | struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; |
| 2702 | HLIST_HEAD(tree_list); |
| 2703 | struct mnt_namespace *ns = top_mnt->mnt_ns; |
| 2704 | struct mountpoint *smp; |
| 2705 | struct mount *child, *dest_mnt, *p; |
| 2706 | struct hlist_node *n; |
| 2707 | int err = 0; |
| 2708 | bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; |
| 2709 | |
| 2710 | /* |
| 2711 | * Preallocate a mountpoint in case the new mounts need to be |
| 2712 | * mounted beneath mounts on the same mountpoint. |
| 2713 | */ |
| 2714 | smp = get_mountpoint(source_mnt->mnt.mnt_root); |
| 2715 | if (IS_ERR(smp)) |
| 2716 | return PTR_ERR(smp); |
| 2717 | |
| 2718 | /* Is there space to add these mounts to the mount namespace? */ |
| 2719 | if (!moving) { |
| 2720 | err = count_mounts(ns, source_mnt); |
| 2721 | if (err) |
| 2722 | goto out; |
| 2723 | } |
| 2724 | |
| 2725 | if (beneath) |
| 2726 | dest_mnt = top_mnt->mnt_parent; |
| 2727 | else |
| 2728 | dest_mnt = top_mnt; |
| 2729 | |
| 2730 | if (IS_MNT_SHARED(dest_mnt)) { |
| 2731 | err = invent_group_ids(source_mnt, true); |
| 2732 | if (err) |
| 2733 | goto out; |
| 2734 | err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); |
| 2735 | } |
| 2736 | lock_mount_hash(); |
| 2737 | if (err) |
| 2738 | goto out_cleanup_ids; |
| 2739 | |
| 2740 | if (IS_MNT_SHARED(dest_mnt)) { |
| 2741 | for (p = source_mnt; p; p = next_mnt(p, source_mnt)) |
| 2742 | set_mnt_shared(p); |
| 2743 | } |
| 2744 | |
| 2745 | if (moving) { |
| 2746 | if (beneath) |
| 2747 | dest_mp = smp; |
| 2748 | unhash_mnt(source_mnt); |
| 2749 | attach_mnt(source_mnt, top_mnt, dest_mp, beneath); |
| 2750 | mnt_notify_add(source_mnt); |
| 2751 | touch_mnt_namespace(source_mnt->mnt_ns); |
| 2752 | } else { |
| 2753 | if (source_mnt->mnt_ns) { |
| 2754 | LIST_HEAD(head); |
| 2755 | |
| 2756 | /* move from anon - the caller will destroy */ |
| 2757 | for (p = source_mnt; p; p = next_mnt(p, source_mnt)) |
| 2758 | move_from_ns(p, &head); |
| 2759 | list_del_init(&head); |
| 2760 | } |
| 2761 | if (beneath) |
| 2762 | mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); |
| 2763 | else |
| 2764 | mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); |
| 2765 | commit_tree(source_mnt); |
| 2766 | } |
| 2767 | |
| 2768 | hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { |
| 2769 | struct mount *q; |
| 2770 | hlist_del_init(&child->mnt_hash); |
| 2771 | /* Notice when we are propagating across user namespaces */ |
| 2772 | if (child->mnt_parent->mnt_ns->user_ns != user_ns) |
| 2773 | lock_mnt_tree(child); |
| 2774 | child->mnt.mnt_flags &= ~MNT_LOCKED; |
| 2775 | q = __lookup_mnt(&child->mnt_parent->mnt, |
| 2776 | child->mnt_mountpoint); |
| 2777 | if (q) |
| 2778 | mnt_change_mountpoint(child, smp, q); |
| 2779 | commit_tree(child); |
| 2780 | } |
| 2781 | put_mountpoint(smp); |
| 2782 | unlock_mount_hash(); |
| 2783 | |
| 2784 | return 0; |
| 2785 | |
| 2786 | out_cleanup_ids: |
| 2787 | while (!hlist_empty(&tree_list)) { |
| 2788 | child = hlist_entry(tree_list.first, struct mount, mnt_hash); |
| 2789 | child->mnt_parent->mnt_ns->pending_mounts = 0; |
| 2790 | umount_tree(child, UMOUNT_SYNC); |
| 2791 | } |
| 2792 | unlock_mount_hash(); |
| 2793 | cleanup_group_ids(source_mnt, NULL); |
| 2794 | out: |
| 2795 | ns->pending_mounts = 0; |
| 2796 | |
| 2797 | read_seqlock_excl(&mount_lock); |
| 2798 | put_mountpoint(smp); |
| 2799 | read_sequnlock_excl(&mount_lock); |
| 2800 | |
| 2801 | return err; |
| 2802 | } |
| 2803 | |
| 2804 | /** |
| 2805 | * do_lock_mount - lock mount and mountpoint |
| 2806 | * @path: target path |
| 2807 | * @beneath: whether the intention is to mount beneath @path |
| 2808 | * |
| 2809 | * Follow the mount stack on @path until the top mount @mnt is found. If |
| 2810 | * the initial @path->{mnt,dentry} is a mountpoint lookup the first |
| 2811 | * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} |
| 2812 | * until nothing is stacked on top of it anymore. |
| 2813 | * |
| 2814 | * Acquire the inode_lock() on the top mount's ->mnt_root to protect |
| 2815 | * against concurrent removal of the new mountpoint from another mount |
| 2816 | * namespace. |
| 2817 | * |
| 2818 | * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint |
| 2819 | * @mp on @mnt->mnt_parent must be acquired. This protects against a |
| 2820 | * concurrent unlink of @mp->mnt_dentry from another mount namespace |
| 2821 | * where @mnt doesn't have a child mount mounted @mp. A concurrent |
| 2822 | * removal of @mnt->mnt_root doesn't matter as nothing will be mounted |
| 2823 | * on top of it for @beneath. |
| 2824 | * |
| 2825 | * In addition, @beneath needs to make sure that @mnt hasn't been |
| 2826 | * unmounted or moved from its current mountpoint in between dropping |
| 2827 | * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt |
| 2828 | * being unmounted would be detected later by e.g., calling |
| 2829 | * check_mnt(mnt) in the function it's called from. For the @beneath |
| 2830 | * case however, it's useful to detect it directly in do_lock_mount(). |
| 2831 | * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points |
| 2832 | * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will |
| 2833 | * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. |
| 2834 | * |
| 2835 | * Return: Either the target mountpoint on the top mount or the top |
| 2836 | * mount's mountpoint. |
| 2837 | */ |
| 2838 | static struct mountpoint *do_lock_mount(struct path *path, bool beneath) |
| 2839 | { |
| 2840 | struct vfsmount *mnt = path->mnt; |
| 2841 | struct dentry *dentry; |
| 2842 | struct mountpoint *mp = ERR_PTR(-ENOENT); |
| 2843 | struct path under = {}; |
| 2844 | |
| 2845 | for (;;) { |
| 2846 | struct mount *m = real_mount(mnt); |
| 2847 | |
| 2848 | if (beneath) { |
| 2849 | path_put(&under); |
| 2850 | read_seqlock_excl(&mount_lock); |
| 2851 | under.mnt = mntget(&m->mnt_parent->mnt); |
| 2852 | under.dentry = dget(m->mnt_mountpoint); |
| 2853 | read_sequnlock_excl(&mount_lock); |
| 2854 | dentry = under.dentry; |
| 2855 | } else { |
| 2856 | dentry = path->dentry; |
| 2857 | } |
| 2858 | |
| 2859 | inode_lock(dentry->d_inode); |
| 2860 | namespace_lock(); |
| 2861 | |
| 2862 | if (unlikely(cant_mount(dentry) || !is_mounted(mnt))) |
| 2863 | break; // not to be mounted on |
| 2864 | |
| 2865 | if (beneath && unlikely(m->mnt_mountpoint != dentry || |
| 2866 | &m->mnt_parent->mnt != under.mnt)) { |
| 2867 | namespace_unlock(); |
| 2868 | inode_unlock(dentry->d_inode); |
| 2869 | continue; // got moved |
| 2870 | } |
| 2871 | |
| 2872 | mnt = lookup_mnt(path); |
| 2873 | if (unlikely(mnt)) { |
| 2874 | namespace_unlock(); |
| 2875 | inode_unlock(dentry->d_inode); |
| 2876 | path_put(path); |
| 2877 | path->mnt = mnt; |
| 2878 | path->dentry = dget(mnt->mnt_root); |
| 2879 | continue; // got overmounted |
| 2880 | } |
| 2881 | mp = get_mountpoint(dentry); |
| 2882 | if (IS_ERR(mp)) |
| 2883 | break; |
| 2884 | if (beneath) { |
| 2885 | /* |
| 2886 | * @under duplicates the references that will stay |
| 2887 | * at least until namespace_unlock(), so the path_put() |
| 2888 | * below is safe (and OK to do under namespace_lock - |
| 2889 | * we are not dropping the final references here). |
| 2890 | */ |
| 2891 | path_put(&under); |
| 2892 | } |
| 2893 | return mp; |
| 2894 | } |
| 2895 | namespace_unlock(); |
| 2896 | inode_unlock(dentry->d_inode); |
| 2897 | if (beneath) |
| 2898 | path_put(&under); |
| 2899 | return mp; |
| 2900 | } |
| 2901 | |
| 2902 | static inline struct mountpoint *lock_mount(struct path *path) |
| 2903 | { |
| 2904 | return do_lock_mount(path, false); |
| 2905 | } |
| 2906 | |
| 2907 | static void unlock_mount(struct mountpoint *where) |
| 2908 | { |
| 2909 | inode_unlock(where->m_dentry->d_inode); |
| 2910 | read_seqlock_excl(&mount_lock); |
| 2911 | put_mountpoint(where); |
| 2912 | read_sequnlock_excl(&mount_lock); |
| 2913 | namespace_unlock(); |
| 2914 | } |
| 2915 | |
| 2916 | static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) |
| 2917 | { |
| 2918 | if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) |
| 2919 | return -EINVAL; |
| 2920 | |
| 2921 | if (d_is_dir(mp->m_dentry) != |
| 2922 | d_is_dir(mnt->mnt.mnt_root)) |
| 2923 | return -ENOTDIR; |
| 2924 | |
| 2925 | return attach_recursive_mnt(mnt, p, mp, 0); |
| 2926 | } |
| 2927 | |
| 2928 | /* |
| 2929 | * Sanity check the flags to change_mnt_propagation. |
| 2930 | */ |
| 2931 | |
| 2932 | static int flags_to_propagation_type(int ms_flags) |
| 2933 | { |
| 2934 | int type = ms_flags & ~(MS_REC | MS_SILENT); |
| 2935 | |
| 2936 | /* Fail if any non-propagation flags are set */ |
| 2937 | if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) |
| 2938 | return 0; |
| 2939 | /* Only one propagation flag should be set */ |
| 2940 | if (!is_power_of_2(type)) |
| 2941 | return 0; |
| 2942 | return type; |
| 2943 | } |
| 2944 | |
| 2945 | /* |
| 2946 | * recursively change the type of the mountpoint. |
| 2947 | */ |
| 2948 | static int do_change_type(struct path *path, int ms_flags) |
| 2949 | { |
| 2950 | struct mount *m; |
| 2951 | struct mount *mnt = real_mount(path->mnt); |
| 2952 | int recurse = ms_flags & MS_REC; |
| 2953 | int type; |
| 2954 | int err = 0; |
| 2955 | |
| 2956 | if (!path_mounted(path)) |
| 2957 | return -EINVAL; |
| 2958 | |
| 2959 | type = flags_to_propagation_type(ms_flags); |
| 2960 | if (!type) |
| 2961 | return -EINVAL; |
| 2962 | |
| 2963 | namespace_lock(); |
| 2964 | if (!check_mnt(mnt)) { |
| 2965 | err = -EINVAL; |
| 2966 | goto out_unlock; |
| 2967 | } |
| 2968 | if (type == MS_SHARED) { |
| 2969 | err = invent_group_ids(mnt, recurse); |
| 2970 | if (err) |
| 2971 | goto out_unlock; |
| 2972 | } |
| 2973 | |
| 2974 | lock_mount_hash(); |
| 2975 | for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) |
| 2976 | change_mnt_propagation(m, type); |
| 2977 | unlock_mount_hash(); |
| 2978 | |
| 2979 | out_unlock: |
| 2980 | namespace_unlock(); |
| 2981 | return err; |
| 2982 | } |
| 2983 | |
| 2984 | /* may_copy_tree() - check if a mount tree can be copied |
| 2985 | * @path: path to the mount tree to be copied |
| 2986 | * |
| 2987 | * This helper checks if the caller may copy the mount tree starting |
| 2988 | * from @path->mnt. The caller may copy the mount tree under the |
| 2989 | * following circumstances: |
| 2990 | * |
| 2991 | * (1) The caller is located in the mount namespace of the mount tree. |
| 2992 | * This also implies that the mount does not belong to an anonymous |
| 2993 | * mount namespace. |
| 2994 | * (2) The caller tries to copy an nfs mount referring to a mount |
| 2995 | * namespace, i.e., the caller is trying to copy a mount namespace |
| 2996 | * entry from nsfs. |
| 2997 | * (3) The caller tries to copy a pidfs mount referring to a pidfd. |
| 2998 | * (4) The caller is trying to copy a mount tree that belongs to an |
| 2999 | * anonymous mount namespace. |
| 3000 | * |
| 3001 | * For that to be safe, this helper enforces that the origin mount |
| 3002 | * namespace the anonymous mount namespace was created from is the |
| 3003 | * same as the caller's mount namespace by comparing the sequence |
| 3004 | * numbers. |
| 3005 | * |
| 3006 | * This is not strictly necessary. The current semantics of the new |
| 3007 | * mount api enforce that the caller must be located in the same |
| 3008 | * mount namespace as the mount tree it interacts with. Using the |
| 3009 | * origin sequence number preserves these semantics even for |
| 3010 | * anonymous mount namespaces. However, one could envision extending |
| 3011 | * the api to directly operate across mount namespace if needed. |
| 3012 | * |
| 3013 | * The ownership of a non-anonymous mount namespace such as the |
| 3014 | * caller's cannot change. |
| 3015 | * => We know that the caller's mount namespace is stable. |
| 3016 | * |
| 3017 | * If the origin sequence number of the anonymous mount namespace is |
| 3018 | * the same as the sequence number of the caller's mount namespace. |
| 3019 | * => The owning namespaces are the same. |
| 3020 | * |
| 3021 | * ==> The earlier capability check on the owning namespace of the |
| 3022 | * caller's mount namespace ensures that the caller has the |
| 3023 | * ability to copy the mount tree. |
| 3024 | * |
| 3025 | * Returns true if the mount tree can be copied, false otherwise. |
| 3026 | */ |
| 3027 | static inline bool may_copy_tree(struct path *path) |
| 3028 | { |
| 3029 | struct mount *mnt = real_mount(path->mnt); |
| 3030 | const struct dentry_operations *d_op; |
| 3031 | |
| 3032 | if (check_mnt(mnt)) |
| 3033 | return true; |
| 3034 | |
| 3035 | d_op = path->dentry->d_op; |
| 3036 | if (d_op == &ns_dentry_operations) |
| 3037 | return true; |
| 3038 | |
| 3039 | if (d_op == &pidfs_dentry_operations) |
| 3040 | return true; |
| 3041 | |
| 3042 | if (!is_mounted(path->mnt)) |
| 3043 | return false; |
| 3044 | |
| 3045 | return check_anonymous_mnt(mnt); |
| 3046 | } |
| 3047 | |
| 3048 | |
| 3049 | static struct mount *__do_loopback(struct path *old_path, int recurse) |
| 3050 | { |
| 3051 | struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); |
| 3052 | |
| 3053 | if (IS_MNT_UNBINDABLE(old)) |
| 3054 | return mnt; |
| 3055 | |
| 3056 | if (!may_copy_tree(old_path)) |
| 3057 | return mnt; |
| 3058 | |
| 3059 | if (!recurse && __has_locked_children(old, old_path->dentry)) |
| 3060 | return mnt; |
| 3061 | |
| 3062 | if (recurse) |
| 3063 | mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); |
| 3064 | else |
| 3065 | mnt = clone_mnt(old, old_path->dentry, 0); |
| 3066 | |
| 3067 | if (!IS_ERR(mnt)) |
| 3068 | mnt->mnt.mnt_flags &= ~MNT_LOCKED; |
| 3069 | |
| 3070 | return mnt; |
| 3071 | } |
| 3072 | |
| 3073 | /* |
| 3074 | * do loopback mount. |
| 3075 | */ |
| 3076 | static int do_loopback(struct path *path, const char *old_name, |
| 3077 | int recurse) |
| 3078 | { |
| 3079 | struct path old_path; |
| 3080 | struct mount *mnt = NULL, *parent; |
| 3081 | struct mountpoint *mp; |
| 3082 | int err; |
| 3083 | if (!old_name || !*old_name) |
| 3084 | return -EINVAL; |
| 3085 | err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); |
| 3086 | if (err) |
| 3087 | return err; |
| 3088 | |
| 3089 | err = -EINVAL; |
| 3090 | if (mnt_ns_loop(old_path.dentry)) |
| 3091 | goto out; |
| 3092 | |
| 3093 | mp = lock_mount(path); |
| 3094 | if (IS_ERR(mp)) { |
| 3095 | err = PTR_ERR(mp); |
| 3096 | goto out; |
| 3097 | } |
| 3098 | |
| 3099 | parent = real_mount(path->mnt); |
| 3100 | if (!check_mnt(parent)) |
| 3101 | goto out2; |
| 3102 | |
| 3103 | mnt = __do_loopback(&old_path, recurse); |
| 3104 | if (IS_ERR(mnt)) { |
| 3105 | err = PTR_ERR(mnt); |
| 3106 | goto out2; |
| 3107 | } |
| 3108 | |
| 3109 | err = graft_tree(mnt, parent, mp); |
| 3110 | if (err) { |
| 3111 | lock_mount_hash(); |
| 3112 | umount_tree(mnt, UMOUNT_SYNC); |
| 3113 | unlock_mount_hash(); |
| 3114 | } |
| 3115 | out2: |
| 3116 | unlock_mount(mp); |
| 3117 | out: |
| 3118 | path_put(&old_path); |
| 3119 | return err; |
| 3120 | } |
| 3121 | |
| 3122 | static struct file *open_detached_copy(struct path *path, bool recursive) |
| 3123 | { |
| 3124 | struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns; |
| 3125 | struct user_namespace *user_ns = mnt_ns->user_ns; |
| 3126 | struct mount *mnt, *p; |
| 3127 | struct file *file; |
| 3128 | |
| 3129 | ns = alloc_mnt_ns(user_ns, true); |
| 3130 | if (IS_ERR(ns)) |
| 3131 | return ERR_CAST(ns); |
| 3132 | |
| 3133 | namespace_lock(); |
| 3134 | |
| 3135 | /* |
| 3136 | * Record the sequence number of the source mount namespace. |
| 3137 | * This needs to hold namespace_sem to ensure that the mount |
| 3138 | * doesn't get attached. |
| 3139 | */ |
| 3140 | if (is_mounted(path->mnt)) { |
| 3141 | src_mnt_ns = real_mount(path->mnt)->mnt_ns; |
| 3142 | if (is_anon_ns(src_mnt_ns)) |
| 3143 | ns->seq_origin = src_mnt_ns->seq_origin; |
| 3144 | else |
| 3145 | ns->seq_origin = src_mnt_ns->seq; |
| 3146 | } |
| 3147 | |
| 3148 | mnt = __do_loopback(path, recursive); |
| 3149 | if (IS_ERR(mnt)) { |
| 3150 | namespace_unlock(); |
| 3151 | free_mnt_ns(ns); |
| 3152 | return ERR_CAST(mnt); |
| 3153 | } |
| 3154 | |
| 3155 | lock_mount_hash(); |
| 3156 | for (p = mnt; p; p = next_mnt(p, mnt)) { |
| 3157 | mnt_add_to_ns(ns, p); |
| 3158 | ns->nr_mounts++; |
| 3159 | } |
| 3160 | ns->root = mnt; |
| 3161 | mntget(&mnt->mnt); |
| 3162 | unlock_mount_hash(); |
| 3163 | namespace_unlock(); |
| 3164 | |
| 3165 | mntput(path->mnt); |
| 3166 | path->mnt = &mnt->mnt; |
| 3167 | file = dentry_open(path, O_PATH, current_cred()); |
| 3168 | if (IS_ERR(file)) |
| 3169 | dissolve_on_fput(path->mnt); |
| 3170 | else |
| 3171 | file->f_mode |= FMODE_NEED_UNMOUNT; |
| 3172 | return file; |
| 3173 | } |
| 3174 | |
| 3175 | static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags) |
| 3176 | { |
| 3177 | int ret; |
| 3178 | struct path path __free(path_put) = {}; |
| 3179 | int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; |
| 3180 | bool detached = flags & OPEN_TREE_CLONE; |
| 3181 | |
| 3182 | BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); |
| 3183 | |
| 3184 | if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | |
| 3185 | AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | |
| 3186 | OPEN_TREE_CLOEXEC)) |
| 3187 | return ERR_PTR(-EINVAL); |
| 3188 | |
| 3189 | if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) |
| 3190 | return ERR_PTR(-EINVAL); |
| 3191 | |
| 3192 | if (flags & AT_NO_AUTOMOUNT) |
| 3193 | lookup_flags &= ~LOOKUP_AUTOMOUNT; |
| 3194 | if (flags & AT_SYMLINK_NOFOLLOW) |
| 3195 | lookup_flags &= ~LOOKUP_FOLLOW; |
| 3196 | if (flags & AT_EMPTY_PATH) |
| 3197 | lookup_flags |= LOOKUP_EMPTY; |
| 3198 | |
| 3199 | if (detached && !may_mount()) |
| 3200 | return ERR_PTR(-EPERM); |
| 3201 | |
| 3202 | ret = user_path_at(dfd, filename, lookup_flags, &path); |
| 3203 | if (unlikely(ret)) |
| 3204 | return ERR_PTR(ret); |
| 3205 | |
| 3206 | if (detached) |
| 3207 | return open_detached_copy(&path, flags & AT_RECURSIVE); |
| 3208 | |
| 3209 | return dentry_open(&path, O_PATH, current_cred()); |
| 3210 | } |
| 3211 | |
| 3212 | SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) |
| 3213 | { |
| 3214 | int fd; |
| 3215 | struct file *file __free(fput) = NULL; |
| 3216 | |
| 3217 | file = vfs_open_tree(dfd, filename, flags); |
| 3218 | if (IS_ERR(file)) |
| 3219 | return PTR_ERR(file); |
| 3220 | |
| 3221 | fd = get_unused_fd_flags(flags & O_CLOEXEC); |
| 3222 | if (fd < 0) |
| 3223 | return fd; |
| 3224 | |
| 3225 | fd_install(fd, no_free_ptr(file)); |
| 3226 | return fd; |
| 3227 | } |
| 3228 | |
| 3229 | /* |
| 3230 | * Don't allow locked mount flags to be cleared. |
| 3231 | * |
| 3232 | * No locks need to be held here while testing the various MNT_LOCK |
| 3233 | * flags because those flags can never be cleared once they are set. |
| 3234 | */ |
| 3235 | static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) |
| 3236 | { |
| 3237 | unsigned int fl = mnt->mnt.mnt_flags; |
| 3238 | |
| 3239 | if ((fl & MNT_LOCK_READONLY) && |
| 3240 | !(mnt_flags & MNT_READONLY)) |
| 3241 | return false; |
| 3242 | |
| 3243 | if ((fl & MNT_LOCK_NODEV) && |
| 3244 | !(mnt_flags & MNT_NODEV)) |
| 3245 | return false; |
| 3246 | |
| 3247 | if ((fl & MNT_LOCK_NOSUID) && |
| 3248 | !(mnt_flags & MNT_NOSUID)) |
| 3249 | return false; |
| 3250 | |
| 3251 | if ((fl & MNT_LOCK_NOEXEC) && |
| 3252 | !(mnt_flags & MNT_NOEXEC)) |
| 3253 | return false; |
| 3254 | |
| 3255 | if ((fl & MNT_LOCK_ATIME) && |
| 3256 | ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) |
| 3257 | return false; |
| 3258 | |
| 3259 | return true; |
| 3260 | } |
| 3261 | |
| 3262 | static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) |
| 3263 | { |
| 3264 | bool readonly_request = (mnt_flags & MNT_READONLY); |
| 3265 | |
| 3266 | if (readonly_request == __mnt_is_readonly(&mnt->mnt)) |
| 3267 | return 0; |
| 3268 | |
| 3269 | if (readonly_request) |
| 3270 | return mnt_make_readonly(mnt); |
| 3271 | |
| 3272 | mnt->mnt.mnt_flags &= ~MNT_READONLY; |
| 3273 | return 0; |
| 3274 | } |
| 3275 | |
| 3276 | static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) |
| 3277 | { |
| 3278 | mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; |
| 3279 | mnt->mnt.mnt_flags = mnt_flags; |
| 3280 | touch_mnt_namespace(mnt->mnt_ns); |
| 3281 | } |
| 3282 | |
| 3283 | static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) |
| 3284 | { |
| 3285 | struct super_block *sb = mnt->mnt_sb; |
| 3286 | |
| 3287 | if (!__mnt_is_readonly(mnt) && |
| 3288 | (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && |
| 3289 | (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { |
| 3290 | char *buf, *mntpath; |
| 3291 | |
| 3292 | buf = (char *)__get_free_page(GFP_KERNEL); |
| 3293 | if (buf) |
| 3294 | mntpath = d_path(mountpoint, buf, PAGE_SIZE); |
| 3295 | else |
| 3296 | mntpath = ERR_PTR(-ENOMEM); |
| 3297 | if (IS_ERR(mntpath)) |
| 3298 | mntpath = "(unknown)"; |
| 3299 | |
| 3300 | pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", |
| 3301 | sb->s_type->name, |
| 3302 | is_mounted(mnt) ? "remounted" : "mounted", |
| 3303 | mntpath, &sb->s_time_max, |
| 3304 | (unsigned long long)sb->s_time_max); |
| 3305 | |
| 3306 | sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; |
| 3307 | if (buf) |
| 3308 | free_page((unsigned long)buf); |
| 3309 | } |
| 3310 | } |
| 3311 | |
| 3312 | /* |
| 3313 | * Handle reconfiguration of the mountpoint only without alteration of the |
| 3314 | * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND |
| 3315 | * to mount(2). |
| 3316 | */ |
| 3317 | static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) |
| 3318 | { |
| 3319 | struct super_block *sb = path->mnt->mnt_sb; |
| 3320 | struct mount *mnt = real_mount(path->mnt); |
| 3321 | int ret; |
| 3322 | |
| 3323 | if (!check_mnt(mnt)) |
| 3324 | return -EINVAL; |
| 3325 | |
| 3326 | if (!path_mounted(path)) |
| 3327 | return -EINVAL; |
| 3328 | |
| 3329 | if (!can_change_locked_flags(mnt, mnt_flags)) |
| 3330 | return -EPERM; |
| 3331 | |
| 3332 | /* |
| 3333 | * We're only checking whether the superblock is read-only not |
| 3334 | * changing it, so only take down_read(&sb->s_umount). |
| 3335 | */ |
| 3336 | down_read(&sb->s_umount); |
| 3337 | lock_mount_hash(); |
| 3338 | ret = change_mount_ro_state(mnt, mnt_flags); |
| 3339 | if (ret == 0) |
| 3340 | set_mount_attributes(mnt, mnt_flags); |
| 3341 | unlock_mount_hash(); |
| 3342 | up_read(&sb->s_umount); |
| 3343 | |
| 3344 | mnt_warn_timestamp_expiry(path, &mnt->mnt); |
| 3345 | |
| 3346 | return ret; |
| 3347 | } |
| 3348 | |
| 3349 | /* |
| 3350 | * change filesystem flags. dir should be a physical root of filesystem. |
| 3351 | * If you've mounted a non-root directory somewhere and want to do remount |
| 3352 | * on it - tough luck. |
| 3353 | */ |
| 3354 | static int do_remount(struct path *path, int ms_flags, int sb_flags, |
| 3355 | int mnt_flags, void *data) |
| 3356 | { |
| 3357 | int err; |
| 3358 | struct super_block *sb = path->mnt->mnt_sb; |
| 3359 | struct mount *mnt = real_mount(path->mnt); |
| 3360 | struct fs_context *fc; |
| 3361 | |
| 3362 | if (!check_mnt(mnt)) |
| 3363 | return -EINVAL; |
| 3364 | |
| 3365 | if (!path_mounted(path)) |
| 3366 | return -EINVAL; |
| 3367 | |
| 3368 | if (!can_change_locked_flags(mnt, mnt_flags)) |
| 3369 | return -EPERM; |
| 3370 | |
| 3371 | fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); |
| 3372 | if (IS_ERR(fc)) |
| 3373 | return PTR_ERR(fc); |
| 3374 | |
| 3375 | /* |
| 3376 | * Indicate to the filesystem that the remount request is coming |
| 3377 | * from the legacy mount system call. |
| 3378 | */ |
| 3379 | fc->oldapi = true; |
| 3380 | |
| 3381 | err = parse_monolithic_mount_data(fc, data); |
| 3382 | if (!err) { |
| 3383 | down_write(&sb->s_umount); |
| 3384 | err = -EPERM; |
| 3385 | if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { |
| 3386 | err = reconfigure_super(fc); |
| 3387 | if (!err) { |
| 3388 | lock_mount_hash(); |
| 3389 | set_mount_attributes(mnt, mnt_flags); |
| 3390 | unlock_mount_hash(); |
| 3391 | } |
| 3392 | } |
| 3393 | up_write(&sb->s_umount); |
| 3394 | } |
| 3395 | |
| 3396 | mnt_warn_timestamp_expiry(path, &mnt->mnt); |
| 3397 | |
| 3398 | put_fs_context(fc); |
| 3399 | return err; |
| 3400 | } |
| 3401 | |
| 3402 | static inline int tree_contains_unbindable(struct mount *mnt) |
| 3403 | { |
| 3404 | struct mount *p; |
| 3405 | for (p = mnt; p; p = next_mnt(p, mnt)) { |
| 3406 | if (IS_MNT_UNBINDABLE(p)) |
| 3407 | return 1; |
| 3408 | } |
| 3409 | return 0; |
| 3410 | } |
| 3411 | |
| 3412 | static int do_set_group(struct path *from_path, struct path *to_path) |
| 3413 | { |
| 3414 | struct mount *from, *to; |
| 3415 | int err; |
| 3416 | |
| 3417 | from = real_mount(from_path->mnt); |
| 3418 | to = real_mount(to_path->mnt); |
| 3419 | |
| 3420 | namespace_lock(); |
| 3421 | |
| 3422 | err = -EINVAL; |
| 3423 | /* To and From must be mounted */ |
| 3424 | if (!is_mounted(&from->mnt)) |
| 3425 | goto out; |
| 3426 | if (!is_mounted(&to->mnt)) |
| 3427 | goto out; |
| 3428 | |
| 3429 | err = -EPERM; |
| 3430 | /* We should be allowed to modify mount namespaces of both mounts */ |
| 3431 | if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) |
| 3432 | goto out; |
| 3433 | if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) |
| 3434 | goto out; |
| 3435 | |
| 3436 | err = -EINVAL; |
| 3437 | /* To and From paths should be mount roots */ |
| 3438 | if (!path_mounted(from_path)) |
| 3439 | goto out; |
| 3440 | if (!path_mounted(to_path)) |
| 3441 | goto out; |
| 3442 | |
| 3443 | /* Setting sharing groups is only allowed across same superblock */ |
| 3444 | if (from->mnt.mnt_sb != to->mnt.mnt_sb) |
| 3445 | goto out; |
| 3446 | |
| 3447 | /* From mount root should be wider than To mount root */ |
| 3448 | if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) |
| 3449 | goto out; |
| 3450 | |
| 3451 | /* From mount should not have locked children in place of To's root */ |
| 3452 | if (__has_locked_children(from, to->mnt.mnt_root)) |
| 3453 | goto out; |
| 3454 | |
| 3455 | /* Setting sharing groups is only allowed on private mounts */ |
| 3456 | if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) |
| 3457 | goto out; |
| 3458 | |
| 3459 | /* From should not be private */ |
| 3460 | if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) |
| 3461 | goto out; |
| 3462 | |
| 3463 | if (IS_MNT_SLAVE(from)) { |
| 3464 | struct mount *m = from->mnt_master; |
| 3465 | |
| 3466 | list_add(&to->mnt_slave, &from->mnt_slave); |
| 3467 | to->mnt_master = m; |
| 3468 | } |
| 3469 | |
| 3470 | if (IS_MNT_SHARED(from)) { |
| 3471 | to->mnt_group_id = from->mnt_group_id; |
| 3472 | list_add(&to->mnt_share, &from->mnt_share); |
| 3473 | lock_mount_hash(); |
| 3474 | set_mnt_shared(to); |
| 3475 | unlock_mount_hash(); |
| 3476 | } |
| 3477 | |
| 3478 | err = 0; |
| 3479 | out: |
| 3480 | namespace_unlock(); |
| 3481 | return err; |
| 3482 | } |
| 3483 | |
| 3484 | /** |
| 3485 | * path_overmounted - check if path is overmounted |
| 3486 | * @path: path to check |
| 3487 | * |
| 3488 | * Check if path is overmounted, i.e., if there's a mount on top of |
| 3489 | * @path->mnt with @path->dentry as mountpoint. |
| 3490 | * |
| 3491 | * Context: namespace_sem must be held at least shared. |
| 3492 | * MUST NOT be called under lock_mount_hash() (there one should just |
| 3493 | * call __lookup_mnt() and check if it returns NULL). |
| 3494 | * Return: If path is overmounted true is returned, false if not. |
| 3495 | */ |
| 3496 | static inline bool path_overmounted(const struct path *path) |
| 3497 | { |
| 3498 | unsigned seq = read_seqbegin(&mount_lock); |
| 3499 | bool no_child; |
| 3500 | |
| 3501 | rcu_read_lock(); |
| 3502 | no_child = !__lookup_mnt(path->mnt, path->dentry); |
| 3503 | rcu_read_unlock(); |
| 3504 | if (need_seqretry(&mount_lock, seq)) { |
| 3505 | read_seqlock_excl(&mount_lock); |
| 3506 | no_child = !__lookup_mnt(path->mnt, path->dentry); |
| 3507 | read_sequnlock_excl(&mount_lock); |
| 3508 | } |
| 3509 | return unlikely(!no_child); |
| 3510 | } |
| 3511 | |
| 3512 | /** |
| 3513 | * can_move_mount_beneath - check that we can mount beneath the top mount |
| 3514 | * @from: mount to mount beneath |
| 3515 | * @to: mount under which to mount |
| 3516 | * @mp: mountpoint of @to |
| 3517 | * |
| 3518 | * - Make sure that @to->dentry is actually the root of a mount under |
| 3519 | * which we can mount another mount. |
| 3520 | * - Make sure that nothing can be mounted beneath the caller's current |
| 3521 | * root or the rootfs of the namespace. |
| 3522 | * - Make sure that the caller can unmount the topmost mount ensuring |
| 3523 | * that the caller could reveal the underlying mountpoint. |
| 3524 | * - Ensure that nothing has been mounted on top of @from before we |
| 3525 | * grabbed @namespace_sem to avoid creating pointless shadow mounts. |
| 3526 | * - Prevent mounting beneath a mount if the propagation relationship |
| 3527 | * between the source mount, parent mount, and top mount would lead to |
| 3528 | * nonsensical mount trees. |
| 3529 | * |
| 3530 | * Context: This function expects namespace_lock() to be held. |
| 3531 | * Return: On success 0, and on error a negative error code is returned. |
| 3532 | */ |
| 3533 | static int can_move_mount_beneath(const struct path *from, |
| 3534 | const struct path *to, |
| 3535 | const struct mountpoint *mp) |
| 3536 | { |
| 3537 | struct mount *mnt_from = real_mount(from->mnt), |
| 3538 | *mnt_to = real_mount(to->mnt), |
| 3539 | *parent_mnt_to = mnt_to->mnt_parent; |
| 3540 | |
| 3541 | if (!mnt_has_parent(mnt_to)) |
| 3542 | return -EINVAL; |
| 3543 | |
| 3544 | if (!path_mounted(to)) |
| 3545 | return -EINVAL; |
| 3546 | |
| 3547 | if (IS_MNT_LOCKED(mnt_to)) |
| 3548 | return -EINVAL; |
| 3549 | |
| 3550 | /* Avoid creating shadow mounts during mount propagation. */ |
| 3551 | if (path_overmounted(from)) |
| 3552 | return -EINVAL; |
| 3553 | |
| 3554 | /* |
| 3555 | * Mounting beneath the rootfs only makes sense when the |
| 3556 | * semantics of pivot_root(".", ".") are used. |
| 3557 | */ |
| 3558 | if (&mnt_to->mnt == current->fs->root.mnt) |
| 3559 | return -EINVAL; |
| 3560 | if (parent_mnt_to == current->nsproxy->mnt_ns->root) |
| 3561 | return -EINVAL; |
| 3562 | |
| 3563 | for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) |
| 3564 | if (p == mnt_to) |
| 3565 | return -EINVAL; |
| 3566 | |
| 3567 | /* |
| 3568 | * If the parent mount propagates to the child mount this would |
| 3569 | * mean mounting @mnt_from on @mnt_to->mnt_parent and then |
| 3570 | * propagating a copy @c of @mnt_from on top of @mnt_to. This |
| 3571 | * defeats the whole purpose of mounting beneath another mount. |
| 3572 | */ |
| 3573 | if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) |
| 3574 | return -EINVAL; |
| 3575 | |
| 3576 | /* |
| 3577 | * If @mnt_to->mnt_parent propagates to @mnt_from this would |
| 3578 | * mean propagating a copy @c of @mnt_from on top of @mnt_from. |
| 3579 | * Afterwards @mnt_from would be mounted on top of |
| 3580 | * @mnt_to->mnt_parent and @mnt_to would be unmounted from |
| 3581 | * @mnt->mnt_parent and remounted on @mnt_from. But since @c is |
| 3582 | * already mounted on @mnt_from, @mnt_to would ultimately be |
| 3583 | * remounted on top of @c. Afterwards, @mnt_from would be |
| 3584 | * covered by a copy @c of @mnt_from and @c would be covered by |
| 3585 | * @mnt_from itself. This defeats the whole purpose of mounting |
| 3586 | * @mnt_from beneath @mnt_to. |
| 3587 | */ |
| 3588 | if (check_mnt(mnt_from) && |
| 3589 | propagation_would_overmount(parent_mnt_to, mnt_from, mp)) |
| 3590 | return -EINVAL; |
| 3591 | |
| 3592 | return 0; |
| 3593 | } |
| 3594 | |
| 3595 | /* may_use_mount() - check if a mount tree can be used |
| 3596 | * @mnt: vfsmount to be used |
| 3597 | * |
| 3598 | * This helper checks if the caller may use the mount tree starting |
| 3599 | * from @path->mnt. The caller may use the mount tree under the |
| 3600 | * following circumstances: |
| 3601 | * |
| 3602 | * (1) The caller is located in the mount namespace of the mount tree. |
| 3603 | * This also implies that the mount does not belong to an anonymous |
| 3604 | * mount namespace. |
| 3605 | * (2) The caller is trying to use a mount tree that belongs to an |
| 3606 | * anonymous mount namespace. |
| 3607 | * |
| 3608 | * For that to be safe, this helper enforces that the origin mount |
| 3609 | * namespace the anonymous mount namespace was created from is the |
| 3610 | * same as the caller's mount namespace by comparing the sequence |
| 3611 | * numbers. |
| 3612 | * |
| 3613 | * The ownership of a non-anonymous mount namespace such as the |
| 3614 | * caller's cannot change. |
| 3615 | * => We know that the caller's mount namespace is stable. |
| 3616 | * |
| 3617 | * If the origin sequence number of the anonymous mount namespace is |
| 3618 | * the same as the sequence number of the caller's mount namespace. |
| 3619 | * => The owning namespaces are the same. |
| 3620 | * |
| 3621 | * ==> The earlier capability check on the owning namespace of the |
| 3622 | * caller's mount namespace ensures that the caller has the |
| 3623 | * ability to use the mount tree. |
| 3624 | * |
| 3625 | * Returns true if the mount tree can be used, false otherwise. |
| 3626 | */ |
| 3627 | static inline bool may_use_mount(struct mount *mnt) |
| 3628 | { |
| 3629 | if (check_mnt(mnt)) |
| 3630 | return true; |
| 3631 | |
| 3632 | /* |
| 3633 | * Make sure that noone unmounted the target path or somehow |
| 3634 | * managed to get their hands on something purely kernel |
| 3635 | * internal. |
| 3636 | */ |
| 3637 | if (!is_mounted(&mnt->mnt)) |
| 3638 | return false; |
| 3639 | |
| 3640 | return check_anonymous_mnt(mnt); |
| 3641 | } |
| 3642 | |
| 3643 | static int do_move_mount(struct path *old_path, |
| 3644 | struct path *new_path, enum mnt_tree_flags_t flags) |
| 3645 | { |
| 3646 | struct mnt_namespace *ns; |
| 3647 | struct mount *p; |
| 3648 | struct mount *old; |
| 3649 | struct mount *parent; |
| 3650 | struct mountpoint *mp, *old_mp; |
| 3651 | int err; |
| 3652 | bool attached, beneath = flags & MNT_TREE_BENEATH; |
| 3653 | |
| 3654 | mp = do_lock_mount(new_path, beneath); |
| 3655 | if (IS_ERR(mp)) |
| 3656 | return PTR_ERR(mp); |
| 3657 | |
| 3658 | old = real_mount(old_path->mnt); |
| 3659 | p = real_mount(new_path->mnt); |
| 3660 | parent = old->mnt_parent; |
| 3661 | attached = mnt_has_parent(old); |
| 3662 | if (attached) |
| 3663 | flags |= MNT_TREE_MOVE; |
| 3664 | old_mp = old->mnt_mp; |
| 3665 | ns = old->mnt_ns; |
| 3666 | |
| 3667 | err = -EINVAL; |
| 3668 | /* The thing moved must be mounted... */ |
| 3669 | if (!is_mounted(&old->mnt)) |
| 3670 | goto out; |
| 3671 | |
| 3672 | if (check_mnt(old)) { |
| 3673 | /* if the source is in our namespace... */ |
| 3674 | /* ... it should be detachable from parent */ |
| 3675 | if (!mnt_has_parent(old) || IS_MNT_LOCKED(old)) |
| 3676 | goto out; |
| 3677 | /* ... and the target should be in our namespace */ |
| 3678 | if (!check_mnt(p)) |
| 3679 | goto out; |
| 3680 | } else { |
| 3681 | /* |
| 3682 | * otherwise the source must be the root of some anon namespace. |
| 3683 | * AV: check for mount being root of an anon namespace is worth |
| 3684 | * an inlined predicate... |
| 3685 | */ |
| 3686 | if (!is_anon_ns(ns) || mnt_has_parent(old)) |
| 3687 | goto out; |
| 3688 | /* |
| 3689 | * Bail out early if the target is within the same namespace - |
| 3690 | * subsequent checks would've rejected that, but they lose |
| 3691 | * some corner cases if we check it early. |
| 3692 | */ |
| 3693 | if (ns == p->mnt_ns) |
| 3694 | goto out; |
| 3695 | /* |
| 3696 | * Target should be either in our namespace or in an acceptable |
| 3697 | * anon namespace, sensu check_anonymous_mnt(). |
| 3698 | */ |
| 3699 | if (!may_use_mount(p)) |
| 3700 | goto out; |
| 3701 | } |
| 3702 | |
| 3703 | if (!path_mounted(old_path)) |
| 3704 | goto out; |
| 3705 | |
| 3706 | if (d_is_dir(new_path->dentry) != |
| 3707 | d_is_dir(old_path->dentry)) |
| 3708 | goto out; |
| 3709 | /* |
| 3710 | * Don't move a mount residing in a shared parent. |
| 3711 | */ |
| 3712 | if (attached && IS_MNT_SHARED(parent)) |
| 3713 | goto out; |
| 3714 | |
| 3715 | if (beneath) { |
| 3716 | err = can_move_mount_beneath(old_path, new_path, mp); |
| 3717 | if (err) |
| 3718 | goto out; |
| 3719 | |
| 3720 | err = -EINVAL; |
| 3721 | p = p->mnt_parent; |
| 3722 | flags |= MNT_TREE_BENEATH; |
| 3723 | } |
| 3724 | |
| 3725 | /* |
| 3726 | * Don't move a mount tree containing unbindable mounts to a destination |
| 3727 | * mount which is shared. |
| 3728 | */ |
| 3729 | if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) |
| 3730 | goto out; |
| 3731 | err = -ELOOP; |
| 3732 | if (!check_for_nsfs_mounts(old)) |
| 3733 | goto out; |
| 3734 | for (; mnt_has_parent(p); p = p->mnt_parent) |
| 3735 | if (p == old) |
| 3736 | goto out; |
| 3737 | |
| 3738 | err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); |
| 3739 | if (err) |
| 3740 | goto out; |
| 3741 | |
| 3742 | /* if the mount is moved, it should no longer be expire |
| 3743 | * automatically */ |
| 3744 | list_del_init(&old->mnt_expire); |
| 3745 | if (attached) |
| 3746 | put_mountpoint(old_mp); |
| 3747 | out: |
| 3748 | unlock_mount(mp); |
| 3749 | if (!err) { |
| 3750 | if (attached) { |
| 3751 | mntput_no_expire(parent); |
| 3752 | } else { |
| 3753 | /* Make sure we notice when we leak mounts. */ |
| 3754 | VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); |
| 3755 | free_mnt_ns(ns); |
| 3756 | } |
| 3757 | } |
| 3758 | return err; |
| 3759 | } |
| 3760 | |
| 3761 | static int do_move_mount_old(struct path *path, const char *old_name) |
| 3762 | { |
| 3763 | struct path old_path; |
| 3764 | int err; |
| 3765 | |
| 3766 | if (!old_name || !*old_name) |
| 3767 | return -EINVAL; |
| 3768 | |
| 3769 | err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); |
| 3770 | if (err) |
| 3771 | return err; |
| 3772 | |
| 3773 | err = do_move_mount(&old_path, path, 0); |
| 3774 | path_put(&old_path); |
| 3775 | return err; |
| 3776 | } |
| 3777 | |
| 3778 | /* |
| 3779 | * add a mount into a namespace's mount tree |
| 3780 | */ |
| 3781 | static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, |
| 3782 | const struct path *path, int mnt_flags) |
| 3783 | { |
| 3784 | struct mount *parent = real_mount(path->mnt); |
| 3785 | |
| 3786 | mnt_flags &= ~MNT_INTERNAL_FLAGS; |
| 3787 | |
| 3788 | if (unlikely(!check_mnt(parent))) { |
| 3789 | /* that's acceptable only for automounts done in private ns */ |
| 3790 | if (!(mnt_flags & MNT_SHRINKABLE)) |
| 3791 | return -EINVAL; |
| 3792 | /* ... and for those we'd better have mountpoint still alive */ |
| 3793 | if (!parent->mnt_ns) |
| 3794 | return -EINVAL; |
| 3795 | } |
| 3796 | |
| 3797 | /* Refuse the same filesystem on the same mount point */ |
| 3798 | if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) |
| 3799 | return -EBUSY; |
| 3800 | |
| 3801 | if (d_is_symlink(newmnt->mnt.mnt_root)) |
| 3802 | return -EINVAL; |
| 3803 | |
| 3804 | newmnt->mnt.mnt_flags = mnt_flags; |
| 3805 | return graft_tree(newmnt, parent, mp); |
| 3806 | } |
| 3807 | |
| 3808 | static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); |
| 3809 | |
| 3810 | /* |
| 3811 | * Create a new mount using a superblock configuration and request it |
| 3812 | * be added to the namespace tree. |
| 3813 | */ |
| 3814 | static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, |
| 3815 | unsigned int mnt_flags) |
| 3816 | { |
| 3817 | struct vfsmount *mnt; |
| 3818 | struct mountpoint *mp; |
| 3819 | struct super_block *sb = fc->root->d_sb; |
| 3820 | int error; |
| 3821 | |
| 3822 | error = security_sb_kern_mount(sb); |
| 3823 | if (!error && mount_too_revealing(sb, &mnt_flags)) |
| 3824 | error = -EPERM; |
| 3825 | |
| 3826 | if (unlikely(error)) { |
| 3827 | fc_drop_locked(fc); |
| 3828 | return error; |
| 3829 | } |
| 3830 | |
| 3831 | up_write(&sb->s_umount); |
| 3832 | |
| 3833 | mnt = vfs_create_mount(fc); |
| 3834 | if (IS_ERR(mnt)) |
| 3835 | return PTR_ERR(mnt); |
| 3836 | |
| 3837 | mnt_warn_timestamp_expiry(mountpoint, mnt); |
| 3838 | |
| 3839 | mp = lock_mount(mountpoint); |
| 3840 | if (IS_ERR(mp)) { |
| 3841 | mntput(mnt); |
| 3842 | return PTR_ERR(mp); |
| 3843 | } |
| 3844 | error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); |
| 3845 | unlock_mount(mp); |
| 3846 | if (error < 0) |
| 3847 | mntput(mnt); |
| 3848 | return error; |
| 3849 | } |
| 3850 | |
| 3851 | /* |
| 3852 | * create a new mount for userspace and request it to be added into the |
| 3853 | * namespace's tree |
| 3854 | */ |
| 3855 | static int do_new_mount(struct path *path, const char *fstype, int sb_flags, |
| 3856 | int mnt_flags, const char *name, void *data) |
| 3857 | { |
| 3858 | struct file_system_type *type; |
| 3859 | struct fs_context *fc; |
| 3860 | const char *subtype = NULL; |
| 3861 | int err = 0; |
| 3862 | |
| 3863 | if (!fstype) |
| 3864 | return -EINVAL; |
| 3865 | |
| 3866 | type = get_fs_type(fstype); |
| 3867 | if (!type) |
| 3868 | return -ENODEV; |
| 3869 | |
| 3870 | if (type->fs_flags & FS_HAS_SUBTYPE) { |
| 3871 | subtype = strchr(fstype, '.'); |
| 3872 | if (subtype) { |
| 3873 | subtype++; |
| 3874 | if (!*subtype) { |
| 3875 | put_filesystem(type); |
| 3876 | return -EINVAL; |
| 3877 | } |
| 3878 | } |
| 3879 | } |
| 3880 | |
| 3881 | fc = fs_context_for_mount(type, sb_flags); |
| 3882 | put_filesystem(type); |
| 3883 | if (IS_ERR(fc)) |
| 3884 | return PTR_ERR(fc); |
| 3885 | |
| 3886 | /* |
| 3887 | * Indicate to the filesystem that the mount request is coming |
| 3888 | * from the legacy mount system call. |
| 3889 | */ |
| 3890 | fc->oldapi = true; |
| 3891 | |
| 3892 | if (subtype) |
| 3893 | err = vfs_parse_fs_string(fc, "subtype", |
| 3894 | subtype, strlen(subtype)); |
| 3895 | if (!err && name) |
| 3896 | err = vfs_parse_fs_string(fc, "source", name, strlen(name)); |
| 3897 | if (!err) |
| 3898 | err = parse_monolithic_mount_data(fc, data); |
| 3899 | if (!err && !mount_capable(fc)) |
| 3900 | err = -EPERM; |
| 3901 | if (!err) |
| 3902 | err = vfs_get_tree(fc); |
| 3903 | if (!err) |
| 3904 | err = do_new_mount_fc(fc, path, mnt_flags); |
| 3905 | |
| 3906 | put_fs_context(fc); |
| 3907 | return err; |
| 3908 | } |
| 3909 | |
| 3910 | int finish_automount(struct vfsmount *m, const struct path *path) |
| 3911 | { |
| 3912 | struct dentry *dentry = path->dentry; |
| 3913 | struct mountpoint *mp; |
| 3914 | struct mount *mnt; |
| 3915 | int err; |
| 3916 | |
| 3917 | if (!m) |
| 3918 | return 0; |
| 3919 | if (IS_ERR(m)) |
| 3920 | return PTR_ERR(m); |
| 3921 | |
| 3922 | mnt = real_mount(m); |
| 3923 | |
| 3924 | if (m->mnt_sb == path->mnt->mnt_sb && |
| 3925 | m->mnt_root == dentry) { |
| 3926 | err = -ELOOP; |
| 3927 | goto discard; |
| 3928 | } |
| 3929 | |
| 3930 | /* |
| 3931 | * we don't want to use lock_mount() - in this case finding something |
| 3932 | * that overmounts our mountpoint to be means "quitely drop what we've |
| 3933 | * got", not "try to mount it on top". |
| 3934 | */ |
| 3935 | inode_lock(dentry->d_inode); |
| 3936 | namespace_lock(); |
| 3937 | if (unlikely(cant_mount(dentry))) { |
| 3938 | err = -ENOENT; |
| 3939 | goto discard_locked; |
| 3940 | } |
| 3941 | if (path_overmounted(path)) { |
| 3942 | err = 0; |
| 3943 | goto discard_locked; |
| 3944 | } |
| 3945 | mp = get_mountpoint(dentry); |
| 3946 | if (IS_ERR(mp)) { |
| 3947 | err = PTR_ERR(mp); |
| 3948 | goto discard_locked; |
| 3949 | } |
| 3950 | |
| 3951 | err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); |
| 3952 | unlock_mount(mp); |
| 3953 | if (unlikely(err)) |
| 3954 | goto discard; |
| 3955 | return 0; |
| 3956 | |
| 3957 | discard_locked: |
| 3958 | namespace_unlock(); |
| 3959 | inode_unlock(dentry->d_inode); |
| 3960 | discard: |
| 3961 | /* remove m from any expiration list it may be on */ |
| 3962 | if (!list_empty(&mnt->mnt_expire)) { |
| 3963 | namespace_lock(); |
| 3964 | list_del_init(&mnt->mnt_expire); |
| 3965 | namespace_unlock(); |
| 3966 | } |
| 3967 | mntput(m); |
| 3968 | return err; |
| 3969 | } |
| 3970 | |
| 3971 | /** |
| 3972 | * mnt_set_expiry - Put a mount on an expiration list |
| 3973 | * @mnt: The mount to list. |
| 3974 | * @expiry_list: The list to add the mount to. |
| 3975 | */ |
| 3976 | void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) |
| 3977 | { |
| 3978 | namespace_lock(); |
| 3979 | |
| 3980 | list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); |
| 3981 | |
| 3982 | namespace_unlock(); |
| 3983 | } |
| 3984 | EXPORT_SYMBOL(mnt_set_expiry); |
| 3985 | |
| 3986 | /* |
| 3987 | * process a list of expirable mountpoints with the intent of discarding any |
| 3988 | * mountpoints that aren't in use and haven't been touched since last we came |
| 3989 | * here |
| 3990 | */ |
| 3991 | void mark_mounts_for_expiry(struct list_head *mounts) |
| 3992 | { |
| 3993 | struct mount *mnt, *next; |
| 3994 | LIST_HEAD(graveyard); |
| 3995 | |
| 3996 | if (list_empty(mounts)) |
| 3997 | return; |
| 3998 | |
| 3999 | namespace_lock(); |
| 4000 | lock_mount_hash(); |
| 4001 | |
| 4002 | /* extract from the expiration list every vfsmount that matches the |
| 4003 | * following criteria: |
| 4004 | * - already mounted |
| 4005 | * - only referenced by its parent vfsmount |
| 4006 | * - still marked for expiry (marked on the last call here; marks are |
| 4007 | * cleared by mntput()) |
| 4008 | */ |
| 4009 | list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { |
| 4010 | if (!is_mounted(&mnt->mnt)) |
| 4011 | continue; |
| 4012 | if (!xchg(&mnt->mnt_expiry_mark, 1) || |
| 4013 | propagate_mount_busy(mnt, 1)) |
| 4014 | continue; |
| 4015 | list_move(&mnt->mnt_expire, &graveyard); |
| 4016 | } |
| 4017 | while (!list_empty(&graveyard)) { |
| 4018 | mnt = list_first_entry(&graveyard, struct mount, mnt_expire); |
| 4019 | touch_mnt_namespace(mnt->mnt_ns); |
| 4020 | umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); |
| 4021 | } |
| 4022 | unlock_mount_hash(); |
| 4023 | namespace_unlock(); |
| 4024 | } |
| 4025 | |
| 4026 | EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); |
| 4027 | |
| 4028 | /* |
| 4029 | * Ripoff of 'select_parent()' |
| 4030 | * |
| 4031 | * search the list of submounts for a given mountpoint, and move any |
| 4032 | * shrinkable submounts to the 'graveyard' list. |
| 4033 | */ |
| 4034 | static int select_submounts(struct mount *parent, struct list_head *graveyard) |
| 4035 | { |
| 4036 | struct mount *this_parent = parent; |
| 4037 | struct list_head *next; |
| 4038 | int found = 0; |
| 4039 | |
| 4040 | repeat: |
| 4041 | next = this_parent->mnt_mounts.next; |
| 4042 | resume: |
| 4043 | while (next != &this_parent->mnt_mounts) { |
| 4044 | struct list_head *tmp = next; |
| 4045 | struct mount *mnt = list_entry(tmp, struct mount, mnt_child); |
| 4046 | |
| 4047 | next = tmp->next; |
| 4048 | if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) |
| 4049 | continue; |
| 4050 | /* |
| 4051 | * Descend a level if the d_mounts list is non-empty. |
| 4052 | */ |
| 4053 | if (!list_empty(&mnt->mnt_mounts)) { |
| 4054 | this_parent = mnt; |
| 4055 | goto repeat; |
| 4056 | } |
| 4057 | |
| 4058 | if (!propagate_mount_busy(mnt, 1)) { |
| 4059 | list_move_tail(&mnt->mnt_expire, graveyard); |
| 4060 | found++; |
| 4061 | } |
| 4062 | } |
| 4063 | /* |
| 4064 | * All done at this level ... ascend and resume the search |
| 4065 | */ |
| 4066 | if (this_parent != parent) { |
| 4067 | next = this_parent->mnt_child.next; |
| 4068 | this_parent = this_parent->mnt_parent; |
| 4069 | goto resume; |
| 4070 | } |
| 4071 | return found; |
| 4072 | } |
| 4073 | |
| 4074 | /* |
| 4075 | * process a list of expirable mountpoints with the intent of discarding any |
| 4076 | * submounts of a specific parent mountpoint |
| 4077 | * |
| 4078 | * mount_lock must be held for write |
| 4079 | */ |
| 4080 | static void shrink_submounts(struct mount *mnt) |
| 4081 | { |
| 4082 | LIST_HEAD(graveyard); |
| 4083 | struct mount *m; |
| 4084 | |
| 4085 | /* extract submounts of 'mountpoint' from the expiration list */ |
| 4086 | while (select_submounts(mnt, &graveyard)) { |
| 4087 | while (!list_empty(&graveyard)) { |
| 4088 | m = list_first_entry(&graveyard, struct mount, |
| 4089 | mnt_expire); |
| 4090 | touch_mnt_namespace(m->mnt_ns); |
| 4091 | umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); |
| 4092 | } |
| 4093 | } |
| 4094 | } |
| 4095 | |
| 4096 | static void *copy_mount_options(const void __user * data) |
| 4097 | { |
| 4098 | char *copy; |
| 4099 | unsigned left, offset; |
| 4100 | |
| 4101 | if (!data) |
| 4102 | return NULL; |
| 4103 | |
| 4104 | copy = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| 4105 | if (!copy) |
| 4106 | return ERR_PTR(-ENOMEM); |
| 4107 | |
| 4108 | left = copy_from_user(copy, data, PAGE_SIZE); |
| 4109 | |
| 4110 | /* |
| 4111 | * Not all architectures have an exact copy_from_user(). Resort to |
| 4112 | * byte at a time. |
| 4113 | */ |
| 4114 | offset = PAGE_SIZE - left; |
| 4115 | while (left) { |
| 4116 | char c; |
| 4117 | if (get_user(c, (const char __user *)data + offset)) |
| 4118 | break; |
| 4119 | copy[offset] = c; |
| 4120 | left--; |
| 4121 | offset++; |
| 4122 | } |
| 4123 | |
| 4124 | if (left == PAGE_SIZE) { |
| 4125 | kfree(copy); |
| 4126 | return ERR_PTR(-EFAULT); |
| 4127 | } |
| 4128 | |
| 4129 | return copy; |
| 4130 | } |
| 4131 | |
| 4132 | static char *copy_mount_string(const void __user *data) |
| 4133 | { |
| 4134 | return data ? strndup_user(data, PATH_MAX) : NULL; |
| 4135 | } |
| 4136 | |
| 4137 | /* |
| 4138 | * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to |
| 4139 | * be given to the mount() call (ie: read-only, no-dev, no-suid etc). |
| 4140 | * |
| 4141 | * data is a (void *) that can point to any structure up to |
| 4142 | * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent |
| 4143 | * information (or be NULL). |
| 4144 | * |
| 4145 | * Pre-0.97 versions of mount() didn't have a flags word. |
| 4146 | * When the flags word was introduced its top half was required |
| 4147 | * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. |
| 4148 | * Therefore, if this magic number is present, it carries no information |
| 4149 | * and must be discarded. |
| 4150 | */ |
| 4151 | int path_mount(const char *dev_name, struct path *path, |
| 4152 | const char *type_page, unsigned long flags, void *data_page) |
| 4153 | { |
| 4154 | unsigned int mnt_flags = 0, sb_flags; |
| 4155 | int ret; |
| 4156 | |
| 4157 | /* Discard magic */ |
| 4158 | if ((flags & MS_MGC_MSK) == MS_MGC_VAL) |
| 4159 | flags &= ~MS_MGC_MSK; |
| 4160 | |
| 4161 | /* Basic sanity checks */ |
| 4162 | if (data_page) |
| 4163 | ((char *)data_page)[PAGE_SIZE - 1] = 0; |
| 4164 | |
| 4165 | if (flags & MS_NOUSER) |
| 4166 | return -EINVAL; |
| 4167 | |
| 4168 | ret = security_sb_mount(dev_name, path, type_page, flags, data_page); |
| 4169 | if (ret) |
| 4170 | return ret; |
| 4171 | if (!may_mount()) |
| 4172 | return -EPERM; |
| 4173 | if (flags & SB_MANDLOCK) |
| 4174 | warn_mandlock(); |
| 4175 | |
| 4176 | /* Default to relatime unless overriden */ |
| 4177 | if (!(flags & MS_NOATIME)) |
| 4178 | mnt_flags |= MNT_RELATIME; |
| 4179 | |
| 4180 | /* Separate the per-mountpoint flags */ |
| 4181 | if (flags & MS_NOSUID) |
| 4182 | mnt_flags |= MNT_NOSUID; |
| 4183 | if (flags & MS_NODEV) |
| 4184 | mnt_flags |= MNT_NODEV; |
| 4185 | if (flags & MS_NOEXEC) |
| 4186 | mnt_flags |= MNT_NOEXEC; |
| 4187 | if (flags & MS_NOATIME) |
| 4188 | mnt_flags |= MNT_NOATIME; |
| 4189 | if (flags & MS_NODIRATIME) |
| 4190 | mnt_flags |= MNT_NODIRATIME; |
| 4191 | if (flags & MS_STRICTATIME) |
| 4192 | mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); |
| 4193 | if (flags & MS_RDONLY) |
| 4194 | mnt_flags |= MNT_READONLY; |
| 4195 | if (flags & MS_NOSYMFOLLOW) |
| 4196 | mnt_flags |= MNT_NOSYMFOLLOW; |
| 4197 | |
| 4198 | /* The default atime for remount is preservation */ |
| 4199 | if ((flags & MS_REMOUNT) && |
| 4200 | ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | |
| 4201 | MS_STRICTATIME)) == 0)) { |
| 4202 | mnt_flags &= ~MNT_ATIME_MASK; |
| 4203 | mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; |
| 4204 | } |
| 4205 | |
| 4206 | sb_flags = flags & (SB_RDONLY | |
| 4207 | SB_SYNCHRONOUS | |
| 4208 | SB_MANDLOCK | |
| 4209 | SB_DIRSYNC | |
| 4210 | SB_SILENT | |
| 4211 | SB_POSIXACL | |
| 4212 | SB_LAZYTIME | |
| 4213 | SB_I_VERSION); |
| 4214 | |
| 4215 | if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) |
| 4216 | return do_reconfigure_mnt(path, mnt_flags); |
| 4217 | if (flags & MS_REMOUNT) |
| 4218 | return do_remount(path, flags, sb_flags, mnt_flags, data_page); |
| 4219 | if (flags & MS_BIND) |
| 4220 | return do_loopback(path, dev_name, flags & MS_REC); |
| 4221 | if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) |
| 4222 | return do_change_type(path, flags); |
| 4223 | if (flags & MS_MOVE) |
| 4224 | return do_move_mount_old(path, dev_name); |
| 4225 | |
| 4226 | return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, |
| 4227 | data_page); |
| 4228 | } |
| 4229 | |
| 4230 | int do_mount(const char *dev_name, const char __user *dir_name, |
| 4231 | const char *type_page, unsigned long flags, void *data_page) |
| 4232 | { |
| 4233 | struct path path; |
| 4234 | int ret; |
| 4235 | |
| 4236 | ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); |
| 4237 | if (ret) |
| 4238 | return ret; |
| 4239 | ret = path_mount(dev_name, &path, type_page, flags, data_page); |
| 4240 | path_put(&path); |
| 4241 | return ret; |
| 4242 | } |
| 4243 | |
| 4244 | static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) |
| 4245 | { |
| 4246 | return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); |
| 4247 | } |
| 4248 | |
| 4249 | static void dec_mnt_namespaces(struct ucounts *ucounts) |
| 4250 | { |
| 4251 | dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); |
| 4252 | } |
| 4253 | |
| 4254 | static void free_mnt_ns(struct mnt_namespace *ns) |
| 4255 | { |
| 4256 | if (!is_anon_ns(ns)) |
| 4257 | ns_free_inum(&ns->ns); |
| 4258 | dec_mnt_namespaces(ns->ucounts); |
| 4259 | mnt_ns_tree_remove(ns); |
| 4260 | } |
| 4261 | |
| 4262 | /* |
| 4263 | * Assign a sequence number so we can detect when we attempt to bind |
| 4264 | * mount a reference to an older mount namespace into the current |
| 4265 | * mount namespace, preventing reference counting loops. A 64bit |
| 4266 | * number incrementing at 10Ghz will take 12,427 years to wrap which |
| 4267 | * is effectively never, so we can ignore the possibility. |
| 4268 | */ |
| 4269 | static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); |
| 4270 | |
| 4271 | static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) |
| 4272 | { |
| 4273 | struct mnt_namespace *new_ns; |
| 4274 | struct ucounts *ucounts; |
| 4275 | int ret; |
| 4276 | |
| 4277 | ucounts = inc_mnt_namespaces(user_ns); |
| 4278 | if (!ucounts) |
| 4279 | return ERR_PTR(-ENOSPC); |
| 4280 | |
| 4281 | new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); |
| 4282 | if (!new_ns) { |
| 4283 | dec_mnt_namespaces(ucounts); |
| 4284 | return ERR_PTR(-ENOMEM); |
| 4285 | } |
| 4286 | if (!anon) { |
| 4287 | ret = ns_alloc_inum(&new_ns->ns); |
| 4288 | if (ret) { |
| 4289 | kfree(new_ns); |
| 4290 | dec_mnt_namespaces(ucounts); |
| 4291 | return ERR_PTR(ret); |
| 4292 | } |
| 4293 | } |
| 4294 | new_ns->ns.ops = &mntns_operations; |
| 4295 | if (!anon) |
| 4296 | new_ns->seq = atomic64_inc_return(&mnt_ns_seq); |
| 4297 | refcount_set(&new_ns->ns.count, 1); |
| 4298 | refcount_set(&new_ns->passive, 1); |
| 4299 | new_ns->mounts = RB_ROOT; |
| 4300 | INIT_LIST_HEAD(&new_ns->mnt_ns_list); |
| 4301 | RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node); |
| 4302 | init_waitqueue_head(&new_ns->poll); |
| 4303 | new_ns->user_ns = get_user_ns(user_ns); |
| 4304 | new_ns->ucounts = ucounts; |
| 4305 | return new_ns; |
| 4306 | } |
| 4307 | |
| 4308 | __latent_entropy |
| 4309 | struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, |
| 4310 | struct user_namespace *user_ns, struct fs_struct *new_fs) |
| 4311 | { |
| 4312 | struct mnt_namespace *new_ns; |
| 4313 | struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; |
| 4314 | struct mount *p, *q; |
| 4315 | struct mount *old; |
| 4316 | struct mount *new; |
| 4317 | int copy_flags; |
| 4318 | |
| 4319 | BUG_ON(!ns); |
| 4320 | |
| 4321 | if (likely(!(flags & CLONE_NEWNS))) { |
| 4322 | get_mnt_ns(ns); |
| 4323 | return ns; |
| 4324 | } |
| 4325 | |
| 4326 | old = ns->root; |
| 4327 | |
| 4328 | new_ns = alloc_mnt_ns(user_ns, false); |
| 4329 | if (IS_ERR(new_ns)) |
| 4330 | return new_ns; |
| 4331 | |
| 4332 | namespace_lock(); |
| 4333 | /* First pass: copy the tree topology */ |
| 4334 | copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; |
| 4335 | if (user_ns != ns->user_ns) |
| 4336 | copy_flags |= CL_SHARED_TO_SLAVE; |
| 4337 | new = copy_tree(old, old->mnt.mnt_root, copy_flags); |
| 4338 | if (IS_ERR(new)) { |
| 4339 | namespace_unlock(); |
| 4340 | ns_free_inum(&new_ns->ns); |
| 4341 | dec_mnt_namespaces(new_ns->ucounts); |
| 4342 | mnt_ns_release(new_ns); |
| 4343 | return ERR_CAST(new); |
| 4344 | } |
| 4345 | if (user_ns != ns->user_ns) { |
| 4346 | lock_mount_hash(); |
| 4347 | lock_mnt_tree(new); |
| 4348 | unlock_mount_hash(); |
| 4349 | } |
| 4350 | new_ns->root = new; |
| 4351 | |
| 4352 | /* |
| 4353 | * Second pass: switch the tsk->fs->* elements and mark new vfsmounts |
| 4354 | * as belonging to new namespace. We have already acquired a private |
| 4355 | * fs_struct, so tsk->fs->lock is not needed. |
| 4356 | */ |
| 4357 | p = old; |
| 4358 | q = new; |
| 4359 | while (p) { |
| 4360 | mnt_add_to_ns(new_ns, q); |
| 4361 | new_ns->nr_mounts++; |
| 4362 | if (new_fs) { |
| 4363 | if (&p->mnt == new_fs->root.mnt) { |
| 4364 | new_fs->root.mnt = mntget(&q->mnt); |
| 4365 | rootmnt = &p->mnt; |
| 4366 | } |
| 4367 | if (&p->mnt == new_fs->pwd.mnt) { |
| 4368 | new_fs->pwd.mnt = mntget(&q->mnt); |
| 4369 | pwdmnt = &p->mnt; |
| 4370 | } |
| 4371 | } |
| 4372 | p = next_mnt(p, old); |
| 4373 | q = next_mnt(q, new); |
| 4374 | if (!q) |
| 4375 | break; |
| 4376 | // an mntns binding we'd skipped? |
| 4377 | while (p->mnt.mnt_root != q->mnt.mnt_root) |
| 4378 | p = next_mnt(skip_mnt_tree(p), old); |
| 4379 | } |
| 4380 | namespace_unlock(); |
| 4381 | |
| 4382 | if (rootmnt) |
| 4383 | mntput(rootmnt); |
| 4384 | if (pwdmnt) |
| 4385 | mntput(pwdmnt); |
| 4386 | |
| 4387 | mnt_ns_tree_add(new_ns); |
| 4388 | return new_ns; |
| 4389 | } |
| 4390 | |
| 4391 | struct dentry *mount_subtree(struct vfsmount *m, const char *name) |
| 4392 | { |
| 4393 | struct mount *mnt = real_mount(m); |
| 4394 | struct mnt_namespace *ns; |
| 4395 | struct super_block *s; |
| 4396 | struct path path; |
| 4397 | int err; |
| 4398 | |
| 4399 | ns = alloc_mnt_ns(&init_user_ns, true); |
| 4400 | if (IS_ERR(ns)) { |
| 4401 | mntput(m); |
| 4402 | return ERR_CAST(ns); |
| 4403 | } |
| 4404 | ns->root = mnt; |
| 4405 | ns->nr_mounts++; |
| 4406 | mnt_add_to_ns(ns, mnt); |
| 4407 | |
| 4408 | err = vfs_path_lookup(m->mnt_root, m, |
| 4409 | name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); |
| 4410 | |
| 4411 | put_mnt_ns(ns); |
| 4412 | |
| 4413 | if (err) |
| 4414 | return ERR_PTR(err); |
| 4415 | |
| 4416 | /* trade a vfsmount reference for active sb one */ |
| 4417 | s = path.mnt->mnt_sb; |
| 4418 | atomic_inc(&s->s_active); |
| 4419 | mntput(path.mnt); |
| 4420 | /* lock the sucker */ |
| 4421 | down_write(&s->s_umount); |
| 4422 | /* ... and return the root of (sub)tree on it */ |
| 4423 | return path.dentry; |
| 4424 | } |
| 4425 | EXPORT_SYMBOL(mount_subtree); |
| 4426 | |
| 4427 | SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, |
| 4428 | char __user *, type, unsigned long, flags, void __user *, data) |
| 4429 | { |
| 4430 | int ret; |
| 4431 | char *kernel_type; |
| 4432 | char *kernel_dev; |
| 4433 | void *options; |
| 4434 | |
| 4435 | kernel_type = copy_mount_string(type); |
| 4436 | ret = PTR_ERR(kernel_type); |
| 4437 | if (IS_ERR(kernel_type)) |
| 4438 | goto out_type; |
| 4439 | |
| 4440 | kernel_dev = copy_mount_string(dev_name); |
| 4441 | ret = PTR_ERR(kernel_dev); |
| 4442 | if (IS_ERR(kernel_dev)) |
| 4443 | goto out_dev; |
| 4444 | |
| 4445 | options = copy_mount_options(data); |
| 4446 | ret = PTR_ERR(options); |
| 4447 | if (IS_ERR(options)) |
| 4448 | goto out_data; |
| 4449 | |
| 4450 | ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); |
| 4451 | |
| 4452 | kfree(options); |
| 4453 | out_data: |
| 4454 | kfree(kernel_dev); |
| 4455 | out_dev: |
| 4456 | kfree(kernel_type); |
| 4457 | out_type: |
| 4458 | return ret; |
| 4459 | } |
| 4460 | |
| 4461 | #define FSMOUNT_VALID_FLAGS \ |
| 4462 | (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ |
| 4463 | MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ |
| 4464 | MOUNT_ATTR_NOSYMFOLLOW) |
| 4465 | |
| 4466 | #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) |
| 4467 | |
| 4468 | #define MOUNT_SETATTR_PROPAGATION_FLAGS \ |
| 4469 | (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) |
| 4470 | |
| 4471 | static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) |
| 4472 | { |
| 4473 | unsigned int mnt_flags = 0; |
| 4474 | |
| 4475 | if (attr_flags & MOUNT_ATTR_RDONLY) |
| 4476 | mnt_flags |= MNT_READONLY; |
| 4477 | if (attr_flags & MOUNT_ATTR_NOSUID) |
| 4478 | mnt_flags |= MNT_NOSUID; |
| 4479 | if (attr_flags & MOUNT_ATTR_NODEV) |
| 4480 | mnt_flags |= MNT_NODEV; |
| 4481 | if (attr_flags & MOUNT_ATTR_NOEXEC) |
| 4482 | mnt_flags |= MNT_NOEXEC; |
| 4483 | if (attr_flags & MOUNT_ATTR_NODIRATIME) |
| 4484 | mnt_flags |= MNT_NODIRATIME; |
| 4485 | if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) |
| 4486 | mnt_flags |= MNT_NOSYMFOLLOW; |
| 4487 | |
| 4488 | return mnt_flags; |
| 4489 | } |
| 4490 | |
| 4491 | /* |
| 4492 | * Create a kernel mount representation for a new, prepared superblock |
| 4493 | * (specified by fs_fd) and attach to an open_tree-like file descriptor. |
| 4494 | */ |
| 4495 | SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, |
| 4496 | unsigned int, attr_flags) |
| 4497 | { |
| 4498 | struct mnt_namespace *ns; |
| 4499 | struct fs_context *fc; |
| 4500 | struct file *file; |
| 4501 | struct path newmount; |
| 4502 | struct mount *mnt; |
| 4503 | unsigned int mnt_flags = 0; |
| 4504 | long ret; |
| 4505 | |
| 4506 | if (!may_mount()) |
| 4507 | return -EPERM; |
| 4508 | |
| 4509 | if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) |
| 4510 | return -EINVAL; |
| 4511 | |
| 4512 | if (attr_flags & ~FSMOUNT_VALID_FLAGS) |
| 4513 | return -EINVAL; |
| 4514 | |
| 4515 | mnt_flags = attr_flags_to_mnt_flags(attr_flags); |
| 4516 | |
| 4517 | switch (attr_flags & MOUNT_ATTR__ATIME) { |
| 4518 | case MOUNT_ATTR_STRICTATIME: |
| 4519 | break; |
| 4520 | case MOUNT_ATTR_NOATIME: |
| 4521 | mnt_flags |= MNT_NOATIME; |
| 4522 | break; |
| 4523 | case MOUNT_ATTR_RELATIME: |
| 4524 | mnt_flags |= MNT_RELATIME; |
| 4525 | break; |
| 4526 | default: |
| 4527 | return -EINVAL; |
| 4528 | } |
| 4529 | |
| 4530 | CLASS(fd, f)(fs_fd); |
| 4531 | if (fd_empty(f)) |
| 4532 | return -EBADF; |
| 4533 | |
| 4534 | if (fd_file(f)->f_op != &fscontext_fops) |
| 4535 | return -EINVAL; |
| 4536 | |
| 4537 | fc = fd_file(f)->private_data; |
| 4538 | |
| 4539 | ret = mutex_lock_interruptible(&fc->uapi_mutex); |
| 4540 | if (ret < 0) |
| 4541 | return ret; |
| 4542 | |
| 4543 | /* There must be a valid superblock or we can't mount it */ |
| 4544 | ret = -EINVAL; |
| 4545 | if (!fc->root) |
| 4546 | goto err_unlock; |
| 4547 | |
| 4548 | ret = -EPERM; |
| 4549 | if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { |
| 4550 | pr_warn("VFS: Mount too revealing\n"); |
| 4551 | goto err_unlock; |
| 4552 | } |
| 4553 | |
| 4554 | ret = -EBUSY; |
| 4555 | if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) |
| 4556 | goto err_unlock; |
| 4557 | |
| 4558 | if (fc->sb_flags & SB_MANDLOCK) |
| 4559 | warn_mandlock(); |
| 4560 | |
| 4561 | newmount.mnt = vfs_create_mount(fc); |
| 4562 | if (IS_ERR(newmount.mnt)) { |
| 4563 | ret = PTR_ERR(newmount.mnt); |
| 4564 | goto err_unlock; |
| 4565 | } |
| 4566 | newmount.dentry = dget(fc->root); |
| 4567 | newmount.mnt->mnt_flags = mnt_flags; |
| 4568 | |
| 4569 | /* We've done the mount bit - now move the file context into more or |
| 4570 | * less the same state as if we'd done an fspick(). We don't want to |
| 4571 | * do any memory allocation or anything like that at this point as we |
| 4572 | * don't want to have to handle any errors incurred. |
| 4573 | */ |
| 4574 | vfs_clean_context(fc); |
| 4575 | |
| 4576 | ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); |
| 4577 | if (IS_ERR(ns)) { |
| 4578 | ret = PTR_ERR(ns); |
| 4579 | goto err_path; |
| 4580 | } |
| 4581 | mnt = real_mount(newmount.mnt); |
| 4582 | ns->root = mnt; |
| 4583 | ns->nr_mounts = 1; |
| 4584 | mnt_add_to_ns(ns, mnt); |
| 4585 | mntget(newmount.mnt); |
| 4586 | |
| 4587 | /* Attach to an apparent O_PATH fd with a note that we need to unmount |
| 4588 | * it, not just simply put it. |
| 4589 | */ |
| 4590 | file = dentry_open(&newmount, O_PATH, fc->cred); |
| 4591 | if (IS_ERR(file)) { |
| 4592 | dissolve_on_fput(newmount.mnt); |
| 4593 | ret = PTR_ERR(file); |
| 4594 | goto err_path; |
| 4595 | } |
| 4596 | file->f_mode |= FMODE_NEED_UNMOUNT; |
| 4597 | |
| 4598 | ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); |
| 4599 | if (ret >= 0) |
| 4600 | fd_install(ret, file); |
| 4601 | else |
| 4602 | fput(file); |
| 4603 | |
| 4604 | err_path: |
| 4605 | path_put(&newmount); |
| 4606 | err_unlock: |
| 4607 | mutex_unlock(&fc->uapi_mutex); |
| 4608 | return ret; |
| 4609 | } |
| 4610 | |
| 4611 | static inline int vfs_move_mount(struct path *from_path, struct path *to_path, |
| 4612 | enum mnt_tree_flags_t mflags) |
| 4613 | { |
| 4614 | int ret; |
| 4615 | |
| 4616 | ret = security_move_mount(from_path, to_path); |
| 4617 | if (ret) |
| 4618 | return ret; |
| 4619 | |
| 4620 | if (mflags & MNT_TREE_PROPAGATION) |
| 4621 | return do_set_group(from_path, to_path); |
| 4622 | |
| 4623 | return do_move_mount(from_path, to_path, mflags); |
| 4624 | } |
| 4625 | |
| 4626 | /* |
| 4627 | * Move a mount from one place to another. In combination with |
| 4628 | * fsopen()/fsmount() this is used to install a new mount and in combination |
| 4629 | * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy |
| 4630 | * a mount subtree. |
| 4631 | * |
| 4632 | * Note the flags value is a combination of MOVE_MOUNT_* flags. |
| 4633 | */ |
| 4634 | SYSCALL_DEFINE5(move_mount, |
| 4635 | int, from_dfd, const char __user *, from_pathname, |
| 4636 | int, to_dfd, const char __user *, to_pathname, |
| 4637 | unsigned int, flags) |
| 4638 | { |
| 4639 | struct path to_path __free(path_put) = {}; |
| 4640 | struct path from_path __free(path_put) = {}; |
| 4641 | struct filename *to_name __free(putname) = NULL; |
| 4642 | struct filename *from_name __free(putname) = NULL; |
| 4643 | unsigned int lflags, uflags; |
| 4644 | enum mnt_tree_flags_t mflags = 0; |
| 4645 | int ret = 0; |
| 4646 | |
| 4647 | if (!may_mount()) |
| 4648 | return -EPERM; |
| 4649 | |
| 4650 | if (flags & ~MOVE_MOUNT__MASK) |
| 4651 | return -EINVAL; |
| 4652 | |
| 4653 | if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == |
| 4654 | (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) |
| 4655 | return -EINVAL; |
| 4656 | |
| 4657 | if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION; |
| 4658 | if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH; |
| 4659 | |
| 4660 | lflags = 0; |
| 4661 | if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; |
| 4662 | if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; |
| 4663 | uflags = 0; |
| 4664 | if (flags & MOVE_MOUNT_F_EMPTY_PATH) uflags = AT_EMPTY_PATH; |
| 4665 | from_name = getname_maybe_null(from_pathname, uflags); |
| 4666 | if (IS_ERR(from_name)) |
| 4667 | return PTR_ERR(from_name); |
| 4668 | |
| 4669 | lflags = 0; |
| 4670 | if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; |
| 4671 | if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; |
| 4672 | uflags = 0; |
| 4673 | if (flags & MOVE_MOUNT_T_EMPTY_PATH) uflags = AT_EMPTY_PATH; |
| 4674 | to_name = getname_maybe_null(to_pathname, uflags); |
| 4675 | if (IS_ERR(to_name)) |
| 4676 | return PTR_ERR(to_name); |
| 4677 | |
| 4678 | if (!to_name && to_dfd >= 0) { |
| 4679 | CLASS(fd_raw, f_to)(to_dfd); |
| 4680 | if (fd_empty(f_to)) |
| 4681 | return -EBADF; |
| 4682 | |
| 4683 | to_path = fd_file(f_to)->f_path; |
| 4684 | path_get(&to_path); |
| 4685 | } else { |
| 4686 | ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL); |
| 4687 | if (ret) |
| 4688 | return ret; |
| 4689 | } |
| 4690 | |
| 4691 | if (!from_name && from_dfd >= 0) { |
| 4692 | CLASS(fd_raw, f_from)(from_dfd); |
| 4693 | if (fd_empty(f_from)) |
| 4694 | return -EBADF; |
| 4695 | |
| 4696 | return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags); |
| 4697 | } |
| 4698 | |
| 4699 | ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL); |
| 4700 | if (ret) |
| 4701 | return ret; |
| 4702 | |
| 4703 | return vfs_move_mount(&from_path, &to_path, mflags); |
| 4704 | } |
| 4705 | |
| 4706 | /* |
| 4707 | * Return true if path is reachable from root |
| 4708 | * |
| 4709 | * namespace_sem or mount_lock is held |
| 4710 | */ |
| 4711 | bool is_path_reachable(struct mount *mnt, struct dentry *dentry, |
| 4712 | const struct path *root) |
| 4713 | { |
| 4714 | while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { |
| 4715 | dentry = mnt->mnt_mountpoint; |
| 4716 | mnt = mnt->mnt_parent; |
| 4717 | } |
| 4718 | return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); |
| 4719 | } |
| 4720 | |
| 4721 | bool path_is_under(const struct path *path1, const struct path *path2) |
| 4722 | { |
| 4723 | bool res; |
| 4724 | read_seqlock_excl(&mount_lock); |
| 4725 | res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); |
| 4726 | read_sequnlock_excl(&mount_lock); |
| 4727 | return res; |
| 4728 | } |
| 4729 | EXPORT_SYMBOL(path_is_under); |
| 4730 | |
| 4731 | /* |
| 4732 | * pivot_root Semantics: |
| 4733 | * Moves the root file system of the current process to the directory put_old, |
| 4734 | * makes new_root as the new root file system of the current process, and sets |
| 4735 | * root/cwd of all processes which had them on the current root to new_root. |
| 4736 | * |
| 4737 | * Restrictions: |
| 4738 | * The new_root and put_old must be directories, and must not be on the |
| 4739 | * same file system as the current process root. The put_old must be |
| 4740 | * underneath new_root, i.e. adding a non-zero number of /.. to the string |
| 4741 | * pointed to by put_old must yield the same directory as new_root. No other |
| 4742 | * file system may be mounted on put_old. After all, new_root is a mountpoint. |
| 4743 | * |
| 4744 | * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. |
| 4745 | * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives |
| 4746 | * in this situation. |
| 4747 | * |
| 4748 | * Notes: |
| 4749 | * - we don't move root/cwd if they are not at the root (reason: if something |
| 4750 | * cared enough to change them, it's probably wrong to force them elsewhere) |
| 4751 | * - it's okay to pick a root that isn't the root of a file system, e.g. |
| 4752 | * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, |
| 4753 | * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root |
| 4754 | * first. |
| 4755 | */ |
| 4756 | SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, |
| 4757 | const char __user *, put_old) |
| 4758 | { |
| 4759 | struct path new, old, root; |
| 4760 | struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; |
| 4761 | struct mountpoint *old_mp, *root_mp; |
| 4762 | int error; |
| 4763 | |
| 4764 | if (!may_mount()) |
| 4765 | return -EPERM; |
| 4766 | |
| 4767 | error = user_path_at(AT_FDCWD, new_root, |
| 4768 | LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); |
| 4769 | if (error) |
| 4770 | goto out0; |
| 4771 | |
| 4772 | error = user_path_at(AT_FDCWD, put_old, |
| 4773 | LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); |
| 4774 | if (error) |
| 4775 | goto out1; |
| 4776 | |
| 4777 | error = security_sb_pivotroot(&old, &new); |
| 4778 | if (error) |
| 4779 | goto out2; |
| 4780 | |
| 4781 | get_fs_root(current->fs, &root); |
| 4782 | old_mp = lock_mount(&old); |
| 4783 | error = PTR_ERR(old_mp); |
| 4784 | if (IS_ERR(old_mp)) |
| 4785 | goto out3; |
| 4786 | |
| 4787 | error = -EINVAL; |
| 4788 | new_mnt = real_mount(new.mnt); |
| 4789 | root_mnt = real_mount(root.mnt); |
| 4790 | old_mnt = real_mount(old.mnt); |
| 4791 | ex_parent = new_mnt->mnt_parent; |
| 4792 | root_parent = root_mnt->mnt_parent; |
| 4793 | if (IS_MNT_SHARED(old_mnt) || |
| 4794 | IS_MNT_SHARED(ex_parent) || |
| 4795 | IS_MNT_SHARED(root_parent)) |
| 4796 | goto out4; |
| 4797 | if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) |
| 4798 | goto out4; |
| 4799 | if (new_mnt->mnt.mnt_flags & MNT_LOCKED) |
| 4800 | goto out4; |
| 4801 | error = -ENOENT; |
| 4802 | if (d_unlinked(new.dentry)) |
| 4803 | goto out4; |
| 4804 | error = -EBUSY; |
| 4805 | if (new_mnt == root_mnt || old_mnt == root_mnt) |
| 4806 | goto out4; /* loop, on the same file system */ |
| 4807 | error = -EINVAL; |
| 4808 | if (!path_mounted(&root)) |
| 4809 | goto out4; /* not a mountpoint */ |
| 4810 | if (!mnt_has_parent(root_mnt)) |
| 4811 | goto out4; /* not attached */ |
| 4812 | if (!path_mounted(&new)) |
| 4813 | goto out4; /* not a mountpoint */ |
| 4814 | if (!mnt_has_parent(new_mnt)) |
| 4815 | goto out4; /* not attached */ |
| 4816 | /* make sure we can reach put_old from new_root */ |
| 4817 | if (!is_path_reachable(old_mnt, old.dentry, &new)) |
| 4818 | goto out4; |
| 4819 | /* make certain new is below the root */ |
| 4820 | if (!is_path_reachable(new_mnt, new.dentry, &root)) |
| 4821 | goto out4; |
| 4822 | lock_mount_hash(); |
| 4823 | umount_mnt(new_mnt); |
| 4824 | root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ |
| 4825 | if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { |
| 4826 | new_mnt->mnt.mnt_flags |= MNT_LOCKED; |
| 4827 | root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; |
| 4828 | } |
| 4829 | /* mount old root on put_old */ |
| 4830 | attach_mnt(root_mnt, old_mnt, old_mp, false); |
| 4831 | /* mount new_root on / */ |
| 4832 | attach_mnt(new_mnt, root_parent, root_mp, false); |
| 4833 | mnt_add_count(root_parent, -1); |
| 4834 | touch_mnt_namespace(current->nsproxy->mnt_ns); |
| 4835 | /* A moved mount should not expire automatically */ |
| 4836 | list_del_init(&new_mnt->mnt_expire); |
| 4837 | put_mountpoint(root_mp); |
| 4838 | unlock_mount_hash(); |
| 4839 | mnt_notify_add(root_mnt); |
| 4840 | mnt_notify_add(new_mnt); |
| 4841 | chroot_fs_refs(&root, &new); |
| 4842 | error = 0; |
| 4843 | out4: |
| 4844 | unlock_mount(old_mp); |
| 4845 | if (!error) |
| 4846 | mntput_no_expire(ex_parent); |
| 4847 | out3: |
| 4848 | path_put(&root); |
| 4849 | out2: |
| 4850 | path_put(&old); |
| 4851 | out1: |
| 4852 | path_put(&new); |
| 4853 | out0: |
| 4854 | return error; |
| 4855 | } |
| 4856 | |
| 4857 | static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) |
| 4858 | { |
| 4859 | unsigned int flags = mnt->mnt.mnt_flags; |
| 4860 | |
| 4861 | /* flags to clear */ |
| 4862 | flags &= ~kattr->attr_clr; |
| 4863 | /* flags to raise */ |
| 4864 | flags |= kattr->attr_set; |
| 4865 | |
| 4866 | return flags; |
| 4867 | } |
| 4868 | |
| 4869 | static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) |
| 4870 | { |
| 4871 | struct vfsmount *m = &mnt->mnt; |
| 4872 | struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; |
| 4873 | |
| 4874 | if (!kattr->mnt_idmap) |
| 4875 | return 0; |
| 4876 | |
| 4877 | /* |
| 4878 | * Creating an idmapped mount with the filesystem wide idmapping |
| 4879 | * doesn't make sense so block that. We don't allow mushy semantics. |
| 4880 | */ |
| 4881 | if (kattr->mnt_userns == m->mnt_sb->s_user_ns) |
| 4882 | return -EINVAL; |
| 4883 | |
| 4884 | /* |
| 4885 | * We only allow an mount to change it's idmapping if it has |
| 4886 | * never been accessible to userspace. |
| 4887 | */ |
| 4888 | if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m)) |
| 4889 | return -EPERM; |
| 4890 | |
| 4891 | /* The underlying filesystem doesn't support idmapped mounts yet. */ |
| 4892 | if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) |
| 4893 | return -EINVAL; |
| 4894 | |
| 4895 | /* The filesystem has turned off idmapped mounts. */ |
| 4896 | if (m->mnt_sb->s_iflags & SB_I_NOIDMAP) |
| 4897 | return -EINVAL; |
| 4898 | |
| 4899 | /* We're not controlling the superblock. */ |
| 4900 | if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) |
| 4901 | return -EPERM; |
| 4902 | |
| 4903 | /* Mount has already been visible in the filesystem hierarchy. */ |
| 4904 | if (!is_anon_ns(mnt->mnt_ns)) |
| 4905 | return -EINVAL; |
| 4906 | |
| 4907 | return 0; |
| 4908 | } |
| 4909 | |
| 4910 | /** |
| 4911 | * mnt_allow_writers() - check whether the attribute change allows writers |
| 4912 | * @kattr: the new mount attributes |
| 4913 | * @mnt: the mount to which @kattr will be applied |
| 4914 | * |
| 4915 | * Check whether thew new mount attributes in @kattr allow concurrent writers. |
| 4916 | * |
| 4917 | * Return: true if writers need to be held, false if not |
| 4918 | */ |
| 4919 | static inline bool mnt_allow_writers(const struct mount_kattr *kattr, |
| 4920 | const struct mount *mnt) |
| 4921 | { |
| 4922 | return (!(kattr->attr_set & MNT_READONLY) || |
| 4923 | (mnt->mnt.mnt_flags & MNT_READONLY)) && |
| 4924 | !kattr->mnt_idmap; |
| 4925 | } |
| 4926 | |
| 4927 | static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) |
| 4928 | { |
| 4929 | struct mount *m; |
| 4930 | int err; |
| 4931 | |
| 4932 | for (m = mnt; m; m = next_mnt(m, mnt)) { |
| 4933 | if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { |
| 4934 | err = -EPERM; |
| 4935 | break; |
| 4936 | } |
| 4937 | |
| 4938 | err = can_idmap_mount(kattr, m); |
| 4939 | if (err) |
| 4940 | break; |
| 4941 | |
| 4942 | if (!mnt_allow_writers(kattr, m)) { |
| 4943 | err = mnt_hold_writers(m); |
| 4944 | if (err) |
| 4945 | break; |
| 4946 | } |
| 4947 | |
| 4948 | if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) |
| 4949 | return 0; |
| 4950 | } |
| 4951 | |
| 4952 | if (err) { |
| 4953 | struct mount *p; |
| 4954 | |
| 4955 | /* |
| 4956 | * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will |
| 4957 | * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all |
| 4958 | * mounts and needs to take care to include the first mount. |
| 4959 | */ |
| 4960 | for (p = mnt; p; p = next_mnt(p, mnt)) { |
| 4961 | /* If we had to hold writers unblock them. */ |
| 4962 | if (p->mnt.mnt_flags & MNT_WRITE_HOLD) |
| 4963 | mnt_unhold_writers(p); |
| 4964 | |
| 4965 | /* |
| 4966 | * We're done once the first mount we changed got |
| 4967 | * MNT_WRITE_HOLD unset. |
| 4968 | */ |
| 4969 | if (p == m) |
| 4970 | break; |
| 4971 | } |
| 4972 | } |
| 4973 | return err; |
| 4974 | } |
| 4975 | |
| 4976 | static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) |
| 4977 | { |
| 4978 | struct mnt_idmap *old_idmap; |
| 4979 | |
| 4980 | if (!kattr->mnt_idmap) |
| 4981 | return; |
| 4982 | |
| 4983 | old_idmap = mnt_idmap(&mnt->mnt); |
| 4984 | |
| 4985 | /* Pairs with smp_load_acquire() in mnt_idmap(). */ |
| 4986 | smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); |
| 4987 | mnt_idmap_put(old_idmap); |
| 4988 | } |
| 4989 | |
| 4990 | static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) |
| 4991 | { |
| 4992 | struct mount *m; |
| 4993 | |
| 4994 | for (m = mnt; m; m = next_mnt(m, mnt)) { |
| 4995 | unsigned int flags; |
| 4996 | |
| 4997 | do_idmap_mount(kattr, m); |
| 4998 | flags = recalc_flags(kattr, m); |
| 4999 | WRITE_ONCE(m->mnt.mnt_flags, flags); |
| 5000 | |
| 5001 | /* If we had to hold writers unblock them. */ |
| 5002 | if (m->mnt.mnt_flags & MNT_WRITE_HOLD) |
| 5003 | mnt_unhold_writers(m); |
| 5004 | |
| 5005 | if (kattr->propagation) |
| 5006 | change_mnt_propagation(m, kattr->propagation); |
| 5007 | if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) |
| 5008 | break; |
| 5009 | } |
| 5010 | touch_mnt_namespace(mnt->mnt_ns); |
| 5011 | } |
| 5012 | |
| 5013 | static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) |
| 5014 | { |
| 5015 | struct mount *mnt = real_mount(path->mnt); |
| 5016 | int err = 0; |
| 5017 | |
| 5018 | if (!path_mounted(path)) |
| 5019 | return -EINVAL; |
| 5020 | |
| 5021 | if (kattr->mnt_userns) { |
| 5022 | struct mnt_idmap *mnt_idmap; |
| 5023 | |
| 5024 | mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); |
| 5025 | if (IS_ERR(mnt_idmap)) |
| 5026 | return PTR_ERR(mnt_idmap); |
| 5027 | kattr->mnt_idmap = mnt_idmap; |
| 5028 | } |
| 5029 | |
| 5030 | if (kattr->propagation) { |
| 5031 | /* |
| 5032 | * Only take namespace_lock() if we're actually changing |
| 5033 | * propagation. |
| 5034 | */ |
| 5035 | namespace_lock(); |
| 5036 | if (kattr->propagation == MS_SHARED) { |
| 5037 | err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE); |
| 5038 | if (err) { |
| 5039 | namespace_unlock(); |
| 5040 | return err; |
| 5041 | } |
| 5042 | } |
| 5043 | } |
| 5044 | |
| 5045 | err = -EINVAL; |
| 5046 | lock_mount_hash(); |
| 5047 | |
| 5048 | /* Ensure that this isn't anything purely vfs internal. */ |
| 5049 | if (!is_mounted(&mnt->mnt)) |
| 5050 | goto out; |
| 5051 | |
| 5052 | /* |
| 5053 | * If this is an attached mount make sure it's located in the callers |
| 5054 | * mount namespace. If it's not don't let the caller interact with it. |
| 5055 | * |
| 5056 | * If this mount doesn't have a parent it's most often simply a |
| 5057 | * detached mount with an anonymous mount namespace. IOW, something |
| 5058 | * that's simply not attached yet. But there are apparently also users |
| 5059 | * that do change mount properties on the rootfs itself. That obviously |
| 5060 | * neither has a parent nor is it a detached mount so we cannot |
| 5061 | * unconditionally check for detached mounts. |
| 5062 | */ |
| 5063 | if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt)) |
| 5064 | goto out; |
| 5065 | |
| 5066 | /* |
| 5067 | * First, we get the mount tree in a shape where we can change mount |
| 5068 | * properties without failure. If we succeeded to do so we commit all |
| 5069 | * changes and if we failed we clean up. |
| 5070 | */ |
| 5071 | err = mount_setattr_prepare(kattr, mnt); |
| 5072 | if (!err) |
| 5073 | mount_setattr_commit(kattr, mnt); |
| 5074 | |
| 5075 | out: |
| 5076 | unlock_mount_hash(); |
| 5077 | |
| 5078 | if (kattr->propagation) { |
| 5079 | if (err) |
| 5080 | cleanup_group_ids(mnt, NULL); |
| 5081 | namespace_unlock(); |
| 5082 | } |
| 5083 | |
| 5084 | return err; |
| 5085 | } |
| 5086 | |
| 5087 | static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, |
| 5088 | struct mount_kattr *kattr) |
| 5089 | { |
| 5090 | struct ns_common *ns; |
| 5091 | struct user_namespace *mnt_userns; |
| 5092 | |
| 5093 | if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) |
| 5094 | return 0; |
| 5095 | |
| 5096 | if (attr->attr_clr & MOUNT_ATTR_IDMAP) { |
| 5097 | /* |
| 5098 | * We can only remove an idmapping if it's never been |
| 5099 | * exposed to userspace. |
| 5100 | */ |
| 5101 | if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE)) |
| 5102 | return -EINVAL; |
| 5103 | |
| 5104 | /* |
| 5105 | * Removal of idmappings is equivalent to setting |
| 5106 | * nop_mnt_idmap. |
| 5107 | */ |
| 5108 | if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) { |
| 5109 | kattr->mnt_idmap = &nop_mnt_idmap; |
| 5110 | return 0; |
| 5111 | } |
| 5112 | } |
| 5113 | |
| 5114 | if (attr->userns_fd > INT_MAX) |
| 5115 | return -EINVAL; |
| 5116 | |
| 5117 | CLASS(fd, f)(attr->userns_fd); |
| 5118 | if (fd_empty(f)) |
| 5119 | return -EBADF; |
| 5120 | |
| 5121 | if (!proc_ns_file(fd_file(f))) |
| 5122 | return -EINVAL; |
| 5123 | |
| 5124 | ns = get_proc_ns(file_inode(fd_file(f))); |
| 5125 | if (ns->ops->type != CLONE_NEWUSER) |
| 5126 | return -EINVAL; |
| 5127 | |
| 5128 | /* |
| 5129 | * The initial idmapping cannot be used to create an idmapped |
| 5130 | * mount. We use the initial idmapping as an indicator of a mount |
| 5131 | * that is not idmapped. It can simply be passed into helpers that |
| 5132 | * are aware of idmapped mounts as a convenient shortcut. A user |
| 5133 | * can just create a dedicated identity mapping to achieve the same |
| 5134 | * result. |
| 5135 | */ |
| 5136 | mnt_userns = container_of(ns, struct user_namespace, ns); |
| 5137 | if (mnt_userns == &init_user_ns) |
| 5138 | return -EPERM; |
| 5139 | |
| 5140 | /* We're not controlling the target namespace. */ |
| 5141 | if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) |
| 5142 | return -EPERM; |
| 5143 | |
| 5144 | kattr->mnt_userns = get_user_ns(mnt_userns); |
| 5145 | return 0; |
| 5146 | } |
| 5147 | |
| 5148 | static int build_mount_kattr(const struct mount_attr *attr, size_t usize, |
| 5149 | struct mount_kattr *kattr) |
| 5150 | { |
| 5151 | if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) |
| 5152 | return -EINVAL; |
| 5153 | if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) |
| 5154 | return -EINVAL; |
| 5155 | kattr->propagation = attr->propagation; |
| 5156 | |
| 5157 | if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) |
| 5158 | return -EINVAL; |
| 5159 | |
| 5160 | kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); |
| 5161 | kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); |
| 5162 | |
| 5163 | /* |
| 5164 | * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, |
| 5165 | * users wanting to transition to a different atime setting cannot |
| 5166 | * simply specify the atime setting in @attr_set, but must also |
| 5167 | * specify MOUNT_ATTR__ATIME in the @attr_clr field. |
| 5168 | * So ensure that MOUNT_ATTR__ATIME can't be partially set in |
| 5169 | * @attr_clr and that @attr_set can't have any atime bits set if |
| 5170 | * MOUNT_ATTR__ATIME isn't set in @attr_clr. |
| 5171 | */ |
| 5172 | if (attr->attr_clr & MOUNT_ATTR__ATIME) { |
| 5173 | if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) |
| 5174 | return -EINVAL; |
| 5175 | |
| 5176 | /* |
| 5177 | * Clear all previous time settings as they are mutually |
| 5178 | * exclusive. |
| 5179 | */ |
| 5180 | kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; |
| 5181 | switch (attr->attr_set & MOUNT_ATTR__ATIME) { |
| 5182 | case MOUNT_ATTR_RELATIME: |
| 5183 | kattr->attr_set |= MNT_RELATIME; |
| 5184 | break; |
| 5185 | case MOUNT_ATTR_NOATIME: |
| 5186 | kattr->attr_set |= MNT_NOATIME; |
| 5187 | break; |
| 5188 | case MOUNT_ATTR_STRICTATIME: |
| 5189 | break; |
| 5190 | default: |
| 5191 | return -EINVAL; |
| 5192 | } |
| 5193 | } else { |
| 5194 | if (attr->attr_set & MOUNT_ATTR__ATIME) |
| 5195 | return -EINVAL; |
| 5196 | } |
| 5197 | |
| 5198 | return build_mount_idmapped(attr, usize, kattr); |
| 5199 | } |
| 5200 | |
| 5201 | static void finish_mount_kattr(struct mount_kattr *kattr) |
| 5202 | { |
| 5203 | if (kattr->mnt_userns) { |
| 5204 | put_user_ns(kattr->mnt_userns); |
| 5205 | kattr->mnt_userns = NULL; |
| 5206 | } |
| 5207 | |
| 5208 | if (kattr->mnt_idmap) |
| 5209 | mnt_idmap_put(kattr->mnt_idmap); |
| 5210 | } |
| 5211 | |
| 5212 | static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize, |
| 5213 | struct mount_kattr *kattr) |
| 5214 | { |
| 5215 | int ret; |
| 5216 | struct mount_attr attr; |
| 5217 | |
| 5218 | BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); |
| 5219 | |
| 5220 | if (unlikely(usize > PAGE_SIZE)) |
| 5221 | return -E2BIG; |
| 5222 | if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) |
| 5223 | return -EINVAL; |
| 5224 | |
| 5225 | if (!may_mount()) |
| 5226 | return -EPERM; |
| 5227 | |
| 5228 | ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); |
| 5229 | if (ret) |
| 5230 | return ret; |
| 5231 | |
| 5232 | /* Don't bother walking through the mounts if this is a nop. */ |
| 5233 | if (attr.attr_set == 0 && |
| 5234 | attr.attr_clr == 0 && |
| 5235 | attr.propagation == 0) |
| 5236 | return 0; /* Tell caller to not bother. */ |
| 5237 | |
| 5238 | ret = build_mount_kattr(&attr, usize, kattr); |
| 5239 | if (ret < 0) |
| 5240 | return ret; |
| 5241 | |
| 5242 | return 1; |
| 5243 | } |
| 5244 | |
| 5245 | SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, |
| 5246 | unsigned int, flags, struct mount_attr __user *, uattr, |
| 5247 | size_t, usize) |
| 5248 | { |
| 5249 | int err; |
| 5250 | struct path target; |
| 5251 | struct mount_kattr kattr; |
| 5252 | unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; |
| 5253 | |
| 5254 | if (flags & ~(AT_EMPTY_PATH | |
| 5255 | AT_RECURSIVE | |
| 5256 | AT_SYMLINK_NOFOLLOW | |
| 5257 | AT_NO_AUTOMOUNT)) |
| 5258 | return -EINVAL; |
| 5259 | |
| 5260 | if (flags & AT_NO_AUTOMOUNT) |
| 5261 | lookup_flags &= ~LOOKUP_AUTOMOUNT; |
| 5262 | if (flags & AT_SYMLINK_NOFOLLOW) |
| 5263 | lookup_flags &= ~LOOKUP_FOLLOW; |
| 5264 | if (flags & AT_EMPTY_PATH) |
| 5265 | lookup_flags |= LOOKUP_EMPTY; |
| 5266 | |
| 5267 | kattr = (struct mount_kattr) { |
| 5268 | .lookup_flags = lookup_flags, |
| 5269 | }; |
| 5270 | |
| 5271 | if (flags & AT_RECURSIVE) |
| 5272 | kattr.kflags |= MOUNT_KATTR_RECURSE; |
| 5273 | |
| 5274 | err = wants_mount_setattr(uattr, usize, &kattr); |
| 5275 | if (err <= 0) |
| 5276 | return err; |
| 5277 | |
| 5278 | err = user_path_at(dfd, path, kattr.lookup_flags, &target); |
| 5279 | if (!err) { |
| 5280 | err = do_mount_setattr(&target, &kattr); |
| 5281 | path_put(&target); |
| 5282 | } |
| 5283 | finish_mount_kattr(&kattr); |
| 5284 | return err; |
| 5285 | } |
| 5286 | |
| 5287 | SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename, |
| 5288 | unsigned, flags, struct mount_attr __user *, uattr, |
| 5289 | size_t, usize) |
| 5290 | { |
| 5291 | struct file __free(fput) *file = NULL; |
| 5292 | int fd; |
| 5293 | |
| 5294 | if (!uattr && usize) |
| 5295 | return -EINVAL; |
| 5296 | |
| 5297 | file = vfs_open_tree(dfd, filename, flags); |
| 5298 | if (IS_ERR(file)) |
| 5299 | return PTR_ERR(file); |
| 5300 | |
| 5301 | if (uattr) { |
| 5302 | int ret; |
| 5303 | struct mount_kattr kattr = {}; |
| 5304 | |
| 5305 | kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE; |
| 5306 | if (flags & AT_RECURSIVE) |
| 5307 | kattr.kflags |= MOUNT_KATTR_RECURSE; |
| 5308 | |
| 5309 | ret = wants_mount_setattr(uattr, usize, &kattr); |
| 5310 | if (ret > 0) { |
| 5311 | ret = do_mount_setattr(&file->f_path, &kattr); |
| 5312 | finish_mount_kattr(&kattr); |
| 5313 | } |
| 5314 | if (ret) |
| 5315 | return ret; |
| 5316 | } |
| 5317 | |
| 5318 | fd = get_unused_fd_flags(flags & O_CLOEXEC); |
| 5319 | if (fd < 0) |
| 5320 | return fd; |
| 5321 | |
| 5322 | fd_install(fd, no_free_ptr(file)); |
| 5323 | return fd; |
| 5324 | } |
| 5325 | |
| 5326 | int show_path(struct seq_file *m, struct dentry *root) |
| 5327 | { |
| 5328 | if (root->d_sb->s_op->show_path) |
| 5329 | return root->d_sb->s_op->show_path(m, root); |
| 5330 | |
| 5331 | seq_dentry(m, root, " \t\n\\"); |
| 5332 | return 0; |
| 5333 | } |
| 5334 | |
| 5335 | static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) |
| 5336 | { |
| 5337 | struct mount *mnt = mnt_find_id_at(ns, id); |
| 5338 | |
| 5339 | if (!mnt || mnt->mnt_id_unique != id) |
| 5340 | return NULL; |
| 5341 | |
| 5342 | return &mnt->mnt; |
| 5343 | } |
| 5344 | |
| 5345 | struct kstatmount { |
| 5346 | struct statmount __user *buf; |
| 5347 | size_t bufsize; |
| 5348 | struct vfsmount *mnt; |
| 5349 | struct mnt_idmap *idmap; |
| 5350 | u64 mask; |
| 5351 | struct path root; |
| 5352 | struct seq_file seq; |
| 5353 | |
| 5354 | /* Must be last --ends in a flexible-array member. */ |
| 5355 | struct statmount sm; |
| 5356 | }; |
| 5357 | |
| 5358 | static u64 mnt_to_attr_flags(struct vfsmount *mnt) |
| 5359 | { |
| 5360 | unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); |
| 5361 | u64 attr_flags = 0; |
| 5362 | |
| 5363 | if (mnt_flags & MNT_READONLY) |
| 5364 | attr_flags |= MOUNT_ATTR_RDONLY; |
| 5365 | if (mnt_flags & MNT_NOSUID) |
| 5366 | attr_flags |= MOUNT_ATTR_NOSUID; |
| 5367 | if (mnt_flags & MNT_NODEV) |
| 5368 | attr_flags |= MOUNT_ATTR_NODEV; |
| 5369 | if (mnt_flags & MNT_NOEXEC) |
| 5370 | attr_flags |= MOUNT_ATTR_NOEXEC; |
| 5371 | if (mnt_flags & MNT_NODIRATIME) |
| 5372 | attr_flags |= MOUNT_ATTR_NODIRATIME; |
| 5373 | if (mnt_flags & MNT_NOSYMFOLLOW) |
| 5374 | attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; |
| 5375 | |
| 5376 | if (mnt_flags & MNT_NOATIME) |
| 5377 | attr_flags |= MOUNT_ATTR_NOATIME; |
| 5378 | else if (mnt_flags & MNT_RELATIME) |
| 5379 | attr_flags |= MOUNT_ATTR_RELATIME; |
| 5380 | else |
| 5381 | attr_flags |= MOUNT_ATTR_STRICTATIME; |
| 5382 | |
| 5383 | if (is_idmapped_mnt(mnt)) |
| 5384 | attr_flags |= MOUNT_ATTR_IDMAP; |
| 5385 | |
| 5386 | return attr_flags; |
| 5387 | } |
| 5388 | |
| 5389 | static u64 mnt_to_propagation_flags(struct mount *m) |
| 5390 | { |
| 5391 | u64 propagation = 0; |
| 5392 | |
| 5393 | if (IS_MNT_SHARED(m)) |
| 5394 | propagation |= MS_SHARED; |
| 5395 | if (IS_MNT_SLAVE(m)) |
| 5396 | propagation |= MS_SLAVE; |
| 5397 | if (IS_MNT_UNBINDABLE(m)) |
| 5398 | propagation |= MS_UNBINDABLE; |
| 5399 | if (!propagation) |
| 5400 | propagation |= MS_PRIVATE; |
| 5401 | |
| 5402 | return propagation; |
| 5403 | } |
| 5404 | |
| 5405 | static void statmount_sb_basic(struct kstatmount *s) |
| 5406 | { |
| 5407 | struct super_block *sb = s->mnt->mnt_sb; |
| 5408 | |
| 5409 | s->sm.mask |= STATMOUNT_SB_BASIC; |
| 5410 | s->sm.sb_dev_major = MAJOR(sb->s_dev); |
| 5411 | s->sm.sb_dev_minor = MINOR(sb->s_dev); |
| 5412 | s->sm.sb_magic = sb->s_magic; |
| 5413 | s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); |
| 5414 | } |
| 5415 | |
| 5416 | static void statmount_mnt_basic(struct kstatmount *s) |
| 5417 | { |
| 5418 | struct mount *m = real_mount(s->mnt); |
| 5419 | |
| 5420 | s->sm.mask |= STATMOUNT_MNT_BASIC; |
| 5421 | s->sm.mnt_id = m->mnt_id_unique; |
| 5422 | s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; |
| 5423 | s->sm.mnt_id_old = m->mnt_id; |
| 5424 | s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; |
| 5425 | s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt); |
| 5426 | s->sm.mnt_propagation = mnt_to_propagation_flags(m); |
| 5427 | s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0; |
| 5428 | s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; |
| 5429 | } |
| 5430 | |
| 5431 | static void statmount_propagate_from(struct kstatmount *s) |
| 5432 | { |
| 5433 | struct mount *m = real_mount(s->mnt); |
| 5434 | |
| 5435 | s->sm.mask |= STATMOUNT_PROPAGATE_FROM; |
| 5436 | if (IS_MNT_SLAVE(m)) |
| 5437 | s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root); |
| 5438 | } |
| 5439 | |
| 5440 | static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) |
| 5441 | { |
| 5442 | int ret; |
| 5443 | size_t start = seq->count; |
| 5444 | |
| 5445 | ret = show_path(seq, s->mnt->mnt_root); |
| 5446 | if (ret) |
| 5447 | return ret; |
| 5448 | |
| 5449 | if (unlikely(seq_has_overflowed(seq))) |
| 5450 | return -EAGAIN; |
| 5451 | |
| 5452 | /* |
| 5453 | * Unescape the result. It would be better if supplied string was not |
| 5454 | * escaped in the first place, but that's a pretty invasive change. |
| 5455 | */ |
| 5456 | seq->buf[seq->count] = '\0'; |
| 5457 | seq->count = start; |
| 5458 | seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); |
| 5459 | return 0; |
| 5460 | } |
| 5461 | |
| 5462 | static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) |
| 5463 | { |
| 5464 | struct vfsmount *mnt = s->mnt; |
| 5465 | struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; |
| 5466 | int err; |
| 5467 | |
| 5468 | err = seq_path_root(seq, &mnt_path, &s->root, ""); |
| 5469 | return err == SEQ_SKIP ? 0 : err; |
| 5470 | } |
| 5471 | |
| 5472 | static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) |
| 5473 | { |
| 5474 | struct super_block *sb = s->mnt->mnt_sb; |
| 5475 | |
| 5476 | seq_puts(seq, sb->s_type->name); |
| 5477 | return 0; |
| 5478 | } |
| 5479 | |
| 5480 | static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq) |
| 5481 | { |
| 5482 | struct super_block *sb = s->mnt->mnt_sb; |
| 5483 | |
| 5484 | if (sb->s_subtype) |
| 5485 | seq_puts(seq, sb->s_subtype); |
| 5486 | } |
| 5487 | |
| 5488 | static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq) |
| 5489 | { |
| 5490 | struct super_block *sb = s->mnt->mnt_sb; |
| 5491 | struct mount *r = real_mount(s->mnt); |
| 5492 | |
| 5493 | if (sb->s_op->show_devname) { |
| 5494 | size_t start = seq->count; |
| 5495 | int ret; |
| 5496 | |
| 5497 | ret = sb->s_op->show_devname(seq, s->mnt->mnt_root); |
| 5498 | if (ret) |
| 5499 | return ret; |
| 5500 | |
| 5501 | if (unlikely(seq_has_overflowed(seq))) |
| 5502 | return -EAGAIN; |
| 5503 | |
| 5504 | /* Unescape the result */ |
| 5505 | seq->buf[seq->count] = '\0'; |
| 5506 | seq->count = start; |
| 5507 | seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); |
| 5508 | } else { |
| 5509 | seq_puts(seq, r->mnt_devname); |
| 5510 | } |
| 5511 | return 0; |
| 5512 | } |
| 5513 | |
| 5514 | static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns) |
| 5515 | { |
| 5516 | s->sm.mask |= STATMOUNT_MNT_NS_ID; |
| 5517 | s->sm.mnt_ns_id = ns->seq; |
| 5518 | } |
| 5519 | |
| 5520 | static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq) |
| 5521 | { |
| 5522 | struct vfsmount *mnt = s->mnt; |
| 5523 | struct super_block *sb = mnt->mnt_sb; |
| 5524 | size_t start = seq->count; |
| 5525 | int err; |
| 5526 | |
| 5527 | err = security_sb_show_options(seq, sb); |
| 5528 | if (err) |
| 5529 | return err; |
| 5530 | |
| 5531 | if (sb->s_op->show_options) { |
| 5532 | err = sb->s_op->show_options(seq, mnt->mnt_root); |
| 5533 | if (err) |
| 5534 | return err; |
| 5535 | } |
| 5536 | |
| 5537 | if (unlikely(seq_has_overflowed(seq))) |
| 5538 | return -EAGAIN; |
| 5539 | |
| 5540 | if (seq->count == start) |
| 5541 | return 0; |
| 5542 | |
| 5543 | /* skip leading comma */ |
| 5544 | memmove(seq->buf + start, seq->buf + start + 1, |
| 5545 | seq->count - start - 1); |
| 5546 | seq->count--; |
| 5547 | |
| 5548 | return 0; |
| 5549 | } |
| 5550 | |
| 5551 | static inline int statmount_opt_process(struct seq_file *seq, size_t start) |
| 5552 | { |
| 5553 | char *buf_end, *opt_end, *src, *dst; |
| 5554 | int count = 0; |
| 5555 | |
| 5556 | if (unlikely(seq_has_overflowed(seq))) |
| 5557 | return -EAGAIN; |
| 5558 | |
| 5559 | buf_end = seq->buf + seq->count; |
| 5560 | dst = seq->buf + start; |
| 5561 | src = dst + 1; /* skip initial comma */ |
| 5562 | |
| 5563 | if (src >= buf_end) { |
| 5564 | seq->count = start; |
| 5565 | return 0; |
| 5566 | } |
| 5567 | |
| 5568 | *buf_end = '\0'; |
| 5569 | for (; src < buf_end; src = opt_end + 1) { |
| 5570 | opt_end = strchrnul(src, ','); |
| 5571 | *opt_end = '\0'; |
| 5572 | dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1; |
| 5573 | if (WARN_ON_ONCE(++count == INT_MAX)) |
| 5574 | return -EOVERFLOW; |
| 5575 | } |
| 5576 | seq->count = dst - 1 - seq->buf; |
| 5577 | return count; |
| 5578 | } |
| 5579 | |
| 5580 | static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq) |
| 5581 | { |
| 5582 | struct vfsmount *mnt = s->mnt; |
| 5583 | struct super_block *sb = mnt->mnt_sb; |
| 5584 | size_t start = seq->count; |
| 5585 | int err; |
| 5586 | |
| 5587 | if (!sb->s_op->show_options) |
| 5588 | return 0; |
| 5589 | |
| 5590 | err = sb->s_op->show_options(seq, mnt->mnt_root); |
| 5591 | if (err) |
| 5592 | return err; |
| 5593 | |
| 5594 | err = statmount_opt_process(seq, start); |
| 5595 | if (err < 0) |
| 5596 | return err; |
| 5597 | |
| 5598 | s->sm.opt_num = err; |
| 5599 | return 0; |
| 5600 | } |
| 5601 | |
| 5602 | static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq) |
| 5603 | { |
| 5604 | struct vfsmount *mnt = s->mnt; |
| 5605 | struct super_block *sb = mnt->mnt_sb; |
| 5606 | size_t start = seq->count; |
| 5607 | int err; |
| 5608 | |
| 5609 | err = security_sb_show_options(seq, sb); |
| 5610 | if (err) |
| 5611 | return err; |
| 5612 | |
| 5613 | err = statmount_opt_process(seq, start); |
| 5614 | if (err < 0) |
| 5615 | return err; |
| 5616 | |
| 5617 | s->sm.opt_sec_num = err; |
| 5618 | return 0; |
| 5619 | } |
| 5620 | |
| 5621 | static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq) |
| 5622 | { |
| 5623 | int ret; |
| 5624 | |
| 5625 | ret = statmount_mnt_idmap(s->idmap, seq, true); |
| 5626 | if (ret < 0) |
| 5627 | return ret; |
| 5628 | |
| 5629 | s->sm.mnt_uidmap_num = ret; |
| 5630 | /* |
| 5631 | * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid |
| 5632 | * mappings. This allows userspace to distinguish between a |
| 5633 | * non-idmapped mount and an idmapped mount where none of the |
| 5634 | * individual mappings are valid in the caller's idmapping. |
| 5635 | */ |
| 5636 | if (is_valid_mnt_idmap(s->idmap)) |
| 5637 | s->sm.mask |= STATMOUNT_MNT_UIDMAP; |
| 5638 | return 0; |
| 5639 | } |
| 5640 | |
| 5641 | static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq) |
| 5642 | { |
| 5643 | int ret; |
| 5644 | |
| 5645 | ret = statmount_mnt_idmap(s->idmap, seq, false); |
| 5646 | if (ret < 0) |
| 5647 | return ret; |
| 5648 | |
| 5649 | s->sm.mnt_gidmap_num = ret; |
| 5650 | /* |
| 5651 | * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid |
| 5652 | * mappings. This allows userspace to distinguish between a |
| 5653 | * non-idmapped mount and an idmapped mount where none of the |
| 5654 | * individual mappings are valid in the caller's idmapping. |
| 5655 | */ |
| 5656 | if (is_valid_mnt_idmap(s->idmap)) |
| 5657 | s->sm.mask |= STATMOUNT_MNT_GIDMAP; |
| 5658 | return 0; |
| 5659 | } |
| 5660 | |
| 5661 | static int statmount_string(struct kstatmount *s, u64 flag) |
| 5662 | { |
| 5663 | int ret = 0; |
| 5664 | size_t kbufsize; |
| 5665 | struct seq_file *seq = &s->seq; |
| 5666 | struct statmount *sm = &s->sm; |
| 5667 | u32 start, *offp; |
| 5668 | |
| 5669 | /* Reserve an empty string at the beginning for any unset offsets */ |
| 5670 | if (!seq->count) |
| 5671 | seq_putc(seq, 0); |
| 5672 | |
| 5673 | start = seq->count; |
| 5674 | |
| 5675 | switch (flag) { |
| 5676 | case STATMOUNT_FS_TYPE: |
| 5677 | offp = &sm->fs_type; |
| 5678 | ret = statmount_fs_type(s, seq); |
| 5679 | break; |
| 5680 | case STATMOUNT_MNT_ROOT: |
| 5681 | offp = &sm->mnt_root; |
| 5682 | ret = statmount_mnt_root(s, seq); |
| 5683 | break; |
| 5684 | case STATMOUNT_MNT_POINT: |
| 5685 | offp = &sm->mnt_point; |
| 5686 | ret = statmount_mnt_point(s, seq); |
| 5687 | break; |
| 5688 | case STATMOUNT_MNT_OPTS: |
| 5689 | offp = &sm->mnt_opts; |
| 5690 | ret = statmount_mnt_opts(s, seq); |
| 5691 | break; |
| 5692 | case STATMOUNT_OPT_ARRAY: |
| 5693 | offp = &sm->opt_array; |
| 5694 | ret = statmount_opt_array(s, seq); |
| 5695 | break; |
| 5696 | case STATMOUNT_OPT_SEC_ARRAY: |
| 5697 | offp = &sm->opt_sec_array; |
| 5698 | ret = statmount_opt_sec_array(s, seq); |
| 5699 | break; |
| 5700 | case STATMOUNT_FS_SUBTYPE: |
| 5701 | offp = &sm->fs_subtype; |
| 5702 | statmount_fs_subtype(s, seq); |
| 5703 | break; |
| 5704 | case STATMOUNT_SB_SOURCE: |
| 5705 | offp = &sm->sb_source; |
| 5706 | ret = statmount_sb_source(s, seq); |
| 5707 | break; |
| 5708 | case STATMOUNT_MNT_UIDMAP: |
| 5709 | sm->mnt_uidmap = start; |
| 5710 | ret = statmount_mnt_uidmap(s, seq); |
| 5711 | break; |
| 5712 | case STATMOUNT_MNT_GIDMAP: |
| 5713 | sm->mnt_gidmap = start; |
| 5714 | ret = statmount_mnt_gidmap(s, seq); |
| 5715 | break; |
| 5716 | default: |
| 5717 | WARN_ON_ONCE(true); |
| 5718 | return -EINVAL; |
| 5719 | } |
| 5720 | |
| 5721 | /* |
| 5722 | * If nothing was emitted, return to avoid setting the flag |
| 5723 | * and terminating the buffer. |
| 5724 | */ |
| 5725 | if (seq->count == start) |
| 5726 | return ret; |
| 5727 | if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) |
| 5728 | return -EOVERFLOW; |
| 5729 | if (kbufsize >= s->bufsize) |
| 5730 | return -EOVERFLOW; |
| 5731 | |
| 5732 | /* signal a retry */ |
| 5733 | if (unlikely(seq_has_overflowed(seq))) |
| 5734 | return -EAGAIN; |
| 5735 | |
| 5736 | if (ret) |
| 5737 | return ret; |
| 5738 | |
| 5739 | seq->buf[seq->count++] = '\0'; |
| 5740 | sm->mask |= flag; |
| 5741 | *offp = start; |
| 5742 | return 0; |
| 5743 | } |
| 5744 | |
| 5745 | static int copy_statmount_to_user(struct kstatmount *s) |
| 5746 | { |
| 5747 | struct statmount *sm = &s->sm; |
| 5748 | struct seq_file *seq = &s->seq; |
| 5749 | char __user *str = ((char __user *)s->buf) + sizeof(*sm); |
| 5750 | size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); |
| 5751 | |
| 5752 | if (seq->count && copy_to_user(str, seq->buf, seq->count)) |
| 5753 | return -EFAULT; |
| 5754 | |
| 5755 | /* Return the number of bytes copied to the buffer */ |
| 5756 | sm->size = copysize + seq->count; |
| 5757 | if (copy_to_user(s->buf, sm, copysize)) |
| 5758 | return -EFAULT; |
| 5759 | |
| 5760 | return 0; |
| 5761 | } |
| 5762 | |
| 5763 | static struct mount *listmnt_next(struct mount *curr, bool reverse) |
| 5764 | { |
| 5765 | struct rb_node *node; |
| 5766 | |
| 5767 | if (reverse) |
| 5768 | node = rb_prev(&curr->mnt_node); |
| 5769 | else |
| 5770 | node = rb_next(&curr->mnt_node); |
| 5771 | |
| 5772 | return node_to_mount(node); |
| 5773 | } |
| 5774 | |
| 5775 | static int grab_requested_root(struct mnt_namespace *ns, struct path *root) |
| 5776 | { |
| 5777 | struct mount *first, *child; |
| 5778 | |
| 5779 | rwsem_assert_held(&namespace_sem); |
| 5780 | |
| 5781 | /* We're looking at our own ns, just use get_fs_root. */ |
| 5782 | if (ns == current->nsproxy->mnt_ns) { |
| 5783 | get_fs_root(current->fs, root); |
| 5784 | return 0; |
| 5785 | } |
| 5786 | |
| 5787 | /* |
| 5788 | * We have to find the first mount in our ns and use that, however it |
| 5789 | * may not exist, so handle that properly. |
| 5790 | */ |
| 5791 | if (mnt_ns_empty(ns)) |
| 5792 | return -ENOENT; |
| 5793 | |
| 5794 | first = child = ns->root; |
| 5795 | for (;;) { |
| 5796 | child = listmnt_next(child, false); |
| 5797 | if (!child) |
| 5798 | return -ENOENT; |
| 5799 | if (child->mnt_parent == first) |
| 5800 | break; |
| 5801 | } |
| 5802 | |
| 5803 | root->mnt = mntget(&child->mnt); |
| 5804 | root->dentry = dget(root->mnt->mnt_root); |
| 5805 | return 0; |
| 5806 | } |
| 5807 | |
| 5808 | /* This must be updated whenever a new flag is added */ |
| 5809 | #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \ |
| 5810 | STATMOUNT_MNT_BASIC | \ |
| 5811 | STATMOUNT_PROPAGATE_FROM | \ |
| 5812 | STATMOUNT_MNT_ROOT | \ |
| 5813 | STATMOUNT_MNT_POINT | \ |
| 5814 | STATMOUNT_FS_TYPE | \ |
| 5815 | STATMOUNT_MNT_NS_ID | \ |
| 5816 | STATMOUNT_MNT_OPTS | \ |
| 5817 | STATMOUNT_FS_SUBTYPE | \ |
| 5818 | STATMOUNT_SB_SOURCE | \ |
| 5819 | STATMOUNT_OPT_ARRAY | \ |
| 5820 | STATMOUNT_OPT_SEC_ARRAY | \ |
| 5821 | STATMOUNT_SUPPORTED_MASK | \ |
| 5822 | STATMOUNT_MNT_UIDMAP | \ |
| 5823 | STATMOUNT_MNT_GIDMAP) |
| 5824 | |
| 5825 | static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id, |
| 5826 | struct mnt_namespace *ns) |
| 5827 | { |
| 5828 | struct path root __free(path_put) = {}; |
| 5829 | struct mount *m; |
| 5830 | int err; |
| 5831 | |
| 5832 | /* Has the namespace already been emptied? */ |
| 5833 | if (mnt_ns_id && mnt_ns_empty(ns)) |
| 5834 | return -ENOENT; |
| 5835 | |
| 5836 | s->mnt = lookup_mnt_in_ns(mnt_id, ns); |
| 5837 | if (!s->mnt) |
| 5838 | return -ENOENT; |
| 5839 | |
| 5840 | err = grab_requested_root(ns, &root); |
| 5841 | if (err) |
| 5842 | return err; |
| 5843 | |
| 5844 | /* |
| 5845 | * Don't trigger audit denials. We just want to determine what |
| 5846 | * mounts to show users. |
| 5847 | */ |
| 5848 | m = real_mount(s->mnt); |
| 5849 | if (!is_path_reachable(m, m->mnt.mnt_root, &root) && |
| 5850 | !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) |
| 5851 | return -EPERM; |
| 5852 | |
| 5853 | err = security_sb_statfs(s->mnt->mnt_root); |
| 5854 | if (err) |
| 5855 | return err; |
| 5856 | |
| 5857 | s->root = root; |
| 5858 | |
| 5859 | /* |
| 5860 | * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap |
| 5861 | * can change concurrently as we only hold the read-side of the |
| 5862 | * namespace semaphore and mount properties may change with only |
| 5863 | * the mount lock held. |
| 5864 | * |
| 5865 | * We could sample the mount lock sequence counter to detect |
| 5866 | * those changes and retry. But it's not worth it. Worst that |
| 5867 | * happens is that the mnt->mnt_idmap pointer is already changed |
| 5868 | * while mnt->mnt_flags isn't or vica versa. So what. |
| 5869 | * |
| 5870 | * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved |
| 5871 | * via READ_ONCE()/WRITE_ONCE() and guard against theoretical |
| 5872 | * torn read/write. That's all we care about right now. |
| 5873 | */ |
| 5874 | s->idmap = mnt_idmap(s->mnt); |
| 5875 | if (s->mask & STATMOUNT_MNT_BASIC) |
| 5876 | statmount_mnt_basic(s); |
| 5877 | |
| 5878 | if (s->mask & STATMOUNT_SB_BASIC) |
| 5879 | statmount_sb_basic(s); |
| 5880 | |
| 5881 | if (s->mask & STATMOUNT_PROPAGATE_FROM) |
| 5882 | statmount_propagate_from(s); |
| 5883 | |
| 5884 | if (s->mask & STATMOUNT_FS_TYPE) |
| 5885 | err = statmount_string(s, STATMOUNT_FS_TYPE); |
| 5886 | |
| 5887 | if (!err && s->mask & STATMOUNT_MNT_ROOT) |
| 5888 | err = statmount_string(s, STATMOUNT_MNT_ROOT); |
| 5889 | |
| 5890 | if (!err && s->mask & STATMOUNT_MNT_POINT) |
| 5891 | err = statmount_string(s, STATMOUNT_MNT_POINT); |
| 5892 | |
| 5893 | if (!err && s->mask & STATMOUNT_MNT_OPTS) |
| 5894 | err = statmount_string(s, STATMOUNT_MNT_OPTS); |
| 5895 | |
| 5896 | if (!err && s->mask & STATMOUNT_OPT_ARRAY) |
| 5897 | err = statmount_string(s, STATMOUNT_OPT_ARRAY); |
| 5898 | |
| 5899 | if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY) |
| 5900 | err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY); |
| 5901 | |
| 5902 | if (!err && s->mask & STATMOUNT_FS_SUBTYPE) |
| 5903 | err = statmount_string(s, STATMOUNT_FS_SUBTYPE); |
| 5904 | |
| 5905 | if (!err && s->mask & STATMOUNT_SB_SOURCE) |
| 5906 | err = statmount_string(s, STATMOUNT_SB_SOURCE); |
| 5907 | |
| 5908 | if (!err && s->mask & STATMOUNT_MNT_UIDMAP) |
| 5909 | err = statmount_string(s, STATMOUNT_MNT_UIDMAP); |
| 5910 | |
| 5911 | if (!err && s->mask & STATMOUNT_MNT_GIDMAP) |
| 5912 | err = statmount_string(s, STATMOUNT_MNT_GIDMAP); |
| 5913 | |
| 5914 | if (!err && s->mask & STATMOUNT_MNT_NS_ID) |
| 5915 | statmount_mnt_ns_id(s, ns); |
| 5916 | |
| 5917 | if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) { |
| 5918 | s->sm.mask |= STATMOUNT_SUPPORTED_MASK; |
| 5919 | s->sm.supported_mask = STATMOUNT_SUPPORTED; |
| 5920 | } |
| 5921 | |
| 5922 | if (err) |
| 5923 | return err; |
| 5924 | |
| 5925 | /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */ |
| 5926 | WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask); |
| 5927 | |
| 5928 | return 0; |
| 5929 | } |
| 5930 | |
| 5931 | static inline bool retry_statmount(const long ret, size_t *seq_size) |
| 5932 | { |
| 5933 | if (likely(ret != -EAGAIN)) |
| 5934 | return false; |
| 5935 | if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) |
| 5936 | return false; |
| 5937 | if (unlikely(*seq_size > MAX_RW_COUNT)) |
| 5938 | return false; |
| 5939 | return true; |
| 5940 | } |
| 5941 | |
| 5942 | #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \ |
| 5943 | STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \ |
| 5944 | STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \ |
| 5945 | STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \ |
| 5946 | STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP) |
| 5947 | |
| 5948 | static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, |
| 5949 | struct statmount __user *buf, size_t bufsize, |
| 5950 | size_t seq_size) |
| 5951 | { |
| 5952 | if (!access_ok(buf, bufsize)) |
| 5953 | return -EFAULT; |
| 5954 | |
| 5955 | memset(ks, 0, sizeof(*ks)); |
| 5956 | ks->mask = kreq->param; |
| 5957 | ks->buf = buf; |
| 5958 | ks->bufsize = bufsize; |
| 5959 | |
| 5960 | if (ks->mask & STATMOUNT_STRING_REQ) { |
| 5961 | if (bufsize == sizeof(ks->sm)) |
| 5962 | return -EOVERFLOW; |
| 5963 | |
| 5964 | ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); |
| 5965 | if (!ks->seq.buf) |
| 5966 | return -ENOMEM; |
| 5967 | |
| 5968 | ks->seq.size = seq_size; |
| 5969 | } |
| 5970 | |
| 5971 | return 0; |
| 5972 | } |
| 5973 | |
| 5974 | static int copy_mnt_id_req(const struct mnt_id_req __user *req, |
| 5975 | struct mnt_id_req *kreq) |
| 5976 | { |
| 5977 | int ret; |
| 5978 | size_t usize; |
| 5979 | |
| 5980 | BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1); |
| 5981 | |
| 5982 | ret = get_user(usize, &req->size); |
| 5983 | if (ret) |
| 5984 | return -EFAULT; |
| 5985 | if (unlikely(usize > PAGE_SIZE)) |
| 5986 | return -E2BIG; |
| 5987 | if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) |
| 5988 | return -EINVAL; |
| 5989 | memset(kreq, 0, sizeof(*kreq)); |
| 5990 | ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); |
| 5991 | if (ret) |
| 5992 | return ret; |
| 5993 | if (kreq->spare != 0) |
| 5994 | return -EINVAL; |
| 5995 | /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ |
| 5996 | if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET) |
| 5997 | return -EINVAL; |
| 5998 | return 0; |
| 5999 | } |
| 6000 | |
| 6001 | /* |
| 6002 | * If the user requested a specific mount namespace id, look that up and return |
| 6003 | * that, or if not simply grab a passive reference on our mount namespace and |
| 6004 | * return that. |
| 6005 | */ |
| 6006 | static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq) |
| 6007 | { |
| 6008 | struct mnt_namespace *mnt_ns; |
| 6009 | |
| 6010 | if (kreq->mnt_ns_id && kreq->spare) |
| 6011 | return ERR_PTR(-EINVAL); |
| 6012 | |
| 6013 | if (kreq->mnt_ns_id) |
| 6014 | return lookup_mnt_ns(kreq->mnt_ns_id); |
| 6015 | |
| 6016 | if (kreq->spare) { |
| 6017 | struct ns_common *ns; |
| 6018 | |
| 6019 | CLASS(fd, f)(kreq->spare); |
| 6020 | if (fd_empty(f)) |
| 6021 | return ERR_PTR(-EBADF); |
| 6022 | |
| 6023 | if (!proc_ns_file(fd_file(f))) |
| 6024 | return ERR_PTR(-EINVAL); |
| 6025 | |
| 6026 | ns = get_proc_ns(file_inode(fd_file(f))); |
| 6027 | if (ns->ops->type != CLONE_NEWNS) |
| 6028 | return ERR_PTR(-EINVAL); |
| 6029 | |
| 6030 | mnt_ns = to_mnt_ns(ns); |
| 6031 | } else { |
| 6032 | mnt_ns = current->nsproxy->mnt_ns; |
| 6033 | } |
| 6034 | |
| 6035 | refcount_inc(&mnt_ns->passive); |
| 6036 | return mnt_ns; |
| 6037 | } |
| 6038 | |
| 6039 | SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, |
| 6040 | struct statmount __user *, buf, size_t, bufsize, |
| 6041 | unsigned int, flags) |
| 6042 | { |
| 6043 | struct mnt_namespace *ns __free(mnt_ns_release) = NULL; |
| 6044 | struct kstatmount *ks __free(kfree) = NULL; |
| 6045 | struct mnt_id_req kreq; |
| 6046 | /* We currently support retrieval of 3 strings. */ |
| 6047 | size_t seq_size = 3 * PATH_MAX; |
| 6048 | int ret; |
| 6049 | |
| 6050 | if (flags) |
| 6051 | return -EINVAL; |
| 6052 | |
| 6053 | ret = copy_mnt_id_req(req, &kreq); |
| 6054 | if (ret) |
| 6055 | return ret; |
| 6056 | |
| 6057 | ns = grab_requested_mnt_ns(&kreq); |
| 6058 | if (!ns) |
| 6059 | return -ENOENT; |
| 6060 | |
| 6061 | if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && |
| 6062 | !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) |
| 6063 | return -ENOENT; |
| 6064 | |
| 6065 | ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT); |
| 6066 | if (!ks) |
| 6067 | return -ENOMEM; |
| 6068 | |
| 6069 | retry: |
| 6070 | ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size); |
| 6071 | if (ret) |
| 6072 | return ret; |
| 6073 | |
| 6074 | scoped_guard(rwsem_read, &namespace_sem) |
| 6075 | ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns); |
| 6076 | |
| 6077 | if (!ret) |
| 6078 | ret = copy_statmount_to_user(ks); |
| 6079 | kvfree(ks->seq.buf); |
| 6080 | if (retry_statmount(ret, &seq_size)) |
| 6081 | goto retry; |
| 6082 | return ret; |
| 6083 | } |
| 6084 | |
| 6085 | static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id, |
| 6086 | u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids, |
| 6087 | bool reverse) |
| 6088 | { |
| 6089 | struct path root __free(path_put) = {}; |
| 6090 | struct path orig; |
| 6091 | struct mount *r, *first; |
| 6092 | ssize_t ret; |
| 6093 | |
| 6094 | rwsem_assert_held(&namespace_sem); |
| 6095 | |
| 6096 | ret = grab_requested_root(ns, &root); |
| 6097 | if (ret) |
| 6098 | return ret; |
| 6099 | |
| 6100 | if (mnt_parent_id == LSMT_ROOT) { |
| 6101 | orig = root; |
| 6102 | } else { |
| 6103 | orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns); |
| 6104 | if (!orig.mnt) |
| 6105 | return -ENOENT; |
| 6106 | orig.dentry = orig.mnt->mnt_root; |
| 6107 | } |
| 6108 | |
| 6109 | /* |
| 6110 | * Don't trigger audit denials. We just want to determine what |
| 6111 | * mounts to show users. |
| 6112 | */ |
| 6113 | if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) && |
| 6114 | !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) |
| 6115 | return -EPERM; |
| 6116 | |
| 6117 | ret = security_sb_statfs(orig.dentry); |
| 6118 | if (ret) |
| 6119 | return ret; |
| 6120 | |
| 6121 | if (!last_mnt_id) { |
| 6122 | if (reverse) |
| 6123 | first = node_to_mount(ns->mnt_last_node); |
| 6124 | else |
| 6125 | first = node_to_mount(ns->mnt_first_node); |
| 6126 | } else { |
| 6127 | if (reverse) |
| 6128 | first = mnt_find_id_at_reverse(ns, last_mnt_id - 1); |
| 6129 | else |
| 6130 | first = mnt_find_id_at(ns, last_mnt_id + 1); |
| 6131 | } |
| 6132 | |
| 6133 | for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) { |
| 6134 | if (r->mnt_id_unique == mnt_parent_id) |
| 6135 | continue; |
| 6136 | if (!is_path_reachable(r, r->mnt.mnt_root, &orig)) |
| 6137 | continue; |
| 6138 | *mnt_ids = r->mnt_id_unique; |
| 6139 | mnt_ids++; |
| 6140 | nr_mnt_ids--; |
| 6141 | ret++; |
| 6142 | } |
| 6143 | return ret; |
| 6144 | } |
| 6145 | |
| 6146 | SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, |
| 6147 | u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) |
| 6148 | { |
| 6149 | u64 *kmnt_ids __free(kvfree) = NULL; |
| 6150 | const size_t maxcount = 1000000; |
| 6151 | struct mnt_namespace *ns __free(mnt_ns_release) = NULL; |
| 6152 | struct mnt_id_req kreq; |
| 6153 | u64 last_mnt_id; |
| 6154 | ssize_t ret; |
| 6155 | |
| 6156 | if (flags & ~LISTMOUNT_REVERSE) |
| 6157 | return -EINVAL; |
| 6158 | |
| 6159 | /* |
| 6160 | * If the mount namespace really has more than 1 million mounts the |
| 6161 | * caller must iterate over the mount namespace (and reconsider their |
| 6162 | * system design...). |
| 6163 | */ |
| 6164 | if (unlikely(nr_mnt_ids > maxcount)) |
| 6165 | return -EOVERFLOW; |
| 6166 | |
| 6167 | if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) |
| 6168 | return -EFAULT; |
| 6169 | |
| 6170 | ret = copy_mnt_id_req(req, &kreq); |
| 6171 | if (ret) |
| 6172 | return ret; |
| 6173 | |
| 6174 | last_mnt_id = kreq.param; |
| 6175 | /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ |
| 6176 | if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET) |
| 6177 | return -EINVAL; |
| 6178 | |
| 6179 | kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids), |
| 6180 | GFP_KERNEL_ACCOUNT); |
| 6181 | if (!kmnt_ids) |
| 6182 | return -ENOMEM; |
| 6183 | |
| 6184 | ns = grab_requested_mnt_ns(&kreq); |
| 6185 | if (!ns) |
| 6186 | return -ENOENT; |
| 6187 | |
| 6188 | if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && |
| 6189 | !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) |
| 6190 | return -ENOENT; |
| 6191 | |
| 6192 | /* |
| 6193 | * We only need to guard against mount topology changes as |
| 6194 | * listmount() doesn't care about any mount properties. |
| 6195 | */ |
| 6196 | scoped_guard(rwsem_read, &namespace_sem) |
| 6197 | ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids, |
| 6198 | nr_mnt_ids, (flags & LISTMOUNT_REVERSE)); |
| 6199 | if (ret <= 0) |
| 6200 | return ret; |
| 6201 | |
| 6202 | if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids))) |
| 6203 | return -EFAULT; |
| 6204 | |
| 6205 | return ret; |
| 6206 | } |
| 6207 | |
| 6208 | static void __init init_mount_tree(void) |
| 6209 | { |
| 6210 | struct vfsmount *mnt; |
| 6211 | struct mount *m; |
| 6212 | struct mnt_namespace *ns; |
| 6213 | struct path root; |
| 6214 | |
| 6215 | mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); |
| 6216 | if (IS_ERR(mnt)) |
| 6217 | panic("Can't create rootfs"); |
| 6218 | |
| 6219 | ns = alloc_mnt_ns(&init_user_ns, false); |
| 6220 | if (IS_ERR(ns)) |
| 6221 | panic("Can't allocate initial namespace"); |
| 6222 | m = real_mount(mnt); |
| 6223 | ns->root = m; |
| 6224 | ns->nr_mounts = 1; |
| 6225 | mnt_add_to_ns(ns, m); |
| 6226 | init_task.nsproxy->mnt_ns = ns; |
| 6227 | get_mnt_ns(ns); |
| 6228 | |
| 6229 | root.mnt = mnt; |
| 6230 | root.dentry = mnt->mnt_root; |
| 6231 | mnt->mnt_flags |= MNT_LOCKED; |
| 6232 | |
| 6233 | set_fs_pwd(current->fs, &root); |
| 6234 | set_fs_root(current->fs, &root); |
| 6235 | |
| 6236 | mnt_ns_tree_add(ns); |
| 6237 | } |
| 6238 | |
| 6239 | void __init mnt_init(void) |
| 6240 | { |
| 6241 | int err; |
| 6242 | |
| 6243 | mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), |
| 6244 | 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); |
| 6245 | |
| 6246 | mount_hashtable = alloc_large_system_hash("Mount-cache", |
| 6247 | sizeof(struct hlist_head), |
| 6248 | mhash_entries, 19, |
| 6249 | HASH_ZERO, |
| 6250 | &m_hash_shift, &m_hash_mask, 0, 0); |
| 6251 | mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", |
| 6252 | sizeof(struct hlist_head), |
| 6253 | mphash_entries, 19, |
| 6254 | HASH_ZERO, |
| 6255 | &mp_hash_shift, &mp_hash_mask, 0, 0); |
| 6256 | |
| 6257 | if (!mount_hashtable || !mountpoint_hashtable) |
| 6258 | panic("Failed to allocate mount hash table\n"); |
| 6259 | |
| 6260 | kernfs_init(); |
| 6261 | |
| 6262 | err = sysfs_init(); |
| 6263 | if (err) |
| 6264 | printk(KERN_WARNING "%s: sysfs_init error: %d\n", |
| 6265 | __func__, err); |
| 6266 | fs_kobj = kobject_create_and_add("fs", NULL); |
| 6267 | if (!fs_kobj) |
| 6268 | printk(KERN_WARNING "%s: kobj create error\n", __func__); |
| 6269 | shmem_init(); |
| 6270 | init_rootfs(); |
| 6271 | init_mount_tree(); |
| 6272 | } |
| 6273 | |
| 6274 | void put_mnt_ns(struct mnt_namespace *ns) |
| 6275 | { |
| 6276 | if (!refcount_dec_and_test(&ns->ns.count)) |
| 6277 | return; |
| 6278 | namespace_lock(); |
| 6279 | lock_mount_hash(); |
| 6280 | umount_tree(ns->root, 0); |
| 6281 | unlock_mount_hash(); |
| 6282 | namespace_unlock(); |
| 6283 | free_mnt_ns(ns); |
| 6284 | } |
| 6285 | |
| 6286 | struct vfsmount *kern_mount(struct file_system_type *type) |
| 6287 | { |
| 6288 | struct vfsmount *mnt; |
| 6289 | mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); |
| 6290 | if (!IS_ERR(mnt)) { |
| 6291 | /* |
| 6292 | * it is a longterm mount, don't release mnt until |
| 6293 | * we unmount before file sys is unregistered |
| 6294 | */ |
| 6295 | real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; |
| 6296 | } |
| 6297 | return mnt; |
| 6298 | } |
| 6299 | EXPORT_SYMBOL_GPL(kern_mount); |
| 6300 | |
| 6301 | void kern_unmount(struct vfsmount *mnt) |
| 6302 | { |
| 6303 | /* release long term mount so mount point can be released */ |
| 6304 | if (!IS_ERR(mnt)) { |
| 6305 | mnt_make_shortterm(mnt); |
| 6306 | synchronize_rcu(); /* yecchhh... */ |
| 6307 | mntput(mnt); |
| 6308 | } |
| 6309 | } |
| 6310 | EXPORT_SYMBOL(kern_unmount); |
| 6311 | |
| 6312 | void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) |
| 6313 | { |
| 6314 | unsigned int i; |
| 6315 | |
| 6316 | for (i = 0; i < num; i++) |
| 6317 | mnt_make_shortterm(mnt[i]); |
| 6318 | synchronize_rcu_expedited(); |
| 6319 | for (i = 0; i < num; i++) |
| 6320 | mntput(mnt[i]); |
| 6321 | } |
| 6322 | EXPORT_SYMBOL(kern_unmount_array); |
| 6323 | |
| 6324 | bool our_mnt(struct vfsmount *mnt) |
| 6325 | { |
| 6326 | return check_mnt(real_mount(mnt)); |
| 6327 | } |
| 6328 | |
| 6329 | bool current_chrooted(void) |
| 6330 | { |
| 6331 | /* Does the current process have a non-standard root */ |
| 6332 | struct path ns_root; |
| 6333 | struct path fs_root; |
| 6334 | bool chrooted; |
| 6335 | |
| 6336 | /* Find the namespace root */ |
| 6337 | ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; |
| 6338 | ns_root.dentry = ns_root.mnt->mnt_root; |
| 6339 | path_get(&ns_root); |
| 6340 | while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) |
| 6341 | ; |
| 6342 | |
| 6343 | get_fs_root(current->fs, &fs_root); |
| 6344 | |
| 6345 | chrooted = !path_equal(&fs_root, &ns_root); |
| 6346 | |
| 6347 | path_put(&fs_root); |
| 6348 | path_put(&ns_root); |
| 6349 | |
| 6350 | return chrooted; |
| 6351 | } |
| 6352 | |
| 6353 | static bool mnt_already_visible(struct mnt_namespace *ns, |
| 6354 | const struct super_block *sb, |
| 6355 | int *new_mnt_flags) |
| 6356 | { |
| 6357 | int new_flags = *new_mnt_flags; |
| 6358 | struct mount *mnt, *n; |
| 6359 | bool visible = false; |
| 6360 | |
| 6361 | down_read(&namespace_sem); |
| 6362 | rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { |
| 6363 | struct mount *child; |
| 6364 | int mnt_flags; |
| 6365 | |
| 6366 | if (mnt->mnt.mnt_sb->s_type != sb->s_type) |
| 6367 | continue; |
| 6368 | |
| 6369 | /* This mount is not fully visible if it's root directory |
| 6370 | * is not the root directory of the filesystem. |
| 6371 | */ |
| 6372 | if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) |
| 6373 | continue; |
| 6374 | |
| 6375 | /* A local view of the mount flags */ |
| 6376 | mnt_flags = mnt->mnt.mnt_flags; |
| 6377 | |
| 6378 | /* Don't miss readonly hidden in the superblock flags */ |
| 6379 | if (sb_rdonly(mnt->mnt.mnt_sb)) |
| 6380 | mnt_flags |= MNT_LOCK_READONLY; |
| 6381 | |
| 6382 | /* Verify the mount flags are equal to or more permissive |
| 6383 | * than the proposed new mount. |
| 6384 | */ |
| 6385 | if ((mnt_flags & MNT_LOCK_READONLY) && |
| 6386 | !(new_flags & MNT_READONLY)) |
| 6387 | continue; |
| 6388 | if ((mnt_flags & MNT_LOCK_ATIME) && |
| 6389 | ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) |
| 6390 | continue; |
| 6391 | |
| 6392 | /* This mount is not fully visible if there are any |
| 6393 | * locked child mounts that cover anything except for |
| 6394 | * empty directories. |
| 6395 | */ |
| 6396 | list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { |
| 6397 | struct inode *inode = child->mnt_mountpoint->d_inode; |
| 6398 | /* Only worry about locked mounts */ |
| 6399 | if (!(child->mnt.mnt_flags & MNT_LOCKED)) |
| 6400 | continue; |
| 6401 | /* Is the directory permanently empty? */ |
| 6402 | if (!is_empty_dir_inode(inode)) |
| 6403 | goto next; |
| 6404 | } |
| 6405 | /* Preserve the locked attributes */ |
| 6406 | *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ |
| 6407 | MNT_LOCK_ATIME); |
| 6408 | visible = true; |
| 6409 | goto found; |
| 6410 | next: ; |
| 6411 | } |
| 6412 | found: |
| 6413 | up_read(&namespace_sem); |
| 6414 | return visible; |
| 6415 | } |
| 6416 | |
| 6417 | static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) |
| 6418 | { |
| 6419 | const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; |
| 6420 | struct mnt_namespace *ns = current->nsproxy->mnt_ns; |
| 6421 | unsigned long s_iflags; |
| 6422 | |
| 6423 | if (ns->user_ns == &init_user_ns) |
| 6424 | return false; |
| 6425 | |
| 6426 | /* Can this filesystem be too revealing? */ |
| 6427 | s_iflags = sb->s_iflags; |
| 6428 | if (!(s_iflags & SB_I_USERNS_VISIBLE)) |
| 6429 | return false; |
| 6430 | |
| 6431 | if ((s_iflags & required_iflags) != required_iflags) { |
| 6432 | WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", |
| 6433 | required_iflags); |
| 6434 | return true; |
| 6435 | } |
| 6436 | |
| 6437 | return !mnt_already_visible(ns, sb, new_mnt_flags); |
| 6438 | } |
| 6439 | |
| 6440 | bool mnt_may_suid(struct vfsmount *mnt) |
| 6441 | { |
| 6442 | /* |
| 6443 | * Foreign mounts (accessed via fchdir or through /proc |
| 6444 | * symlinks) are always treated as if they are nosuid. This |
| 6445 | * prevents namespaces from trusting potentially unsafe |
| 6446 | * suid/sgid bits, file caps, or security labels that originate |
| 6447 | * in other namespaces. |
| 6448 | */ |
| 6449 | return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && |
| 6450 | current_in_userns(mnt->mnt_sb->s_user_ns); |
| 6451 | } |
| 6452 | |
| 6453 | static struct ns_common *mntns_get(struct task_struct *task) |
| 6454 | { |
| 6455 | struct ns_common *ns = NULL; |
| 6456 | struct nsproxy *nsproxy; |
| 6457 | |
| 6458 | task_lock(task); |
| 6459 | nsproxy = task->nsproxy; |
| 6460 | if (nsproxy) { |
| 6461 | ns = &nsproxy->mnt_ns->ns; |
| 6462 | get_mnt_ns(to_mnt_ns(ns)); |
| 6463 | } |
| 6464 | task_unlock(task); |
| 6465 | |
| 6466 | return ns; |
| 6467 | } |
| 6468 | |
| 6469 | static void mntns_put(struct ns_common *ns) |
| 6470 | { |
| 6471 | put_mnt_ns(to_mnt_ns(ns)); |
| 6472 | } |
| 6473 | |
| 6474 | static int mntns_install(struct nsset *nsset, struct ns_common *ns) |
| 6475 | { |
| 6476 | struct nsproxy *nsproxy = nsset->nsproxy; |
| 6477 | struct fs_struct *fs = nsset->fs; |
| 6478 | struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; |
| 6479 | struct user_namespace *user_ns = nsset->cred->user_ns; |
| 6480 | struct path root; |
| 6481 | int err; |
| 6482 | |
| 6483 | if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || |
| 6484 | !ns_capable(user_ns, CAP_SYS_CHROOT) || |
| 6485 | !ns_capable(user_ns, CAP_SYS_ADMIN)) |
| 6486 | return -EPERM; |
| 6487 | |
| 6488 | if (is_anon_ns(mnt_ns)) |
| 6489 | return -EINVAL; |
| 6490 | |
| 6491 | if (fs->users != 1) |
| 6492 | return -EINVAL; |
| 6493 | |
| 6494 | get_mnt_ns(mnt_ns); |
| 6495 | old_mnt_ns = nsproxy->mnt_ns; |
| 6496 | nsproxy->mnt_ns = mnt_ns; |
| 6497 | |
| 6498 | /* Find the root */ |
| 6499 | err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, |
| 6500 | "/", LOOKUP_DOWN, &root); |
| 6501 | if (err) { |
| 6502 | /* revert to old namespace */ |
| 6503 | nsproxy->mnt_ns = old_mnt_ns; |
| 6504 | put_mnt_ns(mnt_ns); |
| 6505 | return err; |
| 6506 | } |
| 6507 | |
| 6508 | put_mnt_ns(old_mnt_ns); |
| 6509 | |
| 6510 | /* Update the pwd and root */ |
| 6511 | set_fs_pwd(fs, &root); |
| 6512 | set_fs_root(fs, &root); |
| 6513 | |
| 6514 | path_put(&root); |
| 6515 | return 0; |
| 6516 | } |
| 6517 | |
| 6518 | static struct user_namespace *mntns_owner(struct ns_common *ns) |
| 6519 | { |
| 6520 | return to_mnt_ns(ns)->user_ns; |
| 6521 | } |
| 6522 | |
| 6523 | const struct proc_ns_operations mntns_operations = { |
| 6524 | .name = "mnt", |
| 6525 | .type = CLONE_NEWNS, |
| 6526 | .get = mntns_get, |
| 6527 | .put = mntns_put, |
| 6528 | .install = mntns_install, |
| 6529 | .owner = mntns_owner, |
| 6530 | }; |
| 6531 | |
| 6532 | #ifdef CONFIG_SYSCTL |
| 6533 | static const struct ctl_table fs_namespace_sysctls[] = { |
| 6534 | { |
| 6535 | .procname = "mount-max", |
| 6536 | .data = &sysctl_mount_max, |
| 6537 | .maxlen = sizeof(unsigned int), |
| 6538 | .mode = 0644, |
| 6539 | .proc_handler = proc_dointvec_minmax, |
| 6540 | .extra1 = SYSCTL_ONE, |
| 6541 | }, |
| 6542 | }; |
| 6543 | |
| 6544 | static int __init init_fs_namespace_sysctls(void) |
| 6545 | { |
| 6546 | register_sysctl_init("fs", fs_namespace_sysctls); |
| 6547 | return 0; |
| 6548 | } |
| 6549 | fs_initcall(init_fs_namespace_sysctls); |
| 6550 | |
| 6551 | #endif /* CONFIG_SYSCTL */ |