don't bother with vfsmount_lock in mounts_poll()
[linux-2.6-block.git] / fs / namespace.c
... / ...
CommitLineData
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/user_namespace.h>
16#include <linux/namei.h>
17#include <linux/security.h>
18#include <linux/idr.h>
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/init.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
24#include <linux/proc_ns.h>
25#include <linux/magic.h>
26#include "pnode.h"
27#include "internal.h"
28
29#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30#define HASH_SIZE (1UL << HASH_SHIFT)
31
32static int event;
33static DEFINE_IDA(mnt_id_ida);
34static DEFINE_IDA(mnt_group_ida);
35static DEFINE_SPINLOCK(mnt_id_lock);
36static int mnt_id_start = 0;
37static int mnt_group_start = 1;
38
39static struct list_head *mount_hashtable __read_mostly;
40static struct list_head *mountpoint_hashtable __read_mostly;
41static struct kmem_cache *mnt_cache __read_mostly;
42static DECLARE_RWSEM(namespace_sem);
43
44/* /sys/fs */
45struct kobject *fs_kobj;
46EXPORT_SYMBOL_GPL(fs_kobj);
47
48/*
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
52 *
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
55 */
56DEFINE_BRLOCK(vfsmount_lock);
57
58static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59{
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
64}
65
66/*
67 * allocation is serialized by namespace_sem, but we need the spinlock to
68 * serialize with freeing.
69 */
70static int mnt_alloc_id(struct mount *mnt)
71{
72 int res;
73
74retry:
75 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
76 spin_lock(&mnt_id_lock);
77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
78 if (!res)
79 mnt_id_start = mnt->mnt_id + 1;
80 spin_unlock(&mnt_id_lock);
81 if (res == -EAGAIN)
82 goto retry;
83
84 return res;
85}
86
87static void mnt_free_id(struct mount *mnt)
88{
89 int id = mnt->mnt_id;
90 spin_lock(&mnt_id_lock);
91 ida_remove(&mnt_id_ida, id);
92 if (mnt_id_start > id)
93 mnt_id_start = id;
94 spin_unlock(&mnt_id_lock);
95}
96
97/*
98 * Allocate a new peer group ID
99 *
100 * mnt_group_ida is protected by namespace_sem
101 */
102static int mnt_alloc_group_id(struct mount *mnt)
103{
104 int res;
105
106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 return -ENOMEM;
108
109 res = ida_get_new_above(&mnt_group_ida,
110 mnt_group_start,
111 &mnt->mnt_group_id);
112 if (!res)
113 mnt_group_start = mnt->mnt_group_id + 1;
114
115 return res;
116}
117
118/*
119 * Release a peer group ID
120 */
121void mnt_release_group_id(struct mount *mnt)
122{
123 int id = mnt->mnt_group_id;
124 ida_remove(&mnt_group_ida, id);
125 if (mnt_group_start > id)
126 mnt_group_start = id;
127 mnt->mnt_group_id = 0;
128}
129
130/*
131 * vfsmount lock must be held for read
132 */
133static inline void mnt_add_count(struct mount *mnt, int n)
134{
135#ifdef CONFIG_SMP
136 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
137#else
138 preempt_disable();
139 mnt->mnt_count += n;
140 preempt_enable();
141#endif
142}
143
144/*
145 * vfsmount lock must be held for write
146 */
147unsigned int mnt_get_count(struct mount *mnt)
148{
149#ifdef CONFIG_SMP
150 unsigned int count = 0;
151 int cpu;
152
153 for_each_possible_cpu(cpu) {
154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
155 }
156
157 return count;
158#else
159 return mnt->mnt_count;
160#endif
161}
162
163static struct mount *alloc_vfsmnt(const char *name)
164{
165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 if (mnt) {
167 int err;
168
169 err = mnt_alloc_id(mnt);
170 if (err)
171 goto out_free_cache;
172
173 if (name) {
174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 if (!mnt->mnt_devname)
176 goto out_free_id;
177 }
178
179#ifdef CONFIG_SMP
180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 if (!mnt->mnt_pcp)
182 goto out_free_devname;
183
184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
185#else
186 mnt->mnt_count = 1;
187 mnt->mnt_writers = 0;
188#endif
189
190 INIT_LIST_HEAD(&mnt->mnt_hash);
191 INIT_LIST_HEAD(&mnt->mnt_child);
192 INIT_LIST_HEAD(&mnt->mnt_mounts);
193 INIT_LIST_HEAD(&mnt->mnt_list);
194 INIT_LIST_HEAD(&mnt->mnt_expire);
195 INIT_LIST_HEAD(&mnt->mnt_share);
196 INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 INIT_LIST_HEAD(&mnt->mnt_slave);
198#ifdef CONFIG_FSNOTIFY
199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
200#endif
201 }
202 return mnt;
203
204#ifdef CONFIG_SMP
205out_free_devname:
206 kfree(mnt->mnt_devname);
207#endif
208out_free_id:
209 mnt_free_id(mnt);
210out_free_cache:
211 kmem_cache_free(mnt_cache, mnt);
212 return NULL;
213}
214
215/*
216 * Most r/o checks on a fs are for operations that take
217 * discrete amounts of time, like a write() or unlink().
218 * We must keep track of when those operations start
219 * (for permission checks) and when they end, so that
220 * we can determine when writes are able to occur to
221 * a filesystem.
222 */
223/*
224 * __mnt_is_readonly: check whether a mount is read-only
225 * @mnt: the mount to check for its write status
226 *
227 * This shouldn't be used directly ouside of the VFS.
228 * It does not guarantee that the filesystem will stay
229 * r/w, just that it is right *now*. This can not and
230 * should not be used in place of IS_RDONLY(inode).
231 * mnt_want/drop_write() will _keep_ the filesystem
232 * r/w.
233 */
234int __mnt_is_readonly(struct vfsmount *mnt)
235{
236 if (mnt->mnt_flags & MNT_READONLY)
237 return 1;
238 if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 return 1;
240 return 0;
241}
242EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243
244static inline void mnt_inc_writers(struct mount *mnt)
245{
246#ifdef CONFIG_SMP
247 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
248#else
249 mnt->mnt_writers++;
250#endif
251}
252
253static inline void mnt_dec_writers(struct mount *mnt)
254{
255#ifdef CONFIG_SMP
256 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
257#else
258 mnt->mnt_writers--;
259#endif
260}
261
262static unsigned int mnt_get_writers(struct mount *mnt)
263{
264#ifdef CONFIG_SMP
265 unsigned int count = 0;
266 int cpu;
267
268 for_each_possible_cpu(cpu) {
269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
270 }
271
272 return count;
273#else
274 return mnt->mnt_writers;
275#endif
276}
277
278static int mnt_is_readonly(struct vfsmount *mnt)
279{
280 if (mnt->mnt_sb->s_readonly_remount)
281 return 1;
282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 smp_rmb();
284 return __mnt_is_readonly(mnt);
285}
286
287/*
288 * Most r/o & frozen checks on a fs are for operations that take discrete
289 * amounts of time, like a write() or unlink(). We must keep track of when
290 * those operations start (for permission checks) and when they end, so that we
291 * can determine when writes are able to occur to a filesystem.
292 */
293/**
294 * __mnt_want_write - get write access to a mount without freeze protection
295 * @m: the mount on which to take a write
296 *
297 * This tells the low-level filesystem that a write is about to be performed to
298 * it, and makes sure that writes are allowed (mnt it read-write) before
299 * returning success. This operation does not protect against filesystem being
300 * frozen. When the write operation is finished, __mnt_drop_write() must be
301 * called. This is effectively a refcount.
302 */
303int __mnt_want_write(struct vfsmount *m)
304{
305 struct mount *mnt = real_mount(m);
306 int ret = 0;
307
308 preempt_disable();
309 mnt_inc_writers(mnt);
310 /*
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
316 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
324 if (mnt_is_readonly(m)) {
325 mnt_dec_writers(mnt);
326 ret = -EROFS;
327 }
328 preempt_enable();
329
330 return ret;
331}
332
333/**
334 * mnt_want_write - get write access to a mount
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mount is read-write, filesystem
339 * is not frozen) before returning success. When the write operation is
340 * finished, mnt_drop_write() must be called. This is effectively a refcount.
341 */
342int mnt_want_write(struct vfsmount *m)
343{
344 int ret;
345
346 sb_start_write(m->mnt_sb);
347 ret = __mnt_want_write(m);
348 if (ret)
349 sb_end_write(m->mnt_sb);
350 return ret;
351}
352EXPORT_SYMBOL_GPL(mnt_want_write);
353
354/**
355 * mnt_clone_write - get write access to a mount
356 * @mnt: the mount on which to take a write
357 *
358 * This is effectively like mnt_want_write, except
359 * it must only be used to take an extra write reference
360 * on a mountpoint that we already know has a write reference
361 * on it. This allows some optimisation.
362 *
363 * After finished, mnt_drop_write must be called as usual to
364 * drop the reference.
365 */
366int mnt_clone_write(struct vfsmount *mnt)
367{
368 /* superblock may be r/o */
369 if (__mnt_is_readonly(mnt))
370 return -EROFS;
371 preempt_disable();
372 mnt_inc_writers(real_mount(mnt));
373 preempt_enable();
374 return 0;
375}
376EXPORT_SYMBOL_GPL(mnt_clone_write);
377
378/**
379 * __mnt_want_write_file - get write access to a file's mount
380 * @file: the file who's mount on which to take a write
381 *
382 * This is like __mnt_want_write, but it takes a file and can
383 * do some optimisations if the file is open for write already
384 */
385int __mnt_want_write_file(struct file *file)
386{
387 struct inode *inode = file_inode(file);
388
389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
390 return __mnt_want_write(file->f_path.mnt);
391 else
392 return mnt_clone_write(file->f_path.mnt);
393}
394
395/**
396 * mnt_want_write_file - get write access to a file's mount
397 * @file: the file who's mount on which to take a write
398 *
399 * This is like mnt_want_write, but it takes a file and can
400 * do some optimisations if the file is open for write already
401 */
402int mnt_want_write_file(struct file *file)
403{
404 int ret;
405
406 sb_start_write(file->f_path.mnt->mnt_sb);
407 ret = __mnt_want_write_file(file);
408 if (ret)
409 sb_end_write(file->f_path.mnt->mnt_sb);
410 return ret;
411}
412EXPORT_SYMBOL_GPL(mnt_want_write_file);
413
414/**
415 * __mnt_drop_write - give up write access to a mount
416 * @mnt: the mount on which to give up write access
417 *
418 * Tells the low-level filesystem that we are done
419 * performing writes to it. Must be matched with
420 * __mnt_want_write() call above.
421 */
422void __mnt_drop_write(struct vfsmount *mnt)
423{
424 preempt_disable();
425 mnt_dec_writers(real_mount(mnt));
426 preempt_enable();
427}
428
429/**
430 * mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
432 *
433 * Tells the low-level filesystem that we are done performing writes to it and
434 * also allows filesystem to be frozen again. Must be matched with
435 * mnt_want_write() call above.
436 */
437void mnt_drop_write(struct vfsmount *mnt)
438{
439 __mnt_drop_write(mnt);
440 sb_end_write(mnt->mnt_sb);
441}
442EXPORT_SYMBOL_GPL(mnt_drop_write);
443
444void __mnt_drop_write_file(struct file *file)
445{
446 __mnt_drop_write(file->f_path.mnt);
447}
448
449void mnt_drop_write_file(struct file *file)
450{
451 mnt_drop_write(file->f_path.mnt);
452}
453EXPORT_SYMBOL(mnt_drop_write_file);
454
455static int mnt_make_readonly(struct mount *mnt)
456{
457 int ret = 0;
458
459 br_write_lock(&vfsmount_lock);
460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
461 /*
462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 * should be visible before we do.
464 */
465 smp_mb();
466
467 /*
468 * With writers on hold, if this value is zero, then there are
469 * definitely no active writers (although held writers may subsequently
470 * increment the count, they'll have to wait, and decrement it after
471 * seeing MNT_READONLY).
472 *
473 * It is OK to have counter incremented on one CPU and decremented on
474 * another: the sum will add up correctly. The danger would be when we
475 * sum up each counter, if we read a counter before it is incremented,
476 * but then read another CPU's count which it has been subsequently
477 * decremented from -- we would see more decrements than we should.
478 * MNT_WRITE_HOLD protects against this scenario, because
479 * mnt_want_write first increments count, then smp_mb, then spins on
480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 * we're counting up here.
482 */
483 if (mnt_get_writers(mnt) > 0)
484 ret = -EBUSY;
485 else
486 mnt->mnt.mnt_flags |= MNT_READONLY;
487 /*
488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 * that become unheld will see MNT_READONLY.
490 */
491 smp_wmb();
492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
493 br_write_unlock(&vfsmount_lock);
494 return ret;
495}
496
497static void __mnt_unmake_readonly(struct mount *mnt)
498{
499 br_write_lock(&vfsmount_lock);
500 mnt->mnt.mnt_flags &= ~MNT_READONLY;
501 br_write_unlock(&vfsmount_lock);
502}
503
504int sb_prepare_remount_readonly(struct super_block *sb)
505{
506 struct mount *mnt;
507 int err = 0;
508
509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
510 if (atomic_long_read(&sb->s_remove_count))
511 return -EBUSY;
512
513 br_write_lock(&vfsmount_lock);
514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 smp_mb();
518 if (mnt_get_writers(mnt) > 0) {
519 err = -EBUSY;
520 break;
521 }
522 }
523 }
524 if (!err && atomic_long_read(&sb->s_remove_count))
525 err = -EBUSY;
526
527 if (!err) {
528 sb->s_readonly_remount = 1;
529 smp_wmb();
530 }
531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 }
535 br_write_unlock(&vfsmount_lock);
536
537 return err;
538}
539
540static void free_vfsmnt(struct mount *mnt)
541{
542 kfree(mnt->mnt_devname);
543 mnt_free_id(mnt);
544#ifdef CONFIG_SMP
545 free_percpu(mnt->mnt_pcp);
546#endif
547 kmem_cache_free(mnt_cache, mnt);
548}
549
550/*
551 * find the first or last mount at @dentry on vfsmount @mnt depending on
552 * @dir. If @dir is set return the first mount else return the last mount.
553 * vfsmount_lock must be held for read or write.
554 */
555struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
556 int dir)
557{
558 struct list_head *head = mount_hashtable + hash(mnt, dentry);
559 struct list_head *tmp = head;
560 struct mount *p, *found = NULL;
561
562 for (;;) {
563 tmp = dir ? tmp->next : tmp->prev;
564 p = NULL;
565 if (tmp == head)
566 break;
567 p = list_entry(tmp, struct mount, mnt_hash);
568 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
569 found = p;
570 break;
571 }
572 }
573 return found;
574}
575
576/*
577 * lookup_mnt - Return the first child mount mounted at path
578 *
579 * "First" means first mounted chronologically. If you create the
580 * following mounts:
581 *
582 * mount /dev/sda1 /mnt
583 * mount /dev/sda2 /mnt
584 * mount /dev/sda3 /mnt
585 *
586 * Then lookup_mnt() on the base /mnt dentry in the root mount will
587 * return successively the root dentry and vfsmount of /dev/sda1, then
588 * /dev/sda2, then /dev/sda3, then NULL.
589 *
590 * lookup_mnt takes a reference to the found vfsmount.
591 */
592struct vfsmount *lookup_mnt(struct path *path)
593{
594 struct mount *child_mnt;
595
596 br_read_lock(&vfsmount_lock);
597 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
598 if (child_mnt) {
599 mnt_add_count(child_mnt, 1);
600 br_read_unlock(&vfsmount_lock);
601 return &child_mnt->mnt;
602 } else {
603 br_read_unlock(&vfsmount_lock);
604 return NULL;
605 }
606}
607
608static struct mountpoint *new_mountpoint(struct dentry *dentry)
609{
610 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
611 struct mountpoint *mp;
612 int ret;
613
614 list_for_each_entry(mp, chain, m_hash) {
615 if (mp->m_dentry == dentry) {
616 /* might be worth a WARN_ON() */
617 if (d_unlinked(dentry))
618 return ERR_PTR(-ENOENT);
619 mp->m_count++;
620 return mp;
621 }
622 }
623
624 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
625 if (!mp)
626 return ERR_PTR(-ENOMEM);
627
628 ret = d_set_mounted(dentry);
629 if (ret) {
630 kfree(mp);
631 return ERR_PTR(ret);
632 }
633
634 mp->m_dentry = dentry;
635 mp->m_count = 1;
636 list_add(&mp->m_hash, chain);
637 return mp;
638}
639
640static void put_mountpoint(struct mountpoint *mp)
641{
642 if (!--mp->m_count) {
643 struct dentry *dentry = mp->m_dentry;
644 spin_lock(&dentry->d_lock);
645 dentry->d_flags &= ~DCACHE_MOUNTED;
646 spin_unlock(&dentry->d_lock);
647 list_del(&mp->m_hash);
648 kfree(mp);
649 }
650}
651
652static inline int check_mnt(struct mount *mnt)
653{
654 return mnt->mnt_ns == current->nsproxy->mnt_ns;
655}
656
657/*
658 * vfsmount lock must be held for write
659 */
660static void touch_mnt_namespace(struct mnt_namespace *ns)
661{
662 if (ns) {
663 ns->event = ++event;
664 wake_up_interruptible(&ns->poll);
665 }
666}
667
668/*
669 * vfsmount lock must be held for write
670 */
671static void __touch_mnt_namespace(struct mnt_namespace *ns)
672{
673 if (ns && ns->event != event) {
674 ns->event = event;
675 wake_up_interruptible(&ns->poll);
676 }
677}
678
679/*
680 * vfsmount lock must be held for write
681 */
682static void detach_mnt(struct mount *mnt, struct path *old_path)
683{
684 old_path->dentry = mnt->mnt_mountpoint;
685 old_path->mnt = &mnt->mnt_parent->mnt;
686 mnt->mnt_parent = mnt;
687 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
688 list_del_init(&mnt->mnt_child);
689 list_del_init(&mnt->mnt_hash);
690 put_mountpoint(mnt->mnt_mp);
691 mnt->mnt_mp = NULL;
692}
693
694/*
695 * vfsmount lock must be held for write
696 */
697void mnt_set_mountpoint(struct mount *mnt,
698 struct mountpoint *mp,
699 struct mount *child_mnt)
700{
701 mp->m_count++;
702 mnt_add_count(mnt, 1); /* essentially, that's mntget */
703 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
704 child_mnt->mnt_parent = mnt;
705 child_mnt->mnt_mp = mp;
706}
707
708/*
709 * vfsmount lock must be held for write
710 */
711static void attach_mnt(struct mount *mnt,
712 struct mount *parent,
713 struct mountpoint *mp)
714{
715 mnt_set_mountpoint(parent, mp, mnt);
716 list_add_tail(&mnt->mnt_hash, mount_hashtable +
717 hash(&parent->mnt, mp->m_dentry));
718 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
719}
720
721/*
722 * vfsmount lock must be held for write
723 */
724static void commit_tree(struct mount *mnt)
725{
726 struct mount *parent = mnt->mnt_parent;
727 struct mount *m;
728 LIST_HEAD(head);
729 struct mnt_namespace *n = parent->mnt_ns;
730
731 BUG_ON(parent == mnt);
732
733 list_add_tail(&head, &mnt->mnt_list);
734 list_for_each_entry(m, &head, mnt_list)
735 m->mnt_ns = n;
736
737 list_splice(&head, n->list.prev);
738
739 list_add_tail(&mnt->mnt_hash, mount_hashtable +
740 hash(&parent->mnt, mnt->mnt_mountpoint));
741 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
742 touch_mnt_namespace(n);
743}
744
745static struct mount *next_mnt(struct mount *p, struct mount *root)
746{
747 struct list_head *next = p->mnt_mounts.next;
748 if (next == &p->mnt_mounts) {
749 while (1) {
750 if (p == root)
751 return NULL;
752 next = p->mnt_child.next;
753 if (next != &p->mnt_parent->mnt_mounts)
754 break;
755 p = p->mnt_parent;
756 }
757 }
758 return list_entry(next, struct mount, mnt_child);
759}
760
761static struct mount *skip_mnt_tree(struct mount *p)
762{
763 struct list_head *prev = p->mnt_mounts.prev;
764 while (prev != &p->mnt_mounts) {
765 p = list_entry(prev, struct mount, mnt_child);
766 prev = p->mnt_mounts.prev;
767 }
768 return p;
769}
770
771struct vfsmount *
772vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
773{
774 struct mount *mnt;
775 struct dentry *root;
776
777 if (!type)
778 return ERR_PTR(-ENODEV);
779
780 mnt = alloc_vfsmnt(name);
781 if (!mnt)
782 return ERR_PTR(-ENOMEM);
783
784 if (flags & MS_KERNMOUNT)
785 mnt->mnt.mnt_flags = MNT_INTERNAL;
786
787 root = mount_fs(type, flags, name, data);
788 if (IS_ERR(root)) {
789 free_vfsmnt(mnt);
790 return ERR_CAST(root);
791 }
792
793 mnt->mnt.mnt_root = root;
794 mnt->mnt.mnt_sb = root->d_sb;
795 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
796 mnt->mnt_parent = mnt;
797 br_write_lock(&vfsmount_lock);
798 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
799 br_write_unlock(&vfsmount_lock);
800 return &mnt->mnt;
801}
802EXPORT_SYMBOL_GPL(vfs_kern_mount);
803
804static struct mount *clone_mnt(struct mount *old, struct dentry *root,
805 int flag)
806{
807 struct super_block *sb = old->mnt.mnt_sb;
808 struct mount *mnt;
809 int err;
810
811 mnt = alloc_vfsmnt(old->mnt_devname);
812 if (!mnt)
813 return ERR_PTR(-ENOMEM);
814
815 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
816 mnt->mnt_group_id = 0; /* not a peer of original */
817 else
818 mnt->mnt_group_id = old->mnt_group_id;
819
820 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
821 err = mnt_alloc_group_id(mnt);
822 if (err)
823 goto out_free;
824 }
825
826 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
827 /* Don't allow unprivileged users to change mount flags */
828 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
829 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
830
831 /* Don't allow unprivileged users to reveal what is under a mount */
832 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
833 mnt->mnt.mnt_flags |= MNT_LOCKED;
834
835 atomic_inc(&sb->s_active);
836 mnt->mnt.mnt_sb = sb;
837 mnt->mnt.mnt_root = dget(root);
838 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
839 mnt->mnt_parent = mnt;
840 br_write_lock(&vfsmount_lock);
841 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
842 br_write_unlock(&vfsmount_lock);
843
844 if ((flag & CL_SLAVE) ||
845 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
846 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
847 mnt->mnt_master = old;
848 CLEAR_MNT_SHARED(mnt);
849 } else if (!(flag & CL_PRIVATE)) {
850 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
851 list_add(&mnt->mnt_share, &old->mnt_share);
852 if (IS_MNT_SLAVE(old))
853 list_add(&mnt->mnt_slave, &old->mnt_slave);
854 mnt->mnt_master = old->mnt_master;
855 }
856 if (flag & CL_MAKE_SHARED)
857 set_mnt_shared(mnt);
858
859 /* stick the duplicate mount on the same expiry list
860 * as the original if that was on one */
861 if (flag & CL_EXPIRE) {
862 if (!list_empty(&old->mnt_expire))
863 list_add(&mnt->mnt_expire, &old->mnt_expire);
864 }
865
866 return mnt;
867
868 out_free:
869 free_vfsmnt(mnt);
870 return ERR_PTR(err);
871}
872
873static void mntput_no_expire(struct mount *mnt)
874{
875put_again:
876#ifdef CONFIG_SMP
877 br_read_lock(&vfsmount_lock);
878 if (likely(mnt->mnt_ns)) {
879 /* shouldn't be the last one */
880 mnt_add_count(mnt, -1);
881 br_read_unlock(&vfsmount_lock);
882 return;
883 }
884 br_read_unlock(&vfsmount_lock);
885
886 br_write_lock(&vfsmount_lock);
887 mnt_add_count(mnt, -1);
888 if (mnt_get_count(mnt)) {
889 br_write_unlock(&vfsmount_lock);
890 return;
891 }
892#else
893 mnt_add_count(mnt, -1);
894 if (likely(mnt_get_count(mnt)))
895 return;
896 br_write_lock(&vfsmount_lock);
897#endif
898 if (unlikely(mnt->mnt_pinned)) {
899 mnt_add_count(mnt, mnt->mnt_pinned + 1);
900 mnt->mnt_pinned = 0;
901 br_write_unlock(&vfsmount_lock);
902 acct_auto_close_mnt(&mnt->mnt);
903 goto put_again;
904 }
905
906 list_del(&mnt->mnt_instance);
907 br_write_unlock(&vfsmount_lock);
908
909 /*
910 * This probably indicates that somebody messed
911 * up a mnt_want/drop_write() pair. If this
912 * happens, the filesystem was probably unable
913 * to make r/w->r/o transitions.
914 */
915 /*
916 * The locking used to deal with mnt_count decrement provides barriers,
917 * so mnt_get_writers() below is safe.
918 */
919 WARN_ON(mnt_get_writers(mnt));
920 fsnotify_vfsmount_delete(&mnt->mnt);
921 dput(mnt->mnt.mnt_root);
922 deactivate_super(mnt->mnt.mnt_sb);
923 free_vfsmnt(mnt);
924}
925
926void mntput(struct vfsmount *mnt)
927{
928 if (mnt) {
929 struct mount *m = real_mount(mnt);
930 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
931 if (unlikely(m->mnt_expiry_mark))
932 m->mnt_expiry_mark = 0;
933 mntput_no_expire(m);
934 }
935}
936EXPORT_SYMBOL(mntput);
937
938struct vfsmount *mntget(struct vfsmount *mnt)
939{
940 if (mnt)
941 mnt_add_count(real_mount(mnt), 1);
942 return mnt;
943}
944EXPORT_SYMBOL(mntget);
945
946void mnt_pin(struct vfsmount *mnt)
947{
948 br_write_lock(&vfsmount_lock);
949 real_mount(mnt)->mnt_pinned++;
950 br_write_unlock(&vfsmount_lock);
951}
952EXPORT_SYMBOL(mnt_pin);
953
954void mnt_unpin(struct vfsmount *m)
955{
956 struct mount *mnt = real_mount(m);
957 br_write_lock(&vfsmount_lock);
958 if (mnt->mnt_pinned) {
959 mnt_add_count(mnt, 1);
960 mnt->mnt_pinned--;
961 }
962 br_write_unlock(&vfsmount_lock);
963}
964EXPORT_SYMBOL(mnt_unpin);
965
966static inline void mangle(struct seq_file *m, const char *s)
967{
968 seq_escape(m, s, " \t\n\\");
969}
970
971/*
972 * Simple .show_options callback for filesystems which don't want to
973 * implement more complex mount option showing.
974 *
975 * See also save_mount_options().
976 */
977int generic_show_options(struct seq_file *m, struct dentry *root)
978{
979 const char *options;
980
981 rcu_read_lock();
982 options = rcu_dereference(root->d_sb->s_options);
983
984 if (options != NULL && options[0]) {
985 seq_putc(m, ',');
986 mangle(m, options);
987 }
988 rcu_read_unlock();
989
990 return 0;
991}
992EXPORT_SYMBOL(generic_show_options);
993
994/*
995 * If filesystem uses generic_show_options(), this function should be
996 * called from the fill_super() callback.
997 *
998 * The .remount_fs callback usually needs to be handled in a special
999 * way, to make sure, that previous options are not overwritten if the
1000 * remount fails.
1001 *
1002 * Also note, that if the filesystem's .remount_fs function doesn't
1003 * reset all options to their default value, but changes only newly
1004 * given options, then the displayed options will not reflect reality
1005 * any more.
1006 */
1007void save_mount_options(struct super_block *sb, char *options)
1008{
1009 BUG_ON(sb->s_options);
1010 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1011}
1012EXPORT_SYMBOL(save_mount_options);
1013
1014void replace_mount_options(struct super_block *sb, char *options)
1015{
1016 char *old = sb->s_options;
1017 rcu_assign_pointer(sb->s_options, options);
1018 if (old) {
1019 synchronize_rcu();
1020 kfree(old);
1021 }
1022}
1023EXPORT_SYMBOL(replace_mount_options);
1024
1025#ifdef CONFIG_PROC_FS
1026/* iterator; we want it to have access to namespace_sem, thus here... */
1027static void *m_start(struct seq_file *m, loff_t *pos)
1028{
1029 struct proc_mounts *p = proc_mounts(m);
1030
1031 down_read(&namespace_sem);
1032 return seq_list_start(&p->ns->list, *pos);
1033}
1034
1035static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1036{
1037 struct proc_mounts *p = proc_mounts(m);
1038
1039 return seq_list_next(v, &p->ns->list, pos);
1040}
1041
1042static void m_stop(struct seq_file *m, void *v)
1043{
1044 up_read(&namespace_sem);
1045}
1046
1047static int m_show(struct seq_file *m, void *v)
1048{
1049 struct proc_mounts *p = proc_mounts(m);
1050 struct mount *r = list_entry(v, struct mount, mnt_list);
1051 return p->show(m, &r->mnt);
1052}
1053
1054const struct seq_operations mounts_op = {
1055 .start = m_start,
1056 .next = m_next,
1057 .stop = m_stop,
1058 .show = m_show,
1059};
1060#endif /* CONFIG_PROC_FS */
1061
1062/**
1063 * may_umount_tree - check if a mount tree is busy
1064 * @mnt: root of mount tree
1065 *
1066 * This is called to check if a tree of mounts has any
1067 * open files, pwds, chroots or sub mounts that are
1068 * busy.
1069 */
1070int may_umount_tree(struct vfsmount *m)
1071{
1072 struct mount *mnt = real_mount(m);
1073 int actual_refs = 0;
1074 int minimum_refs = 0;
1075 struct mount *p;
1076 BUG_ON(!m);
1077
1078 /* write lock needed for mnt_get_count */
1079 br_write_lock(&vfsmount_lock);
1080 for (p = mnt; p; p = next_mnt(p, mnt)) {
1081 actual_refs += mnt_get_count(p);
1082 minimum_refs += 2;
1083 }
1084 br_write_unlock(&vfsmount_lock);
1085
1086 if (actual_refs > minimum_refs)
1087 return 0;
1088
1089 return 1;
1090}
1091
1092EXPORT_SYMBOL(may_umount_tree);
1093
1094/**
1095 * may_umount - check if a mount point is busy
1096 * @mnt: root of mount
1097 *
1098 * This is called to check if a mount point has any
1099 * open files, pwds, chroots or sub mounts. If the
1100 * mount has sub mounts this will return busy
1101 * regardless of whether the sub mounts are busy.
1102 *
1103 * Doesn't take quota and stuff into account. IOW, in some cases it will
1104 * give false negatives. The main reason why it's here is that we need
1105 * a non-destructive way to look for easily umountable filesystems.
1106 */
1107int may_umount(struct vfsmount *mnt)
1108{
1109 int ret = 1;
1110 down_read(&namespace_sem);
1111 br_write_lock(&vfsmount_lock);
1112 if (propagate_mount_busy(real_mount(mnt), 2))
1113 ret = 0;
1114 br_write_unlock(&vfsmount_lock);
1115 up_read(&namespace_sem);
1116 return ret;
1117}
1118
1119EXPORT_SYMBOL(may_umount);
1120
1121static LIST_HEAD(unmounted); /* protected by namespace_sem */
1122
1123static void namespace_unlock(void)
1124{
1125 struct mount *mnt;
1126 LIST_HEAD(head);
1127
1128 if (likely(list_empty(&unmounted))) {
1129 up_write(&namespace_sem);
1130 return;
1131 }
1132
1133 list_splice_init(&unmounted, &head);
1134 up_write(&namespace_sem);
1135
1136 while (!list_empty(&head)) {
1137 mnt = list_first_entry(&head, struct mount, mnt_hash);
1138 list_del_init(&mnt->mnt_hash);
1139 if (mnt->mnt_ex_mountpoint.mnt)
1140 path_put(&mnt->mnt_ex_mountpoint);
1141 mntput(&mnt->mnt);
1142 }
1143}
1144
1145static inline void namespace_lock(void)
1146{
1147 down_write(&namespace_sem);
1148}
1149
1150/*
1151 * vfsmount lock must be held for write
1152 * namespace_sem must be held for write
1153 */
1154void umount_tree(struct mount *mnt, int propagate)
1155{
1156 LIST_HEAD(tmp_list);
1157 struct mount *p;
1158
1159 for (p = mnt; p; p = next_mnt(p, mnt))
1160 list_move(&p->mnt_hash, &tmp_list);
1161
1162 if (propagate)
1163 propagate_umount(&tmp_list);
1164
1165 list_for_each_entry(p, &tmp_list, mnt_hash) {
1166 list_del_init(&p->mnt_expire);
1167 list_del_init(&p->mnt_list);
1168 __touch_mnt_namespace(p->mnt_ns);
1169 p->mnt_ns = NULL;
1170 list_del_init(&p->mnt_child);
1171 if (mnt_has_parent(p)) {
1172 put_mountpoint(p->mnt_mp);
1173 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1174 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1175 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1176 p->mnt_mountpoint = p->mnt.mnt_root;
1177 p->mnt_parent = p;
1178 p->mnt_mp = NULL;
1179 }
1180 change_mnt_propagation(p, MS_PRIVATE);
1181 }
1182 list_splice(&tmp_list, &unmounted);
1183}
1184
1185static void shrink_submounts(struct mount *mnt);
1186
1187static int do_umount(struct mount *mnt, int flags)
1188{
1189 struct super_block *sb = mnt->mnt.mnt_sb;
1190 int retval;
1191
1192 retval = security_sb_umount(&mnt->mnt, flags);
1193 if (retval)
1194 return retval;
1195
1196 /*
1197 * Allow userspace to request a mountpoint be expired rather than
1198 * unmounting unconditionally. Unmount only happens if:
1199 * (1) the mark is already set (the mark is cleared by mntput())
1200 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1201 */
1202 if (flags & MNT_EXPIRE) {
1203 if (&mnt->mnt == current->fs->root.mnt ||
1204 flags & (MNT_FORCE | MNT_DETACH))
1205 return -EINVAL;
1206
1207 /*
1208 * probably don't strictly need the lock here if we examined
1209 * all race cases, but it's a slowpath.
1210 */
1211 br_write_lock(&vfsmount_lock);
1212 if (mnt_get_count(mnt) != 2) {
1213 br_write_unlock(&vfsmount_lock);
1214 return -EBUSY;
1215 }
1216 br_write_unlock(&vfsmount_lock);
1217
1218 if (!xchg(&mnt->mnt_expiry_mark, 1))
1219 return -EAGAIN;
1220 }
1221
1222 /*
1223 * If we may have to abort operations to get out of this
1224 * mount, and they will themselves hold resources we must
1225 * allow the fs to do things. In the Unix tradition of
1226 * 'Gee thats tricky lets do it in userspace' the umount_begin
1227 * might fail to complete on the first run through as other tasks
1228 * must return, and the like. Thats for the mount program to worry
1229 * about for the moment.
1230 */
1231
1232 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1233 sb->s_op->umount_begin(sb);
1234 }
1235
1236 /*
1237 * No sense to grab the lock for this test, but test itself looks
1238 * somewhat bogus. Suggestions for better replacement?
1239 * Ho-hum... In principle, we might treat that as umount + switch
1240 * to rootfs. GC would eventually take care of the old vfsmount.
1241 * Actually it makes sense, especially if rootfs would contain a
1242 * /reboot - static binary that would close all descriptors and
1243 * call reboot(9). Then init(8) could umount root and exec /reboot.
1244 */
1245 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1246 /*
1247 * Special case for "unmounting" root ...
1248 * we just try to remount it readonly.
1249 */
1250 down_write(&sb->s_umount);
1251 if (!(sb->s_flags & MS_RDONLY))
1252 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1253 up_write(&sb->s_umount);
1254 return retval;
1255 }
1256
1257 namespace_lock();
1258 br_write_lock(&vfsmount_lock);
1259 event++;
1260
1261 if (!(flags & MNT_DETACH))
1262 shrink_submounts(mnt);
1263
1264 retval = -EBUSY;
1265 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1266 if (!list_empty(&mnt->mnt_list))
1267 umount_tree(mnt, 1);
1268 retval = 0;
1269 }
1270 br_write_unlock(&vfsmount_lock);
1271 namespace_unlock();
1272 return retval;
1273}
1274
1275/*
1276 * Is the caller allowed to modify his namespace?
1277 */
1278static inline bool may_mount(void)
1279{
1280 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1281}
1282
1283/*
1284 * Now umount can handle mount points as well as block devices.
1285 * This is important for filesystems which use unnamed block devices.
1286 *
1287 * We now support a flag for forced unmount like the other 'big iron'
1288 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1289 */
1290
1291SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1292{
1293 struct path path;
1294 struct mount *mnt;
1295 int retval;
1296 int lookup_flags = 0;
1297
1298 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1299 return -EINVAL;
1300
1301 if (!may_mount())
1302 return -EPERM;
1303
1304 if (!(flags & UMOUNT_NOFOLLOW))
1305 lookup_flags |= LOOKUP_FOLLOW;
1306
1307 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1308 if (retval)
1309 goto out;
1310 mnt = real_mount(path.mnt);
1311 retval = -EINVAL;
1312 if (path.dentry != path.mnt->mnt_root)
1313 goto dput_and_out;
1314 if (!check_mnt(mnt))
1315 goto dput_and_out;
1316 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1317 goto dput_and_out;
1318
1319 retval = do_umount(mnt, flags);
1320dput_and_out:
1321 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1322 dput(path.dentry);
1323 mntput_no_expire(mnt);
1324out:
1325 return retval;
1326}
1327
1328#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1329
1330/*
1331 * The 2.0 compatible umount. No flags.
1332 */
1333SYSCALL_DEFINE1(oldumount, char __user *, name)
1334{
1335 return sys_umount(name, 0);
1336}
1337
1338#endif
1339
1340static bool is_mnt_ns_file(struct dentry *dentry)
1341{
1342 /* Is this a proxy for a mount namespace? */
1343 struct inode *inode = dentry->d_inode;
1344 struct proc_ns *ei;
1345
1346 if (!proc_ns_inode(inode))
1347 return false;
1348
1349 ei = get_proc_ns(inode);
1350 if (ei->ns_ops != &mntns_operations)
1351 return false;
1352
1353 return true;
1354}
1355
1356static bool mnt_ns_loop(struct dentry *dentry)
1357{
1358 /* Could bind mounting the mount namespace inode cause a
1359 * mount namespace loop?
1360 */
1361 struct mnt_namespace *mnt_ns;
1362 if (!is_mnt_ns_file(dentry))
1363 return false;
1364
1365 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1366 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1367}
1368
1369struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1370 int flag)
1371{
1372 struct mount *res, *p, *q, *r, *parent;
1373
1374 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1375 return ERR_PTR(-EINVAL);
1376
1377 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1378 return ERR_PTR(-EINVAL);
1379
1380 res = q = clone_mnt(mnt, dentry, flag);
1381 if (IS_ERR(q))
1382 return q;
1383
1384 q->mnt.mnt_flags &= ~MNT_LOCKED;
1385 q->mnt_mountpoint = mnt->mnt_mountpoint;
1386
1387 p = mnt;
1388 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1389 struct mount *s;
1390 if (!is_subdir(r->mnt_mountpoint, dentry))
1391 continue;
1392
1393 for (s = r; s; s = next_mnt(s, r)) {
1394 if (!(flag & CL_COPY_UNBINDABLE) &&
1395 IS_MNT_UNBINDABLE(s)) {
1396 s = skip_mnt_tree(s);
1397 continue;
1398 }
1399 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1400 is_mnt_ns_file(s->mnt.mnt_root)) {
1401 s = skip_mnt_tree(s);
1402 continue;
1403 }
1404 while (p != s->mnt_parent) {
1405 p = p->mnt_parent;
1406 q = q->mnt_parent;
1407 }
1408 p = s;
1409 parent = q;
1410 q = clone_mnt(p, p->mnt.mnt_root, flag);
1411 if (IS_ERR(q))
1412 goto out;
1413 br_write_lock(&vfsmount_lock);
1414 list_add_tail(&q->mnt_list, &res->mnt_list);
1415 attach_mnt(q, parent, p->mnt_mp);
1416 br_write_unlock(&vfsmount_lock);
1417 }
1418 }
1419 return res;
1420out:
1421 if (res) {
1422 br_write_lock(&vfsmount_lock);
1423 umount_tree(res, 0);
1424 br_write_unlock(&vfsmount_lock);
1425 }
1426 return q;
1427}
1428
1429/* Caller should check returned pointer for errors */
1430
1431struct vfsmount *collect_mounts(struct path *path)
1432{
1433 struct mount *tree;
1434 namespace_lock();
1435 tree = copy_tree(real_mount(path->mnt), path->dentry,
1436 CL_COPY_ALL | CL_PRIVATE);
1437 namespace_unlock();
1438 if (IS_ERR(tree))
1439 return ERR_CAST(tree);
1440 return &tree->mnt;
1441}
1442
1443void drop_collected_mounts(struct vfsmount *mnt)
1444{
1445 namespace_lock();
1446 br_write_lock(&vfsmount_lock);
1447 umount_tree(real_mount(mnt), 0);
1448 br_write_unlock(&vfsmount_lock);
1449 namespace_unlock();
1450}
1451
1452int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1453 struct vfsmount *root)
1454{
1455 struct mount *mnt;
1456 int res = f(root, arg);
1457 if (res)
1458 return res;
1459 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1460 res = f(&mnt->mnt, arg);
1461 if (res)
1462 return res;
1463 }
1464 return 0;
1465}
1466
1467static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1468{
1469 struct mount *p;
1470
1471 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1472 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1473 mnt_release_group_id(p);
1474 }
1475}
1476
1477static int invent_group_ids(struct mount *mnt, bool recurse)
1478{
1479 struct mount *p;
1480
1481 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1482 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1483 int err = mnt_alloc_group_id(p);
1484 if (err) {
1485 cleanup_group_ids(mnt, p);
1486 return err;
1487 }
1488 }
1489 }
1490
1491 return 0;
1492}
1493
1494/*
1495 * @source_mnt : mount tree to be attached
1496 * @nd : place the mount tree @source_mnt is attached
1497 * @parent_nd : if non-null, detach the source_mnt from its parent and
1498 * store the parent mount and mountpoint dentry.
1499 * (done when source_mnt is moved)
1500 *
1501 * NOTE: in the table below explains the semantics when a source mount
1502 * of a given type is attached to a destination mount of a given type.
1503 * ---------------------------------------------------------------------------
1504 * | BIND MOUNT OPERATION |
1505 * |**************************************************************************
1506 * | source-->| shared | private | slave | unbindable |
1507 * | dest | | | | |
1508 * | | | | | | |
1509 * | v | | | | |
1510 * |**************************************************************************
1511 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1512 * | | | | | |
1513 * |non-shared| shared (+) | private | slave (*) | invalid |
1514 * ***************************************************************************
1515 * A bind operation clones the source mount and mounts the clone on the
1516 * destination mount.
1517 *
1518 * (++) the cloned mount is propagated to all the mounts in the propagation
1519 * tree of the destination mount and the cloned mount is added to
1520 * the peer group of the source mount.
1521 * (+) the cloned mount is created under the destination mount and is marked
1522 * as shared. The cloned mount is added to the peer group of the source
1523 * mount.
1524 * (+++) the mount is propagated to all the mounts in the propagation tree
1525 * of the destination mount and the cloned mount is made slave
1526 * of the same master as that of the source mount. The cloned mount
1527 * is marked as 'shared and slave'.
1528 * (*) the cloned mount is made a slave of the same master as that of the
1529 * source mount.
1530 *
1531 * ---------------------------------------------------------------------------
1532 * | MOVE MOUNT OPERATION |
1533 * |**************************************************************************
1534 * | source-->| shared | private | slave | unbindable |
1535 * | dest | | | | |
1536 * | | | | | | |
1537 * | v | | | | |
1538 * |**************************************************************************
1539 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1540 * | | | | | |
1541 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1542 * ***************************************************************************
1543 *
1544 * (+) the mount is moved to the destination. And is then propagated to
1545 * all the mounts in the propagation tree of the destination mount.
1546 * (+*) the mount is moved to the destination.
1547 * (+++) the mount is moved to the destination and is then propagated to
1548 * all the mounts belonging to the destination mount's propagation tree.
1549 * the mount is marked as 'shared and slave'.
1550 * (*) the mount continues to be a slave at the new location.
1551 *
1552 * if the source mount is a tree, the operations explained above is
1553 * applied to each mount in the tree.
1554 * Must be called without spinlocks held, since this function can sleep
1555 * in allocations.
1556 */
1557static int attach_recursive_mnt(struct mount *source_mnt,
1558 struct mount *dest_mnt,
1559 struct mountpoint *dest_mp,
1560 struct path *parent_path)
1561{
1562 LIST_HEAD(tree_list);
1563 struct mount *child, *p;
1564 int err;
1565
1566 if (IS_MNT_SHARED(dest_mnt)) {
1567 err = invent_group_ids(source_mnt, true);
1568 if (err)
1569 goto out;
1570 }
1571 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1572 if (err)
1573 goto out_cleanup_ids;
1574
1575 br_write_lock(&vfsmount_lock);
1576
1577 if (IS_MNT_SHARED(dest_mnt)) {
1578 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1579 set_mnt_shared(p);
1580 }
1581 if (parent_path) {
1582 detach_mnt(source_mnt, parent_path);
1583 attach_mnt(source_mnt, dest_mnt, dest_mp);
1584 touch_mnt_namespace(source_mnt->mnt_ns);
1585 } else {
1586 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1587 commit_tree(source_mnt);
1588 }
1589
1590 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1591 list_del_init(&child->mnt_hash);
1592 commit_tree(child);
1593 }
1594 br_write_unlock(&vfsmount_lock);
1595
1596 return 0;
1597
1598 out_cleanup_ids:
1599 if (IS_MNT_SHARED(dest_mnt))
1600 cleanup_group_ids(source_mnt, NULL);
1601 out:
1602 return err;
1603}
1604
1605static struct mountpoint *lock_mount(struct path *path)
1606{
1607 struct vfsmount *mnt;
1608 struct dentry *dentry = path->dentry;
1609retry:
1610 mutex_lock(&dentry->d_inode->i_mutex);
1611 if (unlikely(cant_mount(dentry))) {
1612 mutex_unlock(&dentry->d_inode->i_mutex);
1613 return ERR_PTR(-ENOENT);
1614 }
1615 namespace_lock();
1616 mnt = lookup_mnt(path);
1617 if (likely(!mnt)) {
1618 struct mountpoint *mp = new_mountpoint(dentry);
1619 if (IS_ERR(mp)) {
1620 namespace_unlock();
1621 mutex_unlock(&dentry->d_inode->i_mutex);
1622 return mp;
1623 }
1624 return mp;
1625 }
1626 namespace_unlock();
1627 mutex_unlock(&path->dentry->d_inode->i_mutex);
1628 path_put(path);
1629 path->mnt = mnt;
1630 dentry = path->dentry = dget(mnt->mnt_root);
1631 goto retry;
1632}
1633
1634static void unlock_mount(struct mountpoint *where)
1635{
1636 struct dentry *dentry = where->m_dentry;
1637 put_mountpoint(where);
1638 namespace_unlock();
1639 mutex_unlock(&dentry->d_inode->i_mutex);
1640}
1641
1642static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1643{
1644 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1645 return -EINVAL;
1646
1647 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1648 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1649 return -ENOTDIR;
1650
1651 return attach_recursive_mnt(mnt, p, mp, NULL);
1652}
1653
1654/*
1655 * Sanity check the flags to change_mnt_propagation.
1656 */
1657
1658static int flags_to_propagation_type(int flags)
1659{
1660 int type = flags & ~(MS_REC | MS_SILENT);
1661
1662 /* Fail if any non-propagation flags are set */
1663 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1664 return 0;
1665 /* Only one propagation flag should be set */
1666 if (!is_power_of_2(type))
1667 return 0;
1668 return type;
1669}
1670
1671/*
1672 * recursively change the type of the mountpoint.
1673 */
1674static int do_change_type(struct path *path, int flag)
1675{
1676 struct mount *m;
1677 struct mount *mnt = real_mount(path->mnt);
1678 int recurse = flag & MS_REC;
1679 int type;
1680 int err = 0;
1681
1682 if (path->dentry != path->mnt->mnt_root)
1683 return -EINVAL;
1684
1685 type = flags_to_propagation_type(flag);
1686 if (!type)
1687 return -EINVAL;
1688
1689 namespace_lock();
1690 if (type == MS_SHARED) {
1691 err = invent_group_ids(mnt, recurse);
1692 if (err)
1693 goto out_unlock;
1694 }
1695
1696 br_write_lock(&vfsmount_lock);
1697 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1698 change_mnt_propagation(m, type);
1699 br_write_unlock(&vfsmount_lock);
1700
1701 out_unlock:
1702 namespace_unlock();
1703 return err;
1704}
1705
1706static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1707{
1708 struct mount *child;
1709 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1710 if (!is_subdir(child->mnt_mountpoint, dentry))
1711 continue;
1712
1713 if (child->mnt.mnt_flags & MNT_LOCKED)
1714 return true;
1715 }
1716 return false;
1717}
1718
1719/*
1720 * do loopback mount.
1721 */
1722static int do_loopback(struct path *path, const char *old_name,
1723 int recurse)
1724{
1725 struct path old_path;
1726 struct mount *mnt = NULL, *old, *parent;
1727 struct mountpoint *mp;
1728 int err;
1729 if (!old_name || !*old_name)
1730 return -EINVAL;
1731 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1732 if (err)
1733 return err;
1734
1735 err = -EINVAL;
1736 if (mnt_ns_loop(old_path.dentry))
1737 goto out;
1738
1739 mp = lock_mount(path);
1740 err = PTR_ERR(mp);
1741 if (IS_ERR(mp))
1742 goto out;
1743
1744 old = real_mount(old_path.mnt);
1745 parent = real_mount(path->mnt);
1746
1747 err = -EINVAL;
1748 if (IS_MNT_UNBINDABLE(old))
1749 goto out2;
1750
1751 if (!check_mnt(parent) || !check_mnt(old))
1752 goto out2;
1753
1754 if (!recurse && has_locked_children(old, old_path.dentry))
1755 goto out2;
1756
1757 if (recurse)
1758 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1759 else
1760 mnt = clone_mnt(old, old_path.dentry, 0);
1761
1762 if (IS_ERR(mnt)) {
1763 err = PTR_ERR(mnt);
1764 goto out2;
1765 }
1766
1767 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1768
1769 err = graft_tree(mnt, parent, mp);
1770 if (err) {
1771 br_write_lock(&vfsmount_lock);
1772 umount_tree(mnt, 0);
1773 br_write_unlock(&vfsmount_lock);
1774 }
1775out2:
1776 unlock_mount(mp);
1777out:
1778 path_put(&old_path);
1779 return err;
1780}
1781
1782static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1783{
1784 int error = 0;
1785 int readonly_request = 0;
1786
1787 if (ms_flags & MS_RDONLY)
1788 readonly_request = 1;
1789 if (readonly_request == __mnt_is_readonly(mnt))
1790 return 0;
1791
1792 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1793 return -EPERM;
1794
1795 if (readonly_request)
1796 error = mnt_make_readonly(real_mount(mnt));
1797 else
1798 __mnt_unmake_readonly(real_mount(mnt));
1799 return error;
1800}
1801
1802/*
1803 * change filesystem flags. dir should be a physical root of filesystem.
1804 * If you've mounted a non-root directory somewhere and want to do remount
1805 * on it - tough luck.
1806 */
1807static int do_remount(struct path *path, int flags, int mnt_flags,
1808 void *data)
1809{
1810 int err;
1811 struct super_block *sb = path->mnt->mnt_sb;
1812 struct mount *mnt = real_mount(path->mnt);
1813
1814 if (!check_mnt(mnt))
1815 return -EINVAL;
1816
1817 if (path->dentry != path->mnt->mnt_root)
1818 return -EINVAL;
1819
1820 err = security_sb_remount(sb, data);
1821 if (err)
1822 return err;
1823
1824 down_write(&sb->s_umount);
1825 if (flags & MS_BIND)
1826 err = change_mount_flags(path->mnt, flags);
1827 else if (!capable(CAP_SYS_ADMIN))
1828 err = -EPERM;
1829 else
1830 err = do_remount_sb(sb, flags, data, 0);
1831 if (!err) {
1832 br_write_lock(&vfsmount_lock);
1833 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1834 mnt->mnt.mnt_flags = mnt_flags;
1835 touch_mnt_namespace(mnt->mnt_ns);
1836 br_write_unlock(&vfsmount_lock);
1837 }
1838 up_write(&sb->s_umount);
1839 return err;
1840}
1841
1842static inline int tree_contains_unbindable(struct mount *mnt)
1843{
1844 struct mount *p;
1845 for (p = mnt; p; p = next_mnt(p, mnt)) {
1846 if (IS_MNT_UNBINDABLE(p))
1847 return 1;
1848 }
1849 return 0;
1850}
1851
1852static int do_move_mount(struct path *path, const char *old_name)
1853{
1854 struct path old_path, parent_path;
1855 struct mount *p;
1856 struct mount *old;
1857 struct mountpoint *mp;
1858 int err;
1859 if (!old_name || !*old_name)
1860 return -EINVAL;
1861 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1862 if (err)
1863 return err;
1864
1865 mp = lock_mount(path);
1866 err = PTR_ERR(mp);
1867 if (IS_ERR(mp))
1868 goto out;
1869
1870 old = real_mount(old_path.mnt);
1871 p = real_mount(path->mnt);
1872
1873 err = -EINVAL;
1874 if (!check_mnt(p) || !check_mnt(old))
1875 goto out1;
1876
1877 if (old->mnt.mnt_flags & MNT_LOCKED)
1878 goto out1;
1879
1880 err = -EINVAL;
1881 if (old_path.dentry != old_path.mnt->mnt_root)
1882 goto out1;
1883
1884 if (!mnt_has_parent(old))
1885 goto out1;
1886
1887 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1888 S_ISDIR(old_path.dentry->d_inode->i_mode))
1889 goto out1;
1890 /*
1891 * Don't move a mount residing in a shared parent.
1892 */
1893 if (IS_MNT_SHARED(old->mnt_parent))
1894 goto out1;
1895 /*
1896 * Don't move a mount tree containing unbindable mounts to a destination
1897 * mount which is shared.
1898 */
1899 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1900 goto out1;
1901 err = -ELOOP;
1902 for (; mnt_has_parent(p); p = p->mnt_parent)
1903 if (p == old)
1904 goto out1;
1905
1906 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1907 if (err)
1908 goto out1;
1909
1910 /* if the mount is moved, it should no longer be expire
1911 * automatically */
1912 list_del_init(&old->mnt_expire);
1913out1:
1914 unlock_mount(mp);
1915out:
1916 if (!err)
1917 path_put(&parent_path);
1918 path_put(&old_path);
1919 return err;
1920}
1921
1922static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1923{
1924 int err;
1925 const char *subtype = strchr(fstype, '.');
1926 if (subtype) {
1927 subtype++;
1928 err = -EINVAL;
1929 if (!subtype[0])
1930 goto err;
1931 } else
1932 subtype = "";
1933
1934 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1935 err = -ENOMEM;
1936 if (!mnt->mnt_sb->s_subtype)
1937 goto err;
1938 return mnt;
1939
1940 err:
1941 mntput(mnt);
1942 return ERR_PTR(err);
1943}
1944
1945/*
1946 * add a mount into a namespace's mount tree
1947 */
1948static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1949{
1950 struct mountpoint *mp;
1951 struct mount *parent;
1952 int err;
1953
1954 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1955
1956 mp = lock_mount(path);
1957 if (IS_ERR(mp))
1958 return PTR_ERR(mp);
1959
1960 parent = real_mount(path->mnt);
1961 err = -EINVAL;
1962 if (unlikely(!check_mnt(parent))) {
1963 /* that's acceptable only for automounts done in private ns */
1964 if (!(mnt_flags & MNT_SHRINKABLE))
1965 goto unlock;
1966 /* ... and for those we'd better have mountpoint still alive */
1967 if (!parent->mnt_ns)
1968 goto unlock;
1969 }
1970
1971 /* Refuse the same filesystem on the same mount point */
1972 err = -EBUSY;
1973 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1974 path->mnt->mnt_root == path->dentry)
1975 goto unlock;
1976
1977 err = -EINVAL;
1978 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1979 goto unlock;
1980
1981 newmnt->mnt.mnt_flags = mnt_flags;
1982 err = graft_tree(newmnt, parent, mp);
1983
1984unlock:
1985 unlock_mount(mp);
1986 return err;
1987}
1988
1989/*
1990 * create a new mount for userspace and request it to be added into the
1991 * namespace's tree
1992 */
1993static int do_new_mount(struct path *path, const char *fstype, int flags,
1994 int mnt_flags, const char *name, void *data)
1995{
1996 struct file_system_type *type;
1997 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1998 struct vfsmount *mnt;
1999 int err;
2000
2001 if (!fstype)
2002 return -EINVAL;
2003
2004 type = get_fs_type(fstype);
2005 if (!type)
2006 return -ENODEV;
2007
2008 if (user_ns != &init_user_ns) {
2009 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2010 put_filesystem(type);
2011 return -EPERM;
2012 }
2013 /* Only in special cases allow devices from mounts
2014 * created outside the initial user namespace.
2015 */
2016 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2017 flags |= MS_NODEV;
2018 mnt_flags |= MNT_NODEV;
2019 }
2020 }
2021
2022 mnt = vfs_kern_mount(type, flags, name, data);
2023 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2024 !mnt->mnt_sb->s_subtype)
2025 mnt = fs_set_subtype(mnt, fstype);
2026
2027 put_filesystem(type);
2028 if (IS_ERR(mnt))
2029 return PTR_ERR(mnt);
2030
2031 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2032 if (err)
2033 mntput(mnt);
2034 return err;
2035}
2036
2037int finish_automount(struct vfsmount *m, struct path *path)
2038{
2039 struct mount *mnt = real_mount(m);
2040 int err;
2041 /* The new mount record should have at least 2 refs to prevent it being
2042 * expired before we get a chance to add it
2043 */
2044 BUG_ON(mnt_get_count(mnt) < 2);
2045
2046 if (m->mnt_sb == path->mnt->mnt_sb &&
2047 m->mnt_root == path->dentry) {
2048 err = -ELOOP;
2049 goto fail;
2050 }
2051
2052 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2053 if (!err)
2054 return 0;
2055fail:
2056 /* remove m from any expiration list it may be on */
2057 if (!list_empty(&mnt->mnt_expire)) {
2058 namespace_lock();
2059 list_del_init(&mnt->mnt_expire);
2060 namespace_unlock();
2061 }
2062 mntput(m);
2063 mntput(m);
2064 return err;
2065}
2066
2067/**
2068 * mnt_set_expiry - Put a mount on an expiration list
2069 * @mnt: The mount to list.
2070 * @expiry_list: The list to add the mount to.
2071 */
2072void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2073{
2074 namespace_lock();
2075
2076 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2077
2078 namespace_unlock();
2079}
2080EXPORT_SYMBOL(mnt_set_expiry);
2081
2082/*
2083 * process a list of expirable mountpoints with the intent of discarding any
2084 * mountpoints that aren't in use and haven't been touched since last we came
2085 * here
2086 */
2087void mark_mounts_for_expiry(struct list_head *mounts)
2088{
2089 struct mount *mnt, *next;
2090 LIST_HEAD(graveyard);
2091
2092 if (list_empty(mounts))
2093 return;
2094
2095 namespace_lock();
2096 br_write_lock(&vfsmount_lock);
2097
2098 /* extract from the expiration list every vfsmount that matches the
2099 * following criteria:
2100 * - only referenced by its parent vfsmount
2101 * - still marked for expiry (marked on the last call here; marks are
2102 * cleared by mntput())
2103 */
2104 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2105 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2106 propagate_mount_busy(mnt, 1))
2107 continue;
2108 list_move(&mnt->mnt_expire, &graveyard);
2109 }
2110 while (!list_empty(&graveyard)) {
2111 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2112 touch_mnt_namespace(mnt->mnt_ns);
2113 umount_tree(mnt, 1);
2114 }
2115 br_write_unlock(&vfsmount_lock);
2116 namespace_unlock();
2117}
2118
2119EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2120
2121/*
2122 * Ripoff of 'select_parent()'
2123 *
2124 * search the list of submounts for a given mountpoint, and move any
2125 * shrinkable submounts to the 'graveyard' list.
2126 */
2127static int select_submounts(struct mount *parent, struct list_head *graveyard)
2128{
2129 struct mount *this_parent = parent;
2130 struct list_head *next;
2131 int found = 0;
2132
2133repeat:
2134 next = this_parent->mnt_mounts.next;
2135resume:
2136 while (next != &this_parent->mnt_mounts) {
2137 struct list_head *tmp = next;
2138 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2139
2140 next = tmp->next;
2141 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2142 continue;
2143 /*
2144 * Descend a level if the d_mounts list is non-empty.
2145 */
2146 if (!list_empty(&mnt->mnt_mounts)) {
2147 this_parent = mnt;
2148 goto repeat;
2149 }
2150
2151 if (!propagate_mount_busy(mnt, 1)) {
2152 list_move_tail(&mnt->mnt_expire, graveyard);
2153 found++;
2154 }
2155 }
2156 /*
2157 * All done at this level ... ascend and resume the search
2158 */
2159 if (this_parent != parent) {
2160 next = this_parent->mnt_child.next;
2161 this_parent = this_parent->mnt_parent;
2162 goto resume;
2163 }
2164 return found;
2165}
2166
2167/*
2168 * process a list of expirable mountpoints with the intent of discarding any
2169 * submounts of a specific parent mountpoint
2170 *
2171 * vfsmount_lock must be held for write
2172 */
2173static void shrink_submounts(struct mount *mnt)
2174{
2175 LIST_HEAD(graveyard);
2176 struct mount *m;
2177
2178 /* extract submounts of 'mountpoint' from the expiration list */
2179 while (select_submounts(mnt, &graveyard)) {
2180 while (!list_empty(&graveyard)) {
2181 m = list_first_entry(&graveyard, struct mount,
2182 mnt_expire);
2183 touch_mnt_namespace(m->mnt_ns);
2184 umount_tree(m, 1);
2185 }
2186 }
2187}
2188
2189/*
2190 * Some copy_from_user() implementations do not return the exact number of
2191 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2192 * Note that this function differs from copy_from_user() in that it will oops
2193 * on bad values of `to', rather than returning a short copy.
2194 */
2195static long exact_copy_from_user(void *to, const void __user * from,
2196 unsigned long n)
2197{
2198 char *t = to;
2199 const char __user *f = from;
2200 char c;
2201
2202 if (!access_ok(VERIFY_READ, from, n))
2203 return n;
2204
2205 while (n) {
2206 if (__get_user(c, f)) {
2207 memset(t, 0, n);
2208 break;
2209 }
2210 *t++ = c;
2211 f++;
2212 n--;
2213 }
2214 return n;
2215}
2216
2217int copy_mount_options(const void __user * data, unsigned long *where)
2218{
2219 int i;
2220 unsigned long page;
2221 unsigned long size;
2222
2223 *where = 0;
2224 if (!data)
2225 return 0;
2226
2227 if (!(page = __get_free_page(GFP_KERNEL)))
2228 return -ENOMEM;
2229
2230 /* We only care that *some* data at the address the user
2231 * gave us is valid. Just in case, we'll zero
2232 * the remainder of the page.
2233 */
2234 /* copy_from_user cannot cross TASK_SIZE ! */
2235 size = TASK_SIZE - (unsigned long)data;
2236 if (size > PAGE_SIZE)
2237 size = PAGE_SIZE;
2238
2239 i = size - exact_copy_from_user((void *)page, data, size);
2240 if (!i) {
2241 free_page(page);
2242 return -EFAULT;
2243 }
2244 if (i != PAGE_SIZE)
2245 memset((char *)page + i, 0, PAGE_SIZE - i);
2246 *where = page;
2247 return 0;
2248}
2249
2250int copy_mount_string(const void __user *data, char **where)
2251{
2252 char *tmp;
2253
2254 if (!data) {
2255 *where = NULL;
2256 return 0;
2257 }
2258
2259 tmp = strndup_user(data, PAGE_SIZE);
2260 if (IS_ERR(tmp))
2261 return PTR_ERR(tmp);
2262
2263 *where = tmp;
2264 return 0;
2265}
2266
2267/*
2268 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2269 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2270 *
2271 * data is a (void *) that can point to any structure up to
2272 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2273 * information (or be NULL).
2274 *
2275 * Pre-0.97 versions of mount() didn't have a flags word.
2276 * When the flags word was introduced its top half was required
2277 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2278 * Therefore, if this magic number is present, it carries no information
2279 * and must be discarded.
2280 */
2281long do_mount(const char *dev_name, const char *dir_name,
2282 const char *type_page, unsigned long flags, void *data_page)
2283{
2284 struct path path;
2285 int retval = 0;
2286 int mnt_flags = 0;
2287
2288 /* Discard magic */
2289 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2290 flags &= ~MS_MGC_MSK;
2291
2292 /* Basic sanity checks */
2293
2294 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2295 return -EINVAL;
2296
2297 if (data_page)
2298 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2299
2300 /* ... and get the mountpoint */
2301 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2302 if (retval)
2303 return retval;
2304
2305 retval = security_sb_mount(dev_name, &path,
2306 type_page, flags, data_page);
2307 if (!retval && !may_mount())
2308 retval = -EPERM;
2309 if (retval)
2310 goto dput_out;
2311
2312 /* Default to relatime unless overriden */
2313 if (!(flags & MS_NOATIME))
2314 mnt_flags |= MNT_RELATIME;
2315
2316 /* Separate the per-mountpoint flags */
2317 if (flags & MS_NOSUID)
2318 mnt_flags |= MNT_NOSUID;
2319 if (flags & MS_NODEV)
2320 mnt_flags |= MNT_NODEV;
2321 if (flags & MS_NOEXEC)
2322 mnt_flags |= MNT_NOEXEC;
2323 if (flags & MS_NOATIME)
2324 mnt_flags |= MNT_NOATIME;
2325 if (flags & MS_NODIRATIME)
2326 mnt_flags |= MNT_NODIRATIME;
2327 if (flags & MS_STRICTATIME)
2328 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2329 if (flags & MS_RDONLY)
2330 mnt_flags |= MNT_READONLY;
2331
2332 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2333 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2334 MS_STRICTATIME);
2335
2336 if (flags & MS_REMOUNT)
2337 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2338 data_page);
2339 else if (flags & MS_BIND)
2340 retval = do_loopback(&path, dev_name, flags & MS_REC);
2341 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2342 retval = do_change_type(&path, flags);
2343 else if (flags & MS_MOVE)
2344 retval = do_move_mount(&path, dev_name);
2345 else
2346 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2347 dev_name, data_page);
2348dput_out:
2349 path_put(&path);
2350 return retval;
2351}
2352
2353static void free_mnt_ns(struct mnt_namespace *ns)
2354{
2355 proc_free_inum(ns->proc_inum);
2356 put_user_ns(ns->user_ns);
2357 kfree(ns);
2358}
2359
2360/*
2361 * Assign a sequence number so we can detect when we attempt to bind
2362 * mount a reference to an older mount namespace into the current
2363 * mount namespace, preventing reference counting loops. A 64bit
2364 * number incrementing at 10Ghz will take 12,427 years to wrap which
2365 * is effectively never, so we can ignore the possibility.
2366 */
2367static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2368
2369static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2370{
2371 struct mnt_namespace *new_ns;
2372 int ret;
2373
2374 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2375 if (!new_ns)
2376 return ERR_PTR(-ENOMEM);
2377 ret = proc_alloc_inum(&new_ns->proc_inum);
2378 if (ret) {
2379 kfree(new_ns);
2380 return ERR_PTR(ret);
2381 }
2382 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2383 atomic_set(&new_ns->count, 1);
2384 new_ns->root = NULL;
2385 INIT_LIST_HEAD(&new_ns->list);
2386 init_waitqueue_head(&new_ns->poll);
2387 new_ns->event = 0;
2388 new_ns->user_ns = get_user_ns(user_ns);
2389 return new_ns;
2390}
2391
2392struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2393 struct user_namespace *user_ns, struct fs_struct *new_fs)
2394{
2395 struct mnt_namespace *new_ns;
2396 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2397 struct mount *p, *q;
2398 struct mount *old;
2399 struct mount *new;
2400 int copy_flags;
2401
2402 BUG_ON(!ns);
2403
2404 if (likely(!(flags & CLONE_NEWNS))) {
2405 get_mnt_ns(ns);
2406 return ns;
2407 }
2408
2409 old = ns->root;
2410
2411 new_ns = alloc_mnt_ns(user_ns);
2412 if (IS_ERR(new_ns))
2413 return new_ns;
2414
2415 namespace_lock();
2416 /* First pass: copy the tree topology */
2417 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2418 if (user_ns != ns->user_ns)
2419 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2420 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2421 if (IS_ERR(new)) {
2422 namespace_unlock();
2423 free_mnt_ns(new_ns);
2424 return ERR_CAST(new);
2425 }
2426 new_ns->root = new;
2427 list_add_tail(&new_ns->list, &new->mnt_list);
2428
2429 /*
2430 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2431 * as belonging to new namespace. We have already acquired a private
2432 * fs_struct, so tsk->fs->lock is not needed.
2433 */
2434 p = old;
2435 q = new;
2436 while (p) {
2437 q->mnt_ns = new_ns;
2438 if (new_fs) {
2439 if (&p->mnt == new_fs->root.mnt) {
2440 new_fs->root.mnt = mntget(&q->mnt);
2441 rootmnt = &p->mnt;
2442 }
2443 if (&p->mnt == new_fs->pwd.mnt) {
2444 new_fs->pwd.mnt = mntget(&q->mnt);
2445 pwdmnt = &p->mnt;
2446 }
2447 }
2448 p = next_mnt(p, old);
2449 q = next_mnt(q, new);
2450 if (!q)
2451 break;
2452 while (p->mnt.mnt_root != q->mnt.mnt_root)
2453 p = next_mnt(p, old);
2454 }
2455 namespace_unlock();
2456
2457 if (rootmnt)
2458 mntput(rootmnt);
2459 if (pwdmnt)
2460 mntput(pwdmnt);
2461
2462 return new_ns;
2463}
2464
2465/**
2466 * create_mnt_ns - creates a private namespace and adds a root filesystem
2467 * @mnt: pointer to the new root filesystem mountpoint
2468 */
2469static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2470{
2471 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2472 if (!IS_ERR(new_ns)) {
2473 struct mount *mnt = real_mount(m);
2474 mnt->mnt_ns = new_ns;
2475 new_ns->root = mnt;
2476 list_add(&mnt->mnt_list, &new_ns->list);
2477 } else {
2478 mntput(m);
2479 }
2480 return new_ns;
2481}
2482
2483struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2484{
2485 struct mnt_namespace *ns;
2486 struct super_block *s;
2487 struct path path;
2488 int err;
2489
2490 ns = create_mnt_ns(mnt);
2491 if (IS_ERR(ns))
2492 return ERR_CAST(ns);
2493
2494 err = vfs_path_lookup(mnt->mnt_root, mnt,
2495 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2496
2497 put_mnt_ns(ns);
2498
2499 if (err)
2500 return ERR_PTR(err);
2501
2502 /* trade a vfsmount reference for active sb one */
2503 s = path.mnt->mnt_sb;
2504 atomic_inc(&s->s_active);
2505 mntput(path.mnt);
2506 /* lock the sucker */
2507 down_write(&s->s_umount);
2508 /* ... and return the root of (sub)tree on it */
2509 return path.dentry;
2510}
2511EXPORT_SYMBOL(mount_subtree);
2512
2513SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2514 char __user *, type, unsigned long, flags, void __user *, data)
2515{
2516 int ret;
2517 char *kernel_type;
2518 struct filename *kernel_dir;
2519 char *kernel_dev;
2520 unsigned long data_page;
2521
2522 ret = copy_mount_string(type, &kernel_type);
2523 if (ret < 0)
2524 goto out_type;
2525
2526 kernel_dir = getname(dir_name);
2527 if (IS_ERR(kernel_dir)) {
2528 ret = PTR_ERR(kernel_dir);
2529 goto out_dir;
2530 }
2531
2532 ret = copy_mount_string(dev_name, &kernel_dev);
2533 if (ret < 0)
2534 goto out_dev;
2535
2536 ret = copy_mount_options(data, &data_page);
2537 if (ret < 0)
2538 goto out_data;
2539
2540 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2541 (void *) data_page);
2542
2543 free_page(data_page);
2544out_data:
2545 kfree(kernel_dev);
2546out_dev:
2547 putname(kernel_dir);
2548out_dir:
2549 kfree(kernel_type);
2550out_type:
2551 return ret;
2552}
2553
2554/*
2555 * Return true if path is reachable from root
2556 *
2557 * namespace_sem or vfsmount_lock is held
2558 */
2559bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2560 const struct path *root)
2561{
2562 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2563 dentry = mnt->mnt_mountpoint;
2564 mnt = mnt->mnt_parent;
2565 }
2566 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2567}
2568
2569int path_is_under(struct path *path1, struct path *path2)
2570{
2571 int res;
2572 br_read_lock(&vfsmount_lock);
2573 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2574 br_read_unlock(&vfsmount_lock);
2575 return res;
2576}
2577EXPORT_SYMBOL(path_is_under);
2578
2579/*
2580 * pivot_root Semantics:
2581 * Moves the root file system of the current process to the directory put_old,
2582 * makes new_root as the new root file system of the current process, and sets
2583 * root/cwd of all processes which had them on the current root to new_root.
2584 *
2585 * Restrictions:
2586 * The new_root and put_old must be directories, and must not be on the
2587 * same file system as the current process root. The put_old must be
2588 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2589 * pointed to by put_old must yield the same directory as new_root. No other
2590 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2591 *
2592 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2593 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2594 * in this situation.
2595 *
2596 * Notes:
2597 * - we don't move root/cwd if they are not at the root (reason: if something
2598 * cared enough to change them, it's probably wrong to force them elsewhere)
2599 * - it's okay to pick a root that isn't the root of a file system, e.g.
2600 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2601 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2602 * first.
2603 */
2604SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2605 const char __user *, put_old)
2606{
2607 struct path new, old, parent_path, root_parent, root;
2608 struct mount *new_mnt, *root_mnt, *old_mnt;
2609 struct mountpoint *old_mp, *root_mp;
2610 int error;
2611
2612 if (!may_mount())
2613 return -EPERM;
2614
2615 error = user_path_dir(new_root, &new);
2616 if (error)
2617 goto out0;
2618
2619 error = user_path_dir(put_old, &old);
2620 if (error)
2621 goto out1;
2622
2623 error = security_sb_pivotroot(&old, &new);
2624 if (error)
2625 goto out2;
2626
2627 get_fs_root(current->fs, &root);
2628 old_mp = lock_mount(&old);
2629 error = PTR_ERR(old_mp);
2630 if (IS_ERR(old_mp))
2631 goto out3;
2632
2633 error = -EINVAL;
2634 new_mnt = real_mount(new.mnt);
2635 root_mnt = real_mount(root.mnt);
2636 old_mnt = real_mount(old.mnt);
2637 if (IS_MNT_SHARED(old_mnt) ||
2638 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2639 IS_MNT_SHARED(root_mnt->mnt_parent))
2640 goto out4;
2641 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2642 goto out4;
2643 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2644 goto out4;
2645 error = -ENOENT;
2646 if (d_unlinked(new.dentry))
2647 goto out4;
2648 error = -EBUSY;
2649 if (new_mnt == root_mnt || old_mnt == root_mnt)
2650 goto out4; /* loop, on the same file system */
2651 error = -EINVAL;
2652 if (root.mnt->mnt_root != root.dentry)
2653 goto out4; /* not a mountpoint */
2654 if (!mnt_has_parent(root_mnt))
2655 goto out4; /* not attached */
2656 root_mp = root_mnt->mnt_mp;
2657 if (new.mnt->mnt_root != new.dentry)
2658 goto out4; /* not a mountpoint */
2659 if (!mnt_has_parent(new_mnt))
2660 goto out4; /* not attached */
2661 /* make sure we can reach put_old from new_root */
2662 if (!is_path_reachable(old_mnt, old.dentry, &new))
2663 goto out4;
2664 root_mp->m_count++; /* pin it so it won't go away */
2665 br_write_lock(&vfsmount_lock);
2666 detach_mnt(new_mnt, &parent_path);
2667 detach_mnt(root_mnt, &root_parent);
2668 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2669 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2670 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2671 }
2672 /* mount old root on put_old */
2673 attach_mnt(root_mnt, old_mnt, old_mp);
2674 /* mount new_root on / */
2675 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2676 touch_mnt_namespace(current->nsproxy->mnt_ns);
2677 br_write_unlock(&vfsmount_lock);
2678 chroot_fs_refs(&root, &new);
2679 put_mountpoint(root_mp);
2680 error = 0;
2681out4:
2682 unlock_mount(old_mp);
2683 if (!error) {
2684 path_put(&root_parent);
2685 path_put(&parent_path);
2686 }
2687out3:
2688 path_put(&root);
2689out2:
2690 path_put(&old);
2691out1:
2692 path_put(&new);
2693out0:
2694 return error;
2695}
2696
2697static void __init init_mount_tree(void)
2698{
2699 struct vfsmount *mnt;
2700 struct mnt_namespace *ns;
2701 struct path root;
2702 struct file_system_type *type;
2703
2704 type = get_fs_type("rootfs");
2705 if (!type)
2706 panic("Can't find rootfs type");
2707 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2708 put_filesystem(type);
2709 if (IS_ERR(mnt))
2710 panic("Can't create rootfs");
2711
2712 ns = create_mnt_ns(mnt);
2713 if (IS_ERR(ns))
2714 panic("Can't allocate initial namespace");
2715
2716 init_task.nsproxy->mnt_ns = ns;
2717 get_mnt_ns(ns);
2718
2719 root.mnt = mnt;
2720 root.dentry = mnt->mnt_root;
2721
2722 set_fs_pwd(current->fs, &root);
2723 set_fs_root(current->fs, &root);
2724}
2725
2726void __init mnt_init(void)
2727{
2728 unsigned u;
2729 int err;
2730
2731 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2732 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2733
2734 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2735 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2736
2737 if (!mount_hashtable || !mountpoint_hashtable)
2738 panic("Failed to allocate mount hash table\n");
2739
2740 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2741
2742 for (u = 0; u < HASH_SIZE; u++)
2743 INIT_LIST_HEAD(&mount_hashtable[u]);
2744 for (u = 0; u < HASH_SIZE; u++)
2745 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
2746
2747 br_lock_init(&vfsmount_lock);
2748
2749 err = sysfs_init();
2750 if (err)
2751 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2752 __func__, err);
2753 fs_kobj = kobject_create_and_add("fs", NULL);
2754 if (!fs_kobj)
2755 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2756 init_rootfs();
2757 init_mount_tree();
2758}
2759
2760void put_mnt_ns(struct mnt_namespace *ns)
2761{
2762 if (!atomic_dec_and_test(&ns->count))
2763 return;
2764 drop_collected_mounts(&ns->root->mnt);
2765 free_mnt_ns(ns);
2766}
2767
2768struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2769{
2770 struct vfsmount *mnt;
2771 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2772 if (!IS_ERR(mnt)) {
2773 /*
2774 * it is a longterm mount, don't release mnt until
2775 * we unmount before file sys is unregistered
2776 */
2777 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2778 }
2779 return mnt;
2780}
2781EXPORT_SYMBOL_GPL(kern_mount_data);
2782
2783void kern_unmount(struct vfsmount *mnt)
2784{
2785 /* release long term mount so mount point can be released */
2786 if (!IS_ERR_OR_NULL(mnt)) {
2787 br_write_lock(&vfsmount_lock);
2788 real_mount(mnt)->mnt_ns = NULL;
2789 br_write_unlock(&vfsmount_lock);
2790 mntput(mnt);
2791 }
2792}
2793EXPORT_SYMBOL(kern_unmount);
2794
2795bool our_mnt(struct vfsmount *mnt)
2796{
2797 return check_mnt(real_mount(mnt));
2798}
2799
2800bool current_chrooted(void)
2801{
2802 /* Does the current process have a non-standard root */
2803 struct path ns_root;
2804 struct path fs_root;
2805 bool chrooted;
2806
2807 /* Find the namespace root */
2808 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2809 ns_root.dentry = ns_root.mnt->mnt_root;
2810 path_get(&ns_root);
2811 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2812 ;
2813
2814 get_fs_root(current->fs, &fs_root);
2815
2816 chrooted = !path_equal(&fs_root, &ns_root);
2817
2818 path_put(&fs_root);
2819 path_put(&ns_root);
2820
2821 return chrooted;
2822}
2823
2824bool fs_fully_visible(struct file_system_type *type)
2825{
2826 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2827 struct mount *mnt;
2828 bool visible = false;
2829
2830 if (unlikely(!ns))
2831 return false;
2832
2833 down_read(&namespace_sem);
2834 list_for_each_entry(mnt, &ns->list, mnt_list) {
2835 struct mount *child;
2836 if (mnt->mnt.mnt_sb->s_type != type)
2837 continue;
2838
2839 /* This mount is not fully visible if there are any child mounts
2840 * that cover anything except for empty directories.
2841 */
2842 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2843 struct inode *inode = child->mnt_mountpoint->d_inode;
2844 if (!S_ISDIR(inode->i_mode))
2845 goto next;
2846 if (inode->i_nlink != 2)
2847 goto next;
2848 }
2849 visible = true;
2850 goto found;
2851 next: ;
2852 }
2853found:
2854 up_read(&namespace_sem);
2855 return visible;
2856}
2857
2858static void *mntns_get(struct task_struct *task)
2859{
2860 struct mnt_namespace *ns = NULL;
2861 struct nsproxy *nsproxy;
2862
2863 rcu_read_lock();
2864 nsproxy = task_nsproxy(task);
2865 if (nsproxy) {
2866 ns = nsproxy->mnt_ns;
2867 get_mnt_ns(ns);
2868 }
2869 rcu_read_unlock();
2870
2871 return ns;
2872}
2873
2874static void mntns_put(void *ns)
2875{
2876 put_mnt_ns(ns);
2877}
2878
2879static int mntns_install(struct nsproxy *nsproxy, void *ns)
2880{
2881 struct fs_struct *fs = current->fs;
2882 struct mnt_namespace *mnt_ns = ns;
2883 struct path root;
2884
2885 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2886 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2887 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2888 return -EPERM;
2889
2890 if (fs->users != 1)
2891 return -EINVAL;
2892
2893 get_mnt_ns(mnt_ns);
2894 put_mnt_ns(nsproxy->mnt_ns);
2895 nsproxy->mnt_ns = mnt_ns;
2896
2897 /* Find the root */
2898 root.mnt = &mnt_ns->root->mnt;
2899 root.dentry = mnt_ns->root->mnt.mnt_root;
2900 path_get(&root);
2901 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2902 ;
2903
2904 /* Update the pwd and root */
2905 set_fs_pwd(fs, &root);
2906 set_fs_root(fs, &root);
2907
2908 path_put(&root);
2909 return 0;
2910}
2911
2912static unsigned int mntns_inum(void *ns)
2913{
2914 struct mnt_namespace *mnt_ns = ns;
2915 return mnt_ns->proc_inum;
2916}
2917
2918const struct proc_ns_operations mntns_operations = {
2919 .name = "mnt",
2920 .type = CLONE_NEWNS,
2921 .get = mntns_get,
2922 .put = mntns_put,
2923 .install = mntns_install,
2924 .inum = mntns_inum,
2925};