vfs: Add setns support for the mount namespace
[linux-2.6-block.git] / fs / namespace.c
... / ...
CommitLineData
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/namei.h>
16#include <linux/security.h>
17#include <linux/idr.h>
18#include <linux/acct.h> /* acct_auto_close_mnt */
19#include <linux/ramfs.h> /* init_rootfs */
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
23#include <linux/proc_fs.h>
24#include "pnode.h"
25#include "internal.h"
26
27#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
28#define HASH_SIZE (1UL << HASH_SHIFT)
29
30static int event;
31static DEFINE_IDA(mnt_id_ida);
32static DEFINE_IDA(mnt_group_ida);
33static DEFINE_SPINLOCK(mnt_id_lock);
34static int mnt_id_start = 0;
35static int mnt_group_start = 1;
36
37static struct list_head *mount_hashtable __read_mostly;
38static struct kmem_cache *mnt_cache __read_mostly;
39static struct rw_semaphore namespace_sem;
40
41/* /sys/fs */
42struct kobject *fs_kobj;
43EXPORT_SYMBOL_GPL(fs_kobj);
44
45/*
46 * vfsmount lock may be taken for read to prevent changes to the
47 * vfsmount hash, ie. during mountpoint lookups or walking back
48 * up the tree.
49 *
50 * It should be taken for write in all cases where the vfsmount
51 * tree or hash is modified or when a vfsmount structure is modified.
52 */
53DEFINE_BRLOCK(vfsmount_lock);
54
55static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
56{
57 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
58 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
59 tmp = tmp + (tmp >> HASH_SHIFT);
60 return tmp & (HASH_SIZE - 1);
61}
62
63#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
64
65/*
66 * allocation is serialized by namespace_sem, but we need the spinlock to
67 * serialize with freeing.
68 */
69static int mnt_alloc_id(struct mount *mnt)
70{
71 int res;
72
73retry:
74 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
75 spin_lock(&mnt_id_lock);
76 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
77 if (!res)
78 mnt_id_start = mnt->mnt_id + 1;
79 spin_unlock(&mnt_id_lock);
80 if (res == -EAGAIN)
81 goto retry;
82
83 return res;
84}
85
86static void mnt_free_id(struct mount *mnt)
87{
88 int id = mnt->mnt_id;
89 spin_lock(&mnt_id_lock);
90 ida_remove(&mnt_id_ida, id);
91 if (mnt_id_start > id)
92 mnt_id_start = id;
93 spin_unlock(&mnt_id_lock);
94}
95
96/*
97 * Allocate a new peer group ID
98 *
99 * mnt_group_ida is protected by namespace_sem
100 */
101static int mnt_alloc_group_id(struct mount *mnt)
102{
103 int res;
104
105 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
106 return -ENOMEM;
107
108 res = ida_get_new_above(&mnt_group_ida,
109 mnt_group_start,
110 &mnt->mnt_group_id);
111 if (!res)
112 mnt_group_start = mnt->mnt_group_id + 1;
113
114 return res;
115}
116
117/*
118 * Release a peer group ID
119 */
120void mnt_release_group_id(struct mount *mnt)
121{
122 int id = mnt->mnt_group_id;
123 ida_remove(&mnt_group_ida, id);
124 if (mnt_group_start > id)
125 mnt_group_start = id;
126 mnt->mnt_group_id = 0;
127}
128
129/*
130 * vfsmount lock must be held for read
131 */
132static inline void mnt_add_count(struct mount *mnt, int n)
133{
134#ifdef CONFIG_SMP
135 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
136#else
137 preempt_disable();
138 mnt->mnt_count += n;
139 preempt_enable();
140#endif
141}
142
143/*
144 * vfsmount lock must be held for write
145 */
146unsigned int mnt_get_count(struct mount *mnt)
147{
148#ifdef CONFIG_SMP
149 unsigned int count = 0;
150 int cpu;
151
152 for_each_possible_cpu(cpu) {
153 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
154 }
155
156 return count;
157#else
158 return mnt->mnt_count;
159#endif
160}
161
162static struct mount *alloc_vfsmnt(const char *name)
163{
164 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
165 if (mnt) {
166 int err;
167
168 err = mnt_alloc_id(mnt);
169 if (err)
170 goto out_free_cache;
171
172 if (name) {
173 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
174 if (!mnt->mnt_devname)
175 goto out_free_id;
176 }
177
178#ifdef CONFIG_SMP
179 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
180 if (!mnt->mnt_pcp)
181 goto out_free_devname;
182
183 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
184#else
185 mnt->mnt_count = 1;
186 mnt->mnt_writers = 0;
187#endif
188
189 INIT_LIST_HEAD(&mnt->mnt_hash);
190 INIT_LIST_HEAD(&mnt->mnt_child);
191 INIT_LIST_HEAD(&mnt->mnt_mounts);
192 INIT_LIST_HEAD(&mnt->mnt_list);
193 INIT_LIST_HEAD(&mnt->mnt_expire);
194 INIT_LIST_HEAD(&mnt->mnt_share);
195 INIT_LIST_HEAD(&mnt->mnt_slave_list);
196 INIT_LIST_HEAD(&mnt->mnt_slave);
197#ifdef CONFIG_FSNOTIFY
198 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
199#endif
200 }
201 return mnt;
202
203#ifdef CONFIG_SMP
204out_free_devname:
205 kfree(mnt->mnt_devname);
206#endif
207out_free_id:
208 mnt_free_id(mnt);
209out_free_cache:
210 kmem_cache_free(mnt_cache, mnt);
211 return NULL;
212}
213
214/*
215 * Most r/o checks on a fs are for operations that take
216 * discrete amounts of time, like a write() or unlink().
217 * We must keep track of when those operations start
218 * (for permission checks) and when they end, so that
219 * we can determine when writes are able to occur to
220 * a filesystem.
221 */
222/*
223 * __mnt_is_readonly: check whether a mount is read-only
224 * @mnt: the mount to check for its write status
225 *
226 * This shouldn't be used directly ouside of the VFS.
227 * It does not guarantee that the filesystem will stay
228 * r/w, just that it is right *now*. This can not and
229 * should not be used in place of IS_RDONLY(inode).
230 * mnt_want/drop_write() will _keep_ the filesystem
231 * r/w.
232 */
233int __mnt_is_readonly(struct vfsmount *mnt)
234{
235 if (mnt->mnt_flags & MNT_READONLY)
236 return 1;
237 if (mnt->mnt_sb->s_flags & MS_RDONLY)
238 return 1;
239 return 0;
240}
241EXPORT_SYMBOL_GPL(__mnt_is_readonly);
242
243static inline void mnt_inc_writers(struct mount *mnt)
244{
245#ifdef CONFIG_SMP
246 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
247#else
248 mnt->mnt_writers++;
249#endif
250}
251
252static inline void mnt_dec_writers(struct mount *mnt)
253{
254#ifdef CONFIG_SMP
255 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
256#else
257 mnt->mnt_writers--;
258#endif
259}
260
261static unsigned int mnt_get_writers(struct mount *mnt)
262{
263#ifdef CONFIG_SMP
264 unsigned int count = 0;
265 int cpu;
266
267 for_each_possible_cpu(cpu) {
268 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
269 }
270
271 return count;
272#else
273 return mnt->mnt_writers;
274#endif
275}
276
277static int mnt_is_readonly(struct vfsmount *mnt)
278{
279 if (mnt->mnt_sb->s_readonly_remount)
280 return 1;
281 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
282 smp_rmb();
283 return __mnt_is_readonly(mnt);
284}
285
286/*
287 * Most r/o & frozen checks on a fs are for operations that take discrete
288 * amounts of time, like a write() or unlink(). We must keep track of when
289 * those operations start (for permission checks) and when they end, so that we
290 * can determine when writes are able to occur to a filesystem.
291 */
292/**
293 * __mnt_want_write - get write access to a mount without freeze protection
294 * @m: the mount on which to take a write
295 *
296 * This tells the low-level filesystem that a write is about to be performed to
297 * it, and makes sure that writes are allowed (mnt it read-write) before
298 * returning success. This operation does not protect against filesystem being
299 * frozen. When the write operation is finished, __mnt_drop_write() must be
300 * called. This is effectively a refcount.
301 */
302int __mnt_want_write(struct vfsmount *m)
303{
304 struct mount *mnt = real_mount(m);
305 int ret = 0;
306
307 preempt_disable();
308 mnt_inc_writers(mnt);
309 /*
310 * The store to mnt_inc_writers must be visible before we pass
311 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
312 * incremented count after it has set MNT_WRITE_HOLD.
313 */
314 smp_mb();
315 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
316 cpu_relax();
317 /*
318 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
319 * be set to match its requirements. So we must not load that until
320 * MNT_WRITE_HOLD is cleared.
321 */
322 smp_rmb();
323 if (mnt_is_readonly(m)) {
324 mnt_dec_writers(mnt);
325 ret = -EROFS;
326 }
327 preempt_enable();
328
329 return ret;
330}
331
332/**
333 * mnt_want_write - get write access to a mount
334 * @m: the mount on which to take a write
335 *
336 * This tells the low-level filesystem that a write is about to be performed to
337 * it, and makes sure that writes are allowed (mount is read-write, filesystem
338 * is not frozen) before returning success. When the write operation is
339 * finished, mnt_drop_write() must be called. This is effectively a refcount.
340 */
341int mnt_want_write(struct vfsmount *m)
342{
343 int ret;
344
345 sb_start_write(m->mnt_sb);
346 ret = __mnt_want_write(m);
347 if (ret)
348 sb_end_write(m->mnt_sb);
349 return ret;
350}
351EXPORT_SYMBOL_GPL(mnt_want_write);
352
353/**
354 * mnt_clone_write - get write access to a mount
355 * @mnt: the mount on which to take a write
356 *
357 * This is effectively like mnt_want_write, except
358 * it must only be used to take an extra write reference
359 * on a mountpoint that we already know has a write reference
360 * on it. This allows some optimisation.
361 *
362 * After finished, mnt_drop_write must be called as usual to
363 * drop the reference.
364 */
365int mnt_clone_write(struct vfsmount *mnt)
366{
367 /* superblock may be r/o */
368 if (__mnt_is_readonly(mnt))
369 return -EROFS;
370 preempt_disable();
371 mnt_inc_writers(real_mount(mnt));
372 preempt_enable();
373 return 0;
374}
375EXPORT_SYMBOL_GPL(mnt_clone_write);
376
377/**
378 * __mnt_want_write_file - get write access to a file's mount
379 * @file: the file who's mount on which to take a write
380 *
381 * This is like __mnt_want_write, but it takes a file and can
382 * do some optimisations if the file is open for write already
383 */
384int __mnt_want_write_file(struct file *file)
385{
386 struct inode *inode = file->f_dentry->d_inode;
387
388 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
389 return __mnt_want_write(file->f_path.mnt);
390 else
391 return mnt_clone_write(file->f_path.mnt);
392}
393
394/**
395 * mnt_want_write_file - get write access to a file's mount
396 * @file: the file who's mount on which to take a write
397 *
398 * This is like mnt_want_write, but it takes a file and can
399 * do some optimisations if the file is open for write already
400 */
401int mnt_want_write_file(struct file *file)
402{
403 int ret;
404
405 sb_start_write(file->f_path.mnt->mnt_sb);
406 ret = __mnt_want_write_file(file);
407 if (ret)
408 sb_end_write(file->f_path.mnt->mnt_sb);
409 return ret;
410}
411EXPORT_SYMBOL_GPL(mnt_want_write_file);
412
413/**
414 * __mnt_drop_write - give up write access to a mount
415 * @mnt: the mount on which to give up write access
416 *
417 * Tells the low-level filesystem that we are done
418 * performing writes to it. Must be matched with
419 * __mnt_want_write() call above.
420 */
421void __mnt_drop_write(struct vfsmount *mnt)
422{
423 preempt_disable();
424 mnt_dec_writers(real_mount(mnt));
425 preempt_enable();
426}
427
428/**
429 * mnt_drop_write - give up write access to a mount
430 * @mnt: the mount on which to give up write access
431 *
432 * Tells the low-level filesystem that we are done performing writes to it and
433 * also allows filesystem to be frozen again. Must be matched with
434 * mnt_want_write() call above.
435 */
436void mnt_drop_write(struct vfsmount *mnt)
437{
438 __mnt_drop_write(mnt);
439 sb_end_write(mnt->mnt_sb);
440}
441EXPORT_SYMBOL_GPL(mnt_drop_write);
442
443void __mnt_drop_write_file(struct file *file)
444{
445 __mnt_drop_write(file->f_path.mnt);
446}
447
448void mnt_drop_write_file(struct file *file)
449{
450 mnt_drop_write(file->f_path.mnt);
451}
452EXPORT_SYMBOL(mnt_drop_write_file);
453
454static int mnt_make_readonly(struct mount *mnt)
455{
456 int ret = 0;
457
458 br_write_lock(&vfsmount_lock);
459 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
460 /*
461 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
462 * should be visible before we do.
463 */
464 smp_mb();
465
466 /*
467 * With writers on hold, if this value is zero, then there are
468 * definitely no active writers (although held writers may subsequently
469 * increment the count, they'll have to wait, and decrement it after
470 * seeing MNT_READONLY).
471 *
472 * It is OK to have counter incremented on one CPU and decremented on
473 * another: the sum will add up correctly. The danger would be when we
474 * sum up each counter, if we read a counter before it is incremented,
475 * but then read another CPU's count which it has been subsequently
476 * decremented from -- we would see more decrements than we should.
477 * MNT_WRITE_HOLD protects against this scenario, because
478 * mnt_want_write first increments count, then smp_mb, then spins on
479 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
480 * we're counting up here.
481 */
482 if (mnt_get_writers(mnt) > 0)
483 ret = -EBUSY;
484 else
485 mnt->mnt.mnt_flags |= MNT_READONLY;
486 /*
487 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
488 * that become unheld will see MNT_READONLY.
489 */
490 smp_wmb();
491 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
492 br_write_unlock(&vfsmount_lock);
493 return ret;
494}
495
496static void __mnt_unmake_readonly(struct mount *mnt)
497{
498 br_write_lock(&vfsmount_lock);
499 mnt->mnt.mnt_flags &= ~MNT_READONLY;
500 br_write_unlock(&vfsmount_lock);
501}
502
503int sb_prepare_remount_readonly(struct super_block *sb)
504{
505 struct mount *mnt;
506 int err = 0;
507
508 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
509 if (atomic_long_read(&sb->s_remove_count))
510 return -EBUSY;
511
512 br_write_lock(&vfsmount_lock);
513 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
514 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
515 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
516 smp_mb();
517 if (mnt_get_writers(mnt) > 0) {
518 err = -EBUSY;
519 break;
520 }
521 }
522 }
523 if (!err && atomic_long_read(&sb->s_remove_count))
524 err = -EBUSY;
525
526 if (!err) {
527 sb->s_readonly_remount = 1;
528 smp_wmb();
529 }
530 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
531 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
532 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
533 }
534 br_write_unlock(&vfsmount_lock);
535
536 return err;
537}
538
539static void free_vfsmnt(struct mount *mnt)
540{
541 kfree(mnt->mnt_devname);
542 mnt_free_id(mnt);
543#ifdef CONFIG_SMP
544 free_percpu(mnt->mnt_pcp);
545#endif
546 kmem_cache_free(mnt_cache, mnt);
547}
548
549/*
550 * find the first or last mount at @dentry on vfsmount @mnt depending on
551 * @dir. If @dir is set return the first mount else return the last mount.
552 * vfsmount_lock must be held for read or write.
553 */
554struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
555 int dir)
556{
557 struct list_head *head = mount_hashtable + hash(mnt, dentry);
558 struct list_head *tmp = head;
559 struct mount *p, *found = NULL;
560
561 for (;;) {
562 tmp = dir ? tmp->next : tmp->prev;
563 p = NULL;
564 if (tmp == head)
565 break;
566 p = list_entry(tmp, struct mount, mnt_hash);
567 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
568 found = p;
569 break;
570 }
571 }
572 return found;
573}
574
575/*
576 * lookup_mnt - Return the first child mount mounted at path
577 *
578 * "First" means first mounted chronologically. If you create the
579 * following mounts:
580 *
581 * mount /dev/sda1 /mnt
582 * mount /dev/sda2 /mnt
583 * mount /dev/sda3 /mnt
584 *
585 * Then lookup_mnt() on the base /mnt dentry in the root mount will
586 * return successively the root dentry and vfsmount of /dev/sda1, then
587 * /dev/sda2, then /dev/sda3, then NULL.
588 *
589 * lookup_mnt takes a reference to the found vfsmount.
590 */
591struct vfsmount *lookup_mnt(struct path *path)
592{
593 struct mount *child_mnt;
594
595 br_read_lock(&vfsmount_lock);
596 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
597 if (child_mnt) {
598 mnt_add_count(child_mnt, 1);
599 br_read_unlock(&vfsmount_lock);
600 return &child_mnt->mnt;
601 } else {
602 br_read_unlock(&vfsmount_lock);
603 return NULL;
604 }
605}
606
607static inline int check_mnt(struct mount *mnt)
608{
609 return mnt->mnt_ns == current->nsproxy->mnt_ns;
610}
611
612/*
613 * vfsmount lock must be held for write
614 */
615static void touch_mnt_namespace(struct mnt_namespace *ns)
616{
617 if (ns) {
618 ns->event = ++event;
619 wake_up_interruptible(&ns->poll);
620 }
621}
622
623/*
624 * vfsmount lock must be held for write
625 */
626static void __touch_mnt_namespace(struct mnt_namespace *ns)
627{
628 if (ns && ns->event != event) {
629 ns->event = event;
630 wake_up_interruptible(&ns->poll);
631 }
632}
633
634/*
635 * Clear dentry's mounted state if it has no remaining mounts.
636 * vfsmount_lock must be held for write.
637 */
638static void dentry_reset_mounted(struct dentry *dentry)
639{
640 unsigned u;
641
642 for (u = 0; u < HASH_SIZE; u++) {
643 struct mount *p;
644
645 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
646 if (p->mnt_mountpoint == dentry)
647 return;
648 }
649 }
650 spin_lock(&dentry->d_lock);
651 dentry->d_flags &= ~DCACHE_MOUNTED;
652 spin_unlock(&dentry->d_lock);
653}
654
655/*
656 * vfsmount lock must be held for write
657 */
658static void detach_mnt(struct mount *mnt, struct path *old_path)
659{
660 old_path->dentry = mnt->mnt_mountpoint;
661 old_path->mnt = &mnt->mnt_parent->mnt;
662 mnt->mnt_parent = mnt;
663 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
664 list_del_init(&mnt->mnt_child);
665 list_del_init(&mnt->mnt_hash);
666 dentry_reset_mounted(old_path->dentry);
667}
668
669/*
670 * vfsmount lock must be held for write
671 */
672void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
673 struct mount *child_mnt)
674{
675 mnt_add_count(mnt, 1); /* essentially, that's mntget */
676 child_mnt->mnt_mountpoint = dget(dentry);
677 child_mnt->mnt_parent = mnt;
678 spin_lock(&dentry->d_lock);
679 dentry->d_flags |= DCACHE_MOUNTED;
680 spin_unlock(&dentry->d_lock);
681}
682
683/*
684 * vfsmount lock must be held for write
685 */
686static void attach_mnt(struct mount *mnt, struct path *path)
687{
688 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
689 list_add_tail(&mnt->mnt_hash, mount_hashtable +
690 hash(path->mnt, path->dentry));
691 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
692}
693
694/*
695 * vfsmount lock must be held for write
696 */
697static void commit_tree(struct mount *mnt)
698{
699 struct mount *parent = mnt->mnt_parent;
700 struct mount *m;
701 LIST_HEAD(head);
702 struct mnt_namespace *n = parent->mnt_ns;
703
704 BUG_ON(parent == mnt);
705
706 list_add_tail(&head, &mnt->mnt_list);
707 list_for_each_entry(m, &head, mnt_list)
708 m->mnt_ns = n;
709
710 list_splice(&head, n->list.prev);
711
712 list_add_tail(&mnt->mnt_hash, mount_hashtable +
713 hash(&parent->mnt, mnt->mnt_mountpoint));
714 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
715 touch_mnt_namespace(n);
716}
717
718static struct mount *next_mnt(struct mount *p, struct mount *root)
719{
720 struct list_head *next = p->mnt_mounts.next;
721 if (next == &p->mnt_mounts) {
722 while (1) {
723 if (p == root)
724 return NULL;
725 next = p->mnt_child.next;
726 if (next != &p->mnt_parent->mnt_mounts)
727 break;
728 p = p->mnt_parent;
729 }
730 }
731 return list_entry(next, struct mount, mnt_child);
732}
733
734static struct mount *skip_mnt_tree(struct mount *p)
735{
736 struct list_head *prev = p->mnt_mounts.prev;
737 while (prev != &p->mnt_mounts) {
738 p = list_entry(prev, struct mount, mnt_child);
739 prev = p->mnt_mounts.prev;
740 }
741 return p;
742}
743
744struct vfsmount *
745vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
746{
747 struct mount *mnt;
748 struct dentry *root;
749
750 if (!type)
751 return ERR_PTR(-ENODEV);
752
753 mnt = alloc_vfsmnt(name);
754 if (!mnt)
755 return ERR_PTR(-ENOMEM);
756
757 if (flags & MS_KERNMOUNT)
758 mnt->mnt.mnt_flags = MNT_INTERNAL;
759
760 root = mount_fs(type, flags, name, data);
761 if (IS_ERR(root)) {
762 free_vfsmnt(mnt);
763 return ERR_CAST(root);
764 }
765
766 mnt->mnt.mnt_root = root;
767 mnt->mnt.mnt_sb = root->d_sb;
768 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
769 mnt->mnt_parent = mnt;
770 br_write_lock(&vfsmount_lock);
771 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
772 br_write_unlock(&vfsmount_lock);
773 return &mnt->mnt;
774}
775EXPORT_SYMBOL_GPL(vfs_kern_mount);
776
777static struct mount *clone_mnt(struct mount *old, struct dentry *root,
778 int flag)
779{
780 struct super_block *sb = old->mnt.mnt_sb;
781 struct mount *mnt;
782 int err;
783
784 mnt = alloc_vfsmnt(old->mnt_devname);
785 if (!mnt)
786 return ERR_PTR(-ENOMEM);
787
788 if (flag & (CL_SLAVE | CL_PRIVATE))
789 mnt->mnt_group_id = 0; /* not a peer of original */
790 else
791 mnt->mnt_group_id = old->mnt_group_id;
792
793 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
794 err = mnt_alloc_group_id(mnt);
795 if (err)
796 goto out_free;
797 }
798
799 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
800 atomic_inc(&sb->s_active);
801 mnt->mnt.mnt_sb = sb;
802 mnt->mnt.mnt_root = dget(root);
803 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
804 mnt->mnt_parent = mnt;
805 br_write_lock(&vfsmount_lock);
806 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
807 br_write_unlock(&vfsmount_lock);
808
809 if (flag & CL_SLAVE) {
810 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
811 mnt->mnt_master = old;
812 CLEAR_MNT_SHARED(mnt);
813 } else if (!(flag & CL_PRIVATE)) {
814 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
815 list_add(&mnt->mnt_share, &old->mnt_share);
816 if (IS_MNT_SLAVE(old))
817 list_add(&mnt->mnt_slave, &old->mnt_slave);
818 mnt->mnt_master = old->mnt_master;
819 }
820 if (flag & CL_MAKE_SHARED)
821 set_mnt_shared(mnt);
822
823 /* stick the duplicate mount on the same expiry list
824 * as the original if that was on one */
825 if (flag & CL_EXPIRE) {
826 if (!list_empty(&old->mnt_expire))
827 list_add(&mnt->mnt_expire, &old->mnt_expire);
828 }
829
830 return mnt;
831
832 out_free:
833 free_vfsmnt(mnt);
834 return ERR_PTR(err);
835}
836
837static inline void mntfree(struct mount *mnt)
838{
839 struct vfsmount *m = &mnt->mnt;
840 struct super_block *sb = m->mnt_sb;
841
842 /*
843 * This probably indicates that somebody messed
844 * up a mnt_want/drop_write() pair. If this
845 * happens, the filesystem was probably unable
846 * to make r/w->r/o transitions.
847 */
848 /*
849 * The locking used to deal with mnt_count decrement provides barriers,
850 * so mnt_get_writers() below is safe.
851 */
852 WARN_ON(mnt_get_writers(mnt));
853 fsnotify_vfsmount_delete(m);
854 dput(m->mnt_root);
855 free_vfsmnt(mnt);
856 deactivate_super(sb);
857}
858
859static void mntput_no_expire(struct mount *mnt)
860{
861put_again:
862#ifdef CONFIG_SMP
863 br_read_lock(&vfsmount_lock);
864 if (likely(mnt->mnt_ns)) {
865 /* shouldn't be the last one */
866 mnt_add_count(mnt, -1);
867 br_read_unlock(&vfsmount_lock);
868 return;
869 }
870 br_read_unlock(&vfsmount_lock);
871
872 br_write_lock(&vfsmount_lock);
873 mnt_add_count(mnt, -1);
874 if (mnt_get_count(mnt)) {
875 br_write_unlock(&vfsmount_lock);
876 return;
877 }
878#else
879 mnt_add_count(mnt, -1);
880 if (likely(mnt_get_count(mnt)))
881 return;
882 br_write_lock(&vfsmount_lock);
883#endif
884 if (unlikely(mnt->mnt_pinned)) {
885 mnt_add_count(mnt, mnt->mnt_pinned + 1);
886 mnt->mnt_pinned = 0;
887 br_write_unlock(&vfsmount_lock);
888 acct_auto_close_mnt(&mnt->mnt);
889 goto put_again;
890 }
891
892 list_del(&mnt->mnt_instance);
893 br_write_unlock(&vfsmount_lock);
894 mntfree(mnt);
895}
896
897void mntput(struct vfsmount *mnt)
898{
899 if (mnt) {
900 struct mount *m = real_mount(mnt);
901 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
902 if (unlikely(m->mnt_expiry_mark))
903 m->mnt_expiry_mark = 0;
904 mntput_no_expire(m);
905 }
906}
907EXPORT_SYMBOL(mntput);
908
909struct vfsmount *mntget(struct vfsmount *mnt)
910{
911 if (mnt)
912 mnt_add_count(real_mount(mnt), 1);
913 return mnt;
914}
915EXPORT_SYMBOL(mntget);
916
917void mnt_pin(struct vfsmount *mnt)
918{
919 br_write_lock(&vfsmount_lock);
920 real_mount(mnt)->mnt_pinned++;
921 br_write_unlock(&vfsmount_lock);
922}
923EXPORT_SYMBOL(mnt_pin);
924
925void mnt_unpin(struct vfsmount *m)
926{
927 struct mount *mnt = real_mount(m);
928 br_write_lock(&vfsmount_lock);
929 if (mnt->mnt_pinned) {
930 mnt_add_count(mnt, 1);
931 mnt->mnt_pinned--;
932 }
933 br_write_unlock(&vfsmount_lock);
934}
935EXPORT_SYMBOL(mnt_unpin);
936
937static inline void mangle(struct seq_file *m, const char *s)
938{
939 seq_escape(m, s, " \t\n\\");
940}
941
942/*
943 * Simple .show_options callback for filesystems which don't want to
944 * implement more complex mount option showing.
945 *
946 * See also save_mount_options().
947 */
948int generic_show_options(struct seq_file *m, struct dentry *root)
949{
950 const char *options;
951
952 rcu_read_lock();
953 options = rcu_dereference(root->d_sb->s_options);
954
955 if (options != NULL && options[0]) {
956 seq_putc(m, ',');
957 mangle(m, options);
958 }
959 rcu_read_unlock();
960
961 return 0;
962}
963EXPORT_SYMBOL(generic_show_options);
964
965/*
966 * If filesystem uses generic_show_options(), this function should be
967 * called from the fill_super() callback.
968 *
969 * The .remount_fs callback usually needs to be handled in a special
970 * way, to make sure, that previous options are not overwritten if the
971 * remount fails.
972 *
973 * Also note, that if the filesystem's .remount_fs function doesn't
974 * reset all options to their default value, but changes only newly
975 * given options, then the displayed options will not reflect reality
976 * any more.
977 */
978void save_mount_options(struct super_block *sb, char *options)
979{
980 BUG_ON(sb->s_options);
981 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
982}
983EXPORT_SYMBOL(save_mount_options);
984
985void replace_mount_options(struct super_block *sb, char *options)
986{
987 char *old = sb->s_options;
988 rcu_assign_pointer(sb->s_options, options);
989 if (old) {
990 synchronize_rcu();
991 kfree(old);
992 }
993}
994EXPORT_SYMBOL(replace_mount_options);
995
996#ifdef CONFIG_PROC_FS
997/* iterator; we want it to have access to namespace_sem, thus here... */
998static void *m_start(struct seq_file *m, loff_t *pos)
999{
1000 struct proc_mounts *p = proc_mounts(m);
1001
1002 down_read(&namespace_sem);
1003 return seq_list_start(&p->ns->list, *pos);
1004}
1005
1006static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1007{
1008 struct proc_mounts *p = proc_mounts(m);
1009
1010 return seq_list_next(v, &p->ns->list, pos);
1011}
1012
1013static void m_stop(struct seq_file *m, void *v)
1014{
1015 up_read(&namespace_sem);
1016}
1017
1018static int m_show(struct seq_file *m, void *v)
1019{
1020 struct proc_mounts *p = proc_mounts(m);
1021 struct mount *r = list_entry(v, struct mount, mnt_list);
1022 return p->show(m, &r->mnt);
1023}
1024
1025const struct seq_operations mounts_op = {
1026 .start = m_start,
1027 .next = m_next,
1028 .stop = m_stop,
1029 .show = m_show,
1030};
1031#endif /* CONFIG_PROC_FS */
1032
1033/**
1034 * may_umount_tree - check if a mount tree is busy
1035 * @mnt: root of mount tree
1036 *
1037 * This is called to check if a tree of mounts has any
1038 * open files, pwds, chroots or sub mounts that are
1039 * busy.
1040 */
1041int may_umount_tree(struct vfsmount *m)
1042{
1043 struct mount *mnt = real_mount(m);
1044 int actual_refs = 0;
1045 int minimum_refs = 0;
1046 struct mount *p;
1047 BUG_ON(!m);
1048
1049 /* write lock needed for mnt_get_count */
1050 br_write_lock(&vfsmount_lock);
1051 for (p = mnt; p; p = next_mnt(p, mnt)) {
1052 actual_refs += mnt_get_count(p);
1053 minimum_refs += 2;
1054 }
1055 br_write_unlock(&vfsmount_lock);
1056
1057 if (actual_refs > minimum_refs)
1058 return 0;
1059
1060 return 1;
1061}
1062
1063EXPORT_SYMBOL(may_umount_tree);
1064
1065/**
1066 * may_umount - check if a mount point is busy
1067 * @mnt: root of mount
1068 *
1069 * This is called to check if a mount point has any
1070 * open files, pwds, chroots or sub mounts. If the
1071 * mount has sub mounts this will return busy
1072 * regardless of whether the sub mounts are busy.
1073 *
1074 * Doesn't take quota and stuff into account. IOW, in some cases it will
1075 * give false negatives. The main reason why it's here is that we need
1076 * a non-destructive way to look for easily umountable filesystems.
1077 */
1078int may_umount(struct vfsmount *mnt)
1079{
1080 int ret = 1;
1081 down_read(&namespace_sem);
1082 br_write_lock(&vfsmount_lock);
1083 if (propagate_mount_busy(real_mount(mnt), 2))
1084 ret = 0;
1085 br_write_unlock(&vfsmount_lock);
1086 up_read(&namespace_sem);
1087 return ret;
1088}
1089
1090EXPORT_SYMBOL(may_umount);
1091
1092void release_mounts(struct list_head *head)
1093{
1094 struct mount *mnt;
1095 while (!list_empty(head)) {
1096 mnt = list_first_entry(head, struct mount, mnt_hash);
1097 list_del_init(&mnt->mnt_hash);
1098 if (mnt_has_parent(mnt)) {
1099 struct dentry *dentry;
1100 struct mount *m;
1101
1102 br_write_lock(&vfsmount_lock);
1103 dentry = mnt->mnt_mountpoint;
1104 m = mnt->mnt_parent;
1105 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1106 mnt->mnt_parent = mnt;
1107 m->mnt_ghosts--;
1108 br_write_unlock(&vfsmount_lock);
1109 dput(dentry);
1110 mntput(&m->mnt);
1111 }
1112 mntput(&mnt->mnt);
1113 }
1114}
1115
1116/*
1117 * vfsmount lock must be held for write
1118 * namespace_sem must be held for write
1119 */
1120void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1121{
1122 LIST_HEAD(tmp_list);
1123 struct mount *p;
1124
1125 for (p = mnt; p; p = next_mnt(p, mnt))
1126 list_move(&p->mnt_hash, &tmp_list);
1127
1128 if (propagate)
1129 propagate_umount(&tmp_list);
1130
1131 list_for_each_entry(p, &tmp_list, mnt_hash) {
1132 list_del_init(&p->mnt_expire);
1133 list_del_init(&p->mnt_list);
1134 __touch_mnt_namespace(p->mnt_ns);
1135 p->mnt_ns = NULL;
1136 list_del_init(&p->mnt_child);
1137 if (mnt_has_parent(p)) {
1138 p->mnt_parent->mnt_ghosts++;
1139 dentry_reset_mounted(p->mnt_mountpoint);
1140 }
1141 change_mnt_propagation(p, MS_PRIVATE);
1142 }
1143 list_splice(&tmp_list, kill);
1144}
1145
1146static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1147
1148static int do_umount(struct mount *mnt, int flags)
1149{
1150 struct super_block *sb = mnt->mnt.mnt_sb;
1151 int retval;
1152 LIST_HEAD(umount_list);
1153
1154 retval = security_sb_umount(&mnt->mnt, flags);
1155 if (retval)
1156 return retval;
1157
1158 /*
1159 * Allow userspace to request a mountpoint be expired rather than
1160 * unmounting unconditionally. Unmount only happens if:
1161 * (1) the mark is already set (the mark is cleared by mntput())
1162 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1163 */
1164 if (flags & MNT_EXPIRE) {
1165 if (&mnt->mnt == current->fs->root.mnt ||
1166 flags & (MNT_FORCE | MNT_DETACH))
1167 return -EINVAL;
1168
1169 /*
1170 * probably don't strictly need the lock here if we examined
1171 * all race cases, but it's a slowpath.
1172 */
1173 br_write_lock(&vfsmount_lock);
1174 if (mnt_get_count(mnt) != 2) {
1175 br_write_unlock(&vfsmount_lock);
1176 return -EBUSY;
1177 }
1178 br_write_unlock(&vfsmount_lock);
1179
1180 if (!xchg(&mnt->mnt_expiry_mark, 1))
1181 return -EAGAIN;
1182 }
1183
1184 /*
1185 * If we may have to abort operations to get out of this
1186 * mount, and they will themselves hold resources we must
1187 * allow the fs to do things. In the Unix tradition of
1188 * 'Gee thats tricky lets do it in userspace' the umount_begin
1189 * might fail to complete on the first run through as other tasks
1190 * must return, and the like. Thats for the mount program to worry
1191 * about for the moment.
1192 */
1193
1194 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1195 sb->s_op->umount_begin(sb);
1196 }
1197
1198 /*
1199 * No sense to grab the lock for this test, but test itself looks
1200 * somewhat bogus. Suggestions for better replacement?
1201 * Ho-hum... In principle, we might treat that as umount + switch
1202 * to rootfs. GC would eventually take care of the old vfsmount.
1203 * Actually it makes sense, especially if rootfs would contain a
1204 * /reboot - static binary that would close all descriptors and
1205 * call reboot(9). Then init(8) could umount root and exec /reboot.
1206 */
1207 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1208 /*
1209 * Special case for "unmounting" root ...
1210 * we just try to remount it readonly.
1211 */
1212 down_write(&sb->s_umount);
1213 if (!(sb->s_flags & MS_RDONLY))
1214 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1215 up_write(&sb->s_umount);
1216 return retval;
1217 }
1218
1219 down_write(&namespace_sem);
1220 br_write_lock(&vfsmount_lock);
1221 event++;
1222
1223 if (!(flags & MNT_DETACH))
1224 shrink_submounts(mnt, &umount_list);
1225
1226 retval = -EBUSY;
1227 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1228 if (!list_empty(&mnt->mnt_list))
1229 umount_tree(mnt, 1, &umount_list);
1230 retval = 0;
1231 }
1232 br_write_unlock(&vfsmount_lock);
1233 up_write(&namespace_sem);
1234 release_mounts(&umount_list);
1235 return retval;
1236}
1237
1238/*
1239 * Now umount can handle mount points as well as block devices.
1240 * This is important for filesystems which use unnamed block devices.
1241 *
1242 * We now support a flag for forced unmount like the other 'big iron'
1243 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1244 */
1245
1246SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1247{
1248 struct path path;
1249 struct mount *mnt;
1250 int retval;
1251 int lookup_flags = 0;
1252
1253 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1254 return -EINVAL;
1255
1256 if (!(flags & UMOUNT_NOFOLLOW))
1257 lookup_flags |= LOOKUP_FOLLOW;
1258
1259 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1260 if (retval)
1261 goto out;
1262 mnt = real_mount(path.mnt);
1263 retval = -EINVAL;
1264 if (path.dentry != path.mnt->mnt_root)
1265 goto dput_and_out;
1266 if (!check_mnt(mnt))
1267 goto dput_and_out;
1268
1269 retval = -EPERM;
1270 if (!capable(CAP_SYS_ADMIN))
1271 goto dput_and_out;
1272
1273 retval = do_umount(mnt, flags);
1274dput_and_out:
1275 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1276 dput(path.dentry);
1277 mntput_no_expire(mnt);
1278out:
1279 return retval;
1280}
1281
1282#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1283
1284/*
1285 * The 2.0 compatible umount. No flags.
1286 */
1287SYSCALL_DEFINE1(oldumount, char __user *, name)
1288{
1289 return sys_umount(name, 0);
1290}
1291
1292#endif
1293
1294static int mount_is_safe(struct path *path)
1295{
1296 if (capable(CAP_SYS_ADMIN))
1297 return 0;
1298 return -EPERM;
1299#ifdef notyet
1300 if (S_ISLNK(path->dentry->d_inode->i_mode))
1301 return -EPERM;
1302 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1303 if (current_uid() != path->dentry->d_inode->i_uid)
1304 return -EPERM;
1305 }
1306 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1307 return -EPERM;
1308 return 0;
1309#endif
1310}
1311
1312static bool mnt_ns_loop(struct path *path)
1313{
1314 /* Could bind mounting the mount namespace inode cause a
1315 * mount namespace loop?
1316 */
1317 struct inode *inode = path->dentry->d_inode;
1318 struct proc_inode *ei;
1319 struct mnt_namespace *mnt_ns;
1320
1321 if (!proc_ns_inode(inode))
1322 return false;
1323
1324 ei = PROC_I(inode);
1325 if (ei->ns_ops != &mntns_operations)
1326 return false;
1327
1328 mnt_ns = ei->ns;
1329 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1330}
1331
1332struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1333 int flag)
1334{
1335 struct mount *res, *p, *q, *r;
1336 struct path path;
1337
1338 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1339 return ERR_PTR(-EINVAL);
1340
1341 res = q = clone_mnt(mnt, dentry, flag);
1342 if (IS_ERR(q))
1343 return q;
1344
1345 q->mnt_mountpoint = mnt->mnt_mountpoint;
1346
1347 p = mnt;
1348 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1349 struct mount *s;
1350 if (!is_subdir(r->mnt_mountpoint, dentry))
1351 continue;
1352
1353 for (s = r; s; s = next_mnt(s, r)) {
1354 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1355 s = skip_mnt_tree(s);
1356 continue;
1357 }
1358 while (p != s->mnt_parent) {
1359 p = p->mnt_parent;
1360 q = q->mnt_parent;
1361 }
1362 p = s;
1363 path.mnt = &q->mnt;
1364 path.dentry = p->mnt_mountpoint;
1365 q = clone_mnt(p, p->mnt.mnt_root, flag);
1366 if (IS_ERR(q))
1367 goto out;
1368 br_write_lock(&vfsmount_lock);
1369 list_add_tail(&q->mnt_list, &res->mnt_list);
1370 attach_mnt(q, &path);
1371 br_write_unlock(&vfsmount_lock);
1372 }
1373 }
1374 return res;
1375out:
1376 if (res) {
1377 LIST_HEAD(umount_list);
1378 br_write_lock(&vfsmount_lock);
1379 umount_tree(res, 0, &umount_list);
1380 br_write_unlock(&vfsmount_lock);
1381 release_mounts(&umount_list);
1382 }
1383 return q;
1384}
1385
1386/* Caller should check returned pointer for errors */
1387
1388struct vfsmount *collect_mounts(struct path *path)
1389{
1390 struct mount *tree;
1391 down_write(&namespace_sem);
1392 tree = copy_tree(real_mount(path->mnt), path->dentry,
1393 CL_COPY_ALL | CL_PRIVATE);
1394 up_write(&namespace_sem);
1395 if (IS_ERR(tree))
1396 return NULL;
1397 return &tree->mnt;
1398}
1399
1400void drop_collected_mounts(struct vfsmount *mnt)
1401{
1402 LIST_HEAD(umount_list);
1403 down_write(&namespace_sem);
1404 br_write_lock(&vfsmount_lock);
1405 umount_tree(real_mount(mnt), 0, &umount_list);
1406 br_write_unlock(&vfsmount_lock);
1407 up_write(&namespace_sem);
1408 release_mounts(&umount_list);
1409}
1410
1411int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1412 struct vfsmount *root)
1413{
1414 struct mount *mnt;
1415 int res = f(root, arg);
1416 if (res)
1417 return res;
1418 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1419 res = f(&mnt->mnt, arg);
1420 if (res)
1421 return res;
1422 }
1423 return 0;
1424}
1425
1426static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1427{
1428 struct mount *p;
1429
1430 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1431 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1432 mnt_release_group_id(p);
1433 }
1434}
1435
1436static int invent_group_ids(struct mount *mnt, bool recurse)
1437{
1438 struct mount *p;
1439
1440 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1441 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1442 int err = mnt_alloc_group_id(p);
1443 if (err) {
1444 cleanup_group_ids(mnt, p);
1445 return err;
1446 }
1447 }
1448 }
1449
1450 return 0;
1451}
1452
1453/*
1454 * @source_mnt : mount tree to be attached
1455 * @nd : place the mount tree @source_mnt is attached
1456 * @parent_nd : if non-null, detach the source_mnt from its parent and
1457 * store the parent mount and mountpoint dentry.
1458 * (done when source_mnt is moved)
1459 *
1460 * NOTE: in the table below explains the semantics when a source mount
1461 * of a given type is attached to a destination mount of a given type.
1462 * ---------------------------------------------------------------------------
1463 * | BIND MOUNT OPERATION |
1464 * |**************************************************************************
1465 * | source-->| shared | private | slave | unbindable |
1466 * | dest | | | | |
1467 * | | | | | | |
1468 * | v | | | | |
1469 * |**************************************************************************
1470 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1471 * | | | | | |
1472 * |non-shared| shared (+) | private | slave (*) | invalid |
1473 * ***************************************************************************
1474 * A bind operation clones the source mount and mounts the clone on the
1475 * destination mount.
1476 *
1477 * (++) the cloned mount is propagated to all the mounts in the propagation
1478 * tree of the destination mount and the cloned mount is added to
1479 * the peer group of the source mount.
1480 * (+) the cloned mount is created under the destination mount and is marked
1481 * as shared. The cloned mount is added to the peer group of the source
1482 * mount.
1483 * (+++) the mount is propagated to all the mounts in the propagation tree
1484 * of the destination mount and the cloned mount is made slave
1485 * of the same master as that of the source mount. The cloned mount
1486 * is marked as 'shared and slave'.
1487 * (*) the cloned mount is made a slave of the same master as that of the
1488 * source mount.
1489 *
1490 * ---------------------------------------------------------------------------
1491 * | MOVE MOUNT OPERATION |
1492 * |**************************************************************************
1493 * | source-->| shared | private | slave | unbindable |
1494 * | dest | | | | |
1495 * | | | | | | |
1496 * | v | | | | |
1497 * |**************************************************************************
1498 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1499 * | | | | | |
1500 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1501 * ***************************************************************************
1502 *
1503 * (+) the mount is moved to the destination. And is then propagated to
1504 * all the mounts in the propagation tree of the destination mount.
1505 * (+*) the mount is moved to the destination.
1506 * (+++) the mount is moved to the destination and is then propagated to
1507 * all the mounts belonging to the destination mount's propagation tree.
1508 * the mount is marked as 'shared and slave'.
1509 * (*) the mount continues to be a slave at the new location.
1510 *
1511 * if the source mount is a tree, the operations explained above is
1512 * applied to each mount in the tree.
1513 * Must be called without spinlocks held, since this function can sleep
1514 * in allocations.
1515 */
1516static int attach_recursive_mnt(struct mount *source_mnt,
1517 struct path *path, struct path *parent_path)
1518{
1519 LIST_HEAD(tree_list);
1520 struct mount *dest_mnt = real_mount(path->mnt);
1521 struct dentry *dest_dentry = path->dentry;
1522 struct mount *child, *p;
1523 int err;
1524
1525 if (IS_MNT_SHARED(dest_mnt)) {
1526 err = invent_group_ids(source_mnt, true);
1527 if (err)
1528 goto out;
1529 }
1530 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1531 if (err)
1532 goto out_cleanup_ids;
1533
1534 br_write_lock(&vfsmount_lock);
1535
1536 if (IS_MNT_SHARED(dest_mnt)) {
1537 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1538 set_mnt_shared(p);
1539 }
1540 if (parent_path) {
1541 detach_mnt(source_mnt, parent_path);
1542 attach_mnt(source_mnt, path);
1543 touch_mnt_namespace(source_mnt->mnt_ns);
1544 } else {
1545 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1546 commit_tree(source_mnt);
1547 }
1548
1549 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1550 list_del_init(&child->mnt_hash);
1551 commit_tree(child);
1552 }
1553 br_write_unlock(&vfsmount_lock);
1554
1555 return 0;
1556
1557 out_cleanup_ids:
1558 if (IS_MNT_SHARED(dest_mnt))
1559 cleanup_group_ids(source_mnt, NULL);
1560 out:
1561 return err;
1562}
1563
1564static int lock_mount(struct path *path)
1565{
1566 struct vfsmount *mnt;
1567retry:
1568 mutex_lock(&path->dentry->d_inode->i_mutex);
1569 if (unlikely(cant_mount(path->dentry))) {
1570 mutex_unlock(&path->dentry->d_inode->i_mutex);
1571 return -ENOENT;
1572 }
1573 down_write(&namespace_sem);
1574 mnt = lookup_mnt(path);
1575 if (likely(!mnt))
1576 return 0;
1577 up_write(&namespace_sem);
1578 mutex_unlock(&path->dentry->d_inode->i_mutex);
1579 path_put(path);
1580 path->mnt = mnt;
1581 path->dentry = dget(mnt->mnt_root);
1582 goto retry;
1583}
1584
1585static void unlock_mount(struct path *path)
1586{
1587 up_write(&namespace_sem);
1588 mutex_unlock(&path->dentry->d_inode->i_mutex);
1589}
1590
1591static int graft_tree(struct mount *mnt, struct path *path)
1592{
1593 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1594 return -EINVAL;
1595
1596 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1597 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1598 return -ENOTDIR;
1599
1600 if (d_unlinked(path->dentry))
1601 return -ENOENT;
1602
1603 return attach_recursive_mnt(mnt, path, NULL);
1604}
1605
1606/*
1607 * Sanity check the flags to change_mnt_propagation.
1608 */
1609
1610static int flags_to_propagation_type(int flags)
1611{
1612 int type = flags & ~(MS_REC | MS_SILENT);
1613
1614 /* Fail if any non-propagation flags are set */
1615 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1616 return 0;
1617 /* Only one propagation flag should be set */
1618 if (!is_power_of_2(type))
1619 return 0;
1620 return type;
1621}
1622
1623/*
1624 * recursively change the type of the mountpoint.
1625 */
1626static int do_change_type(struct path *path, int flag)
1627{
1628 struct mount *m;
1629 struct mount *mnt = real_mount(path->mnt);
1630 int recurse = flag & MS_REC;
1631 int type;
1632 int err = 0;
1633
1634 if (!capable(CAP_SYS_ADMIN))
1635 return -EPERM;
1636
1637 if (path->dentry != path->mnt->mnt_root)
1638 return -EINVAL;
1639
1640 type = flags_to_propagation_type(flag);
1641 if (!type)
1642 return -EINVAL;
1643
1644 down_write(&namespace_sem);
1645 if (type == MS_SHARED) {
1646 err = invent_group_ids(mnt, recurse);
1647 if (err)
1648 goto out_unlock;
1649 }
1650
1651 br_write_lock(&vfsmount_lock);
1652 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1653 change_mnt_propagation(m, type);
1654 br_write_unlock(&vfsmount_lock);
1655
1656 out_unlock:
1657 up_write(&namespace_sem);
1658 return err;
1659}
1660
1661/*
1662 * do loopback mount.
1663 */
1664static int do_loopback(struct path *path, const char *old_name,
1665 int recurse)
1666{
1667 LIST_HEAD(umount_list);
1668 struct path old_path;
1669 struct mount *mnt = NULL, *old;
1670 int err = mount_is_safe(path);
1671 if (err)
1672 return err;
1673 if (!old_name || !*old_name)
1674 return -EINVAL;
1675 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1676 if (err)
1677 return err;
1678
1679 err = -EINVAL;
1680 if (mnt_ns_loop(&old_path))
1681 goto out;
1682
1683 err = lock_mount(path);
1684 if (err)
1685 goto out;
1686
1687 old = real_mount(old_path.mnt);
1688
1689 err = -EINVAL;
1690 if (IS_MNT_UNBINDABLE(old))
1691 goto out2;
1692
1693 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1694 goto out2;
1695
1696 if (recurse)
1697 mnt = copy_tree(old, old_path.dentry, 0);
1698 else
1699 mnt = clone_mnt(old, old_path.dentry, 0);
1700
1701 if (IS_ERR(mnt)) {
1702 err = PTR_ERR(mnt);
1703 goto out;
1704 }
1705
1706 err = graft_tree(mnt, path);
1707 if (err) {
1708 br_write_lock(&vfsmount_lock);
1709 umount_tree(mnt, 0, &umount_list);
1710 br_write_unlock(&vfsmount_lock);
1711 }
1712out2:
1713 unlock_mount(path);
1714 release_mounts(&umount_list);
1715out:
1716 path_put(&old_path);
1717 return err;
1718}
1719
1720static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1721{
1722 int error = 0;
1723 int readonly_request = 0;
1724
1725 if (ms_flags & MS_RDONLY)
1726 readonly_request = 1;
1727 if (readonly_request == __mnt_is_readonly(mnt))
1728 return 0;
1729
1730 if (readonly_request)
1731 error = mnt_make_readonly(real_mount(mnt));
1732 else
1733 __mnt_unmake_readonly(real_mount(mnt));
1734 return error;
1735}
1736
1737/*
1738 * change filesystem flags. dir should be a physical root of filesystem.
1739 * If you've mounted a non-root directory somewhere and want to do remount
1740 * on it - tough luck.
1741 */
1742static int do_remount(struct path *path, int flags, int mnt_flags,
1743 void *data)
1744{
1745 int err;
1746 struct super_block *sb = path->mnt->mnt_sb;
1747 struct mount *mnt = real_mount(path->mnt);
1748
1749 if (!capable(CAP_SYS_ADMIN))
1750 return -EPERM;
1751
1752 if (!check_mnt(mnt))
1753 return -EINVAL;
1754
1755 if (path->dentry != path->mnt->mnt_root)
1756 return -EINVAL;
1757
1758 err = security_sb_remount(sb, data);
1759 if (err)
1760 return err;
1761
1762 down_write(&sb->s_umount);
1763 if (flags & MS_BIND)
1764 err = change_mount_flags(path->mnt, flags);
1765 else
1766 err = do_remount_sb(sb, flags, data, 0);
1767 if (!err) {
1768 br_write_lock(&vfsmount_lock);
1769 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1770 mnt->mnt.mnt_flags = mnt_flags;
1771 br_write_unlock(&vfsmount_lock);
1772 }
1773 up_write(&sb->s_umount);
1774 if (!err) {
1775 br_write_lock(&vfsmount_lock);
1776 touch_mnt_namespace(mnt->mnt_ns);
1777 br_write_unlock(&vfsmount_lock);
1778 }
1779 return err;
1780}
1781
1782static inline int tree_contains_unbindable(struct mount *mnt)
1783{
1784 struct mount *p;
1785 for (p = mnt; p; p = next_mnt(p, mnt)) {
1786 if (IS_MNT_UNBINDABLE(p))
1787 return 1;
1788 }
1789 return 0;
1790}
1791
1792static int do_move_mount(struct path *path, const char *old_name)
1793{
1794 struct path old_path, parent_path;
1795 struct mount *p;
1796 struct mount *old;
1797 int err = 0;
1798 if (!capable(CAP_SYS_ADMIN))
1799 return -EPERM;
1800 if (!old_name || !*old_name)
1801 return -EINVAL;
1802 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1803 if (err)
1804 return err;
1805
1806 err = lock_mount(path);
1807 if (err < 0)
1808 goto out;
1809
1810 old = real_mount(old_path.mnt);
1811 p = real_mount(path->mnt);
1812
1813 err = -EINVAL;
1814 if (!check_mnt(p) || !check_mnt(old))
1815 goto out1;
1816
1817 if (d_unlinked(path->dentry))
1818 goto out1;
1819
1820 err = -EINVAL;
1821 if (old_path.dentry != old_path.mnt->mnt_root)
1822 goto out1;
1823
1824 if (!mnt_has_parent(old))
1825 goto out1;
1826
1827 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1828 S_ISDIR(old_path.dentry->d_inode->i_mode))
1829 goto out1;
1830 /*
1831 * Don't move a mount residing in a shared parent.
1832 */
1833 if (IS_MNT_SHARED(old->mnt_parent))
1834 goto out1;
1835 /*
1836 * Don't move a mount tree containing unbindable mounts to a destination
1837 * mount which is shared.
1838 */
1839 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1840 goto out1;
1841 err = -ELOOP;
1842 for (; mnt_has_parent(p); p = p->mnt_parent)
1843 if (p == old)
1844 goto out1;
1845
1846 err = attach_recursive_mnt(old, path, &parent_path);
1847 if (err)
1848 goto out1;
1849
1850 /* if the mount is moved, it should no longer be expire
1851 * automatically */
1852 list_del_init(&old->mnt_expire);
1853out1:
1854 unlock_mount(path);
1855out:
1856 if (!err)
1857 path_put(&parent_path);
1858 path_put(&old_path);
1859 return err;
1860}
1861
1862static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1863{
1864 int err;
1865 const char *subtype = strchr(fstype, '.');
1866 if (subtype) {
1867 subtype++;
1868 err = -EINVAL;
1869 if (!subtype[0])
1870 goto err;
1871 } else
1872 subtype = "";
1873
1874 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1875 err = -ENOMEM;
1876 if (!mnt->mnt_sb->s_subtype)
1877 goto err;
1878 return mnt;
1879
1880 err:
1881 mntput(mnt);
1882 return ERR_PTR(err);
1883}
1884
1885static struct vfsmount *
1886do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1887{
1888 struct file_system_type *type = get_fs_type(fstype);
1889 struct vfsmount *mnt;
1890 if (!type)
1891 return ERR_PTR(-ENODEV);
1892 mnt = vfs_kern_mount(type, flags, name, data);
1893 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1894 !mnt->mnt_sb->s_subtype)
1895 mnt = fs_set_subtype(mnt, fstype);
1896 put_filesystem(type);
1897 return mnt;
1898}
1899
1900/*
1901 * add a mount into a namespace's mount tree
1902 */
1903static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1904{
1905 int err;
1906
1907 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1908
1909 err = lock_mount(path);
1910 if (err)
1911 return err;
1912
1913 err = -EINVAL;
1914 if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1915 /* that's acceptable only for automounts done in private ns */
1916 if (!(mnt_flags & MNT_SHRINKABLE))
1917 goto unlock;
1918 /* ... and for those we'd better have mountpoint still alive */
1919 if (!real_mount(path->mnt)->mnt_ns)
1920 goto unlock;
1921 }
1922
1923 /* Refuse the same filesystem on the same mount point */
1924 err = -EBUSY;
1925 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1926 path->mnt->mnt_root == path->dentry)
1927 goto unlock;
1928
1929 err = -EINVAL;
1930 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1931 goto unlock;
1932
1933 newmnt->mnt.mnt_flags = mnt_flags;
1934 err = graft_tree(newmnt, path);
1935
1936unlock:
1937 unlock_mount(path);
1938 return err;
1939}
1940
1941/*
1942 * create a new mount for userspace and request it to be added into the
1943 * namespace's tree
1944 */
1945static int do_new_mount(struct path *path, const char *type, int flags,
1946 int mnt_flags, const char *name, void *data)
1947{
1948 struct vfsmount *mnt;
1949 int err;
1950
1951 if (!type)
1952 return -EINVAL;
1953
1954 /* we need capabilities... */
1955 if (!capable(CAP_SYS_ADMIN))
1956 return -EPERM;
1957
1958 mnt = do_kern_mount(type, flags, name, data);
1959 if (IS_ERR(mnt))
1960 return PTR_ERR(mnt);
1961
1962 err = do_add_mount(real_mount(mnt), path, mnt_flags);
1963 if (err)
1964 mntput(mnt);
1965 return err;
1966}
1967
1968int finish_automount(struct vfsmount *m, struct path *path)
1969{
1970 struct mount *mnt = real_mount(m);
1971 int err;
1972 /* The new mount record should have at least 2 refs to prevent it being
1973 * expired before we get a chance to add it
1974 */
1975 BUG_ON(mnt_get_count(mnt) < 2);
1976
1977 if (m->mnt_sb == path->mnt->mnt_sb &&
1978 m->mnt_root == path->dentry) {
1979 err = -ELOOP;
1980 goto fail;
1981 }
1982
1983 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1984 if (!err)
1985 return 0;
1986fail:
1987 /* remove m from any expiration list it may be on */
1988 if (!list_empty(&mnt->mnt_expire)) {
1989 down_write(&namespace_sem);
1990 br_write_lock(&vfsmount_lock);
1991 list_del_init(&mnt->mnt_expire);
1992 br_write_unlock(&vfsmount_lock);
1993 up_write(&namespace_sem);
1994 }
1995 mntput(m);
1996 mntput(m);
1997 return err;
1998}
1999
2000/**
2001 * mnt_set_expiry - Put a mount on an expiration list
2002 * @mnt: The mount to list.
2003 * @expiry_list: The list to add the mount to.
2004 */
2005void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2006{
2007 down_write(&namespace_sem);
2008 br_write_lock(&vfsmount_lock);
2009
2010 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2011
2012 br_write_unlock(&vfsmount_lock);
2013 up_write(&namespace_sem);
2014}
2015EXPORT_SYMBOL(mnt_set_expiry);
2016
2017/*
2018 * process a list of expirable mountpoints with the intent of discarding any
2019 * mountpoints that aren't in use and haven't been touched since last we came
2020 * here
2021 */
2022void mark_mounts_for_expiry(struct list_head *mounts)
2023{
2024 struct mount *mnt, *next;
2025 LIST_HEAD(graveyard);
2026 LIST_HEAD(umounts);
2027
2028 if (list_empty(mounts))
2029 return;
2030
2031 down_write(&namespace_sem);
2032 br_write_lock(&vfsmount_lock);
2033
2034 /* extract from the expiration list every vfsmount that matches the
2035 * following criteria:
2036 * - only referenced by its parent vfsmount
2037 * - still marked for expiry (marked on the last call here; marks are
2038 * cleared by mntput())
2039 */
2040 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2041 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2042 propagate_mount_busy(mnt, 1))
2043 continue;
2044 list_move(&mnt->mnt_expire, &graveyard);
2045 }
2046 while (!list_empty(&graveyard)) {
2047 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2048 touch_mnt_namespace(mnt->mnt_ns);
2049 umount_tree(mnt, 1, &umounts);
2050 }
2051 br_write_unlock(&vfsmount_lock);
2052 up_write(&namespace_sem);
2053
2054 release_mounts(&umounts);
2055}
2056
2057EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2058
2059/*
2060 * Ripoff of 'select_parent()'
2061 *
2062 * search the list of submounts for a given mountpoint, and move any
2063 * shrinkable submounts to the 'graveyard' list.
2064 */
2065static int select_submounts(struct mount *parent, struct list_head *graveyard)
2066{
2067 struct mount *this_parent = parent;
2068 struct list_head *next;
2069 int found = 0;
2070
2071repeat:
2072 next = this_parent->mnt_mounts.next;
2073resume:
2074 while (next != &this_parent->mnt_mounts) {
2075 struct list_head *tmp = next;
2076 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2077
2078 next = tmp->next;
2079 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2080 continue;
2081 /*
2082 * Descend a level if the d_mounts list is non-empty.
2083 */
2084 if (!list_empty(&mnt->mnt_mounts)) {
2085 this_parent = mnt;
2086 goto repeat;
2087 }
2088
2089 if (!propagate_mount_busy(mnt, 1)) {
2090 list_move_tail(&mnt->mnt_expire, graveyard);
2091 found++;
2092 }
2093 }
2094 /*
2095 * All done at this level ... ascend and resume the search
2096 */
2097 if (this_parent != parent) {
2098 next = this_parent->mnt_child.next;
2099 this_parent = this_parent->mnt_parent;
2100 goto resume;
2101 }
2102 return found;
2103}
2104
2105/*
2106 * process a list of expirable mountpoints with the intent of discarding any
2107 * submounts of a specific parent mountpoint
2108 *
2109 * vfsmount_lock must be held for write
2110 */
2111static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2112{
2113 LIST_HEAD(graveyard);
2114 struct mount *m;
2115
2116 /* extract submounts of 'mountpoint' from the expiration list */
2117 while (select_submounts(mnt, &graveyard)) {
2118 while (!list_empty(&graveyard)) {
2119 m = list_first_entry(&graveyard, struct mount,
2120 mnt_expire);
2121 touch_mnt_namespace(m->mnt_ns);
2122 umount_tree(m, 1, umounts);
2123 }
2124 }
2125}
2126
2127/*
2128 * Some copy_from_user() implementations do not return the exact number of
2129 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2130 * Note that this function differs from copy_from_user() in that it will oops
2131 * on bad values of `to', rather than returning a short copy.
2132 */
2133static long exact_copy_from_user(void *to, const void __user * from,
2134 unsigned long n)
2135{
2136 char *t = to;
2137 const char __user *f = from;
2138 char c;
2139
2140 if (!access_ok(VERIFY_READ, from, n))
2141 return n;
2142
2143 while (n) {
2144 if (__get_user(c, f)) {
2145 memset(t, 0, n);
2146 break;
2147 }
2148 *t++ = c;
2149 f++;
2150 n--;
2151 }
2152 return n;
2153}
2154
2155int copy_mount_options(const void __user * data, unsigned long *where)
2156{
2157 int i;
2158 unsigned long page;
2159 unsigned long size;
2160
2161 *where = 0;
2162 if (!data)
2163 return 0;
2164
2165 if (!(page = __get_free_page(GFP_KERNEL)))
2166 return -ENOMEM;
2167
2168 /* We only care that *some* data at the address the user
2169 * gave us is valid. Just in case, we'll zero
2170 * the remainder of the page.
2171 */
2172 /* copy_from_user cannot cross TASK_SIZE ! */
2173 size = TASK_SIZE - (unsigned long)data;
2174 if (size > PAGE_SIZE)
2175 size = PAGE_SIZE;
2176
2177 i = size - exact_copy_from_user((void *)page, data, size);
2178 if (!i) {
2179 free_page(page);
2180 return -EFAULT;
2181 }
2182 if (i != PAGE_SIZE)
2183 memset((char *)page + i, 0, PAGE_SIZE - i);
2184 *where = page;
2185 return 0;
2186}
2187
2188int copy_mount_string(const void __user *data, char **where)
2189{
2190 char *tmp;
2191
2192 if (!data) {
2193 *where = NULL;
2194 return 0;
2195 }
2196
2197 tmp = strndup_user(data, PAGE_SIZE);
2198 if (IS_ERR(tmp))
2199 return PTR_ERR(tmp);
2200
2201 *where = tmp;
2202 return 0;
2203}
2204
2205/*
2206 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2207 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2208 *
2209 * data is a (void *) that can point to any structure up to
2210 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2211 * information (or be NULL).
2212 *
2213 * Pre-0.97 versions of mount() didn't have a flags word.
2214 * When the flags word was introduced its top half was required
2215 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2216 * Therefore, if this magic number is present, it carries no information
2217 * and must be discarded.
2218 */
2219long do_mount(const char *dev_name, const char *dir_name,
2220 const char *type_page, unsigned long flags, void *data_page)
2221{
2222 struct path path;
2223 int retval = 0;
2224 int mnt_flags = 0;
2225
2226 /* Discard magic */
2227 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2228 flags &= ~MS_MGC_MSK;
2229
2230 /* Basic sanity checks */
2231
2232 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2233 return -EINVAL;
2234
2235 if (data_page)
2236 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2237
2238 /* ... and get the mountpoint */
2239 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2240 if (retval)
2241 return retval;
2242
2243 retval = security_sb_mount(dev_name, &path,
2244 type_page, flags, data_page);
2245 if (retval)
2246 goto dput_out;
2247
2248 /* Default to relatime unless overriden */
2249 if (!(flags & MS_NOATIME))
2250 mnt_flags |= MNT_RELATIME;
2251
2252 /* Separate the per-mountpoint flags */
2253 if (flags & MS_NOSUID)
2254 mnt_flags |= MNT_NOSUID;
2255 if (flags & MS_NODEV)
2256 mnt_flags |= MNT_NODEV;
2257 if (flags & MS_NOEXEC)
2258 mnt_flags |= MNT_NOEXEC;
2259 if (flags & MS_NOATIME)
2260 mnt_flags |= MNT_NOATIME;
2261 if (flags & MS_NODIRATIME)
2262 mnt_flags |= MNT_NODIRATIME;
2263 if (flags & MS_STRICTATIME)
2264 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2265 if (flags & MS_RDONLY)
2266 mnt_flags |= MNT_READONLY;
2267
2268 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2269 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2270 MS_STRICTATIME);
2271
2272 if (flags & MS_REMOUNT)
2273 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2274 data_page);
2275 else if (flags & MS_BIND)
2276 retval = do_loopback(&path, dev_name, flags & MS_REC);
2277 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2278 retval = do_change_type(&path, flags);
2279 else if (flags & MS_MOVE)
2280 retval = do_move_mount(&path, dev_name);
2281 else
2282 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2283 dev_name, data_page);
2284dput_out:
2285 path_put(&path);
2286 return retval;
2287}
2288
2289/*
2290 * Assign a sequence number so we can detect when we attempt to bind
2291 * mount a reference to an older mount namespace into the current
2292 * mount namespace, preventing reference counting loops. A 64bit
2293 * number incrementing at 10Ghz will take 12,427 years to wrap which
2294 * is effectively never, so we can ignore the possibility.
2295 */
2296static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2297
2298static struct mnt_namespace *alloc_mnt_ns(void)
2299{
2300 struct mnt_namespace *new_ns;
2301
2302 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2303 if (!new_ns)
2304 return ERR_PTR(-ENOMEM);
2305 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2306 atomic_set(&new_ns->count, 1);
2307 new_ns->root = NULL;
2308 INIT_LIST_HEAD(&new_ns->list);
2309 init_waitqueue_head(&new_ns->poll);
2310 new_ns->event = 0;
2311 return new_ns;
2312}
2313
2314/*
2315 * Allocate a new namespace structure and populate it with contents
2316 * copied from the namespace of the passed in task structure.
2317 */
2318static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2319 struct fs_struct *fs)
2320{
2321 struct mnt_namespace *new_ns;
2322 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2323 struct mount *p, *q;
2324 struct mount *old = mnt_ns->root;
2325 struct mount *new;
2326
2327 new_ns = alloc_mnt_ns();
2328 if (IS_ERR(new_ns))
2329 return new_ns;
2330
2331 down_write(&namespace_sem);
2332 /* First pass: copy the tree topology */
2333 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
2334 if (IS_ERR(new)) {
2335 up_write(&namespace_sem);
2336 kfree(new_ns);
2337 return ERR_CAST(new);
2338 }
2339 new_ns->root = new;
2340 br_write_lock(&vfsmount_lock);
2341 list_add_tail(&new_ns->list, &new->mnt_list);
2342 br_write_unlock(&vfsmount_lock);
2343
2344 /*
2345 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2346 * as belonging to new namespace. We have already acquired a private
2347 * fs_struct, so tsk->fs->lock is not needed.
2348 */
2349 p = old;
2350 q = new;
2351 while (p) {
2352 q->mnt_ns = new_ns;
2353 if (fs) {
2354 if (&p->mnt == fs->root.mnt) {
2355 fs->root.mnt = mntget(&q->mnt);
2356 rootmnt = &p->mnt;
2357 }
2358 if (&p->mnt == fs->pwd.mnt) {
2359 fs->pwd.mnt = mntget(&q->mnt);
2360 pwdmnt = &p->mnt;
2361 }
2362 }
2363 p = next_mnt(p, old);
2364 q = next_mnt(q, new);
2365 }
2366 up_write(&namespace_sem);
2367
2368 if (rootmnt)
2369 mntput(rootmnt);
2370 if (pwdmnt)
2371 mntput(pwdmnt);
2372
2373 return new_ns;
2374}
2375
2376struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2377 struct fs_struct *new_fs)
2378{
2379 struct mnt_namespace *new_ns;
2380
2381 BUG_ON(!ns);
2382 get_mnt_ns(ns);
2383
2384 if (!(flags & CLONE_NEWNS))
2385 return ns;
2386
2387 new_ns = dup_mnt_ns(ns, new_fs);
2388
2389 put_mnt_ns(ns);
2390 return new_ns;
2391}
2392
2393/**
2394 * create_mnt_ns - creates a private namespace and adds a root filesystem
2395 * @mnt: pointer to the new root filesystem mountpoint
2396 */
2397static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2398{
2399 struct mnt_namespace *new_ns = alloc_mnt_ns();
2400 if (!IS_ERR(new_ns)) {
2401 struct mount *mnt = real_mount(m);
2402 mnt->mnt_ns = new_ns;
2403 new_ns->root = mnt;
2404 list_add(&new_ns->list, &mnt->mnt_list);
2405 } else {
2406 mntput(m);
2407 }
2408 return new_ns;
2409}
2410
2411struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2412{
2413 struct mnt_namespace *ns;
2414 struct super_block *s;
2415 struct path path;
2416 int err;
2417
2418 ns = create_mnt_ns(mnt);
2419 if (IS_ERR(ns))
2420 return ERR_CAST(ns);
2421
2422 err = vfs_path_lookup(mnt->mnt_root, mnt,
2423 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2424
2425 put_mnt_ns(ns);
2426
2427 if (err)
2428 return ERR_PTR(err);
2429
2430 /* trade a vfsmount reference for active sb one */
2431 s = path.mnt->mnt_sb;
2432 atomic_inc(&s->s_active);
2433 mntput(path.mnt);
2434 /* lock the sucker */
2435 down_write(&s->s_umount);
2436 /* ... and return the root of (sub)tree on it */
2437 return path.dentry;
2438}
2439EXPORT_SYMBOL(mount_subtree);
2440
2441SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2442 char __user *, type, unsigned long, flags, void __user *, data)
2443{
2444 int ret;
2445 char *kernel_type;
2446 struct filename *kernel_dir;
2447 char *kernel_dev;
2448 unsigned long data_page;
2449
2450 ret = copy_mount_string(type, &kernel_type);
2451 if (ret < 0)
2452 goto out_type;
2453
2454 kernel_dir = getname(dir_name);
2455 if (IS_ERR(kernel_dir)) {
2456 ret = PTR_ERR(kernel_dir);
2457 goto out_dir;
2458 }
2459
2460 ret = copy_mount_string(dev_name, &kernel_dev);
2461 if (ret < 0)
2462 goto out_dev;
2463
2464 ret = copy_mount_options(data, &data_page);
2465 if (ret < 0)
2466 goto out_data;
2467
2468 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2469 (void *) data_page);
2470
2471 free_page(data_page);
2472out_data:
2473 kfree(kernel_dev);
2474out_dev:
2475 putname(kernel_dir);
2476out_dir:
2477 kfree(kernel_type);
2478out_type:
2479 return ret;
2480}
2481
2482/*
2483 * Return true if path is reachable from root
2484 *
2485 * namespace_sem or vfsmount_lock is held
2486 */
2487bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2488 const struct path *root)
2489{
2490 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2491 dentry = mnt->mnt_mountpoint;
2492 mnt = mnt->mnt_parent;
2493 }
2494 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2495}
2496
2497int path_is_under(struct path *path1, struct path *path2)
2498{
2499 int res;
2500 br_read_lock(&vfsmount_lock);
2501 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2502 br_read_unlock(&vfsmount_lock);
2503 return res;
2504}
2505EXPORT_SYMBOL(path_is_under);
2506
2507/*
2508 * pivot_root Semantics:
2509 * Moves the root file system of the current process to the directory put_old,
2510 * makes new_root as the new root file system of the current process, and sets
2511 * root/cwd of all processes which had them on the current root to new_root.
2512 *
2513 * Restrictions:
2514 * The new_root and put_old must be directories, and must not be on the
2515 * same file system as the current process root. The put_old must be
2516 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2517 * pointed to by put_old must yield the same directory as new_root. No other
2518 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2519 *
2520 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2521 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2522 * in this situation.
2523 *
2524 * Notes:
2525 * - we don't move root/cwd if they are not at the root (reason: if something
2526 * cared enough to change them, it's probably wrong to force them elsewhere)
2527 * - it's okay to pick a root that isn't the root of a file system, e.g.
2528 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2529 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2530 * first.
2531 */
2532SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2533 const char __user *, put_old)
2534{
2535 struct path new, old, parent_path, root_parent, root;
2536 struct mount *new_mnt, *root_mnt;
2537 int error;
2538
2539 if (!capable(CAP_SYS_ADMIN))
2540 return -EPERM;
2541
2542 error = user_path_dir(new_root, &new);
2543 if (error)
2544 goto out0;
2545
2546 error = user_path_dir(put_old, &old);
2547 if (error)
2548 goto out1;
2549
2550 error = security_sb_pivotroot(&old, &new);
2551 if (error)
2552 goto out2;
2553
2554 get_fs_root(current->fs, &root);
2555 error = lock_mount(&old);
2556 if (error)
2557 goto out3;
2558
2559 error = -EINVAL;
2560 new_mnt = real_mount(new.mnt);
2561 root_mnt = real_mount(root.mnt);
2562 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2563 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2564 IS_MNT_SHARED(root_mnt->mnt_parent))
2565 goto out4;
2566 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2567 goto out4;
2568 error = -ENOENT;
2569 if (d_unlinked(new.dentry))
2570 goto out4;
2571 if (d_unlinked(old.dentry))
2572 goto out4;
2573 error = -EBUSY;
2574 if (new.mnt == root.mnt ||
2575 old.mnt == root.mnt)
2576 goto out4; /* loop, on the same file system */
2577 error = -EINVAL;
2578 if (root.mnt->mnt_root != root.dentry)
2579 goto out4; /* not a mountpoint */
2580 if (!mnt_has_parent(root_mnt))
2581 goto out4; /* not attached */
2582 if (new.mnt->mnt_root != new.dentry)
2583 goto out4; /* not a mountpoint */
2584 if (!mnt_has_parent(new_mnt))
2585 goto out4; /* not attached */
2586 /* make sure we can reach put_old from new_root */
2587 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2588 goto out4;
2589 br_write_lock(&vfsmount_lock);
2590 detach_mnt(new_mnt, &parent_path);
2591 detach_mnt(root_mnt, &root_parent);
2592 /* mount old root on put_old */
2593 attach_mnt(root_mnt, &old);
2594 /* mount new_root on / */
2595 attach_mnt(new_mnt, &root_parent);
2596 touch_mnt_namespace(current->nsproxy->mnt_ns);
2597 br_write_unlock(&vfsmount_lock);
2598 chroot_fs_refs(&root, &new);
2599 error = 0;
2600out4:
2601 unlock_mount(&old);
2602 if (!error) {
2603 path_put(&root_parent);
2604 path_put(&parent_path);
2605 }
2606out3:
2607 path_put(&root);
2608out2:
2609 path_put(&old);
2610out1:
2611 path_put(&new);
2612out0:
2613 return error;
2614}
2615
2616static void __init init_mount_tree(void)
2617{
2618 struct vfsmount *mnt;
2619 struct mnt_namespace *ns;
2620 struct path root;
2621
2622 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2623 if (IS_ERR(mnt))
2624 panic("Can't create rootfs");
2625
2626 ns = create_mnt_ns(mnt);
2627 if (IS_ERR(ns))
2628 panic("Can't allocate initial namespace");
2629
2630 init_task.nsproxy->mnt_ns = ns;
2631 get_mnt_ns(ns);
2632
2633 root.mnt = mnt;
2634 root.dentry = mnt->mnt_root;
2635
2636 set_fs_pwd(current->fs, &root);
2637 set_fs_root(current->fs, &root);
2638}
2639
2640void __init mnt_init(void)
2641{
2642 unsigned u;
2643 int err;
2644
2645 init_rwsem(&namespace_sem);
2646
2647 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2648 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2649
2650 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2651
2652 if (!mount_hashtable)
2653 panic("Failed to allocate mount hash table\n");
2654
2655 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2656
2657 for (u = 0; u < HASH_SIZE; u++)
2658 INIT_LIST_HEAD(&mount_hashtable[u]);
2659
2660 br_lock_init(&vfsmount_lock);
2661
2662 err = sysfs_init();
2663 if (err)
2664 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2665 __func__, err);
2666 fs_kobj = kobject_create_and_add("fs", NULL);
2667 if (!fs_kobj)
2668 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2669 init_rootfs();
2670 init_mount_tree();
2671}
2672
2673void put_mnt_ns(struct mnt_namespace *ns)
2674{
2675 LIST_HEAD(umount_list);
2676
2677 if (!atomic_dec_and_test(&ns->count))
2678 return;
2679 down_write(&namespace_sem);
2680 br_write_lock(&vfsmount_lock);
2681 umount_tree(ns->root, 0, &umount_list);
2682 br_write_unlock(&vfsmount_lock);
2683 up_write(&namespace_sem);
2684 release_mounts(&umount_list);
2685 kfree(ns);
2686}
2687
2688struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2689{
2690 struct vfsmount *mnt;
2691 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2692 if (!IS_ERR(mnt)) {
2693 /*
2694 * it is a longterm mount, don't release mnt until
2695 * we unmount before file sys is unregistered
2696 */
2697 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2698 }
2699 return mnt;
2700}
2701EXPORT_SYMBOL_GPL(kern_mount_data);
2702
2703void kern_unmount(struct vfsmount *mnt)
2704{
2705 /* release long term mount so mount point can be released */
2706 if (!IS_ERR_OR_NULL(mnt)) {
2707 br_write_lock(&vfsmount_lock);
2708 real_mount(mnt)->mnt_ns = NULL;
2709 br_write_unlock(&vfsmount_lock);
2710 mntput(mnt);
2711 }
2712}
2713EXPORT_SYMBOL(kern_unmount);
2714
2715bool our_mnt(struct vfsmount *mnt)
2716{
2717 return check_mnt(real_mount(mnt));
2718}
2719
2720static void *mntns_get(struct task_struct *task)
2721{
2722 struct mnt_namespace *ns = NULL;
2723 struct nsproxy *nsproxy;
2724
2725 rcu_read_lock();
2726 nsproxy = task_nsproxy(task);
2727 if (nsproxy) {
2728 ns = nsproxy->mnt_ns;
2729 get_mnt_ns(ns);
2730 }
2731 rcu_read_unlock();
2732
2733 return ns;
2734}
2735
2736static void mntns_put(void *ns)
2737{
2738 put_mnt_ns(ns);
2739}
2740
2741static int mntns_install(struct nsproxy *nsproxy, void *ns)
2742{
2743 struct fs_struct *fs = current->fs;
2744 struct mnt_namespace *mnt_ns = ns;
2745 struct path root;
2746
2747 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_CHROOT))
2748 return -EINVAL;
2749
2750 if (fs->users != 1)
2751 return -EINVAL;
2752
2753 get_mnt_ns(mnt_ns);
2754 put_mnt_ns(nsproxy->mnt_ns);
2755 nsproxy->mnt_ns = mnt_ns;
2756
2757 /* Find the root */
2758 root.mnt = &mnt_ns->root->mnt;
2759 root.dentry = mnt_ns->root->mnt.mnt_root;
2760 path_get(&root);
2761 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2762 ;
2763
2764 /* Update the pwd and root */
2765 set_fs_pwd(fs, &root);
2766 set_fs_root(fs, &root);
2767
2768 path_put(&root);
2769 return 0;
2770}
2771
2772const struct proc_ns_operations mntns_operations = {
2773 .name = "mnt",
2774 .type = CLONE_NEWNS,
2775 .get = mntns_get,
2776 .put = mntns_put,
2777 .install = mntns_install,
2778};