tracing: Make exported ftrace_set_clr_event non-static
[linux-2.6-block.git] / fs / namespace.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/user_namespace.h>
16#include <linux/namei.h>
17#include <linux/security.h>
18#include <linux/cred.h>
19#include <linux/idr.h>
20#include <linux/init.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/file.h>
24#include <linux/uaccess.h>
25#include <linux/proc_ns.h>
26#include <linux/magic.h>
27#include <linux/memblock.h>
28#include <linux/task_work.h>
29#include <linux/sched/task.h>
30#include <uapi/linux/mount.h>
31#include <linux/fs_context.h>
32#include <linux/shmem_fs.h>
33
34#include "pnode.h"
35#include "internal.h"
36
37/* Maximum number of mounts in a mount namespace */
38unsigned int sysctl_mount_max __read_mostly = 100000;
39
40static unsigned int m_hash_mask __read_mostly;
41static unsigned int m_hash_shift __read_mostly;
42static unsigned int mp_hash_mask __read_mostly;
43static unsigned int mp_hash_shift __read_mostly;
44
45static __initdata unsigned long mhash_entries;
46static int __init set_mhash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mhash_entries=", set_mhash_entries);
54
55static __initdata unsigned long mphash_entries;
56static int __init set_mphash_entries(char *str)
57{
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62}
63__setup("mphash_entries=", set_mphash_entries);
64
65static u64 event;
66static DEFINE_IDA(mnt_id_ida);
67static DEFINE_IDA(mnt_group_ida);
68
69static struct hlist_head *mount_hashtable __read_mostly;
70static struct hlist_head *mountpoint_hashtable __read_mostly;
71static struct kmem_cache *mnt_cache __read_mostly;
72static DECLARE_RWSEM(namespace_sem);
73static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75
76/* /sys/fs */
77struct kobject *fs_kobj;
78EXPORT_SYMBOL_GPL(fs_kobj);
79
80/*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89
90static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91{
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96}
97
98static inline struct hlist_head *mp_hash(struct dentry *dentry)
99{
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
103}
104
105static int mnt_alloc_id(struct mount *mnt)
106{
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
113}
114
115static void mnt_free_id(struct mount *mnt)
116{
117 ida_free(&mnt_id_ida, mnt->mnt_id);
118}
119
120/*
121 * Allocate a new peer group ID
122 */
123static int mnt_alloc_group_id(struct mount *mnt)
124{
125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
131}
132
133/*
134 * Release a peer group ID
135 */
136void mnt_release_group_id(struct mount *mnt)
137{
138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 mnt->mnt_group_id = 0;
140}
141
142/*
143 * vfsmount lock must be held for read
144 */
145static inline void mnt_add_count(struct mount *mnt, int n)
146{
147#ifdef CONFIG_SMP
148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149#else
150 preempt_disable();
151 mnt->mnt_count += n;
152 preempt_enable();
153#endif
154}
155
156/*
157 * vfsmount lock must be held for write
158 */
159unsigned int mnt_get_count(struct mount *mnt)
160{
161#ifdef CONFIG_SMP
162 unsigned int count = 0;
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 }
168
169 return count;
170#else
171 return mnt->mnt_count;
172#endif
173}
174
175static struct mount *alloc_vfsmnt(const char *name)
176{
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
179 int err;
180
181 err = mnt_alloc_id(mnt);
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
189 }
190
191#ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197#else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200#endif
201
202 INIT_HLIST_NODE(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 INIT_LIST_HEAD(&mnt->mnt_umounting);
212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
213 }
214 return mnt;
215
216#ifdef CONFIG_SMP
217out_free_devname:
218 kfree_const(mnt->mnt_devname);
219#endif
220out_free_id:
221 mnt_free_id(mnt);
222out_free_cache:
223 kmem_cache_free(mnt_cache, mnt);
224 return NULL;
225}
226
227/*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235/*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
246bool __mnt_is_readonly(struct vfsmount *mnt)
247{
248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
249}
250EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251
252static inline void mnt_inc_writers(struct mount *mnt)
253{
254#ifdef CONFIG_SMP
255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
256#else
257 mnt->mnt_writers++;
258#endif
259}
260
261static inline void mnt_dec_writers(struct mount *mnt)
262{
263#ifdef CONFIG_SMP
264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
265#else
266 mnt->mnt_writers--;
267#endif
268}
269
270static unsigned int mnt_get_writers(struct mount *mnt)
271{
272#ifdef CONFIG_SMP
273 unsigned int count = 0;
274 int cpu;
275
276 for_each_possible_cpu(cpu) {
277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
278 }
279
280 return count;
281#else
282 return mnt->mnt_writers;
283#endif
284}
285
286static int mnt_is_readonly(struct vfsmount *mnt)
287{
288 if (mnt->mnt_sb->s_readonly_remount)
289 return 1;
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 smp_rmb();
292 return __mnt_is_readonly(mnt);
293}
294
295/*
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
300 */
301/**
302 * __mnt_want_write - get write access to a mount without freeze protection
303 * @m: the mount on which to take a write
304 *
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
310 */
311int __mnt_want_write(struct vfsmount *m)
312{
313 struct mount *mnt = real_mount(m);
314 int ret = 0;
315
316 preempt_disable();
317 mnt_inc_writers(mnt);
318 /*
319 * The store to mnt_inc_writers must be visible before we pass
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
322 */
323 smp_mb();
324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
325 cpu_relax();
326 /*
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
330 */
331 smp_rmb();
332 if (mnt_is_readonly(m)) {
333 mnt_dec_writers(mnt);
334 ret = -EROFS;
335 }
336 preempt_enable();
337
338 return ret;
339}
340
341/**
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
344 *
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
349 */
350int mnt_want_write(struct vfsmount *m)
351{
352 int ret;
353
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
356 if (ret)
357 sb_end_write(m->mnt_sb);
358 return ret;
359}
360EXPORT_SYMBOL_GPL(mnt_want_write);
361
362/**
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
365 *
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
370 *
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
373 */
374int mnt_clone_write(struct vfsmount *mnt)
375{
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
378 return -EROFS;
379 preempt_disable();
380 mnt_inc_writers(real_mount(mnt));
381 preempt_enable();
382 return 0;
383}
384EXPORT_SYMBOL_GPL(mnt_clone_write);
385
386/**
387 * __mnt_want_write_file - get write access to a file's mount
388 * @file: the file who's mount on which to take a write
389 *
390 * This is like __mnt_want_write, but it takes a file and can
391 * do some optimisations if the file is open for write already
392 */
393int __mnt_want_write_file(struct file *file)
394{
395 if (!(file->f_mode & FMODE_WRITER))
396 return __mnt_want_write(file->f_path.mnt);
397 else
398 return mnt_clone_write(file->f_path.mnt);
399}
400
401/**
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
407 */
408int mnt_want_write_file(struct file *file)
409{
410 int ret;
411
412 sb_start_write(file_inode(file)->i_sb);
413 ret = __mnt_want_write_file(file);
414 if (ret)
415 sb_end_write(file_inode(file)->i_sb);
416 return ret;
417}
418EXPORT_SYMBOL_GPL(mnt_want_write_file);
419
420/**
421 * __mnt_drop_write - give up write access to a mount
422 * @mnt: the mount on which to give up write access
423 *
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
426 * __mnt_want_write() call above.
427 */
428void __mnt_drop_write(struct vfsmount *mnt)
429{
430 preempt_disable();
431 mnt_dec_writers(real_mount(mnt));
432 preempt_enable();
433}
434
435/**
436 * mnt_drop_write - give up write access to a mount
437 * @mnt: the mount on which to give up write access
438 *
439 * Tells the low-level filesystem that we are done performing writes to it and
440 * also allows filesystem to be frozen again. Must be matched with
441 * mnt_want_write() call above.
442 */
443void mnt_drop_write(struct vfsmount *mnt)
444{
445 __mnt_drop_write(mnt);
446 sb_end_write(mnt->mnt_sb);
447}
448EXPORT_SYMBOL_GPL(mnt_drop_write);
449
450void __mnt_drop_write_file(struct file *file)
451{
452 __mnt_drop_write(file->f_path.mnt);
453}
454
455void mnt_drop_write_file(struct file *file)
456{
457 __mnt_drop_write_file(file);
458 sb_end_write(file_inode(file)->i_sb);
459}
460EXPORT_SYMBOL(mnt_drop_write_file);
461
462static int mnt_make_readonly(struct mount *mnt)
463{
464 int ret = 0;
465
466 lock_mount_hash();
467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
468 /*
469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 * should be visible before we do.
471 */
472 smp_mb();
473
474 /*
475 * With writers on hold, if this value is zero, then there are
476 * definitely no active writers (although held writers may subsequently
477 * increment the count, they'll have to wait, and decrement it after
478 * seeing MNT_READONLY).
479 *
480 * It is OK to have counter incremented on one CPU and decremented on
481 * another: the sum will add up correctly. The danger would be when we
482 * sum up each counter, if we read a counter before it is incremented,
483 * but then read another CPU's count which it has been subsequently
484 * decremented from -- we would see more decrements than we should.
485 * MNT_WRITE_HOLD protects against this scenario, because
486 * mnt_want_write first increments count, then smp_mb, then spins on
487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 * we're counting up here.
489 */
490 if (mnt_get_writers(mnt) > 0)
491 ret = -EBUSY;
492 else
493 mnt->mnt.mnt_flags |= MNT_READONLY;
494 /*
495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 * that become unheld will see MNT_READONLY.
497 */
498 smp_wmb();
499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
500 unlock_mount_hash();
501 return ret;
502}
503
504static int __mnt_unmake_readonly(struct mount *mnt)
505{
506 lock_mount_hash();
507 mnt->mnt.mnt_flags &= ~MNT_READONLY;
508 unlock_mount_hash();
509 return 0;
510}
511
512int sb_prepare_remount_readonly(struct super_block *sb)
513{
514 struct mount *mnt;
515 int err = 0;
516
517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
518 if (atomic_long_read(&sb->s_remove_count))
519 return -EBUSY;
520
521 lock_mount_hash();
522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 smp_mb();
526 if (mnt_get_writers(mnt) > 0) {
527 err = -EBUSY;
528 break;
529 }
530 }
531 }
532 if (!err && atomic_long_read(&sb->s_remove_count))
533 err = -EBUSY;
534
535 if (!err) {
536 sb->s_readonly_remount = 1;
537 smp_wmb();
538 }
539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 }
543 unlock_mount_hash();
544
545 return err;
546}
547
548static void free_vfsmnt(struct mount *mnt)
549{
550 kfree_const(mnt->mnt_devname);
551#ifdef CONFIG_SMP
552 free_percpu(mnt->mnt_pcp);
553#endif
554 kmem_cache_free(mnt_cache, mnt);
555}
556
557static void delayed_free_vfsmnt(struct rcu_head *head)
558{
559 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560}
561
562/* call under rcu_read_lock */
563int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
564{
565 struct mount *mnt;
566 if (read_seqretry(&mount_lock, seq))
567 return 1;
568 if (bastard == NULL)
569 return 0;
570 mnt = real_mount(bastard);
571 mnt_add_count(mnt, 1);
572 smp_mb(); // see mntput_no_expire()
573 if (likely(!read_seqretry(&mount_lock, seq)))
574 return 0;
575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 mnt_add_count(mnt, -1);
577 return 1;
578 }
579 lock_mount_hash();
580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 mnt_add_count(mnt, -1);
582 unlock_mount_hash();
583 return 1;
584 }
585 unlock_mount_hash();
586 /* caller will mntput() */
587 return -1;
588}
589
590/* call under rcu_read_lock */
591bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592{
593 int res = __legitimize_mnt(bastard, seq);
594 if (likely(!res))
595 return true;
596 if (unlikely(res < 0)) {
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
600 }
601 return false;
602}
603
604/*
605 * find the first mount at @dentry on vfsmount @mnt.
606 * call under rcu_read_lock()
607 */
608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
609{
610 struct hlist_head *head = m_hash(mnt, dentry);
611 struct mount *p;
612
613 hlist_for_each_entry_rcu(p, head, mnt_hash)
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617}
618
619/*
620 * lookup_mnt - Return the first child mount mounted at path
621 *
622 * "First" means first mounted chronologically. If you create the
623 * following mounts:
624 *
625 * mount /dev/sda1 /mnt
626 * mount /dev/sda2 /mnt
627 * mount /dev/sda3 /mnt
628 *
629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
630 * return successively the root dentry and vfsmount of /dev/sda1, then
631 * /dev/sda2, then /dev/sda3, then NULL.
632 *
633 * lookup_mnt takes a reference to the found vfsmount.
634 */
635struct vfsmount *lookup_mnt(const struct path *path)
636{
637 struct mount *child_mnt;
638 struct vfsmount *m;
639 unsigned seq;
640
641 rcu_read_lock();
642 do {
643 seq = read_seqbegin(&mount_lock);
644 child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 m = child_mnt ? &child_mnt->mnt : NULL;
646 } while (!legitimize_mnt(m, seq));
647 rcu_read_unlock();
648 return m;
649}
650
651/*
652 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
653 * current mount namespace.
654 *
655 * The common case is dentries are not mountpoints at all and that
656 * test is handled inline. For the slow case when we are actually
657 * dealing with a mountpoint of some kind, walk through all of the
658 * mounts in the current mount namespace and test to see if the dentry
659 * is a mountpoint.
660 *
661 * The mount_hashtable is not usable in the context because we
662 * need to identify all mounts that may be in the current mount
663 * namespace not just a mount that happens to have some specified
664 * parent mount.
665 */
666bool __is_local_mountpoint(struct dentry *dentry)
667{
668 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
669 struct mount *mnt;
670 bool is_covered = false;
671
672 if (!d_mountpoint(dentry))
673 goto out;
674
675 down_read(&namespace_sem);
676 list_for_each_entry(mnt, &ns->list, mnt_list) {
677 is_covered = (mnt->mnt_mountpoint == dentry);
678 if (is_covered)
679 break;
680 }
681 up_read(&namespace_sem);
682out:
683 return is_covered;
684}
685
686static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
687{
688 struct hlist_head *chain = mp_hash(dentry);
689 struct mountpoint *mp;
690
691 hlist_for_each_entry(mp, chain, m_hash) {
692 if (mp->m_dentry == dentry) {
693 mp->m_count++;
694 return mp;
695 }
696 }
697 return NULL;
698}
699
700static struct mountpoint *get_mountpoint(struct dentry *dentry)
701{
702 struct mountpoint *mp, *new = NULL;
703 int ret;
704
705 if (d_mountpoint(dentry)) {
706 /* might be worth a WARN_ON() */
707 if (d_unlinked(dentry))
708 return ERR_PTR(-ENOENT);
709mountpoint:
710 read_seqlock_excl(&mount_lock);
711 mp = lookup_mountpoint(dentry);
712 read_sequnlock_excl(&mount_lock);
713 if (mp)
714 goto done;
715 }
716
717 if (!new)
718 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
719 if (!new)
720 return ERR_PTR(-ENOMEM);
721
722
723 /* Exactly one processes may set d_mounted */
724 ret = d_set_mounted(dentry);
725
726 /* Someone else set d_mounted? */
727 if (ret == -EBUSY)
728 goto mountpoint;
729
730 /* The dentry is not available as a mountpoint? */
731 mp = ERR_PTR(ret);
732 if (ret)
733 goto done;
734
735 /* Add the new mountpoint to the hash table */
736 read_seqlock_excl(&mount_lock);
737 new->m_dentry = dget(dentry);
738 new->m_count = 1;
739 hlist_add_head(&new->m_hash, mp_hash(dentry));
740 INIT_HLIST_HEAD(&new->m_list);
741 read_sequnlock_excl(&mount_lock);
742
743 mp = new;
744 new = NULL;
745done:
746 kfree(new);
747 return mp;
748}
749
750/*
751 * vfsmount lock must be held. Additionally, the caller is responsible
752 * for serializing calls for given disposal list.
753 */
754static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
755{
756 if (!--mp->m_count) {
757 struct dentry *dentry = mp->m_dentry;
758 BUG_ON(!hlist_empty(&mp->m_list));
759 spin_lock(&dentry->d_lock);
760 dentry->d_flags &= ~DCACHE_MOUNTED;
761 spin_unlock(&dentry->d_lock);
762 dput_to_list(dentry, list);
763 hlist_del(&mp->m_hash);
764 kfree(mp);
765 }
766}
767
768/* called with namespace_lock and vfsmount lock */
769static void put_mountpoint(struct mountpoint *mp)
770{
771 __put_mountpoint(mp, &ex_mountpoints);
772}
773
774static inline int check_mnt(struct mount *mnt)
775{
776 return mnt->mnt_ns == current->nsproxy->mnt_ns;
777}
778
779/*
780 * vfsmount lock must be held for write
781 */
782static void touch_mnt_namespace(struct mnt_namespace *ns)
783{
784 if (ns) {
785 ns->event = ++event;
786 wake_up_interruptible(&ns->poll);
787 }
788}
789
790/*
791 * vfsmount lock must be held for write
792 */
793static void __touch_mnt_namespace(struct mnt_namespace *ns)
794{
795 if (ns && ns->event != event) {
796 ns->event = event;
797 wake_up_interruptible(&ns->poll);
798 }
799}
800
801/*
802 * vfsmount lock must be held for write
803 */
804static struct mountpoint *unhash_mnt(struct mount *mnt)
805{
806 struct mountpoint *mp;
807 mnt->mnt_parent = mnt;
808 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
809 list_del_init(&mnt->mnt_child);
810 hlist_del_init_rcu(&mnt->mnt_hash);
811 hlist_del_init(&mnt->mnt_mp_list);
812 mp = mnt->mnt_mp;
813 mnt->mnt_mp = NULL;
814 return mp;
815}
816
817/*
818 * vfsmount lock must be held for write
819 */
820static void umount_mnt(struct mount *mnt)
821{
822 put_mountpoint(unhash_mnt(mnt));
823}
824
825/*
826 * vfsmount lock must be held for write
827 */
828void mnt_set_mountpoint(struct mount *mnt,
829 struct mountpoint *mp,
830 struct mount *child_mnt)
831{
832 mp->m_count++;
833 mnt_add_count(mnt, 1); /* essentially, that's mntget */
834 child_mnt->mnt_mountpoint = mp->m_dentry;
835 child_mnt->mnt_parent = mnt;
836 child_mnt->mnt_mp = mp;
837 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
838}
839
840static void __attach_mnt(struct mount *mnt, struct mount *parent)
841{
842 hlist_add_head_rcu(&mnt->mnt_hash,
843 m_hash(&parent->mnt, mnt->mnt_mountpoint));
844 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
845}
846
847/*
848 * vfsmount lock must be held for write
849 */
850static void attach_mnt(struct mount *mnt,
851 struct mount *parent,
852 struct mountpoint *mp)
853{
854 mnt_set_mountpoint(parent, mp, mnt);
855 __attach_mnt(mnt, parent);
856}
857
858void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
859{
860 struct mountpoint *old_mp = mnt->mnt_mp;
861 struct mount *old_parent = mnt->mnt_parent;
862
863 list_del_init(&mnt->mnt_child);
864 hlist_del_init(&mnt->mnt_mp_list);
865 hlist_del_init_rcu(&mnt->mnt_hash);
866
867 attach_mnt(mnt, parent, mp);
868
869 put_mountpoint(old_mp);
870 mnt_add_count(old_parent, -1);
871}
872
873/*
874 * vfsmount lock must be held for write
875 */
876static void commit_tree(struct mount *mnt)
877{
878 struct mount *parent = mnt->mnt_parent;
879 struct mount *m;
880 LIST_HEAD(head);
881 struct mnt_namespace *n = parent->mnt_ns;
882
883 BUG_ON(parent == mnt);
884
885 list_add_tail(&head, &mnt->mnt_list);
886 list_for_each_entry(m, &head, mnt_list)
887 m->mnt_ns = n;
888
889 list_splice(&head, n->list.prev);
890
891 n->mounts += n->pending_mounts;
892 n->pending_mounts = 0;
893
894 __attach_mnt(mnt, parent);
895 touch_mnt_namespace(n);
896}
897
898static struct mount *next_mnt(struct mount *p, struct mount *root)
899{
900 struct list_head *next = p->mnt_mounts.next;
901 if (next == &p->mnt_mounts) {
902 while (1) {
903 if (p == root)
904 return NULL;
905 next = p->mnt_child.next;
906 if (next != &p->mnt_parent->mnt_mounts)
907 break;
908 p = p->mnt_parent;
909 }
910 }
911 return list_entry(next, struct mount, mnt_child);
912}
913
914static struct mount *skip_mnt_tree(struct mount *p)
915{
916 struct list_head *prev = p->mnt_mounts.prev;
917 while (prev != &p->mnt_mounts) {
918 p = list_entry(prev, struct mount, mnt_child);
919 prev = p->mnt_mounts.prev;
920 }
921 return p;
922}
923
924/**
925 * vfs_create_mount - Create a mount for a configured superblock
926 * @fc: The configuration context with the superblock attached
927 *
928 * Create a mount to an already configured superblock. If necessary, the
929 * caller should invoke vfs_get_tree() before calling this.
930 *
931 * Note that this does not attach the mount to anything.
932 */
933struct vfsmount *vfs_create_mount(struct fs_context *fc)
934{
935 struct mount *mnt;
936
937 if (!fc->root)
938 return ERR_PTR(-EINVAL);
939
940 mnt = alloc_vfsmnt(fc->source ?: "none");
941 if (!mnt)
942 return ERR_PTR(-ENOMEM);
943
944 if (fc->sb_flags & SB_KERNMOUNT)
945 mnt->mnt.mnt_flags = MNT_INTERNAL;
946
947 atomic_inc(&fc->root->d_sb->s_active);
948 mnt->mnt.mnt_sb = fc->root->d_sb;
949 mnt->mnt.mnt_root = dget(fc->root);
950 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
951 mnt->mnt_parent = mnt;
952
953 lock_mount_hash();
954 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
955 unlock_mount_hash();
956 return &mnt->mnt;
957}
958EXPORT_SYMBOL(vfs_create_mount);
959
960struct vfsmount *fc_mount(struct fs_context *fc)
961{
962 int err = vfs_get_tree(fc);
963 if (!err) {
964 up_write(&fc->root->d_sb->s_umount);
965 return vfs_create_mount(fc);
966 }
967 return ERR_PTR(err);
968}
969EXPORT_SYMBOL(fc_mount);
970
971struct vfsmount *vfs_kern_mount(struct file_system_type *type,
972 int flags, const char *name,
973 void *data)
974{
975 struct fs_context *fc;
976 struct vfsmount *mnt;
977 int ret = 0;
978
979 if (!type)
980 return ERR_PTR(-EINVAL);
981
982 fc = fs_context_for_mount(type, flags);
983 if (IS_ERR(fc))
984 return ERR_CAST(fc);
985
986 if (name)
987 ret = vfs_parse_fs_string(fc, "source",
988 name, strlen(name));
989 if (!ret)
990 ret = parse_monolithic_mount_data(fc, data);
991 if (!ret)
992 mnt = fc_mount(fc);
993 else
994 mnt = ERR_PTR(ret);
995
996 put_fs_context(fc);
997 return mnt;
998}
999EXPORT_SYMBOL_GPL(vfs_kern_mount);
1000
1001struct vfsmount *
1002vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1003 const char *name, void *data)
1004{
1005 /* Until it is worked out how to pass the user namespace
1006 * through from the parent mount to the submount don't support
1007 * unprivileged mounts with submounts.
1008 */
1009 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1010 return ERR_PTR(-EPERM);
1011
1012 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1013}
1014EXPORT_SYMBOL_GPL(vfs_submount);
1015
1016static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1017 int flag)
1018{
1019 struct super_block *sb = old->mnt.mnt_sb;
1020 struct mount *mnt;
1021 int err;
1022
1023 mnt = alloc_vfsmnt(old->mnt_devname);
1024 if (!mnt)
1025 return ERR_PTR(-ENOMEM);
1026
1027 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1028 mnt->mnt_group_id = 0; /* not a peer of original */
1029 else
1030 mnt->mnt_group_id = old->mnt_group_id;
1031
1032 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1033 err = mnt_alloc_group_id(mnt);
1034 if (err)
1035 goto out_free;
1036 }
1037
1038 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1039 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1040
1041 atomic_inc(&sb->s_active);
1042 mnt->mnt.mnt_sb = sb;
1043 mnt->mnt.mnt_root = dget(root);
1044 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045 mnt->mnt_parent = mnt;
1046 lock_mount_hash();
1047 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1048 unlock_mount_hash();
1049
1050 if ((flag & CL_SLAVE) ||
1051 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1052 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1053 mnt->mnt_master = old;
1054 CLEAR_MNT_SHARED(mnt);
1055 } else if (!(flag & CL_PRIVATE)) {
1056 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1057 list_add(&mnt->mnt_share, &old->mnt_share);
1058 if (IS_MNT_SLAVE(old))
1059 list_add(&mnt->mnt_slave, &old->mnt_slave);
1060 mnt->mnt_master = old->mnt_master;
1061 } else {
1062 CLEAR_MNT_SHARED(mnt);
1063 }
1064 if (flag & CL_MAKE_SHARED)
1065 set_mnt_shared(mnt);
1066
1067 /* stick the duplicate mount on the same expiry list
1068 * as the original if that was on one */
1069 if (flag & CL_EXPIRE) {
1070 if (!list_empty(&old->mnt_expire))
1071 list_add(&mnt->mnt_expire, &old->mnt_expire);
1072 }
1073
1074 return mnt;
1075
1076 out_free:
1077 mnt_free_id(mnt);
1078 free_vfsmnt(mnt);
1079 return ERR_PTR(err);
1080}
1081
1082static void cleanup_mnt(struct mount *mnt)
1083{
1084 struct hlist_node *p;
1085 struct mount *m;
1086 /*
1087 * The warning here probably indicates that somebody messed
1088 * up a mnt_want/drop_write() pair. If this happens, the
1089 * filesystem was probably unable to make r/w->r/o transitions.
1090 * The locking used to deal with mnt_count decrement provides barriers,
1091 * so mnt_get_writers() below is safe.
1092 */
1093 WARN_ON(mnt_get_writers(mnt));
1094 if (unlikely(mnt->mnt_pins.first))
1095 mnt_pin_kill(mnt);
1096 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1097 hlist_del(&m->mnt_umount);
1098 mntput(&m->mnt);
1099 }
1100 fsnotify_vfsmount_delete(&mnt->mnt);
1101 dput(mnt->mnt.mnt_root);
1102 deactivate_super(mnt->mnt.mnt_sb);
1103 mnt_free_id(mnt);
1104 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1105}
1106
1107static void __cleanup_mnt(struct rcu_head *head)
1108{
1109 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1110}
1111
1112static LLIST_HEAD(delayed_mntput_list);
1113static void delayed_mntput(struct work_struct *unused)
1114{
1115 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1116 struct mount *m, *t;
1117
1118 llist_for_each_entry_safe(m, t, node, mnt_llist)
1119 cleanup_mnt(m);
1120}
1121static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1122
1123static void mntput_no_expire(struct mount *mnt)
1124{
1125 LIST_HEAD(list);
1126
1127 rcu_read_lock();
1128 if (likely(READ_ONCE(mnt->mnt_ns))) {
1129 /*
1130 * Since we don't do lock_mount_hash() here,
1131 * ->mnt_ns can change under us. However, if it's
1132 * non-NULL, then there's a reference that won't
1133 * be dropped until after an RCU delay done after
1134 * turning ->mnt_ns NULL. So if we observe it
1135 * non-NULL under rcu_read_lock(), the reference
1136 * we are dropping is not the final one.
1137 */
1138 mnt_add_count(mnt, -1);
1139 rcu_read_unlock();
1140 return;
1141 }
1142 lock_mount_hash();
1143 /*
1144 * make sure that if __legitimize_mnt() has not seen us grab
1145 * mount_lock, we'll see their refcount increment here.
1146 */
1147 smp_mb();
1148 mnt_add_count(mnt, -1);
1149 if (mnt_get_count(mnt)) {
1150 rcu_read_unlock();
1151 unlock_mount_hash();
1152 return;
1153 }
1154 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1155 rcu_read_unlock();
1156 unlock_mount_hash();
1157 return;
1158 }
1159 mnt->mnt.mnt_flags |= MNT_DOOMED;
1160 rcu_read_unlock();
1161
1162 list_del(&mnt->mnt_instance);
1163
1164 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1165 struct mount *p, *tmp;
1166 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1167 __put_mountpoint(unhash_mnt(p), &list);
1168 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1169 }
1170 }
1171 unlock_mount_hash();
1172 shrink_dentry_list(&list);
1173
1174 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1175 struct task_struct *task = current;
1176 if (likely(!(task->flags & PF_KTHREAD))) {
1177 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1178 if (!task_work_add(task, &mnt->mnt_rcu, true))
1179 return;
1180 }
1181 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1182 schedule_delayed_work(&delayed_mntput_work, 1);
1183 return;
1184 }
1185 cleanup_mnt(mnt);
1186}
1187
1188void mntput(struct vfsmount *mnt)
1189{
1190 if (mnt) {
1191 struct mount *m = real_mount(mnt);
1192 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1193 if (unlikely(m->mnt_expiry_mark))
1194 m->mnt_expiry_mark = 0;
1195 mntput_no_expire(m);
1196 }
1197}
1198EXPORT_SYMBOL(mntput);
1199
1200struct vfsmount *mntget(struct vfsmount *mnt)
1201{
1202 if (mnt)
1203 mnt_add_count(real_mount(mnt), 1);
1204 return mnt;
1205}
1206EXPORT_SYMBOL(mntget);
1207
1208/* path_is_mountpoint() - Check if path is a mount in the current
1209 * namespace.
1210 *
1211 * d_mountpoint() can only be used reliably to establish if a dentry is
1212 * not mounted in any namespace and that common case is handled inline.
1213 * d_mountpoint() isn't aware of the possibility there may be multiple
1214 * mounts using a given dentry in a different namespace. This function
1215 * checks if the passed in path is a mountpoint rather than the dentry
1216 * alone.
1217 */
1218bool path_is_mountpoint(const struct path *path)
1219{
1220 unsigned seq;
1221 bool res;
1222
1223 if (!d_mountpoint(path->dentry))
1224 return false;
1225
1226 rcu_read_lock();
1227 do {
1228 seq = read_seqbegin(&mount_lock);
1229 res = __path_is_mountpoint(path);
1230 } while (read_seqretry(&mount_lock, seq));
1231 rcu_read_unlock();
1232
1233 return res;
1234}
1235EXPORT_SYMBOL(path_is_mountpoint);
1236
1237struct vfsmount *mnt_clone_internal(const struct path *path)
1238{
1239 struct mount *p;
1240 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1241 if (IS_ERR(p))
1242 return ERR_CAST(p);
1243 p->mnt.mnt_flags |= MNT_INTERNAL;
1244 return &p->mnt;
1245}
1246
1247#ifdef CONFIG_PROC_FS
1248/* iterator; we want it to have access to namespace_sem, thus here... */
1249static void *m_start(struct seq_file *m, loff_t *pos)
1250{
1251 struct proc_mounts *p = m->private;
1252
1253 down_read(&namespace_sem);
1254 if (p->cached_event == p->ns->event) {
1255 void *v = p->cached_mount;
1256 if (*pos == p->cached_index)
1257 return v;
1258 if (*pos == p->cached_index + 1) {
1259 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1260 return p->cached_mount = v;
1261 }
1262 }
1263
1264 p->cached_event = p->ns->event;
1265 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1266 p->cached_index = *pos;
1267 return p->cached_mount;
1268}
1269
1270static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1271{
1272 struct proc_mounts *p = m->private;
1273
1274 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1275 p->cached_index = *pos;
1276 return p->cached_mount;
1277}
1278
1279static void m_stop(struct seq_file *m, void *v)
1280{
1281 up_read(&namespace_sem);
1282}
1283
1284static int m_show(struct seq_file *m, void *v)
1285{
1286 struct proc_mounts *p = m->private;
1287 struct mount *r = list_entry(v, struct mount, mnt_list);
1288 return p->show(m, &r->mnt);
1289}
1290
1291const struct seq_operations mounts_op = {
1292 .start = m_start,
1293 .next = m_next,
1294 .stop = m_stop,
1295 .show = m_show,
1296};
1297#endif /* CONFIG_PROC_FS */
1298
1299/**
1300 * may_umount_tree - check if a mount tree is busy
1301 * @mnt: root of mount tree
1302 *
1303 * This is called to check if a tree of mounts has any
1304 * open files, pwds, chroots or sub mounts that are
1305 * busy.
1306 */
1307int may_umount_tree(struct vfsmount *m)
1308{
1309 struct mount *mnt = real_mount(m);
1310 int actual_refs = 0;
1311 int minimum_refs = 0;
1312 struct mount *p;
1313 BUG_ON(!m);
1314
1315 /* write lock needed for mnt_get_count */
1316 lock_mount_hash();
1317 for (p = mnt; p; p = next_mnt(p, mnt)) {
1318 actual_refs += mnt_get_count(p);
1319 minimum_refs += 2;
1320 }
1321 unlock_mount_hash();
1322
1323 if (actual_refs > minimum_refs)
1324 return 0;
1325
1326 return 1;
1327}
1328
1329EXPORT_SYMBOL(may_umount_tree);
1330
1331/**
1332 * may_umount - check if a mount point is busy
1333 * @mnt: root of mount
1334 *
1335 * This is called to check if a mount point has any
1336 * open files, pwds, chroots or sub mounts. If the
1337 * mount has sub mounts this will return busy
1338 * regardless of whether the sub mounts are busy.
1339 *
1340 * Doesn't take quota and stuff into account. IOW, in some cases it will
1341 * give false negatives. The main reason why it's here is that we need
1342 * a non-destructive way to look for easily umountable filesystems.
1343 */
1344int may_umount(struct vfsmount *mnt)
1345{
1346 int ret = 1;
1347 down_read(&namespace_sem);
1348 lock_mount_hash();
1349 if (propagate_mount_busy(real_mount(mnt), 2))
1350 ret = 0;
1351 unlock_mount_hash();
1352 up_read(&namespace_sem);
1353 return ret;
1354}
1355
1356EXPORT_SYMBOL(may_umount);
1357
1358static void namespace_unlock(void)
1359{
1360 struct hlist_head head;
1361 struct hlist_node *p;
1362 struct mount *m;
1363 LIST_HEAD(list);
1364
1365 hlist_move_list(&unmounted, &head);
1366 list_splice_init(&ex_mountpoints, &list);
1367
1368 up_write(&namespace_sem);
1369
1370 shrink_dentry_list(&list);
1371
1372 if (likely(hlist_empty(&head)))
1373 return;
1374
1375 synchronize_rcu_expedited();
1376
1377 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1378 hlist_del(&m->mnt_umount);
1379 mntput(&m->mnt);
1380 }
1381}
1382
1383static inline void namespace_lock(void)
1384{
1385 down_write(&namespace_sem);
1386}
1387
1388enum umount_tree_flags {
1389 UMOUNT_SYNC = 1,
1390 UMOUNT_PROPAGATE = 2,
1391 UMOUNT_CONNECTED = 4,
1392};
1393
1394static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1395{
1396 /* Leaving mounts connected is only valid for lazy umounts */
1397 if (how & UMOUNT_SYNC)
1398 return true;
1399
1400 /* A mount without a parent has nothing to be connected to */
1401 if (!mnt_has_parent(mnt))
1402 return true;
1403
1404 /* Because the reference counting rules change when mounts are
1405 * unmounted and connected, umounted mounts may not be
1406 * connected to mounted mounts.
1407 */
1408 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1409 return true;
1410
1411 /* Has it been requested that the mount remain connected? */
1412 if (how & UMOUNT_CONNECTED)
1413 return false;
1414
1415 /* Is the mount locked such that it needs to remain connected? */
1416 if (IS_MNT_LOCKED(mnt))
1417 return false;
1418
1419 /* By default disconnect the mount */
1420 return true;
1421}
1422
1423/*
1424 * mount_lock must be held
1425 * namespace_sem must be held for write
1426 */
1427static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1428{
1429 LIST_HEAD(tmp_list);
1430 struct mount *p;
1431
1432 if (how & UMOUNT_PROPAGATE)
1433 propagate_mount_unlock(mnt);
1434
1435 /* Gather the mounts to umount */
1436 for (p = mnt; p; p = next_mnt(p, mnt)) {
1437 p->mnt.mnt_flags |= MNT_UMOUNT;
1438 list_move(&p->mnt_list, &tmp_list);
1439 }
1440
1441 /* Hide the mounts from mnt_mounts */
1442 list_for_each_entry(p, &tmp_list, mnt_list) {
1443 list_del_init(&p->mnt_child);
1444 }
1445
1446 /* Add propogated mounts to the tmp_list */
1447 if (how & UMOUNT_PROPAGATE)
1448 propagate_umount(&tmp_list);
1449
1450 while (!list_empty(&tmp_list)) {
1451 struct mnt_namespace *ns;
1452 bool disconnect;
1453 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1454 list_del_init(&p->mnt_expire);
1455 list_del_init(&p->mnt_list);
1456 ns = p->mnt_ns;
1457 if (ns) {
1458 ns->mounts--;
1459 __touch_mnt_namespace(ns);
1460 }
1461 p->mnt_ns = NULL;
1462 if (how & UMOUNT_SYNC)
1463 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1464
1465 disconnect = disconnect_mount(p, how);
1466 if (mnt_has_parent(p)) {
1467 mnt_add_count(p->mnt_parent, -1);
1468 if (!disconnect) {
1469 /* Don't forget about p */
1470 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1471 } else {
1472 umount_mnt(p);
1473 }
1474 }
1475 change_mnt_propagation(p, MS_PRIVATE);
1476 if (disconnect)
1477 hlist_add_head(&p->mnt_umount, &unmounted);
1478 }
1479}
1480
1481static void shrink_submounts(struct mount *mnt);
1482
1483static int do_umount_root(struct super_block *sb)
1484{
1485 int ret = 0;
1486
1487 down_write(&sb->s_umount);
1488 if (!sb_rdonly(sb)) {
1489 struct fs_context *fc;
1490
1491 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1492 SB_RDONLY);
1493 if (IS_ERR(fc)) {
1494 ret = PTR_ERR(fc);
1495 } else {
1496 ret = parse_monolithic_mount_data(fc, NULL);
1497 if (!ret)
1498 ret = reconfigure_super(fc);
1499 put_fs_context(fc);
1500 }
1501 }
1502 up_write(&sb->s_umount);
1503 return ret;
1504}
1505
1506static int do_umount(struct mount *mnt, int flags)
1507{
1508 struct super_block *sb = mnt->mnt.mnt_sb;
1509 int retval;
1510
1511 retval = security_sb_umount(&mnt->mnt, flags);
1512 if (retval)
1513 return retval;
1514
1515 /*
1516 * Allow userspace to request a mountpoint be expired rather than
1517 * unmounting unconditionally. Unmount only happens if:
1518 * (1) the mark is already set (the mark is cleared by mntput())
1519 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1520 */
1521 if (flags & MNT_EXPIRE) {
1522 if (&mnt->mnt == current->fs->root.mnt ||
1523 flags & (MNT_FORCE | MNT_DETACH))
1524 return -EINVAL;
1525
1526 /*
1527 * probably don't strictly need the lock here if we examined
1528 * all race cases, but it's a slowpath.
1529 */
1530 lock_mount_hash();
1531 if (mnt_get_count(mnt) != 2) {
1532 unlock_mount_hash();
1533 return -EBUSY;
1534 }
1535 unlock_mount_hash();
1536
1537 if (!xchg(&mnt->mnt_expiry_mark, 1))
1538 return -EAGAIN;
1539 }
1540
1541 /*
1542 * If we may have to abort operations to get out of this
1543 * mount, and they will themselves hold resources we must
1544 * allow the fs to do things. In the Unix tradition of
1545 * 'Gee thats tricky lets do it in userspace' the umount_begin
1546 * might fail to complete on the first run through as other tasks
1547 * must return, and the like. Thats for the mount program to worry
1548 * about for the moment.
1549 */
1550
1551 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1552 sb->s_op->umount_begin(sb);
1553 }
1554
1555 /*
1556 * No sense to grab the lock for this test, but test itself looks
1557 * somewhat bogus. Suggestions for better replacement?
1558 * Ho-hum... In principle, we might treat that as umount + switch
1559 * to rootfs. GC would eventually take care of the old vfsmount.
1560 * Actually it makes sense, especially if rootfs would contain a
1561 * /reboot - static binary that would close all descriptors and
1562 * call reboot(9). Then init(8) could umount root and exec /reboot.
1563 */
1564 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1565 /*
1566 * Special case for "unmounting" root ...
1567 * we just try to remount it readonly.
1568 */
1569 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1570 return -EPERM;
1571 return do_umount_root(sb);
1572 }
1573
1574 namespace_lock();
1575 lock_mount_hash();
1576
1577 /* Recheck MNT_LOCKED with the locks held */
1578 retval = -EINVAL;
1579 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1580 goto out;
1581
1582 event++;
1583 if (flags & MNT_DETACH) {
1584 if (!list_empty(&mnt->mnt_list))
1585 umount_tree(mnt, UMOUNT_PROPAGATE);
1586 retval = 0;
1587 } else {
1588 shrink_submounts(mnt);
1589 retval = -EBUSY;
1590 if (!propagate_mount_busy(mnt, 2)) {
1591 if (!list_empty(&mnt->mnt_list))
1592 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1593 retval = 0;
1594 }
1595 }
1596out:
1597 unlock_mount_hash();
1598 namespace_unlock();
1599 return retval;
1600}
1601
1602/*
1603 * __detach_mounts - lazily unmount all mounts on the specified dentry
1604 *
1605 * During unlink, rmdir, and d_drop it is possible to loose the path
1606 * to an existing mountpoint, and wind up leaking the mount.
1607 * detach_mounts allows lazily unmounting those mounts instead of
1608 * leaking them.
1609 *
1610 * The caller may hold dentry->d_inode->i_mutex.
1611 */
1612void __detach_mounts(struct dentry *dentry)
1613{
1614 struct mountpoint *mp;
1615 struct mount *mnt;
1616
1617 namespace_lock();
1618 lock_mount_hash();
1619 mp = lookup_mountpoint(dentry);
1620 if (!mp)
1621 goto out_unlock;
1622
1623 event++;
1624 while (!hlist_empty(&mp->m_list)) {
1625 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1626 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1627 umount_mnt(mnt);
1628 hlist_add_head(&mnt->mnt_umount, &unmounted);
1629 }
1630 else umount_tree(mnt, UMOUNT_CONNECTED);
1631 }
1632 put_mountpoint(mp);
1633out_unlock:
1634 unlock_mount_hash();
1635 namespace_unlock();
1636}
1637
1638/*
1639 * Is the caller allowed to modify his namespace?
1640 */
1641static inline bool may_mount(void)
1642{
1643 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1644}
1645
1646static inline bool may_mandlock(void)
1647{
1648#ifndef CONFIG_MANDATORY_FILE_LOCKING
1649 return false;
1650#endif
1651 return capable(CAP_SYS_ADMIN);
1652}
1653
1654/*
1655 * Now umount can handle mount points as well as block devices.
1656 * This is important for filesystems which use unnamed block devices.
1657 *
1658 * We now support a flag for forced unmount like the other 'big iron'
1659 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1660 */
1661
1662int ksys_umount(char __user *name, int flags)
1663{
1664 struct path path;
1665 struct mount *mnt;
1666 int retval;
1667 int lookup_flags = 0;
1668
1669 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1670 return -EINVAL;
1671
1672 if (!may_mount())
1673 return -EPERM;
1674
1675 if (!(flags & UMOUNT_NOFOLLOW))
1676 lookup_flags |= LOOKUP_FOLLOW;
1677
1678 lookup_flags |= LOOKUP_NO_EVAL;
1679
1680 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1681 if (retval)
1682 goto out;
1683 mnt = real_mount(path.mnt);
1684 retval = -EINVAL;
1685 if (path.dentry != path.mnt->mnt_root)
1686 goto dput_and_out;
1687 if (!check_mnt(mnt))
1688 goto dput_and_out;
1689 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1690 goto dput_and_out;
1691 retval = -EPERM;
1692 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1693 goto dput_and_out;
1694
1695 retval = do_umount(mnt, flags);
1696dput_and_out:
1697 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1698 dput(path.dentry);
1699 mntput_no_expire(mnt);
1700out:
1701 return retval;
1702}
1703
1704SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1705{
1706 return ksys_umount(name, flags);
1707}
1708
1709#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1710
1711/*
1712 * The 2.0 compatible umount. No flags.
1713 */
1714SYSCALL_DEFINE1(oldumount, char __user *, name)
1715{
1716 return ksys_umount(name, 0);
1717}
1718
1719#endif
1720
1721static bool is_mnt_ns_file(struct dentry *dentry)
1722{
1723 /* Is this a proxy for a mount namespace? */
1724 return dentry->d_op == &ns_dentry_operations &&
1725 dentry->d_fsdata == &mntns_operations;
1726}
1727
1728struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1729{
1730 return container_of(ns, struct mnt_namespace, ns);
1731}
1732
1733static bool mnt_ns_loop(struct dentry *dentry)
1734{
1735 /* Could bind mounting the mount namespace inode cause a
1736 * mount namespace loop?
1737 */
1738 struct mnt_namespace *mnt_ns;
1739 if (!is_mnt_ns_file(dentry))
1740 return false;
1741
1742 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1743 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1744}
1745
1746struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1747 int flag)
1748{
1749 struct mount *res, *p, *q, *r, *parent;
1750
1751 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1752 return ERR_PTR(-EINVAL);
1753
1754 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1755 return ERR_PTR(-EINVAL);
1756
1757 res = q = clone_mnt(mnt, dentry, flag);
1758 if (IS_ERR(q))
1759 return q;
1760
1761 q->mnt_mountpoint = mnt->mnt_mountpoint;
1762
1763 p = mnt;
1764 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1765 struct mount *s;
1766 if (!is_subdir(r->mnt_mountpoint, dentry))
1767 continue;
1768
1769 for (s = r; s; s = next_mnt(s, r)) {
1770 if (!(flag & CL_COPY_UNBINDABLE) &&
1771 IS_MNT_UNBINDABLE(s)) {
1772 if (s->mnt.mnt_flags & MNT_LOCKED) {
1773 /* Both unbindable and locked. */
1774 q = ERR_PTR(-EPERM);
1775 goto out;
1776 } else {
1777 s = skip_mnt_tree(s);
1778 continue;
1779 }
1780 }
1781 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1782 is_mnt_ns_file(s->mnt.mnt_root)) {
1783 s = skip_mnt_tree(s);
1784 continue;
1785 }
1786 while (p != s->mnt_parent) {
1787 p = p->mnt_parent;
1788 q = q->mnt_parent;
1789 }
1790 p = s;
1791 parent = q;
1792 q = clone_mnt(p, p->mnt.mnt_root, flag);
1793 if (IS_ERR(q))
1794 goto out;
1795 lock_mount_hash();
1796 list_add_tail(&q->mnt_list, &res->mnt_list);
1797 attach_mnt(q, parent, p->mnt_mp);
1798 unlock_mount_hash();
1799 }
1800 }
1801 return res;
1802out:
1803 if (res) {
1804 lock_mount_hash();
1805 umount_tree(res, UMOUNT_SYNC);
1806 unlock_mount_hash();
1807 }
1808 return q;
1809}
1810
1811/* Caller should check returned pointer for errors */
1812
1813struct vfsmount *collect_mounts(const struct path *path)
1814{
1815 struct mount *tree;
1816 namespace_lock();
1817 if (!check_mnt(real_mount(path->mnt)))
1818 tree = ERR_PTR(-EINVAL);
1819 else
1820 tree = copy_tree(real_mount(path->mnt), path->dentry,
1821 CL_COPY_ALL | CL_PRIVATE);
1822 namespace_unlock();
1823 if (IS_ERR(tree))
1824 return ERR_CAST(tree);
1825 return &tree->mnt;
1826}
1827
1828static void free_mnt_ns(struct mnt_namespace *);
1829static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1830
1831void dissolve_on_fput(struct vfsmount *mnt)
1832{
1833 struct mnt_namespace *ns;
1834 namespace_lock();
1835 lock_mount_hash();
1836 ns = real_mount(mnt)->mnt_ns;
1837 if (ns) {
1838 if (is_anon_ns(ns))
1839 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1840 else
1841 ns = NULL;
1842 }
1843 unlock_mount_hash();
1844 namespace_unlock();
1845 if (ns)
1846 free_mnt_ns(ns);
1847}
1848
1849void drop_collected_mounts(struct vfsmount *mnt)
1850{
1851 namespace_lock();
1852 lock_mount_hash();
1853 umount_tree(real_mount(mnt), 0);
1854 unlock_mount_hash();
1855 namespace_unlock();
1856}
1857
1858/**
1859 * clone_private_mount - create a private clone of a path
1860 *
1861 * This creates a new vfsmount, which will be the clone of @path. The new will
1862 * not be attached anywhere in the namespace and will be private (i.e. changes
1863 * to the originating mount won't be propagated into this).
1864 *
1865 * Release with mntput().
1866 */
1867struct vfsmount *clone_private_mount(const struct path *path)
1868{
1869 struct mount *old_mnt = real_mount(path->mnt);
1870 struct mount *new_mnt;
1871
1872 if (IS_MNT_UNBINDABLE(old_mnt))
1873 return ERR_PTR(-EINVAL);
1874
1875 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1876 if (IS_ERR(new_mnt))
1877 return ERR_CAST(new_mnt);
1878
1879 return &new_mnt->mnt;
1880}
1881EXPORT_SYMBOL_GPL(clone_private_mount);
1882
1883int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1884 struct vfsmount *root)
1885{
1886 struct mount *mnt;
1887 int res = f(root, arg);
1888 if (res)
1889 return res;
1890 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1891 res = f(&mnt->mnt, arg);
1892 if (res)
1893 return res;
1894 }
1895 return 0;
1896}
1897
1898static void lock_mnt_tree(struct mount *mnt)
1899{
1900 struct mount *p;
1901
1902 for (p = mnt; p; p = next_mnt(p, mnt)) {
1903 int flags = p->mnt.mnt_flags;
1904 /* Don't allow unprivileged users to change mount flags */
1905 flags |= MNT_LOCK_ATIME;
1906
1907 if (flags & MNT_READONLY)
1908 flags |= MNT_LOCK_READONLY;
1909
1910 if (flags & MNT_NODEV)
1911 flags |= MNT_LOCK_NODEV;
1912
1913 if (flags & MNT_NOSUID)
1914 flags |= MNT_LOCK_NOSUID;
1915
1916 if (flags & MNT_NOEXEC)
1917 flags |= MNT_LOCK_NOEXEC;
1918 /* Don't allow unprivileged users to reveal what is under a mount */
1919 if (list_empty(&p->mnt_expire))
1920 flags |= MNT_LOCKED;
1921 p->mnt.mnt_flags = flags;
1922 }
1923}
1924
1925static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1926{
1927 struct mount *p;
1928
1929 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1930 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1931 mnt_release_group_id(p);
1932 }
1933}
1934
1935static int invent_group_ids(struct mount *mnt, bool recurse)
1936{
1937 struct mount *p;
1938
1939 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1940 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1941 int err = mnt_alloc_group_id(p);
1942 if (err) {
1943 cleanup_group_ids(mnt, p);
1944 return err;
1945 }
1946 }
1947 }
1948
1949 return 0;
1950}
1951
1952int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1953{
1954 unsigned int max = READ_ONCE(sysctl_mount_max);
1955 unsigned int mounts = 0, old, pending, sum;
1956 struct mount *p;
1957
1958 for (p = mnt; p; p = next_mnt(p, mnt))
1959 mounts++;
1960
1961 old = ns->mounts;
1962 pending = ns->pending_mounts;
1963 sum = old + pending;
1964 if ((old > sum) ||
1965 (pending > sum) ||
1966 (max < sum) ||
1967 (mounts > (max - sum)))
1968 return -ENOSPC;
1969
1970 ns->pending_mounts = pending + mounts;
1971 return 0;
1972}
1973
1974/*
1975 * @source_mnt : mount tree to be attached
1976 * @nd : place the mount tree @source_mnt is attached
1977 * @parent_nd : if non-null, detach the source_mnt from its parent and
1978 * store the parent mount and mountpoint dentry.
1979 * (done when source_mnt is moved)
1980 *
1981 * NOTE: in the table below explains the semantics when a source mount
1982 * of a given type is attached to a destination mount of a given type.
1983 * ---------------------------------------------------------------------------
1984 * | BIND MOUNT OPERATION |
1985 * |**************************************************************************
1986 * | source-->| shared | private | slave | unbindable |
1987 * | dest | | | | |
1988 * | | | | | | |
1989 * | v | | | | |
1990 * |**************************************************************************
1991 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1992 * | | | | | |
1993 * |non-shared| shared (+) | private | slave (*) | invalid |
1994 * ***************************************************************************
1995 * A bind operation clones the source mount and mounts the clone on the
1996 * destination mount.
1997 *
1998 * (++) the cloned mount is propagated to all the mounts in the propagation
1999 * tree of the destination mount and the cloned mount is added to
2000 * the peer group of the source mount.
2001 * (+) the cloned mount is created under the destination mount and is marked
2002 * as shared. The cloned mount is added to the peer group of the source
2003 * mount.
2004 * (+++) the mount is propagated to all the mounts in the propagation tree
2005 * of the destination mount and the cloned mount is made slave
2006 * of the same master as that of the source mount. The cloned mount
2007 * is marked as 'shared and slave'.
2008 * (*) the cloned mount is made a slave of the same master as that of the
2009 * source mount.
2010 *
2011 * ---------------------------------------------------------------------------
2012 * | MOVE MOUNT OPERATION |
2013 * |**************************************************************************
2014 * | source-->| shared | private | slave | unbindable |
2015 * | dest | | | | |
2016 * | | | | | | |
2017 * | v | | | | |
2018 * |**************************************************************************
2019 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2020 * | | | | | |
2021 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2022 * ***************************************************************************
2023 *
2024 * (+) the mount is moved to the destination. And is then propagated to
2025 * all the mounts in the propagation tree of the destination mount.
2026 * (+*) the mount is moved to the destination.
2027 * (+++) the mount is moved to the destination and is then propagated to
2028 * all the mounts belonging to the destination mount's propagation tree.
2029 * the mount is marked as 'shared and slave'.
2030 * (*) the mount continues to be a slave at the new location.
2031 *
2032 * if the source mount is a tree, the operations explained above is
2033 * applied to each mount in the tree.
2034 * Must be called without spinlocks held, since this function can sleep
2035 * in allocations.
2036 */
2037static int attach_recursive_mnt(struct mount *source_mnt,
2038 struct mount *dest_mnt,
2039 struct mountpoint *dest_mp,
2040 bool moving)
2041{
2042 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2043 HLIST_HEAD(tree_list);
2044 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2045 struct mountpoint *smp;
2046 struct mount *child, *p;
2047 struct hlist_node *n;
2048 int err;
2049
2050 /* Preallocate a mountpoint in case the new mounts need
2051 * to be tucked under other mounts.
2052 */
2053 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2054 if (IS_ERR(smp))
2055 return PTR_ERR(smp);
2056
2057 /* Is there space to add these mounts to the mount namespace? */
2058 if (!moving) {
2059 err = count_mounts(ns, source_mnt);
2060 if (err)
2061 goto out;
2062 }
2063
2064 if (IS_MNT_SHARED(dest_mnt)) {
2065 err = invent_group_ids(source_mnt, true);
2066 if (err)
2067 goto out;
2068 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2069 lock_mount_hash();
2070 if (err)
2071 goto out_cleanup_ids;
2072 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2073 set_mnt_shared(p);
2074 } else {
2075 lock_mount_hash();
2076 }
2077 if (moving) {
2078 unhash_mnt(source_mnt);
2079 attach_mnt(source_mnt, dest_mnt, dest_mp);
2080 touch_mnt_namespace(source_mnt->mnt_ns);
2081 } else {
2082 if (source_mnt->mnt_ns) {
2083 /* move from anon - the caller will destroy */
2084 list_del_init(&source_mnt->mnt_ns->list);
2085 }
2086 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2087 commit_tree(source_mnt);
2088 }
2089
2090 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2091 struct mount *q;
2092 hlist_del_init(&child->mnt_hash);
2093 q = __lookup_mnt(&child->mnt_parent->mnt,
2094 child->mnt_mountpoint);
2095 if (q)
2096 mnt_change_mountpoint(child, smp, q);
2097 /* Notice when we are propagating across user namespaces */
2098 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2099 lock_mnt_tree(child);
2100 child->mnt.mnt_flags &= ~MNT_LOCKED;
2101 commit_tree(child);
2102 }
2103 put_mountpoint(smp);
2104 unlock_mount_hash();
2105
2106 return 0;
2107
2108 out_cleanup_ids:
2109 while (!hlist_empty(&tree_list)) {
2110 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2111 child->mnt_parent->mnt_ns->pending_mounts = 0;
2112 umount_tree(child, UMOUNT_SYNC);
2113 }
2114 unlock_mount_hash();
2115 cleanup_group_ids(source_mnt, NULL);
2116 out:
2117 ns->pending_mounts = 0;
2118
2119 read_seqlock_excl(&mount_lock);
2120 put_mountpoint(smp);
2121 read_sequnlock_excl(&mount_lock);
2122
2123 return err;
2124}
2125
2126static struct mountpoint *lock_mount(struct path *path)
2127{
2128 struct vfsmount *mnt;
2129 struct dentry *dentry = path->dentry;
2130retry:
2131 inode_lock(dentry->d_inode);
2132 if (unlikely(cant_mount(dentry))) {
2133 inode_unlock(dentry->d_inode);
2134 return ERR_PTR(-ENOENT);
2135 }
2136 namespace_lock();
2137 mnt = lookup_mnt(path);
2138 if (likely(!mnt)) {
2139 struct mountpoint *mp = get_mountpoint(dentry);
2140 if (IS_ERR(mp)) {
2141 namespace_unlock();
2142 inode_unlock(dentry->d_inode);
2143 return mp;
2144 }
2145 return mp;
2146 }
2147 namespace_unlock();
2148 inode_unlock(path->dentry->d_inode);
2149 path_put(path);
2150 path->mnt = mnt;
2151 dentry = path->dentry = dget(mnt->mnt_root);
2152 goto retry;
2153}
2154
2155static void unlock_mount(struct mountpoint *where)
2156{
2157 struct dentry *dentry = where->m_dentry;
2158
2159 read_seqlock_excl(&mount_lock);
2160 put_mountpoint(where);
2161 read_sequnlock_excl(&mount_lock);
2162
2163 namespace_unlock();
2164 inode_unlock(dentry->d_inode);
2165}
2166
2167static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2168{
2169 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2170 return -EINVAL;
2171
2172 if (d_is_dir(mp->m_dentry) !=
2173 d_is_dir(mnt->mnt.mnt_root))
2174 return -ENOTDIR;
2175
2176 return attach_recursive_mnt(mnt, p, mp, false);
2177}
2178
2179/*
2180 * Sanity check the flags to change_mnt_propagation.
2181 */
2182
2183static int flags_to_propagation_type(int ms_flags)
2184{
2185 int type = ms_flags & ~(MS_REC | MS_SILENT);
2186
2187 /* Fail if any non-propagation flags are set */
2188 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2189 return 0;
2190 /* Only one propagation flag should be set */
2191 if (!is_power_of_2(type))
2192 return 0;
2193 return type;
2194}
2195
2196/*
2197 * recursively change the type of the mountpoint.
2198 */
2199static int do_change_type(struct path *path, int ms_flags)
2200{
2201 struct mount *m;
2202 struct mount *mnt = real_mount(path->mnt);
2203 int recurse = ms_flags & MS_REC;
2204 int type;
2205 int err = 0;
2206
2207 if (path->dentry != path->mnt->mnt_root)
2208 return -EINVAL;
2209
2210 type = flags_to_propagation_type(ms_flags);
2211 if (!type)
2212 return -EINVAL;
2213
2214 namespace_lock();
2215 if (type == MS_SHARED) {
2216 err = invent_group_ids(mnt, recurse);
2217 if (err)
2218 goto out_unlock;
2219 }
2220
2221 lock_mount_hash();
2222 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2223 change_mnt_propagation(m, type);
2224 unlock_mount_hash();
2225
2226 out_unlock:
2227 namespace_unlock();
2228 return err;
2229}
2230
2231static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2232{
2233 struct mount *child;
2234 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2235 if (!is_subdir(child->mnt_mountpoint, dentry))
2236 continue;
2237
2238 if (child->mnt.mnt_flags & MNT_LOCKED)
2239 return true;
2240 }
2241 return false;
2242}
2243
2244static struct mount *__do_loopback(struct path *old_path, int recurse)
2245{
2246 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2247
2248 if (IS_MNT_UNBINDABLE(old))
2249 return mnt;
2250
2251 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2252 return mnt;
2253
2254 if (!recurse && has_locked_children(old, old_path->dentry))
2255 return mnt;
2256
2257 if (recurse)
2258 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2259 else
2260 mnt = clone_mnt(old, old_path->dentry, 0);
2261
2262 if (!IS_ERR(mnt))
2263 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2264
2265 return mnt;
2266}
2267
2268/*
2269 * do loopback mount.
2270 */
2271static int do_loopback(struct path *path, const char *old_name,
2272 int recurse)
2273{
2274 struct path old_path;
2275 struct mount *mnt = NULL, *parent;
2276 struct mountpoint *mp;
2277 int err;
2278 if (!old_name || !*old_name)
2279 return -EINVAL;
2280 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2281 if (err)
2282 return err;
2283
2284 err = -EINVAL;
2285 if (mnt_ns_loop(old_path.dentry))
2286 goto out;
2287
2288 mp = lock_mount(path);
2289 if (IS_ERR(mp)) {
2290 err = PTR_ERR(mp);
2291 goto out;
2292 }
2293
2294 parent = real_mount(path->mnt);
2295 if (!check_mnt(parent))
2296 goto out2;
2297
2298 mnt = __do_loopback(&old_path, recurse);
2299 if (IS_ERR(mnt)) {
2300 err = PTR_ERR(mnt);
2301 goto out2;
2302 }
2303
2304 err = graft_tree(mnt, parent, mp);
2305 if (err) {
2306 lock_mount_hash();
2307 umount_tree(mnt, UMOUNT_SYNC);
2308 unlock_mount_hash();
2309 }
2310out2:
2311 unlock_mount(mp);
2312out:
2313 path_put(&old_path);
2314 return err;
2315}
2316
2317static struct file *open_detached_copy(struct path *path, bool recursive)
2318{
2319 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2320 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2321 struct mount *mnt, *p;
2322 struct file *file;
2323
2324 if (IS_ERR(ns))
2325 return ERR_CAST(ns);
2326
2327 namespace_lock();
2328 mnt = __do_loopback(path, recursive);
2329 if (IS_ERR(mnt)) {
2330 namespace_unlock();
2331 free_mnt_ns(ns);
2332 return ERR_CAST(mnt);
2333 }
2334
2335 lock_mount_hash();
2336 for (p = mnt; p; p = next_mnt(p, mnt)) {
2337 p->mnt_ns = ns;
2338 ns->mounts++;
2339 }
2340 ns->root = mnt;
2341 list_add_tail(&ns->list, &mnt->mnt_list);
2342 mntget(&mnt->mnt);
2343 unlock_mount_hash();
2344 namespace_unlock();
2345
2346 mntput(path->mnt);
2347 path->mnt = &mnt->mnt;
2348 file = dentry_open(path, O_PATH, current_cred());
2349 if (IS_ERR(file))
2350 dissolve_on_fput(path->mnt);
2351 else
2352 file->f_mode |= FMODE_NEED_UNMOUNT;
2353 return file;
2354}
2355
2356SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2357{
2358 struct file *file;
2359 struct path path;
2360 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2361 bool detached = flags & OPEN_TREE_CLONE;
2362 int error;
2363 int fd;
2364
2365 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2366
2367 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2368 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2369 OPEN_TREE_CLOEXEC))
2370 return -EINVAL;
2371
2372 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2373 return -EINVAL;
2374
2375 if (flags & AT_NO_AUTOMOUNT)
2376 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2377 if (flags & AT_SYMLINK_NOFOLLOW)
2378 lookup_flags &= ~LOOKUP_FOLLOW;
2379 if (flags & AT_EMPTY_PATH)
2380 lookup_flags |= LOOKUP_EMPTY;
2381
2382 if (detached && !may_mount())
2383 return -EPERM;
2384
2385 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2386 if (fd < 0)
2387 return fd;
2388
2389 error = user_path_at(dfd, filename, lookup_flags, &path);
2390 if (unlikely(error)) {
2391 file = ERR_PTR(error);
2392 } else {
2393 if (detached)
2394 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2395 else
2396 file = dentry_open(&path, O_PATH, current_cred());
2397 path_put(&path);
2398 }
2399 if (IS_ERR(file)) {
2400 put_unused_fd(fd);
2401 return PTR_ERR(file);
2402 }
2403 fd_install(fd, file);
2404 return fd;
2405}
2406
2407/*
2408 * Don't allow locked mount flags to be cleared.
2409 *
2410 * No locks need to be held here while testing the various MNT_LOCK
2411 * flags because those flags can never be cleared once they are set.
2412 */
2413static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2414{
2415 unsigned int fl = mnt->mnt.mnt_flags;
2416
2417 if ((fl & MNT_LOCK_READONLY) &&
2418 !(mnt_flags & MNT_READONLY))
2419 return false;
2420
2421 if ((fl & MNT_LOCK_NODEV) &&
2422 !(mnt_flags & MNT_NODEV))
2423 return false;
2424
2425 if ((fl & MNT_LOCK_NOSUID) &&
2426 !(mnt_flags & MNT_NOSUID))
2427 return false;
2428
2429 if ((fl & MNT_LOCK_NOEXEC) &&
2430 !(mnt_flags & MNT_NOEXEC))
2431 return false;
2432
2433 if ((fl & MNT_LOCK_ATIME) &&
2434 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2435 return false;
2436
2437 return true;
2438}
2439
2440static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2441{
2442 bool readonly_request = (mnt_flags & MNT_READONLY);
2443
2444 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2445 return 0;
2446
2447 if (readonly_request)
2448 return mnt_make_readonly(mnt);
2449
2450 return __mnt_unmake_readonly(mnt);
2451}
2452
2453/*
2454 * Update the user-settable attributes on a mount. The caller must hold
2455 * sb->s_umount for writing.
2456 */
2457static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2458{
2459 lock_mount_hash();
2460 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2461 mnt->mnt.mnt_flags = mnt_flags;
2462 touch_mnt_namespace(mnt->mnt_ns);
2463 unlock_mount_hash();
2464}
2465
2466/*
2467 * Handle reconfiguration of the mountpoint only without alteration of the
2468 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2469 * to mount(2).
2470 */
2471static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2472{
2473 struct super_block *sb = path->mnt->mnt_sb;
2474 struct mount *mnt = real_mount(path->mnt);
2475 int ret;
2476
2477 if (!check_mnt(mnt))
2478 return -EINVAL;
2479
2480 if (path->dentry != mnt->mnt.mnt_root)
2481 return -EINVAL;
2482
2483 if (!can_change_locked_flags(mnt, mnt_flags))
2484 return -EPERM;
2485
2486 down_write(&sb->s_umount);
2487 ret = change_mount_ro_state(mnt, mnt_flags);
2488 if (ret == 0)
2489 set_mount_attributes(mnt, mnt_flags);
2490 up_write(&sb->s_umount);
2491 return ret;
2492}
2493
2494/*
2495 * change filesystem flags. dir should be a physical root of filesystem.
2496 * If you've mounted a non-root directory somewhere and want to do remount
2497 * on it - tough luck.
2498 */
2499static int do_remount(struct path *path, int ms_flags, int sb_flags,
2500 int mnt_flags, void *data)
2501{
2502 int err;
2503 struct super_block *sb = path->mnt->mnt_sb;
2504 struct mount *mnt = real_mount(path->mnt);
2505 struct fs_context *fc;
2506
2507 if (!check_mnt(mnt))
2508 return -EINVAL;
2509
2510 if (path->dentry != path->mnt->mnt_root)
2511 return -EINVAL;
2512
2513 if (!can_change_locked_flags(mnt, mnt_flags))
2514 return -EPERM;
2515
2516 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2517 if (IS_ERR(fc))
2518 return PTR_ERR(fc);
2519
2520 err = parse_monolithic_mount_data(fc, data);
2521 if (!err) {
2522 down_write(&sb->s_umount);
2523 err = -EPERM;
2524 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2525 err = reconfigure_super(fc);
2526 if (!err)
2527 set_mount_attributes(mnt, mnt_flags);
2528 }
2529 up_write(&sb->s_umount);
2530 }
2531 put_fs_context(fc);
2532 return err;
2533}
2534
2535static inline int tree_contains_unbindable(struct mount *mnt)
2536{
2537 struct mount *p;
2538 for (p = mnt; p; p = next_mnt(p, mnt)) {
2539 if (IS_MNT_UNBINDABLE(p))
2540 return 1;
2541 }
2542 return 0;
2543}
2544
2545/*
2546 * Check that there aren't references to earlier/same mount namespaces in the
2547 * specified subtree. Such references can act as pins for mount namespaces
2548 * that aren't checked by the mount-cycle checking code, thereby allowing
2549 * cycles to be made.
2550 */
2551static bool check_for_nsfs_mounts(struct mount *subtree)
2552{
2553 struct mount *p;
2554 bool ret = false;
2555
2556 lock_mount_hash();
2557 for (p = subtree; p; p = next_mnt(p, subtree))
2558 if (mnt_ns_loop(p->mnt.mnt_root))
2559 goto out;
2560
2561 ret = true;
2562out:
2563 unlock_mount_hash();
2564 return ret;
2565}
2566
2567static int do_move_mount(struct path *old_path, struct path *new_path)
2568{
2569 struct mnt_namespace *ns;
2570 struct mount *p;
2571 struct mount *old;
2572 struct mount *parent;
2573 struct mountpoint *mp, *old_mp;
2574 int err;
2575 bool attached;
2576
2577 mp = lock_mount(new_path);
2578 if (IS_ERR(mp))
2579 return PTR_ERR(mp);
2580
2581 old = real_mount(old_path->mnt);
2582 p = real_mount(new_path->mnt);
2583 parent = old->mnt_parent;
2584 attached = mnt_has_parent(old);
2585 old_mp = old->mnt_mp;
2586 ns = old->mnt_ns;
2587
2588 err = -EINVAL;
2589 /* The mountpoint must be in our namespace. */
2590 if (!check_mnt(p))
2591 goto out;
2592
2593 /* The thing moved must be mounted... */
2594 if (!is_mounted(&old->mnt))
2595 goto out;
2596
2597 /* ... and either ours or the root of anon namespace */
2598 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2599 goto out;
2600
2601 if (old->mnt.mnt_flags & MNT_LOCKED)
2602 goto out;
2603
2604 if (old_path->dentry != old_path->mnt->mnt_root)
2605 goto out;
2606
2607 if (d_is_dir(new_path->dentry) !=
2608 d_is_dir(old_path->dentry))
2609 goto out;
2610 /*
2611 * Don't move a mount residing in a shared parent.
2612 */
2613 if (attached && IS_MNT_SHARED(parent))
2614 goto out;
2615 /*
2616 * Don't move a mount tree containing unbindable mounts to a destination
2617 * mount which is shared.
2618 */
2619 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2620 goto out;
2621 err = -ELOOP;
2622 if (!check_for_nsfs_mounts(old))
2623 goto out;
2624 for (; mnt_has_parent(p); p = p->mnt_parent)
2625 if (p == old)
2626 goto out;
2627
2628 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2629 attached);
2630 if (err)
2631 goto out;
2632
2633 /* if the mount is moved, it should no longer be expire
2634 * automatically */
2635 list_del_init(&old->mnt_expire);
2636 if (attached)
2637 put_mountpoint(old_mp);
2638out:
2639 unlock_mount(mp);
2640 if (!err) {
2641 if (attached)
2642 mntput_no_expire(parent);
2643 else
2644 free_mnt_ns(ns);
2645 }
2646 return err;
2647}
2648
2649static int do_move_mount_old(struct path *path, const char *old_name)
2650{
2651 struct path old_path;
2652 int err;
2653
2654 if (!old_name || !*old_name)
2655 return -EINVAL;
2656
2657 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2658 if (err)
2659 return err;
2660
2661 err = do_move_mount(&old_path, path);
2662 path_put(&old_path);
2663 return err;
2664}
2665
2666/*
2667 * add a mount into a namespace's mount tree
2668 */
2669static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2670{
2671 struct mountpoint *mp;
2672 struct mount *parent;
2673 int err;
2674
2675 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2676
2677 mp = lock_mount(path);
2678 if (IS_ERR(mp))
2679 return PTR_ERR(mp);
2680
2681 parent = real_mount(path->mnt);
2682 err = -EINVAL;
2683 if (unlikely(!check_mnt(parent))) {
2684 /* that's acceptable only for automounts done in private ns */
2685 if (!(mnt_flags & MNT_SHRINKABLE))
2686 goto unlock;
2687 /* ... and for those we'd better have mountpoint still alive */
2688 if (!parent->mnt_ns)
2689 goto unlock;
2690 }
2691
2692 /* Refuse the same filesystem on the same mount point */
2693 err = -EBUSY;
2694 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2695 path->mnt->mnt_root == path->dentry)
2696 goto unlock;
2697
2698 err = -EINVAL;
2699 if (d_is_symlink(newmnt->mnt.mnt_root))
2700 goto unlock;
2701
2702 newmnt->mnt.mnt_flags = mnt_flags;
2703 err = graft_tree(newmnt, parent, mp);
2704
2705unlock:
2706 unlock_mount(mp);
2707 return err;
2708}
2709
2710static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2711
2712/*
2713 * Create a new mount using a superblock configuration and request it
2714 * be added to the namespace tree.
2715 */
2716static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2717 unsigned int mnt_flags)
2718{
2719 struct vfsmount *mnt;
2720 struct super_block *sb = fc->root->d_sb;
2721 int error;
2722
2723 error = security_sb_kern_mount(sb);
2724 if (!error && mount_too_revealing(sb, &mnt_flags))
2725 error = -EPERM;
2726
2727 if (unlikely(error)) {
2728 fc_drop_locked(fc);
2729 return error;
2730 }
2731
2732 up_write(&sb->s_umount);
2733
2734 mnt = vfs_create_mount(fc);
2735 if (IS_ERR(mnt))
2736 return PTR_ERR(mnt);
2737
2738 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2739 if (error < 0)
2740 mntput(mnt);
2741 return error;
2742}
2743
2744/*
2745 * create a new mount for userspace and request it to be added into the
2746 * namespace's tree
2747 */
2748static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2749 int mnt_flags, const char *name, void *data)
2750{
2751 struct file_system_type *type;
2752 struct fs_context *fc;
2753 const char *subtype = NULL;
2754 int err = 0;
2755
2756 if (!fstype)
2757 return -EINVAL;
2758
2759 type = get_fs_type(fstype);
2760 if (!type)
2761 return -ENODEV;
2762
2763 if (type->fs_flags & FS_HAS_SUBTYPE) {
2764 subtype = strchr(fstype, '.');
2765 if (subtype) {
2766 subtype++;
2767 if (!*subtype) {
2768 put_filesystem(type);
2769 return -EINVAL;
2770 }
2771 } else {
2772 subtype = "";
2773 }
2774 }
2775
2776 fc = fs_context_for_mount(type, sb_flags);
2777 put_filesystem(type);
2778 if (IS_ERR(fc))
2779 return PTR_ERR(fc);
2780
2781 if (subtype)
2782 err = vfs_parse_fs_string(fc, "subtype",
2783 subtype, strlen(subtype));
2784 if (!err && name)
2785 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2786 if (!err)
2787 err = parse_monolithic_mount_data(fc, data);
2788 if (!err && !mount_capable(fc))
2789 err = -EPERM;
2790 if (!err)
2791 err = vfs_get_tree(fc);
2792 if (!err)
2793 err = do_new_mount_fc(fc, path, mnt_flags);
2794
2795 put_fs_context(fc);
2796 return err;
2797}
2798
2799int finish_automount(struct vfsmount *m, struct path *path)
2800{
2801 struct mount *mnt = real_mount(m);
2802 int err;
2803 /* The new mount record should have at least 2 refs to prevent it being
2804 * expired before we get a chance to add it
2805 */
2806 BUG_ON(mnt_get_count(mnt) < 2);
2807
2808 if (m->mnt_sb == path->mnt->mnt_sb &&
2809 m->mnt_root == path->dentry) {
2810 err = -ELOOP;
2811 goto fail;
2812 }
2813
2814 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2815 if (!err)
2816 return 0;
2817fail:
2818 /* remove m from any expiration list it may be on */
2819 if (!list_empty(&mnt->mnt_expire)) {
2820 namespace_lock();
2821 list_del_init(&mnt->mnt_expire);
2822 namespace_unlock();
2823 }
2824 mntput(m);
2825 mntput(m);
2826 return err;
2827}
2828
2829/**
2830 * mnt_set_expiry - Put a mount on an expiration list
2831 * @mnt: The mount to list.
2832 * @expiry_list: The list to add the mount to.
2833 */
2834void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2835{
2836 namespace_lock();
2837
2838 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2839
2840 namespace_unlock();
2841}
2842EXPORT_SYMBOL(mnt_set_expiry);
2843
2844/*
2845 * process a list of expirable mountpoints with the intent of discarding any
2846 * mountpoints that aren't in use and haven't been touched since last we came
2847 * here
2848 */
2849void mark_mounts_for_expiry(struct list_head *mounts)
2850{
2851 struct mount *mnt, *next;
2852 LIST_HEAD(graveyard);
2853
2854 if (list_empty(mounts))
2855 return;
2856
2857 namespace_lock();
2858 lock_mount_hash();
2859
2860 /* extract from the expiration list every vfsmount that matches the
2861 * following criteria:
2862 * - only referenced by its parent vfsmount
2863 * - still marked for expiry (marked on the last call here; marks are
2864 * cleared by mntput())
2865 */
2866 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2867 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2868 propagate_mount_busy(mnt, 1))
2869 continue;
2870 list_move(&mnt->mnt_expire, &graveyard);
2871 }
2872 while (!list_empty(&graveyard)) {
2873 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2874 touch_mnt_namespace(mnt->mnt_ns);
2875 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2876 }
2877 unlock_mount_hash();
2878 namespace_unlock();
2879}
2880
2881EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2882
2883/*
2884 * Ripoff of 'select_parent()'
2885 *
2886 * search the list of submounts for a given mountpoint, and move any
2887 * shrinkable submounts to the 'graveyard' list.
2888 */
2889static int select_submounts(struct mount *parent, struct list_head *graveyard)
2890{
2891 struct mount *this_parent = parent;
2892 struct list_head *next;
2893 int found = 0;
2894
2895repeat:
2896 next = this_parent->mnt_mounts.next;
2897resume:
2898 while (next != &this_parent->mnt_mounts) {
2899 struct list_head *tmp = next;
2900 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2901
2902 next = tmp->next;
2903 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2904 continue;
2905 /*
2906 * Descend a level if the d_mounts list is non-empty.
2907 */
2908 if (!list_empty(&mnt->mnt_mounts)) {
2909 this_parent = mnt;
2910 goto repeat;
2911 }
2912
2913 if (!propagate_mount_busy(mnt, 1)) {
2914 list_move_tail(&mnt->mnt_expire, graveyard);
2915 found++;
2916 }
2917 }
2918 /*
2919 * All done at this level ... ascend and resume the search
2920 */
2921 if (this_parent != parent) {
2922 next = this_parent->mnt_child.next;
2923 this_parent = this_parent->mnt_parent;
2924 goto resume;
2925 }
2926 return found;
2927}
2928
2929/*
2930 * process a list of expirable mountpoints with the intent of discarding any
2931 * submounts of a specific parent mountpoint
2932 *
2933 * mount_lock must be held for write
2934 */
2935static void shrink_submounts(struct mount *mnt)
2936{
2937 LIST_HEAD(graveyard);
2938 struct mount *m;
2939
2940 /* extract submounts of 'mountpoint' from the expiration list */
2941 while (select_submounts(mnt, &graveyard)) {
2942 while (!list_empty(&graveyard)) {
2943 m = list_first_entry(&graveyard, struct mount,
2944 mnt_expire);
2945 touch_mnt_namespace(m->mnt_ns);
2946 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2947 }
2948 }
2949}
2950
2951/*
2952 * Some copy_from_user() implementations do not return the exact number of
2953 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2954 * Note that this function differs from copy_from_user() in that it will oops
2955 * on bad values of `to', rather than returning a short copy.
2956 */
2957static long exact_copy_from_user(void *to, const void __user * from,
2958 unsigned long n)
2959{
2960 char *t = to;
2961 const char __user *f = from;
2962 char c;
2963
2964 if (!access_ok(from, n))
2965 return n;
2966
2967 while (n) {
2968 if (__get_user(c, f)) {
2969 memset(t, 0, n);
2970 break;
2971 }
2972 *t++ = c;
2973 f++;
2974 n--;
2975 }
2976 return n;
2977}
2978
2979void *copy_mount_options(const void __user * data)
2980{
2981 int i;
2982 unsigned long size;
2983 char *copy;
2984
2985 if (!data)
2986 return NULL;
2987
2988 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2989 if (!copy)
2990 return ERR_PTR(-ENOMEM);
2991
2992 /* We only care that *some* data at the address the user
2993 * gave us is valid. Just in case, we'll zero
2994 * the remainder of the page.
2995 */
2996 /* copy_from_user cannot cross TASK_SIZE ! */
2997 size = TASK_SIZE - (unsigned long)data;
2998 if (size > PAGE_SIZE)
2999 size = PAGE_SIZE;
3000
3001 i = size - exact_copy_from_user(copy, data, size);
3002 if (!i) {
3003 kfree(copy);
3004 return ERR_PTR(-EFAULT);
3005 }
3006 if (i != PAGE_SIZE)
3007 memset(copy + i, 0, PAGE_SIZE - i);
3008 return copy;
3009}
3010
3011char *copy_mount_string(const void __user *data)
3012{
3013 return data ? strndup_user(data, PATH_MAX) : NULL;
3014}
3015
3016/*
3017 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3018 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3019 *
3020 * data is a (void *) that can point to any structure up to
3021 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3022 * information (or be NULL).
3023 *
3024 * Pre-0.97 versions of mount() didn't have a flags word.
3025 * When the flags word was introduced its top half was required
3026 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3027 * Therefore, if this magic number is present, it carries no information
3028 * and must be discarded.
3029 */
3030long do_mount(const char *dev_name, const char __user *dir_name,
3031 const char *type_page, unsigned long flags, void *data_page)
3032{
3033 struct path path;
3034 unsigned int mnt_flags = 0, sb_flags;
3035 int retval = 0;
3036
3037 /* Discard magic */
3038 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3039 flags &= ~MS_MGC_MSK;
3040
3041 /* Basic sanity checks */
3042 if (data_page)
3043 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3044
3045 if (flags & MS_NOUSER)
3046 return -EINVAL;
3047
3048 /* ... and get the mountpoint */
3049 retval = user_path(dir_name, &path);
3050 if (retval)
3051 return retval;
3052
3053 retval = security_sb_mount(dev_name, &path,
3054 type_page, flags, data_page);
3055 if (!retval && !may_mount())
3056 retval = -EPERM;
3057 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3058 retval = -EPERM;
3059 if (retval)
3060 goto dput_out;
3061
3062 /* Default to relatime unless overriden */
3063 if (!(flags & MS_NOATIME))
3064 mnt_flags |= MNT_RELATIME;
3065
3066 /* Separate the per-mountpoint flags */
3067 if (flags & MS_NOSUID)
3068 mnt_flags |= MNT_NOSUID;
3069 if (flags & MS_NODEV)
3070 mnt_flags |= MNT_NODEV;
3071 if (flags & MS_NOEXEC)
3072 mnt_flags |= MNT_NOEXEC;
3073 if (flags & MS_NOATIME)
3074 mnt_flags |= MNT_NOATIME;
3075 if (flags & MS_NODIRATIME)
3076 mnt_flags |= MNT_NODIRATIME;
3077 if (flags & MS_STRICTATIME)
3078 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3079 if (flags & MS_RDONLY)
3080 mnt_flags |= MNT_READONLY;
3081
3082 /* The default atime for remount is preservation */
3083 if ((flags & MS_REMOUNT) &&
3084 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3085 MS_STRICTATIME)) == 0)) {
3086 mnt_flags &= ~MNT_ATIME_MASK;
3087 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3088 }
3089
3090 sb_flags = flags & (SB_RDONLY |
3091 SB_SYNCHRONOUS |
3092 SB_MANDLOCK |
3093 SB_DIRSYNC |
3094 SB_SILENT |
3095 SB_POSIXACL |
3096 SB_LAZYTIME |
3097 SB_I_VERSION);
3098
3099 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3100 retval = do_reconfigure_mnt(&path, mnt_flags);
3101 else if (flags & MS_REMOUNT)
3102 retval = do_remount(&path, flags, sb_flags, mnt_flags,
3103 data_page);
3104 else if (flags & MS_BIND)
3105 retval = do_loopback(&path, dev_name, flags & MS_REC);
3106 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3107 retval = do_change_type(&path, flags);
3108 else if (flags & MS_MOVE)
3109 retval = do_move_mount_old(&path, dev_name);
3110 else
3111 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3112 dev_name, data_page);
3113dput_out:
3114 path_put(&path);
3115 return retval;
3116}
3117
3118static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3119{
3120 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3121}
3122
3123static void dec_mnt_namespaces(struct ucounts *ucounts)
3124{
3125 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3126}
3127
3128static void free_mnt_ns(struct mnt_namespace *ns)
3129{
3130 if (!is_anon_ns(ns))
3131 ns_free_inum(&ns->ns);
3132 dec_mnt_namespaces(ns->ucounts);
3133 put_user_ns(ns->user_ns);
3134 kfree(ns);
3135}
3136
3137/*
3138 * Assign a sequence number so we can detect when we attempt to bind
3139 * mount a reference to an older mount namespace into the current
3140 * mount namespace, preventing reference counting loops. A 64bit
3141 * number incrementing at 10Ghz will take 12,427 years to wrap which
3142 * is effectively never, so we can ignore the possibility.
3143 */
3144static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3145
3146static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3147{
3148 struct mnt_namespace *new_ns;
3149 struct ucounts *ucounts;
3150 int ret;
3151
3152 ucounts = inc_mnt_namespaces(user_ns);
3153 if (!ucounts)
3154 return ERR_PTR(-ENOSPC);
3155
3156 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3157 if (!new_ns) {
3158 dec_mnt_namespaces(ucounts);
3159 return ERR_PTR(-ENOMEM);
3160 }
3161 if (!anon) {
3162 ret = ns_alloc_inum(&new_ns->ns);
3163 if (ret) {
3164 kfree(new_ns);
3165 dec_mnt_namespaces(ucounts);
3166 return ERR_PTR(ret);
3167 }
3168 }
3169 new_ns->ns.ops = &mntns_operations;
3170 if (!anon)
3171 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3172 atomic_set(&new_ns->count, 1);
3173 INIT_LIST_HEAD(&new_ns->list);
3174 init_waitqueue_head(&new_ns->poll);
3175 new_ns->user_ns = get_user_ns(user_ns);
3176 new_ns->ucounts = ucounts;
3177 return new_ns;
3178}
3179
3180__latent_entropy
3181struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3182 struct user_namespace *user_ns, struct fs_struct *new_fs)
3183{
3184 struct mnt_namespace *new_ns;
3185 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3186 struct mount *p, *q;
3187 struct mount *old;
3188 struct mount *new;
3189 int copy_flags;
3190
3191 BUG_ON(!ns);
3192
3193 if (likely(!(flags & CLONE_NEWNS))) {
3194 get_mnt_ns(ns);
3195 return ns;
3196 }
3197
3198 old = ns->root;
3199
3200 new_ns = alloc_mnt_ns(user_ns, false);
3201 if (IS_ERR(new_ns))
3202 return new_ns;
3203
3204 namespace_lock();
3205 /* First pass: copy the tree topology */
3206 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3207 if (user_ns != ns->user_ns)
3208 copy_flags |= CL_SHARED_TO_SLAVE;
3209 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3210 if (IS_ERR(new)) {
3211 namespace_unlock();
3212 free_mnt_ns(new_ns);
3213 return ERR_CAST(new);
3214 }
3215 if (user_ns != ns->user_ns) {
3216 lock_mount_hash();
3217 lock_mnt_tree(new);
3218 unlock_mount_hash();
3219 }
3220 new_ns->root = new;
3221 list_add_tail(&new_ns->list, &new->mnt_list);
3222
3223 /*
3224 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3225 * as belonging to new namespace. We have already acquired a private
3226 * fs_struct, so tsk->fs->lock is not needed.
3227 */
3228 p = old;
3229 q = new;
3230 while (p) {
3231 q->mnt_ns = new_ns;
3232 new_ns->mounts++;
3233 if (new_fs) {
3234 if (&p->mnt == new_fs->root.mnt) {
3235 new_fs->root.mnt = mntget(&q->mnt);
3236 rootmnt = &p->mnt;
3237 }
3238 if (&p->mnt == new_fs->pwd.mnt) {
3239 new_fs->pwd.mnt = mntget(&q->mnt);
3240 pwdmnt = &p->mnt;
3241 }
3242 }
3243 p = next_mnt(p, old);
3244 q = next_mnt(q, new);
3245 if (!q)
3246 break;
3247 while (p->mnt.mnt_root != q->mnt.mnt_root)
3248 p = next_mnt(p, old);
3249 }
3250 namespace_unlock();
3251
3252 if (rootmnt)
3253 mntput(rootmnt);
3254 if (pwdmnt)
3255 mntput(pwdmnt);
3256
3257 return new_ns;
3258}
3259
3260struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3261{
3262 struct mount *mnt = real_mount(m);
3263 struct mnt_namespace *ns;
3264 struct super_block *s;
3265 struct path path;
3266 int err;
3267
3268 ns = alloc_mnt_ns(&init_user_ns, true);
3269 if (IS_ERR(ns)) {
3270 mntput(m);
3271 return ERR_CAST(ns);
3272 }
3273 mnt->mnt_ns = ns;
3274 ns->root = mnt;
3275 ns->mounts++;
3276 list_add(&mnt->mnt_list, &ns->list);
3277
3278 err = vfs_path_lookup(m->mnt_root, m,
3279 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3280
3281 put_mnt_ns(ns);
3282
3283 if (err)
3284 return ERR_PTR(err);
3285
3286 /* trade a vfsmount reference for active sb one */
3287 s = path.mnt->mnt_sb;
3288 atomic_inc(&s->s_active);
3289 mntput(path.mnt);
3290 /* lock the sucker */
3291 down_write(&s->s_umount);
3292 /* ... and return the root of (sub)tree on it */
3293 return path.dentry;
3294}
3295EXPORT_SYMBOL(mount_subtree);
3296
3297int ksys_mount(const char __user *dev_name, const char __user *dir_name,
3298 const char __user *type, unsigned long flags, void __user *data)
3299{
3300 int ret;
3301 char *kernel_type;
3302 char *kernel_dev;
3303 void *options;
3304
3305 kernel_type = copy_mount_string(type);
3306 ret = PTR_ERR(kernel_type);
3307 if (IS_ERR(kernel_type))
3308 goto out_type;
3309
3310 kernel_dev = copy_mount_string(dev_name);
3311 ret = PTR_ERR(kernel_dev);
3312 if (IS_ERR(kernel_dev))
3313 goto out_dev;
3314
3315 options = copy_mount_options(data);
3316 ret = PTR_ERR(options);
3317 if (IS_ERR(options))
3318 goto out_data;
3319
3320 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3321
3322 kfree(options);
3323out_data:
3324 kfree(kernel_dev);
3325out_dev:
3326 kfree(kernel_type);
3327out_type:
3328 return ret;
3329}
3330
3331SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3332 char __user *, type, unsigned long, flags, void __user *, data)
3333{
3334 return ksys_mount(dev_name, dir_name, type, flags, data);
3335}
3336
3337/*
3338 * Create a kernel mount representation for a new, prepared superblock
3339 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3340 */
3341SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3342 unsigned int, attr_flags)
3343{
3344 struct mnt_namespace *ns;
3345 struct fs_context *fc;
3346 struct file *file;
3347 struct path newmount;
3348 struct mount *mnt;
3349 struct fd f;
3350 unsigned int mnt_flags = 0;
3351 long ret;
3352
3353 if (!may_mount())
3354 return -EPERM;
3355
3356 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3357 return -EINVAL;
3358
3359 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3360 MOUNT_ATTR_NOSUID |
3361 MOUNT_ATTR_NODEV |
3362 MOUNT_ATTR_NOEXEC |
3363 MOUNT_ATTR__ATIME |
3364 MOUNT_ATTR_NODIRATIME))
3365 return -EINVAL;
3366
3367 if (attr_flags & MOUNT_ATTR_RDONLY)
3368 mnt_flags |= MNT_READONLY;
3369 if (attr_flags & MOUNT_ATTR_NOSUID)
3370 mnt_flags |= MNT_NOSUID;
3371 if (attr_flags & MOUNT_ATTR_NODEV)
3372 mnt_flags |= MNT_NODEV;
3373 if (attr_flags & MOUNT_ATTR_NOEXEC)
3374 mnt_flags |= MNT_NOEXEC;
3375 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3376 mnt_flags |= MNT_NODIRATIME;
3377
3378 switch (attr_flags & MOUNT_ATTR__ATIME) {
3379 case MOUNT_ATTR_STRICTATIME:
3380 break;
3381 case MOUNT_ATTR_NOATIME:
3382 mnt_flags |= MNT_NOATIME;
3383 break;
3384 case MOUNT_ATTR_RELATIME:
3385 mnt_flags |= MNT_RELATIME;
3386 break;
3387 default:
3388 return -EINVAL;
3389 }
3390
3391 f = fdget(fs_fd);
3392 if (!f.file)
3393 return -EBADF;
3394
3395 ret = -EINVAL;
3396 if (f.file->f_op != &fscontext_fops)
3397 goto err_fsfd;
3398
3399 fc = f.file->private_data;
3400
3401 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3402 if (ret < 0)
3403 goto err_fsfd;
3404
3405 /* There must be a valid superblock or we can't mount it */
3406 ret = -EINVAL;
3407 if (!fc->root)
3408 goto err_unlock;
3409
3410 ret = -EPERM;
3411 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3412 pr_warn("VFS: Mount too revealing\n");
3413 goto err_unlock;
3414 }
3415
3416 ret = -EBUSY;
3417 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3418 goto err_unlock;
3419
3420 ret = -EPERM;
3421 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3422 goto err_unlock;
3423
3424 newmount.mnt = vfs_create_mount(fc);
3425 if (IS_ERR(newmount.mnt)) {
3426 ret = PTR_ERR(newmount.mnt);
3427 goto err_unlock;
3428 }
3429 newmount.dentry = dget(fc->root);
3430 newmount.mnt->mnt_flags = mnt_flags;
3431
3432 /* We've done the mount bit - now move the file context into more or
3433 * less the same state as if we'd done an fspick(). We don't want to
3434 * do any memory allocation or anything like that at this point as we
3435 * don't want to have to handle any errors incurred.
3436 */
3437 vfs_clean_context(fc);
3438
3439 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3440 if (IS_ERR(ns)) {
3441 ret = PTR_ERR(ns);
3442 goto err_path;
3443 }
3444 mnt = real_mount(newmount.mnt);
3445 mnt->mnt_ns = ns;
3446 ns->root = mnt;
3447 ns->mounts = 1;
3448 list_add(&mnt->mnt_list, &ns->list);
3449 mntget(newmount.mnt);
3450
3451 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3452 * it, not just simply put it.
3453 */
3454 file = dentry_open(&newmount, O_PATH, fc->cred);
3455 if (IS_ERR(file)) {
3456 dissolve_on_fput(newmount.mnt);
3457 ret = PTR_ERR(file);
3458 goto err_path;
3459 }
3460 file->f_mode |= FMODE_NEED_UNMOUNT;
3461
3462 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3463 if (ret >= 0)
3464 fd_install(ret, file);
3465 else
3466 fput(file);
3467
3468err_path:
3469 path_put(&newmount);
3470err_unlock:
3471 mutex_unlock(&fc->uapi_mutex);
3472err_fsfd:
3473 fdput(f);
3474 return ret;
3475}
3476
3477/*
3478 * Move a mount from one place to another. In combination with
3479 * fsopen()/fsmount() this is used to install a new mount and in combination
3480 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3481 * a mount subtree.
3482 *
3483 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3484 */
3485SYSCALL_DEFINE5(move_mount,
3486 int, from_dfd, const char *, from_pathname,
3487 int, to_dfd, const char *, to_pathname,
3488 unsigned int, flags)
3489{
3490 struct path from_path, to_path;
3491 unsigned int lflags;
3492 int ret = 0;
3493
3494 if (!may_mount())
3495 return -EPERM;
3496
3497 if (flags & ~MOVE_MOUNT__MASK)
3498 return -EINVAL;
3499
3500 /* If someone gives a pathname, they aren't permitted to move
3501 * from an fd that requires unmount as we can't get at the flag
3502 * to clear it afterwards.
3503 */
3504 lflags = 0;
3505 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3506 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3507 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3508
3509 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3510 if (ret < 0)
3511 return ret;
3512
3513 lflags = 0;
3514 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3515 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3516 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3517
3518 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3519 if (ret < 0)
3520 goto out_from;
3521
3522 ret = security_move_mount(&from_path, &to_path);
3523 if (ret < 0)
3524 goto out_to;
3525
3526 ret = do_move_mount(&from_path, &to_path);
3527
3528out_to:
3529 path_put(&to_path);
3530out_from:
3531 path_put(&from_path);
3532 return ret;
3533}
3534
3535/*
3536 * Return true if path is reachable from root
3537 *
3538 * namespace_sem or mount_lock is held
3539 */
3540bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3541 const struct path *root)
3542{
3543 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3544 dentry = mnt->mnt_mountpoint;
3545 mnt = mnt->mnt_parent;
3546 }
3547 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3548}
3549
3550bool path_is_under(const struct path *path1, const struct path *path2)
3551{
3552 bool res;
3553 read_seqlock_excl(&mount_lock);
3554 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3555 read_sequnlock_excl(&mount_lock);
3556 return res;
3557}
3558EXPORT_SYMBOL(path_is_under);
3559
3560/*
3561 * pivot_root Semantics:
3562 * Moves the root file system of the current process to the directory put_old,
3563 * makes new_root as the new root file system of the current process, and sets
3564 * root/cwd of all processes which had them on the current root to new_root.
3565 *
3566 * Restrictions:
3567 * The new_root and put_old must be directories, and must not be on the
3568 * same file system as the current process root. The put_old must be
3569 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3570 * pointed to by put_old must yield the same directory as new_root. No other
3571 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3572 *
3573 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3574 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3575 * in this situation.
3576 *
3577 * Notes:
3578 * - we don't move root/cwd if they are not at the root (reason: if something
3579 * cared enough to change them, it's probably wrong to force them elsewhere)
3580 * - it's okay to pick a root that isn't the root of a file system, e.g.
3581 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3582 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3583 * first.
3584 */
3585SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3586 const char __user *, put_old)
3587{
3588 struct path new, old, root;
3589 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3590 struct mountpoint *old_mp, *root_mp;
3591 int error;
3592
3593 if (!may_mount())
3594 return -EPERM;
3595
3596 error = user_path_dir(new_root, &new);
3597 if (error)
3598 goto out0;
3599
3600 error = user_path_dir(put_old, &old);
3601 if (error)
3602 goto out1;
3603
3604 error = security_sb_pivotroot(&old, &new);
3605 if (error)
3606 goto out2;
3607
3608 get_fs_root(current->fs, &root);
3609 old_mp = lock_mount(&old);
3610 error = PTR_ERR(old_mp);
3611 if (IS_ERR(old_mp))
3612 goto out3;
3613
3614 error = -EINVAL;
3615 new_mnt = real_mount(new.mnt);
3616 root_mnt = real_mount(root.mnt);
3617 old_mnt = real_mount(old.mnt);
3618 ex_parent = new_mnt->mnt_parent;
3619 root_parent = root_mnt->mnt_parent;
3620 if (IS_MNT_SHARED(old_mnt) ||
3621 IS_MNT_SHARED(ex_parent) ||
3622 IS_MNT_SHARED(root_parent))
3623 goto out4;
3624 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3625 goto out4;
3626 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3627 goto out4;
3628 error = -ENOENT;
3629 if (d_unlinked(new.dentry))
3630 goto out4;
3631 error = -EBUSY;
3632 if (new_mnt == root_mnt || old_mnt == root_mnt)
3633 goto out4; /* loop, on the same file system */
3634 error = -EINVAL;
3635 if (root.mnt->mnt_root != root.dentry)
3636 goto out4; /* not a mountpoint */
3637 if (!mnt_has_parent(root_mnt))
3638 goto out4; /* not attached */
3639 if (new.mnt->mnt_root != new.dentry)
3640 goto out4; /* not a mountpoint */
3641 if (!mnt_has_parent(new_mnt))
3642 goto out4; /* not attached */
3643 /* make sure we can reach put_old from new_root */
3644 if (!is_path_reachable(old_mnt, old.dentry, &new))
3645 goto out4;
3646 /* make certain new is below the root */
3647 if (!is_path_reachable(new_mnt, new.dentry, &root))
3648 goto out4;
3649 lock_mount_hash();
3650 umount_mnt(new_mnt);
3651 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3652 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3653 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3654 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3655 }
3656 /* mount old root on put_old */
3657 attach_mnt(root_mnt, old_mnt, old_mp);
3658 /* mount new_root on / */
3659 attach_mnt(new_mnt, root_parent, root_mp);
3660 mnt_add_count(root_parent, -1);
3661 touch_mnt_namespace(current->nsproxy->mnt_ns);
3662 /* A moved mount should not expire automatically */
3663 list_del_init(&new_mnt->mnt_expire);
3664 put_mountpoint(root_mp);
3665 unlock_mount_hash();
3666 chroot_fs_refs(&root, &new);
3667 error = 0;
3668out4:
3669 unlock_mount(old_mp);
3670 if (!error)
3671 mntput_no_expire(ex_parent);
3672out3:
3673 path_put(&root);
3674out2:
3675 path_put(&old);
3676out1:
3677 path_put(&new);
3678out0:
3679 return error;
3680}
3681
3682static void __init init_mount_tree(void)
3683{
3684 struct vfsmount *mnt;
3685 struct mount *m;
3686 struct mnt_namespace *ns;
3687 struct path root;
3688
3689 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3690 if (IS_ERR(mnt))
3691 panic("Can't create rootfs");
3692
3693 ns = alloc_mnt_ns(&init_user_ns, false);
3694 if (IS_ERR(ns))
3695 panic("Can't allocate initial namespace");
3696 m = real_mount(mnt);
3697 m->mnt_ns = ns;
3698 ns->root = m;
3699 ns->mounts = 1;
3700 list_add(&m->mnt_list, &ns->list);
3701 init_task.nsproxy->mnt_ns = ns;
3702 get_mnt_ns(ns);
3703
3704 root.mnt = mnt;
3705 root.dentry = mnt->mnt_root;
3706 mnt->mnt_flags |= MNT_LOCKED;
3707
3708 set_fs_pwd(current->fs, &root);
3709 set_fs_root(current->fs, &root);
3710}
3711
3712void __init mnt_init(void)
3713{
3714 int err;
3715
3716 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3717 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3718
3719 mount_hashtable = alloc_large_system_hash("Mount-cache",
3720 sizeof(struct hlist_head),
3721 mhash_entries, 19,
3722 HASH_ZERO,
3723 &m_hash_shift, &m_hash_mask, 0, 0);
3724 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3725 sizeof(struct hlist_head),
3726 mphash_entries, 19,
3727 HASH_ZERO,
3728 &mp_hash_shift, &mp_hash_mask, 0, 0);
3729
3730 if (!mount_hashtable || !mountpoint_hashtable)
3731 panic("Failed to allocate mount hash table\n");
3732
3733 kernfs_init();
3734
3735 err = sysfs_init();
3736 if (err)
3737 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3738 __func__, err);
3739 fs_kobj = kobject_create_and_add("fs", NULL);
3740 if (!fs_kobj)
3741 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3742 shmem_init();
3743 init_rootfs();
3744 init_mount_tree();
3745}
3746
3747void put_mnt_ns(struct mnt_namespace *ns)
3748{
3749 if (!atomic_dec_and_test(&ns->count))
3750 return;
3751 drop_collected_mounts(&ns->root->mnt);
3752 free_mnt_ns(ns);
3753}
3754
3755struct vfsmount *kern_mount(struct file_system_type *type)
3756{
3757 struct vfsmount *mnt;
3758 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3759 if (!IS_ERR(mnt)) {
3760 /*
3761 * it is a longterm mount, don't release mnt until
3762 * we unmount before file sys is unregistered
3763 */
3764 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3765 }
3766 return mnt;
3767}
3768EXPORT_SYMBOL_GPL(kern_mount);
3769
3770void kern_unmount(struct vfsmount *mnt)
3771{
3772 /* release long term mount so mount point can be released */
3773 if (!IS_ERR_OR_NULL(mnt)) {
3774 real_mount(mnt)->mnt_ns = NULL;
3775 synchronize_rcu(); /* yecchhh... */
3776 mntput(mnt);
3777 }
3778}
3779EXPORT_SYMBOL(kern_unmount);
3780
3781bool our_mnt(struct vfsmount *mnt)
3782{
3783 return check_mnt(real_mount(mnt));
3784}
3785
3786bool current_chrooted(void)
3787{
3788 /* Does the current process have a non-standard root */
3789 struct path ns_root;
3790 struct path fs_root;
3791 bool chrooted;
3792
3793 /* Find the namespace root */
3794 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3795 ns_root.dentry = ns_root.mnt->mnt_root;
3796 path_get(&ns_root);
3797 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3798 ;
3799
3800 get_fs_root(current->fs, &fs_root);
3801
3802 chrooted = !path_equal(&fs_root, &ns_root);
3803
3804 path_put(&fs_root);
3805 path_put(&ns_root);
3806
3807 return chrooted;
3808}
3809
3810static bool mnt_already_visible(struct mnt_namespace *ns,
3811 const struct super_block *sb,
3812 int *new_mnt_flags)
3813{
3814 int new_flags = *new_mnt_flags;
3815 struct mount *mnt;
3816 bool visible = false;
3817
3818 down_read(&namespace_sem);
3819 list_for_each_entry(mnt, &ns->list, mnt_list) {
3820 struct mount *child;
3821 int mnt_flags;
3822
3823 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3824 continue;
3825
3826 /* This mount is not fully visible if it's root directory
3827 * is not the root directory of the filesystem.
3828 */
3829 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3830 continue;
3831
3832 /* A local view of the mount flags */
3833 mnt_flags = mnt->mnt.mnt_flags;
3834
3835 /* Don't miss readonly hidden in the superblock flags */
3836 if (sb_rdonly(mnt->mnt.mnt_sb))
3837 mnt_flags |= MNT_LOCK_READONLY;
3838
3839 /* Verify the mount flags are equal to or more permissive
3840 * than the proposed new mount.
3841 */
3842 if ((mnt_flags & MNT_LOCK_READONLY) &&
3843 !(new_flags & MNT_READONLY))
3844 continue;
3845 if ((mnt_flags & MNT_LOCK_ATIME) &&
3846 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3847 continue;
3848
3849 /* This mount is not fully visible if there are any
3850 * locked child mounts that cover anything except for
3851 * empty directories.
3852 */
3853 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3854 struct inode *inode = child->mnt_mountpoint->d_inode;
3855 /* Only worry about locked mounts */
3856 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3857 continue;
3858 /* Is the directory permanetly empty? */
3859 if (!is_empty_dir_inode(inode))
3860 goto next;
3861 }
3862 /* Preserve the locked attributes */
3863 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3864 MNT_LOCK_ATIME);
3865 visible = true;
3866 goto found;
3867 next: ;
3868 }
3869found:
3870 up_read(&namespace_sem);
3871 return visible;
3872}
3873
3874static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3875{
3876 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3877 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3878 unsigned long s_iflags;
3879
3880 if (ns->user_ns == &init_user_ns)
3881 return false;
3882
3883 /* Can this filesystem be too revealing? */
3884 s_iflags = sb->s_iflags;
3885 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3886 return false;
3887
3888 if ((s_iflags & required_iflags) != required_iflags) {
3889 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3890 required_iflags);
3891 return true;
3892 }
3893
3894 return !mnt_already_visible(ns, sb, new_mnt_flags);
3895}
3896
3897bool mnt_may_suid(struct vfsmount *mnt)
3898{
3899 /*
3900 * Foreign mounts (accessed via fchdir or through /proc
3901 * symlinks) are always treated as if they are nosuid. This
3902 * prevents namespaces from trusting potentially unsafe
3903 * suid/sgid bits, file caps, or security labels that originate
3904 * in other namespaces.
3905 */
3906 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3907 current_in_userns(mnt->mnt_sb->s_user_ns);
3908}
3909
3910static struct ns_common *mntns_get(struct task_struct *task)
3911{
3912 struct ns_common *ns = NULL;
3913 struct nsproxy *nsproxy;
3914
3915 task_lock(task);
3916 nsproxy = task->nsproxy;
3917 if (nsproxy) {
3918 ns = &nsproxy->mnt_ns->ns;
3919 get_mnt_ns(to_mnt_ns(ns));
3920 }
3921 task_unlock(task);
3922
3923 return ns;
3924}
3925
3926static void mntns_put(struct ns_common *ns)
3927{
3928 put_mnt_ns(to_mnt_ns(ns));
3929}
3930
3931static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3932{
3933 struct fs_struct *fs = current->fs;
3934 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3935 struct path root;
3936 int err;
3937
3938 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3939 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3940 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3941 return -EPERM;
3942
3943 if (is_anon_ns(mnt_ns))
3944 return -EINVAL;
3945
3946 if (fs->users != 1)
3947 return -EINVAL;
3948
3949 get_mnt_ns(mnt_ns);
3950 old_mnt_ns = nsproxy->mnt_ns;
3951 nsproxy->mnt_ns = mnt_ns;
3952
3953 /* Find the root */
3954 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3955 "/", LOOKUP_DOWN, &root);
3956 if (err) {
3957 /* revert to old namespace */
3958 nsproxy->mnt_ns = old_mnt_ns;
3959 put_mnt_ns(mnt_ns);
3960 return err;
3961 }
3962
3963 put_mnt_ns(old_mnt_ns);
3964
3965 /* Update the pwd and root */
3966 set_fs_pwd(fs, &root);
3967 set_fs_root(fs, &root);
3968
3969 path_put(&root);
3970 return 0;
3971}
3972
3973static struct user_namespace *mntns_owner(struct ns_common *ns)
3974{
3975 return to_mnt_ns(ns)->user_ns;
3976}
3977
3978const struct proc_ns_operations mntns_operations = {
3979 .name = "mnt",
3980 .type = CLONE_NEWNS,
3981 .get = mntns_get,
3982 .put = mntns_put,
3983 .install = mntns_install,
3984 .owner = mntns_owner,
3985};