mm, fs: reduce fault, page_mkwrite, and pfn_mkwrite to take only vmf
[linux-block.git] / fs / kernfs / file.c
... / ...
CommitLineData
1/*
2 * fs/kernfs/file.c - kernfs file implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11#include <linux/fs.h>
12#include <linux/seq_file.h>
13#include <linux/slab.h>
14#include <linux/poll.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/fsnotify.h>
18
19#include "kernfs-internal.h"
20
21/*
22 * There's one kernfs_open_file for each open file and one kernfs_open_node
23 * for each kernfs_node with one or more open files.
24 *
25 * kernfs_node->attr.open points to kernfs_open_node. attr.open is
26 * protected by kernfs_open_node_lock.
27 *
28 * filp->private_data points to seq_file whose ->private points to
29 * kernfs_open_file. kernfs_open_files are chained at
30 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
31 */
32static DEFINE_SPINLOCK(kernfs_open_node_lock);
33static DEFINE_MUTEX(kernfs_open_file_mutex);
34
35struct kernfs_open_node {
36 atomic_t refcnt;
37 atomic_t event;
38 wait_queue_head_t poll;
39 struct list_head files; /* goes through kernfs_open_file.list */
40};
41
42/*
43 * kernfs_notify() may be called from any context and bounces notifications
44 * through a work item. To minimize space overhead in kernfs_node, the
45 * pending queue is implemented as a singly linked list of kernfs_nodes.
46 * The list is terminated with the self pointer so that whether a
47 * kernfs_node is on the list or not can be determined by testing the next
48 * pointer for NULL.
49 */
50#define KERNFS_NOTIFY_EOL ((void *)&kernfs_notify_list)
51
52static DEFINE_SPINLOCK(kernfs_notify_lock);
53static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
54
55static struct kernfs_open_file *kernfs_of(struct file *file)
56{
57 return ((struct seq_file *)file->private_data)->private;
58}
59
60/*
61 * Determine the kernfs_ops for the given kernfs_node. This function must
62 * be called while holding an active reference.
63 */
64static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
65{
66 if (kn->flags & KERNFS_LOCKDEP)
67 lockdep_assert_held(kn);
68 return kn->attr.ops;
69}
70
71/*
72 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
73 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
74 * a seq_file iteration which is fully initialized with an active reference
75 * or an aborted kernfs_seq_start() due to get_active failure. The
76 * position pointer is the only context for each seq_file iteration and
77 * thus the stop condition should be encoded in it. As the return value is
78 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
79 * choice to indicate get_active failure.
80 *
81 * Unfortunately, this is complicated due to the optional custom seq_file
82 * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop()
83 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
84 * custom seq_file operations and thus can't decide whether put_active
85 * should be performed or not only on ERR_PTR(-ENODEV).
86 *
87 * This is worked around by factoring out the custom seq_stop() and
88 * put_active part into kernfs_seq_stop_active(), skipping it from
89 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
90 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
91 * that kernfs_seq_stop_active() is skipped only after get_active failure.
92 */
93static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
94{
95 struct kernfs_open_file *of = sf->private;
96 const struct kernfs_ops *ops = kernfs_ops(of->kn);
97
98 if (ops->seq_stop)
99 ops->seq_stop(sf, v);
100 kernfs_put_active(of->kn);
101}
102
103static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104{
105 struct kernfs_open_file *of = sf->private;
106 const struct kernfs_ops *ops;
107
108 /*
109 * @of->mutex nests outside active ref and is primarily to ensure that
110 * the ops aren't called concurrently for the same open file.
111 */
112 mutex_lock(&of->mutex);
113 if (!kernfs_get_active(of->kn))
114 return ERR_PTR(-ENODEV);
115
116 ops = kernfs_ops(of->kn);
117 if (ops->seq_start) {
118 void *next = ops->seq_start(sf, ppos);
119 /* see the comment above kernfs_seq_stop_active() */
120 if (next == ERR_PTR(-ENODEV))
121 kernfs_seq_stop_active(sf, next);
122 return next;
123 } else {
124 /*
125 * The same behavior and code as single_open(). Returns
126 * !NULL if pos is at the beginning; otherwise, NULL.
127 */
128 return NULL + !*ppos;
129 }
130}
131
132static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
133{
134 struct kernfs_open_file *of = sf->private;
135 const struct kernfs_ops *ops = kernfs_ops(of->kn);
136
137 if (ops->seq_next) {
138 void *next = ops->seq_next(sf, v, ppos);
139 /* see the comment above kernfs_seq_stop_active() */
140 if (next == ERR_PTR(-ENODEV))
141 kernfs_seq_stop_active(sf, next);
142 return next;
143 } else {
144 /*
145 * The same behavior and code as single_open(), always
146 * terminate after the initial read.
147 */
148 ++*ppos;
149 return NULL;
150 }
151}
152
153static void kernfs_seq_stop(struct seq_file *sf, void *v)
154{
155 struct kernfs_open_file *of = sf->private;
156
157 if (v != ERR_PTR(-ENODEV))
158 kernfs_seq_stop_active(sf, v);
159 mutex_unlock(&of->mutex);
160}
161
162static int kernfs_seq_show(struct seq_file *sf, void *v)
163{
164 struct kernfs_open_file *of = sf->private;
165
166 of->event = atomic_read(&of->kn->attr.open->event);
167
168 return of->kn->attr.ops->seq_show(sf, v);
169}
170
171static const struct seq_operations kernfs_seq_ops = {
172 .start = kernfs_seq_start,
173 .next = kernfs_seq_next,
174 .stop = kernfs_seq_stop,
175 .show = kernfs_seq_show,
176};
177
178/*
179 * As reading a bin file can have side-effects, the exact offset and bytes
180 * specified in read(2) call should be passed to the read callback making
181 * it difficult to use seq_file. Implement simplistic custom buffering for
182 * bin files.
183 */
184static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
185 char __user *user_buf, size_t count,
186 loff_t *ppos)
187{
188 ssize_t len = min_t(size_t, count, PAGE_SIZE);
189 const struct kernfs_ops *ops;
190 char *buf;
191
192 buf = of->prealloc_buf;
193 if (buf)
194 mutex_lock(&of->prealloc_mutex);
195 else
196 buf = kmalloc(len, GFP_KERNEL);
197 if (!buf)
198 return -ENOMEM;
199
200 /*
201 * @of->mutex nests outside active ref and is used both to ensure that
202 * the ops aren't called concurrently for the same open file.
203 */
204 mutex_lock(&of->mutex);
205 if (!kernfs_get_active(of->kn)) {
206 len = -ENODEV;
207 mutex_unlock(&of->mutex);
208 goto out_free;
209 }
210
211 of->event = atomic_read(&of->kn->attr.open->event);
212 ops = kernfs_ops(of->kn);
213 if (ops->read)
214 len = ops->read(of, buf, len, *ppos);
215 else
216 len = -EINVAL;
217
218 kernfs_put_active(of->kn);
219 mutex_unlock(&of->mutex);
220
221 if (len < 0)
222 goto out_free;
223
224 if (copy_to_user(user_buf, buf, len)) {
225 len = -EFAULT;
226 goto out_free;
227 }
228
229 *ppos += len;
230
231 out_free:
232 if (buf == of->prealloc_buf)
233 mutex_unlock(&of->prealloc_mutex);
234 else
235 kfree(buf);
236 return len;
237}
238
239/**
240 * kernfs_fop_read - kernfs vfs read callback
241 * @file: file pointer
242 * @user_buf: data to write
243 * @count: number of bytes
244 * @ppos: starting offset
245 */
246static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
247 size_t count, loff_t *ppos)
248{
249 struct kernfs_open_file *of = kernfs_of(file);
250
251 if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
252 return seq_read(file, user_buf, count, ppos);
253 else
254 return kernfs_file_direct_read(of, user_buf, count, ppos);
255}
256
257/**
258 * kernfs_fop_write - kernfs vfs write callback
259 * @file: file pointer
260 * @user_buf: data to write
261 * @count: number of bytes
262 * @ppos: starting offset
263 *
264 * Copy data in from userland and pass it to the matching kernfs write
265 * operation.
266 *
267 * There is no easy way for us to know if userspace is only doing a partial
268 * write, so we don't support them. We expect the entire buffer to come on
269 * the first write. Hint: if you're writing a value, first read the file,
270 * modify only the the value you're changing, then write entire buffer
271 * back.
272 */
273static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
274 size_t count, loff_t *ppos)
275{
276 struct kernfs_open_file *of = kernfs_of(file);
277 const struct kernfs_ops *ops;
278 size_t len;
279 char *buf;
280
281 if (of->atomic_write_len) {
282 len = count;
283 if (len > of->atomic_write_len)
284 return -E2BIG;
285 } else {
286 len = min_t(size_t, count, PAGE_SIZE);
287 }
288
289 buf = of->prealloc_buf;
290 if (buf)
291 mutex_lock(&of->prealloc_mutex);
292 else
293 buf = kmalloc(len + 1, GFP_KERNEL);
294 if (!buf)
295 return -ENOMEM;
296
297 if (copy_from_user(buf, user_buf, len)) {
298 len = -EFAULT;
299 goto out_free;
300 }
301 buf[len] = '\0'; /* guarantee string termination */
302
303 /*
304 * @of->mutex nests outside active ref and is used both to ensure that
305 * the ops aren't called concurrently for the same open file.
306 */
307 mutex_lock(&of->mutex);
308 if (!kernfs_get_active(of->kn)) {
309 mutex_unlock(&of->mutex);
310 len = -ENODEV;
311 goto out_free;
312 }
313
314 ops = kernfs_ops(of->kn);
315 if (ops->write)
316 len = ops->write(of, buf, len, *ppos);
317 else
318 len = -EINVAL;
319
320 kernfs_put_active(of->kn);
321 mutex_unlock(&of->mutex);
322
323 if (len > 0)
324 *ppos += len;
325
326out_free:
327 if (buf == of->prealloc_buf)
328 mutex_unlock(&of->prealloc_mutex);
329 else
330 kfree(buf);
331 return len;
332}
333
334static void kernfs_vma_open(struct vm_area_struct *vma)
335{
336 struct file *file = vma->vm_file;
337 struct kernfs_open_file *of = kernfs_of(file);
338
339 if (!of->vm_ops)
340 return;
341
342 if (!kernfs_get_active(of->kn))
343 return;
344
345 if (of->vm_ops->open)
346 of->vm_ops->open(vma);
347
348 kernfs_put_active(of->kn);
349}
350
351static int kernfs_vma_fault(struct vm_fault *vmf)
352{
353 struct file *file = vmf->vma->vm_file;
354 struct kernfs_open_file *of = kernfs_of(file);
355 int ret;
356
357 if (!of->vm_ops)
358 return VM_FAULT_SIGBUS;
359
360 if (!kernfs_get_active(of->kn))
361 return VM_FAULT_SIGBUS;
362
363 ret = VM_FAULT_SIGBUS;
364 if (of->vm_ops->fault)
365 ret = of->vm_ops->fault(vmf);
366
367 kernfs_put_active(of->kn);
368 return ret;
369}
370
371static int kernfs_vma_page_mkwrite(struct vm_fault *vmf)
372{
373 struct file *file = vmf->vma->vm_file;
374 struct kernfs_open_file *of = kernfs_of(file);
375 int ret;
376
377 if (!of->vm_ops)
378 return VM_FAULT_SIGBUS;
379
380 if (!kernfs_get_active(of->kn))
381 return VM_FAULT_SIGBUS;
382
383 ret = 0;
384 if (of->vm_ops->page_mkwrite)
385 ret = of->vm_ops->page_mkwrite(vmf);
386 else
387 file_update_time(file);
388
389 kernfs_put_active(of->kn);
390 return ret;
391}
392
393static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
394 void *buf, int len, int write)
395{
396 struct file *file = vma->vm_file;
397 struct kernfs_open_file *of = kernfs_of(file);
398 int ret;
399
400 if (!of->vm_ops)
401 return -EINVAL;
402
403 if (!kernfs_get_active(of->kn))
404 return -EINVAL;
405
406 ret = -EINVAL;
407 if (of->vm_ops->access)
408 ret = of->vm_ops->access(vma, addr, buf, len, write);
409
410 kernfs_put_active(of->kn);
411 return ret;
412}
413
414#ifdef CONFIG_NUMA
415static int kernfs_vma_set_policy(struct vm_area_struct *vma,
416 struct mempolicy *new)
417{
418 struct file *file = vma->vm_file;
419 struct kernfs_open_file *of = kernfs_of(file);
420 int ret;
421
422 if (!of->vm_ops)
423 return 0;
424
425 if (!kernfs_get_active(of->kn))
426 return -EINVAL;
427
428 ret = 0;
429 if (of->vm_ops->set_policy)
430 ret = of->vm_ops->set_policy(vma, new);
431
432 kernfs_put_active(of->kn);
433 return ret;
434}
435
436static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
437 unsigned long addr)
438{
439 struct file *file = vma->vm_file;
440 struct kernfs_open_file *of = kernfs_of(file);
441 struct mempolicy *pol;
442
443 if (!of->vm_ops)
444 return vma->vm_policy;
445
446 if (!kernfs_get_active(of->kn))
447 return vma->vm_policy;
448
449 pol = vma->vm_policy;
450 if (of->vm_ops->get_policy)
451 pol = of->vm_ops->get_policy(vma, addr);
452
453 kernfs_put_active(of->kn);
454 return pol;
455}
456
457#endif
458
459static const struct vm_operations_struct kernfs_vm_ops = {
460 .open = kernfs_vma_open,
461 .fault = kernfs_vma_fault,
462 .page_mkwrite = kernfs_vma_page_mkwrite,
463 .access = kernfs_vma_access,
464#ifdef CONFIG_NUMA
465 .set_policy = kernfs_vma_set_policy,
466 .get_policy = kernfs_vma_get_policy,
467#endif
468};
469
470static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
471{
472 struct kernfs_open_file *of = kernfs_of(file);
473 const struct kernfs_ops *ops;
474 int rc;
475
476 /*
477 * mmap path and of->mutex are prone to triggering spurious lockdep
478 * warnings and we don't want to add spurious locking dependency
479 * between the two. Check whether mmap is actually implemented
480 * without grabbing @of->mutex by testing HAS_MMAP flag. See the
481 * comment in kernfs_file_open() for more details.
482 */
483 if (!(of->kn->flags & KERNFS_HAS_MMAP))
484 return -ENODEV;
485
486 mutex_lock(&of->mutex);
487
488 rc = -ENODEV;
489 if (!kernfs_get_active(of->kn))
490 goto out_unlock;
491
492 ops = kernfs_ops(of->kn);
493 rc = ops->mmap(of, vma);
494 if (rc)
495 goto out_put;
496
497 /*
498 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
499 * to satisfy versions of X which crash if the mmap fails: that
500 * substitutes a new vm_file, and we don't then want bin_vm_ops.
501 */
502 if (vma->vm_file != file)
503 goto out_put;
504
505 rc = -EINVAL;
506 if (of->mmapped && of->vm_ops != vma->vm_ops)
507 goto out_put;
508
509 /*
510 * It is not possible to successfully wrap close.
511 * So error if someone is trying to use close.
512 */
513 rc = -EINVAL;
514 if (vma->vm_ops && vma->vm_ops->close)
515 goto out_put;
516
517 rc = 0;
518 of->mmapped = 1;
519 of->vm_ops = vma->vm_ops;
520 vma->vm_ops = &kernfs_vm_ops;
521out_put:
522 kernfs_put_active(of->kn);
523out_unlock:
524 mutex_unlock(&of->mutex);
525
526 return rc;
527}
528
529/**
530 * kernfs_get_open_node - get or create kernfs_open_node
531 * @kn: target kernfs_node
532 * @of: kernfs_open_file for this instance of open
533 *
534 * If @kn->attr.open exists, increment its reference count; otherwise,
535 * create one. @of is chained to the files list.
536 *
537 * LOCKING:
538 * Kernel thread context (may sleep).
539 *
540 * RETURNS:
541 * 0 on success, -errno on failure.
542 */
543static int kernfs_get_open_node(struct kernfs_node *kn,
544 struct kernfs_open_file *of)
545{
546 struct kernfs_open_node *on, *new_on = NULL;
547
548 retry:
549 mutex_lock(&kernfs_open_file_mutex);
550 spin_lock_irq(&kernfs_open_node_lock);
551
552 if (!kn->attr.open && new_on) {
553 kn->attr.open = new_on;
554 new_on = NULL;
555 }
556
557 on = kn->attr.open;
558 if (on) {
559 atomic_inc(&on->refcnt);
560 list_add_tail(&of->list, &on->files);
561 }
562
563 spin_unlock_irq(&kernfs_open_node_lock);
564 mutex_unlock(&kernfs_open_file_mutex);
565
566 if (on) {
567 kfree(new_on);
568 return 0;
569 }
570
571 /* not there, initialize a new one and retry */
572 new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
573 if (!new_on)
574 return -ENOMEM;
575
576 atomic_set(&new_on->refcnt, 0);
577 atomic_set(&new_on->event, 1);
578 init_waitqueue_head(&new_on->poll);
579 INIT_LIST_HEAD(&new_on->files);
580 goto retry;
581}
582
583/**
584 * kernfs_put_open_node - put kernfs_open_node
585 * @kn: target kernfs_nodet
586 * @of: associated kernfs_open_file
587 *
588 * Put @kn->attr.open and unlink @of from the files list. If
589 * reference count reaches zero, disassociate and free it.
590 *
591 * LOCKING:
592 * None.
593 */
594static void kernfs_put_open_node(struct kernfs_node *kn,
595 struct kernfs_open_file *of)
596{
597 struct kernfs_open_node *on = kn->attr.open;
598 unsigned long flags;
599
600 mutex_lock(&kernfs_open_file_mutex);
601 spin_lock_irqsave(&kernfs_open_node_lock, flags);
602
603 if (of)
604 list_del(&of->list);
605
606 if (atomic_dec_and_test(&on->refcnt))
607 kn->attr.open = NULL;
608 else
609 on = NULL;
610
611 spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
612 mutex_unlock(&kernfs_open_file_mutex);
613
614 kfree(on);
615}
616
617static int kernfs_fop_open(struct inode *inode, struct file *file)
618{
619 struct kernfs_node *kn = file->f_path.dentry->d_fsdata;
620 struct kernfs_root *root = kernfs_root(kn);
621 const struct kernfs_ops *ops;
622 struct kernfs_open_file *of;
623 bool has_read, has_write, has_mmap;
624 int error = -EACCES;
625
626 if (!kernfs_get_active(kn))
627 return -ENODEV;
628
629 ops = kernfs_ops(kn);
630
631 has_read = ops->seq_show || ops->read || ops->mmap;
632 has_write = ops->write || ops->mmap;
633 has_mmap = ops->mmap;
634
635 /* see the flag definition for details */
636 if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
637 if ((file->f_mode & FMODE_WRITE) &&
638 (!(inode->i_mode & S_IWUGO) || !has_write))
639 goto err_out;
640
641 if ((file->f_mode & FMODE_READ) &&
642 (!(inode->i_mode & S_IRUGO) || !has_read))
643 goto err_out;
644 }
645
646 /* allocate a kernfs_open_file for the file */
647 error = -ENOMEM;
648 of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
649 if (!of)
650 goto err_out;
651
652 /*
653 * The following is done to give a different lockdep key to
654 * @of->mutex for files which implement mmap. This is a rather
655 * crude way to avoid false positive lockdep warning around
656 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
657 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
658 * which mm->mmap_sem nests, while holding @of->mutex. As each
659 * open file has a separate mutex, it's okay as long as those don't
660 * happen on the same file. At this point, we can't easily give
661 * each file a separate locking class. Let's differentiate on
662 * whether the file has mmap or not for now.
663 *
664 * Both paths of the branch look the same. They're supposed to
665 * look that way and give @of->mutex different static lockdep keys.
666 */
667 if (has_mmap)
668 mutex_init(&of->mutex);
669 else
670 mutex_init(&of->mutex);
671
672 of->kn = kn;
673 of->file = file;
674
675 /*
676 * Write path needs to atomic_write_len outside active reference.
677 * Cache it in open_file. See kernfs_fop_write() for details.
678 */
679 of->atomic_write_len = ops->atomic_write_len;
680
681 error = -EINVAL;
682 /*
683 * ->seq_show is incompatible with ->prealloc,
684 * as seq_read does its own allocation.
685 * ->read must be used instead.
686 */
687 if (ops->prealloc && ops->seq_show)
688 goto err_free;
689 if (ops->prealloc) {
690 int len = of->atomic_write_len ?: PAGE_SIZE;
691 of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
692 error = -ENOMEM;
693 if (!of->prealloc_buf)
694 goto err_free;
695 mutex_init(&of->prealloc_mutex);
696 }
697
698 /*
699 * Always instantiate seq_file even if read access doesn't use
700 * seq_file or is not requested. This unifies private data access
701 * and readable regular files are the vast majority anyway.
702 */
703 if (ops->seq_show)
704 error = seq_open(file, &kernfs_seq_ops);
705 else
706 error = seq_open(file, NULL);
707 if (error)
708 goto err_free;
709
710 ((struct seq_file *)file->private_data)->private = of;
711
712 /* seq_file clears PWRITE unconditionally, restore it if WRITE */
713 if (file->f_mode & FMODE_WRITE)
714 file->f_mode |= FMODE_PWRITE;
715
716 /* make sure we have open node struct */
717 error = kernfs_get_open_node(kn, of);
718 if (error)
719 goto err_close;
720
721 /* open succeeded, put active references */
722 kernfs_put_active(kn);
723 return 0;
724
725err_close:
726 seq_release(inode, file);
727err_free:
728 kfree(of->prealloc_buf);
729 kfree(of);
730err_out:
731 kernfs_put_active(kn);
732 return error;
733}
734
735static int kernfs_fop_release(struct inode *inode, struct file *filp)
736{
737 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
738 struct kernfs_open_file *of = kernfs_of(filp);
739
740 kernfs_put_open_node(kn, of);
741 seq_release(inode, filp);
742 kfree(of->prealloc_buf);
743 kfree(of);
744
745 return 0;
746}
747
748void kernfs_unmap_bin_file(struct kernfs_node *kn)
749{
750 struct kernfs_open_node *on;
751 struct kernfs_open_file *of;
752
753 if (!(kn->flags & KERNFS_HAS_MMAP))
754 return;
755
756 spin_lock_irq(&kernfs_open_node_lock);
757 on = kn->attr.open;
758 if (on)
759 atomic_inc(&on->refcnt);
760 spin_unlock_irq(&kernfs_open_node_lock);
761 if (!on)
762 return;
763
764 mutex_lock(&kernfs_open_file_mutex);
765 list_for_each_entry(of, &on->files, list) {
766 struct inode *inode = file_inode(of->file);
767 unmap_mapping_range(inode->i_mapping, 0, 0, 1);
768 }
769 mutex_unlock(&kernfs_open_file_mutex);
770
771 kernfs_put_open_node(kn, NULL);
772}
773
774/*
775 * Kernfs attribute files are pollable. The idea is that you read
776 * the content and then you use 'poll' or 'select' to wait for
777 * the content to change. When the content changes (assuming the
778 * manager for the kobject supports notification), poll will
779 * return POLLERR|POLLPRI, and select will return the fd whether
780 * it is waiting for read, write, or exceptions.
781 * Once poll/select indicates that the value has changed, you
782 * need to close and re-open the file, or seek to 0 and read again.
783 * Reminder: this only works for attributes which actively support
784 * it, and it is not possible to test an attribute from userspace
785 * to see if it supports poll (Neither 'poll' nor 'select' return
786 * an appropriate error code). When in doubt, set a suitable timeout value.
787 */
788static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait)
789{
790 struct kernfs_open_file *of = kernfs_of(filp);
791 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
792 struct kernfs_open_node *on = kn->attr.open;
793
794 if (!kernfs_get_active(kn))
795 goto trigger;
796
797 poll_wait(filp, &on->poll, wait);
798
799 kernfs_put_active(kn);
800
801 if (of->event != atomic_read(&on->event))
802 goto trigger;
803
804 return DEFAULT_POLLMASK;
805
806 trigger:
807 return DEFAULT_POLLMASK|POLLERR|POLLPRI;
808}
809
810static void kernfs_notify_workfn(struct work_struct *work)
811{
812 struct kernfs_node *kn;
813 struct kernfs_open_node *on;
814 struct kernfs_super_info *info;
815repeat:
816 /* pop one off the notify_list */
817 spin_lock_irq(&kernfs_notify_lock);
818 kn = kernfs_notify_list;
819 if (kn == KERNFS_NOTIFY_EOL) {
820 spin_unlock_irq(&kernfs_notify_lock);
821 return;
822 }
823 kernfs_notify_list = kn->attr.notify_next;
824 kn->attr.notify_next = NULL;
825 spin_unlock_irq(&kernfs_notify_lock);
826
827 /* kick poll */
828 spin_lock_irq(&kernfs_open_node_lock);
829
830 on = kn->attr.open;
831 if (on) {
832 atomic_inc(&on->event);
833 wake_up_interruptible(&on->poll);
834 }
835
836 spin_unlock_irq(&kernfs_open_node_lock);
837
838 /* kick fsnotify */
839 mutex_lock(&kernfs_mutex);
840
841 list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
842 struct kernfs_node *parent;
843 struct inode *inode;
844
845 /*
846 * We want fsnotify_modify() on @kn but as the
847 * modifications aren't originating from userland don't
848 * have the matching @file available. Look up the inodes
849 * and generate the events manually.
850 */
851 inode = ilookup(info->sb, kn->ino);
852 if (!inode)
853 continue;
854
855 parent = kernfs_get_parent(kn);
856 if (parent) {
857 struct inode *p_inode;
858
859 p_inode = ilookup(info->sb, parent->ino);
860 if (p_inode) {
861 fsnotify(p_inode, FS_MODIFY | FS_EVENT_ON_CHILD,
862 inode, FSNOTIFY_EVENT_INODE, kn->name, 0);
863 iput(p_inode);
864 }
865
866 kernfs_put(parent);
867 }
868
869 fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
870 kn->name, 0);
871 iput(inode);
872 }
873
874 mutex_unlock(&kernfs_mutex);
875 kernfs_put(kn);
876 goto repeat;
877}
878
879/**
880 * kernfs_notify - notify a kernfs file
881 * @kn: file to notify
882 *
883 * Notify @kn such that poll(2) on @kn wakes up. Maybe be called from any
884 * context.
885 */
886void kernfs_notify(struct kernfs_node *kn)
887{
888 static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
889 unsigned long flags;
890
891 if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
892 return;
893
894 spin_lock_irqsave(&kernfs_notify_lock, flags);
895 if (!kn->attr.notify_next) {
896 kernfs_get(kn);
897 kn->attr.notify_next = kernfs_notify_list;
898 kernfs_notify_list = kn;
899 schedule_work(&kernfs_notify_work);
900 }
901 spin_unlock_irqrestore(&kernfs_notify_lock, flags);
902}
903EXPORT_SYMBOL_GPL(kernfs_notify);
904
905const struct file_operations kernfs_file_fops = {
906 .read = kernfs_fop_read,
907 .write = kernfs_fop_write,
908 .llseek = generic_file_llseek,
909 .mmap = kernfs_fop_mmap,
910 .open = kernfs_fop_open,
911 .release = kernfs_fop_release,
912 .poll = kernfs_fop_poll,
913 .fsync = noop_fsync,
914};
915
916/**
917 * __kernfs_create_file - kernfs internal function to create a file
918 * @parent: directory to create the file in
919 * @name: name of the file
920 * @mode: mode of the file
921 * @size: size of the file
922 * @ops: kernfs operations for the file
923 * @priv: private data for the file
924 * @ns: optional namespace tag of the file
925 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
926 *
927 * Returns the created node on success, ERR_PTR() value on error.
928 */
929struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
930 const char *name,
931 umode_t mode, loff_t size,
932 const struct kernfs_ops *ops,
933 void *priv, const void *ns,
934 struct lock_class_key *key)
935{
936 struct kernfs_node *kn;
937 unsigned flags;
938 int rc;
939
940 flags = KERNFS_FILE;
941
942 kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags);
943 if (!kn)
944 return ERR_PTR(-ENOMEM);
945
946 kn->attr.ops = ops;
947 kn->attr.size = size;
948 kn->ns = ns;
949 kn->priv = priv;
950
951#ifdef CONFIG_DEBUG_LOCK_ALLOC
952 if (key) {
953 lockdep_init_map(&kn->dep_map, "s_active", key, 0);
954 kn->flags |= KERNFS_LOCKDEP;
955 }
956#endif
957
958 /*
959 * kn->attr.ops is accesible only while holding active ref. We
960 * need to know whether some ops are implemented outside active
961 * ref. Cache their existence in flags.
962 */
963 if (ops->seq_show)
964 kn->flags |= KERNFS_HAS_SEQ_SHOW;
965 if (ops->mmap)
966 kn->flags |= KERNFS_HAS_MMAP;
967
968 rc = kernfs_add_one(kn);
969 if (rc) {
970 kernfs_put(kn);
971 return ERR_PTR(rc);
972 }
973 return kn;
974}