Merge tag 'jfs-for-4.20' of git://github.com/kleikamp/linux-shaggy
[linux-2.6-block.git] / fs / kernfs / dir.c
... / ...
CommitLineData
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11#include <linux/sched.h>
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
21DEFINE_MUTEX(kernfs_mutex);
22static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
24static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
25
26#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27
28static bool kernfs_active(struct kernfs_node *kn)
29{
30 lockdep_assert_held(&kernfs_mutex);
31 return atomic_read(&kn->active) >= 0;
32}
33
34static bool kernfs_lockdep(struct kernfs_node *kn)
35{
36#ifdef CONFIG_DEBUG_LOCK_ALLOC
37 return kn->flags & KERNFS_LOCKDEP;
38#else
39 return false;
40#endif
41}
42
43static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
44{
45 if (!kn)
46 return strlcpy(buf, "(null)", buflen);
47
48 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
49}
50
51/* kernfs_node_depth - compute depth from @from to @to */
52static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
53{
54 size_t depth = 0;
55
56 while (to->parent && to != from) {
57 depth++;
58 to = to->parent;
59 }
60 return depth;
61}
62
63static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
64 struct kernfs_node *b)
65{
66 size_t da, db;
67 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
68
69 if (ra != rb)
70 return NULL;
71
72 da = kernfs_depth(ra->kn, a);
73 db = kernfs_depth(rb->kn, b);
74
75 while (da > db) {
76 a = a->parent;
77 da--;
78 }
79 while (db > da) {
80 b = b->parent;
81 db--;
82 }
83
84 /* worst case b and a will be the same at root */
85 while (b != a) {
86 b = b->parent;
87 a = a->parent;
88 }
89
90 return a;
91}
92
93/**
94 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
95 * where kn_from is treated as root of the path.
96 * @kn_from: kernfs node which should be treated as root for the path
97 * @kn_to: kernfs node to which path is needed
98 * @buf: buffer to copy the path into
99 * @buflen: size of @buf
100 *
101 * We need to handle couple of scenarios here:
102 * [1] when @kn_from is an ancestor of @kn_to at some level
103 * kn_from: /n1/n2/n3
104 * kn_to: /n1/n2/n3/n4/n5
105 * result: /n4/n5
106 *
107 * [2] when @kn_from is on a different hierarchy and we need to find common
108 * ancestor between @kn_from and @kn_to.
109 * kn_from: /n1/n2/n3/n4
110 * kn_to: /n1/n2/n5
111 * result: /../../n5
112 * OR
113 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
114 * kn_to: /n1/n2/n3 [depth=3]
115 * result: /../..
116 *
117 * [3] when @kn_to is NULL result will be "(null)"
118 *
119 * Returns the length of the full path. If the full length is equal to or
120 * greater than @buflen, @buf contains the truncated path with the trailing
121 * '\0'. On error, -errno is returned.
122 */
123static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
124 struct kernfs_node *kn_from,
125 char *buf, size_t buflen)
126{
127 struct kernfs_node *kn, *common;
128 const char parent_str[] = "/..";
129 size_t depth_from, depth_to, len = 0;
130 int i, j;
131
132 if (!kn_to)
133 return strlcpy(buf, "(null)", buflen);
134
135 if (!kn_from)
136 kn_from = kernfs_root(kn_to)->kn;
137
138 if (kn_from == kn_to)
139 return strlcpy(buf, "/", buflen);
140
141 common = kernfs_common_ancestor(kn_from, kn_to);
142 if (WARN_ON(!common))
143 return -EINVAL;
144
145 depth_to = kernfs_depth(common, kn_to);
146 depth_from = kernfs_depth(common, kn_from);
147
148 if (buf)
149 buf[0] = '\0';
150
151 for (i = 0; i < depth_from; i++)
152 len += strlcpy(buf + len, parent_str,
153 len < buflen ? buflen - len : 0);
154
155 /* Calculate how many bytes we need for the rest */
156 for (i = depth_to - 1; i >= 0; i--) {
157 for (kn = kn_to, j = 0; j < i; j++)
158 kn = kn->parent;
159 len += strlcpy(buf + len, "/",
160 len < buflen ? buflen - len : 0);
161 len += strlcpy(buf + len, kn->name,
162 len < buflen ? buflen - len : 0);
163 }
164
165 return len;
166}
167
168/**
169 * kernfs_name - obtain the name of a given node
170 * @kn: kernfs_node of interest
171 * @buf: buffer to copy @kn's name into
172 * @buflen: size of @buf
173 *
174 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
175 * similar to strlcpy(). It returns the length of @kn's name and if @buf
176 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
177 *
178 * Fills buffer with "(null)" if @kn is NULL.
179 *
180 * This function can be called from any context.
181 */
182int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
183{
184 unsigned long flags;
185 int ret;
186
187 spin_lock_irqsave(&kernfs_rename_lock, flags);
188 ret = kernfs_name_locked(kn, buf, buflen);
189 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
190 return ret;
191}
192
193/**
194 * kernfs_path_from_node - build path of node @to relative to @from.
195 * @from: parent kernfs_node relative to which we need to build the path
196 * @to: kernfs_node of interest
197 * @buf: buffer to copy @to's path into
198 * @buflen: size of @buf
199 *
200 * Builds @to's path relative to @from in @buf. @from and @to must
201 * be on the same kernfs-root. If @from is not parent of @to, then a relative
202 * path (which includes '..'s) as needed to reach from @from to @to is
203 * returned.
204 *
205 * Returns the length of the full path. If the full length is equal to or
206 * greater than @buflen, @buf contains the truncated path with the trailing
207 * '\0'. On error, -errno is returned.
208 */
209int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
210 char *buf, size_t buflen)
211{
212 unsigned long flags;
213 int ret;
214
215 spin_lock_irqsave(&kernfs_rename_lock, flags);
216 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
217 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
218 return ret;
219}
220EXPORT_SYMBOL_GPL(kernfs_path_from_node);
221
222/**
223 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
224 * @kn: kernfs_node of interest
225 *
226 * This function can be called from any context.
227 */
228void pr_cont_kernfs_name(struct kernfs_node *kn)
229{
230 unsigned long flags;
231
232 spin_lock_irqsave(&kernfs_rename_lock, flags);
233
234 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
235 pr_cont("%s", kernfs_pr_cont_buf);
236
237 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
238}
239
240/**
241 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
242 * @kn: kernfs_node of interest
243 *
244 * This function can be called from any context.
245 */
246void pr_cont_kernfs_path(struct kernfs_node *kn)
247{
248 unsigned long flags;
249 int sz;
250
251 spin_lock_irqsave(&kernfs_rename_lock, flags);
252
253 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
254 sizeof(kernfs_pr_cont_buf));
255 if (sz < 0) {
256 pr_cont("(error)");
257 goto out;
258 }
259
260 if (sz >= sizeof(kernfs_pr_cont_buf)) {
261 pr_cont("(name too long)");
262 goto out;
263 }
264
265 pr_cont("%s", kernfs_pr_cont_buf);
266
267out:
268 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
269}
270
271/**
272 * kernfs_get_parent - determine the parent node and pin it
273 * @kn: kernfs_node of interest
274 *
275 * Determines @kn's parent, pins and returns it. This function can be
276 * called from any context.
277 */
278struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
279{
280 struct kernfs_node *parent;
281 unsigned long flags;
282
283 spin_lock_irqsave(&kernfs_rename_lock, flags);
284 parent = kn->parent;
285 kernfs_get(parent);
286 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
287
288 return parent;
289}
290
291/**
292 * kernfs_name_hash
293 * @name: Null terminated string to hash
294 * @ns: Namespace tag to hash
295 *
296 * Returns 31 bit hash of ns + name (so it fits in an off_t )
297 */
298static unsigned int kernfs_name_hash(const char *name, const void *ns)
299{
300 unsigned long hash = init_name_hash(ns);
301 unsigned int len = strlen(name);
302 while (len--)
303 hash = partial_name_hash(*name++, hash);
304 hash = end_name_hash(hash);
305 hash &= 0x7fffffffU;
306 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
307 if (hash < 2)
308 hash += 2;
309 if (hash >= INT_MAX)
310 hash = INT_MAX - 1;
311 return hash;
312}
313
314static int kernfs_name_compare(unsigned int hash, const char *name,
315 const void *ns, const struct kernfs_node *kn)
316{
317 if (hash < kn->hash)
318 return -1;
319 if (hash > kn->hash)
320 return 1;
321 if (ns < kn->ns)
322 return -1;
323 if (ns > kn->ns)
324 return 1;
325 return strcmp(name, kn->name);
326}
327
328static int kernfs_sd_compare(const struct kernfs_node *left,
329 const struct kernfs_node *right)
330{
331 return kernfs_name_compare(left->hash, left->name, left->ns, right);
332}
333
334/**
335 * kernfs_link_sibling - link kernfs_node into sibling rbtree
336 * @kn: kernfs_node of interest
337 *
338 * Link @kn into its sibling rbtree which starts from
339 * @kn->parent->dir.children.
340 *
341 * Locking:
342 * mutex_lock(kernfs_mutex)
343 *
344 * RETURNS:
345 * 0 on susccess -EEXIST on failure.
346 */
347static int kernfs_link_sibling(struct kernfs_node *kn)
348{
349 struct rb_node **node = &kn->parent->dir.children.rb_node;
350 struct rb_node *parent = NULL;
351
352 while (*node) {
353 struct kernfs_node *pos;
354 int result;
355
356 pos = rb_to_kn(*node);
357 parent = *node;
358 result = kernfs_sd_compare(kn, pos);
359 if (result < 0)
360 node = &pos->rb.rb_left;
361 else if (result > 0)
362 node = &pos->rb.rb_right;
363 else
364 return -EEXIST;
365 }
366
367 /* add new node and rebalance the tree */
368 rb_link_node(&kn->rb, parent, node);
369 rb_insert_color(&kn->rb, &kn->parent->dir.children);
370
371 /* successfully added, account subdir number */
372 if (kernfs_type(kn) == KERNFS_DIR)
373 kn->parent->dir.subdirs++;
374
375 return 0;
376}
377
378/**
379 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
380 * @kn: kernfs_node of interest
381 *
382 * Try to unlink @kn from its sibling rbtree which starts from
383 * kn->parent->dir.children. Returns %true if @kn was actually
384 * removed, %false if @kn wasn't on the rbtree.
385 *
386 * Locking:
387 * mutex_lock(kernfs_mutex)
388 */
389static bool kernfs_unlink_sibling(struct kernfs_node *kn)
390{
391 if (RB_EMPTY_NODE(&kn->rb))
392 return false;
393
394 if (kernfs_type(kn) == KERNFS_DIR)
395 kn->parent->dir.subdirs--;
396
397 rb_erase(&kn->rb, &kn->parent->dir.children);
398 RB_CLEAR_NODE(&kn->rb);
399 return true;
400}
401
402/**
403 * kernfs_get_active - get an active reference to kernfs_node
404 * @kn: kernfs_node to get an active reference to
405 *
406 * Get an active reference of @kn. This function is noop if @kn
407 * is NULL.
408 *
409 * RETURNS:
410 * Pointer to @kn on success, NULL on failure.
411 */
412struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
413{
414 if (unlikely(!kn))
415 return NULL;
416
417 if (!atomic_inc_unless_negative(&kn->active))
418 return NULL;
419
420 if (kernfs_lockdep(kn))
421 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
422 return kn;
423}
424
425/**
426 * kernfs_put_active - put an active reference to kernfs_node
427 * @kn: kernfs_node to put an active reference to
428 *
429 * Put an active reference to @kn. This function is noop if @kn
430 * is NULL.
431 */
432void kernfs_put_active(struct kernfs_node *kn)
433{
434 struct kernfs_root *root = kernfs_root(kn);
435 int v;
436
437 if (unlikely(!kn))
438 return;
439
440 if (kernfs_lockdep(kn))
441 rwsem_release(&kn->dep_map, 1, _RET_IP_);
442 v = atomic_dec_return(&kn->active);
443 if (likely(v != KN_DEACTIVATED_BIAS))
444 return;
445
446 wake_up_all(&root->deactivate_waitq);
447}
448
449/**
450 * kernfs_drain - drain kernfs_node
451 * @kn: kernfs_node to drain
452 *
453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
454 * removers may invoke this function concurrently on @kn and all will
455 * return after draining is complete.
456 */
457static void kernfs_drain(struct kernfs_node *kn)
458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459{
460 struct kernfs_root *root = kernfs_root(kn);
461
462 lockdep_assert_held(&kernfs_mutex);
463 WARN_ON_ONCE(kernfs_active(kn));
464
465 mutex_unlock(&kernfs_mutex);
466
467 if (kernfs_lockdep(kn)) {
468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 lock_contended(&kn->dep_map, _RET_IP_);
471 }
472
473 /* but everyone should wait for draining */
474 wait_event(root->deactivate_waitq,
475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476
477 if (kernfs_lockdep(kn)) {
478 lock_acquired(&kn->dep_map, _RET_IP_);
479 rwsem_release(&kn->dep_map, 1, _RET_IP_);
480 }
481
482 kernfs_drain_open_files(kn);
483
484 mutex_lock(&kernfs_mutex);
485}
486
487/**
488 * kernfs_get - get a reference count on a kernfs_node
489 * @kn: the target kernfs_node
490 */
491void kernfs_get(struct kernfs_node *kn)
492{
493 if (kn) {
494 WARN_ON(!atomic_read(&kn->count));
495 atomic_inc(&kn->count);
496 }
497}
498EXPORT_SYMBOL_GPL(kernfs_get);
499
500/**
501 * kernfs_put - put a reference count on a kernfs_node
502 * @kn: the target kernfs_node
503 *
504 * Put a reference count of @kn and destroy it if it reached zero.
505 */
506void kernfs_put(struct kernfs_node *kn)
507{
508 struct kernfs_node *parent;
509 struct kernfs_root *root;
510
511 /*
512 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
513 * depends on this to filter reused stale node
514 */
515 if (!kn || !atomic_dec_and_test(&kn->count))
516 return;
517 root = kernfs_root(kn);
518 repeat:
519 /*
520 * Moving/renaming is always done while holding reference.
521 * kn->parent won't change beneath us.
522 */
523 parent = kn->parent;
524
525 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
526 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
527 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
528
529 if (kernfs_type(kn) == KERNFS_LINK)
530 kernfs_put(kn->symlink.target_kn);
531
532 kfree_const(kn->name);
533
534 if (kn->iattr) {
535 if (kn->iattr->ia_secdata)
536 security_release_secctx(kn->iattr->ia_secdata,
537 kn->iattr->ia_secdata_len);
538 simple_xattrs_free(&kn->iattr->xattrs);
539 }
540 kfree(kn->iattr);
541 spin_lock(&kernfs_idr_lock);
542 idr_remove(&root->ino_idr, kn->id.ino);
543 spin_unlock(&kernfs_idr_lock);
544 kmem_cache_free(kernfs_node_cache, kn);
545
546 kn = parent;
547 if (kn) {
548 if (atomic_dec_and_test(&kn->count))
549 goto repeat;
550 } else {
551 /* just released the root kn, free @root too */
552 idr_destroy(&root->ino_idr);
553 kfree(root);
554 }
555}
556EXPORT_SYMBOL_GPL(kernfs_put);
557
558static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
559{
560 struct kernfs_node *kn;
561
562 if (flags & LOOKUP_RCU)
563 return -ECHILD;
564
565 /* Always perform fresh lookup for negatives */
566 if (d_really_is_negative(dentry))
567 goto out_bad_unlocked;
568
569 kn = kernfs_dentry_node(dentry);
570 mutex_lock(&kernfs_mutex);
571
572 /* The kernfs node has been deactivated */
573 if (!kernfs_active(kn))
574 goto out_bad;
575
576 /* The kernfs node has been moved? */
577 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
578 goto out_bad;
579
580 /* The kernfs node has been renamed */
581 if (strcmp(dentry->d_name.name, kn->name) != 0)
582 goto out_bad;
583
584 /* The kernfs node has been moved to a different namespace */
585 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
586 kernfs_info(dentry->d_sb)->ns != kn->ns)
587 goto out_bad;
588
589 mutex_unlock(&kernfs_mutex);
590 return 1;
591out_bad:
592 mutex_unlock(&kernfs_mutex);
593out_bad_unlocked:
594 return 0;
595}
596
597const struct dentry_operations kernfs_dops = {
598 .d_revalidate = kernfs_dop_revalidate,
599};
600
601/**
602 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
603 * @dentry: the dentry in question
604 *
605 * Return the kernfs_node associated with @dentry. If @dentry is not a
606 * kernfs one, %NULL is returned.
607 *
608 * While the returned kernfs_node will stay accessible as long as @dentry
609 * is accessible, the returned node can be in any state and the caller is
610 * fully responsible for determining what's accessible.
611 */
612struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
613{
614 if (dentry->d_sb->s_op == &kernfs_sops &&
615 !d_really_is_negative(dentry))
616 return kernfs_dentry_node(dentry);
617 return NULL;
618}
619
620static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
621 const char *name, umode_t mode,
622 kuid_t uid, kgid_t gid,
623 unsigned flags)
624{
625 struct kernfs_node *kn;
626 u32 gen;
627 int cursor;
628 int ret;
629
630 name = kstrdup_const(name, GFP_KERNEL);
631 if (!name)
632 return NULL;
633
634 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
635 if (!kn)
636 goto err_out1;
637
638 idr_preload(GFP_KERNEL);
639 spin_lock(&kernfs_idr_lock);
640 cursor = idr_get_cursor(&root->ino_idr);
641 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
642 if (ret >= 0 && ret < cursor)
643 root->next_generation++;
644 gen = root->next_generation;
645 spin_unlock(&kernfs_idr_lock);
646 idr_preload_end();
647 if (ret < 0)
648 goto err_out2;
649 kn->id.ino = ret;
650 kn->id.generation = gen;
651
652 /*
653 * set ino first. This barrier is paired with atomic_inc_not_zero in
654 * kernfs_find_and_get_node_by_ino
655 */
656 smp_mb__before_atomic();
657 atomic_set(&kn->count, 1);
658 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
659 RB_CLEAR_NODE(&kn->rb);
660
661 kn->name = name;
662 kn->mode = mode;
663 kn->flags = flags;
664
665 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
666 struct iattr iattr = {
667 .ia_valid = ATTR_UID | ATTR_GID,
668 .ia_uid = uid,
669 .ia_gid = gid,
670 };
671
672 ret = __kernfs_setattr(kn, &iattr);
673 if (ret < 0)
674 goto err_out3;
675 }
676
677 return kn;
678
679 err_out3:
680 idr_remove(&root->ino_idr, kn->id.ino);
681 err_out2:
682 kmem_cache_free(kernfs_node_cache, kn);
683 err_out1:
684 kfree_const(name);
685 return NULL;
686}
687
688struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
689 const char *name, umode_t mode,
690 kuid_t uid, kgid_t gid,
691 unsigned flags)
692{
693 struct kernfs_node *kn;
694
695 kn = __kernfs_new_node(kernfs_root(parent),
696 name, mode, uid, gid, flags);
697 if (kn) {
698 kernfs_get(parent);
699 kn->parent = parent;
700 }
701 return kn;
702}
703
704/*
705 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
706 * @root: the kernfs root
707 * @ino: inode number
708 *
709 * RETURNS:
710 * NULL on failure. Return a kernfs node with reference counter incremented
711 */
712struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
713 unsigned int ino)
714{
715 struct kernfs_node *kn;
716
717 rcu_read_lock();
718 kn = idr_find(&root->ino_idr, ino);
719 if (!kn)
720 goto out;
721
722 /*
723 * Since kernfs_node is freed in RCU, it's possible an old node for ino
724 * is freed, but reused before RCU grace period. But a freed node (see
725 * kernfs_put) or an incompletedly initialized node (see
726 * __kernfs_new_node) should have 'count' 0. We can use this fact to
727 * filter out such node.
728 */
729 if (!atomic_inc_not_zero(&kn->count)) {
730 kn = NULL;
731 goto out;
732 }
733
734 /*
735 * The node could be a new node or a reused node. If it's a new node,
736 * we are ok. If it's reused because of RCU (because of
737 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
738 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
739 * hence we can use 'ino' to filter stale node.
740 */
741 if (kn->id.ino != ino)
742 goto out;
743 rcu_read_unlock();
744
745 return kn;
746out:
747 rcu_read_unlock();
748 kernfs_put(kn);
749 return NULL;
750}
751
752/**
753 * kernfs_add_one - add kernfs_node to parent without warning
754 * @kn: kernfs_node to be added
755 *
756 * The caller must already have initialized @kn->parent. This
757 * function increments nlink of the parent's inode if @kn is a
758 * directory and link into the children list of the parent.
759 *
760 * RETURNS:
761 * 0 on success, -EEXIST if entry with the given name already
762 * exists.
763 */
764int kernfs_add_one(struct kernfs_node *kn)
765{
766 struct kernfs_node *parent = kn->parent;
767 struct kernfs_iattrs *ps_iattr;
768 bool has_ns;
769 int ret;
770
771 mutex_lock(&kernfs_mutex);
772
773 ret = -EINVAL;
774 has_ns = kernfs_ns_enabled(parent);
775 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
776 has_ns ? "required" : "invalid", parent->name, kn->name))
777 goto out_unlock;
778
779 if (kernfs_type(parent) != KERNFS_DIR)
780 goto out_unlock;
781
782 ret = -ENOENT;
783 if (parent->flags & KERNFS_EMPTY_DIR)
784 goto out_unlock;
785
786 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
787 goto out_unlock;
788
789 kn->hash = kernfs_name_hash(kn->name, kn->ns);
790
791 ret = kernfs_link_sibling(kn);
792 if (ret)
793 goto out_unlock;
794
795 /* Update timestamps on the parent */
796 ps_iattr = parent->iattr;
797 if (ps_iattr) {
798 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
799 ktime_get_real_ts64(&ps_iattrs->ia_ctime);
800 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
801 }
802
803 mutex_unlock(&kernfs_mutex);
804
805 /*
806 * Activate the new node unless CREATE_DEACTIVATED is requested.
807 * If not activated here, the kernfs user is responsible for
808 * activating the node with kernfs_activate(). A node which hasn't
809 * been activated is not visible to userland and its removal won't
810 * trigger deactivation.
811 */
812 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
813 kernfs_activate(kn);
814 return 0;
815
816out_unlock:
817 mutex_unlock(&kernfs_mutex);
818 return ret;
819}
820
821/**
822 * kernfs_find_ns - find kernfs_node with the given name
823 * @parent: kernfs_node to search under
824 * @name: name to look for
825 * @ns: the namespace tag to use
826 *
827 * Look for kernfs_node with name @name under @parent. Returns pointer to
828 * the found kernfs_node on success, %NULL on failure.
829 */
830static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
831 const unsigned char *name,
832 const void *ns)
833{
834 struct rb_node *node = parent->dir.children.rb_node;
835 bool has_ns = kernfs_ns_enabled(parent);
836 unsigned int hash;
837
838 lockdep_assert_held(&kernfs_mutex);
839
840 if (has_ns != (bool)ns) {
841 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
842 has_ns ? "required" : "invalid", parent->name, name);
843 return NULL;
844 }
845
846 hash = kernfs_name_hash(name, ns);
847 while (node) {
848 struct kernfs_node *kn;
849 int result;
850
851 kn = rb_to_kn(node);
852 result = kernfs_name_compare(hash, name, ns, kn);
853 if (result < 0)
854 node = node->rb_left;
855 else if (result > 0)
856 node = node->rb_right;
857 else
858 return kn;
859 }
860 return NULL;
861}
862
863static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
864 const unsigned char *path,
865 const void *ns)
866{
867 size_t len;
868 char *p, *name;
869
870 lockdep_assert_held(&kernfs_mutex);
871
872 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
873 spin_lock_irq(&kernfs_rename_lock);
874
875 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
876
877 if (len >= sizeof(kernfs_pr_cont_buf)) {
878 spin_unlock_irq(&kernfs_rename_lock);
879 return NULL;
880 }
881
882 p = kernfs_pr_cont_buf;
883
884 while ((name = strsep(&p, "/")) && parent) {
885 if (*name == '\0')
886 continue;
887 parent = kernfs_find_ns(parent, name, ns);
888 }
889
890 spin_unlock_irq(&kernfs_rename_lock);
891
892 return parent;
893}
894
895/**
896 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
897 * @parent: kernfs_node to search under
898 * @name: name to look for
899 * @ns: the namespace tag to use
900 *
901 * Look for kernfs_node with name @name under @parent and get a reference
902 * if found. This function may sleep and returns pointer to the found
903 * kernfs_node on success, %NULL on failure.
904 */
905struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
906 const char *name, const void *ns)
907{
908 struct kernfs_node *kn;
909
910 mutex_lock(&kernfs_mutex);
911 kn = kernfs_find_ns(parent, name, ns);
912 kernfs_get(kn);
913 mutex_unlock(&kernfs_mutex);
914
915 return kn;
916}
917EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
918
919/**
920 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
921 * @parent: kernfs_node to search under
922 * @path: path to look for
923 * @ns: the namespace tag to use
924 *
925 * Look for kernfs_node with path @path under @parent and get a reference
926 * if found. This function may sleep and returns pointer to the found
927 * kernfs_node on success, %NULL on failure.
928 */
929struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
930 const char *path, const void *ns)
931{
932 struct kernfs_node *kn;
933
934 mutex_lock(&kernfs_mutex);
935 kn = kernfs_walk_ns(parent, path, ns);
936 kernfs_get(kn);
937 mutex_unlock(&kernfs_mutex);
938
939 return kn;
940}
941
942/**
943 * kernfs_create_root - create a new kernfs hierarchy
944 * @scops: optional syscall operations for the hierarchy
945 * @flags: KERNFS_ROOT_* flags
946 * @priv: opaque data associated with the new directory
947 *
948 * Returns the root of the new hierarchy on success, ERR_PTR() value on
949 * failure.
950 */
951struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
952 unsigned int flags, void *priv)
953{
954 struct kernfs_root *root;
955 struct kernfs_node *kn;
956
957 root = kzalloc(sizeof(*root), GFP_KERNEL);
958 if (!root)
959 return ERR_PTR(-ENOMEM);
960
961 idr_init(&root->ino_idr);
962 INIT_LIST_HEAD(&root->supers);
963 root->next_generation = 1;
964
965 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
966 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
967 KERNFS_DIR);
968 if (!kn) {
969 idr_destroy(&root->ino_idr);
970 kfree(root);
971 return ERR_PTR(-ENOMEM);
972 }
973
974 kn->priv = priv;
975 kn->dir.root = root;
976
977 root->syscall_ops = scops;
978 root->flags = flags;
979 root->kn = kn;
980 init_waitqueue_head(&root->deactivate_waitq);
981
982 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
983 kernfs_activate(kn);
984
985 return root;
986}
987
988/**
989 * kernfs_destroy_root - destroy a kernfs hierarchy
990 * @root: root of the hierarchy to destroy
991 *
992 * Destroy the hierarchy anchored at @root by removing all existing
993 * directories and destroying @root.
994 */
995void kernfs_destroy_root(struct kernfs_root *root)
996{
997 kernfs_remove(root->kn); /* will also free @root */
998}
999
1000/**
1001 * kernfs_create_dir_ns - create a directory
1002 * @parent: parent in which to create a new directory
1003 * @name: name of the new directory
1004 * @mode: mode of the new directory
1005 * @uid: uid of the new directory
1006 * @gid: gid of the new directory
1007 * @priv: opaque data associated with the new directory
1008 * @ns: optional namespace tag of the directory
1009 *
1010 * Returns the created node on success, ERR_PTR() value on failure.
1011 */
1012struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1013 const char *name, umode_t mode,
1014 kuid_t uid, kgid_t gid,
1015 void *priv, const void *ns)
1016{
1017 struct kernfs_node *kn;
1018 int rc;
1019
1020 /* allocate */
1021 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1022 uid, gid, KERNFS_DIR);
1023 if (!kn)
1024 return ERR_PTR(-ENOMEM);
1025
1026 kn->dir.root = parent->dir.root;
1027 kn->ns = ns;
1028 kn->priv = priv;
1029
1030 /* link in */
1031 rc = kernfs_add_one(kn);
1032 if (!rc)
1033 return kn;
1034
1035 kernfs_put(kn);
1036 return ERR_PTR(rc);
1037}
1038
1039/**
1040 * kernfs_create_empty_dir - create an always empty directory
1041 * @parent: parent in which to create a new directory
1042 * @name: name of the new directory
1043 *
1044 * Returns the created node on success, ERR_PTR() value on failure.
1045 */
1046struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1047 const char *name)
1048{
1049 struct kernfs_node *kn;
1050 int rc;
1051
1052 /* allocate */
1053 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1054 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1055 if (!kn)
1056 return ERR_PTR(-ENOMEM);
1057
1058 kn->flags |= KERNFS_EMPTY_DIR;
1059 kn->dir.root = parent->dir.root;
1060 kn->ns = NULL;
1061 kn->priv = NULL;
1062
1063 /* link in */
1064 rc = kernfs_add_one(kn);
1065 if (!rc)
1066 return kn;
1067
1068 kernfs_put(kn);
1069 return ERR_PTR(rc);
1070}
1071
1072static struct dentry *kernfs_iop_lookup(struct inode *dir,
1073 struct dentry *dentry,
1074 unsigned int flags)
1075{
1076 struct dentry *ret;
1077 struct kernfs_node *parent = dir->i_private;
1078 struct kernfs_node *kn;
1079 struct inode *inode;
1080 const void *ns = NULL;
1081
1082 mutex_lock(&kernfs_mutex);
1083
1084 if (kernfs_ns_enabled(parent))
1085 ns = kernfs_info(dir->i_sb)->ns;
1086
1087 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1088
1089 /* no such entry */
1090 if (!kn || !kernfs_active(kn)) {
1091 ret = NULL;
1092 goto out_unlock;
1093 }
1094
1095 /* attach dentry and inode */
1096 inode = kernfs_get_inode(dir->i_sb, kn);
1097 if (!inode) {
1098 ret = ERR_PTR(-ENOMEM);
1099 goto out_unlock;
1100 }
1101
1102 /* instantiate and hash dentry */
1103 ret = d_splice_alias(inode, dentry);
1104 out_unlock:
1105 mutex_unlock(&kernfs_mutex);
1106 return ret;
1107}
1108
1109static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1110 umode_t mode)
1111{
1112 struct kernfs_node *parent = dir->i_private;
1113 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1114 int ret;
1115
1116 if (!scops || !scops->mkdir)
1117 return -EPERM;
1118
1119 if (!kernfs_get_active(parent))
1120 return -ENODEV;
1121
1122 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1123
1124 kernfs_put_active(parent);
1125 return ret;
1126}
1127
1128static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1129{
1130 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1131 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1132 int ret;
1133
1134 if (!scops || !scops->rmdir)
1135 return -EPERM;
1136
1137 if (!kernfs_get_active(kn))
1138 return -ENODEV;
1139
1140 ret = scops->rmdir(kn);
1141
1142 kernfs_put_active(kn);
1143 return ret;
1144}
1145
1146static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1147 struct inode *new_dir, struct dentry *new_dentry,
1148 unsigned int flags)
1149{
1150 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1151 struct kernfs_node *new_parent = new_dir->i_private;
1152 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1153 int ret;
1154
1155 if (flags)
1156 return -EINVAL;
1157
1158 if (!scops || !scops->rename)
1159 return -EPERM;
1160
1161 if (!kernfs_get_active(kn))
1162 return -ENODEV;
1163
1164 if (!kernfs_get_active(new_parent)) {
1165 kernfs_put_active(kn);
1166 return -ENODEV;
1167 }
1168
1169 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1170
1171 kernfs_put_active(new_parent);
1172 kernfs_put_active(kn);
1173 return ret;
1174}
1175
1176const struct inode_operations kernfs_dir_iops = {
1177 .lookup = kernfs_iop_lookup,
1178 .permission = kernfs_iop_permission,
1179 .setattr = kernfs_iop_setattr,
1180 .getattr = kernfs_iop_getattr,
1181 .listxattr = kernfs_iop_listxattr,
1182
1183 .mkdir = kernfs_iop_mkdir,
1184 .rmdir = kernfs_iop_rmdir,
1185 .rename = kernfs_iop_rename,
1186};
1187
1188static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1189{
1190 struct kernfs_node *last;
1191
1192 while (true) {
1193 struct rb_node *rbn;
1194
1195 last = pos;
1196
1197 if (kernfs_type(pos) != KERNFS_DIR)
1198 break;
1199
1200 rbn = rb_first(&pos->dir.children);
1201 if (!rbn)
1202 break;
1203
1204 pos = rb_to_kn(rbn);
1205 }
1206
1207 return last;
1208}
1209
1210/**
1211 * kernfs_next_descendant_post - find the next descendant for post-order walk
1212 * @pos: the current position (%NULL to initiate traversal)
1213 * @root: kernfs_node whose descendants to walk
1214 *
1215 * Find the next descendant to visit for post-order traversal of @root's
1216 * descendants. @root is included in the iteration and the last node to be
1217 * visited.
1218 */
1219static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1220 struct kernfs_node *root)
1221{
1222 struct rb_node *rbn;
1223
1224 lockdep_assert_held(&kernfs_mutex);
1225
1226 /* if first iteration, visit leftmost descendant which may be root */
1227 if (!pos)
1228 return kernfs_leftmost_descendant(root);
1229
1230 /* if we visited @root, we're done */
1231 if (pos == root)
1232 return NULL;
1233
1234 /* if there's an unvisited sibling, visit its leftmost descendant */
1235 rbn = rb_next(&pos->rb);
1236 if (rbn)
1237 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1238
1239 /* no sibling left, visit parent */
1240 return pos->parent;
1241}
1242
1243/**
1244 * kernfs_activate - activate a node which started deactivated
1245 * @kn: kernfs_node whose subtree is to be activated
1246 *
1247 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1248 * needs to be explicitly activated. A node which hasn't been activated
1249 * isn't visible to userland and deactivation is skipped during its
1250 * removal. This is useful to construct atomic init sequences where
1251 * creation of multiple nodes should either succeed or fail atomically.
1252 *
1253 * The caller is responsible for ensuring that this function is not called
1254 * after kernfs_remove*() is invoked on @kn.
1255 */
1256void kernfs_activate(struct kernfs_node *kn)
1257{
1258 struct kernfs_node *pos;
1259
1260 mutex_lock(&kernfs_mutex);
1261
1262 pos = NULL;
1263 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1264 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1265 continue;
1266
1267 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1268 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1269
1270 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1271 pos->flags |= KERNFS_ACTIVATED;
1272 }
1273
1274 mutex_unlock(&kernfs_mutex);
1275}
1276
1277static void __kernfs_remove(struct kernfs_node *kn)
1278{
1279 struct kernfs_node *pos;
1280
1281 lockdep_assert_held(&kernfs_mutex);
1282
1283 /*
1284 * Short-circuit if non-root @kn has already finished removal.
1285 * This is for kernfs_remove_self() which plays with active ref
1286 * after removal.
1287 */
1288 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1289 return;
1290
1291 pr_debug("kernfs %s: removing\n", kn->name);
1292
1293 /* prevent any new usage under @kn by deactivating all nodes */
1294 pos = NULL;
1295 while ((pos = kernfs_next_descendant_post(pos, kn)))
1296 if (kernfs_active(pos))
1297 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1298
1299 /* deactivate and unlink the subtree node-by-node */
1300 do {
1301 pos = kernfs_leftmost_descendant(kn);
1302
1303 /*
1304 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1305 * base ref could have been put by someone else by the time
1306 * the function returns. Make sure it doesn't go away
1307 * underneath us.
1308 */
1309 kernfs_get(pos);
1310
1311 /*
1312 * Drain iff @kn was activated. This avoids draining and
1313 * its lockdep annotations for nodes which have never been
1314 * activated and allows embedding kernfs_remove() in create
1315 * error paths without worrying about draining.
1316 */
1317 if (kn->flags & KERNFS_ACTIVATED)
1318 kernfs_drain(pos);
1319 else
1320 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1321
1322 /*
1323 * kernfs_unlink_sibling() succeeds once per node. Use it
1324 * to decide who's responsible for cleanups.
1325 */
1326 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1327 struct kernfs_iattrs *ps_iattr =
1328 pos->parent ? pos->parent->iattr : NULL;
1329
1330 /* update timestamps on the parent */
1331 if (ps_iattr) {
1332 ktime_get_real_ts64(&ps_iattr->ia_iattr.ia_ctime);
1333 ps_iattr->ia_iattr.ia_mtime =
1334 ps_iattr->ia_iattr.ia_ctime;
1335 }
1336
1337 kernfs_put(pos);
1338 }
1339
1340 kernfs_put(pos);
1341 } while (pos != kn);
1342}
1343
1344/**
1345 * kernfs_remove - remove a kernfs_node recursively
1346 * @kn: the kernfs_node to remove
1347 *
1348 * Remove @kn along with all its subdirectories and files.
1349 */
1350void kernfs_remove(struct kernfs_node *kn)
1351{
1352 mutex_lock(&kernfs_mutex);
1353 __kernfs_remove(kn);
1354 mutex_unlock(&kernfs_mutex);
1355}
1356
1357/**
1358 * kernfs_break_active_protection - break out of active protection
1359 * @kn: the self kernfs_node
1360 *
1361 * The caller must be running off of a kernfs operation which is invoked
1362 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1363 * this function must also be matched with an invocation of
1364 * kernfs_unbreak_active_protection().
1365 *
1366 * This function releases the active reference of @kn the caller is
1367 * holding. Once this function is called, @kn may be removed at any point
1368 * and the caller is solely responsible for ensuring that the objects it
1369 * dereferences are accessible.
1370 */
1371void kernfs_break_active_protection(struct kernfs_node *kn)
1372{
1373 /*
1374 * Take out ourself out of the active ref dependency chain. If
1375 * we're called without an active ref, lockdep will complain.
1376 */
1377 kernfs_put_active(kn);
1378}
1379
1380/**
1381 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1382 * @kn: the self kernfs_node
1383 *
1384 * If kernfs_break_active_protection() was called, this function must be
1385 * invoked before finishing the kernfs operation. Note that while this
1386 * function restores the active reference, it doesn't and can't actually
1387 * restore the active protection - @kn may already or be in the process of
1388 * being removed. Once kernfs_break_active_protection() is invoked, that
1389 * protection is irreversibly gone for the kernfs operation instance.
1390 *
1391 * While this function may be called at any point after
1392 * kernfs_break_active_protection() is invoked, its most useful location
1393 * would be right before the enclosing kernfs operation returns.
1394 */
1395void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1396{
1397 /*
1398 * @kn->active could be in any state; however, the increment we do
1399 * here will be undone as soon as the enclosing kernfs operation
1400 * finishes and this temporary bump can't break anything. If @kn
1401 * is alive, nothing changes. If @kn is being deactivated, the
1402 * soon-to-follow put will either finish deactivation or restore
1403 * deactivated state. If @kn is already removed, the temporary
1404 * bump is guaranteed to be gone before @kn is released.
1405 */
1406 atomic_inc(&kn->active);
1407 if (kernfs_lockdep(kn))
1408 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1409}
1410
1411/**
1412 * kernfs_remove_self - remove a kernfs_node from its own method
1413 * @kn: the self kernfs_node to remove
1414 *
1415 * The caller must be running off of a kernfs operation which is invoked
1416 * with an active reference - e.g. one of kernfs_ops. This can be used to
1417 * implement a file operation which deletes itself.
1418 *
1419 * For example, the "delete" file for a sysfs device directory can be
1420 * implemented by invoking kernfs_remove_self() on the "delete" file
1421 * itself. This function breaks the circular dependency of trying to
1422 * deactivate self while holding an active ref itself. It isn't necessary
1423 * to modify the usual removal path to use kernfs_remove_self(). The
1424 * "delete" implementation can simply invoke kernfs_remove_self() on self
1425 * before proceeding with the usual removal path. kernfs will ignore later
1426 * kernfs_remove() on self.
1427 *
1428 * kernfs_remove_self() can be called multiple times concurrently on the
1429 * same kernfs_node. Only the first one actually performs removal and
1430 * returns %true. All others will wait until the kernfs operation which
1431 * won self-removal finishes and return %false. Note that the losers wait
1432 * for the completion of not only the winning kernfs_remove_self() but also
1433 * the whole kernfs_ops which won the arbitration. This can be used to
1434 * guarantee, for example, all concurrent writes to a "delete" file to
1435 * finish only after the whole operation is complete.
1436 */
1437bool kernfs_remove_self(struct kernfs_node *kn)
1438{
1439 bool ret;
1440
1441 mutex_lock(&kernfs_mutex);
1442 kernfs_break_active_protection(kn);
1443
1444 /*
1445 * SUICIDAL is used to arbitrate among competing invocations. Only
1446 * the first one will actually perform removal. When the removal
1447 * is complete, SUICIDED is set and the active ref is restored
1448 * while holding kernfs_mutex. The ones which lost arbitration
1449 * waits for SUICDED && drained which can happen only after the
1450 * enclosing kernfs operation which executed the winning instance
1451 * of kernfs_remove_self() finished.
1452 */
1453 if (!(kn->flags & KERNFS_SUICIDAL)) {
1454 kn->flags |= KERNFS_SUICIDAL;
1455 __kernfs_remove(kn);
1456 kn->flags |= KERNFS_SUICIDED;
1457 ret = true;
1458 } else {
1459 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1460 DEFINE_WAIT(wait);
1461
1462 while (true) {
1463 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1464
1465 if ((kn->flags & KERNFS_SUICIDED) &&
1466 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1467 break;
1468
1469 mutex_unlock(&kernfs_mutex);
1470 schedule();
1471 mutex_lock(&kernfs_mutex);
1472 }
1473 finish_wait(waitq, &wait);
1474 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1475 ret = false;
1476 }
1477
1478 /*
1479 * This must be done while holding kernfs_mutex; otherwise, waiting
1480 * for SUICIDED && deactivated could finish prematurely.
1481 */
1482 kernfs_unbreak_active_protection(kn);
1483
1484 mutex_unlock(&kernfs_mutex);
1485 return ret;
1486}
1487
1488/**
1489 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1490 * @parent: parent of the target
1491 * @name: name of the kernfs_node to remove
1492 * @ns: namespace tag of the kernfs_node to remove
1493 *
1494 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1495 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1496 */
1497int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1498 const void *ns)
1499{
1500 struct kernfs_node *kn;
1501
1502 if (!parent) {
1503 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1504 name);
1505 return -ENOENT;
1506 }
1507
1508 mutex_lock(&kernfs_mutex);
1509
1510 kn = kernfs_find_ns(parent, name, ns);
1511 if (kn)
1512 __kernfs_remove(kn);
1513
1514 mutex_unlock(&kernfs_mutex);
1515
1516 if (kn)
1517 return 0;
1518 else
1519 return -ENOENT;
1520}
1521
1522/**
1523 * kernfs_rename_ns - move and rename a kernfs_node
1524 * @kn: target node
1525 * @new_parent: new parent to put @sd under
1526 * @new_name: new name
1527 * @new_ns: new namespace tag
1528 */
1529int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1530 const char *new_name, const void *new_ns)
1531{
1532 struct kernfs_node *old_parent;
1533 const char *old_name = NULL;
1534 int error;
1535
1536 /* can't move or rename root */
1537 if (!kn->parent)
1538 return -EINVAL;
1539
1540 mutex_lock(&kernfs_mutex);
1541
1542 error = -ENOENT;
1543 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1544 (new_parent->flags & KERNFS_EMPTY_DIR))
1545 goto out;
1546
1547 error = 0;
1548 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1549 (strcmp(kn->name, new_name) == 0))
1550 goto out; /* nothing to rename */
1551
1552 error = -EEXIST;
1553 if (kernfs_find_ns(new_parent, new_name, new_ns))
1554 goto out;
1555
1556 /* rename kernfs_node */
1557 if (strcmp(kn->name, new_name) != 0) {
1558 error = -ENOMEM;
1559 new_name = kstrdup_const(new_name, GFP_KERNEL);
1560 if (!new_name)
1561 goto out;
1562 } else {
1563 new_name = NULL;
1564 }
1565
1566 /*
1567 * Move to the appropriate place in the appropriate directories rbtree.
1568 */
1569 kernfs_unlink_sibling(kn);
1570 kernfs_get(new_parent);
1571
1572 /* rename_lock protects ->parent and ->name accessors */
1573 spin_lock_irq(&kernfs_rename_lock);
1574
1575 old_parent = kn->parent;
1576 kn->parent = new_parent;
1577
1578 kn->ns = new_ns;
1579 if (new_name) {
1580 old_name = kn->name;
1581 kn->name = new_name;
1582 }
1583
1584 spin_unlock_irq(&kernfs_rename_lock);
1585
1586 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1587 kernfs_link_sibling(kn);
1588
1589 kernfs_put(old_parent);
1590 kfree_const(old_name);
1591
1592 error = 0;
1593 out:
1594 mutex_unlock(&kernfs_mutex);
1595 return error;
1596}
1597
1598/* Relationship between s_mode and the DT_xxx types */
1599static inline unsigned char dt_type(struct kernfs_node *kn)
1600{
1601 return (kn->mode >> 12) & 15;
1602}
1603
1604static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1605{
1606 kernfs_put(filp->private_data);
1607 return 0;
1608}
1609
1610static struct kernfs_node *kernfs_dir_pos(const void *ns,
1611 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1612{
1613 if (pos) {
1614 int valid = kernfs_active(pos) &&
1615 pos->parent == parent && hash == pos->hash;
1616 kernfs_put(pos);
1617 if (!valid)
1618 pos = NULL;
1619 }
1620 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1621 struct rb_node *node = parent->dir.children.rb_node;
1622 while (node) {
1623 pos = rb_to_kn(node);
1624
1625 if (hash < pos->hash)
1626 node = node->rb_left;
1627 else if (hash > pos->hash)
1628 node = node->rb_right;
1629 else
1630 break;
1631 }
1632 }
1633 /* Skip over entries which are dying/dead or in the wrong namespace */
1634 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1635 struct rb_node *node = rb_next(&pos->rb);
1636 if (!node)
1637 pos = NULL;
1638 else
1639 pos = rb_to_kn(node);
1640 }
1641 return pos;
1642}
1643
1644static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1645 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1646{
1647 pos = kernfs_dir_pos(ns, parent, ino, pos);
1648 if (pos) {
1649 do {
1650 struct rb_node *node = rb_next(&pos->rb);
1651 if (!node)
1652 pos = NULL;
1653 else
1654 pos = rb_to_kn(node);
1655 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1656 }
1657 return pos;
1658}
1659
1660static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1661{
1662 struct dentry *dentry = file->f_path.dentry;
1663 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1664 struct kernfs_node *pos = file->private_data;
1665 const void *ns = NULL;
1666
1667 if (!dir_emit_dots(file, ctx))
1668 return 0;
1669 mutex_lock(&kernfs_mutex);
1670
1671 if (kernfs_ns_enabled(parent))
1672 ns = kernfs_info(dentry->d_sb)->ns;
1673
1674 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1675 pos;
1676 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1677 const char *name = pos->name;
1678 unsigned int type = dt_type(pos);
1679 int len = strlen(name);
1680 ino_t ino = pos->id.ino;
1681
1682 ctx->pos = pos->hash;
1683 file->private_data = pos;
1684 kernfs_get(pos);
1685
1686 mutex_unlock(&kernfs_mutex);
1687 if (!dir_emit(ctx, name, len, ino, type))
1688 return 0;
1689 mutex_lock(&kernfs_mutex);
1690 }
1691 mutex_unlock(&kernfs_mutex);
1692 file->private_data = NULL;
1693 ctx->pos = INT_MAX;
1694 return 0;
1695}
1696
1697const struct file_operations kernfs_dir_fops = {
1698 .read = generic_read_dir,
1699 .iterate_shared = kernfs_fop_readdir,
1700 .release = kernfs_dir_fop_release,
1701 .llseek = generic_file_llseek,
1702};