Merge tag 'pci-v6.16-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
[linux-2.6-block.git] / fs / jfs / jfs_dtree.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 */
5
6/*
7 * jfs_dtree.c: directory B+-tree manager
8 *
9 * B+-tree with variable length key directory:
10 *
11 * each directory page is structured as an array of 32-byte
12 * directory entry slots initialized as a freelist
13 * to avoid search/compaction of free space at insertion.
14 * when an entry is inserted, a number of slots are allocated
15 * from the freelist as required to store variable length data
16 * of the entry; when the entry is deleted, slots of the entry
17 * are returned to freelist.
18 *
19 * leaf entry stores full name as key and file serial number
20 * (aka inode number) as data.
21 * internal/router entry stores sufffix compressed name
22 * as key and simple extent descriptor as data.
23 *
24 * each directory page maintains a sorted entry index table
25 * which stores the start slot index of sorted entries
26 * to allow binary search on the table.
27 *
28 * directory starts as a root/leaf page in on-disk inode
29 * inline data area.
30 * when it becomes full, it starts a leaf of a external extent
31 * of length of 1 block. each time the first leaf becomes full,
32 * it is extended rather than split (its size is doubled),
33 * until its length becoms 4 KBytes, from then the extent is split
34 * with new 4 Kbyte extent when it becomes full
35 * to reduce external fragmentation of small directories.
36 *
37 * blah, blah, blah, for linear scan of directory in pieces by
38 * readdir().
39 *
40 *
41 * case-insensitive directory file system
42 *
43 * names are stored in case-sensitive way in leaf entry.
44 * but stored, searched and compared in case-insensitive (uppercase) order
45 * (i.e., both search key and entry key are folded for search/compare):
46 * (note that case-sensitive order is BROKEN in storage, e.g.,
47 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
48 *
49 * entries which folds to the same key makes up a equivalent class
50 * whose members are stored as contiguous cluster (may cross page boundary)
51 * but whose order is arbitrary and acts as duplicate, e.g.,
52 * abc, Abc, aBc, abC)
53 *
54 * once match is found at leaf, requires scan forward/backward
55 * either for, in case-insensitive search, duplicate
56 * or for, in case-sensitive search, for exact match
57 *
58 * router entry must be created/stored in case-insensitive way
59 * in internal entry:
60 * (right most key of left page and left most key of right page
61 * are folded, and its suffix compression is propagated as router
62 * key in parent)
63 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
64 * should be made the router key for the split)
65 *
66 * case-insensitive search:
67 *
68 * fold search key;
69 *
70 * case-insensitive search of B-tree:
71 * for internal entry, router key is already folded;
72 * for leaf entry, fold the entry key before comparison.
73 *
74 * if (leaf entry case-insensitive match found)
75 * if (next entry satisfies case-insensitive match)
76 * return EDUPLICATE;
77 * if (prev entry satisfies case-insensitive match)
78 * return EDUPLICATE;
79 * return match;
80 * else
81 * return no match;
82 *
83 * serialization:
84 * target directory inode lock is being held on entry/exit
85 * of all main directory service routines.
86 *
87 * log based recovery:
88 */
89
90#include <linux/fs.h>
91#include <linux/quotaops.h>
92#include <linux/slab.h>
93#include "jfs_incore.h"
94#include "jfs_superblock.h"
95#include "jfs_filsys.h"
96#include "jfs_metapage.h"
97#include "jfs_dmap.h"
98#include "jfs_unicode.h"
99#include "jfs_debug.h"
100
101/* dtree split parameter */
102struct dtsplit {
103 struct metapage *mp;
104 s16 index;
105 s16 nslot;
106 struct component_name *key;
107 ddata_t *data;
108 struct pxdlist *pxdlist;
109};
110
111#define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
112
113/* get page buffer for specified block address */
114#define DT_GETPAGE(IP, BN, MP, SIZE, P, RC) \
115do { \
116 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot); \
117 if (!(RC)) { \
118 if (((P)->header.nextindex > \
119 (((BN) == 0) ? DTROOTMAXSLOT : (P)->header.maxslot)) || \
120 ((BN) && (((P)->header.maxslot > DTPAGEMAXSLOT) || \
121 ((P)->header.stblindex >= DTPAGEMAXSLOT)))) { \
122 BT_PUTPAGE(MP); \
123 jfs_error((IP)->i_sb, \
124 "DT_GETPAGE: dtree page corrupt\n"); \
125 MP = NULL; \
126 RC = -EIO; \
127 } \
128 } \
129} while (0)
130
131/* for consistency */
132#define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
133
134#define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
135 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
136
137/*
138 * forward references
139 */
140static int dtSplitUp(tid_t tid, struct inode *ip,
141 struct dtsplit * split, struct btstack * btstack);
142
143static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
144 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
145
146static int dtExtendPage(tid_t tid, struct inode *ip,
147 struct dtsplit * split, struct btstack * btstack);
148
149static int dtSplitRoot(tid_t tid, struct inode *ip,
150 struct dtsplit * split, struct metapage ** rmpp);
151
152static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
153 dtpage_t * fp, struct btstack * btstack);
154
155static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
156
157static int dtReadFirst(struct inode *ip, struct btstack * btstack);
158
159static int dtReadNext(struct inode *ip,
160 loff_t * offset, struct btstack * btstack);
161
162static int dtCompare(struct component_name * key, dtpage_t * p, int si);
163
164static int ciCompare(struct component_name * key, dtpage_t * p, int si,
165 int flag);
166
167static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
168 int flag);
169
170static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
171 int ri, struct component_name * key, int flag);
172
173static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
174 ddata_t * data, struct dt_lock **);
175
176static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
177 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
178 int do_index);
179
180static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
181
182static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
183
184static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
185
186#define ciToUpper(c) UniStrupr((c)->name)
187
188/*
189 * read_index_page()
190 *
191 * Reads a page of a directory's index table.
192 * Having metadata mapped into the directory inode's address space
193 * presents a multitude of problems. We avoid this by mapping to
194 * the absolute address space outside of the *_metapage routines
195 */
196static struct metapage *read_index_page(struct inode *inode, s64 blkno)
197{
198 int rc;
199 s64 xaddr;
200 int xflag;
201 s32 xlen;
202
203 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
204 if (rc || (xaddr == 0))
205 return NULL;
206
207 return read_metapage(inode, xaddr, PSIZE, 1);
208}
209
210/*
211 * get_index_page()
212 *
213 * Same as get_index_page(), but get's a new page without reading
214 */
215static struct metapage *get_index_page(struct inode *inode, s64 blkno)
216{
217 int rc;
218 s64 xaddr;
219 int xflag;
220 s32 xlen;
221
222 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
223 if (rc || (xaddr == 0))
224 return NULL;
225
226 return get_metapage(inode, xaddr, PSIZE, 1);
227}
228
229/*
230 * find_index()
231 *
232 * Returns dtree page containing directory table entry for specified
233 * index and pointer to its entry.
234 *
235 * mp must be released by caller.
236 */
237static struct dir_table_slot *find_index(struct inode *ip, u32 index,
238 struct metapage ** mp, s64 *lblock)
239{
240 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
241 s64 blkno;
242 s64 offset;
243 int page_offset;
244 struct dir_table_slot *slot;
245 static int maxWarnings = 10;
246
247 if (index < 2) {
248 if (maxWarnings) {
249 jfs_warn("find_entry called with index = %d", index);
250 maxWarnings--;
251 }
252 return NULL;
253 }
254
255 if (index >= jfs_ip->next_index) {
256 jfs_warn("find_entry called with index >= next_index");
257 return NULL;
258 }
259
260 if (jfs_dirtable_inline(ip)) {
261 /*
262 * Inline directory table
263 */
264 *mp = NULL;
265 slot = &jfs_ip->i_dirtable[index - 2];
266 } else {
267 offset = (index - 2) * sizeof(struct dir_table_slot);
268 page_offset = offset & (PSIZE - 1);
269 blkno = ((offset + 1) >> L2PSIZE) <<
270 JFS_SBI(ip->i_sb)->l2nbperpage;
271
272 if (*mp && (*lblock != blkno)) {
273 release_metapage(*mp);
274 *mp = NULL;
275 }
276 if (!(*mp)) {
277 *lblock = blkno;
278 *mp = read_index_page(ip, blkno);
279 }
280 if (!(*mp)) {
281 jfs_err("free_index: error reading directory table");
282 return NULL;
283 }
284
285 slot =
286 (struct dir_table_slot *) ((char *) (*mp)->data +
287 page_offset);
288 }
289 return slot;
290}
291
292static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
293 u32 index)
294{
295 struct tlock *tlck;
296 struct linelock *llck;
297 struct lv *lv;
298
299 tlck = txLock(tid, ip, mp, tlckDATA);
300 llck = (struct linelock *) tlck->lock;
301
302 if (llck->index >= llck->maxcnt)
303 llck = txLinelock(llck);
304 lv = &llck->lv[llck->index];
305
306 /*
307 * Linelock slot size is twice the size of directory table
308 * slot size. 512 entries per page.
309 */
310 lv->offset = ((index - 2) & 511) >> 1;
311 lv->length = 1;
312 llck->index++;
313}
314
315/*
316 * add_index()
317 *
318 * Adds an entry to the directory index table. This is used to provide
319 * each directory entry with a persistent index in which to resume
320 * directory traversals
321 */
322static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
323{
324 struct super_block *sb = ip->i_sb;
325 struct jfs_sb_info *sbi = JFS_SBI(sb);
326 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
327 u64 blkno;
328 struct dir_table_slot *dirtab_slot;
329 u32 index;
330 struct linelock *llck;
331 struct lv *lv;
332 struct metapage *mp;
333 s64 offset;
334 uint page_offset;
335 struct tlock *tlck;
336 s64 xaddr;
337
338 ASSERT(DO_INDEX(ip));
339
340 if (jfs_ip->next_index < 2) {
341 jfs_warn("add_index: next_index = %d. Resetting!",
342 jfs_ip->next_index);
343 jfs_ip->next_index = 2;
344 }
345
346 index = jfs_ip->next_index++;
347
348 if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
349 /*
350 * i_size reflects size of index table, or 8 bytes per entry.
351 */
352 ip->i_size = (loff_t) (index - 1) << 3;
353
354 /*
355 * dir table fits inline within inode
356 */
357 dirtab_slot = &jfs_ip->i_dirtable[index-2];
358 dirtab_slot->flag = DIR_INDEX_VALID;
359 dirtab_slot->slot = slot;
360 DTSaddress(dirtab_slot, bn);
361
362 set_cflag(COMMIT_Dirtable, ip);
363
364 return index;
365 }
366 if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
367 struct dir_table_slot temp_table[12];
368
369 /*
370 * It's time to move the inline table to an external
371 * page and begin to build the xtree
372 */
373 if (dquot_alloc_block(ip, sbi->nbperpage))
374 goto clean_up;
375 if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
376 dquot_free_block(ip, sbi->nbperpage);
377 goto clean_up;
378 }
379
380 /*
381 * Save the table, we're going to overwrite it with the
382 * xtree root
383 */
384 memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
385
386 /*
387 * Initialize empty x-tree
388 */
389 xtInitRoot(tid, ip);
390
391 /*
392 * Add the first block to the xtree
393 */
394 if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
395 /* This really shouldn't fail */
396 jfs_warn("add_index: xtInsert failed!");
397 memcpy(&jfs_ip->i_dirtable, temp_table,
398 sizeof (temp_table));
399 dbFree(ip, xaddr, sbi->nbperpage);
400 dquot_free_block(ip, sbi->nbperpage);
401 goto clean_up;
402 }
403 ip->i_size = PSIZE;
404
405 mp = get_index_page(ip, 0);
406 if (!mp) {
407 jfs_err("add_index: get_metapage failed!");
408 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
409 memcpy(&jfs_ip->i_dirtable, temp_table,
410 sizeof (temp_table));
411 goto clean_up;
412 }
413 tlck = txLock(tid, ip, mp, tlckDATA);
414 llck = (struct linelock *) & tlck->lock;
415 ASSERT(llck->index == 0);
416 lv = &llck->lv[0];
417
418 lv->offset = 0;
419 lv->length = 6; /* tlckDATA slot size is 16 bytes */
420 llck->index++;
421
422 memcpy(mp->data, temp_table, sizeof(temp_table));
423
424 mark_metapage_dirty(mp);
425 release_metapage(mp);
426
427 /*
428 * Logging is now directed by xtree tlocks
429 */
430 clear_cflag(COMMIT_Dirtable, ip);
431 }
432
433 offset = (index - 2) * sizeof(struct dir_table_slot);
434 page_offset = offset & (PSIZE - 1);
435 blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
436 if (page_offset == 0) {
437 /*
438 * This will be the beginning of a new page
439 */
440 xaddr = 0;
441 if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
442 jfs_warn("add_index: xtInsert failed!");
443 goto clean_up;
444 }
445 ip->i_size += PSIZE;
446
447 if ((mp = get_index_page(ip, blkno)))
448 memset(mp->data, 0, PSIZE); /* Just looks better */
449 else
450 xtTruncate(tid, ip, offset, COMMIT_PWMAP);
451 } else
452 mp = read_index_page(ip, blkno);
453
454 if (!mp) {
455 jfs_err("add_index: get/read_metapage failed!");
456 goto clean_up;
457 }
458
459 lock_index(tid, ip, mp, index);
460
461 dirtab_slot =
462 (struct dir_table_slot *) ((char *) mp->data + page_offset);
463 dirtab_slot->flag = DIR_INDEX_VALID;
464 dirtab_slot->slot = slot;
465 DTSaddress(dirtab_slot, bn);
466
467 mark_metapage_dirty(mp);
468 release_metapage(mp);
469
470 return index;
471
472 clean_up:
473
474 jfs_ip->next_index--;
475
476 return 0;
477}
478
479/*
480 * free_index()
481 *
482 * Marks an entry to the directory index table as free.
483 */
484static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
485{
486 struct dir_table_slot *dirtab_slot;
487 s64 lblock;
488 struct metapage *mp = NULL;
489
490 dirtab_slot = find_index(ip, index, &mp, &lblock);
491
492 if (!dirtab_slot)
493 return;
494
495 dirtab_slot->flag = DIR_INDEX_FREE;
496 dirtab_slot->slot = dirtab_slot->addr1 = 0;
497 dirtab_slot->addr2 = cpu_to_le32(next);
498
499 if (mp) {
500 lock_index(tid, ip, mp, index);
501 mark_metapage_dirty(mp);
502 release_metapage(mp);
503 } else
504 set_cflag(COMMIT_Dirtable, ip);
505}
506
507/*
508 * modify_index()
509 *
510 * Changes an entry in the directory index table
511 */
512static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
513 int slot, struct metapage ** mp, s64 *lblock)
514{
515 struct dir_table_slot *dirtab_slot;
516
517 dirtab_slot = find_index(ip, index, mp, lblock);
518
519 if (!dirtab_slot)
520 return;
521
522 DTSaddress(dirtab_slot, bn);
523 dirtab_slot->slot = slot;
524
525 if (*mp) {
526 lock_index(tid, ip, *mp, index);
527 mark_metapage_dirty(*mp);
528 } else
529 set_cflag(COMMIT_Dirtable, ip);
530}
531
532/*
533 * read_index()
534 *
535 * reads a directory table slot
536 */
537static int read_index(struct inode *ip, u32 index,
538 struct dir_table_slot * dirtab_slot)
539{
540 s64 lblock;
541 struct metapage *mp = NULL;
542 struct dir_table_slot *slot;
543
544 slot = find_index(ip, index, &mp, &lblock);
545 if (!slot) {
546 return -EIO;
547 }
548
549 memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
550
551 if (mp)
552 release_metapage(mp);
553
554 return 0;
555}
556
557/*
558 * dtSearch()
559 *
560 * function:
561 * Search for the entry with specified key
562 *
563 * parameter:
564 *
565 * return: 0 - search result on stack, leaf page pinned;
566 * errno - I/O error
567 */
568int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
569 struct btstack * btstack, int flag)
570{
571 int rc = 0;
572 int cmp = 1; /* init for empty page */
573 s64 bn;
574 struct metapage *mp;
575 dtpage_t *p;
576 s8 *stbl;
577 int base, index, lim;
578 struct btframe *btsp;
579 pxd_t *pxd;
580 int psize = 288; /* initial in-line directory */
581 ino_t inumber;
582 struct component_name ciKey;
583 struct super_block *sb = ip->i_sb;
584
585 ciKey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
586 GFP_NOFS);
587 if (!ciKey.name) {
588 rc = -ENOMEM;
589 goto dtSearch_Exit2;
590 }
591
592
593 /* uppercase search key for c-i directory */
594 UniStrcpy(ciKey.name, key->name);
595 ciKey.namlen = key->namlen;
596
597 /* only uppercase if case-insensitive support is on */
598 if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
599 ciToUpper(&ciKey);
600 }
601 BT_CLR(btstack); /* reset stack */
602
603 /* init level count for max pages to split */
604 btstack->nsplit = 1;
605
606 /*
607 * search down tree from root:
608 *
609 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
610 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
611 *
612 * if entry with search key K is not found
613 * internal page search find the entry with largest key Ki
614 * less than K which point to the child page to search;
615 * leaf page search find the entry with smallest key Kj
616 * greater than K so that the returned index is the position of
617 * the entry to be shifted right for insertion of new entry.
618 * for empty tree, search key is greater than any key of the tree.
619 *
620 * by convention, root bn = 0.
621 */
622 for (bn = 0;;) {
623 /* get/pin the page to search */
624 DT_GETPAGE(ip, bn, mp, psize, p, rc);
625 if (rc)
626 goto dtSearch_Exit1;
627
628 /* get sorted entry table of the page */
629 stbl = DT_GETSTBL(p);
630
631 /*
632 * binary search with search key K on the current page.
633 */
634 for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
635 index = base + (lim >> 1);
636
637 if (stbl[index] < 0) {
638 rc = -EIO;
639 goto out;
640 }
641
642 if (p->header.flag & BT_LEAF) {
643 /* uppercase leaf name to compare */
644 cmp =
645 ciCompare(&ciKey, p, stbl[index],
646 JFS_SBI(sb)->mntflag);
647 } else {
648 /* router key is in uppercase */
649
650 cmp = dtCompare(&ciKey, p, stbl[index]);
651
652
653 }
654 if (cmp == 0) {
655 /*
656 * search hit
657 */
658 /* search hit - leaf page:
659 * return the entry found
660 */
661 if (p->header.flag & BT_LEAF) {
662 inumber = le32_to_cpu(
663 ((struct ldtentry *) & p->slot[stbl[index]])->inumber);
664
665 /*
666 * search for JFS_LOOKUP
667 */
668 if (flag == JFS_LOOKUP) {
669 *data = inumber;
670 rc = 0;
671 goto out;
672 }
673
674 /*
675 * search for JFS_CREATE
676 */
677 if (flag == JFS_CREATE) {
678 *data = inumber;
679 rc = -EEXIST;
680 goto out;
681 }
682
683 /*
684 * search for JFS_REMOVE or JFS_RENAME
685 */
686 if ((flag == JFS_REMOVE ||
687 flag == JFS_RENAME) &&
688 *data != inumber) {
689 rc = -ESTALE;
690 goto out;
691 }
692
693 /*
694 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
695 */
696 /* save search result */
697 *data = inumber;
698 btsp = btstack->top;
699 btsp->bn = bn;
700 btsp->index = index;
701 btsp->mp = mp;
702
703 rc = 0;
704 goto dtSearch_Exit1;
705 }
706
707 /* search hit - internal page:
708 * descend/search its child page
709 */
710 goto getChild;
711 }
712
713 if (cmp > 0) {
714 base = index + 1;
715 --lim;
716 }
717 }
718
719 /*
720 * search miss
721 *
722 * base is the smallest index with key (Kj) greater than
723 * search key (K) and may be zero or (maxindex + 1) index.
724 */
725 /*
726 * search miss - leaf page
727 *
728 * return location of entry (base) where new entry with
729 * search key K is to be inserted.
730 */
731 if (p->header.flag & BT_LEAF) {
732 /*
733 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
734 */
735 if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
736 flag == JFS_RENAME) {
737 rc = -ENOENT;
738 goto out;
739 }
740
741 /*
742 * search for JFS_CREATE|JFS_FINDDIR:
743 *
744 * save search result
745 */
746 *data = 0;
747 btsp = btstack->top;
748 btsp->bn = bn;
749 btsp->index = base;
750 btsp->mp = mp;
751
752 rc = 0;
753 goto dtSearch_Exit1;
754 }
755
756 /*
757 * search miss - internal page
758 *
759 * if base is non-zero, decrement base by one to get the parent
760 * entry of the child page to search.
761 */
762 index = base ? base - 1 : base;
763
764 /*
765 * go down to child page
766 */
767 getChild:
768 /* update max. number of pages to split */
769 if (BT_STACK_FULL(btstack)) {
770 /* Something's corrupted, mark filesystem dirty so
771 * chkdsk will fix it.
772 */
773 jfs_error(sb, "stack overrun!\n");
774 BT_STACK_DUMP(btstack);
775 rc = -EIO;
776 goto out;
777 }
778 btstack->nsplit++;
779
780 /* push (bn, index) of the parent page/entry */
781 BT_PUSH(btstack, bn, index);
782
783 /* get the child page block number */
784 pxd = (pxd_t *) & p->slot[stbl[index]];
785 bn = addressPXD(pxd);
786 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
787
788 /* unpin the parent page */
789 DT_PUTPAGE(mp);
790 }
791
792 out:
793 DT_PUTPAGE(mp);
794
795 dtSearch_Exit1:
796
797 kfree(ciKey.name);
798
799 dtSearch_Exit2:
800
801 return rc;
802}
803
804
805/*
806 * dtInsert()
807 *
808 * function: insert an entry to directory tree
809 *
810 * parameter:
811 *
812 * return: 0 - success;
813 * errno - failure;
814 */
815int dtInsert(tid_t tid, struct inode *ip,
816 struct component_name * name, ino_t * fsn, struct btstack * btstack)
817{
818 int rc = 0;
819 struct metapage *mp; /* meta-page buffer */
820 dtpage_t *p; /* base B+-tree index page */
821 s64 bn;
822 int index;
823 struct dtsplit split; /* split information */
824 ddata_t data;
825 struct dt_lock *dtlck;
826 int n;
827 struct tlock *tlck;
828 struct lv *lv;
829
830 /*
831 * retrieve search result
832 *
833 * dtSearch() returns (leaf page pinned, index at which to insert).
834 * n.b. dtSearch() may return index of (maxindex + 1) of
835 * the full page.
836 */
837 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
838 if (p->header.freelist == 0)
839 return -EINVAL;
840
841 /*
842 * insert entry for new key
843 */
844 if (DO_INDEX(ip)) {
845 if (JFS_IP(ip)->next_index == DIREND) {
846 DT_PUTPAGE(mp);
847 return -EMLINK;
848 }
849 n = NDTLEAF(name->namlen);
850 data.leaf.tid = tid;
851 data.leaf.ip = ip;
852 } else {
853 n = NDTLEAF_LEGACY(name->namlen);
854 data.leaf.ip = NULL; /* signifies legacy directory format */
855 }
856 data.leaf.ino = *fsn;
857
858 /*
859 * leaf page does not have enough room for new entry:
860 *
861 * extend/split the leaf page;
862 *
863 * dtSplitUp() will insert the entry and unpin the leaf page.
864 */
865 if (n > p->header.freecnt) {
866 split.mp = mp;
867 split.index = index;
868 split.nslot = n;
869 split.key = name;
870 split.data = &data;
871 rc = dtSplitUp(tid, ip, &split, btstack);
872 return rc;
873 }
874
875 /*
876 * leaf page does have enough room for new entry:
877 *
878 * insert the new data entry into the leaf page;
879 */
880 BT_MARK_DIRTY(mp, ip);
881 /*
882 * acquire a transaction lock on the leaf page
883 */
884 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
885 dtlck = (struct dt_lock *) & tlck->lock;
886 ASSERT(dtlck->index == 0);
887 lv = & dtlck->lv[0];
888
889 /* linelock header */
890 lv->offset = 0;
891 lv->length = 1;
892 dtlck->index++;
893
894 dtInsertEntry(p, index, name, &data, &dtlck);
895
896 /* linelock stbl of non-root leaf page */
897 if (!(p->header.flag & BT_ROOT)) {
898 if (dtlck->index >= dtlck->maxcnt)
899 dtlck = (struct dt_lock *) txLinelock(dtlck);
900 lv = & dtlck->lv[dtlck->index];
901 n = index >> L2DTSLOTSIZE;
902 lv->offset = p->header.stblindex + n;
903 lv->length =
904 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
905 dtlck->index++;
906 }
907
908 /* unpin the leaf page */
909 DT_PUTPAGE(mp);
910
911 return 0;
912}
913
914
915/*
916 * dtSplitUp()
917 *
918 * function: propagate insertion bottom up;
919 *
920 * parameter:
921 *
922 * return: 0 - success;
923 * errno - failure;
924 * leaf page unpinned;
925 */
926static int dtSplitUp(tid_t tid,
927 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
928{
929 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
930 int rc = 0;
931 struct metapage *smp;
932 dtpage_t *sp; /* split page */
933 struct metapage *rmp;
934 dtpage_t *rp; /* new right page split from sp */
935 pxd_t rpxd; /* new right page extent descriptor */
936 struct metapage *lmp;
937 dtpage_t *lp; /* left child page */
938 int skip; /* index of entry of insertion */
939 struct btframe *parent; /* parent page entry on traverse stack */
940 s64 xaddr, nxaddr;
941 int xlen, xsize;
942 struct pxdlist pxdlist;
943 pxd_t *pxd;
944 struct component_name key = { 0, NULL };
945 ddata_t *data = split->data;
946 int n;
947 struct dt_lock *dtlck;
948 struct tlock *tlck;
949 struct lv *lv;
950 int quota_allocation = 0;
951
952 /* get split page */
953 smp = split->mp;
954 sp = DT_PAGE(ip, smp);
955
956 key.name = kmalloc_array(JFS_NAME_MAX + 2, sizeof(wchar_t), GFP_NOFS);
957 if (!key.name) {
958 DT_PUTPAGE(smp);
959 rc = -ENOMEM;
960 goto dtSplitUp_Exit;
961 }
962
963 /*
964 * split leaf page
965 *
966 * The split routines insert the new entry, and
967 * acquire txLock as appropriate.
968 */
969 /*
970 * split root leaf page:
971 */
972 if (sp->header.flag & BT_ROOT) {
973 /*
974 * allocate a single extent child page
975 */
976 xlen = 1;
977 n = sbi->bsize >> L2DTSLOTSIZE;
978 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
979 n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
980 if (n <= split->nslot)
981 xlen++;
982 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
983 DT_PUTPAGE(smp);
984 goto freeKeyName;
985 }
986
987 pxdlist.maxnpxd = 1;
988 pxdlist.npxd = 0;
989 pxd = &pxdlist.pxd[0];
990 PXDaddress(pxd, xaddr);
991 PXDlength(pxd, xlen);
992 split->pxdlist = &pxdlist;
993 rc = dtSplitRoot(tid, ip, split, &rmp);
994
995 if (rc)
996 dbFree(ip, xaddr, xlen);
997 else
998 DT_PUTPAGE(rmp);
999
1000 DT_PUTPAGE(smp);
1001
1002 if (!DO_INDEX(ip))
1003 ip->i_size = xlen << sbi->l2bsize;
1004
1005 goto freeKeyName;
1006 }
1007
1008 /*
1009 * extend first leaf page
1010 *
1011 * extend the 1st extent if less than buffer page size
1012 * (dtExtendPage() reurns leaf page unpinned)
1013 */
1014 pxd = &sp->header.self;
1015 xlen = lengthPXD(pxd);
1016 xsize = xlen << sbi->l2bsize;
1017 if (xsize < PSIZE) {
1018 xaddr = addressPXD(pxd);
1019 n = xsize >> L2DTSLOTSIZE;
1020 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
1021 if ((n + sp->header.freecnt) <= split->nslot)
1022 n = xlen + (xlen << 1);
1023 else
1024 n = xlen;
1025
1026 /* Allocate blocks to quota. */
1027 rc = dquot_alloc_block(ip, n);
1028 if (rc)
1029 goto extendOut;
1030 quota_allocation += n;
1031
1032 if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1033 (s64) n, &nxaddr)))
1034 goto extendOut;
1035
1036 pxdlist.maxnpxd = 1;
1037 pxdlist.npxd = 0;
1038 pxd = &pxdlist.pxd[0];
1039 PXDaddress(pxd, nxaddr);
1040 PXDlength(pxd, xlen + n);
1041 split->pxdlist = &pxdlist;
1042 if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1043 nxaddr = addressPXD(pxd);
1044 if (xaddr != nxaddr) {
1045 /* free relocated extent */
1046 xlen = lengthPXD(pxd);
1047 dbFree(ip, nxaddr, (s64) xlen);
1048 } else {
1049 /* free extended delta */
1050 xlen = lengthPXD(pxd) - n;
1051 xaddr = addressPXD(pxd) + xlen;
1052 dbFree(ip, xaddr, (s64) n);
1053 }
1054 } else if (!DO_INDEX(ip))
1055 ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1056
1057
1058 extendOut:
1059 DT_PUTPAGE(smp);
1060 goto freeKeyName;
1061 }
1062
1063 /*
1064 * split leaf page <sp> into <sp> and a new right page <rp>.
1065 *
1066 * return <rp> pinned and its extent descriptor <rpxd>
1067 */
1068 /*
1069 * allocate new directory page extent and
1070 * new index page(s) to cover page split(s)
1071 *
1072 * allocation hint: ?
1073 */
1074 n = btstack->nsplit;
1075 pxdlist.maxnpxd = pxdlist.npxd = 0;
1076 xlen = sbi->nbperpage;
1077 for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1078 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1079 PXDaddress(pxd, xaddr);
1080 PXDlength(pxd, xlen);
1081 pxdlist.maxnpxd++;
1082 continue;
1083 }
1084
1085 DT_PUTPAGE(smp);
1086
1087 /* undo allocation */
1088 goto splitOut;
1089 }
1090
1091 split->pxdlist = &pxdlist;
1092 if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1093 DT_PUTPAGE(smp);
1094
1095 /* undo allocation */
1096 goto splitOut;
1097 }
1098
1099 if (!DO_INDEX(ip))
1100 ip->i_size += PSIZE;
1101
1102 /*
1103 * propagate up the router entry for the leaf page just split
1104 *
1105 * insert a router entry for the new page into the parent page,
1106 * propagate the insert/split up the tree by walking back the stack
1107 * of (bn of parent page, index of child page entry in parent page)
1108 * that were traversed during the search for the page that split.
1109 *
1110 * the propagation of insert/split up the tree stops if the root
1111 * splits or the page inserted into doesn't have to split to hold
1112 * the new entry.
1113 *
1114 * the parent entry for the split page remains the same, and
1115 * a new entry is inserted at its right with the first key and
1116 * block number of the new right page.
1117 *
1118 * There are a maximum of 4 pages pinned at any time:
1119 * two children, left parent and right parent (when the parent splits).
1120 * keep the child pages pinned while working on the parent.
1121 * make sure that all pins are released at exit.
1122 */
1123 while ((parent = BT_POP(btstack)) != NULL) {
1124 /* parent page specified by stack frame <parent> */
1125
1126 /* keep current child pages (<lp>, <rp>) pinned */
1127 lmp = smp;
1128 lp = sp;
1129
1130 /*
1131 * insert router entry in parent for new right child page <rp>
1132 */
1133 /* get the parent page <sp> */
1134 DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1135 if (rc) {
1136 DT_PUTPAGE(lmp);
1137 DT_PUTPAGE(rmp);
1138 goto splitOut;
1139 }
1140
1141 /*
1142 * The new key entry goes ONE AFTER the index of parent entry,
1143 * because the split was to the right.
1144 */
1145 skip = parent->index + 1;
1146
1147 /*
1148 * compute the key for the router entry
1149 *
1150 * key suffix compression:
1151 * for internal pages that have leaf pages as children,
1152 * retain only what's needed to distinguish between
1153 * the new entry and the entry on the page to its left.
1154 * If the keys compare equal, retain the entire key.
1155 *
1156 * note that compression is performed only at computing
1157 * router key at the lowest internal level.
1158 * further compression of the key between pairs of higher
1159 * level internal pages loses too much information and
1160 * the search may fail.
1161 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1162 * results in two adjacent parent entries (a)(xx).
1163 * if split occurs between these two entries, and
1164 * if compression is applied, the router key of parent entry
1165 * of right page (x) will divert search for x into right
1166 * subtree and miss x in the left subtree.)
1167 *
1168 * the entire key must be retained for the next-to-leftmost
1169 * internal key at any level of the tree, or search may fail
1170 * (e.g., ?)
1171 */
1172 switch (rp->header.flag & BT_TYPE) {
1173 case BT_LEAF:
1174 /*
1175 * compute the length of prefix for suffix compression
1176 * between last entry of left page and first entry
1177 * of right page
1178 */
1179 if ((sp->header.flag & BT_ROOT && skip > 1) ||
1180 sp->header.prev != 0 || skip > 1) {
1181 /* compute uppercase router prefix key */
1182 rc = ciGetLeafPrefixKey(lp,
1183 lp->header.nextindex-1,
1184 rp, 0, &key,
1185 sbi->mntflag);
1186 if (rc) {
1187 DT_PUTPAGE(lmp);
1188 DT_PUTPAGE(rmp);
1189 DT_PUTPAGE(smp);
1190 goto splitOut;
1191 }
1192 } else {
1193 /* next to leftmost entry of
1194 lowest internal level */
1195
1196 /* compute uppercase router key */
1197 dtGetKey(rp, 0, &key, sbi->mntflag);
1198 key.name[key.namlen] = 0;
1199
1200 if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1201 ciToUpper(&key);
1202 }
1203
1204 n = NDTINTERNAL(key.namlen);
1205 break;
1206
1207 case BT_INTERNAL:
1208 dtGetKey(rp, 0, &key, sbi->mntflag);
1209 n = NDTINTERNAL(key.namlen);
1210 break;
1211
1212 default:
1213 jfs_err("dtSplitUp(): UFO!");
1214 break;
1215 }
1216
1217 /* unpin left child page */
1218 DT_PUTPAGE(lmp);
1219
1220 /*
1221 * compute the data for the router entry
1222 */
1223 data->xd = rpxd; /* child page xd */
1224
1225 /*
1226 * parent page is full - split the parent page
1227 */
1228 if (n > sp->header.freecnt) {
1229 /* init for parent page split */
1230 split->mp = smp;
1231 split->index = skip; /* index at insert */
1232 split->nslot = n;
1233 split->key = &key;
1234 /* split->data = data; */
1235
1236 /* unpin right child page */
1237 DT_PUTPAGE(rmp);
1238
1239 /* The split routines insert the new entry,
1240 * acquire txLock as appropriate.
1241 * return <rp> pinned and its block number <rbn>.
1242 */
1243 rc = (sp->header.flag & BT_ROOT) ?
1244 dtSplitRoot(tid, ip, split, &rmp) :
1245 dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1246 if (rc) {
1247 DT_PUTPAGE(smp);
1248 goto splitOut;
1249 }
1250
1251 /* smp and rmp are pinned */
1252 }
1253 /*
1254 * parent page is not full - insert router entry in parent page
1255 */
1256 else {
1257 BT_MARK_DIRTY(smp, ip);
1258 /*
1259 * acquire a transaction lock on the parent page
1260 */
1261 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1262 dtlck = (struct dt_lock *) & tlck->lock;
1263 ASSERT(dtlck->index == 0);
1264 lv = & dtlck->lv[0];
1265
1266 /* linelock header */
1267 lv->offset = 0;
1268 lv->length = 1;
1269 dtlck->index++;
1270
1271 /* linelock stbl of non-root parent page */
1272 if (!(sp->header.flag & BT_ROOT)) {
1273 lv++;
1274 n = skip >> L2DTSLOTSIZE;
1275 lv->offset = sp->header.stblindex + n;
1276 lv->length =
1277 ((sp->header.nextindex -
1278 1) >> L2DTSLOTSIZE) - n + 1;
1279 dtlck->index++;
1280 }
1281
1282 dtInsertEntry(sp, skip, &key, data, &dtlck);
1283
1284 /* exit propagate up */
1285 break;
1286 }
1287 }
1288
1289 /* unpin current split and its right page */
1290 DT_PUTPAGE(smp);
1291 DT_PUTPAGE(rmp);
1292
1293 /*
1294 * free remaining extents allocated for split
1295 */
1296 splitOut:
1297 n = pxdlist.npxd;
1298 pxd = &pxdlist.pxd[n];
1299 for (; n < pxdlist.maxnpxd; n++, pxd++)
1300 dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1301
1302 freeKeyName:
1303 kfree(key.name);
1304
1305 /* Rollback quota allocation */
1306 if (rc && quota_allocation)
1307 dquot_free_block(ip, quota_allocation);
1308
1309 dtSplitUp_Exit:
1310
1311 return rc;
1312}
1313
1314
1315/*
1316 * dtSplitPage()
1317 *
1318 * function: Split a non-root page of a btree.
1319 *
1320 * parameter:
1321 *
1322 * return: 0 - success;
1323 * errno - failure;
1324 * return split and new page pinned;
1325 */
1326static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1327 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1328{
1329 int rc = 0;
1330 struct metapage *smp;
1331 dtpage_t *sp;
1332 struct metapage *rmp;
1333 dtpage_t *rp; /* new right page allocated */
1334 s64 rbn; /* new right page block number */
1335 struct metapage *mp;
1336 dtpage_t *p;
1337 s64 nextbn;
1338 struct pxdlist *pxdlist;
1339 pxd_t *pxd;
1340 int skip, nextindex, half, left, nxt, off, si;
1341 struct ldtentry *ldtentry;
1342 struct idtentry *idtentry;
1343 u8 *stbl;
1344 struct dtslot *f;
1345 int fsi, stblsize;
1346 int n;
1347 struct dt_lock *sdtlck, *rdtlck;
1348 struct tlock *tlck;
1349 struct dt_lock *dtlck;
1350 struct lv *slv, *rlv, *lv;
1351
1352 /* get split page */
1353 smp = split->mp;
1354 sp = DT_PAGE(ip, smp);
1355
1356 /*
1357 * allocate the new right page for the split
1358 */
1359 pxdlist = split->pxdlist;
1360 pxd = &pxdlist->pxd[pxdlist->npxd];
1361 pxdlist->npxd++;
1362 rbn = addressPXD(pxd);
1363 rmp = get_metapage(ip, rbn, PSIZE, 1);
1364 if (rmp == NULL)
1365 return -EIO;
1366
1367 /* Allocate blocks to quota. */
1368 rc = dquot_alloc_block(ip, lengthPXD(pxd));
1369 if (rc) {
1370 release_metapage(rmp);
1371 return rc;
1372 }
1373
1374 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1375
1376 BT_MARK_DIRTY(rmp, ip);
1377 /*
1378 * acquire a transaction lock on the new right page
1379 */
1380 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1381 rdtlck = (struct dt_lock *) & tlck->lock;
1382
1383 rp = (dtpage_t *) rmp->data;
1384 *rpp = rp;
1385 rp->header.self = *pxd;
1386
1387 BT_MARK_DIRTY(smp, ip);
1388 /*
1389 * acquire a transaction lock on the split page
1390 *
1391 * action:
1392 */
1393 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1394 sdtlck = (struct dt_lock *) & tlck->lock;
1395
1396 /* linelock header of split page */
1397 ASSERT(sdtlck->index == 0);
1398 slv = & sdtlck->lv[0];
1399 slv->offset = 0;
1400 slv->length = 1;
1401 sdtlck->index++;
1402
1403 /*
1404 * initialize/update sibling pointers between sp and rp
1405 */
1406 nextbn = le64_to_cpu(sp->header.next);
1407 rp->header.next = cpu_to_le64(nextbn);
1408 rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1409 sp->header.next = cpu_to_le64(rbn);
1410
1411 /*
1412 * initialize new right page
1413 */
1414 rp->header.flag = sp->header.flag;
1415
1416 /* compute sorted entry table at start of extent data area */
1417 rp->header.nextindex = 0;
1418 rp->header.stblindex = 1;
1419
1420 n = PSIZE >> L2DTSLOTSIZE;
1421 rp->header.maxslot = n;
1422 stblsize = (n + 31) >> L2DTSLOTSIZE; /* in unit of slot */
1423
1424 /* init freelist */
1425 fsi = rp->header.stblindex + stblsize;
1426 rp->header.freelist = fsi;
1427 rp->header.freecnt = rp->header.maxslot - fsi;
1428
1429 /*
1430 * sequential append at tail: append without split
1431 *
1432 * If splitting the last page on a level because of appending
1433 * a entry to it (skip is maxentry), it's likely that the access is
1434 * sequential. Adding an empty page on the side of the level is less
1435 * work and can push the fill factor much higher than normal.
1436 * If we're wrong it's no big deal, we'll just do the split the right
1437 * way next time.
1438 * (It may look like it's equally easy to do a similar hack for
1439 * reverse sorted data, that is, split the tree left,
1440 * but it's not. Be my guest.)
1441 */
1442 if (nextbn == 0 && split->index == sp->header.nextindex) {
1443 /* linelock header + stbl (first slot) of new page */
1444 rlv = & rdtlck->lv[rdtlck->index];
1445 rlv->offset = 0;
1446 rlv->length = 2;
1447 rdtlck->index++;
1448
1449 /*
1450 * initialize freelist of new right page
1451 */
1452 f = &rp->slot[fsi];
1453 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1454 f->next = fsi;
1455 f->next = -1;
1456
1457 /* insert entry at the first entry of the new right page */
1458 dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1459
1460 goto out;
1461 }
1462
1463 /*
1464 * non-sequential insert (at possibly middle page)
1465 */
1466
1467 /*
1468 * update prev pointer of previous right sibling page;
1469 */
1470 if (nextbn != 0) {
1471 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1472 if (rc) {
1473 discard_metapage(rmp);
1474 return rc;
1475 }
1476
1477 BT_MARK_DIRTY(mp, ip);
1478 /*
1479 * acquire a transaction lock on the next page
1480 */
1481 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1482 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1483 tlck, ip, mp);
1484 dtlck = (struct dt_lock *) & tlck->lock;
1485
1486 /* linelock header of previous right sibling page */
1487 lv = & dtlck->lv[dtlck->index];
1488 lv->offset = 0;
1489 lv->length = 1;
1490 dtlck->index++;
1491
1492 p->header.prev = cpu_to_le64(rbn);
1493
1494 DT_PUTPAGE(mp);
1495 }
1496
1497 /*
1498 * split the data between the split and right pages.
1499 */
1500 skip = split->index;
1501 half = (PSIZE >> L2DTSLOTSIZE) >> 1; /* swag */
1502 left = 0;
1503
1504 /*
1505 * compute fill factor for split pages
1506 *
1507 * <nxt> traces the next entry to move to rp
1508 * <off> traces the next entry to stay in sp
1509 */
1510 stbl = (u8 *) & sp->slot[sp->header.stblindex];
1511 nextindex = sp->header.nextindex;
1512 for (nxt = off = 0; nxt < nextindex; ++off) {
1513 if (off == skip)
1514 /* check for fill factor with new entry size */
1515 n = split->nslot;
1516 else {
1517 si = stbl[nxt];
1518 switch (sp->header.flag & BT_TYPE) {
1519 case BT_LEAF:
1520 ldtentry = (struct ldtentry *) & sp->slot[si];
1521 if (DO_INDEX(ip))
1522 n = NDTLEAF(ldtentry->namlen);
1523 else
1524 n = NDTLEAF_LEGACY(ldtentry->
1525 namlen);
1526 break;
1527
1528 case BT_INTERNAL:
1529 idtentry = (struct idtentry *) & sp->slot[si];
1530 n = NDTINTERNAL(idtentry->namlen);
1531 break;
1532
1533 default:
1534 break;
1535 }
1536
1537 ++nxt; /* advance to next entry to move in sp */
1538 }
1539
1540 left += n;
1541 if (left >= half)
1542 break;
1543 }
1544
1545 /* <nxt> poins to the 1st entry to move */
1546
1547 /*
1548 * move entries to right page
1549 *
1550 * dtMoveEntry() initializes rp and reserves entry for insertion
1551 *
1552 * split page moved out entries are linelocked;
1553 * new/right page moved in entries are linelocked;
1554 */
1555 /* linelock header + stbl of new right page */
1556 rlv = & rdtlck->lv[rdtlck->index];
1557 rlv->offset = 0;
1558 rlv->length = 5;
1559 rdtlck->index++;
1560
1561 dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1562
1563 sp->header.nextindex = nxt;
1564
1565 /*
1566 * finalize freelist of new right page
1567 */
1568 fsi = rp->header.freelist;
1569 f = &rp->slot[fsi];
1570 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1571 f->next = fsi;
1572 f->next = -1;
1573
1574 /*
1575 * Update directory index table for entries now in right page
1576 */
1577 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1578 s64 lblock;
1579
1580 mp = NULL;
1581 stbl = DT_GETSTBL(rp);
1582 for (n = 0; n < rp->header.nextindex; n++) {
1583 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1584 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1585 rbn, n, &mp, &lblock);
1586 }
1587 if (mp)
1588 release_metapage(mp);
1589 }
1590
1591 /*
1592 * the skipped index was on the left page,
1593 */
1594 if (skip <= off) {
1595 /* insert the new entry in the split page */
1596 dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1597
1598 /* linelock stbl of split page */
1599 if (sdtlck->index >= sdtlck->maxcnt)
1600 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1601 slv = & sdtlck->lv[sdtlck->index];
1602 n = skip >> L2DTSLOTSIZE;
1603 slv->offset = sp->header.stblindex + n;
1604 slv->length =
1605 ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1606 sdtlck->index++;
1607 }
1608 /*
1609 * the skipped index was on the right page,
1610 */
1611 else {
1612 /* adjust the skip index to reflect the new position */
1613 skip -= nxt;
1614
1615 /* insert the new entry in the right page */
1616 dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1617 }
1618
1619 out:
1620 *rmpp = rmp;
1621 *rpxdp = *pxd;
1622
1623 return rc;
1624}
1625
1626
1627/*
1628 * dtExtendPage()
1629 *
1630 * function: extend 1st/only directory leaf page
1631 *
1632 * parameter:
1633 *
1634 * return: 0 - success;
1635 * errno - failure;
1636 * return extended page pinned;
1637 */
1638static int dtExtendPage(tid_t tid,
1639 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1640{
1641 struct super_block *sb = ip->i_sb;
1642 int rc;
1643 struct metapage *smp, *pmp, *mp;
1644 dtpage_t *sp, *pp;
1645 struct pxdlist *pxdlist;
1646 pxd_t *pxd, *tpxd;
1647 int xlen, xsize;
1648 int newstblindex, newstblsize;
1649 int oldstblindex, oldstblsize;
1650 int fsi, last;
1651 struct dtslot *f;
1652 struct btframe *parent;
1653 int n;
1654 struct dt_lock *dtlck;
1655 s64 xaddr, txaddr;
1656 struct tlock *tlck;
1657 struct pxd_lock *pxdlock;
1658 struct lv *lv;
1659 uint type;
1660 struct ldtentry *ldtentry;
1661 u8 *stbl;
1662
1663 /* get page to extend */
1664 smp = split->mp;
1665 sp = DT_PAGE(ip, smp);
1666
1667 /* get parent/root page */
1668 parent = BT_POP(btstack);
1669 DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1670 if (rc)
1671 return (rc);
1672
1673 /*
1674 * extend the extent
1675 */
1676 pxdlist = split->pxdlist;
1677 pxd = &pxdlist->pxd[pxdlist->npxd];
1678 pxdlist->npxd++;
1679
1680 xaddr = addressPXD(pxd);
1681 tpxd = &sp->header.self;
1682 txaddr = addressPXD(tpxd);
1683 /* in-place extension */
1684 if (xaddr == txaddr) {
1685 type = tlckEXTEND;
1686 }
1687 /* relocation */
1688 else {
1689 type = tlckNEW;
1690
1691 /* save moved extent descriptor for later free */
1692 tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1693 pxdlock = (struct pxd_lock *) & tlck->lock;
1694 pxdlock->flag = mlckFREEPXD;
1695 pxdlock->pxd = sp->header.self;
1696 pxdlock->index = 1;
1697
1698 /*
1699 * Update directory index table to reflect new page address
1700 */
1701 if (DO_INDEX(ip)) {
1702 s64 lblock;
1703
1704 mp = NULL;
1705 stbl = DT_GETSTBL(sp);
1706 for (n = 0; n < sp->header.nextindex; n++) {
1707 ldtentry =
1708 (struct ldtentry *) & sp->slot[stbl[n]];
1709 modify_index(tid, ip,
1710 le32_to_cpu(ldtentry->index),
1711 xaddr, n, &mp, &lblock);
1712 }
1713 if (mp)
1714 release_metapage(mp);
1715 }
1716 }
1717
1718 /*
1719 * extend the page
1720 */
1721 sp->header.self = *pxd;
1722
1723 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1724
1725 BT_MARK_DIRTY(smp, ip);
1726 /*
1727 * acquire a transaction lock on the extended/leaf page
1728 */
1729 tlck = txLock(tid, ip, smp, tlckDTREE | type);
1730 dtlck = (struct dt_lock *) & tlck->lock;
1731 lv = & dtlck->lv[0];
1732
1733 /* update buffer extent descriptor of extended page */
1734 xlen = lengthPXD(pxd);
1735 xsize = xlen << JFS_SBI(sb)->l2bsize;
1736
1737 /*
1738 * copy old stbl to new stbl at start of extended area
1739 */
1740 oldstblindex = sp->header.stblindex;
1741 oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1742 newstblindex = sp->header.maxslot;
1743 n = xsize >> L2DTSLOTSIZE;
1744 newstblsize = (n + 31) >> L2DTSLOTSIZE;
1745 memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1746 sp->header.nextindex);
1747
1748 /*
1749 * in-line extension: linelock old area of extended page
1750 */
1751 if (type == tlckEXTEND) {
1752 /* linelock header */
1753 lv->offset = 0;
1754 lv->length = 1;
1755 dtlck->index++;
1756 lv++;
1757
1758 /* linelock new stbl of extended page */
1759 lv->offset = newstblindex;
1760 lv->length = newstblsize;
1761 }
1762 /*
1763 * relocation: linelock whole relocated area
1764 */
1765 else {
1766 lv->offset = 0;
1767 lv->length = sp->header.maxslot + newstblsize;
1768 }
1769
1770 dtlck->index++;
1771
1772 sp->header.maxslot = n;
1773 sp->header.stblindex = newstblindex;
1774 /* sp->header.nextindex remains the same */
1775
1776 /*
1777 * add old stbl region at head of freelist
1778 */
1779 fsi = oldstblindex;
1780 f = &sp->slot[fsi];
1781 last = sp->header.freelist;
1782 for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1783 f->next = last;
1784 last = fsi;
1785 }
1786 sp->header.freelist = last;
1787 sp->header.freecnt += oldstblsize;
1788
1789 /*
1790 * append free region of newly extended area at tail of freelist
1791 */
1792 /* init free region of newly extended area */
1793 fsi = n = newstblindex + newstblsize;
1794 f = &sp->slot[fsi];
1795 for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1796 f->next = fsi;
1797 f->next = -1;
1798
1799 /* append new free region at tail of old freelist */
1800 fsi = sp->header.freelist;
1801 if (fsi == -1)
1802 sp->header.freelist = n;
1803 else {
1804 do {
1805 f = &sp->slot[fsi];
1806 fsi = f->next;
1807 } while (fsi != -1);
1808
1809 f->next = n;
1810 }
1811
1812 sp->header.freecnt += sp->header.maxslot - n;
1813
1814 /*
1815 * insert the new entry
1816 */
1817 dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1818
1819 BT_MARK_DIRTY(pmp, ip);
1820 /*
1821 * linelock any freeslots residing in old extent
1822 */
1823 if (type == tlckEXTEND) {
1824 n = sp->header.maxslot >> 2;
1825 if (sp->header.freelist < n)
1826 dtLinelockFreelist(sp, n, &dtlck);
1827 }
1828
1829 /*
1830 * update parent entry on the parent/root page
1831 */
1832 /*
1833 * acquire a transaction lock on the parent/root page
1834 */
1835 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1836 dtlck = (struct dt_lock *) & tlck->lock;
1837 lv = & dtlck->lv[dtlck->index];
1838
1839 /* linelock parent entry - 1st slot */
1840 lv->offset = 1;
1841 lv->length = 1;
1842 dtlck->index++;
1843
1844 /* update the parent pxd for page extension */
1845 tpxd = (pxd_t *) & pp->slot[1];
1846 *tpxd = *pxd;
1847
1848 DT_PUTPAGE(pmp);
1849 return 0;
1850}
1851
1852
1853/*
1854 * dtSplitRoot()
1855 *
1856 * function:
1857 * split the full root page into
1858 * original/root/split page and new right page
1859 * i.e., root remains fixed in tree anchor (inode) and
1860 * the root is copied to a single new right child page
1861 * since root page << non-root page, and
1862 * the split root page contains a single entry for the
1863 * new right child page.
1864 *
1865 * parameter:
1866 *
1867 * return: 0 - success;
1868 * errno - failure;
1869 * return new page pinned;
1870 */
1871static int dtSplitRoot(tid_t tid,
1872 struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1873{
1874 struct super_block *sb = ip->i_sb;
1875 struct metapage *smp;
1876 dtroot_t *sp;
1877 struct metapage *rmp;
1878 dtpage_t *rp;
1879 s64 rbn;
1880 int xlen;
1881 int xsize;
1882 struct dtslot *f;
1883 s8 *stbl;
1884 int fsi, stblsize, n;
1885 struct idtentry *s;
1886 pxd_t *ppxd;
1887 struct pxdlist *pxdlist;
1888 pxd_t *pxd;
1889 struct dt_lock *dtlck;
1890 struct tlock *tlck;
1891 struct lv *lv;
1892 int rc;
1893
1894 /* get split root page */
1895 smp = split->mp;
1896 sp = &JFS_IP(ip)->i_dtroot;
1897
1898 /*
1899 * allocate/initialize a single (right) child page
1900 *
1901 * N.B. at first split, a one (or two) block to fit new entry
1902 * is allocated; at subsequent split, a full page is allocated;
1903 */
1904 pxdlist = split->pxdlist;
1905 pxd = &pxdlist->pxd[pxdlist->npxd];
1906 pxdlist->npxd++;
1907 rbn = addressPXD(pxd);
1908 xlen = lengthPXD(pxd);
1909 xsize = xlen << JFS_SBI(sb)->l2bsize;
1910 rmp = get_metapage(ip, rbn, xsize, 1);
1911 if (!rmp)
1912 return -EIO;
1913
1914 rp = rmp->data;
1915
1916 /* Allocate blocks to quota. */
1917 rc = dquot_alloc_block(ip, lengthPXD(pxd));
1918 if (rc) {
1919 release_metapage(rmp);
1920 return rc;
1921 }
1922
1923 BT_MARK_DIRTY(rmp, ip);
1924 /*
1925 * acquire a transaction lock on the new right page
1926 */
1927 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1928 dtlck = (struct dt_lock *) & tlck->lock;
1929
1930 rp->header.flag =
1931 (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1932 rp->header.self = *pxd;
1933
1934 /* initialize sibling pointers */
1935 rp->header.next = 0;
1936 rp->header.prev = 0;
1937
1938 /*
1939 * move in-line root page into new right page extent
1940 */
1941 /* linelock header + copied entries + new stbl (1st slot) in new page */
1942 ASSERT(dtlck->index == 0);
1943 lv = & dtlck->lv[0];
1944 lv->offset = 0;
1945 lv->length = 10; /* 1 + 8 + 1 */
1946 dtlck->index++;
1947
1948 n = xsize >> L2DTSLOTSIZE;
1949 rp->header.maxslot = n;
1950 stblsize = (n + 31) >> L2DTSLOTSIZE;
1951
1952 /* copy old stbl to new stbl at start of extended area */
1953 rp->header.stblindex = DTROOTMAXSLOT;
1954 stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1955 memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1956 rp->header.nextindex = sp->header.nextindex;
1957
1958 /* copy old data area to start of new data area */
1959 memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1960
1961 /*
1962 * append free region of newly extended area at tail of freelist
1963 */
1964 /* init free region of newly extended area */
1965 fsi = n = DTROOTMAXSLOT + stblsize;
1966 f = &rp->slot[fsi];
1967 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1968 f->next = fsi;
1969 f->next = -1;
1970
1971 /* append new free region at tail of old freelist */
1972 fsi = sp->header.freelist;
1973 if (fsi == -1)
1974 rp->header.freelist = n;
1975 else {
1976 rp->header.freelist = fsi;
1977
1978 do {
1979 f = &rp->slot[fsi];
1980 fsi = f->next;
1981 } while (fsi >= 0);
1982
1983 f->next = n;
1984 }
1985
1986 rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1987
1988 /*
1989 * Update directory index table for entries now in right page
1990 */
1991 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1992 s64 lblock;
1993 struct metapage *mp = NULL;
1994 struct ldtentry *ldtentry;
1995
1996 stbl = DT_GETSTBL(rp);
1997 for (n = 0; n < rp->header.nextindex; n++) {
1998 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1999 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
2000 rbn, n, &mp, &lblock);
2001 }
2002 if (mp)
2003 release_metapage(mp);
2004 }
2005 /*
2006 * insert the new entry into the new right/child page
2007 * (skip index in the new right page will not change)
2008 */
2009 dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2010
2011 /*
2012 * reset parent/root page
2013 *
2014 * set the 1st entry offset to 0, which force the left-most key
2015 * at any level of the tree to be less than any search key.
2016 *
2017 * The btree comparison code guarantees that the left-most key on any
2018 * level of the tree is never used, so it doesn't need to be filled in.
2019 */
2020 BT_MARK_DIRTY(smp, ip);
2021 /*
2022 * acquire a transaction lock on the root page (in-memory inode)
2023 */
2024 tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2025 dtlck = (struct dt_lock *) & tlck->lock;
2026
2027 /* linelock root */
2028 ASSERT(dtlck->index == 0);
2029 lv = & dtlck->lv[0];
2030 lv->offset = 0;
2031 lv->length = DTROOTMAXSLOT;
2032 dtlck->index++;
2033
2034 /* update page header of root */
2035 if (sp->header.flag & BT_LEAF) {
2036 sp->header.flag &= ~BT_LEAF;
2037 sp->header.flag |= BT_INTERNAL;
2038 }
2039
2040 /* init the first entry */
2041 s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2042 ppxd = (pxd_t *) s;
2043 *ppxd = *pxd;
2044 s->next = -1;
2045 s->namlen = 0;
2046
2047 stbl = sp->header.stbl;
2048 stbl[0] = DTENTRYSTART;
2049 sp->header.nextindex = 1;
2050
2051 /* init freelist */
2052 fsi = DTENTRYSTART + 1;
2053 f = &sp->slot[fsi];
2054
2055 /* init free region of remaining area */
2056 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2057 f->next = fsi;
2058 f->next = -1;
2059
2060 sp->header.freelist = DTENTRYSTART + 1;
2061 sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2062
2063 *rmpp = rmp;
2064
2065 return 0;
2066}
2067
2068
2069/*
2070 * dtDelete()
2071 *
2072 * function: delete the entry(s) referenced by a key.
2073 *
2074 * parameter:
2075 *
2076 * return:
2077 */
2078int dtDelete(tid_t tid,
2079 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2080{
2081 int rc = 0;
2082 s64 bn;
2083 struct metapage *mp, *imp;
2084 dtpage_t *p;
2085 int index;
2086 struct btstack btstack;
2087 struct dt_lock *dtlck;
2088 struct tlock *tlck;
2089 struct lv *lv;
2090 int i;
2091 struct ldtentry *ldtentry;
2092 u8 *stbl;
2093 u32 table_index, next_index;
2094 struct metapage *nmp;
2095 dtpage_t *np;
2096
2097 /*
2098 * search for the entry to delete:
2099 *
2100 * dtSearch() returns (leaf page pinned, index at which to delete).
2101 */
2102 if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2103 return rc;
2104
2105 /* retrieve search result */
2106 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2107
2108 /*
2109 * We need to find put the index of the next entry into the
2110 * directory index table in order to resume a readdir from this
2111 * entry.
2112 */
2113 if (DO_INDEX(ip)) {
2114 stbl = DT_GETSTBL(p);
2115 ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2116 table_index = le32_to_cpu(ldtentry->index);
2117 if (index == (p->header.nextindex - 1)) {
2118 /*
2119 * Last entry in this leaf page
2120 */
2121 if ((p->header.flag & BT_ROOT)
2122 || (p->header.next == 0))
2123 next_index = -1;
2124 else {
2125 /* Read next leaf page */
2126 DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2127 nmp, PSIZE, np, rc);
2128 if (rc)
2129 next_index = -1;
2130 else {
2131 stbl = DT_GETSTBL(np);
2132 ldtentry =
2133 (struct ldtentry *) & np->
2134 slot[stbl[0]];
2135 next_index =
2136 le32_to_cpu(ldtentry->index);
2137 DT_PUTPAGE(nmp);
2138 }
2139 }
2140 } else {
2141 ldtentry =
2142 (struct ldtentry *) & p->slot[stbl[index + 1]];
2143 next_index = le32_to_cpu(ldtentry->index);
2144 }
2145 free_index(tid, ip, table_index, next_index);
2146 }
2147 /*
2148 * the leaf page becomes empty, delete the page
2149 */
2150 if (p->header.nextindex == 1) {
2151 /* delete empty page */
2152 rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2153 }
2154 /*
2155 * the leaf page has other entries remaining:
2156 *
2157 * delete the entry from the leaf page.
2158 */
2159 else {
2160 BT_MARK_DIRTY(mp, ip);
2161 /*
2162 * acquire a transaction lock on the leaf page
2163 */
2164 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2165 dtlck = (struct dt_lock *) & tlck->lock;
2166
2167 /*
2168 * Do not assume that dtlck->index will be zero. During a
2169 * rename within a directory, this transaction may have
2170 * modified this page already when adding the new entry.
2171 */
2172
2173 /* linelock header */
2174 if (dtlck->index >= dtlck->maxcnt)
2175 dtlck = (struct dt_lock *) txLinelock(dtlck);
2176 lv = & dtlck->lv[dtlck->index];
2177 lv->offset = 0;
2178 lv->length = 1;
2179 dtlck->index++;
2180
2181 /* linelock stbl of non-root leaf page */
2182 if (!(p->header.flag & BT_ROOT)) {
2183 if (dtlck->index >= dtlck->maxcnt)
2184 dtlck = (struct dt_lock *) txLinelock(dtlck);
2185 lv = & dtlck->lv[dtlck->index];
2186 i = index >> L2DTSLOTSIZE;
2187 lv->offset = p->header.stblindex + i;
2188 lv->length =
2189 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2190 i + 1;
2191 dtlck->index++;
2192 }
2193
2194 /* free the leaf entry */
2195 dtDeleteEntry(p, index, &dtlck);
2196
2197 /*
2198 * Update directory index table for entries moved in stbl
2199 */
2200 if (DO_INDEX(ip) && index < p->header.nextindex) {
2201 s64 lblock;
2202
2203 imp = NULL;
2204 stbl = DT_GETSTBL(p);
2205 for (i = index; i < p->header.nextindex; i++) {
2206 ldtentry =
2207 (struct ldtentry *) & p->slot[stbl[i]];
2208 modify_index(tid, ip,
2209 le32_to_cpu(ldtentry->index),
2210 bn, i, &imp, &lblock);
2211 }
2212 if (imp)
2213 release_metapage(imp);
2214 }
2215
2216 DT_PUTPAGE(mp);
2217 }
2218
2219 return rc;
2220}
2221
2222
2223/*
2224 * dtDeleteUp()
2225 *
2226 * function:
2227 * free empty pages as propagating deletion up the tree
2228 *
2229 * parameter:
2230 *
2231 * return:
2232 */
2233static int dtDeleteUp(tid_t tid, struct inode *ip,
2234 struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2235{
2236 int rc = 0;
2237 struct metapage *mp;
2238 dtpage_t *p;
2239 int index, nextindex;
2240 int xlen;
2241 struct btframe *parent;
2242 struct dt_lock *dtlck;
2243 struct tlock *tlck;
2244 struct lv *lv;
2245 struct pxd_lock *pxdlock;
2246 int i;
2247
2248 /*
2249 * keep the root leaf page which has become empty
2250 */
2251 if (BT_IS_ROOT(fmp)) {
2252 /*
2253 * reset the root
2254 *
2255 * dtInitRoot() acquires txlock on the root
2256 */
2257 dtInitRoot(tid, ip, PARENT(ip));
2258
2259 DT_PUTPAGE(fmp);
2260
2261 return 0;
2262 }
2263
2264 /*
2265 * free the non-root leaf page
2266 */
2267 /*
2268 * acquire a transaction lock on the page
2269 *
2270 * write FREEXTENT|NOREDOPAGE log record
2271 * N.B. linelock is overlaid as freed extent descriptor, and
2272 * the buffer page is freed;
2273 */
2274 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2275 pxdlock = (struct pxd_lock *) & tlck->lock;
2276 pxdlock->flag = mlckFREEPXD;
2277 pxdlock->pxd = fp->header.self;
2278 pxdlock->index = 1;
2279
2280 /* update sibling pointers */
2281 if ((rc = dtRelink(tid, ip, fp))) {
2282 BT_PUTPAGE(fmp);
2283 return rc;
2284 }
2285
2286 xlen = lengthPXD(&fp->header.self);
2287
2288 /* Free quota allocation. */
2289 dquot_free_block(ip, xlen);
2290
2291 /* free/invalidate its buffer page */
2292 discard_metapage(fmp);
2293
2294 /*
2295 * propagate page deletion up the directory tree
2296 *
2297 * If the delete from the parent page makes it empty,
2298 * continue all the way up the tree.
2299 * stop if the root page is reached (which is never deleted) or
2300 * if the entry deletion does not empty the page.
2301 */
2302 while ((parent = BT_POP(btstack)) != NULL) {
2303 /* pin the parent page <sp> */
2304 DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2305 if (rc)
2306 return rc;
2307
2308 /*
2309 * free the extent of the child page deleted
2310 */
2311 index = parent->index;
2312
2313 /*
2314 * delete the entry for the child page from parent
2315 */
2316 nextindex = p->header.nextindex;
2317
2318 /*
2319 * the parent has the single entry being deleted:
2320 *
2321 * free the parent page which has become empty.
2322 */
2323 if (nextindex == 1) {
2324 /*
2325 * keep the root internal page which has become empty
2326 */
2327 if (p->header.flag & BT_ROOT) {
2328 /*
2329 * reset the root
2330 *
2331 * dtInitRoot() acquires txlock on the root
2332 */
2333 dtInitRoot(tid, ip, PARENT(ip));
2334
2335 DT_PUTPAGE(mp);
2336
2337 return 0;
2338 }
2339 /*
2340 * free the parent page
2341 */
2342 else {
2343 /*
2344 * acquire a transaction lock on the page
2345 *
2346 * write FREEXTENT|NOREDOPAGE log record
2347 */
2348 tlck =
2349 txMaplock(tid, ip,
2350 tlckDTREE | tlckFREE);
2351 pxdlock = (struct pxd_lock *) & tlck->lock;
2352 pxdlock->flag = mlckFREEPXD;
2353 pxdlock->pxd = p->header.self;
2354 pxdlock->index = 1;
2355
2356 /* update sibling pointers */
2357 if ((rc = dtRelink(tid, ip, p))) {
2358 DT_PUTPAGE(mp);
2359 return rc;
2360 }
2361
2362 xlen = lengthPXD(&p->header.self);
2363
2364 /* Free quota allocation */
2365 dquot_free_block(ip, xlen);
2366
2367 /* free/invalidate its buffer page */
2368 discard_metapage(mp);
2369
2370 /* propagate up */
2371 continue;
2372 }
2373 }
2374
2375 /*
2376 * the parent has other entries remaining:
2377 *
2378 * delete the router entry from the parent page.
2379 */
2380 BT_MARK_DIRTY(mp, ip);
2381 /*
2382 * acquire a transaction lock on the page
2383 *
2384 * action: router entry deletion
2385 */
2386 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2387 dtlck = (struct dt_lock *) & tlck->lock;
2388
2389 /* linelock header */
2390 if (dtlck->index >= dtlck->maxcnt)
2391 dtlck = (struct dt_lock *) txLinelock(dtlck);
2392 lv = & dtlck->lv[dtlck->index];
2393 lv->offset = 0;
2394 lv->length = 1;
2395 dtlck->index++;
2396
2397 /* linelock stbl of non-root leaf page */
2398 if (!(p->header.flag & BT_ROOT)) {
2399 if (dtlck->index < dtlck->maxcnt)
2400 lv++;
2401 else {
2402 dtlck = (struct dt_lock *) txLinelock(dtlck);
2403 lv = & dtlck->lv[0];
2404 }
2405 i = index >> L2DTSLOTSIZE;
2406 lv->offset = p->header.stblindex + i;
2407 lv->length =
2408 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2409 i + 1;
2410 dtlck->index++;
2411 }
2412
2413 /* free the router entry */
2414 dtDeleteEntry(p, index, &dtlck);
2415
2416 /* reset key of new leftmost entry of level (for consistency) */
2417 if (index == 0 &&
2418 ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2419 dtTruncateEntry(p, 0, &dtlck);
2420
2421 /* unpin the parent page */
2422 DT_PUTPAGE(mp);
2423
2424 /* exit propagation up */
2425 break;
2426 }
2427
2428 if (!DO_INDEX(ip))
2429 ip->i_size -= PSIZE;
2430
2431 return 0;
2432}
2433
2434/*
2435 * dtRelink()
2436 *
2437 * function:
2438 * link around a freed page.
2439 *
2440 * parameter:
2441 * fp: page to be freed
2442 *
2443 * return:
2444 */
2445static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2446{
2447 int rc;
2448 struct metapage *mp;
2449 s64 nextbn, prevbn;
2450 struct tlock *tlck;
2451 struct dt_lock *dtlck;
2452 struct lv *lv;
2453
2454 nextbn = le64_to_cpu(p->header.next);
2455 prevbn = le64_to_cpu(p->header.prev);
2456
2457 /* update prev pointer of the next page */
2458 if (nextbn != 0) {
2459 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2460 if (rc)
2461 return rc;
2462
2463 BT_MARK_DIRTY(mp, ip);
2464 /*
2465 * acquire a transaction lock on the next page
2466 *
2467 * action: update prev pointer;
2468 */
2469 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2470 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2471 tlck, ip, mp);
2472 dtlck = (struct dt_lock *) & tlck->lock;
2473
2474 /* linelock header */
2475 if (dtlck->index >= dtlck->maxcnt)
2476 dtlck = (struct dt_lock *) txLinelock(dtlck);
2477 lv = & dtlck->lv[dtlck->index];
2478 lv->offset = 0;
2479 lv->length = 1;
2480 dtlck->index++;
2481
2482 p->header.prev = cpu_to_le64(prevbn);
2483 DT_PUTPAGE(mp);
2484 }
2485
2486 /* update next pointer of the previous page */
2487 if (prevbn != 0) {
2488 DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2489 if (rc)
2490 return rc;
2491
2492 BT_MARK_DIRTY(mp, ip);
2493 /*
2494 * acquire a transaction lock on the prev page
2495 *
2496 * action: update next pointer;
2497 */
2498 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2499 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2500 tlck, ip, mp);
2501 dtlck = (struct dt_lock *) & tlck->lock;
2502
2503 /* linelock header */
2504 if (dtlck->index >= dtlck->maxcnt)
2505 dtlck = (struct dt_lock *) txLinelock(dtlck);
2506 lv = & dtlck->lv[dtlck->index];
2507 lv->offset = 0;
2508 lv->length = 1;
2509 dtlck->index++;
2510
2511 p->header.next = cpu_to_le64(nextbn);
2512 DT_PUTPAGE(mp);
2513 }
2514
2515 return 0;
2516}
2517
2518
2519/*
2520 * dtInitRoot()
2521 *
2522 * initialize directory root (inline in inode)
2523 */
2524void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2525{
2526 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2527 dtroot_t *p;
2528 int fsi;
2529 struct dtslot *f;
2530 struct tlock *tlck;
2531 struct dt_lock *dtlck;
2532 struct lv *lv;
2533 u16 xflag_save;
2534
2535 /*
2536 * If this was previously an non-empty directory, we need to remove
2537 * the old directory table.
2538 */
2539 if (DO_INDEX(ip)) {
2540 if (!jfs_dirtable_inline(ip)) {
2541 struct tblock *tblk = tid_to_tblock(tid);
2542 /*
2543 * We're playing games with the tid's xflag. If
2544 * we're removing a regular file, the file's xtree
2545 * is committed with COMMIT_PMAP, but we always
2546 * commit the directories xtree with COMMIT_PWMAP.
2547 */
2548 xflag_save = tblk->xflag;
2549 tblk->xflag = 0;
2550 /*
2551 * xtTruncate isn't guaranteed to fully truncate
2552 * the xtree. The caller needs to check i_size
2553 * after committing the transaction to see if
2554 * additional truncation is needed. The
2555 * COMMIT_Stale flag tells caller that we
2556 * initiated the truncation.
2557 */
2558 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2559 set_cflag(COMMIT_Stale, ip);
2560
2561 tblk->xflag = xflag_save;
2562 } else
2563 ip->i_size = 1;
2564
2565 jfs_ip->next_index = 2;
2566 } else
2567 ip->i_size = IDATASIZE;
2568
2569 /*
2570 * acquire a transaction lock on the root
2571 *
2572 * action: directory initialization;
2573 */
2574 tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2575 tlckDTREE | tlckENTRY | tlckBTROOT);
2576 dtlck = (struct dt_lock *) & tlck->lock;
2577
2578 /* linelock root */
2579 ASSERT(dtlck->index == 0);
2580 lv = & dtlck->lv[0];
2581 lv->offset = 0;
2582 lv->length = DTROOTMAXSLOT;
2583 dtlck->index++;
2584
2585 p = &jfs_ip->i_dtroot;
2586
2587 p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2588
2589 p->header.nextindex = 0;
2590
2591 /* init freelist */
2592 fsi = 1;
2593 f = &p->slot[fsi];
2594
2595 /* init data area of root */
2596 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2597 f->next = fsi;
2598 f->next = -1;
2599
2600 p->header.freelist = 1;
2601 p->header.freecnt = 8;
2602
2603 /* init '..' entry */
2604 p->header.idotdot = cpu_to_le32(idotdot);
2605
2606 return;
2607}
2608
2609/*
2610 * add_missing_indices()
2611 *
2612 * function: Fix dtree page in which one or more entries has an invalid index.
2613 * fsck.jfs should really fix this, but it currently does not.
2614 * Called from jfs_readdir when bad index is detected.
2615 */
2616static int add_missing_indices(struct inode *inode, s64 bn)
2617{
2618 struct ldtentry *d;
2619 struct dt_lock *dtlck;
2620 int i;
2621 uint index;
2622 struct lv *lv;
2623 struct metapage *mp;
2624 dtpage_t *p;
2625 int rc = 0;
2626 s8 *stbl;
2627 tid_t tid;
2628 struct tlock *tlck;
2629
2630 tid = txBegin(inode->i_sb, 0);
2631
2632 DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2633
2634 if (rc) {
2635 printk(KERN_ERR "DT_GETPAGE failed!\n");
2636 goto end;
2637 }
2638 BT_MARK_DIRTY(mp, inode);
2639
2640 ASSERT(p->header.flag & BT_LEAF);
2641
2642 tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2643 if (BT_IS_ROOT(mp))
2644 tlck->type |= tlckBTROOT;
2645
2646 dtlck = (struct dt_lock *) &tlck->lock;
2647
2648 stbl = DT_GETSTBL(p);
2649 for (i = 0; i < p->header.nextindex; i++) {
2650 if (stbl[i] < 0) {
2651 jfs_err("jfs: add_missing_indices: Invalid stbl[%d] = %d for inode %ld, block = %lld",
2652 i, stbl[i], (long)inode->i_ino, (long long)bn);
2653 rc = -EIO;
2654
2655 DT_PUTPAGE(mp);
2656 txAbort(tid, 0);
2657 goto end;
2658 }
2659
2660 d = (struct ldtentry *) &p->slot[stbl[i]];
2661 index = le32_to_cpu(d->index);
2662 if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2663 d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2664 if (dtlck->index >= dtlck->maxcnt)
2665 dtlck = (struct dt_lock *) txLinelock(dtlck);
2666 lv = &dtlck->lv[dtlck->index];
2667 lv->offset = stbl[i];
2668 lv->length = 1;
2669 dtlck->index++;
2670 }
2671 }
2672
2673 DT_PUTPAGE(mp);
2674 (void) txCommit(tid, 1, &inode, 0);
2675end:
2676 txEnd(tid);
2677 return rc;
2678}
2679
2680/*
2681 * Buffer to hold directory entry info while traversing a dtree page
2682 * before being fed to the filldir function
2683 */
2684struct jfs_dirent {
2685 loff_t position;
2686 int ino;
2687 u16 name_len;
2688 char name[];
2689};
2690
2691/*
2692 * function to determine next variable-sized jfs_dirent in buffer
2693 */
2694static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2695{
2696 return (struct jfs_dirent *)
2697 ((char *)dirent +
2698 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2699 sizeof (loff_t) - 1) &
2700 ~(sizeof (loff_t) - 1)));
2701}
2702
2703/*
2704 * jfs_readdir()
2705 *
2706 * function: read directory entries sequentially
2707 * from the specified entry offset
2708 *
2709 * parameter:
2710 *
2711 * return: offset = (pn, index) of start entry
2712 * of next jfs_readdir()/dtRead()
2713 */
2714int jfs_readdir(struct file *file, struct dir_context *ctx)
2715{
2716 struct inode *ip = file_inode(file);
2717 struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
2718 int rc = 0;
2719 loff_t dtpos; /* legacy OS/2 style position */
2720 struct dtoffset {
2721 s16 pn;
2722 s16 index;
2723 s32 unused;
2724 } *dtoffset = (struct dtoffset *) &dtpos;
2725 s64 bn;
2726 struct metapage *mp;
2727 dtpage_t *p;
2728 int index;
2729 s8 *stbl;
2730 struct btstack btstack;
2731 int i, next;
2732 struct ldtentry *d;
2733 struct dtslot *t;
2734 int d_namleft, len, outlen;
2735 unsigned long dirent_buf;
2736 char *name_ptr;
2737 u32 dir_index;
2738 int do_index = 0;
2739 uint loop_count = 0;
2740 struct jfs_dirent *jfs_dirent;
2741 int jfs_dirents;
2742 int overflow, fix_page, page_fixed = 0;
2743 static int unique_pos = 2; /* If we can't fix broken index */
2744
2745 if (ctx->pos == DIREND)
2746 return 0;
2747
2748 if (DO_INDEX(ip)) {
2749 /*
2750 * persistent index is stored in directory entries.
2751 * Special cases: 0 = .
2752 * 1 = ..
2753 * -1 = End of directory
2754 */
2755 do_index = 1;
2756
2757 dir_index = (u32) ctx->pos;
2758
2759 /*
2760 * NFSv4 reserves cookies 1 and 2 for . and .. so the value
2761 * we return to the vfs is one greater than the one we use
2762 * internally.
2763 */
2764 if (dir_index)
2765 dir_index--;
2766
2767 if (dir_index > 1) {
2768 struct dir_table_slot dirtab_slot;
2769
2770 if (dtEmpty(ip) ||
2771 (dir_index >= JFS_IP(ip)->next_index)) {
2772 /* Stale position. Directory has shrunk */
2773 ctx->pos = DIREND;
2774 return 0;
2775 }
2776 repeat:
2777 rc = read_index(ip, dir_index, &dirtab_slot);
2778 if (rc) {
2779 ctx->pos = DIREND;
2780 return rc;
2781 }
2782 if (dirtab_slot.flag == DIR_INDEX_FREE) {
2783 if (loop_count++ > JFS_IP(ip)->next_index) {
2784 jfs_err("jfs_readdir detected infinite loop!");
2785 ctx->pos = DIREND;
2786 return 0;
2787 }
2788 dir_index = le32_to_cpu(dirtab_slot.addr2);
2789 if (dir_index == -1) {
2790 ctx->pos = DIREND;
2791 return 0;
2792 }
2793 goto repeat;
2794 }
2795 bn = addressDTS(&dirtab_slot);
2796 index = dirtab_slot.slot;
2797 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2798 if (rc) {
2799 ctx->pos = DIREND;
2800 return 0;
2801 }
2802 if (p->header.flag & BT_INTERNAL) {
2803 jfs_err("jfs_readdir: bad index table");
2804 DT_PUTPAGE(mp);
2805 ctx->pos = DIREND;
2806 return 0;
2807 }
2808 } else {
2809 if (dir_index == 0) {
2810 /*
2811 * self "."
2812 */
2813 ctx->pos = 1;
2814 if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
2815 return 0;
2816 }
2817 /*
2818 * parent ".."
2819 */
2820 ctx->pos = 2;
2821 if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
2822 return 0;
2823
2824 /*
2825 * Find first entry of left-most leaf
2826 */
2827 if (dtEmpty(ip)) {
2828 ctx->pos = DIREND;
2829 return 0;
2830 }
2831
2832 if ((rc = dtReadFirst(ip, &btstack)))
2833 return rc;
2834
2835 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2836 }
2837 } else {
2838 /*
2839 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
2840 *
2841 * pn = 0; index = 1: First entry "."
2842 * pn = 0; index = 2: Second entry ".."
2843 * pn > 0: Real entries, pn=1 -> leftmost page
2844 * pn = index = -1: No more entries
2845 */
2846 dtpos = ctx->pos;
2847 if (dtpos < 2) {
2848 /* build "." entry */
2849 ctx->pos = 1;
2850 if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
2851 return 0;
2852 dtoffset->index = 2;
2853 ctx->pos = dtpos;
2854 }
2855
2856 if (dtoffset->pn == 0) {
2857 if (dtoffset->index == 2) {
2858 /* build ".." entry */
2859 if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
2860 return 0;
2861 } else {
2862 jfs_err("jfs_readdir called with invalid offset!");
2863 }
2864 dtoffset->pn = 1;
2865 dtoffset->index = 0;
2866 ctx->pos = dtpos;
2867 }
2868
2869 if (dtEmpty(ip)) {
2870 ctx->pos = DIREND;
2871 return 0;
2872 }
2873
2874 if ((rc = dtReadNext(ip, &ctx->pos, &btstack))) {
2875 jfs_err("jfs_readdir: unexpected rc = %d from dtReadNext",
2876 rc);
2877 ctx->pos = DIREND;
2878 return 0;
2879 }
2880 /* get start leaf page and index */
2881 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2882
2883 /* offset beyond directory eof ? */
2884 if (bn < 0) {
2885 ctx->pos = DIREND;
2886 return 0;
2887 }
2888 }
2889
2890 dirent_buf = __get_free_page(GFP_KERNEL);
2891 if (dirent_buf == 0) {
2892 DT_PUTPAGE(mp);
2893 jfs_warn("jfs_readdir: __get_free_page failed!");
2894 ctx->pos = DIREND;
2895 return -ENOMEM;
2896 }
2897
2898 while (1) {
2899 jfs_dirent = (struct jfs_dirent *) dirent_buf;
2900 jfs_dirents = 0;
2901 overflow = fix_page = 0;
2902
2903 stbl = DT_GETSTBL(p);
2904
2905 for (i = index; i < p->header.nextindex; i++) {
2906 if (stbl[i] < 0 || stbl[i] > 127) {
2907 jfs_err("JFS: Invalid stbl[%d] = %d for inode %ld, block = %lld",
2908 i, stbl[i], (long)ip->i_ino, (long long)bn);
2909 free_page(dirent_buf);
2910 DT_PUTPAGE(mp);
2911 return -EIO;
2912 }
2913
2914 d = (struct ldtentry *) & p->slot[stbl[i]];
2915
2916 if (((long) jfs_dirent + d->namlen + 1) >
2917 (dirent_buf + PAGE_SIZE)) {
2918 /* DBCS codepages could overrun dirent_buf */
2919 index = i;
2920 overflow = 1;
2921 break;
2922 }
2923
2924 d_namleft = d->namlen;
2925 name_ptr = jfs_dirent->name;
2926 jfs_dirent->ino = le32_to_cpu(d->inumber);
2927
2928 if (do_index) {
2929 len = min(d_namleft, DTLHDRDATALEN);
2930 jfs_dirent->position = le32_to_cpu(d->index);
2931 /*
2932 * d->index should always be valid, but it
2933 * isn't. fsck.jfs doesn't create the
2934 * directory index for the lost+found
2935 * directory. Rather than let it go,
2936 * we can try to fix it.
2937 */
2938 if ((jfs_dirent->position < 2) ||
2939 (jfs_dirent->position >=
2940 JFS_IP(ip)->next_index)) {
2941 if (!page_fixed && !isReadOnly(ip)) {
2942 fix_page = 1;
2943 /*
2944 * setting overflow and setting
2945 * index to i will cause the
2946 * same page to be processed
2947 * again starting here
2948 */
2949 overflow = 1;
2950 index = i;
2951 break;
2952 }
2953 jfs_dirent->position = unique_pos++;
2954 }
2955 /*
2956 * We add 1 to the index because we may
2957 * use a value of 2 internally, and NFSv4
2958 * doesn't like that.
2959 */
2960 jfs_dirent->position++;
2961 } else {
2962 jfs_dirent->position = dtpos;
2963 len = min(d_namleft, DTLHDRDATALEN_LEGACY);
2964 }
2965
2966 /* copy the name of head/only segment */
2967 outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
2968 codepage);
2969 jfs_dirent->name_len = outlen;
2970
2971 /* copy name in the additional segment(s) */
2972 next = d->next;
2973 while (next >= 0) {
2974 t = (struct dtslot *) & p->slot[next];
2975 name_ptr += outlen;
2976 d_namleft -= len;
2977 /* Sanity Check */
2978 if (d_namleft == 0) {
2979 jfs_error(ip->i_sb,
2980 "JFS:Dtree error: ino = %ld, bn=%lld, index = %d\n",
2981 (long)ip->i_ino,
2982 (long long)bn,
2983 i);
2984 goto skip_one;
2985 }
2986 len = min(d_namleft, DTSLOTDATALEN);
2987 outlen = jfs_strfromUCS_le(name_ptr, t->name,
2988 len, codepage);
2989 jfs_dirent->name_len += outlen;
2990
2991 next = t->next;
2992 }
2993
2994 jfs_dirents++;
2995 jfs_dirent = next_jfs_dirent(jfs_dirent);
2996skip_one:
2997 if (!do_index)
2998 dtoffset->index++;
2999 }
3000
3001 if (!overflow) {
3002 /* Point to next leaf page */
3003 if (p->header.flag & BT_ROOT)
3004 bn = 0;
3005 else {
3006 bn = le64_to_cpu(p->header.next);
3007 index = 0;
3008 /* update offset (pn:index) for new page */
3009 if (!do_index) {
3010 dtoffset->pn++;
3011 dtoffset->index = 0;
3012 }
3013 }
3014 page_fixed = 0;
3015 }
3016
3017 /* unpin previous leaf page */
3018 DT_PUTPAGE(mp);
3019
3020 jfs_dirent = (struct jfs_dirent *) dirent_buf;
3021 while (jfs_dirents--) {
3022 ctx->pos = jfs_dirent->position;
3023 if (!dir_emit(ctx, jfs_dirent->name,
3024 jfs_dirent->name_len,
3025 jfs_dirent->ino, DT_UNKNOWN))
3026 goto out;
3027 jfs_dirent = next_jfs_dirent(jfs_dirent);
3028 }
3029
3030 if (fix_page) {
3031 if ((rc = add_missing_indices(ip, bn)))
3032 goto out;
3033 page_fixed = 1;
3034 }
3035
3036 if (!overflow && (bn == 0)) {
3037 ctx->pos = DIREND;
3038 break;
3039 }
3040
3041 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3042 if (rc) {
3043 free_page(dirent_buf);
3044 return rc;
3045 }
3046 }
3047
3048 out:
3049 free_page(dirent_buf);
3050
3051 return rc;
3052}
3053
3054
3055/*
3056 * dtReadFirst()
3057 *
3058 * function: get the leftmost page of the directory
3059 */
3060static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3061{
3062 int rc = 0;
3063 s64 bn;
3064 int psize = 288; /* initial in-line directory */
3065 struct metapage *mp;
3066 dtpage_t *p;
3067 s8 *stbl;
3068 struct btframe *btsp;
3069 pxd_t *xd;
3070
3071 BT_CLR(btstack); /* reset stack */
3072
3073 /*
3074 * descend leftmost path of the tree
3075 *
3076 * by convention, root bn = 0.
3077 */
3078 for (bn = 0;;) {
3079 DT_GETPAGE(ip, bn, mp, psize, p, rc);
3080 if (rc)
3081 return rc;
3082
3083 /*
3084 * leftmost leaf page
3085 */
3086 if (p->header.flag & BT_LEAF) {
3087 /* return leftmost entry */
3088 btsp = btstack->top;
3089 btsp->bn = bn;
3090 btsp->index = 0;
3091 btsp->mp = mp;
3092
3093 return 0;
3094 }
3095
3096 /*
3097 * descend down to leftmost child page
3098 */
3099 if (BT_STACK_FULL(btstack)) {
3100 DT_PUTPAGE(mp);
3101 jfs_error(ip->i_sb, "btstack overrun\n");
3102 BT_STACK_DUMP(btstack);
3103 return -EIO;
3104 }
3105 /* push (bn, index) of the parent page/entry */
3106 BT_PUSH(btstack, bn, 0);
3107
3108 /* get the leftmost entry */
3109 stbl = DT_GETSTBL(p);
3110
3111 if (stbl[0] < 0 || stbl[0] > 127) {
3112 DT_PUTPAGE(mp);
3113 jfs_error(ip->i_sb, "stbl[0] out of bound\n");
3114 return -EIO;
3115 }
3116
3117 xd = (pxd_t *) & p->slot[stbl[0]];
3118
3119 /* get the child page block address */
3120 bn = addressPXD(xd);
3121 psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3122
3123 /* unpin the parent page */
3124 DT_PUTPAGE(mp);
3125 }
3126}
3127
3128
3129/*
3130 * dtReadNext()
3131 *
3132 * function: get the page of the specified offset (pn:index)
3133 *
3134 * return: if (offset > eof), bn = -1;
3135 *
3136 * note: if index > nextindex of the target leaf page,
3137 * start with 1st entry of next leaf page;
3138 */
3139static int dtReadNext(struct inode *ip, loff_t * offset,
3140 struct btstack * btstack)
3141{
3142 int rc = 0;
3143 struct dtoffset {
3144 s16 pn;
3145 s16 index;
3146 s32 unused;
3147 } *dtoffset = (struct dtoffset *) offset;
3148 s64 bn;
3149 struct metapage *mp;
3150 dtpage_t *p;
3151 int index;
3152 int pn;
3153 s8 *stbl;
3154 struct btframe *btsp, *parent;
3155 pxd_t *xd;
3156
3157 /*
3158 * get leftmost leaf page pinned
3159 */
3160 if ((rc = dtReadFirst(ip, btstack)))
3161 return rc;
3162
3163 /* get leaf page */
3164 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3165
3166 /* get the start offset (pn:index) */
3167 pn = dtoffset->pn - 1; /* Now pn = 0 represents leftmost leaf */
3168 index = dtoffset->index;
3169
3170 /* start at leftmost page ? */
3171 if (pn == 0) {
3172 /* offset beyond eof ? */
3173 if (index < p->header.nextindex)
3174 goto out;
3175
3176 if (p->header.flag & BT_ROOT) {
3177 bn = -1;
3178 goto out;
3179 }
3180
3181 /* start with 1st entry of next leaf page */
3182 dtoffset->pn++;
3183 dtoffset->index = index = 0;
3184 goto a;
3185 }
3186
3187 /* start at non-leftmost page: scan parent pages for large pn */
3188 if (p->header.flag & BT_ROOT) {
3189 bn = -1;
3190 goto out;
3191 }
3192
3193 /* start after next leaf page ? */
3194 if (pn > 1)
3195 goto b;
3196
3197 /* get leaf page pn = 1 */
3198 a:
3199 bn = le64_to_cpu(p->header.next);
3200
3201 /* unpin leaf page */
3202 DT_PUTPAGE(mp);
3203
3204 /* offset beyond eof ? */
3205 if (bn == 0) {
3206 bn = -1;
3207 goto out;
3208 }
3209
3210 goto c;
3211
3212 /*
3213 * scan last internal page level to get target leaf page
3214 */
3215 b:
3216 /* unpin leftmost leaf page */
3217 DT_PUTPAGE(mp);
3218
3219 /* get left most parent page */
3220 btsp = btstack->top;
3221 parent = btsp - 1;
3222 bn = parent->bn;
3223 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3224 if (rc)
3225 return rc;
3226
3227 /* scan parent pages at last internal page level */
3228 while (pn >= p->header.nextindex) {
3229 pn -= p->header.nextindex;
3230
3231 /* get next parent page address */
3232 bn = le64_to_cpu(p->header.next);
3233
3234 /* unpin current parent page */
3235 DT_PUTPAGE(mp);
3236
3237 /* offset beyond eof ? */
3238 if (bn == 0) {
3239 bn = -1;
3240 goto out;
3241 }
3242
3243 /* get next parent page */
3244 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3245 if (rc)
3246 return rc;
3247
3248 /* update parent page stack frame */
3249 parent->bn = bn;
3250 }
3251
3252 /* get leaf page address */
3253 stbl = DT_GETSTBL(p);
3254 xd = (pxd_t *) & p->slot[stbl[pn]];
3255 bn = addressPXD(xd);
3256
3257 /* unpin parent page */
3258 DT_PUTPAGE(mp);
3259
3260 /*
3261 * get target leaf page
3262 */
3263 c:
3264 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3265 if (rc)
3266 return rc;
3267
3268 /*
3269 * leaf page has been completed:
3270 * start with 1st entry of next leaf page
3271 */
3272 if (index >= p->header.nextindex) {
3273 bn = le64_to_cpu(p->header.next);
3274
3275 /* unpin leaf page */
3276 DT_PUTPAGE(mp);
3277
3278 /* offset beyond eof ? */
3279 if (bn == 0) {
3280 bn = -1;
3281 goto out;
3282 }
3283
3284 /* get next leaf page */
3285 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3286 if (rc)
3287 return rc;
3288
3289 /* start with 1st entry of next leaf page */
3290 dtoffset->pn++;
3291 dtoffset->index = 0;
3292 }
3293
3294 out:
3295 /* return target leaf page pinned */
3296 btsp = btstack->top;
3297 btsp->bn = bn;
3298 btsp->index = dtoffset->index;
3299 btsp->mp = mp;
3300
3301 return 0;
3302}
3303
3304
3305/*
3306 * dtCompare()
3307 *
3308 * function: compare search key with an internal entry
3309 *
3310 * return:
3311 * < 0 if k is < record
3312 * = 0 if k is = record
3313 * > 0 if k is > record
3314 */
3315static int dtCompare(struct component_name * key, /* search key */
3316 dtpage_t * p, /* directory page */
3317 int si)
3318{ /* entry slot index */
3319 wchar_t *kname;
3320 __le16 *name;
3321 int klen, namlen, len, rc;
3322 struct idtentry *ih;
3323 struct dtslot *t;
3324
3325 /*
3326 * force the left-most key on internal pages, at any level of
3327 * the tree, to be less than any search key.
3328 * this obviates having to update the leftmost key on an internal
3329 * page when the user inserts a new key in the tree smaller than
3330 * anything that has been stored.
3331 *
3332 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3333 * at any internal page at any level of the tree,
3334 * it descends to child of the entry anyway -
3335 * ? make the entry as min size dummy entry)
3336 *
3337 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3338 * return (1);
3339 */
3340
3341 kname = key->name;
3342 klen = key->namlen;
3343
3344 ih = (struct idtentry *) & p->slot[si];
3345 si = ih->next;
3346 name = ih->name;
3347 namlen = ih->namlen;
3348 len = min(namlen, DTIHDRDATALEN);
3349
3350 /* compare with head/only segment */
3351 len = min(klen, len);
3352 if ((rc = UniStrncmp_le(kname, name, len)))
3353 return rc;
3354
3355 klen -= len;
3356 namlen -= len;
3357
3358 /* compare with additional segment(s) */
3359 kname += len;
3360 while (klen > 0 && namlen > 0) {
3361 /* compare with next name segment */
3362 t = (struct dtslot *) & p->slot[si];
3363 len = min(namlen, DTSLOTDATALEN);
3364 len = min(klen, len);
3365 name = t->name;
3366 if ((rc = UniStrncmp_le(kname, name, len)))
3367 return rc;
3368
3369 klen -= len;
3370 namlen -= len;
3371 kname += len;
3372 si = t->next;
3373 }
3374
3375 return (klen - namlen);
3376}
3377
3378
3379
3380
3381/*
3382 * ciCompare()
3383 *
3384 * function: compare search key with an (leaf/internal) entry
3385 *
3386 * return:
3387 * < 0 if k is < record
3388 * = 0 if k is = record
3389 * > 0 if k is > record
3390 */
3391static int ciCompare(struct component_name * key, /* search key */
3392 dtpage_t * p, /* directory page */
3393 int si, /* entry slot index */
3394 int flag)
3395{
3396 wchar_t *kname, x;
3397 __le16 *name;
3398 int klen, namlen, len, rc;
3399 struct ldtentry *lh;
3400 struct idtentry *ih;
3401 struct dtslot *t;
3402 int i;
3403
3404 /*
3405 * force the left-most key on internal pages, at any level of
3406 * the tree, to be less than any search key.
3407 * this obviates having to update the leftmost key on an internal
3408 * page when the user inserts a new key in the tree smaller than
3409 * anything that has been stored.
3410 *
3411 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3412 * at any internal page at any level of the tree,
3413 * it descends to child of the entry anyway -
3414 * ? make the entry as min size dummy entry)
3415 *
3416 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3417 * return (1);
3418 */
3419
3420 kname = key->name;
3421 klen = key->namlen;
3422
3423 /*
3424 * leaf page entry
3425 */
3426 if (p->header.flag & BT_LEAF) {
3427 lh = (struct ldtentry *) & p->slot[si];
3428 si = lh->next;
3429 name = lh->name;
3430 namlen = lh->namlen;
3431 if (flag & JFS_DIR_INDEX)
3432 len = min(namlen, DTLHDRDATALEN);
3433 else
3434 len = min(namlen, DTLHDRDATALEN_LEGACY);
3435 }
3436 /*
3437 * internal page entry
3438 */
3439 else {
3440 ih = (struct idtentry *) & p->slot[si];
3441 si = ih->next;
3442 name = ih->name;
3443 namlen = ih->namlen;
3444 len = min(namlen, DTIHDRDATALEN);
3445 }
3446
3447 /* compare with head/only segment */
3448 len = min(klen, len);
3449 for (i = 0; i < len; i++, kname++, name++) {
3450 /* only uppercase if case-insensitive support is on */
3451 if ((flag & JFS_OS2) == JFS_OS2)
3452 x = UniToupper(le16_to_cpu(*name));
3453 else
3454 x = le16_to_cpu(*name);
3455 if ((rc = *kname - x))
3456 return rc;
3457 }
3458
3459 klen -= len;
3460 namlen -= len;
3461
3462 /* compare with additional segment(s) */
3463 while (klen > 0 && namlen > 0) {
3464 /* compare with next name segment */
3465 t = (struct dtslot *) & p->slot[si];
3466 len = min(namlen, DTSLOTDATALEN);
3467 len = min(klen, len);
3468 name = t->name;
3469 for (i = 0; i < len; i++, kname++, name++) {
3470 /* only uppercase if case-insensitive support is on */
3471 if ((flag & JFS_OS2) == JFS_OS2)
3472 x = UniToupper(le16_to_cpu(*name));
3473 else
3474 x = le16_to_cpu(*name);
3475
3476 if ((rc = *kname - x))
3477 return rc;
3478 }
3479
3480 klen -= len;
3481 namlen -= len;
3482 si = t->next;
3483 }
3484
3485 return (klen - namlen);
3486}
3487
3488
3489/*
3490 * ciGetLeafPrefixKey()
3491 *
3492 * function: compute prefix of suffix compression
3493 * from two adjacent leaf entries
3494 * across page boundary
3495 *
3496 * return: non-zero on error
3497 *
3498 */
3499static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3500 int ri, struct component_name * key, int flag)
3501{
3502 int klen, namlen;
3503 wchar_t *pl, *pr, *kname;
3504 struct component_name lkey;
3505 struct component_name rkey;
3506
3507 lkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3508 GFP_KERNEL);
3509 if (lkey.name == NULL)
3510 return -ENOMEM;
3511
3512 rkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3513 GFP_KERNEL);
3514 if (rkey.name == NULL) {
3515 kfree(lkey.name);
3516 return -ENOMEM;
3517 }
3518
3519 /* get left and right key */
3520 dtGetKey(lp, li, &lkey, flag);
3521 lkey.name[lkey.namlen] = 0;
3522
3523 if ((flag & JFS_OS2) == JFS_OS2)
3524 ciToUpper(&lkey);
3525
3526 dtGetKey(rp, ri, &rkey, flag);
3527 rkey.name[rkey.namlen] = 0;
3528
3529
3530 if ((flag & JFS_OS2) == JFS_OS2)
3531 ciToUpper(&rkey);
3532
3533 /* compute prefix */
3534 klen = 0;
3535 kname = key->name;
3536 namlen = min(lkey.namlen, rkey.namlen);
3537 for (pl = lkey.name, pr = rkey.name;
3538 namlen; pl++, pr++, namlen--, klen++, kname++) {
3539 *kname = *pr;
3540 if (*pl != *pr) {
3541 key->namlen = klen + 1;
3542 goto free_names;
3543 }
3544 }
3545
3546 /* l->namlen <= r->namlen since l <= r */
3547 if (lkey.namlen < rkey.namlen) {
3548 *kname = *pr;
3549 key->namlen = klen + 1;
3550 } else /* l->namelen == r->namelen */
3551 key->namlen = klen;
3552
3553free_names:
3554 kfree(lkey.name);
3555 kfree(rkey.name);
3556 return 0;
3557}
3558
3559
3560
3561/*
3562 * dtGetKey()
3563 *
3564 * function: get key of the entry
3565 */
3566static void dtGetKey(dtpage_t * p, int i, /* entry index */
3567 struct component_name * key, int flag)
3568{
3569 int si;
3570 s8 *stbl;
3571 struct ldtentry *lh;
3572 struct idtentry *ih;
3573 struct dtslot *t;
3574 int namlen, len;
3575 wchar_t *kname;
3576 __le16 *name;
3577
3578 /* get entry */
3579 stbl = DT_GETSTBL(p);
3580 si = stbl[i];
3581 if (p->header.flag & BT_LEAF) {
3582 lh = (struct ldtentry *) & p->slot[si];
3583 si = lh->next;
3584 namlen = lh->namlen;
3585 name = lh->name;
3586 if (flag & JFS_DIR_INDEX)
3587 len = min(namlen, DTLHDRDATALEN);
3588 else
3589 len = min(namlen, DTLHDRDATALEN_LEGACY);
3590 } else {
3591 ih = (struct idtentry *) & p->slot[si];
3592 si = ih->next;
3593 namlen = ih->namlen;
3594 name = ih->name;
3595 len = min(namlen, DTIHDRDATALEN);
3596 }
3597
3598 key->namlen = namlen;
3599 kname = key->name;
3600
3601 /*
3602 * move head/only segment
3603 */
3604 UniStrncpy_from_le(kname, name, len);
3605
3606 /*
3607 * move additional segment(s)
3608 */
3609 while (si >= 0) {
3610 /* get next segment */
3611 t = &p->slot[si];
3612 kname += len;
3613 namlen -= len;
3614 len = min(namlen, DTSLOTDATALEN);
3615 UniStrncpy_from_le(kname, t->name, len);
3616
3617 si = t->next;
3618 }
3619}
3620
3621
3622/*
3623 * dtInsertEntry()
3624 *
3625 * function: allocate free slot(s) and
3626 * write a leaf/internal entry
3627 *
3628 * return: entry slot index
3629 */
3630static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3631 ddata_t * data, struct dt_lock ** dtlock)
3632{
3633 struct dtslot *h, *t;
3634 struct ldtentry *lh = NULL;
3635 struct idtentry *ih = NULL;
3636 int hsi, fsi, klen, len, nextindex;
3637 wchar_t *kname;
3638 __le16 *name;
3639 s8 *stbl;
3640 pxd_t *xd;
3641 struct dt_lock *dtlck = *dtlock;
3642 struct lv *lv;
3643 int xsi, n;
3644 s64 bn = 0;
3645 struct metapage *mp = NULL;
3646
3647 klen = key->namlen;
3648 kname = key->name;
3649
3650 /* allocate a free slot */
3651 hsi = fsi = p->header.freelist;
3652 h = &p->slot[fsi];
3653 p->header.freelist = h->next;
3654 --p->header.freecnt;
3655
3656 /* open new linelock */
3657 if (dtlck->index >= dtlck->maxcnt)
3658 dtlck = (struct dt_lock *) txLinelock(dtlck);
3659
3660 lv = & dtlck->lv[dtlck->index];
3661 lv->offset = hsi;
3662
3663 /* write head/only segment */
3664 if (p->header.flag & BT_LEAF) {
3665 lh = (struct ldtentry *) h;
3666 lh->next = h->next;
3667 lh->inumber = cpu_to_le32(data->leaf.ino);
3668 lh->namlen = klen;
3669 name = lh->name;
3670 if (data->leaf.ip) {
3671 len = min(klen, DTLHDRDATALEN);
3672 if (!(p->header.flag & BT_ROOT))
3673 bn = addressPXD(&p->header.self);
3674 lh->index = cpu_to_le32(add_index(data->leaf.tid,
3675 data->leaf.ip,
3676 bn, index));
3677 } else
3678 len = min(klen, DTLHDRDATALEN_LEGACY);
3679 } else {
3680 ih = (struct idtentry *) h;
3681 ih->next = h->next;
3682 xd = (pxd_t *) ih;
3683 *xd = data->xd;
3684 ih->namlen = klen;
3685 name = ih->name;
3686 len = min(klen, DTIHDRDATALEN);
3687 }
3688
3689 UniStrncpy_to_le(name, kname, len);
3690
3691 n = 1;
3692 xsi = hsi;
3693
3694 /* write additional segment(s) */
3695 t = h;
3696 klen -= len;
3697 while (klen) {
3698 /* get free slot */
3699 fsi = p->header.freelist;
3700 t = &p->slot[fsi];
3701 p->header.freelist = t->next;
3702 --p->header.freecnt;
3703
3704 /* is next slot contiguous ? */
3705 if (fsi != xsi + 1) {
3706 /* close current linelock */
3707 lv->length = n;
3708 dtlck->index++;
3709
3710 /* open new linelock */
3711 if (dtlck->index < dtlck->maxcnt)
3712 lv++;
3713 else {
3714 dtlck = (struct dt_lock *) txLinelock(dtlck);
3715 lv = & dtlck->lv[0];
3716 }
3717
3718 lv->offset = fsi;
3719 n = 0;
3720 }
3721
3722 kname += len;
3723 len = min(klen, DTSLOTDATALEN);
3724 UniStrncpy_to_le(t->name, kname, len);
3725
3726 n++;
3727 xsi = fsi;
3728 klen -= len;
3729 }
3730
3731 /* close current linelock */
3732 lv->length = n;
3733 dtlck->index++;
3734
3735 *dtlock = dtlck;
3736
3737 /* terminate last/only segment */
3738 if (h == t) {
3739 /* single segment entry */
3740 if (p->header.flag & BT_LEAF)
3741 lh->next = -1;
3742 else
3743 ih->next = -1;
3744 } else
3745 /* multi-segment entry */
3746 t->next = -1;
3747
3748 /* if insert into middle, shift right succeeding entries in stbl */
3749 stbl = DT_GETSTBL(p);
3750 nextindex = p->header.nextindex;
3751 if (index < nextindex) {
3752 memmove(stbl + index + 1, stbl + index, nextindex - index);
3753
3754 if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
3755 s64 lblock;
3756
3757 /*
3758 * Need to update slot number for entries that moved
3759 * in the stbl
3760 */
3761 mp = NULL;
3762 for (n = index + 1; n <= nextindex; n++) {
3763 lh = (struct ldtentry *) & (p->slot[stbl[n]]);
3764 modify_index(data->leaf.tid, data->leaf.ip,
3765 le32_to_cpu(lh->index), bn, n,
3766 &mp, &lblock);
3767 }
3768 if (mp)
3769 release_metapage(mp);
3770 }
3771 }
3772
3773 stbl[index] = hsi;
3774
3775 /* advance next available entry index of stbl */
3776 ++p->header.nextindex;
3777}
3778
3779
3780/*
3781 * dtMoveEntry()
3782 *
3783 * function: move entries from split/left page to new/right page
3784 *
3785 * nextindex of dst page and freelist/freecnt of both pages
3786 * are updated.
3787 */
3788static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
3789 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
3790 int do_index)
3791{
3792 int ssi, next; /* src slot index */
3793 int di; /* dst entry index */
3794 int dsi; /* dst slot index */
3795 s8 *sstbl, *dstbl; /* sorted entry table */
3796 int snamlen, len;
3797 struct ldtentry *slh, *dlh = NULL;
3798 struct idtentry *sih, *dih = NULL;
3799 struct dtslot *h, *s, *d;
3800 struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
3801 struct lv *slv, *dlv;
3802 int xssi, ns, nd;
3803 int sfsi;
3804
3805 sstbl = (s8 *) & sp->slot[sp->header.stblindex];
3806 dstbl = (s8 *) & dp->slot[dp->header.stblindex];
3807
3808 dsi = dp->header.freelist; /* first (whole page) free slot */
3809 sfsi = sp->header.freelist;
3810
3811 /* linelock destination entry slot */
3812 dlv = & ddtlck->lv[ddtlck->index];
3813 dlv->offset = dsi;
3814
3815 /* linelock source entry slot */
3816 slv = & sdtlck->lv[sdtlck->index];
3817 slv->offset = sstbl[si];
3818 xssi = slv->offset - 1;
3819
3820 /*
3821 * move entries
3822 */
3823 ns = nd = 0;
3824 for (di = 0; si < sp->header.nextindex; si++, di++) {
3825 ssi = sstbl[si];
3826 dstbl[di] = dsi;
3827
3828 /* is next slot contiguous ? */
3829 if (ssi != xssi + 1) {
3830 /* close current linelock */
3831 slv->length = ns;
3832 sdtlck->index++;
3833
3834 /* open new linelock */
3835 if (sdtlck->index < sdtlck->maxcnt)
3836 slv++;
3837 else {
3838 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
3839 slv = & sdtlck->lv[0];
3840 }
3841
3842 slv->offset = ssi;
3843 ns = 0;
3844 }
3845
3846 /*
3847 * move head/only segment of an entry
3848 */
3849 /* get dst slot */
3850 h = d = &dp->slot[dsi];
3851
3852 /* get src slot and move */
3853 s = &sp->slot[ssi];
3854 if (sp->header.flag & BT_LEAF) {
3855 /* get source entry */
3856 slh = (struct ldtentry *) s;
3857 dlh = (struct ldtentry *) h;
3858 snamlen = slh->namlen;
3859
3860 if (do_index) {
3861 len = min(snamlen, DTLHDRDATALEN);
3862 dlh->index = slh->index; /* little-endian */
3863 } else
3864 len = min(snamlen, DTLHDRDATALEN_LEGACY);
3865
3866 memcpy(dlh, slh, 6 + len * 2);
3867
3868 next = slh->next;
3869
3870 /* update dst head/only segment next field */
3871 dsi++;
3872 dlh->next = dsi;
3873 } else {
3874 sih = (struct idtentry *) s;
3875 snamlen = sih->namlen;
3876
3877 len = min(snamlen, DTIHDRDATALEN);
3878 dih = (struct idtentry *) h;
3879 memcpy(dih, sih, 10 + len * 2);
3880 next = sih->next;
3881
3882 dsi++;
3883 dih->next = dsi;
3884 }
3885
3886 /* free src head/only segment */
3887 s->next = sfsi;
3888 s->cnt = 1;
3889 sfsi = ssi;
3890
3891 ns++;
3892 nd++;
3893 xssi = ssi;
3894
3895 /*
3896 * move additional segment(s) of the entry
3897 */
3898 snamlen -= len;
3899 while ((ssi = next) >= 0) {
3900 /* is next slot contiguous ? */
3901 if (ssi != xssi + 1) {
3902 /* close current linelock */
3903 slv->length = ns;
3904 sdtlck->index++;
3905
3906 /* open new linelock */
3907 if (sdtlck->index < sdtlck->maxcnt)
3908 slv++;
3909 else {
3910 sdtlck =
3911 (struct dt_lock *)
3912 txLinelock(sdtlck);
3913 slv = & sdtlck->lv[0];
3914 }
3915
3916 slv->offset = ssi;
3917 ns = 0;
3918 }
3919
3920 /* get next source segment */
3921 s = &sp->slot[ssi];
3922
3923 /* get next destination free slot */
3924 d++;
3925
3926 len = min(snamlen, DTSLOTDATALEN);
3927 UniStrncpy_le(d->name, s->name, len);
3928
3929 ns++;
3930 nd++;
3931 xssi = ssi;
3932
3933 dsi++;
3934 d->next = dsi;
3935
3936 /* free source segment */
3937 next = s->next;
3938 s->next = sfsi;
3939 s->cnt = 1;
3940 sfsi = ssi;
3941
3942 snamlen -= len;
3943 } /* end while */
3944
3945 /* terminate dst last/only segment */
3946 if (h == d) {
3947 /* single segment entry */
3948 if (dp->header.flag & BT_LEAF)
3949 dlh->next = -1;
3950 else
3951 dih->next = -1;
3952 } else
3953 /* multi-segment entry */
3954 d->next = -1;
3955 } /* end for */
3956
3957 /* close current linelock */
3958 slv->length = ns;
3959 sdtlck->index++;
3960 *sdtlock = sdtlck;
3961
3962 dlv->length = nd;
3963 ddtlck->index++;
3964 *ddtlock = ddtlck;
3965
3966 /* update source header */
3967 sp->header.freelist = sfsi;
3968 sp->header.freecnt += nd;
3969
3970 /* update destination header */
3971 dp->header.nextindex = di;
3972
3973 dp->header.freelist = dsi;
3974 dp->header.freecnt -= nd;
3975}
3976
3977
3978/*
3979 * dtDeleteEntry()
3980 *
3981 * function: free a (leaf/internal) entry
3982 *
3983 * log freelist header, stbl, and each segment slot of entry
3984 * (even though last/only segment next field is modified,
3985 * physical image logging requires all segment slots of
3986 * the entry logged to avoid applying previous updates
3987 * to the same slots)
3988 */
3989static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
3990{
3991 int fsi; /* free entry slot index */
3992 s8 *stbl;
3993 struct dtslot *t;
3994 int si, freecnt;
3995 struct dt_lock *dtlck = *dtlock;
3996 struct lv *lv;
3997 int xsi, n;
3998
3999 /* get free entry slot index */
4000 stbl = DT_GETSTBL(p);
4001 fsi = stbl[fi];
4002
4003 /* open new linelock */
4004 if (dtlck->index >= dtlck->maxcnt)
4005 dtlck = (struct dt_lock *) txLinelock(dtlck);
4006 lv = & dtlck->lv[dtlck->index];
4007
4008 lv->offset = fsi;
4009
4010 /* get the head/only segment */
4011 t = &p->slot[fsi];
4012 if (p->header.flag & BT_LEAF)
4013 si = ((struct ldtentry *) t)->next;
4014 else
4015 si = ((struct idtentry *) t)->next;
4016 t->next = si;
4017 t->cnt = 1;
4018
4019 n = freecnt = 1;
4020 xsi = fsi;
4021
4022 /* find the last/only segment */
4023 while (si >= 0) {
4024 /* is next slot contiguous ? */
4025 if (si != xsi + 1) {
4026 /* close current linelock */
4027 lv->length = n;
4028 dtlck->index++;
4029
4030 /* open new linelock */
4031 if (dtlck->index < dtlck->maxcnt)
4032 lv++;
4033 else {
4034 dtlck = (struct dt_lock *) txLinelock(dtlck);
4035 lv = & dtlck->lv[0];
4036 }
4037
4038 lv->offset = si;
4039 n = 0;
4040 }
4041
4042 n++;
4043 xsi = si;
4044 freecnt++;
4045
4046 t = &p->slot[si];
4047 t->cnt = 1;
4048 si = t->next;
4049 }
4050
4051 /* close current linelock */
4052 lv->length = n;
4053 dtlck->index++;
4054
4055 *dtlock = dtlck;
4056
4057 /* update freelist */
4058 t->next = p->header.freelist;
4059 p->header.freelist = fsi;
4060 p->header.freecnt += freecnt;
4061
4062 /* if delete from middle,
4063 * shift left the succedding entries in the stbl
4064 */
4065 si = p->header.nextindex;
4066 if (fi < si - 1)
4067 memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4068
4069 p->header.nextindex--;
4070}
4071
4072
4073/*
4074 * dtTruncateEntry()
4075 *
4076 * function: truncate a (leaf/internal) entry
4077 *
4078 * log freelist header, stbl, and each segment slot of entry
4079 * (even though last/only segment next field is modified,
4080 * physical image logging requires all segment slots of
4081 * the entry logged to avoid applying previous updates
4082 * to the same slots)
4083 */
4084static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4085{
4086 int tsi; /* truncate entry slot index */
4087 s8 *stbl;
4088 struct dtslot *t;
4089 int si, freecnt;
4090 struct dt_lock *dtlck = *dtlock;
4091 struct lv *lv;
4092 int fsi, xsi, n;
4093
4094 /* get free entry slot index */
4095 stbl = DT_GETSTBL(p);
4096 tsi = stbl[ti];
4097
4098 /* open new linelock */
4099 if (dtlck->index >= dtlck->maxcnt)
4100 dtlck = (struct dt_lock *) txLinelock(dtlck);
4101 lv = & dtlck->lv[dtlck->index];
4102
4103 lv->offset = tsi;
4104
4105 /* get the head/only segment */
4106 t = &p->slot[tsi];
4107 ASSERT(p->header.flag & BT_INTERNAL);
4108 ((struct idtentry *) t)->namlen = 0;
4109 si = ((struct idtentry *) t)->next;
4110 ((struct idtentry *) t)->next = -1;
4111
4112 n = 1;
4113 freecnt = 0;
4114 fsi = si;
4115 xsi = tsi;
4116
4117 /* find the last/only segment */
4118 while (si >= 0) {
4119 /* is next slot contiguous ? */
4120 if (si != xsi + 1) {
4121 /* close current linelock */
4122 lv->length = n;
4123 dtlck->index++;
4124
4125 /* open new linelock */
4126 if (dtlck->index < dtlck->maxcnt)
4127 lv++;
4128 else {
4129 dtlck = (struct dt_lock *) txLinelock(dtlck);
4130 lv = & dtlck->lv[0];
4131 }
4132
4133 lv->offset = si;
4134 n = 0;
4135 }
4136
4137 n++;
4138 xsi = si;
4139 freecnt++;
4140
4141 t = &p->slot[si];
4142 t->cnt = 1;
4143 si = t->next;
4144 }
4145
4146 /* close current linelock */
4147 lv->length = n;
4148 dtlck->index++;
4149
4150 *dtlock = dtlck;
4151
4152 /* update freelist */
4153 if (freecnt == 0)
4154 return;
4155 t->next = p->header.freelist;
4156 p->header.freelist = fsi;
4157 p->header.freecnt += freecnt;
4158}
4159
4160
4161/*
4162 * dtLinelockFreelist()
4163 */
4164static void dtLinelockFreelist(dtpage_t * p, /* directory page */
4165 int m, /* max slot index */
4166 struct dt_lock ** dtlock)
4167{
4168 int fsi; /* free entry slot index */
4169 struct dtslot *t;
4170 int si;
4171 struct dt_lock *dtlck = *dtlock;
4172 struct lv *lv;
4173 int xsi, n;
4174
4175 /* get free entry slot index */
4176 fsi = p->header.freelist;
4177
4178 /* open new linelock */
4179 if (dtlck->index >= dtlck->maxcnt)
4180 dtlck = (struct dt_lock *) txLinelock(dtlck);
4181 lv = & dtlck->lv[dtlck->index];
4182
4183 lv->offset = fsi;
4184
4185 n = 1;
4186 xsi = fsi;
4187
4188 t = &p->slot[fsi];
4189 si = t->next;
4190
4191 /* find the last/only segment */
4192 while (si < m && si >= 0) {
4193 /* is next slot contiguous ? */
4194 if (si != xsi + 1) {
4195 /* close current linelock */
4196 lv->length = n;
4197 dtlck->index++;
4198
4199 /* open new linelock */
4200 if (dtlck->index < dtlck->maxcnt)
4201 lv++;
4202 else {
4203 dtlck = (struct dt_lock *) txLinelock(dtlck);
4204 lv = & dtlck->lv[0];
4205 }
4206
4207 lv->offset = si;
4208 n = 0;
4209 }
4210
4211 n++;
4212 xsi = si;
4213
4214 t = &p->slot[si];
4215 si = t->next;
4216 }
4217
4218 /* close current linelock */
4219 lv->length = n;
4220 dtlck->index++;
4221
4222 *dtlock = dtlck;
4223}
4224
4225
4226/*
4227 * NAME: dtModify
4228 *
4229 * FUNCTION: Modify the inode number part of a directory entry
4230 *
4231 * PARAMETERS:
4232 * tid - Transaction id
4233 * ip - Inode of parent directory
4234 * key - Name of entry to be modified
4235 * orig_ino - Original inode number expected in entry
4236 * new_ino - New inode number to put into entry
4237 * flag - JFS_RENAME
4238 *
4239 * RETURNS:
4240 * -ESTALE - If entry found does not match orig_ino passed in
4241 * -ENOENT - If no entry can be found to match key
4242 * 0 - If successfully modified entry
4243 */
4244int dtModify(tid_t tid, struct inode *ip,
4245 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4246{
4247 int rc;
4248 s64 bn;
4249 struct metapage *mp;
4250 dtpage_t *p;
4251 int index;
4252 struct btstack btstack;
4253 struct tlock *tlck;
4254 struct dt_lock *dtlck;
4255 struct lv *lv;
4256 s8 *stbl;
4257 int entry_si; /* entry slot index */
4258 struct ldtentry *entry;
4259
4260 /*
4261 * search for the entry to modify:
4262 *
4263 * dtSearch() returns (leaf page pinned, index at which to modify).
4264 */
4265 if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4266 return rc;
4267
4268 /* retrieve search result */
4269 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4270
4271 BT_MARK_DIRTY(mp, ip);
4272 /*
4273 * acquire a transaction lock on the leaf page of named entry
4274 */
4275 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4276 dtlck = (struct dt_lock *) & tlck->lock;
4277
4278 /* get slot index of the entry */
4279 stbl = DT_GETSTBL(p);
4280 entry_si = stbl[index];
4281
4282 /* linelock entry */
4283 ASSERT(dtlck->index == 0);
4284 lv = & dtlck->lv[0];
4285 lv->offset = entry_si;
4286 lv->length = 1;
4287 dtlck->index++;
4288
4289 /* get the head/only segment */
4290 entry = (struct ldtentry *) & p->slot[entry_si];
4291
4292 /* substitute the inode number of the entry */
4293 entry->inumber = cpu_to_le32(new_ino);
4294
4295 /* unpin the leaf page */
4296 DT_PUTPAGE(mp);
4297
4298 return 0;
4299}