| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2010 Red Hat, Inc. |
| 4 | * Copyright (c) 2016-2025 Christoph Hellwig. |
| 5 | */ |
| 6 | #include <linux/module.h> |
| 7 | #include <linux/compiler.h> |
| 8 | #include <linux/fs.h> |
| 9 | #include <linux/fscrypt.h> |
| 10 | #include <linux/pagemap.h> |
| 11 | #include <linux/iomap.h> |
| 12 | #include <linux/backing-dev.h> |
| 13 | #include <linux/uio.h> |
| 14 | #include <linux/task_io_accounting_ops.h> |
| 15 | #include "internal.h" |
| 16 | #include "trace.h" |
| 17 | |
| 18 | #include "../internal.h" |
| 19 | |
| 20 | /* |
| 21 | * Private flags for iomap_dio, must not overlap with the public ones in |
| 22 | * iomap.h: |
| 23 | */ |
| 24 | #define IOMAP_DIO_NO_INVALIDATE (1U << 25) |
| 25 | #define IOMAP_DIO_CALLER_COMP (1U << 26) |
| 26 | #define IOMAP_DIO_INLINE_COMP (1U << 27) |
| 27 | #define IOMAP_DIO_WRITE_THROUGH (1U << 28) |
| 28 | #define IOMAP_DIO_NEED_SYNC (1U << 29) |
| 29 | #define IOMAP_DIO_WRITE (1U << 30) |
| 30 | #define IOMAP_DIO_DIRTY (1U << 31) |
| 31 | |
| 32 | /* |
| 33 | * Used for sub block zeroing in iomap_dio_zero() |
| 34 | */ |
| 35 | #define IOMAP_ZERO_PAGE_SIZE (SZ_64K) |
| 36 | #define IOMAP_ZERO_PAGE_ORDER (get_order(IOMAP_ZERO_PAGE_SIZE)) |
| 37 | static struct page *zero_page; |
| 38 | |
| 39 | struct iomap_dio { |
| 40 | struct kiocb *iocb; |
| 41 | const struct iomap_dio_ops *dops; |
| 42 | loff_t i_size; |
| 43 | loff_t size; |
| 44 | atomic_t ref; |
| 45 | unsigned flags; |
| 46 | int error; |
| 47 | size_t done_before; |
| 48 | bool wait_for_completion; |
| 49 | |
| 50 | union { |
| 51 | /* used during submission and for synchronous completion: */ |
| 52 | struct { |
| 53 | struct iov_iter *iter; |
| 54 | struct task_struct *waiter; |
| 55 | } submit; |
| 56 | |
| 57 | /* used for aio completion: */ |
| 58 | struct { |
| 59 | struct work_struct work; |
| 60 | } aio; |
| 61 | }; |
| 62 | }; |
| 63 | |
| 64 | static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter, |
| 65 | struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf) |
| 66 | { |
| 67 | if (dio->dops && dio->dops->bio_set) |
| 68 | return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf, |
| 69 | GFP_KERNEL, dio->dops->bio_set); |
| 70 | return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL); |
| 71 | } |
| 72 | |
| 73 | static void iomap_dio_submit_bio(const struct iomap_iter *iter, |
| 74 | struct iomap_dio *dio, struct bio *bio, loff_t pos) |
| 75 | { |
| 76 | struct kiocb *iocb = dio->iocb; |
| 77 | |
| 78 | atomic_inc(&dio->ref); |
| 79 | |
| 80 | /* Sync dio can't be polled reliably */ |
| 81 | if ((iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(iocb)) { |
| 82 | bio_set_polled(bio, iocb); |
| 83 | WRITE_ONCE(iocb->private, bio); |
| 84 | } |
| 85 | |
| 86 | if (dio->dops && dio->dops->submit_io) { |
| 87 | dio->dops->submit_io(iter, bio, pos); |
| 88 | } else { |
| 89 | WARN_ON_ONCE(iter->iomap.flags & IOMAP_F_ANON_WRITE); |
| 90 | submit_bio(bio); |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | ssize_t iomap_dio_complete(struct iomap_dio *dio) |
| 95 | { |
| 96 | const struct iomap_dio_ops *dops = dio->dops; |
| 97 | struct kiocb *iocb = dio->iocb; |
| 98 | loff_t offset = iocb->ki_pos; |
| 99 | ssize_t ret = dio->error; |
| 100 | |
| 101 | if (dops && dops->end_io) |
| 102 | ret = dops->end_io(iocb, dio->size, ret, dio->flags); |
| 103 | |
| 104 | if (likely(!ret)) { |
| 105 | ret = dio->size; |
| 106 | /* check for short read */ |
| 107 | if (offset + ret > dio->i_size && |
| 108 | !(dio->flags & IOMAP_DIO_WRITE)) |
| 109 | ret = dio->i_size - offset; |
| 110 | } |
| 111 | |
| 112 | /* |
| 113 | * Try again to invalidate clean pages which might have been cached by |
| 114 | * non-direct readahead, or faulted in by get_user_pages() if the source |
| 115 | * of the write was an mmap'ed region of the file we're writing. Either |
| 116 | * one is a pretty crazy thing to do, so we don't support it 100%. If |
| 117 | * this invalidation fails, tough, the write still worked... |
| 118 | * |
| 119 | * And this page cache invalidation has to be after ->end_io(), as some |
| 120 | * filesystems convert unwritten extents to real allocations in |
| 121 | * ->end_io() when necessary, otherwise a racing buffer read would cache |
| 122 | * zeros from unwritten extents. |
| 123 | */ |
| 124 | if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE) && |
| 125 | !(dio->flags & IOMAP_DIO_NO_INVALIDATE)) |
| 126 | kiocb_invalidate_post_direct_write(iocb, dio->size); |
| 127 | |
| 128 | inode_dio_end(file_inode(iocb->ki_filp)); |
| 129 | |
| 130 | if (ret > 0) { |
| 131 | iocb->ki_pos += ret; |
| 132 | |
| 133 | /* |
| 134 | * If this is a DSYNC write, make sure we push it to stable |
| 135 | * storage now that we've written data. |
| 136 | */ |
| 137 | if (dio->flags & IOMAP_DIO_NEED_SYNC) |
| 138 | ret = generic_write_sync(iocb, ret); |
| 139 | if (ret > 0) |
| 140 | ret += dio->done_before; |
| 141 | } |
| 142 | trace_iomap_dio_complete(iocb, dio->error, ret); |
| 143 | kfree(dio); |
| 144 | return ret; |
| 145 | } |
| 146 | EXPORT_SYMBOL_GPL(iomap_dio_complete); |
| 147 | |
| 148 | static ssize_t iomap_dio_deferred_complete(void *data) |
| 149 | { |
| 150 | return iomap_dio_complete(data); |
| 151 | } |
| 152 | |
| 153 | static void iomap_dio_complete_work(struct work_struct *work) |
| 154 | { |
| 155 | struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); |
| 156 | struct kiocb *iocb = dio->iocb; |
| 157 | |
| 158 | iocb->ki_complete(iocb, iomap_dio_complete(dio)); |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | * Set an error in the dio if none is set yet. We have to use cmpxchg |
| 163 | * as the submission context and the completion context(s) can race to |
| 164 | * update the error. |
| 165 | */ |
| 166 | static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) |
| 167 | { |
| 168 | cmpxchg(&dio->error, 0, ret); |
| 169 | } |
| 170 | |
| 171 | /* |
| 172 | * Called when dio->ref reaches zero from an I/O completion. |
| 173 | */ |
| 174 | static void iomap_dio_done(struct iomap_dio *dio) |
| 175 | { |
| 176 | struct kiocb *iocb = dio->iocb; |
| 177 | |
| 178 | if (dio->wait_for_completion) { |
| 179 | /* |
| 180 | * Synchronous I/O, task itself will handle any completion work |
| 181 | * that needs after IO. All we need to do is wake the task. |
| 182 | */ |
| 183 | struct task_struct *waiter = dio->submit.waiter; |
| 184 | |
| 185 | WRITE_ONCE(dio->submit.waiter, NULL); |
| 186 | blk_wake_io_task(waiter); |
| 187 | } else if (dio->flags & IOMAP_DIO_INLINE_COMP) { |
| 188 | WRITE_ONCE(iocb->private, NULL); |
| 189 | iomap_dio_complete_work(&dio->aio.work); |
| 190 | } else if (dio->flags & IOMAP_DIO_CALLER_COMP) { |
| 191 | /* |
| 192 | * If this dio is flagged with IOMAP_DIO_CALLER_COMP, then |
| 193 | * schedule our completion that way to avoid an async punt to a |
| 194 | * workqueue. |
| 195 | */ |
| 196 | /* only polled IO cares about private cleared */ |
| 197 | iocb->private = dio; |
| 198 | iocb->dio_complete = iomap_dio_deferred_complete; |
| 199 | |
| 200 | /* |
| 201 | * Invoke ->ki_complete() directly. We've assigned our |
| 202 | * dio_complete callback handler, and since the issuer set |
| 203 | * IOCB_DIO_CALLER_COMP, we know their ki_complete handler will |
| 204 | * notice ->dio_complete being set and will defer calling that |
| 205 | * handler until it can be done from a safe task context. |
| 206 | * |
| 207 | * Note that the 'res' being passed in here is not important |
| 208 | * for this case. The actual completion value of the request |
| 209 | * will be gotten from dio_complete when that is run by the |
| 210 | * issuer. |
| 211 | */ |
| 212 | iocb->ki_complete(iocb, 0); |
| 213 | } else { |
| 214 | struct inode *inode = file_inode(iocb->ki_filp); |
| 215 | |
| 216 | /* |
| 217 | * Async DIO completion that requires filesystem level |
| 218 | * completion work gets punted to a work queue to complete as |
| 219 | * the operation may require more IO to be issued to finalise |
| 220 | * filesystem metadata changes or guarantee data integrity. |
| 221 | */ |
| 222 | INIT_WORK(&dio->aio.work, iomap_dio_complete_work); |
| 223 | queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | void iomap_dio_bio_end_io(struct bio *bio) |
| 228 | { |
| 229 | struct iomap_dio *dio = bio->bi_private; |
| 230 | bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); |
| 231 | |
| 232 | if (bio->bi_status) |
| 233 | iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); |
| 234 | |
| 235 | if (atomic_dec_and_test(&dio->ref)) |
| 236 | iomap_dio_done(dio); |
| 237 | |
| 238 | if (should_dirty) { |
| 239 | bio_check_pages_dirty(bio); |
| 240 | } else { |
| 241 | bio_release_pages(bio, false); |
| 242 | bio_put(bio); |
| 243 | } |
| 244 | } |
| 245 | EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io); |
| 246 | |
| 247 | u32 iomap_finish_ioend_direct(struct iomap_ioend *ioend) |
| 248 | { |
| 249 | struct iomap_dio *dio = ioend->io_bio.bi_private; |
| 250 | bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); |
| 251 | u32 vec_count = ioend->io_bio.bi_vcnt; |
| 252 | |
| 253 | if (ioend->io_error) |
| 254 | iomap_dio_set_error(dio, ioend->io_error); |
| 255 | |
| 256 | if (atomic_dec_and_test(&dio->ref)) { |
| 257 | /* |
| 258 | * Try to avoid another context switch for the completion given |
| 259 | * that we are already called from the ioend completion |
| 260 | * workqueue, but never invalidate pages from this thread to |
| 261 | * avoid deadlocks with buffered I/O completions. Tough luck if |
| 262 | * you hit the tiny race with someone dirtying the range now |
| 263 | * between this check and the actual completion. |
| 264 | */ |
| 265 | if (!dio->iocb->ki_filp->f_mapping->nrpages) { |
| 266 | dio->flags |= IOMAP_DIO_INLINE_COMP; |
| 267 | dio->flags |= IOMAP_DIO_NO_INVALIDATE; |
| 268 | } |
| 269 | dio->flags &= ~IOMAP_DIO_CALLER_COMP; |
| 270 | iomap_dio_done(dio); |
| 271 | } |
| 272 | |
| 273 | if (should_dirty) { |
| 274 | bio_check_pages_dirty(&ioend->io_bio); |
| 275 | } else { |
| 276 | bio_release_pages(&ioend->io_bio, false); |
| 277 | bio_put(&ioend->io_bio); |
| 278 | } |
| 279 | |
| 280 | /* |
| 281 | * Return the number of bvecs completed as even direct I/O completions |
| 282 | * do significant per-folio work and we'll still want to give up the |
| 283 | * CPU after a lot of completions. |
| 284 | */ |
| 285 | return vec_count; |
| 286 | } |
| 287 | |
| 288 | static int iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, |
| 289 | loff_t pos, unsigned len) |
| 290 | { |
| 291 | struct inode *inode = file_inode(dio->iocb->ki_filp); |
| 292 | struct bio *bio; |
| 293 | |
| 294 | if (!len) |
| 295 | return 0; |
| 296 | /* |
| 297 | * Max block size supported is 64k |
| 298 | */ |
| 299 | if (WARN_ON_ONCE(len > IOMAP_ZERO_PAGE_SIZE)) |
| 300 | return -EINVAL; |
| 301 | |
| 302 | bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE); |
| 303 | fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, |
| 304 | GFP_KERNEL); |
| 305 | bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); |
| 306 | bio->bi_private = dio; |
| 307 | bio->bi_end_io = iomap_dio_bio_end_io; |
| 308 | |
| 309 | __bio_add_page(bio, zero_page, len, 0); |
| 310 | iomap_dio_submit_bio(iter, dio, bio, pos); |
| 311 | return 0; |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | * Use a FUA write if we need datasync semantics and this is a pure data I/O |
| 316 | * that doesn't require any metadata updates (including after I/O completion |
| 317 | * such as unwritten extent conversion) and the underlying device either |
| 318 | * doesn't have a volatile write cache or supports FUA. |
| 319 | * This allows us to avoid cache flushes on I/O completion. |
| 320 | */ |
| 321 | static inline bool iomap_dio_can_use_fua(const struct iomap *iomap, |
| 322 | struct iomap_dio *dio) |
| 323 | { |
| 324 | if (iomap->flags & (IOMAP_F_SHARED | IOMAP_F_DIRTY)) |
| 325 | return false; |
| 326 | if (!(dio->flags & IOMAP_DIO_WRITE_THROUGH)) |
| 327 | return false; |
| 328 | return !bdev_write_cache(iomap->bdev) || bdev_fua(iomap->bdev); |
| 329 | } |
| 330 | |
| 331 | static int iomap_dio_bio_iter(struct iomap_iter *iter, struct iomap_dio *dio) |
| 332 | { |
| 333 | const struct iomap *iomap = &iter->iomap; |
| 334 | struct inode *inode = iter->inode; |
| 335 | unsigned int fs_block_size = i_blocksize(inode), pad; |
| 336 | const loff_t length = iomap_length(iter); |
| 337 | loff_t pos = iter->pos; |
| 338 | blk_opf_t bio_opf = REQ_SYNC | REQ_IDLE; |
| 339 | struct bio *bio; |
| 340 | bool need_zeroout = false; |
| 341 | int nr_pages, ret = 0; |
| 342 | u64 copied = 0; |
| 343 | size_t orig_count; |
| 344 | |
| 345 | if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) || |
| 346 | !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter)) |
| 347 | return -EINVAL; |
| 348 | |
| 349 | if (dio->flags & IOMAP_DIO_WRITE) { |
| 350 | bio_opf |= REQ_OP_WRITE; |
| 351 | |
| 352 | if (iomap->flags & IOMAP_F_ATOMIC_BIO) { |
| 353 | /* |
| 354 | * Ensure that the mapping covers the full write |
| 355 | * length, otherwise it won't be submitted as a single |
| 356 | * bio, which is required to use hardware atomics. |
| 357 | */ |
| 358 | if (length != iter->len) |
| 359 | return -EINVAL; |
| 360 | bio_opf |= REQ_ATOMIC; |
| 361 | } |
| 362 | |
| 363 | if (iomap->type == IOMAP_UNWRITTEN) { |
| 364 | dio->flags |= IOMAP_DIO_UNWRITTEN; |
| 365 | need_zeroout = true; |
| 366 | } |
| 367 | |
| 368 | if (iomap->flags & IOMAP_F_SHARED) |
| 369 | dio->flags |= IOMAP_DIO_COW; |
| 370 | |
| 371 | if (iomap->flags & IOMAP_F_NEW) { |
| 372 | need_zeroout = true; |
| 373 | } else if (iomap->type == IOMAP_MAPPED) { |
| 374 | if (iomap_dio_can_use_fua(iomap, dio)) |
| 375 | bio_opf |= REQ_FUA; |
| 376 | else |
| 377 | dio->flags &= ~IOMAP_DIO_WRITE_THROUGH; |
| 378 | } |
| 379 | |
| 380 | /* |
| 381 | * We can only do deferred completion for pure overwrites that |
| 382 | * don't require additional I/O at completion time. |
| 383 | * |
| 384 | * This rules out writes that need zeroing or extent conversion, |
| 385 | * extend the file size, or issue metadata I/O or cache flushes |
| 386 | * during completion processing. |
| 387 | */ |
| 388 | if (need_zeroout || (pos >= i_size_read(inode)) || |
| 389 | ((dio->flags & IOMAP_DIO_NEED_SYNC) && |
| 390 | !(bio_opf & REQ_FUA))) |
| 391 | dio->flags &= ~IOMAP_DIO_CALLER_COMP; |
| 392 | } else { |
| 393 | bio_opf |= REQ_OP_READ; |
| 394 | } |
| 395 | |
| 396 | /* |
| 397 | * Save the original count and trim the iter to just the extent we |
| 398 | * are operating on right now. The iter will be re-expanded once |
| 399 | * we are done. |
| 400 | */ |
| 401 | orig_count = iov_iter_count(dio->submit.iter); |
| 402 | iov_iter_truncate(dio->submit.iter, length); |
| 403 | |
| 404 | if (!iov_iter_count(dio->submit.iter)) |
| 405 | goto out; |
| 406 | |
| 407 | /* |
| 408 | * The rules for polled IO completions follow the guidelines as the |
| 409 | * ones we set for inline and deferred completions. If none of those |
| 410 | * are available for this IO, clear the polled flag. |
| 411 | */ |
| 412 | if (!(dio->flags & (IOMAP_DIO_INLINE_COMP|IOMAP_DIO_CALLER_COMP))) |
| 413 | dio->iocb->ki_flags &= ~IOCB_HIPRI; |
| 414 | |
| 415 | if (need_zeroout) { |
| 416 | /* zero out from the start of the block to the write offset */ |
| 417 | pad = pos & (fs_block_size - 1); |
| 418 | |
| 419 | ret = iomap_dio_zero(iter, dio, pos - pad, pad); |
| 420 | if (ret) |
| 421 | goto out; |
| 422 | } |
| 423 | |
| 424 | nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); |
| 425 | do { |
| 426 | size_t n; |
| 427 | if (dio->error) { |
| 428 | iov_iter_revert(dio->submit.iter, copied); |
| 429 | copied = ret = 0; |
| 430 | goto out; |
| 431 | } |
| 432 | |
| 433 | bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf); |
| 434 | fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, |
| 435 | GFP_KERNEL); |
| 436 | bio->bi_iter.bi_sector = iomap_sector(iomap, pos); |
| 437 | bio->bi_write_hint = inode->i_write_hint; |
| 438 | bio->bi_ioprio = dio->iocb->ki_ioprio; |
| 439 | bio->bi_private = dio; |
| 440 | bio->bi_end_io = iomap_dio_bio_end_io; |
| 441 | |
| 442 | ret = bio_iov_iter_get_pages(bio, dio->submit.iter); |
| 443 | if (unlikely(ret)) { |
| 444 | /* |
| 445 | * We have to stop part way through an IO. We must fall |
| 446 | * through to the sub-block tail zeroing here, otherwise |
| 447 | * this short IO may expose stale data in the tail of |
| 448 | * the block we haven't written data to. |
| 449 | */ |
| 450 | bio_put(bio); |
| 451 | goto zero_tail; |
| 452 | } |
| 453 | |
| 454 | n = bio->bi_iter.bi_size; |
| 455 | if (WARN_ON_ONCE((bio_opf & REQ_ATOMIC) && n != length)) { |
| 456 | /* |
| 457 | * An atomic write bio must cover the complete length, |
| 458 | * which it doesn't, so error. We may need to zero out |
| 459 | * the tail (complete FS block), similar to when |
| 460 | * bio_iov_iter_get_pages() returns an error, above. |
| 461 | */ |
| 462 | ret = -EINVAL; |
| 463 | bio_put(bio); |
| 464 | goto zero_tail; |
| 465 | } |
| 466 | if (dio->flags & IOMAP_DIO_WRITE) |
| 467 | task_io_account_write(n); |
| 468 | else if (dio->flags & IOMAP_DIO_DIRTY) |
| 469 | bio_set_pages_dirty(bio); |
| 470 | |
| 471 | dio->size += n; |
| 472 | copied += n; |
| 473 | |
| 474 | nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, |
| 475 | BIO_MAX_VECS); |
| 476 | /* |
| 477 | * We can only poll for single bio I/Os. |
| 478 | */ |
| 479 | if (nr_pages) |
| 480 | dio->iocb->ki_flags &= ~IOCB_HIPRI; |
| 481 | iomap_dio_submit_bio(iter, dio, bio, pos); |
| 482 | pos += n; |
| 483 | } while (nr_pages); |
| 484 | |
| 485 | /* |
| 486 | * We need to zeroout the tail of a sub-block write if the extent type |
| 487 | * requires zeroing or the write extends beyond EOF. If we don't zero |
| 488 | * the block tail in the latter case, we can expose stale data via mmap |
| 489 | * reads of the EOF block. |
| 490 | */ |
| 491 | zero_tail: |
| 492 | if (need_zeroout || |
| 493 | ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { |
| 494 | /* zero out from the end of the write to the end of the block */ |
| 495 | pad = pos & (fs_block_size - 1); |
| 496 | if (pad) |
| 497 | ret = iomap_dio_zero(iter, dio, pos, |
| 498 | fs_block_size - pad); |
| 499 | } |
| 500 | out: |
| 501 | /* Undo iter limitation to current extent */ |
| 502 | iov_iter_reexpand(dio->submit.iter, orig_count - copied); |
| 503 | if (copied) |
| 504 | return iomap_iter_advance(iter, &copied); |
| 505 | return ret; |
| 506 | } |
| 507 | |
| 508 | static int iomap_dio_hole_iter(struct iomap_iter *iter, struct iomap_dio *dio) |
| 509 | { |
| 510 | loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); |
| 511 | |
| 512 | dio->size += length; |
| 513 | if (!length) |
| 514 | return -EFAULT; |
| 515 | return iomap_iter_advance(iter, &length); |
| 516 | } |
| 517 | |
| 518 | static int iomap_dio_inline_iter(struct iomap_iter *iomi, struct iomap_dio *dio) |
| 519 | { |
| 520 | const struct iomap *iomap = &iomi->iomap; |
| 521 | struct iov_iter *iter = dio->submit.iter; |
| 522 | void *inline_data = iomap_inline_data(iomap, iomi->pos); |
| 523 | loff_t length = iomap_length(iomi); |
| 524 | loff_t pos = iomi->pos; |
| 525 | u64 copied; |
| 526 | |
| 527 | if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) |
| 528 | return -EIO; |
| 529 | |
| 530 | if (dio->flags & IOMAP_DIO_WRITE) { |
| 531 | loff_t size = iomi->inode->i_size; |
| 532 | |
| 533 | if (pos > size) |
| 534 | memset(iomap_inline_data(iomap, size), 0, pos - size); |
| 535 | copied = copy_from_iter(inline_data, length, iter); |
| 536 | if (copied) { |
| 537 | if (pos + copied > size) |
| 538 | i_size_write(iomi->inode, pos + copied); |
| 539 | mark_inode_dirty(iomi->inode); |
| 540 | } |
| 541 | } else { |
| 542 | copied = copy_to_iter(inline_data, length, iter); |
| 543 | } |
| 544 | dio->size += copied; |
| 545 | if (!copied) |
| 546 | return -EFAULT; |
| 547 | return iomap_iter_advance(iomi, &copied); |
| 548 | } |
| 549 | |
| 550 | static int iomap_dio_iter(struct iomap_iter *iter, struct iomap_dio *dio) |
| 551 | { |
| 552 | switch (iter->iomap.type) { |
| 553 | case IOMAP_HOLE: |
| 554 | if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) |
| 555 | return -EIO; |
| 556 | return iomap_dio_hole_iter(iter, dio); |
| 557 | case IOMAP_UNWRITTEN: |
| 558 | if (!(dio->flags & IOMAP_DIO_WRITE)) |
| 559 | return iomap_dio_hole_iter(iter, dio); |
| 560 | return iomap_dio_bio_iter(iter, dio); |
| 561 | case IOMAP_MAPPED: |
| 562 | return iomap_dio_bio_iter(iter, dio); |
| 563 | case IOMAP_INLINE: |
| 564 | return iomap_dio_inline_iter(iter, dio); |
| 565 | case IOMAP_DELALLOC: |
| 566 | /* |
| 567 | * DIO is not serialised against mmap() access at all, and so |
| 568 | * if the page_mkwrite occurs between the writeback and the |
| 569 | * iomap_iter() call in the DIO path, then it will see the |
| 570 | * DELALLOC block that the page-mkwrite allocated. |
| 571 | */ |
| 572 | pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", |
| 573 | dio->iocb->ki_filp, current->comm); |
| 574 | return -EIO; |
| 575 | default: |
| 576 | WARN_ON_ONCE(1); |
| 577 | return -EIO; |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | /* |
| 582 | * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO |
| 583 | * is being issued as AIO or not. This allows us to optimise pure data writes |
| 584 | * to use REQ_FUA rather than requiring generic_write_sync() to issue a |
| 585 | * REQ_FLUSH post write. This is slightly tricky because a single request here |
| 586 | * can be mapped into multiple disjoint IOs and only a subset of the IOs issued |
| 587 | * may be pure data writes. In that case, we still need to do a full data sync |
| 588 | * completion. |
| 589 | * |
| 590 | * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL, |
| 591 | * __iomap_dio_rw can return a partial result if it encounters a non-resident |
| 592 | * page in @iter after preparing a transfer. In that case, the non-resident |
| 593 | * pages can be faulted in and the request resumed with @done_before set to the |
| 594 | * number of bytes previously transferred. The request will then complete with |
| 595 | * the correct total number of bytes transferred; this is essential for |
| 596 | * completing partial requests asynchronously. |
| 597 | * |
| 598 | * Returns -ENOTBLK In case of a page invalidation invalidation failure for |
| 599 | * writes. The callers needs to fall back to buffered I/O in this case. |
| 600 | */ |
| 601 | struct iomap_dio * |
| 602 | __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, |
| 603 | const struct iomap_ops *ops, const struct iomap_dio_ops *dops, |
| 604 | unsigned int dio_flags, void *private, size_t done_before) |
| 605 | { |
| 606 | struct inode *inode = file_inode(iocb->ki_filp); |
| 607 | struct iomap_iter iomi = { |
| 608 | .inode = inode, |
| 609 | .pos = iocb->ki_pos, |
| 610 | .len = iov_iter_count(iter), |
| 611 | .flags = IOMAP_DIRECT, |
| 612 | .private = private, |
| 613 | }; |
| 614 | bool wait_for_completion = |
| 615 | is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); |
| 616 | struct blk_plug plug; |
| 617 | struct iomap_dio *dio; |
| 618 | loff_t ret = 0; |
| 619 | |
| 620 | trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before); |
| 621 | |
| 622 | if (!iomi.len) |
| 623 | return NULL; |
| 624 | |
| 625 | dio = kmalloc(sizeof(*dio), GFP_KERNEL); |
| 626 | if (!dio) |
| 627 | return ERR_PTR(-ENOMEM); |
| 628 | |
| 629 | dio->iocb = iocb; |
| 630 | atomic_set(&dio->ref, 1); |
| 631 | dio->size = 0; |
| 632 | dio->i_size = i_size_read(inode); |
| 633 | dio->dops = dops; |
| 634 | dio->error = 0; |
| 635 | dio->flags = 0; |
| 636 | dio->done_before = done_before; |
| 637 | |
| 638 | dio->submit.iter = iter; |
| 639 | dio->submit.waiter = current; |
| 640 | |
| 641 | if (iocb->ki_flags & IOCB_NOWAIT) |
| 642 | iomi.flags |= IOMAP_NOWAIT; |
| 643 | |
| 644 | if (iov_iter_rw(iter) == READ) { |
| 645 | /* reads can always complete inline */ |
| 646 | dio->flags |= IOMAP_DIO_INLINE_COMP; |
| 647 | |
| 648 | if (iomi.pos >= dio->i_size) |
| 649 | goto out_free_dio; |
| 650 | |
| 651 | if (user_backed_iter(iter)) |
| 652 | dio->flags |= IOMAP_DIO_DIRTY; |
| 653 | |
| 654 | ret = kiocb_write_and_wait(iocb, iomi.len); |
| 655 | if (ret) |
| 656 | goto out_free_dio; |
| 657 | } else { |
| 658 | iomi.flags |= IOMAP_WRITE; |
| 659 | dio->flags |= IOMAP_DIO_WRITE; |
| 660 | |
| 661 | /* |
| 662 | * Flag as supporting deferred completions, if the issuer |
| 663 | * groks it. This can avoid a workqueue punt for writes. |
| 664 | * We may later clear this flag if we need to do other IO |
| 665 | * as part of this IO completion. |
| 666 | */ |
| 667 | if (iocb->ki_flags & IOCB_DIO_CALLER_COMP) |
| 668 | dio->flags |= IOMAP_DIO_CALLER_COMP; |
| 669 | |
| 670 | if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { |
| 671 | ret = -EAGAIN; |
| 672 | if (iomi.pos >= dio->i_size || |
| 673 | iomi.pos + iomi.len > dio->i_size) |
| 674 | goto out_free_dio; |
| 675 | iomi.flags |= IOMAP_OVERWRITE_ONLY; |
| 676 | } |
| 677 | |
| 678 | if (iocb->ki_flags & IOCB_ATOMIC) |
| 679 | iomi.flags |= IOMAP_ATOMIC; |
| 680 | |
| 681 | /* for data sync or sync, we need sync completion processing */ |
| 682 | if (iocb_is_dsync(iocb)) { |
| 683 | dio->flags |= IOMAP_DIO_NEED_SYNC; |
| 684 | |
| 685 | /* |
| 686 | * For datasync only writes, we optimistically try using |
| 687 | * WRITE_THROUGH for this IO. This flag requires either |
| 688 | * FUA writes through the device's write cache, or a |
| 689 | * normal write to a device without a volatile write |
| 690 | * cache. For the former, Any non-FUA write that occurs |
| 691 | * will clear this flag, hence we know before completion |
| 692 | * whether a cache flush is necessary. |
| 693 | */ |
| 694 | if (!(iocb->ki_flags & IOCB_SYNC)) |
| 695 | dio->flags |= IOMAP_DIO_WRITE_THROUGH; |
| 696 | } |
| 697 | |
| 698 | /* |
| 699 | * Try to invalidate cache pages for the range we are writing. |
| 700 | * If this invalidation fails, let the caller fall back to |
| 701 | * buffered I/O. |
| 702 | */ |
| 703 | ret = kiocb_invalidate_pages(iocb, iomi.len); |
| 704 | if (ret) { |
| 705 | if (ret != -EAGAIN) { |
| 706 | trace_iomap_dio_invalidate_fail(inode, iomi.pos, |
| 707 | iomi.len); |
| 708 | if (iocb->ki_flags & IOCB_ATOMIC) { |
| 709 | /* |
| 710 | * folio invalidation failed, maybe |
| 711 | * this is transient, unlock and see if |
| 712 | * the caller tries again. |
| 713 | */ |
| 714 | ret = -EAGAIN; |
| 715 | } else { |
| 716 | /* fall back to buffered write */ |
| 717 | ret = -ENOTBLK; |
| 718 | } |
| 719 | } |
| 720 | goto out_free_dio; |
| 721 | } |
| 722 | |
| 723 | if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { |
| 724 | ret = sb_init_dio_done_wq(inode->i_sb); |
| 725 | if (ret < 0) |
| 726 | goto out_free_dio; |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | inode_dio_begin(inode); |
| 731 | |
| 732 | blk_start_plug(&plug); |
| 733 | while ((ret = iomap_iter(&iomi, ops)) > 0) { |
| 734 | iomi.status = iomap_dio_iter(&iomi, dio); |
| 735 | |
| 736 | /* |
| 737 | * We can only poll for single bio I/Os. |
| 738 | */ |
| 739 | iocb->ki_flags &= ~IOCB_HIPRI; |
| 740 | } |
| 741 | |
| 742 | blk_finish_plug(&plug); |
| 743 | |
| 744 | /* |
| 745 | * We only report that we've read data up to i_size. |
| 746 | * Revert iter to a state corresponding to that as some callers (such |
| 747 | * as the splice code) rely on it. |
| 748 | */ |
| 749 | if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) |
| 750 | iov_iter_revert(iter, iomi.pos - dio->i_size); |
| 751 | |
| 752 | if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) { |
| 753 | if (!(iocb->ki_flags & IOCB_NOWAIT)) |
| 754 | wait_for_completion = true; |
| 755 | ret = 0; |
| 756 | } |
| 757 | |
| 758 | /* magic error code to fall back to buffered I/O */ |
| 759 | if (ret == -ENOTBLK) { |
| 760 | wait_for_completion = true; |
| 761 | ret = 0; |
| 762 | } |
| 763 | if (ret < 0) |
| 764 | iomap_dio_set_error(dio, ret); |
| 765 | |
| 766 | /* |
| 767 | * If all the writes we issued were already written through to the |
| 768 | * media, we don't need to flush the cache on IO completion. Clear the |
| 769 | * sync flag for this case. |
| 770 | */ |
| 771 | if (dio->flags & IOMAP_DIO_WRITE_THROUGH) |
| 772 | dio->flags &= ~IOMAP_DIO_NEED_SYNC; |
| 773 | |
| 774 | /* |
| 775 | * We are about to drop our additional submission reference, which |
| 776 | * might be the last reference to the dio. There are three different |
| 777 | * ways we can progress here: |
| 778 | * |
| 779 | * (a) If this is the last reference we will always complete and free |
| 780 | * the dio ourselves. |
| 781 | * (b) If this is not the last reference, and we serve an asynchronous |
| 782 | * iocb, we must never touch the dio after the decrement, the |
| 783 | * I/O completion handler will complete and free it. |
| 784 | * (c) If this is not the last reference, but we serve a synchronous |
| 785 | * iocb, the I/O completion handler will wake us up on the drop |
| 786 | * of the final reference, and we will complete and free it here |
| 787 | * after we got woken by the I/O completion handler. |
| 788 | */ |
| 789 | dio->wait_for_completion = wait_for_completion; |
| 790 | if (!atomic_dec_and_test(&dio->ref)) { |
| 791 | if (!wait_for_completion) { |
| 792 | trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len); |
| 793 | return ERR_PTR(-EIOCBQUEUED); |
| 794 | } |
| 795 | |
| 796 | for (;;) { |
| 797 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 798 | if (!READ_ONCE(dio->submit.waiter)) |
| 799 | break; |
| 800 | |
| 801 | blk_io_schedule(); |
| 802 | } |
| 803 | __set_current_state(TASK_RUNNING); |
| 804 | } |
| 805 | |
| 806 | return dio; |
| 807 | |
| 808 | out_free_dio: |
| 809 | kfree(dio); |
| 810 | if (ret) |
| 811 | return ERR_PTR(ret); |
| 812 | return NULL; |
| 813 | } |
| 814 | EXPORT_SYMBOL_GPL(__iomap_dio_rw); |
| 815 | |
| 816 | ssize_t |
| 817 | iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, |
| 818 | const struct iomap_ops *ops, const struct iomap_dio_ops *dops, |
| 819 | unsigned int dio_flags, void *private, size_t done_before) |
| 820 | { |
| 821 | struct iomap_dio *dio; |
| 822 | |
| 823 | dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private, |
| 824 | done_before); |
| 825 | if (IS_ERR_OR_NULL(dio)) |
| 826 | return PTR_ERR_OR_ZERO(dio); |
| 827 | return iomap_dio_complete(dio); |
| 828 | } |
| 829 | EXPORT_SYMBOL_GPL(iomap_dio_rw); |
| 830 | |
| 831 | static int __init iomap_dio_init(void) |
| 832 | { |
| 833 | zero_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, |
| 834 | IOMAP_ZERO_PAGE_ORDER); |
| 835 | |
| 836 | if (!zero_page) |
| 837 | return -ENOMEM; |
| 838 | |
| 839 | return 0; |
| 840 | } |
| 841 | fs_initcall(iomap_dio_init); |