overlayfs: Implement splice-read
[linux-block.git] / fs / fs-writeback.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
18#include <linux/export.h>
19#include <linux/spinlock.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/kthread.h>
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/tracepoint.h>
30#include <linux/device.h>
31#include <linux/memcontrol.h>
32#include "internal.h"
33
34/*
35 * 4MB minimal write chunk size
36 */
37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39/*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
53
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
56};
57
58/*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70static inline struct inode *wb_inode(struct list_head *head)
71{
72 return list_entry(head, struct inode, i_io_list);
73}
74
75/*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80#define CREATE_TRACE_POINTS
81#include <trace/events/writeback.h>
82
83EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85static bool wb_io_lists_populated(struct bdi_writeback *wb)
86{
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
94 return true;
95 }
96}
97
98static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99{
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
105 }
106}
107
108/**
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113 *
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
118static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
121{
122 assert_spin_locked(&wb->list_lock);
123 assert_spin_locked(&inode->i_lock);
124 WARN_ON_ONCE(inode->i_state & I_FREEING);
125
126 list_move(&inode->i_io_list, head);
127
128 /* dirty_time doesn't count as dirty_io until expiration */
129 if (head != &wb->b_dirty_time)
130 return wb_io_lists_populated(wb);
131
132 wb_io_lists_depopulated(wb);
133 return false;
134}
135
136static void wb_wakeup(struct bdi_writeback *wb)
137{
138 spin_lock_irq(&wb->work_lock);
139 if (test_bit(WB_registered, &wb->state))
140 mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 spin_unlock_irq(&wb->work_lock);
142}
143
144static void finish_writeback_work(struct bdi_writeback *wb,
145 struct wb_writeback_work *work)
146{
147 struct wb_completion *done = work->done;
148
149 if (work->auto_free)
150 kfree(work);
151 if (done) {
152 wait_queue_head_t *waitq = done->waitq;
153
154 /* @done can't be accessed after the following dec */
155 if (atomic_dec_and_test(&done->cnt))
156 wake_up_all(waitq);
157 }
158}
159
160static void wb_queue_work(struct bdi_writeback *wb,
161 struct wb_writeback_work *work)
162{
163 trace_writeback_queue(wb, work);
164
165 if (work->done)
166 atomic_inc(&work->done->cnt);
167
168 spin_lock_irq(&wb->work_lock);
169
170 if (test_bit(WB_registered, &wb->state)) {
171 list_add_tail(&work->list, &wb->work_list);
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 } else
174 finish_writeback_work(wb, work);
175
176 spin_unlock_irq(&wb->work_lock);
177}
178
179/**
180 * wb_wait_for_completion - wait for completion of bdi_writeback_works
181 * @done: target wb_completion
182 *
183 * Wait for one or more work items issued to @bdi with their ->done field
184 * set to @done, which should have been initialized with
185 * DEFINE_WB_COMPLETION(). This function returns after all such work items
186 * are completed. Work items which are waited upon aren't freed
187 * automatically on completion.
188 */
189void wb_wait_for_completion(struct wb_completion *done)
190{
191 atomic_dec(&done->cnt); /* put down the initial count */
192 wait_event(*done->waitq, !atomic_read(&done->cnt));
193}
194
195#ifdef CONFIG_CGROUP_WRITEBACK
196
197/*
198 * Parameters for foreign inode detection, see wbc_detach_inode() to see
199 * how they're used.
200 *
201 * These paramters are inherently heuristical as the detection target
202 * itself is fuzzy. All we want to do is detaching an inode from the
203 * current owner if it's being written to by some other cgroups too much.
204 *
205 * The current cgroup writeback is built on the assumption that multiple
206 * cgroups writing to the same inode concurrently is very rare and a mode
207 * of operation which isn't well supported. As such, the goal is not
208 * taking too long when a different cgroup takes over an inode while
209 * avoiding too aggressive flip-flops from occasional foreign writes.
210 *
211 * We record, very roughly, 2s worth of IO time history and if more than
212 * half of that is foreign, trigger the switch. The recording is quantized
213 * to 16 slots. To avoid tiny writes from swinging the decision too much,
214 * writes smaller than 1/8 of avg size are ignored.
215 */
216#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
217#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
218#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
219#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
220
221#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
222#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
223 /* each slot's duration is 2s / 16 */
224#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
225 /* if foreign slots >= 8, switch */
226#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
227 /* one round can affect upto 5 slots */
228#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
229
230/*
231 * Maximum inodes per isw. A specific value has been chosen to make
232 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
233 */
234#define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
235 / sizeof(struct inode *))
236
237static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
238static struct workqueue_struct *isw_wq;
239
240void __inode_attach_wb(struct inode *inode, struct folio *folio)
241{
242 struct backing_dev_info *bdi = inode_to_bdi(inode);
243 struct bdi_writeback *wb = NULL;
244
245 if (inode_cgwb_enabled(inode)) {
246 struct cgroup_subsys_state *memcg_css;
247
248 if (folio) {
249 memcg_css = mem_cgroup_css_from_folio(folio);
250 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
251 } else {
252 /* must pin memcg_css, see wb_get_create() */
253 memcg_css = task_get_css(current, memory_cgrp_id);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 css_put(memcg_css);
256 }
257 }
258
259 if (!wb)
260 wb = &bdi->wb;
261
262 /*
263 * There may be multiple instances of this function racing to
264 * update the same inode. Use cmpxchg() to tell the winner.
265 */
266 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
267 wb_put(wb);
268}
269EXPORT_SYMBOL_GPL(__inode_attach_wb);
270
271/**
272 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
273 * @inode: inode of interest with i_lock held
274 * @wb: target bdi_writeback
275 *
276 * Remove the inode from wb's io lists and if necessarily put onto b_attached
277 * list. Only inodes attached to cgwb's are kept on this list.
278 */
279static void inode_cgwb_move_to_attached(struct inode *inode,
280 struct bdi_writeback *wb)
281{
282 assert_spin_locked(&wb->list_lock);
283 assert_spin_locked(&inode->i_lock);
284 WARN_ON_ONCE(inode->i_state & I_FREEING);
285
286 inode->i_state &= ~I_SYNC_QUEUED;
287 if (wb != &wb->bdi->wb)
288 list_move(&inode->i_io_list, &wb->b_attached);
289 else
290 list_del_init(&inode->i_io_list);
291 wb_io_lists_depopulated(wb);
292}
293
294/**
295 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
296 * @inode: inode of interest with i_lock held
297 *
298 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
299 * held on entry and is released on return. The returned wb is guaranteed
300 * to stay @inode's associated wb until its list_lock is released.
301 */
302static struct bdi_writeback *
303locked_inode_to_wb_and_lock_list(struct inode *inode)
304 __releases(&inode->i_lock)
305 __acquires(&wb->list_lock)
306{
307 while (true) {
308 struct bdi_writeback *wb = inode_to_wb(inode);
309
310 /*
311 * inode_to_wb() association is protected by both
312 * @inode->i_lock and @wb->list_lock but list_lock nests
313 * outside i_lock. Drop i_lock and verify that the
314 * association hasn't changed after acquiring list_lock.
315 */
316 wb_get(wb);
317 spin_unlock(&inode->i_lock);
318 spin_lock(&wb->list_lock);
319
320 /* i_wb may have changed inbetween, can't use inode_to_wb() */
321 if (likely(wb == inode->i_wb)) {
322 wb_put(wb); /* @inode already has ref */
323 return wb;
324 }
325
326 spin_unlock(&wb->list_lock);
327 wb_put(wb);
328 cpu_relax();
329 spin_lock(&inode->i_lock);
330 }
331}
332
333/**
334 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
335 * @inode: inode of interest
336 *
337 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
338 * on entry.
339 */
340static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
341 __acquires(&wb->list_lock)
342{
343 spin_lock(&inode->i_lock);
344 return locked_inode_to_wb_and_lock_list(inode);
345}
346
347struct inode_switch_wbs_context {
348 struct rcu_work work;
349
350 /*
351 * Multiple inodes can be switched at once. The switching procedure
352 * consists of two parts, separated by a RCU grace period. To make
353 * sure that the second part is executed for each inode gone through
354 * the first part, all inode pointers are placed into a NULL-terminated
355 * array embedded into struct inode_switch_wbs_context. Otherwise
356 * an inode could be left in a non-consistent state.
357 */
358 struct bdi_writeback *new_wb;
359 struct inode *inodes[];
360};
361
362static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
363{
364 down_write(&bdi->wb_switch_rwsem);
365}
366
367static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
368{
369 up_write(&bdi->wb_switch_rwsem);
370}
371
372static bool inode_do_switch_wbs(struct inode *inode,
373 struct bdi_writeback *old_wb,
374 struct bdi_writeback *new_wb)
375{
376 struct address_space *mapping = inode->i_mapping;
377 XA_STATE(xas, &mapping->i_pages, 0);
378 struct folio *folio;
379 bool switched = false;
380
381 spin_lock(&inode->i_lock);
382 xa_lock_irq(&mapping->i_pages);
383
384 /*
385 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
386 * path owns the inode and we shouldn't modify ->i_io_list.
387 */
388 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
389 goto skip_switch;
390
391 trace_inode_switch_wbs(inode, old_wb, new_wb);
392
393 /*
394 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
395 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
396 * folios actually under writeback.
397 */
398 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
399 if (folio_test_dirty(folio)) {
400 long nr = folio_nr_pages(folio);
401 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
402 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
403 }
404 }
405
406 xas_set(&xas, 0);
407 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408 long nr = folio_nr_pages(folio);
409 WARN_ON_ONCE(!folio_test_writeback(folio));
410 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
411 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
412 }
413
414 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
415 atomic_dec(&old_wb->writeback_inodes);
416 atomic_inc(&new_wb->writeback_inodes);
417 }
418
419 wb_get(new_wb);
420
421 /*
422 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
423 * the specific list @inode was on is ignored and the @inode is put on
424 * ->b_dirty which is always correct including from ->b_dirty_time.
425 * The transfer preserves @inode->dirtied_when ordering. If the @inode
426 * was clean, it means it was on the b_attached list, so move it onto
427 * the b_attached list of @new_wb.
428 */
429 if (!list_empty(&inode->i_io_list)) {
430 inode->i_wb = new_wb;
431
432 if (inode->i_state & I_DIRTY_ALL) {
433 struct inode *pos;
434
435 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
436 if (time_after_eq(inode->dirtied_when,
437 pos->dirtied_when))
438 break;
439 inode_io_list_move_locked(inode, new_wb,
440 pos->i_io_list.prev);
441 } else {
442 inode_cgwb_move_to_attached(inode, new_wb);
443 }
444 } else {
445 inode->i_wb = new_wb;
446 }
447
448 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
449 inode->i_wb_frn_winner = 0;
450 inode->i_wb_frn_avg_time = 0;
451 inode->i_wb_frn_history = 0;
452 switched = true;
453skip_switch:
454 /*
455 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
456 * ensures that the new wb is visible if they see !I_WB_SWITCH.
457 */
458 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
459
460 xa_unlock_irq(&mapping->i_pages);
461 spin_unlock(&inode->i_lock);
462
463 return switched;
464}
465
466static void inode_switch_wbs_work_fn(struct work_struct *work)
467{
468 struct inode_switch_wbs_context *isw =
469 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
470 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
471 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
472 struct bdi_writeback *new_wb = isw->new_wb;
473 unsigned long nr_switched = 0;
474 struct inode **inodep;
475
476 /*
477 * If @inode switches cgwb membership while sync_inodes_sb() is
478 * being issued, sync_inodes_sb() might miss it. Synchronize.
479 */
480 down_read(&bdi->wb_switch_rwsem);
481
482 /*
483 * By the time control reaches here, RCU grace period has passed
484 * since I_WB_SWITCH assertion and all wb stat update transactions
485 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
486 * synchronizing against the i_pages lock.
487 *
488 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
489 * gives us exclusion against all wb related operations on @inode
490 * including IO list manipulations and stat updates.
491 */
492 if (old_wb < new_wb) {
493 spin_lock(&old_wb->list_lock);
494 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
495 } else {
496 spin_lock(&new_wb->list_lock);
497 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
498 }
499
500 for (inodep = isw->inodes; *inodep; inodep++) {
501 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
502 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
503 nr_switched++;
504 }
505
506 spin_unlock(&new_wb->list_lock);
507 spin_unlock(&old_wb->list_lock);
508
509 up_read(&bdi->wb_switch_rwsem);
510
511 if (nr_switched) {
512 wb_wakeup(new_wb);
513 wb_put_many(old_wb, nr_switched);
514 }
515
516 for (inodep = isw->inodes; *inodep; inodep++)
517 iput(*inodep);
518 wb_put(new_wb);
519 kfree(isw);
520 atomic_dec(&isw_nr_in_flight);
521}
522
523static bool inode_prepare_wbs_switch(struct inode *inode,
524 struct bdi_writeback *new_wb)
525{
526 /*
527 * Paired with smp_mb() in cgroup_writeback_umount().
528 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
529 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
530 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
531 */
532 smp_mb();
533
534 if (IS_DAX(inode))
535 return false;
536
537 /* while holding I_WB_SWITCH, no one else can update the association */
538 spin_lock(&inode->i_lock);
539 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
540 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
541 inode_to_wb(inode) == new_wb) {
542 spin_unlock(&inode->i_lock);
543 return false;
544 }
545 inode->i_state |= I_WB_SWITCH;
546 __iget(inode);
547 spin_unlock(&inode->i_lock);
548
549 return true;
550}
551
552/**
553 * inode_switch_wbs - change the wb association of an inode
554 * @inode: target inode
555 * @new_wb_id: ID of the new wb
556 *
557 * Switch @inode's wb association to the wb identified by @new_wb_id. The
558 * switching is performed asynchronously and may fail silently.
559 */
560static void inode_switch_wbs(struct inode *inode, int new_wb_id)
561{
562 struct backing_dev_info *bdi = inode_to_bdi(inode);
563 struct cgroup_subsys_state *memcg_css;
564 struct inode_switch_wbs_context *isw;
565
566 /* noop if seems to be already in progress */
567 if (inode->i_state & I_WB_SWITCH)
568 return;
569
570 /* avoid queueing a new switch if too many are already in flight */
571 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
572 return;
573
574 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
575 if (!isw)
576 return;
577
578 atomic_inc(&isw_nr_in_flight);
579
580 /* find and pin the new wb */
581 rcu_read_lock();
582 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
583 if (memcg_css && !css_tryget(memcg_css))
584 memcg_css = NULL;
585 rcu_read_unlock();
586 if (!memcg_css)
587 goto out_free;
588
589 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
590 css_put(memcg_css);
591 if (!isw->new_wb)
592 goto out_free;
593
594 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
595 goto out_free;
596
597 isw->inodes[0] = inode;
598
599 /*
600 * In addition to synchronizing among switchers, I_WB_SWITCH tells
601 * the RCU protected stat update paths to grab the i_page
602 * lock so that stat transfer can synchronize against them.
603 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
604 */
605 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
606 queue_rcu_work(isw_wq, &isw->work);
607 return;
608
609out_free:
610 atomic_dec(&isw_nr_in_flight);
611 if (isw->new_wb)
612 wb_put(isw->new_wb);
613 kfree(isw);
614}
615
616/**
617 * cleanup_offline_cgwb - detach associated inodes
618 * @wb: target wb
619 *
620 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
621 * to eventually release the dying @wb. Returns %true if not all inodes were
622 * switched and the function has to be restarted.
623 */
624bool cleanup_offline_cgwb(struct bdi_writeback *wb)
625{
626 struct cgroup_subsys_state *memcg_css;
627 struct inode_switch_wbs_context *isw;
628 struct inode *inode;
629 int nr;
630 bool restart = false;
631
632 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
633 GFP_KERNEL);
634 if (!isw)
635 return restart;
636
637 atomic_inc(&isw_nr_in_flight);
638
639 for (memcg_css = wb->memcg_css->parent; memcg_css;
640 memcg_css = memcg_css->parent) {
641 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
642 if (isw->new_wb)
643 break;
644 }
645 if (unlikely(!isw->new_wb))
646 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
647
648 nr = 0;
649 spin_lock(&wb->list_lock);
650 list_for_each_entry(inode, &wb->b_attached, i_io_list) {
651 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
652 continue;
653
654 isw->inodes[nr++] = inode;
655
656 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
657 restart = true;
658 break;
659 }
660 }
661 spin_unlock(&wb->list_lock);
662
663 /* no attached inodes? bail out */
664 if (nr == 0) {
665 atomic_dec(&isw_nr_in_flight);
666 wb_put(isw->new_wb);
667 kfree(isw);
668 return restart;
669 }
670
671 /*
672 * In addition to synchronizing among switchers, I_WB_SWITCH tells
673 * the RCU protected stat update paths to grab the i_page
674 * lock so that stat transfer can synchronize against them.
675 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
676 */
677 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
678 queue_rcu_work(isw_wq, &isw->work);
679
680 return restart;
681}
682
683/**
684 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
685 * @wbc: writeback_control of interest
686 * @inode: target inode
687 *
688 * @inode is locked and about to be written back under the control of @wbc.
689 * Record @inode's writeback context into @wbc and unlock the i_lock. On
690 * writeback completion, wbc_detach_inode() should be called. This is used
691 * to track the cgroup writeback context.
692 */
693void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
694 struct inode *inode)
695{
696 if (!inode_cgwb_enabled(inode)) {
697 spin_unlock(&inode->i_lock);
698 return;
699 }
700
701 wbc->wb = inode_to_wb(inode);
702 wbc->inode = inode;
703
704 wbc->wb_id = wbc->wb->memcg_css->id;
705 wbc->wb_lcand_id = inode->i_wb_frn_winner;
706 wbc->wb_tcand_id = 0;
707 wbc->wb_bytes = 0;
708 wbc->wb_lcand_bytes = 0;
709 wbc->wb_tcand_bytes = 0;
710
711 wb_get(wbc->wb);
712 spin_unlock(&inode->i_lock);
713
714 /*
715 * A dying wb indicates that either the blkcg associated with the
716 * memcg changed or the associated memcg is dying. In the first
717 * case, a replacement wb should already be available and we should
718 * refresh the wb immediately. In the second case, trying to
719 * refresh will keep failing.
720 */
721 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
722 inode_switch_wbs(inode, wbc->wb_id);
723}
724EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
725
726/**
727 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
728 * @wbc: writeback_control of the just finished writeback
729 *
730 * To be called after a writeback attempt of an inode finishes and undoes
731 * wbc_attach_and_unlock_inode(). Can be called under any context.
732 *
733 * As concurrent write sharing of an inode is expected to be very rare and
734 * memcg only tracks page ownership on first-use basis severely confining
735 * the usefulness of such sharing, cgroup writeback tracks ownership
736 * per-inode. While the support for concurrent write sharing of an inode
737 * is deemed unnecessary, an inode being written to by different cgroups at
738 * different points in time is a lot more common, and, more importantly,
739 * charging only by first-use can too readily lead to grossly incorrect
740 * behaviors (single foreign page can lead to gigabytes of writeback to be
741 * incorrectly attributed).
742 *
743 * To resolve this issue, cgroup writeback detects the majority dirtier of
744 * an inode and transfers the ownership to it. To avoid unnecessary
745 * oscillation, the detection mechanism keeps track of history and gives
746 * out the switch verdict only if the foreign usage pattern is stable over
747 * a certain amount of time and/or writeback attempts.
748 *
749 * On each writeback attempt, @wbc tries to detect the majority writer
750 * using Boyer-Moore majority vote algorithm. In addition to the byte
751 * count from the majority voting, it also counts the bytes written for the
752 * current wb and the last round's winner wb (max of last round's current
753 * wb, the winner from two rounds ago, and the last round's majority
754 * candidate). Keeping track of the historical winner helps the algorithm
755 * to semi-reliably detect the most active writer even when it's not the
756 * absolute majority.
757 *
758 * Once the winner of the round is determined, whether the winner is
759 * foreign or not and how much IO time the round consumed is recorded in
760 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
761 * over a certain threshold, the switch verdict is given.
762 */
763void wbc_detach_inode(struct writeback_control *wbc)
764{
765 struct bdi_writeback *wb = wbc->wb;
766 struct inode *inode = wbc->inode;
767 unsigned long avg_time, max_bytes, max_time;
768 u16 history;
769 int max_id;
770
771 if (!wb)
772 return;
773
774 history = inode->i_wb_frn_history;
775 avg_time = inode->i_wb_frn_avg_time;
776
777 /* pick the winner of this round */
778 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
779 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
780 max_id = wbc->wb_id;
781 max_bytes = wbc->wb_bytes;
782 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
783 max_id = wbc->wb_lcand_id;
784 max_bytes = wbc->wb_lcand_bytes;
785 } else {
786 max_id = wbc->wb_tcand_id;
787 max_bytes = wbc->wb_tcand_bytes;
788 }
789
790 /*
791 * Calculate the amount of IO time the winner consumed and fold it
792 * into the running average kept per inode. If the consumed IO
793 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
794 * deciding whether to switch or not. This is to prevent one-off
795 * small dirtiers from skewing the verdict.
796 */
797 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
798 wb->avg_write_bandwidth);
799 if (avg_time)
800 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
801 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
802 else
803 avg_time = max_time; /* immediate catch up on first run */
804
805 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
806 int slots;
807
808 /*
809 * The switch verdict is reached if foreign wb's consume
810 * more than a certain proportion of IO time in a
811 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
812 * history mask where each bit represents one sixteenth of
813 * the period. Determine the number of slots to shift into
814 * history from @max_time.
815 */
816 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
817 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
818 history <<= slots;
819 if (wbc->wb_id != max_id)
820 history |= (1U << slots) - 1;
821
822 if (history)
823 trace_inode_foreign_history(inode, wbc, history);
824
825 /*
826 * Switch if the current wb isn't the consistent winner.
827 * If there are multiple closely competing dirtiers, the
828 * inode may switch across them repeatedly over time, which
829 * is okay. The main goal is avoiding keeping an inode on
830 * the wrong wb for an extended period of time.
831 */
832 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
833 inode_switch_wbs(inode, max_id);
834 }
835
836 /*
837 * Multiple instances of this function may race to update the
838 * following fields but we don't mind occassional inaccuracies.
839 */
840 inode->i_wb_frn_winner = max_id;
841 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
842 inode->i_wb_frn_history = history;
843
844 wb_put(wbc->wb);
845 wbc->wb = NULL;
846}
847EXPORT_SYMBOL_GPL(wbc_detach_inode);
848
849/**
850 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
851 * @wbc: writeback_control of the writeback in progress
852 * @page: page being written out
853 * @bytes: number of bytes being written out
854 *
855 * @bytes from @page are about to written out during the writeback
856 * controlled by @wbc. Keep the book for foreign inode detection. See
857 * wbc_detach_inode().
858 */
859void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
860 size_t bytes)
861{
862 struct folio *folio;
863 struct cgroup_subsys_state *css;
864 int id;
865
866 /*
867 * pageout() path doesn't attach @wbc to the inode being written
868 * out. This is intentional as we don't want the function to block
869 * behind a slow cgroup. Ultimately, we want pageout() to kick off
870 * regular writeback instead of writing things out itself.
871 */
872 if (!wbc->wb || wbc->no_cgroup_owner)
873 return;
874
875 folio = page_folio(page);
876 css = mem_cgroup_css_from_folio(folio);
877 /* dead cgroups shouldn't contribute to inode ownership arbitration */
878 if (!(css->flags & CSS_ONLINE))
879 return;
880
881 id = css->id;
882
883 if (id == wbc->wb_id) {
884 wbc->wb_bytes += bytes;
885 return;
886 }
887
888 if (id == wbc->wb_lcand_id)
889 wbc->wb_lcand_bytes += bytes;
890
891 /* Boyer-Moore majority vote algorithm */
892 if (!wbc->wb_tcand_bytes)
893 wbc->wb_tcand_id = id;
894 if (id == wbc->wb_tcand_id)
895 wbc->wb_tcand_bytes += bytes;
896 else
897 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
898}
899EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
900
901/**
902 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
903 * @wb: target bdi_writeback to split @nr_pages to
904 * @nr_pages: number of pages to write for the whole bdi
905 *
906 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
907 * relation to the total write bandwidth of all wb's w/ dirty inodes on
908 * @wb->bdi.
909 */
910static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
911{
912 unsigned long this_bw = wb->avg_write_bandwidth;
913 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
914
915 if (nr_pages == LONG_MAX)
916 return LONG_MAX;
917
918 /*
919 * This may be called on clean wb's and proportional distribution
920 * may not make sense, just use the original @nr_pages in those
921 * cases. In general, we wanna err on the side of writing more.
922 */
923 if (!tot_bw || this_bw >= tot_bw)
924 return nr_pages;
925 else
926 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
927}
928
929/**
930 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
931 * @bdi: target backing_dev_info
932 * @base_work: wb_writeback_work to issue
933 * @skip_if_busy: skip wb's which already have writeback in progress
934 *
935 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
936 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
937 * distributed to the busy wbs according to each wb's proportion in the
938 * total active write bandwidth of @bdi.
939 */
940static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
941 struct wb_writeback_work *base_work,
942 bool skip_if_busy)
943{
944 struct bdi_writeback *last_wb = NULL;
945 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
946 struct bdi_writeback, bdi_node);
947
948 might_sleep();
949restart:
950 rcu_read_lock();
951 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
952 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
953 struct wb_writeback_work fallback_work;
954 struct wb_writeback_work *work;
955 long nr_pages;
956
957 if (last_wb) {
958 wb_put(last_wb);
959 last_wb = NULL;
960 }
961
962 /* SYNC_ALL writes out I_DIRTY_TIME too */
963 if (!wb_has_dirty_io(wb) &&
964 (base_work->sync_mode == WB_SYNC_NONE ||
965 list_empty(&wb->b_dirty_time)))
966 continue;
967 if (skip_if_busy && writeback_in_progress(wb))
968 continue;
969
970 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
971
972 work = kmalloc(sizeof(*work), GFP_ATOMIC);
973 if (work) {
974 *work = *base_work;
975 work->nr_pages = nr_pages;
976 work->auto_free = 1;
977 wb_queue_work(wb, work);
978 continue;
979 }
980
981 /*
982 * If wb_tryget fails, the wb has been shutdown, skip it.
983 *
984 * Pin @wb so that it stays on @bdi->wb_list. This allows
985 * continuing iteration from @wb after dropping and
986 * regrabbing rcu read lock.
987 */
988 if (!wb_tryget(wb))
989 continue;
990
991 /* alloc failed, execute synchronously using on-stack fallback */
992 work = &fallback_work;
993 *work = *base_work;
994 work->nr_pages = nr_pages;
995 work->auto_free = 0;
996 work->done = &fallback_work_done;
997
998 wb_queue_work(wb, work);
999 last_wb = wb;
1000
1001 rcu_read_unlock();
1002 wb_wait_for_completion(&fallback_work_done);
1003 goto restart;
1004 }
1005 rcu_read_unlock();
1006
1007 if (last_wb)
1008 wb_put(last_wb);
1009}
1010
1011/**
1012 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1013 * @bdi_id: target bdi id
1014 * @memcg_id: target memcg css id
1015 * @reason: reason why some writeback work initiated
1016 * @done: target wb_completion
1017 *
1018 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1019 * with the specified parameters.
1020 */
1021int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1022 enum wb_reason reason, struct wb_completion *done)
1023{
1024 struct backing_dev_info *bdi;
1025 struct cgroup_subsys_state *memcg_css;
1026 struct bdi_writeback *wb;
1027 struct wb_writeback_work *work;
1028 unsigned long dirty;
1029 int ret;
1030
1031 /* lookup bdi and memcg */
1032 bdi = bdi_get_by_id(bdi_id);
1033 if (!bdi)
1034 return -ENOENT;
1035
1036 rcu_read_lock();
1037 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1038 if (memcg_css && !css_tryget(memcg_css))
1039 memcg_css = NULL;
1040 rcu_read_unlock();
1041 if (!memcg_css) {
1042 ret = -ENOENT;
1043 goto out_bdi_put;
1044 }
1045
1046 /*
1047 * And find the associated wb. If the wb isn't there already
1048 * there's nothing to flush, don't create one.
1049 */
1050 wb = wb_get_lookup(bdi, memcg_css);
1051 if (!wb) {
1052 ret = -ENOENT;
1053 goto out_css_put;
1054 }
1055
1056 /*
1057 * The caller is attempting to write out most of
1058 * the currently dirty pages. Let's take the current dirty page
1059 * count and inflate it by 25% which should be large enough to
1060 * flush out most dirty pages while avoiding getting livelocked by
1061 * concurrent dirtiers.
1062 *
1063 * BTW the memcg stats are flushed periodically and this is best-effort
1064 * estimation, so some potential error is ok.
1065 */
1066 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1067 dirty = dirty * 10 / 8;
1068
1069 /* issue the writeback work */
1070 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1071 if (work) {
1072 work->nr_pages = dirty;
1073 work->sync_mode = WB_SYNC_NONE;
1074 work->range_cyclic = 1;
1075 work->reason = reason;
1076 work->done = done;
1077 work->auto_free = 1;
1078 wb_queue_work(wb, work);
1079 ret = 0;
1080 } else {
1081 ret = -ENOMEM;
1082 }
1083
1084 wb_put(wb);
1085out_css_put:
1086 css_put(memcg_css);
1087out_bdi_put:
1088 bdi_put(bdi);
1089 return ret;
1090}
1091
1092/**
1093 * cgroup_writeback_umount - flush inode wb switches for umount
1094 *
1095 * This function is called when a super_block is about to be destroyed and
1096 * flushes in-flight inode wb switches. An inode wb switch goes through
1097 * RCU and then workqueue, so the two need to be flushed in order to ensure
1098 * that all previously scheduled switches are finished. As wb switches are
1099 * rare occurrences and synchronize_rcu() can take a while, perform
1100 * flushing iff wb switches are in flight.
1101 */
1102void cgroup_writeback_umount(void)
1103{
1104 /*
1105 * SB_ACTIVE should be reliably cleared before checking
1106 * isw_nr_in_flight, see generic_shutdown_super().
1107 */
1108 smp_mb();
1109
1110 if (atomic_read(&isw_nr_in_flight)) {
1111 /*
1112 * Use rcu_barrier() to wait for all pending callbacks to
1113 * ensure that all in-flight wb switches are in the workqueue.
1114 */
1115 rcu_barrier();
1116 flush_workqueue(isw_wq);
1117 }
1118}
1119
1120static int __init cgroup_writeback_init(void)
1121{
1122 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1123 if (!isw_wq)
1124 return -ENOMEM;
1125 return 0;
1126}
1127fs_initcall(cgroup_writeback_init);
1128
1129#else /* CONFIG_CGROUP_WRITEBACK */
1130
1131static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1132static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1133
1134static void inode_cgwb_move_to_attached(struct inode *inode,
1135 struct bdi_writeback *wb)
1136{
1137 assert_spin_locked(&wb->list_lock);
1138 assert_spin_locked(&inode->i_lock);
1139 WARN_ON_ONCE(inode->i_state & I_FREEING);
1140
1141 inode->i_state &= ~I_SYNC_QUEUED;
1142 list_del_init(&inode->i_io_list);
1143 wb_io_lists_depopulated(wb);
1144}
1145
1146static struct bdi_writeback *
1147locked_inode_to_wb_and_lock_list(struct inode *inode)
1148 __releases(&inode->i_lock)
1149 __acquires(&wb->list_lock)
1150{
1151 struct bdi_writeback *wb = inode_to_wb(inode);
1152
1153 spin_unlock(&inode->i_lock);
1154 spin_lock(&wb->list_lock);
1155 return wb;
1156}
1157
1158static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1159 __acquires(&wb->list_lock)
1160{
1161 struct bdi_writeback *wb = inode_to_wb(inode);
1162
1163 spin_lock(&wb->list_lock);
1164 return wb;
1165}
1166
1167static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1168{
1169 return nr_pages;
1170}
1171
1172static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1173 struct wb_writeback_work *base_work,
1174 bool skip_if_busy)
1175{
1176 might_sleep();
1177
1178 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1179 base_work->auto_free = 0;
1180 wb_queue_work(&bdi->wb, base_work);
1181 }
1182}
1183
1184#endif /* CONFIG_CGROUP_WRITEBACK */
1185
1186/*
1187 * Add in the number of potentially dirty inodes, because each inode
1188 * write can dirty pagecache in the underlying blockdev.
1189 */
1190static unsigned long get_nr_dirty_pages(void)
1191{
1192 return global_node_page_state(NR_FILE_DIRTY) +
1193 get_nr_dirty_inodes();
1194}
1195
1196static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1197{
1198 if (!wb_has_dirty_io(wb))
1199 return;
1200
1201 /*
1202 * All callers of this function want to start writeback of all
1203 * dirty pages. Places like vmscan can call this at a very
1204 * high frequency, causing pointless allocations of tons of
1205 * work items and keeping the flusher threads busy retrieving
1206 * that work. Ensure that we only allow one of them pending and
1207 * inflight at the time.
1208 */
1209 if (test_bit(WB_start_all, &wb->state) ||
1210 test_and_set_bit(WB_start_all, &wb->state))
1211 return;
1212
1213 wb->start_all_reason = reason;
1214 wb_wakeup(wb);
1215}
1216
1217/**
1218 * wb_start_background_writeback - start background writeback
1219 * @wb: bdi_writback to write from
1220 *
1221 * Description:
1222 * This makes sure WB_SYNC_NONE background writeback happens. When
1223 * this function returns, it is only guaranteed that for given wb
1224 * some IO is happening if we are over background dirty threshold.
1225 * Caller need not hold sb s_umount semaphore.
1226 */
1227void wb_start_background_writeback(struct bdi_writeback *wb)
1228{
1229 /*
1230 * We just wake up the flusher thread. It will perform background
1231 * writeback as soon as there is no other work to do.
1232 */
1233 trace_writeback_wake_background(wb);
1234 wb_wakeup(wb);
1235}
1236
1237/*
1238 * Remove the inode from the writeback list it is on.
1239 */
1240void inode_io_list_del(struct inode *inode)
1241{
1242 struct bdi_writeback *wb;
1243
1244 wb = inode_to_wb_and_lock_list(inode);
1245 spin_lock(&inode->i_lock);
1246
1247 inode->i_state &= ~I_SYNC_QUEUED;
1248 list_del_init(&inode->i_io_list);
1249 wb_io_lists_depopulated(wb);
1250
1251 spin_unlock(&inode->i_lock);
1252 spin_unlock(&wb->list_lock);
1253}
1254EXPORT_SYMBOL(inode_io_list_del);
1255
1256/*
1257 * mark an inode as under writeback on the sb
1258 */
1259void sb_mark_inode_writeback(struct inode *inode)
1260{
1261 struct super_block *sb = inode->i_sb;
1262 unsigned long flags;
1263
1264 if (list_empty(&inode->i_wb_list)) {
1265 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1266 if (list_empty(&inode->i_wb_list)) {
1267 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1268 trace_sb_mark_inode_writeback(inode);
1269 }
1270 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1271 }
1272}
1273
1274/*
1275 * clear an inode as under writeback on the sb
1276 */
1277void sb_clear_inode_writeback(struct inode *inode)
1278{
1279 struct super_block *sb = inode->i_sb;
1280 unsigned long flags;
1281
1282 if (!list_empty(&inode->i_wb_list)) {
1283 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1284 if (!list_empty(&inode->i_wb_list)) {
1285 list_del_init(&inode->i_wb_list);
1286 trace_sb_clear_inode_writeback(inode);
1287 }
1288 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1289 }
1290}
1291
1292/*
1293 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1294 * furthest end of its superblock's dirty-inode list.
1295 *
1296 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1297 * already the most-recently-dirtied inode on the b_dirty list. If that is
1298 * the case then the inode must have been redirtied while it was being written
1299 * out and we don't reset its dirtied_when.
1300 */
1301static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1302{
1303 assert_spin_locked(&inode->i_lock);
1304
1305 inode->i_state &= ~I_SYNC_QUEUED;
1306 /*
1307 * When the inode is being freed just don't bother with dirty list
1308 * tracking. Flush worker will ignore this inode anyway and it will
1309 * trigger assertions in inode_io_list_move_locked().
1310 */
1311 if (inode->i_state & I_FREEING) {
1312 list_del_init(&inode->i_io_list);
1313 wb_io_lists_depopulated(wb);
1314 return;
1315 }
1316 if (!list_empty(&wb->b_dirty)) {
1317 struct inode *tail;
1318
1319 tail = wb_inode(wb->b_dirty.next);
1320 if (time_before(inode->dirtied_when, tail->dirtied_when))
1321 inode->dirtied_when = jiffies;
1322 }
1323 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1324}
1325
1326static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1327{
1328 spin_lock(&inode->i_lock);
1329 redirty_tail_locked(inode, wb);
1330 spin_unlock(&inode->i_lock);
1331}
1332
1333/*
1334 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1335 */
1336static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1337{
1338 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1339}
1340
1341static void inode_sync_complete(struct inode *inode)
1342{
1343 inode->i_state &= ~I_SYNC;
1344 /* If inode is clean an unused, put it into LRU now... */
1345 inode_add_lru(inode);
1346 /* Waiters must see I_SYNC cleared before being woken up */
1347 smp_mb();
1348 wake_up_bit(&inode->i_state, __I_SYNC);
1349}
1350
1351static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1352{
1353 bool ret = time_after(inode->dirtied_when, t);
1354#ifndef CONFIG_64BIT
1355 /*
1356 * For inodes being constantly redirtied, dirtied_when can get stuck.
1357 * It _appears_ to be in the future, but is actually in distant past.
1358 * This test is necessary to prevent such wrapped-around relative times
1359 * from permanently stopping the whole bdi writeback.
1360 */
1361 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1362#endif
1363 return ret;
1364}
1365
1366/*
1367 * Move expired (dirtied before dirtied_before) dirty inodes from
1368 * @delaying_queue to @dispatch_queue.
1369 */
1370static int move_expired_inodes(struct list_head *delaying_queue,
1371 struct list_head *dispatch_queue,
1372 unsigned long dirtied_before)
1373{
1374 LIST_HEAD(tmp);
1375 struct list_head *pos, *node;
1376 struct super_block *sb = NULL;
1377 struct inode *inode;
1378 int do_sb_sort = 0;
1379 int moved = 0;
1380
1381 while (!list_empty(delaying_queue)) {
1382 inode = wb_inode(delaying_queue->prev);
1383 if (inode_dirtied_after(inode, dirtied_before))
1384 break;
1385 spin_lock(&inode->i_lock);
1386 list_move(&inode->i_io_list, &tmp);
1387 moved++;
1388 inode->i_state |= I_SYNC_QUEUED;
1389 spin_unlock(&inode->i_lock);
1390 if (sb_is_blkdev_sb(inode->i_sb))
1391 continue;
1392 if (sb && sb != inode->i_sb)
1393 do_sb_sort = 1;
1394 sb = inode->i_sb;
1395 }
1396
1397 /* just one sb in list, splice to dispatch_queue and we're done */
1398 if (!do_sb_sort) {
1399 list_splice(&tmp, dispatch_queue);
1400 goto out;
1401 }
1402
1403 /*
1404 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1405 * we don't take inode->i_lock here because it is just a pointless overhead.
1406 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1407 * fully under our control.
1408 */
1409 while (!list_empty(&tmp)) {
1410 sb = wb_inode(tmp.prev)->i_sb;
1411 list_for_each_prev_safe(pos, node, &tmp) {
1412 inode = wb_inode(pos);
1413 if (inode->i_sb == sb)
1414 list_move(&inode->i_io_list, dispatch_queue);
1415 }
1416 }
1417out:
1418 return moved;
1419}
1420
1421/*
1422 * Queue all expired dirty inodes for io, eldest first.
1423 * Before
1424 * newly dirtied b_dirty b_io b_more_io
1425 * =============> gf edc BA
1426 * After
1427 * newly dirtied b_dirty b_io b_more_io
1428 * =============> g fBAedc
1429 * |
1430 * +--> dequeue for IO
1431 */
1432static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1433 unsigned long dirtied_before)
1434{
1435 int moved;
1436 unsigned long time_expire_jif = dirtied_before;
1437
1438 assert_spin_locked(&wb->list_lock);
1439 list_splice_init(&wb->b_more_io, &wb->b_io);
1440 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1441 if (!work->for_sync)
1442 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1443 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1444 time_expire_jif);
1445 if (moved)
1446 wb_io_lists_populated(wb);
1447 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1448}
1449
1450static int write_inode(struct inode *inode, struct writeback_control *wbc)
1451{
1452 int ret;
1453
1454 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1455 trace_writeback_write_inode_start(inode, wbc);
1456 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1457 trace_writeback_write_inode(inode, wbc);
1458 return ret;
1459 }
1460 return 0;
1461}
1462
1463/*
1464 * Wait for writeback on an inode to complete. Called with i_lock held.
1465 * Caller must make sure inode cannot go away when we drop i_lock.
1466 */
1467static void __inode_wait_for_writeback(struct inode *inode)
1468 __releases(inode->i_lock)
1469 __acquires(inode->i_lock)
1470{
1471 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1472 wait_queue_head_t *wqh;
1473
1474 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1475 while (inode->i_state & I_SYNC) {
1476 spin_unlock(&inode->i_lock);
1477 __wait_on_bit(wqh, &wq, bit_wait,
1478 TASK_UNINTERRUPTIBLE);
1479 spin_lock(&inode->i_lock);
1480 }
1481}
1482
1483/*
1484 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1485 */
1486void inode_wait_for_writeback(struct inode *inode)
1487{
1488 spin_lock(&inode->i_lock);
1489 __inode_wait_for_writeback(inode);
1490 spin_unlock(&inode->i_lock);
1491}
1492
1493/*
1494 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1495 * held and drops it. It is aimed for callers not holding any inode reference
1496 * so once i_lock is dropped, inode can go away.
1497 */
1498static void inode_sleep_on_writeback(struct inode *inode)
1499 __releases(inode->i_lock)
1500{
1501 DEFINE_WAIT(wait);
1502 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1503 int sleep;
1504
1505 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1506 sleep = inode->i_state & I_SYNC;
1507 spin_unlock(&inode->i_lock);
1508 if (sleep)
1509 schedule();
1510 finish_wait(wqh, &wait);
1511}
1512
1513/*
1514 * Find proper writeback list for the inode depending on its current state and
1515 * possibly also change of its state while we were doing writeback. Here we
1516 * handle things such as livelock prevention or fairness of writeback among
1517 * inodes. This function can be called only by flusher thread - noone else
1518 * processes all inodes in writeback lists and requeueing inodes behind flusher
1519 * thread's back can have unexpected consequences.
1520 */
1521static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1522 struct writeback_control *wbc)
1523{
1524 if (inode->i_state & I_FREEING)
1525 return;
1526
1527 /*
1528 * Sync livelock prevention. Each inode is tagged and synced in one
1529 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1530 * the dirty time to prevent enqueue and sync it again.
1531 */
1532 if ((inode->i_state & I_DIRTY) &&
1533 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1534 inode->dirtied_when = jiffies;
1535
1536 if (wbc->pages_skipped) {
1537 /*
1538 * writeback is not making progress due to locked
1539 * buffers. Skip this inode for now.
1540 */
1541 redirty_tail_locked(inode, wb);
1542 return;
1543 }
1544
1545 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1546 /*
1547 * We didn't write back all the pages. nfs_writepages()
1548 * sometimes bales out without doing anything.
1549 */
1550 if (wbc->nr_to_write <= 0) {
1551 /* Slice used up. Queue for next turn. */
1552 requeue_io(inode, wb);
1553 } else {
1554 /*
1555 * Writeback blocked by something other than
1556 * congestion. Delay the inode for some time to
1557 * avoid spinning on the CPU (100% iowait)
1558 * retrying writeback of the dirty page/inode
1559 * that cannot be performed immediately.
1560 */
1561 redirty_tail_locked(inode, wb);
1562 }
1563 } else if (inode->i_state & I_DIRTY) {
1564 /*
1565 * Filesystems can dirty the inode during writeback operations,
1566 * such as delayed allocation during submission or metadata
1567 * updates after data IO completion.
1568 */
1569 redirty_tail_locked(inode, wb);
1570 } else if (inode->i_state & I_DIRTY_TIME) {
1571 inode->dirtied_when = jiffies;
1572 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1573 inode->i_state &= ~I_SYNC_QUEUED;
1574 } else {
1575 /* The inode is clean. Remove from writeback lists. */
1576 inode_cgwb_move_to_attached(inode, wb);
1577 }
1578}
1579
1580/*
1581 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1582 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1583 *
1584 * This doesn't remove the inode from the writeback list it is on, except
1585 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1586 * expiration. The caller is otherwise responsible for writeback list handling.
1587 *
1588 * The caller is also responsible for setting the I_SYNC flag beforehand and
1589 * calling inode_sync_complete() to clear it afterwards.
1590 */
1591static int
1592__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1593{
1594 struct address_space *mapping = inode->i_mapping;
1595 long nr_to_write = wbc->nr_to_write;
1596 unsigned dirty;
1597 int ret;
1598
1599 WARN_ON(!(inode->i_state & I_SYNC));
1600
1601 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1602
1603 ret = do_writepages(mapping, wbc);
1604
1605 /*
1606 * Make sure to wait on the data before writing out the metadata.
1607 * This is important for filesystems that modify metadata on data
1608 * I/O completion. We don't do it for sync(2) writeback because it has a
1609 * separate, external IO completion path and ->sync_fs for guaranteeing
1610 * inode metadata is written back correctly.
1611 */
1612 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1613 int err = filemap_fdatawait(mapping);
1614 if (ret == 0)
1615 ret = err;
1616 }
1617
1618 /*
1619 * If the inode has dirty timestamps and we need to write them, call
1620 * mark_inode_dirty_sync() to notify the filesystem about it and to
1621 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1622 */
1623 if ((inode->i_state & I_DIRTY_TIME) &&
1624 (wbc->sync_mode == WB_SYNC_ALL ||
1625 time_after(jiffies, inode->dirtied_time_when +
1626 dirtytime_expire_interval * HZ))) {
1627 trace_writeback_lazytime(inode);
1628 mark_inode_dirty_sync(inode);
1629 }
1630
1631 /*
1632 * Get and clear the dirty flags from i_state. This needs to be done
1633 * after calling writepages because some filesystems may redirty the
1634 * inode during writepages due to delalloc. It also needs to be done
1635 * after handling timestamp expiration, as that may dirty the inode too.
1636 */
1637 spin_lock(&inode->i_lock);
1638 dirty = inode->i_state & I_DIRTY;
1639 inode->i_state &= ~dirty;
1640
1641 /*
1642 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1643 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1644 * either they see the I_DIRTY bits cleared or we see the dirtied
1645 * inode.
1646 *
1647 * I_DIRTY_PAGES is always cleared together above even if @mapping
1648 * still has dirty pages. The flag is reinstated after smp_mb() if
1649 * necessary. This guarantees that either __mark_inode_dirty()
1650 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1651 */
1652 smp_mb();
1653
1654 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1655 inode->i_state |= I_DIRTY_PAGES;
1656 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1657 if (!(inode->i_state & I_DIRTY_PAGES)) {
1658 inode->i_state &= ~I_PINNING_FSCACHE_WB;
1659 wbc->unpinned_fscache_wb = true;
1660 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1661 }
1662 }
1663
1664 spin_unlock(&inode->i_lock);
1665
1666 /* Don't write the inode if only I_DIRTY_PAGES was set */
1667 if (dirty & ~I_DIRTY_PAGES) {
1668 int err = write_inode(inode, wbc);
1669 if (ret == 0)
1670 ret = err;
1671 }
1672 wbc->unpinned_fscache_wb = false;
1673 trace_writeback_single_inode(inode, wbc, nr_to_write);
1674 return ret;
1675}
1676
1677/*
1678 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1679 * the regular batched writeback done by the flusher threads in
1680 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1681 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1682 *
1683 * To prevent the inode from going away, either the caller must have a reference
1684 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1685 */
1686static int writeback_single_inode(struct inode *inode,
1687 struct writeback_control *wbc)
1688{
1689 struct bdi_writeback *wb;
1690 int ret = 0;
1691
1692 spin_lock(&inode->i_lock);
1693 if (!atomic_read(&inode->i_count))
1694 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1695 else
1696 WARN_ON(inode->i_state & I_WILL_FREE);
1697
1698 if (inode->i_state & I_SYNC) {
1699 /*
1700 * Writeback is already running on the inode. For WB_SYNC_NONE,
1701 * that's enough and we can just return. For WB_SYNC_ALL, we
1702 * must wait for the existing writeback to complete, then do
1703 * writeback again if there's anything left.
1704 */
1705 if (wbc->sync_mode != WB_SYNC_ALL)
1706 goto out;
1707 __inode_wait_for_writeback(inode);
1708 }
1709 WARN_ON(inode->i_state & I_SYNC);
1710 /*
1711 * If the inode is already fully clean, then there's nothing to do.
1712 *
1713 * For data-integrity syncs we also need to check whether any pages are
1714 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1715 * there are any such pages, we'll need to wait for them.
1716 */
1717 if (!(inode->i_state & I_DIRTY_ALL) &&
1718 (wbc->sync_mode != WB_SYNC_ALL ||
1719 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1720 goto out;
1721 inode->i_state |= I_SYNC;
1722 wbc_attach_and_unlock_inode(wbc, inode);
1723
1724 ret = __writeback_single_inode(inode, wbc);
1725
1726 wbc_detach_inode(wbc);
1727
1728 wb = inode_to_wb_and_lock_list(inode);
1729 spin_lock(&inode->i_lock);
1730 /*
1731 * If the inode is freeing, its i_io_list shoudn't be updated
1732 * as it can be finally deleted at this moment.
1733 */
1734 if (!(inode->i_state & I_FREEING)) {
1735 /*
1736 * If the inode is now fully clean, then it can be safely
1737 * removed from its writeback list (if any). Otherwise the
1738 * flusher threads are responsible for the writeback lists.
1739 */
1740 if (!(inode->i_state & I_DIRTY_ALL))
1741 inode_cgwb_move_to_attached(inode, wb);
1742 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1743 if ((inode->i_state & I_DIRTY))
1744 redirty_tail_locked(inode, wb);
1745 else if (inode->i_state & I_DIRTY_TIME) {
1746 inode->dirtied_when = jiffies;
1747 inode_io_list_move_locked(inode,
1748 wb,
1749 &wb->b_dirty_time);
1750 }
1751 }
1752 }
1753
1754 spin_unlock(&wb->list_lock);
1755 inode_sync_complete(inode);
1756out:
1757 spin_unlock(&inode->i_lock);
1758 return ret;
1759}
1760
1761static long writeback_chunk_size(struct bdi_writeback *wb,
1762 struct wb_writeback_work *work)
1763{
1764 long pages;
1765
1766 /*
1767 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1768 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1769 * here avoids calling into writeback_inodes_wb() more than once.
1770 *
1771 * The intended call sequence for WB_SYNC_ALL writeback is:
1772 *
1773 * wb_writeback()
1774 * writeback_sb_inodes() <== called only once
1775 * write_cache_pages() <== called once for each inode
1776 * (quickly) tag currently dirty pages
1777 * (maybe slowly) sync all tagged pages
1778 */
1779 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1780 pages = LONG_MAX;
1781 else {
1782 pages = min(wb->avg_write_bandwidth / 2,
1783 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1784 pages = min(pages, work->nr_pages);
1785 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1786 MIN_WRITEBACK_PAGES);
1787 }
1788
1789 return pages;
1790}
1791
1792/*
1793 * Write a portion of b_io inodes which belong to @sb.
1794 *
1795 * Return the number of pages and/or inodes written.
1796 *
1797 * NOTE! This is called with wb->list_lock held, and will
1798 * unlock and relock that for each inode it ends up doing
1799 * IO for.
1800 */
1801static long writeback_sb_inodes(struct super_block *sb,
1802 struct bdi_writeback *wb,
1803 struct wb_writeback_work *work)
1804{
1805 struct writeback_control wbc = {
1806 .sync_mode = work->sync_mode,
1807 .tagged_writepages = work->tagged_writepages,
1808 .for_kupdate = work->for_kupdate,
1809 .for_background = work->for_background,
1810 .for_sync = work->for_sync,
1811 .range_cyclic = work->range_cyclic,
1812 .range_start = 0,
1813 .range_end = LLONG_MAX,
1814 };
1815 unsigned long start_time = jiffies;
1816 long write_chunk;
1817 long total_wrote = 0; /* count both pages and inodes */
1818
1819 while (!list_empty(&wb->b_io)) {
1820 struct inode *inode = wb_inode(wb->b_io.prev);
1821 struct bdi_writeback *tmp_wb;
1822 long wrote;
1823
1824 if (inode->i_sb != sb) {
1825 if (work->sb) {
1826 /*
1827 * We only want to write back data for this
1828 * superblock, move all inodes not belonging
1829 * to it back onto the dirty list.
1830 */
1831 redirty_tail(inode, wb);
1832 continue;
1833 }
1834
1835 /*
1836 * The inode belongs to a different superblock.
1837 * Bounce back to the caller to unpin this and
1838 * pin the next superblock.
1839 */
1840 break;
1841 }
1842
1843 /*
1844 * Don't bother with new inodes or inodes being freed, first
1845 * kind does not need periodic writeout yet, and for the latter
1846 * kind writeout is handled by the freer.
1847 */
1848 spin_lock(&inode->i_lock);
1849 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1850 redirty_tail_locked(inode, wb);
1851 spin_unlock(&inode->i_lock);
1852 continue;
1853 }
1854 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1855 /*
1856 * If this inode is locked for writeback and we are not
1857 * doing writeback-for-data-integrity, move it to
1858 * b_more_io so that writeback can proceed with the
1859 * other inodes on s_io.
1860 *
1861 * We'll have another go at writing back this inode
1862 * when we completed a full scan of b_io.
1863 */
1864 requeue_io(inode, wb);
1865 spin_unlock(&inode->i_lock);
1866 trace_writeback_sb_inodes_requeue(inode);
1867 continue;
1868 }
1869 spin_unlock(&wb->list_lock);
1870
1871 /*
1872 * We already requeued the inode if it had I_SYNC set and we
1873 * are doing WB_SYNC_NONE writeback. So this catches only the
1874 * WB_SYNC_ALL case.
1875 */
1876 if (inode->i_state & I_SYNC) {
1877 /* Wait for I_SYNC. This function drops i_lock... */
1878 inode_sleep_on_writeback(inode);
1879 /* Inode may be gone, start again */
1880 spin_lock(&wb->list_lock);
1881 continue;
1882 }
1883 inode->i_state |= I_SYNC;
1884 wbc_attach_and_unlock_inode(&wbc, inode);
1885
1886 write_chunk = writeback_chunk_size(wb, work);
1887 wbc.nr_to_write = write_chunk;
1888 wbc.pages_skipped = 0;
1889
1890 /*
1891 * We use I_SYNC to pin the inode in memory. While it is set
1892 * evict_inode() will wait so the inode cannot be freed.
1893 */
1894 __writeback_single_inode(inode, &wbc);
1895
1896 wbc_detach_inode(&wbc);
1897 work->nr_pages -= write_chunk - wbc.nr_to_write;
1898 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1899 wrote = wrote < 0 ? 0 : wrote;
1900 total_wrote += wrote;
1901
1902 if (need_resched()) {
1903 /*
1904 * We're trying to balance between building up a nice
1905 * long list of IOs to improve our merge rate, and
1906 * getting those IOs out quickly for anyone throttling
1907 * in balance_dirty_pages(). cond_resched() doesn't
1908 * unplug, so get our IOs out the door before we
1909 * give up the CPU.
1910 */
1911 blk_flush_plug(current->plug, false);
1912 cond_resched();
1913 }
1914
1915 /*
1916 * Requeue @inode if still dirty. Be careful as @inode may
1917 * have been switched to another wb in the meantime.
1918 */
1919 tmp_wb = inode_to_wb_and_lock_list(inode);
1920 spin_lock(&inode->i_lock);
1921 if (!(inode->i_state & I_DIRTY_ALL))
1922 total_wrote++;
1923 requeue_inode(inode, tmp_wb, &wbc);
1924 inode_sync_complete(inode);
1925 spin_unlock(&inode->i_lock);
1926
1927 if (unlikely(tmp_wb != wb)) {
1928 spin_unlock(&tmp_wb->list_lock);
1929 spin_lock(&wb->list_lock);
1930 }
1931
1932 /*
1933 * bail out to wb_writeback() often enough to check
1934 * background threshold and other termination conditions.
1935 */
1936 if (total_wrote) {
1937 if (time_is_before_jiffies(start_time + HZ / 10UL))
1938 break;
1939 if (work->nr_pages <= 0)
1940 break;
1941 }
1942 }
1943 return total_wrote;
1944}
1945
1946static long __writeback_inodes_wb(struct bdi_writeback *wb,
1947 struct wb_writeback_work *work)
1948{
1949 unsigned long start_time = jiffies;
1950 long wrote = 0;
1951
1952 while (!list_empty(&wb->b_io)) {
1953 struct inode *inode = wb_inode(wb->b_io.prev);
1954 struct super_block *sb = inode->i_sb;
1955
1956 if (!trylock_super(sb)) {
1957 /*
1958 * trylock_super() may fail consistently due to
1959 * s_umount being grabbed by someone else. Don't use
1960 * requeue_io() to avoid busy retrying the inode/sb.
1961 */
1962 redirty_tail(inode, wb);
1963 continue;
1964 }
1965 wrote += writeback_sb_inodes(sb, wb, work);
1966 up_read(&sb->s_umount);
1967
1968 /* refer to the same tests at the end of writeback_sb_inodes */
1969 if (wrote) {
1970 if (time_is_before_jiffies(start_time + HZ / 10UL))
1971 break;
1972 if (work->nr_pages <= 0)
1973 break;
1974 }
1975 }
1976 /* Leave any unwritten inodes on b_io */
1977 return wrote;
1978}
1979
1980static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1981 enum wb_reason reason)
1982{
1983 struct wb_writeback_work work = {
1984 .nr_pages = nr_pages,
1985 .sync_mode = WB_SYNC_NONE,
1986 .range_cyclic = 1,
1987 .reason = reason,
1988 };
1989 struct blk_plug plug;
1990
1991 blk_start_plug(&plug);
1992 spin_lock(&wb->list_lock);
1993 if (list_empty(&wb->b_io))
1994 queue_io(wb, &work, jiffies);
1995 __writeback_inodes_wb(wb, &work);
1996 spin_unlock(&wb->list_lock);
1997 blk_finish_plug(&plug);
1998
1999 return nr_pages - work.nr_pages;
2000}
2001
2002/*
2003 * Explicit flushing or periodic writeback of "old" data.
2004 *
2005 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2006 * dirtying-time in the inode's address_space. So this periodic writeback code
2007 * just walks the superblock inode list, writing back any inodes which are
2008 * older than a specific point in time.
2009 *
2010 * Try to run once per dirty_writeback_interval. But if a writeback event
2011 * takes longer than a dirty_writeback_interval interval, then leave a
2012 * one-second gap.
2013 *
2014 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2015 * all dirty pages if they are all attached to "old" mappings.
2016 */
2017static long wb_writeback(struct bdi_writeback *wb,
2018 struct wb_writeback_work *work)
2019{
2020 long nr_pages = work->nr_pages;
2021 unsigned long dirtied_before = jiffies;
2022 struct inode *inode;
2023 long progress;
2024 struct blk_plug plug;
2025
2026 blk_start_plug(&plug);
2027 spin_lock(&wb->list_lock);
2028 for (;;) {
2029 /*
2030 * Stop writeback when nr_pages has been consumed
2031 */
2032 if (work->nr_pages <= 0)
2033 break;
2034
2035 /*
2036 * Background writeout and kupdate-style writeback may
2037 * run forever. Stop them if there is other work to do
2038 * so that e.g. sync can proceed. They'll be restarted
2039 * after the other works are all done.
2040 */
2041 if ((work->for_background || work->for_kupdate) &&
2042 !list_empty(&wb->work_list))
2043 break;
2044
2045 /*
2046 * For background writeout, stop when we are below the
2047 * background dirty threshold
2048 */
2049 if (work->for_background && !wb_over_bg_thresh(wb))
2050 break;
2051
2052 /*
2053 * Kupdate and background works are special and we want to
2054 * include all inodes that need writing. Livelock avoidance is
2055 * handled by these works yielding to any other work so we are
2056 * safe.
2057 */
2058 if (work->for_kupdate) {
2059 dirtied_before = jiffies -
2060 msecs_to_jiffies(dirty_expire_interval * 10);
2061 } else if (work->for_background)
2062 dirtied_before = jiffies;
2063
2064 trace_writeback_start(wb, work);
2065 if (list_empty(&wb->b_io))
2066 queue_io(wb, work, dirtied_before);
2067 if (work->sb)
2068 progress = writeback_sb_inodes(work->sb, wb, work);
2069 else
2070 progress = __writeback_inodes_wb(wb, work);
2071 trace_writeback_written(wb, work);
2072
2073 /*
2074 * Did we write something? Try for more
2075 *
2076 * Dirty inodes are moved to b_io for writeback in batches.
2077 * The completion of the current batch does not necessarily
2078 * mean the overall work is done. So we keep looping as long
2079 * as made some progress on cleaning pages or inodes.
2080 */
2081 if (progress)
2082 continue;
2083 /*
2084 * No more inodes for IO, bail
2085 */
2086 if (list_empty(&wb->b_more_io))
2087 break;
2088 /*
2089 * Nothing written. Wait for some inode to
2090 * become available for writeback. Otherwise
2091 * we'll just busyloop.
2092 */
2093 trace_writeback_wait(wb, work);
2094 inode = wb_inode(wb->b_more_io.prev);
2095 spin_lock(&inode->i_lock);
2096 spin_unlock(&wb->list_lock);
2097 /* This function drops i_lock... */
2098 inode_sleep_on_writeback(inode);
2099 spin_lock(&wb->list_lock);
2100 }
2101 spin_unlock(&wb->list_lock);
2102 blk_finish_plug(&plug);
2103
2104 return nr_pages - work->nr_pages;
2105}
2106
2107/*
2108 * Return the next wb_writeback_work struct that hasn't been processed yet.
2109 */
2110static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2111{
2112 struct wb_writeback_work *work = NULL;
2113
2114 spin_lock_irq(&wb->work_lock);
2115 if (!list_empty(&wb->work_list)) {
2116 work = list_entry(wb->work_list.next,
2117 struct wb_writeback_work, list);
2118 list_del_init(&work->list);
2119 }
2120 spin_unlock_irq(&wb->work_lock);
2121 return work;
2122}
2123
2124static long wb_check_background_flush(struct bdi_writeback *wb)
2125{
2126 if (wb_over_bg_thresh(wb)) {
2127
2128 struct wb_writeback_work work = {
2129 .nr_pages = LONG_MAX,
2130 .sync_mode = WB_SYNC_NONE,
2131 .for_background = 1,
2132 .range_cyclic = 1,
2133 .reason = WB_REASON_BACKGROUND,
2134 };
2135
2136 return wb_writeback(wb, &work);
2137 }
2138
2139 return 0;
2140}
2141
2142static long wb_check_old_data_flush(struct bdi_writeback *wb)
2143{
2144 unsigned long expired;
2145 long nr_pages;
2146
2147 /*
2148 * When set to zero, disable periodic writeback
2149 */
2150 if (!dirty_writeback_interval)
2151 return 0;
2152
2153 expired = wb->last_old_flush +
2154 msecs_to_jiffies(dirty_writeback_interval * 10);
2155 if (time_before(jiffies, expired))
2156 return 0;
2157
2158 wb->last_old_flush = jiffies;
2159 nr_pages = get_nr_dirty_pages();
2160
2161 if (nr_pages) {
2162 struct wb_writeback_work work = {
2163 .nr_pages = nr_pages,
2164 .sync_mode = WB_SYNC_NONE,
2165 .for_kupdate = 1,
2166 .range_cyclic = 1,
2167 .reason = WB_REASON_PERIODIC,
2168 };
2169
2170 return wb_writeback(wb, &work);
2171 }
2172
2173 return 0;
2174}
2175
2176static long wb_check_start_all(struct bdi_writeback *wb)
2177{
2178 long nr_pages;
2179
2180 if (!test_bit(WB_start_all, &wb->state))
2181 return 0;
2182
2183 nr_pages = get_nr_dirty_pages();
2184 if (nr_pages) {
2185 struct wb_writeback_work work = {
2186 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2187 .sync_mode = WB_SYNC_NONE,
2188 .range_cyclic = 1,
2189 .reason = wb->start_all_reason,
2190 };
2191
2192 nr_pages = wb_writeback(wb, &work);
2193 }
2194
2195 clear_bit(WB_start_all, &wb->state);
2196 return nr_pages;
2197}
2198
2199
2200/*
2201 * Retrieve work items and do the writeback they describe
2202 */
2203static long wb_do_writeback(struct bdi_writeback *wb)
2204{
2205 struct wb_writeback_work *work;
2206 long wrote = 0;
2207
2208 set_bit(WB_writeback_running, &wb->state);
2209 while ((work = get_next_work_item(wb)) != NULL) {
2210 trace_writeback_exec(wb, work);
2211 wrote += wb_writeback(wb, work);
2212 finish_writeback_work(wb, work);
2213 }
2214
2215 /*
2216 * Check for a flush-everything request
2217 */
2218 wrote += wb_check_start_all(wb);
2219
2220 /*
2221 * Check for periodic writeback, kupdated() style
2222 */
2223 wrote += wb_check_old_data_flush(wb);
2224 wrote += wb_check_background_flush(wb);
2225 clear_bit(WB_writeback_running, &wb->state);
2226
2227 return wrote;
2228}
2229
2230/*
2231 * Handle writeback of dirty data for the device backed by this bdi. Also
2232 * reschedules periodically and does kupdated style flushing.
2233 */
2234void wb_workfn(struct work_struct *work)
2235{
2236 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2237 struct bdi_writeback, dwork);
2238 long pages_written;
2239
2240 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2241
2242 if (likely(!current_is_workqueue_rescuer() ||
2243 !test_bit(WB_registered, &wb->state))) {
2244 /*
2245 * The normal path. Keep writing back @wb until its
2246 * work_list is empty. Note that this path is also taken
2247 * if @wb is shutting down even when we're running off the
2248 * rescuer as work_list needs to be drained.
2249 */
2250 do {
2251 pages_written = wb_do_writeback(wb);
2252 trace_writeback_pages_written(pages_written);
2253 } while (!list_empty(&wb->work_list));
2254 } else {
2255 /*
2256 * bdi_wq can't get enough workers and we're running off
2257 * the emergency worker. Don't hog it. Hopefully, 1024 is
2258 * enough for efficient IO.
2259 */
2260 pages_written = writeback_inodes_wb(wb, 1024,
2261 WB_REASON_FORKER_THREAD);
2262 trace_writeback_pages_written(pages_written);
2263 }
2264
2265 if (!list_empty(&wb->work_list))
2266 wb_wakeup(wb);
2267 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2268 wb_wakeup_delayed(wb);
2269}
2270
2271/*
2272 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2273 * write back the whole world.
2274 */
2275static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2276 enum wb_reason reason)
2277{
2278 struct bdi_writeback *wb;
2279
2280 if (!bdi_has_dirty_io(bdi))
2281 return;
2282
2283 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2284 wb_start_writeback(wb, reason);
2285}
2286
2287void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2288 enum wb_reason reason)
2289{
2290 rcu_read_lock();
2291 __wakeup_flusher_threads_bdi(bdi, reason);
2292 rcu_read_unlock();
2293}
2294
2295/*
2296 * Wakeup the flusher threads to start writeback of all currently dirty pages
2297 */
2298void wakeup_flusher_threads(enum wb_reason reason)
2299{
2300 struct backing_dev_info *bdi;
2301
2302 /*
2303 * If we are expecting writeback progress we must submit plugged IO.
2304 */
2305 blk_flush_plug(current->plug, true);
2306
2307 rcu_read_lock();
2308 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2309 __wakeup_flusher_threads_bdi(bdi, reason);
2310 rcu_read_unlock();
2311}
2312
2313/*
2314 * Wake up bdi's periodically to make sure dirtytime inodes gets
2315 * written back periodically. We deliberately do *not* check the
2316 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2317 * kernel to be constantly waking up once there are any dirtytime
2318 * inodes on the system. So instead we define a separate delayed work
2319 * function which gets called much more rarely. (By default, only
2320 * once every 12 hours.)
2321 *
2322 * If there is any other write activity going on in the file system,
2323 * this function won't be necessary. But if the only thing that has
2324 * happened on the file system is a dirtytime inode caused by an atime
2325 * update, we need this infrastructure below to make sure that inode
2326 * eventually gets pushed out to disk.
2327 */
2328static void wakeup_dirtytime_writeback(struct work_struct *w);
2329static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2330
2331static void wakeup_dirtytime_writeback(struct work_struct *w)
2332{
2333 struct backing_dev_info *bdi;
2334
2335 rcu_read_lock();
2336 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2337 struct bdi_writeback *wb;
2338
2339 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2340 if (!list_empty(&wb->b_dirty_time))
2341 wb_wakeup(wb);
2342 }
2343 rcu_read_unlock();
2344 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2345}
2346
2347static int __init start_dirtytime_writeback(void)
2348{
2349 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2350 return 0;
2351}
2352__initcall(start_dirtytime_writeback);
2353
2354int dirtytime_interval_handler(struct ctl_table *table, int write,
2355 void *buffer, size_t *lenp, loff_t *ppos)
2356{
2357 int ret;
2358
2359 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2360 if (ret == 0 && write)
2361 mod_delayed_work(system_wq, &dirtytime_work, 0);
2362 return ret;
2363}
2364
2365/**
2366 * __mark_inode_dirty - internal function to mark an inode dirty
2367 *
2368 * @inode: inode to mark
2369 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2370 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2371 * with I_DIRTY_PAGES.
2372 *
2373 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2374 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2375 *
2376 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2377 * instead of calling this directly.
2378 *
2379 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2380 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2381 * even if they are later hashed, as they will have been marked dirty already.
2382 *
2383 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2384 *
2385 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2386 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2387 * the kernel-internal blockdev inode represents the dirtying time of the
2388 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2389 * page->mapping->host, so the page-dirtying time is recorded in the internal
2390 * blockdev inode.
2391 */
2392void __mark_inode_dirty(struct inode *inode, int flags)
2393{
2394 struct super_block *sb = inode->i_sb;
2395 int dirtytime = 0;
2396 struct bdi_writeback *wb = NULL;
2397
2398 trace_writeback_mark_inode_dirty(inode, flags);
2399
2400 if (flags & I_DIRTY_INODE) {
2401 /*
2402 * Inode timestamp update will piggback on this dirtying.
2403 * We tell ->dirty_inode callback that timestamps need to
2404 * be updated by setting I_DIRTY_TIME in flags.
2405 */
2406 if (inode->i_state & I_DIRTY_TIME) {
2407 spin_lock(&inode->i_lock);
2408 if (inode->i_state & I_DIRTY_TIME) {
2409 inode->i_state &= ~I_DIRTY_TIME;
2410 flags |= I_DIRTY_TIME;
2411 }
2412 spin_unlock(&inode->i_lock);
2413 }
2414
2415 /*
2416 * Notify the filesystem about the inode being dirtied, so that
2417 * (if needed) it can update on-disk fields and journal the
2418 * inode. This is only needed when the inode itself is being
2419 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2420 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2421 */
2422 trace_writeback_dirty_inode_start(inode, flags);
2423 if (sb->s_op->dirty_inode)
2424 sb->s_op->dirty_inode(inode,
2425 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2426 trace_writeback_dirty_inode(inode, flags);
2427
2428 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2429 flags &= ~I_DIRTY_TIME;
2430 } else {
2431 /*
2432 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2433 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2434 * in one call to __mark_inode_dirty().)
2435 */
2436 dirtytime = flags & I_DIRTY_TIME;
2437 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2438 }
2439
2440 /*
2441 * Paired with smp_mb() in __writeback_single_inode() for the
2442 * following lockless i_state test. See there for details.
2443 */
2444 smp_mb();
2445
2446 if ((inode->i_state & flags) == flags)
2447 return;
2448
2449 spin_lock(&inode->i_lock);
2450 if ((inode->i_state & flags) != flags) {
2451 const int was_dirty = inode->i_state & I_DIRTY;
2452
2453 inode_attach_wb(inode, NULL);
2454
2455 inode->i_state |= flags;
2456
2457 /*
2458 * Grab inode's wb early because it requires dropping i_lock and we
2459 * need to make sure following checks happen atomically with dirty
2460 * list handling so that we don't move inodes under flush worker's
2461 * hands.
2462 */
2463 if (!was_dirty) {
2464 wb = locked_inode_to_wb_and_lock_list(inode);
2465 spin_lock(&inode->i_lock);
2466 }
2467
2468 /*
2469 * If the inode is queued for writeback by flush worker, just
2470 * update its dirty state. Once the flush worker is done with
2471 * the inode it will place it on the appropriate superblock
2472 * list, based upon its state.
2473 */
2474 if (inode->i_state & I_SYNC_QUEUED)
2475 goto out_unlock;
2476
2477 /*
2478 * Only add valid (hashed) inodes to the superblock's
2479 * dirty list. Add blockdev inodes as well.
2480 */
2481 if (!S_ISBLK(inode->i_mode)) {
2482 if (inode_unhashed(inode))
2483 goto out_unlock;
2484 }
2485 if (inode->i_state & I_FREEING)
2486 goto out_unlock;
2487
2488 /*
2489 * If the inode was already on b_dirty/b_io/b_more_io, don't
2490 * reposition it (that would break b_dirty time-ordering).
2491 */
2492 if (!was_dirty) {
2493 struct list_head *dirty_list;
2494 bool wakeup_bdi = false;
2495
2496 inode->dirtied_when = jiffies;
2497 if (dirtytime)
2498 inode->dirtied_time_when = jiffies;
2499
2500 if (inode->i_state & I_DIRTY)
2501 dirty_list = &wb->b_dirty;
2502 else
2503 dirty_list = &wb->b_dirty_time;
2504
2505 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2506 dirty_list);
2507
2508 spin_unlock(&wb->list_lock);
2509 spin_unlock(&inode->i_lock);
2510 trace_writeback_dirty_inode_enqueue(inode);
2511
2512 /*
2513 * If this is the first dirty inode for this bdi,
2514 * we have to wake-up the corresponding bdi thread
2515 * to make sure background write-back happens
2516 * later.
2517 */
2518 if (wakeup_bdi &&
2519 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2520 wb_wakeup_delayed(wb);
2521 return;
2522 }
2523 }
2524out_unlock:
2525 if (wb)
2526 spin_unlock(&wb->list_lock);
2527 spin_unlock(&inode->i_lock);
2528}
2529EXPORT_SYMBOL(__mark_inode_dirty);
2530
2531/*
2532 * The @s_sync_lock is used to serialise concurrent sync operations
2533 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2534 * Concurrent callers will block on the s_sync_lock rather than doing contending
2535 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2536 * has been issued up to the time this function is enter is guaranteed to be
2537 * completed by the time we have gained the lock and waited for all IO that is
2538 * in progress regardless of the order callers are granted the lock.
2539 */
2540static void wait_sb_inodes(struct super_block *sb)
2541{
2542 LIST_HEAD(sync_list);
2543
2544 /*
2545 * We need to be protected against the filesystem going from
2546 * r/o to r/w or vice versa.
2547 */
2548 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2549
2550 mutex_lock(&sb->s_sync_lock);
2551
2552 /*
2553 * Splice the writeback list onto a temporary list to avoid waiting on
2554 * inodes that have started writeback after this point.
2555 *
2556 * Use rcu_read_lock() to keep the inodes around until we have a
2557 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2558 * the local list because inodes can be dropped from either by writeback
2559 * completion.
2560 */
2561 rcu_read_lock();
2562 spin_lock_irq(&sb->s_inode_wblist_lock);
2563 list_splice_init(&sb->s_inodes_wb, &sync_list);
2564
2565 /*
2566 * Data integrity sync. Must wait for all pages under writeback, because
2567 * there may have been pages dirtied before our sync call, but which had
2568 * writeout started before we write it out. In which case, the inode
2569 * may not be on the dirty list, but we still have to wait for that
2570 * writeout.
2571 */
2572 while (!list_empty(&sync_list)) {
2573 struct inode *inode = list_first_entry(&sync_list, struct inode,
2574 i_wb_list);
2575 struct address_space *mapping = inode->i_mapping;
2576
2577 /*
2578 * Move each inode back to the wb list before we drop the lock
2579 * to preserve consistency between i_wb_list and the mapping
2580 * writeback tag. Writeback completion is responsible to remove
2581 * the inode from either list once the writeback tag is cleared.
2582 */
2583 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2584
2585 /*
2586 * The mapping can appear untagged while still on-list since we
2587 * do not have the mapping lock. Skip it here, wb completion
2588 * will remove it.
2589 */
2590 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2591 continue;
2592
2593 spin_unlock_irq(&sb->s_inode_wblist_lock);
2594
2595 spin_lock(&inode->i_lock);
2596 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2597 spin_unlock(&inode->i_lock);
2598
2599 spin_lock_irq(&sb->s_inode_wblist_lock);
2600 continue;
2601 }
2602 __iget(inode);
2603 spin_unlock(&inode->i_lock);
2604 rcu_read_unlock();
2605
2606 /*
2607 * We keep the error status of individual mapping so that
2608 * applications can catch the writeback error using fsync(2).
2609 * See filemap_fdatawait_keep_errors() for details.
2610 */
2611 filemap_fdatawait_keep_errors(mapping);
2612
2613 cond_resched();
2614
2615 iput(inode);
2616
2617 rcu_read_lock();
2618 spin_lock_irq(&sb->s_inode_wblist_lock);
2619 }
2620 spin_unlock_irq(&sb->s_inode_wblist_lock);
2621 rcu_read_unlock();
2622 mutex_unlock(&sb->s_sync_lock);
2623}
2624
2625static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2626 enum wb_reason reason, bool skip_if_busy)
2627{
2628 struct backing_dev_info *bdi = sb->s_bdi;
2629 DEFINE_WB_COMPLETION(done, bdi);
2630 struct wb_writeback_work work = {
2631 .sb = sb,
2632 .sync_mode = WB_SYNC_NONE,
2633 .tagged_writepages = 1,
2634 .done = &done,
2635 .nr_pages = nr,
2636 .reason = reason,
2637 };
2638
2639 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2640 return;
2641 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2642
2643 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2644 wb_wait_for_completion(&done);
2645}
2646
2647/**
2648 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2649 * @sb: the superblock
2650 * @nr: the number of pages to write
2651 * @reason: reason why some writeback work initiated
2652 *
2653 * Start writeback on some inodes on this super_block. No guarantees are made
2654 * on how many (if any) will be written, and this function does not wait
2655 * for IO completion of submitted IO.
2656 */
2657void writeback_inodes_sb_nr(struct super_block *sb,
2658 unsigned long nr,
2659 enum wb_reason reason)
2660{
2661 __writeback_inodes_sb_nr(sb, nr, reason, false);
2662}
2663EXPORT_SYMBOL(writeback_inodes_sb_nr);
2664
2665/**
2666 * writeback_inodes_sb - writeback dirty inodes from given super_block
2667 * @sb: the superblock
2668 * @reason: reason why some writeback work was initiated
2669 *
2670 * Start writeback on some inodes on this super_block. No guarantees are made
2671 * on how many (if any) will be written, and this function does not wait
2672 * for IO completion of submitted IO.
2673 */
2674void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2675{
2676 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2677}
2678EXPORT_SYMBOL(writeback_inodes_sb);
2679
2680/**
2681 * try_to_writeback_inodes_sb - try to start writeback if none underway
2682 * @sb: the superblock
2683 * @reason: reason why some writeback work was initiated
2684 *
2685 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2686 */
2687void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2688{
2689 if (!down_read_trylock(&sb->s_umount))
2690 return;
2691
2692 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2693 up_read(&sb->s_umount);
2694}
2695EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2696
2697/**
2698 * sync_inodes_sb - sync sb inode pages
2699 * @sb: the superblock
2700 *
2701 * This function writes and waits on any dirty inode belonging to this
2702 * super_block.
2703 */
2704void sync_inodes_sb(struct super_block *sb)
2705{
2706 struct backing_dev_info *bdi = sb->s_bdi;
2707 DEFINE_WB_COMPLETION(done, bdi);
2708 struct wb_writeback_work work = {
2709 .sb = sb,
2710 .sync_mode = WB_SYNC_ALL,
2711 .nr_pages = LONG_MAX,
2712 .range_cyclic = 0,
2713 .done = &done,
2714 .reason = WB_REASON_SYNC,
2715 .for_sync = 1,
2716 };
2717
2718 /*
2719 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2720 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2721 * bdi_has_dirty() need to be written out too.
2722 */
2723 if (bdi == &noop_backing_dev_info)
2724 return;
2725 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2726
2727 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2728 bdi_down_write_wb_switch_rwsem(bdi);
2729 bdi_split_work_to_wbs(bdi, &work, false);
2730 wb_wait_for_completion(&done);
2731 bdi_up_write_wb_switch_rwsem(bdi);
2732
2733 wait_sb_inodes(sb);
2734}
2735EXPORT_SYMBOL(sync_inodes_sb);
2736
2737/**
2738 * write_inode_now - write an inode to disk
2739 * @inode: inode to write to disk
2740 * @sync: whether the write should be synchronous or not
2741 *
2742 * This function commits an inode to disk immediately if it is dirty. This is
2743 * primarily needed by knfsd.
2744 *
2745 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2746 */
2747int write_inode_now(struct inode *inode, int sync)
2748{
2749 struct writeback_control wbc = {
2750 .nr_to_write = LONG_MAX,
2751 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2752 .range_start = 0,
2753 .range_end = LLONG_MAX,
2754 };
2755
2756 if (!mapping_can_writeback(inode->i_mapping))
2757 wbc.nr_to_write = 0;
2758
2759 might_sleep();
2760 return writeback_single_inode(inode, &wbc);
2761}
2762EXPORT_SYMBOL(write_inode_now);
2763
2764/**
2765 * sync_inode_metadata - write an inode to disk
2766 * @inode: the inode to sync
2767 * @wait: wait for I/O to complete.
2768 *
2769 * Write an inode to disk and adjust its dirty state after completion.
2770 *
2771 * Note: only writes the actual inode, no associated data or other metadata.
2772 */
2773int sync_inode_metadata(struct inode *inode, int wait)
2774{
2775 struct writeback_control wbc = {
2776 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2777 .nr_to_write = 0, /* metadata-only */
2778 };
2779
2780 return writeback_single_inode(inode, &wbc);
2781}
2782EXPORT_SYMBOL(sync_inode_metadata);