| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | /* |
| 3 | * fs/f2fs/segment.h |
| 4 | * |
| 5 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| 6 | * http://www.samsung.com/ |
| 7 | */ |
| 8 | #include <linux/blkdev.h> |
| 9 | #include <linux/backing-dev.h> |
| 10 | |
| 11 | /* constant macro */ |
| 12 | #define NULL_SEGNO ((unsigned int)(~0)) |
| 13 | #define NULL_SECNO ((unsigned int)(~0)) |
| 14 | |
| 15 | #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ |
| 16 | #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ |
| 17 | |
| 18 | #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ |
| 19 | #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */ |
| 20 | |
| 21 | #define INVALID_MTIME ULLONG_MAX /* no valid blocks in a segment/section */ |
| 22 | |
| 23 | /* L: Logical segment # in volume, R: Relative segment # in main area */ |
| 24 | #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) |
| 25 | #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) |
| 26 | |
| 27 | #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) |
| 28 | #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE) |
| 29 | #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA)) |
| 30 | |
| 31 | static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi, |
| 32 | unsigned short seg_type) |
| 33 | { |
| 34 | f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG); |
| 35 | } |
| 36 | |
| 37 | #define IS_CURSEG(sbi, seg) \ |
| 38 | (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ |
| 39 | ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ |
| 40 | ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ |
| 41 | ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ |
| 42 | ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ |
| 43 | ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \ |
| 44 | ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \ |
| 45 | ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno)) |
| 46 | |
| 47 | #define IS_CURSEC(sbi, secno) \ |
| 48 | (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ |
| 49 | SEGS_PER_SEC(sbi)) || \ |
| 50 | ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ |
| 51 | SEGS_PER_SEC(sbi)) || \ |
| 52 | ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ |
| 53 | SEGS_PER_SEC(sbi)) || \ |
| 54 | ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ |
| 55 | SEGS_PER_SEC(sbi)) || \ |
| 56 | ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ |
| 57 | SEGS_PER_SEC(sbi)) || \ |
| 58 | ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ |
| 59 | SEGS_PER_SEC(sbi)) || \ |
| 60 | ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \ |
| 61 | SEGS_PER_SEC(sbi)) || \ |
| 62 | ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \ |
| 63 | SEGS_PER_SEC(sbi))) |
| 64 | |
| 65 | #define MAIN_BLKADDR(sbi) \ |
| 66 | (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ |
| 67 | le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) |
| 68 | #define SEG0_BLKADDR(sbi) \ |
| 69 | (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ |
| 70 | le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) |
| 71 | |
| 72 | #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) |
| 73 | #define MAIN_SECS(sbi) ((sbi)->total_sections) |
| 74 | |
| 75 | #define TOTAL_SEGS(sbi) \ |
| 76 | (SM_I(sbi) ? SM_I(sbi)->segment_count : \ |
| 77 | le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) |
| 78 | #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi))) |
| 79 | |
| 80 | #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) |
| 81 | #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ |
| 82 | (sbi)->log_blocks_per_seg)) |
| 83 | |
| 84 | #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ |
| 85 | (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno)))) |
| 86 | |
| 87 | #define NEXT_FREE_BLKADDR(sbi, curseg) \ |
| 88 | (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) |
| 89 | |
| 90 | #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) |
| 91 | #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ |
| 92 | (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr))) |
| 93 | #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ |
| 94 | (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1)) |
| 95 | |
| 96 | #define GET_SEGNO(sbi, blk_addr) \ |
| 97 | ((!__is_valid_data_blkaddr(blk_addr)) ? \ |
| 98 | NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ |
| 99 | GET_SEGNO_FROM_SEG0(sbi, blk_addr))) |
| 100 | #define CAP_BLKS_PER_SEC(sbi) \ |
| 101 | (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec) |
| 102 | #define CAP_SEGS_PER_SEC(sbi) \ |
| 103 | (SEGS_PER_SEC(sbi) - \ |
| 104 | BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec)) |
| 105 | #define GET_START_SEG_FROM_SEC(sbi, segno) \ |
| 106 | (rounddown(segno, SEGS_PER_SEC(sbi))) |
| 107 | #define GET_SEC_FROM_SEG(sbi, segno) \ |
| 108 | (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi)) |
| 109 | #define GET_SEG_FROM_SEC(sbi, secno) \ |
| 110 | ((secno) * SEGS_PER_SEC(sbi)) |
| 111 | #define GET_ZONE_FROM_SEC(sbi, secno) \ |
| 112 | (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone) |
| 113 | #define GET_ZONE_FROM_SEG(sbi, segno) \ |
| 114 | GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) |
| 115 | |
| 116 | #define GET_SUM_BLOCK(sbi, segno) \ |
| 117 | ((sbi)->sm_info->ssa_blkaddr + (segno)) |
| 118 | |
| 119 | #define GET_SUM_TYPE(footer) ((footer)->entry_type) |
| 120 | #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) |
| 121 | |
| 122 | #define SIT_ENTRY_OFFSET(sit_i, segno) \ |
| 123 | ((segno) % (sit_i)->sents_per_block) |
| 124 | #define SIT_BLOCK_OFFSET(segno) \ |
| 125 | ((segno) / SIT_ENTRY_PER_BLOCK) |
| 126 | #define START_SEGNO(segno) \ |
| 127 | (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) |
| 128 | #define SIT_BLK_CNT(sbi) \ |
| 129 | DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK) |
| 130 | #define f2fs_bitmap_size(nr) \ |
| 131 | (BITS_TO_LONGS(nr) * sizeof(unsigned long)) |
| 132 | |
| 133 | #define SECTOR_FROM_BLOCK(blk_addr) \ |
| 134 | (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) |
| 135 | #define SECTOR_TO_BLOCK(sectors) \ |
| 136 | ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) |
| 137 | |
| 138 | /* |
| 139 | * In the victim_sel_policy->alloc_mode, there are three block allocation modes. |
| 140 | * LFS writes data sequentially with cleaning operations. |
| 141 | * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. |
| 142 | * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into |
| 143 | * fragmented segment which has similar aging degree. |
| 144 | */ |
| 145 | enum { |
| 146 | LFS = 0, |
| 147 | SSR, |
| 148 | AT_SSR, |
| 149 | }; |
| 150 | |
| 151 | /* |
| 152 | * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes. |
| 153 | * GC_CB is based on cost-benefit algorithm. |
| 154 | * GC_GREEDY is based on greedy algorithm. |
| 155 | * GC_AT is based on age-threshold algorithm. |
| 156 | */ |
| 157 | enum { |
| 158 | GC_CB = 0, |
| 159 | GC_GREEDY, |
| 160 | GC_AT, |
| 161 | ALLOC_NEXT, |
| 162 | FLUSH_DEVICE, |
| 163 | MAX_GC_POLICY, |
| 164 | }; |
| 165 | |
| 166 | /* |
| 167 | * BG_GC means the background cleaning job. |
| 168 | * FG_GC means the on-demand cleaning job. |
| 169 | */ |
| 170 | enum { |
| 171 | BG_GC = 0, |
| 172 | FG_GC, |
| 173 | }; |
| 174 | |
| 175 | /* for a function parameter to select a victim segment */ |
| 176 | struct victim_sel_policy { |
| 177 | int alloc_mode; /* LFS or SSR */ |
| 178 | int gc_mode; /* GC_CB or GC_GREEDY */ |
| 179 | unsigned long *dirty_bitmap; /* dirty segment/section bitmap */ |
| 180 | unsigned int max_search; /* |
| 181 | * maximum # of segments/sections |
| 182 | * to search |
| 183 | */ |
| 184 | unsigned int offset; /* last scanned bitmap offset */ |
| 185 | unsigned int ofs_unit; /* bitmap search unit */ |
| 186 | unsigned int min_cost; /* minimum cost */ |
| 187 | unsigned long long oldest_age; /* oldest age of segments having the same min cost */ |
| 188 | unsigned int min_segno; /* segment # having min. cost */ |
| 189 | unsigned long long age; /* mtime of GCed section*/ |
| 190 | unsigned long long age_threshold;/* age threshold */ |
| 191 | bool one_time_gc; /* one time GC */ |
| 192 | }; |
| 193 | |
| 194 | struct seg_entry { |
| 195 | unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ |
| 196 | unsigned int valid_blocks:10; /* # of valid blocks */ |
| 197 | unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ |
| 198 | unsigned int padding:6; /* padding */ |
| 199 | unsigned char *cur_valid_map; /* validity bitmap of blocks */ |
| 200 | #ifdef CONFIG_F2FS_CHECK_FS |
| 201 | unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ |
| 202 | #endif |
| 203 | /* |
| 204 | * # of valid blocks and the validity bitmap stored in the last |
| 205 | * checkpoint pack. This information is used by the SSR mode. |
| 206 | */ |
| 207 | unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ |
| 208 | unsigned char *discard_map; |
| 209 | unsigned long long mtime; /* modification time of the segment */ |
| 210 | }; |
| 211 | |
| 212 | struct sec_entry { |
| 213 | unsigned int valid_blocks; /* # of valid blocks in a section */ |
| 214 | unsigned int ckpt_valid_blocks; /* # of valid blocks last cp in a section */ |
| 215 | }; |
| 216 | |
| 217 | #define MAX_SKIP_GC_COUNT 16 |
| 218 | |
| 219 | struct revoke_entry { |
| 220 | struct list_head list; |
| 221 | block_t old_addr; /* for revoking when fail to commit */ |
| 222 | pgoff_t index; |
| 223 | }; |
| 224 | |
| 225 | struct sit_info { |
| 226 | block_t sit_base_addr; /* start block address of SIT area */ |
| 227 | block_t sit_blocks; /* # of blocks used by SIT area */ |
| 228 | block_t written_valid_blocks; /* # of valid blocks in main area */ |
| 229 | char *bitmap; /* all bitmaps pointer */ |
| 230 | char *sit_bitmap; /* SIT bitmap pointer */ |
| 231 | #ifdef CONFIG_F2FS_CHECK_FS |
| 232 | char *sit_bitmap_mir; /* SIT bitmap mirror */ |
| 233 | |
| 234 | /* bitmap of segments to be ignored by GC in case of errors */ |
| 235 | unsigned long *invalid_segmap; |
| 236 | #endif |
| 237 | unsigned int bitmap_size; /* SIT bitmap size */ |
| 238 | |
| 239 | unsigned long *tmp_map; /* bitmap for temporal use */ |
| 240 | unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ |
| 241 | unsigned int dirty_sentries; /* # of dirty sentries */ |
| 242 | unsigned int sents_per_block; /* # of SIT entries per block */ |
| 243 | struct rw_semaphore sentry_lock; /* to protect SIT cache */ |
| 244 | struct seg_entry *sentries; /* SIT segment-level cache */ |
| 245 | struct sec_entry *sec_entries; /* SIT section-level cache */ |
| 246 | |
| 247 | /* for cost-benefit algorithm in cleaning procedure */ |
| 248 | unsigned long long elapsed_time; /* elapsed time after mount */ |
| 249 | unsigned long long mounted_time; /* mount time */ |
| 250 | unsigned long long min_mtime; /* min. modification time */ |
| 251 | unsigned long long max_mtime; /* max. modification time */ |
| 252 | unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */ |
| 253 | unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */ |
| 254 | |
| 255 | unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ |
| 256 | }; |
| 257 | |
| 258 | struct free_segmap_info { |
| 259 | unsigned int start_segno; /* start segment number logically */ |
| 260 | unsigned int free_segments; /* # of free segments */ |
| 261 | unsigned int free_sections; /* # of free sections */ |
| 262 | spinlock_t segmap_lock; /* free segmap lock */ |
| 263 | unsigned long *free_segmap; /* free segment bitmap */ |
| 264 | unsigned long *free_secmap; /* free section bitmap */ |
| 265 | }; |
| 266 | |
| 267 | /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ |
| 268 | enum dirty_type { |
| 269 | DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ |
| 270 | DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ |
| 271 | DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ |
| 272 | DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ |
| 273 | DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ |
| 274 | DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ |
| 275 | DIRTY, /* to count # of dirty segments */ |
| 276 | PRE, /* to count # of entirely obsolete segments */ |
| 277 | NR_DIRTY_TYPE |
| 278 | }; |
| 279 | |
| 280 | struct dirty_seglist_info { |
| 281 | unsigned long *dirty_segmap[NR_DIRTY_TYPE]; |
| 282 | unsigned long *dirty_secmap; |
| 283 | struct mutex seglist_lock; /* lock for segment bitmaps */ |
| 284 | int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ |
| 285 | unsigned long *victim_secmap; /* background GC victims */ |
| 286 | unsigned long *pinned_secmap; /* pinned victims from foreground GC */ |
| 287 | unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */ |
| 288 | bool enable_pin_section; /* enable pinning section */ |
| 289 | }; |
| 290 | |
| 291 | /* for active log information */ |
| 292 | struct curseg_info { |
| 293 | struct mutex curseg_mutex; /* lock for consistency */ |
| 294 | struct f2fs_summary_block *sum_blk; /* cached summary block */ |
| 295 | struct rw_semaphore journal_rwsem; /* protect journal area */ |
| 296 | struct f2fs_journal *journal; /* cached journal info */ |
| 297 | unsigned char alloc_type; /* current allocation type */ |
| 298 | unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */ |
| 299 | unsigned int segno; /* current segment number */ |
| 300 | unsigned short next_blkoff; /* next block offset to write */ |
| 301 | unsigned int zone; /* current zone number */ |
| 302 | unsigned int next_segno; /* preallocated segment */ |
| 303 | int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */ |
| 304 | bool inited; /* indicate inmem log is inited */ |
| 305 | }; |
| 306 | |
| 307 | struct sit_entry_set { |
| 308 | struct list_head set_list; /* link with all sit sets */ |
| 309 | unsigned int start_segno; /* start segno of sits in set */ |
| 310 | unsigned int entry_cnt; /* the # of sit entries in set */ |
| 311 | }; |
| 312 | |
| 313 | /* |
| 314 | * inline functions |
| 315 | */ |
| 316 | static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) |
| 317 | { |
| 318 | return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); |
| 319 | } |
| 320 | |
| 321 | static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, |
| 322 | unsigned int segno) |
| 323 | { |
| 324 | struct sit_info *sit_i = SIT_I(sbi); |
| 325 | return &sit_i->sentries[segno]; |
| 326 | } |
| 327 | |
| 328 | static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, |
| 329 | unsigned int segno) |
| 330 | { |
| 331 | struct sit_info *sit_i = SIT_I(sbi); |
| 332 | return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; |
| 333 | } |
| 334 | |
| 335 | static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, |
| 336 | unsigned int segno, bool use_section) |
| 337 | { |
| 338 | /* |
| 339 | * In order to get # of valid blocks in a section instantly from many |
| 340 | * segments, f2fs manages two counting structures separately. |
| 341 | */ |
| 342 | if (use_section && __is_large_section(sbi)) |
| 343 | return get_sec_entry(sbi, segno)->valid_blocks; |
| 344 | else |
| 345 | return get_seg_entry(sbi, segno)->valid_blocks; |
| 346 | } |
| 347 | |
| 348 | static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi, |
| 349 | unsigned int segno, bool use_section) |
| 350 | { |
| 351 | if (use_section && __is_large_section(sbi)) |
| 352 | return get_sec_entry(sbi, segno)->ckpt_valid_blocks; |
| 353 | else |
| 354 | return get_seg_entry(sbi, segno)->ckpt_valid_blocks; |
| 355 | } |
| 356 | |
| 357 | static inline void set_ckpt_valid_blocks(struct f2fs_sb_info *sbi, |
| 358 | unsigned int segno) |
| 359 | { |
| 360 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
| 361 | unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); |
| 362 | unsigned int blocks = 0; |
| 363 | int i; |
| 364 | |
| 365 | for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) { |
| 366 | struct seg_entry *se = get_seg_entry(sbi, start_segno); |
| 367 | |
| 368 | blocks += se->ckpt_valid_blocks; |
| 369 | } |
| 370 | get_sec_entry(sbi, segno)->ckpt_valid_blocks = blocks; |
| 371 | } |
| 372 | |
| 373 | #ifdef CONFIG_F2FS_CHECK_FS |
| 374 | static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi, |
| 375 | unsigned int segno) |
| 376 | { |
| 377 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
| 378 | unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); |
| 379 | unsigned int blocks = 0; |
| 380 | int i; |
| 381 | |
| 382 | for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) { |
| 383 | struct seg_entry *se = get_seg_entry(sbi, start_segno); |
| 384 | |
| 385 | blocks += se->ckpt_valid_blocks; |
| 386 | } |
| 387 | |
| 388 | if (blocks != get_sec_entry(sbi, segno)->ckpt_valid_blocks) { |
| 389 | f2fs_err(sbi, |
| 390 | "Inconsistent ckpt valid blocks: " |
| 391 | "seg entry(%d) vs sec entry(%d) at secno %d", |
| 392 | blocks, get_sec_entry(sbi, segno)->ckpt_valid_blocks, secno); |
| 393 | f2fs_bug_on(sbi, 1); |
| 394 | } |
| 395 | } |
| 396 | #else |
| 397 | static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi, |
| 398 | unsigned int segno) |
| 399 | { |
| 400 | } |
| 401 | #endif |
| 402 | static inline void seg_info_from_raw_sit(struct seg_entry *se, |
| 403 | struct f2fs_sit_entry *rs) |
| 404 | { |
| 405 | se->valid_blocks = GET_SIT_VBLOCKS(rs); |
| 406 | se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); |
| 407 | memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
| 408 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
| 409 | #ifdef CONFIG_F2FS_CHECK_FS |
| 410 | memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
| 411 | #endif |
| 412 | se->type = GET_SIT_TYPE(rs); |
| 413 | se->mtime = le64_to_cpu(rs->mtime); |
| 414 | } |
| 415 | |
| 416 | static inline void __seg_info_to_raw_sit(struct seg_entry *se, |
| 417 | struct f2fs_sit_entry *rs) |
| 418 | { |
| 419 | unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | |
| 420 | se->valid_blocks; |
| 421 | rs->vblocks = cpu_to_le16(raw_vblocks); |
| 422 | memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); |
| 423 | rs->mtime = cpu_to_le64(se->mtime); |
| 424 | } |
| 425 | |
| 426 | static inline void seg_info_to_sit_folio(struct f2fs_sb_info *sbi, |
| 427 | struct folio *folio, unsigned int start) |
| 428 | { |
| 429 | struct f2fs_sit_block *raw_sit; |
| 430 | struct seg_entry *se; |
| 431 | struct f2fs_sit_entry *rs; |
| 432 | unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, |
| 433 | (unsigned long)MAIN_SEGS(sbi)); |
| 434 | int i; |
| 435 | |
| 436 | raw_sit = folio_address(folio); |
| 437 | memset(raw_sit, 0, PAGE_SIZE); |
| 438 | for (i = 0; i < end - start; i++) { |
| 439 | rs = &raw_sit->entries[i]; |
| 440 | se = get_seg_entry(sbi, start + i); |
| 441 | __seg_info_to_raw_sit(se, rs); |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | static inline void seg_info_to_raw_sit(struct seg_entry *se, |
| 446 | struct f2fs_sit_entry *rs) |
| 447 | { |
| 448 | __seg_info_to_raw_sit(se, rs); |
| 449 | |
| 450 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
| 451 | se->ckpt_valid_blocks = se->valid_blocks; |
| 452 | } |
| 453 | |
| 454 | static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, |
| 455 | unsigned int max, unsigned int segno) |
| 456 | { |
| 457 | unsigned int ret; |
| 458 | spin_lock(&free_i->segmap_lock); |
| 459 | ret = find_next_bit(free_i->free_segmap, max, segno); |
| 460 | spin_unlock(&free_i->segmap_lock); |
| 461 | return ret; |
| 462 | } |
| 463 | |
| 464 | static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) |
| 465 | { |
| 466 | struct free_segmap_info *free_i = FREE_I(sbi); |
| 467 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
| 468 | unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); |
| 469 | unsigned int next; |
| 470 | |
| 471 | spin_lock(&free_i->segmap_lock); |
| 472 | clear_bit(segno, free_i->free_segmap); |
| 473 | free_i->free_segments++; |
| 474 | |
| 475 | next = find_next_bit(free_i->free_segmap, |
| 476 | start_segno + SEGS_PER_SEC(sbi), start_segno); |
| 477 | if (next >= start_segno + f2fs_usable_segs_in_sec(sbi)) { |
| 478 | clear_bit(secno, free_i->free_secmap); |
| 479 | free_i->free_sections++; |
| 480 | } |
| 481 | spin_unlock(&free_i->segmap_lock); |
| 482 | } |
| 483 | |
| 484 | static inline void __set_inuse(struct f2fs_sb_info *sbi, |
| 485 | unsigned int segno) |
| 486 | { |
| 487 | struct free_segmap_info *free_i = FREE_I(sbi); |
| 488 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
| 489 | |
| 490 | set_bit(segno, free_i->free_segmap); |
| 491 | free_i->free_segments--; |
| 492 | if (!test_and_set_bit(secno, free_i->free_secmap)) |
| 493 | free_i->free_sections--; |
| 494 | } |
| 495 | |
| 496 | static inline void __set_test_and_free(struct f2fs_sb_info *sbi, |
| 497 | unsigned int segno, bool inmem) |
| 498 | { |
| 499 | struct free_segmap_info *free_i = FREE_I(sbi); |
| 500 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
| 501 | unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); |
| 502 | unsigned int next; |
| 503 | bool ret; |
| 504 | |
| 505 | spin_lock(&free_i->segmap_lock); |
| 506 | ret = test_and_clear_bit(segno, free_i->free_segmap); |
| 507 | if (!ret) |
| 508 | goto unlock_out; |
| 509 | |
| 510 | free_i->free_segments++; |
| 511 | |
| 512 | if (!inmem && IS_CURSEC(sbi, secno)) |
| 513 | goto unlock_out; |
| 514 | |
| 515 | /* check large section */ |
| 516 | next = find_next_bit(free_i->free_segmap, |
| 517 | start_segno + SEGS_PER_SEC(sbi), start_segno); |
| 518 | if (next < start_segno + f2fs_usable_segs_in_sec(sbi)) |
| 519 | goto unlock_out; |
| 520 | |
| 521 | ret = test_and_clear_bit(secno, free_i->free_secmap); |
| 522 | if (!ret) |
| 523 | goto unlock_out; |
| 524 | |
| 525 | free_i->free_sections++; |
| 526 | |
| 527 | if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[BG_GC]) == secno) |
| 528 | sbi->next_victim_seg[BG_GC] = NULL_SEGNO; |
| 529 | if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[FG_GC]) == secno) |
| 530 | sbi->next_victim_seg[FG_GC] = NULL_SEGNO; |
| 531 | |
| 532 | unlock_out: |
| 533 | spin_unlock(&free_i->segmap_lock); |
| 534 | } |
| 535 | |
| 536 | static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, |
| 537 | unsigned int segno) |
| 538 | { |
| 539 | struct free_segmap_info *free_i = FREE_I(sbi); |
| 540 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
| 541 | |
| 542 | spin_lock(&free_i->segmap_lock); |
| 543 | if (!test_and_set_bit(segno, free_i->free_segmap)) { |
| 544 | free_i->free_segments--; |
| 545 | if (!test_and_set_bit(secno, free_i->free_secmap)) |
| 546 | free_i->free_sections--; |
| 547 | } |
| 548 | spin_unlock(&free_i->segmap_lock); |
| 549 | } |
| 550 | |
| 551 | static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, |
| 552 | void *dst_addr) |
| 553 | { |
| 554 | struct sit_info *sit_i = SIT_I(sbi); |
| 555 | |
| 556 | #ifdef CONFIG_F2FS_CHECK_FS |
| 557 | if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, |
| 558 | sit_i->bitmap_size)) |
| 559 | f2fs_bug_on(sbi, 1); |
| 560 | #endif |
| 561 | memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); |
| 562 | } |
| 563 | |
| 564 | static inline block_t written_block_count(struct f2fs_sb_info *sbi) |
| 565 | { |
| 566 | return SIT_I(sbi)->written_valid_blocks; |
| 567 | } |
| 568 | |
| 569 | static inline unsigned int free_segments(struct f2fs_sb_info *sbi) |
| 570 | { |
| 571 | return FREE_I(sbi)->free_segments; |
| 572 | } |
| 573 | |
| 574 | static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi) |
| 575 | { |
| 576 | return SM_I(sbi)->reserved_segments; |
| 577 | } |
| 578 | |
| 579 | static inline unsigned int free_sections(struct f2fs_sb_info *sbi) |
| 580 | { |
| 581 | return FREE_I(sbi)->free_sections; |
| 582 | } |
| 583 | |
| 584 | static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) |
| 585 | { |
| 586 | return DIRTY_I(sbi)->nr_dirty[PRE]; |
| 587 | } |
| 588 | |
| 589 | static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) |
| 590 | { |
| 591 | return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + |
| 592 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + |
| 593 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + |
| 594 | DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + |
| 595 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + |
| 596 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; |
| 597 | } |
| 598 | |
| 599 | static inline int overprovision_segments(struct f2fs_sb_info *sbi) |
| 600 | { |
| 601 | return SM_I(sbi)->ovp_segments; |
| 602 | } |
| 603 | |
| 604 | static inline int reserved_sections(struct f2fs_sb_info *sbi) |
| 605 | { |
| 606 | return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi)); |
| 607 | } |
| 608 | |
| 609 | static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi, |
| 610 | unsigned int node_blocks, unsigned int data_blocks, |
| 611 | unsigned int dent_blocks) |
| 612 | { |
| 613 | unsigned int segno, left_blocks, blocks; |
| 614 | int i; |
| 615 | |
| 616 | /* check current data/node sections in the worst case. */ |
| 617 | for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) { |
| 618 | segno = CURSEG_I(sbi, i)->segno; |
| 619 | |
| 620 | if (unlikely(segno == NULL_SEGNO)) |
| 621 | return false; |
| 622 | |
| 623 | if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) { |
| 624 | left_blocks = CAP_BLKS_PER_SEC(sbi) - |
| 625 | SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) - |
| 626 | CURSEG_I(sbi, i)->next_blkoff; |
| 627 | } else { |
| 628 | left_blocks = CAP_BLKS_PER_SEC(sbi) - |
| 629 | get_ckpt_valid_blocks(sbi, segno, true); |
| 630 | } |
| 631 | |
| 632 | blocks = i <= CURSEG_COLD_DATA ? data_blocks : node_blocks; |
| 633 | if (blocks > left_blocks) |
| 634 | return false; |
| 635 | } |
| 636 | |
| 637 | /* check current data section for dentry blocks. */ |
| 638 | segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; |
| 639 | |
| 640 | if (unlikely(segno == NULL_SEGNO)) |
| 641 | return false; |
| 642 | |
| 643 | if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) { |
| 644 | left_blocks = CAP_BLKS_PER_SEC(sbi) - |
| 645 | SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) - |
| 646 | CURSEG_I(sbi, CURSEG_HOT_DATA)->next_blkoff; |
| 647 | } else { |
| 648 | left_blocks = CAP_BLKS_PER_SEC(sbi) - |
| 649 | get_ckpt_valid_blocks(sbi, segno, true); |
| 650 | } |
| 651 | |
| 652 | if (dent_blocks > left_blocks) |
| 653 | return false; |
| 654 | return true; |
| 655 | } |
| 656 | |
| 657 | /* |
| 658 | * calculate needed sections for dirty node/dentry and call |
| 659 | * has_curseg_enough_space, please note that, it needs to account |
| 660 | * dirty data as well in lfs mode when checkpoint is disabled. |
| 661 | */ |
| 662 | static inline void __get_secs_required(struct f2fs_sb_info *sbi, |
| 663 | unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p) |
| 664 | { |
| 665 | unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + |
| 666 | get_pages(sbi, F2FS_DIRTY_DENTS) + |
| 667 | get_pages(sbi, F2FS_DIRTY_IMETA); |
| 668 | unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); |
| 669 | unsigned int total_data_blocks = 0; |
| 670 | unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi); |
| 671 | unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi); |
| 672 | unsigned int data_secs = 0; |
| 673 | unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi); |
| 674 | unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi); |
| 675 | unsigned int data_blocks = 0; |
| 676 | |
| 677 | if (f2fs_lfs_mode(sbi) && |
| 678 | unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { |
| 679 | total_data_blocks = get_pages(sbi, F2FS_DIRTY_DATA); |
| 680 | data_secs = total_data_blocks / CAP_BLKS_PER_SEC(sbi); |
| 681 | data_blocks = total_data_blocks % CAP_BLKS_PER_SEC(sbi); |
| 682 | } |
| 683 | |
| 684 | if (lower_p) |
| 685 | *lower_p = node_secs + dent_secs + data_secs; |
| 686 | if (upper_p) |
| 687 | *upper_p = node_secs + dent_secs + |
| 688 | (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0) + |
| 689 | (data_blocks ? 1 : 0); |
| 690 | if (curseg_p) |
| 691 | *curseg_p = has_curseg_enough_space(sbi, |
| 692 | node_blocks, data_blocks, dent_blocks); |
| 693 | } |
| 694 | |
| 695 | static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, |
| 696 | int freed, int needed) |
| 697 | { |
| 698 | unsigned int free_secs, lower_secs, upper_secs; |
| 699 | bool curseg_space; |
| 700 | |
| 701 | if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| 702 | return false; |
| 703 | |
| 704 | __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space); |
| 705 | |
| 706 | free_secs = free_sections(sbi) + freed; |
| 707 | lower_secs += needed + reserved_sections(sbi); |
| 708 | upper_secs += needed + reserved_sections(sbi); |
| 709 | |
| 710 | if (free_secs > upper_secs) |
| 711 | return false; |
| 712 | if (free_secs <= lower_secs) |
| 713 | return true; |
| 714 | return !curseg_space; |
| 715 | } |
| 716 | |
| 717 | static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi, |
| 718 | int freed, int needed) |
| 719 | { |
| 720 | return !has_not_enough_free_secs(sbi, freed, needed); |
| 721 | } |
| 722 | |
| 723 | static inline bool has_enough_free_blks(struct f2fs_sb_info *sbi) |
| 724 | { |
| 725 | unsigned int total_free_blocks = 0; |
| 726 | unsigned int avail_user_block_count; |
| 727 | |
| 728 | spin_lock(&sbi->stat_lock); |
| 729 | |
| 730 | avail_user_block_count = get_available_block_count(sbi, NULL, true); |
| 731 | total_free_blocks = avail_user_block_count - (unsigned int)valid_user_blocks(sbi); |
| 732 | |
| 733 | spin_unlock(&sbi->stat_lock); |
| 734 | |
| 735 | return total_free_blocks > 0; |
| 736 | } |
| 737 | |
| 738 | static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi) |
| 739 | { |
| 740 | if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) |
| 741 | return true; |
| 742 | if (likely(has_enough_free_secs(sbi, 0, 0))) |
| 743 | return true; |
| 744 | if (!f2fs_lfs_mode(sbi) && |
| 745 | likely(has_enough_free_blks(sbi))) |
| 746 | return true; |
| 747 | return false; |
| 748 | } |
| 749 | |
| 750 | static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) |
| 751 | { |
| 752 | return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; |
| 753 | } |
| 754 | |
| 755 | static inline int utilization(struct f2fs_sb_info *sbi) |
| 756 | { |
| 757 | return div_u64((u64)valid_user_blocks(sbi) * 100, |
| 758 | sbi->user_block_count); |
| 759 | } |
| 760 | |
| 761 | /* |
| 762 | * Sometimes f2fs may be better to drop out-of-place update policy. |
| 763 | * And, users can control the policy through sysfs entries. |
| 764 | * There are five policies with triggering conditions as follows. |
| 765 | * F2FS_IPU_FORCE - all the time, |
| 766 | * F2FS_IPU_SSR - if SSR mode is activated, |
| 767 | * F2FS_IPU_UTIL - if FS utilization is over threashold, |
| 768 | * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over |
| 769 | * threashold, |
| 770 | * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash |
| 771 | * storages. IPU will be triggered only if the # of dirty |
| 772 | * pages over min_fsync_blocks. (=default option) |
| 773 | * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests. |
| 774 | * F2FS_IPU_NOCACHE - disable IPU bio cache. |
| 775 | * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has |
| 776 | * FI_OPU_WRITE flag. |
| 777 | * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode) |
| 778 | */ |
| 779 | #define DEF_MIN_IPU_UTIL 70 |
| 780 | #define DEF_MIN_FSYNC_BLOCKS 8 |
| 781 | #define DEF_MIN_HOT_BLOCKS 16 |
| 782 | |
| 783 | #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ |
| 784 | |
| 785 | #define F2FS_IPU_DISABLE 0 |
| 786 | |
| 787 | /* Modification on enum should be synchronized with ipu_mode_names array */ |
| 788 | enum { |
| 789 | F2FS_IPU_FORCE, |
| 790 | F2FS_IPU_SSR, |
| 791 | F2FS_IPU_UTIL, |
| 792 | F2FS_IPU_SSR_UTIL, |
| 793 | F2FS_IPU_FSYNC, |
| 794 | F2FS_IPU_ASYNC, |
| 795 | F2FS_IPU_NOCACHE, |
| 796 | F2FS_IPU_HONOR_OPU_WRITE, |
| 797 | F2FS_IPU_MAX, |
| 798 | }; |
| 799 | |
| 800 | static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi) |
| 801 | { |
| 802 | return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE; |
| 803 | } |
| 804 | |
| 805 | #define F2FS_IPU_POLICY(name) \ |
| 806 | static inline bool IS_##name(struct f2fs_sb_info *sbi) \ |
| 807 | { \ |
| 808 | return SM_I(sbi)->ipu_policy & BIT(name); \ |
| 809 | } |
| 810 | |
| 811 | F2FS_IPU_POLICY(F2FS_IPU_FORCE); |
| 812 | F2FS_IPU_POLICY(F2FS_IPU_SSR); |
| 813 | F2FS_IPU_POLICY(F2FS_IPU_UTIL); |
| 814 | F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL); |
| 815 | F2FS_IPU_POLICY(F2FS_IPU_FSYNC); |
| 816 | F2FS_IPU_POLICY(F2FS_IPU_ASYNC); |
| 817 | F2FS_IPU_POLICY(F2FS_IPU_NOCACHE); |
| 818 | F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE); |
| 819 | |
| 820 | static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, |
| 821 | int type) |
| 822 | { |
| 823 | struct curseg_info *curseg = CURSEG_I(sbi, type); |
| 824 | return curseg->segno; |
| 825 | } |
| 826 | |
| 827 | static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, |
| 828 | int type) |
| 829 | { |
| 830 | struct curseg_info *curseg = CURSEG_I(sbi, type); |
| 831 | return curseg->alloc_type; |
| 832 | } |
| 833 | |
| 834 | static inline bool valid_main_segno(struct f2fs_sb_info *sbi, |
| 835 | unsigned int segno) |
| 836 | { |
| 837 | return segno <= (MAIN_SEGS(sbi) - 1); |
| 838 | } |
| 839 | |
| 840 | static inline void verify_fio_blkaddr(struct f2fs_io_info *fio) |
| 841 | { |
| 842 | struct f2fs_sb_info *sbi = fio->sbi; |
| 843 | |
| 844 | if (__is_valid_data_blkaddr(fio->old_blkaddr)) |
| 845 | verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ? |
| 846 | META_GENERIC : DATA_GENERIC); |
| 847 | verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ? |
| 848 | META_GENERIC : DATA_GENERIC_ENHANCE); |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | * Summary block is always treated as an invalid block |
| 853 | */ |
| 854 | static inline int check_block_count(struct f2fs_sb_info *sbi, |
| 855 | int segno, struct f2fs_sit_entry *raw_sit) |
| 856 | { |
| 857 | bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; |
| 858 | int valid_blocks = 0; |
| 859 | int cur_pos = 0, next_pos; |
| 860 | unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno); |
| 861 | |
| 862 | /* check bitmap with valid block count */ |
| 863 | do { |
| 864 | if (is_valid) { |
| 865 | next_pos = find_next_zero_bit_le(&raw_sit->valid_map, |
| 866 | usable_blks_per_seg, |
| 867 | cur_pos); |
| 868 | valid_blocks += next_pos - cur_pos; |
| 869 | } else |
| 870 | next_pos = find_next_bit_le(&raw_sit->valid_map, |
| 871 | usable_blks_per_seg, |
| 872 | cur_pos); |
| 873 | cur_pos = next_pos; |
| 874 | is_valid = !is_valid; |
| 875 | } while (cur_pos < usable_blks_per_seg); |
| 876 | |
| 877 | if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { |
| 878 | f2fs_err(sbi, "Mismatch valid blocks %d vs. %d", |
| 879 | GET_SIT_VBLOCKS(raw_sit), valid_blocks); |
| 880 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 881 | f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); |
| 882 | return -EFSCORRUPTED; |
| 883 | } |
| 884 | |
| 885 | if (usable_blks_per_seg < BLKS_PER_SEG(sbi)) |
| 886 | f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map, |
| 887 | BLKS_PER_SEG(sbi), |
| 888 | usable_blks_per_seg) != BLKS_PER_SEG(sbi)); |
| 889 | |
| 890 | /* check segment usage, and check boundary of a given segment number */ |
| 891 | if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg |
| 892 | || !valid_main_segno(sbi, segno))) { |
| 893 | f2fs_err(sbi, "Wrong valid blocks %d or segno %u", |
| 894 | GET_SIT_VBLOCKS(raw_sit), segno); |
| 895 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 896 | f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); |
| 897 | return -EFSCORRUPTED; |
| 898 | } |
| 899 | return 0; |
| 900 | } |
| 901 | |
| 902 | static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, |
| 903 | unsigned int start) |
| 904 | { |
| 905 | struct sit_info *sit_i = SIT_I(sbi); |
| 906 | unsigned int offset = SIT_BLOCK_OFFSET(start); |
| 907 | block_t blk_addr = sit_i->sit_base_addr + offset; |
| 908 | |
| 909 | f2fs_bug_on(sbi, !valid_main_segno(sbi, start)); |
| 910 | |
| 911 | #ifdef CONFIG_F2FS_CHECK_FS |
| 912 | if (f2fs_test_bit(offset, sit_i->sit_bitmap) != |
| 913 | f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) |
| 914 | f2fs_bug_on(sbi, 1); |
| 915 | #endif |
| 916 | |
| 917 | /* calculate sit block address */ |
| 918 | if (f2fs_test_bit(offset, sit_i->sit_bitmap)) |
| 919 | blk_addr += sit_i->sit_blocks; |
| 920 | |
| 921 | return blk_addr; |
| 922 | } |
| 923 | |
| 924 | static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, |
| 925 | pgoff_t block_addr) |
| 926 | { |
| 927 | struct sit_info *sit_i = SIT_I(sbi); |
| 928 | block_addr -= sit_i->sit_base_addr; |
| 929 | if (block_addr < sit_i->sit_blocks) |
| 930 | block_addr += sit_i->sit_blocks; |
| 931 | else |
| 932 | block_addr -= sit_i->sit_blocks; |
| 933 | |
| 934 | return block_addr + sit_i->sit_base_addr; |
| 935 | } |
| 936 | |
| 937 | static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) |
| 938 | { |
| 939 | unsigned int block_off = SIT_BLOCK_OFFSET(start); |
| 940 | |
| 941 | f2fs_change_bit(block_off, sit_i->sit_bitmap); |
| 942 | #ifdef CONFIG_F2FS_CHECK_FS |
| 943 | f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); |
| 944 | #endif |
| 945 | } |
| 946 | |
| 947 | static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, |
| 948 | bool base_time) |
| 949 | { |
| 950 | struct sit_info *sit_i = SIT_I(sbi); |
| 951 | time64_t diff, now = ktime_get_boottime_seconds(); |
| 952 | |
| 953 | if (now >= sit_i->mounted_time) |
| 954 | return sit_i->elapsed_time + now - sit_i->mounted_time; |
| 955 | |
| 956 | /* system time is set to the past */ |
| 957 | if (!base_time) { |
| 958 | diff = sit_i->mounted_time - now; |
| 959 | if (sit_i->elapsed_time >= diff) |
| 960 | return sit_i->elapsed_time - diff; |
| 961 | return 0; |
| 962 | } |
| 963 | return sit_i->elapsed_time; |
| 964 | } |
| 965 | |
| 966 | static inline void set_summary(struct f2fs_summary *sum, nid_t nid, |
| 967 | unsigned int ofs_in_node, unsigned char version) |
| 968 | { |
| 969 | sum->nid = cpu_to_le32(nid); |
| 970 | sum->ofs_in_node = cpu_to_le16(ofs_in_node); |
| 971 | sum->version = version; |
| 972 | } |
| 973 | |
| 974 | static inline block_t start_sum_block(struct f2fs_sb_info *sbi) |
| 975 | { |
| 976 | return __start_cp_addr(sbi) + |
| 977 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); |
| 978 | } |
| 979 | |
| 980 | static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) |
| 981 | { |
| 982 | return __start_cp_addr(sbi) + |
| 983 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) |
| 984 | - (base + 1) + type; |
| 985 | } |
| 986 | |
| 987 | static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) |
| 988 | { |
| 989 | if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) |
| 990 | return true; |
| 991 | return false; |
| 992 | } |
| 993 | |
| 994 | /* |
| 995 | * It is very important to gather dirty pages and write at once, so that we can |
| 996 | * submit a big bio without interfering other data writes. |
| 997 | * By default, 512 pages for directory data, |
| 998 | * 512 pages (2MB) * 8 for nodes, and |
| 999 | * 256 pages * 8 for meta are set. |
| 1000 | */ |
| 1001 | static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) |
| 1002 | { |
| 1003 | if (sbi->sb->s_bdi->wb.dirty_exceeded) |
| 1004 | return 0; |
| 1005 | |
| 1006 | if (type == DATA) |
| 1007 | return BLKS_PER_SEG(sbi); |
| 1008 | else if (type == NODE) |
| 1009 | return SEGS_TO_BLKS(sbi, 8); |
| 1010 | else if (type == META) |
| 1011 | return 8 * BIO_MAX_VECS; |
| 1012 | else |
| 1013 | return 0; |
| 1014 | } |
| 1015 | |
| 1016 | /* |
| 1017 | * When writing pages, it'd better align nr_to_write for segment size. |
| 1018 | */ |
| 1019 | static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, |
| 1020 | struct writeback_control *wbc) |
| 1021 | { |
| 1022 | long nr_to_write, desired; |
| 1023 | |
| 1024 | if (wbc->sync_mode != WB_SYNC_NONE) |
| 1025 | return 0; |
| 1026 | |
| 1027 | nr_to_write = wbc->nr_to_write; |
| 1028 | desired = BIO_MAX_VECS; |
| 1029 | if (type == NODE) |
| 1030 | desired <<= 1; |
| 1031 | |
| 1032 | wbc->nr_to_write = desired; |
| 1033 | return desired - nr_to_write; |
| 1034 | } |
| 1035 | |
| 1036 | static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) |
| 1037 | { |
| 1038 | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| 1039 | bool wakeup = false; |
| 1040 | int i; |
| 1041 | |
| 1042 | if (force) |
| 1043 | goto wake_up; |
| 1044 | |
| 1045 | mutex_lock(&dcc->cmd_lock); |
| 1046 | for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { |
| 1047 | if (i + 1 < dcc->discard_granularity) |
| 1048 | break; |
| 1049 | if (!list_empty(&dcc->pend_list[i])) { |
| 1050 | wakeup = true; |
| 1051 | break; |
| 1052 | } |
| 1053 | } |
| 1054 | mutex_unlock(&dcc->cmd_lock); |
| 1055 | if (!wakeup || !is_idle(sbi, DISCARD_TIME)) |
| 1056 | return; |
| 1057 | wake_up: |
| 1058 | dcc->discard_wake = true; |
| 1059 | wake_up_interruptible_all(&dcc->discard_wait_queue); |
| 1060 | } |