f2fs: make fault injection covering __submit_flush_wait()
[linux-2.6-block.git] / fs / f2fs / segment.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/prefetch.h>
13#include <linux/kthread.h>
14#include <linux/swap.h>
15#include <linux/timer.h>
16#include <linux/freezer.h>
17#include <linux/sched/signal.h>
18
19#include "f2fs.h"
20#include "segment.h"
21#include "node.h"
22#include "gc.h"
23#include "trace.h"
24#include <trace/events/f2fs.h>
25
26#define __reverse_ffz(x) __reverse_ffs(~(x))
27
28static struct kmem_cache *discard_entry_slab;
29static struct kmem_cache *discard_cmd_slab;
30static struct kmem_cache *sit_entry_set_slab;
31static struct kmem_cache *inmem_entry_slab;
32
33static unsigned long __reverse_ulong(unsigned char *str)
34{
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38#if BITS_PER_LONG == 64
39 shift = 56;
40#endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46}
47
48/*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
52static inline unsigned long __reverse_ffs(unsigned long word)
53{
54 int num = 0;
55
56#if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61#endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85}
86
87/*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
96static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98{
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128found:
129 return result - size + __reverse_ffs(tmp);
130}
131
132static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134{
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165found:
166 return result - size + __reverse_ffz(tmp);
167}
168
169bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170{
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175 if (test_opt(sbi, LFS))
176 return false;
177 if (sbi->gc_mode == GC_URGENT)
178 return true;
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 return true;
181
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184}
185
186void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187{
188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189 struct f2fs_inode_info *fi = F2FS_I(inode);
190 struct inmem_pages *new;
191
192 f2fs_trace_pid(page);
193
194 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195 SetPagePrivate(page);
196
197 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
198
199 /* add atomic page indices to the list */
200 new->page = page;
201 INIT_LIST_HEAD(&new->list);
202
203 /* increase reference count with clean state */
204 mutex_lock(&fi->inmem_lock);
205 get_page(page);
206 list_add_tail(&new->list, &fi->inmem_pages);
207 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
208 if (list_empty(&fi->inmem_ilist))
209 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
210 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
211 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
212 mutex_unlock(&fi->inmem_lock);
213
214 trace_f2fs_register_inmem_page(page, INMEM);
215}
216
217static int __revoke_inmem_pages(struct inode *inode,
218 struct list_head *head, bool drop, bool recover)
219{
220 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221 struct inmem_pages *cur, *tmp;
222 int err = 0;
223
224 list_for_each_entry_safe(cur, tmp, head, list) {
225 struct page *page = cur->page;
226
227 if (drop)
228 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
229
230 lock_page(page);
231
232 f2fs_wait_on_page_writeback(page, DATA, true, true);
233
234 if (recover) {
235 struct dnode_of_data dn;
236 struct node_info ni;
237
238 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
239retry:
240 set_new_dnode(&dn, inode, NULL, NULL, 0);
241 err = f2fs_get_dnode_of_data(&dn, page->index,
242 LOOKUP_NODE);
243 if (err) {
244 if (err == -ENOMEM) {
245 congestion_wait(BLK_RW_ASYNC, HZ/50);
246 cond_resched();
247 goto retry;
248 }
249 err = -EAGAIN;
250 goto next;
251 }
252
253 err = f2fs_get_node_info(sbi, dn.nid, &ni);
254 if (err) {
255 f2fs_put_dnode(&dn);
256 return err;
257 }
258
259 if (cur->old_addr == NEW_ADDR) {
260 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
261 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
262 } else
263 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
264 cur->old_addr, ni.version, true, true);
265 f2fs_put_dnode(&dn);
266 }
267next:
268 /* we don't need to invalidate this in the sccessful status */
269 if (drop || recover) {
270 ClearPageUptodate(page);
271 clear_cold_data(page);
272 }
273 set_page_private(page, 0);
274 ClearPagePrivate(page);
275 f2fs_put_page(page, 1);
276
277 list_del(&cur->list);
278 kmem_cache_free(inmem_entry_slab, cur);
279 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
280 }
281 return err;
282}
283
284void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
285{
286 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
287 struct inode *inode;
288 struct f2fs_inode_info *fi;
289next:
290 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
291 if (list_empty(head)) {
292 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
293 return;
294 }
295 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
296 inode = igrab(&fi->vfs_inode);
297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298
299 if (inode) {
300 if (gc_failure) {
301 if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
302 goto drop;
303 goto skip;
304 }
305drop:
306 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
307 f2fs_drop_inmem_pages(inode);
308 iput(inode);
309 }
310skip:
311 congestion_wait(BLK_RW_ASYNC, HZ/50);
312 cond_resched();
313 goto next;
314}
315
316void f2fs_drop_inmem_pages(struct inode *inode)
317{
318 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
319 struct f2fs_inode_info *fi = F2FS_I(inode);
320
321 mutex_lock(&fi->inmem_lock);
322 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
323 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
324 if (!list_empty(&fi->inmem_ilist))
325 list_del_init(&fi->inmem_ilist);
326 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
327 mutex_unlock(&fi->inmem_lock);
328
329 clear_inode_flag(inode, FI_ATOMIC_FILE);
330 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
331 stat_dec_atomic_write(inode);
332}
333
334void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
335{
336 struct f2fs_inode_info *fi = F2FS_I(inode);
337 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
338 struct list_head *head = &fi->inmem_pages;
339 struct inmem_pages *cur = NULL;
340
341 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
342
343 mutex_lock(&fi->inmem_lock);
344 list_for_each_entry(cur, head, list) {
345 if (cur->page == page)
346 break;
347 }
348
349 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
350 list_del(&cur->list);
351 mutex_unlock(&fi->inmem_lock);
352
353 dec_page_count(sbi, F2FS_INMEM_PAGES);
354 kmem_cache_free(inmem_entry_slab, cur);
355
356 ClearPageUptodate(page);
357 set_page_private(page, 0);
358 ClearPagePrivate(page);
359 f2fs_put_page(page, 0);
360
361 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
362}
363
364static int __f2fs_commit_inmem_pages(struct inode *inode)
365{
366 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
367 struct f2fs_inode_info *fi = F2FS_I(inode);
368 struct inmem_pages *cur, *tmp;
369 struct f2fs_io_info fio = {
370 .sbi = sbi,
371 .ino = inode->i_ino,
372 .type = DATA,
373 .op = REQ_OP_WRITE,
374 .op_flags = REQ_SYNC | REQ_PRIO,
375 .io_type = FS_DATA_IO,
376 };
377 struct list_head revoke_list;
378 bool submit_bio = false;
379 int err = 0;
380
381 INIT_LIST_HEAD(&revoke_list);
382
383 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
384 struct page *page = cur->page;
385
386 lock_page(page);
387 if (page->mapping == inode->i_mapping) {
388 trace_f2fs_commit_inmem_page(page, INMEM);
389
390 f2fs_wait_on_page_writeback(page, DATA, true, true);
391
392 set_page_dirty(page);
393 if (clear_page_dirty_for_io(page)) {
394 inode_dec_dirty_pages(inode);
395 f2fs_remove_dirty_inode(inode);
396 }
397retry:
398 fio.page = page;
399 fio.old_blkaddr = NULL_ADDR;
400 fio.encrypted_page = NULL;
401 fio.need_lock = LOCK_DONE;
402 err = f2fs_do_write_data_page(&fio);
403 if (err) {
404 if (err == -ENOMEM) {
405 congestion_wait(BLK_RW_ASYNC, HZ/50);
406 cond_resched();
407 goto retry;
408 }
409 unlock_page(page);
410 break;
411 }
412 /* record old blkaddr for revoking */
413 cur->old_addr = fio.old_blkaddr;
414 submit_bio = true;
415 }
416 unlock_page(page);
417 list_move_tail(&cur->list, &revoke_list);
418 }
419
420 if (submit_bio)
421 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
422
423 if (err) {
424 /*
425 * try to revoke all committed pages, but still we could fail
426 * due to no memory or other reason, if that happened, EAGAIN
427 * will be returned, which means in such case, transaction is
428 * already not integrity, caller should use journal to do the
429 * recovery or rewrite & commit last transaction. For other
430 * error number, revoking was done by filesystem itself.
431 */
432 err = __revoke_inmem_pages(inode, &revoke_list, false, true);
433
434 /* drop all uncommitted pages */
435 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
436 } else {
437 __revoke_inmem_pages(inode, &revoke_list, false, false);
438 }
439
440 return err;
441}
442
443int f2fs_commit_inmem_pages(struct inode *inode)
444{
445 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
446 struct f2fs_inode_info *fi = F2FS_I(inode);
447 int err;
448
449 f2fs_balance_fs(sbi, true);
450
451 down_write(&fi->i_gc_rwsem[WRITE]);
452
453 f2fs_lock_op(sbi);
454 set_inode_flag(inode, FI_ATOMIC_COMMIT);
455
456 mutex_lock(&fi->inmem_lock);
457 err = __f2fs_commit_inmem_pages(inode);
458
459 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
460 if (!list_empty(&fi->inmem_ilist))
461 list_del_init(&fi->inmem_ilist);
462 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
463 mutex_unlock(&fi->inmem_lock);
464
465 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
466
467 f2fs_unlock_op(sbi);
468 up_write(&fi->i_gc_rwsem[WRITE]);
469
470 return err;
471}
472
473/*
474 * This function balances dirty node and dentry pages.
475 * In addition, it controls garbage collection.
476 */
477void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
478{
479 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
480 f2fs_show_injection_info(FAULT_CHECKPOINT);
481 f2fs_stop_checkpoint(sbi, false);
482 }
483
484 /* balance_fs_bg is able to be pending */
485 if (need && excess_cached_nats(sbi))
486 f2fs_balance_fs_bg(sbi);
487
488 if (f2fs_is_checkpoint_ready(sbi))
489 return;
490
491 /*
492 * We should do GC or end up with checkpoint, if there are so many dirty
493 * dir/node pages without enough free segments.
494 */
495 if (has_not_enough_free_secs(sbi, 0, 0)) {
496 mutex_lock(&sbi->gc_mutex);
497 f2fs_gc(sbi, false, false, NULL_SEGNO);
498 }
499}
500
501void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
502{
503 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
504 return;
505
506 /* try to shrink extent cache when there is no enough memory */
507 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
508 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
509
510 /* check the # of cached NAT entries */
511 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
512 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
513
514 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
515 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
516 else
517 f2fs_build_free_nids(sbi, false, false);
518
519 if (!is_idle(sbi, REQ_TIME) &&
520 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
521 return;
522
523 /* checkpoint is the only way to shrink partial cached entries */
524 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
525 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
526 excess_prefree_segs(sbi) ||
527 excess_dirty_nats(sbi) ||
528 excess_dirty_nodes(sbi) ||
529 f2fs_time_over(sbi, CP_TIME)) {
530 if (test_opt(sbi, DATA_FLUSH)) {
531 struct blk_plug plug;
532
533 blk_start_plug(&plug);
534 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
535 blk_finish_plug(&plug);
536 }
537 f2fs_sync_fs(sbi->sb, true);
538 stat_inc_bg_cp_count(sbi->stat_info);
539 }
540}
541
542static int __submit_flush_wait(struct f2fs_sb_info *sbi,
543 struct block_device *bdev)
544{
545 struct bio *bio;
546 int ret;
547
548 bio = f2fs_bio_alloc(sbi, 0, false);
549 if (!bio)
550 return -ENOMEM;
551
552 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
553 bio_set_dev(bio, bdev);
554 ret = submit_bio_wait(bio);
555 bio_put(bio);
556
557 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
558 test_opt(sbi, FLUSH_MERGE), ret);
559 return ret;
560}
561
562static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
563{
564 int ret = 0;
565 int i;
566
567 if (!sbi->s_ndevs)
568 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
569
570 for (i = 0; i < sbi->s_ndevs; i++) {
571 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
572 continue;
573 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
574 if (ret)
575 break;
576 }
577 return ret;
578}
579
580static int issue_flush_thread(void *data)
581{
582 struct f2fs_sb_info *sbi = data;
583 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
584 wait_queue_head_t *q = &fcc->flush_wait_queue;
585repeat:
586 if (kthread_should_stop())
587 return 0;
588
589 sb_start_intwrite(sbi->sb);
590
591 if (!llist_empty(&fcc->issue_list)) {
592 struct flush_cmd *cmd, *next;
593 int ret;
594
595 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
596 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
597
598 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
599
600 ret = submit_flush_wait(sbi, cmd->ino);
601 atomic_inc(&fcc->issued_flush);
602
603 llist_for_each_entry_safe(cmd, next,
604 fcc->dispatch_list, llnode) {
605 cmd->ret = ret;
606 complete(&cmd->wait);
607 }
608 fcc->dispatch_list = NULL;
609 }
610
611 sb_end_intwrite(sbi->sb);
612
613 wait_event_interruptible(*q,
614 kthread_should_stop() || !llist_empty(&fcc->issue_list));
615 goto repeat;
616}
617
618int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
619{
620 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
621 struct flush_cmd cmd;
622 int ret;
623
624 if (test_opt(sbi, NOBARRIER))
625 return 0;
626
627 if (!test_opt(sbi, FLUSH_MERGE)) {
628 atomic_inc(&fcc->queued_flush);
629 ret = submit_flush_wait(sbi, ino);
630 atomic_dec(&fcc->queued_flush);
631 atomic_inc(&fcc->issued_flush);
632 return ret;
633 }
634
635 if (atomic_inc_return(&fcc->queued_flush) == 1 || sbi->s_ndevs > 1) {
636 ret = submit_flush_wait(sbi, ino);
637 atomic_dec(&fcc->queued_flush);
638
639 atomic_inc(&fcc->issued_flush);
640 return ret;
641 }
642
643 cmd.ino = ino;
644 init_completion(&cmd.wait);
645
646 llist_add(&cmd.llnode, &fcc->issue_list);
647
648 /* update issue_list before we wake up issue_flush thread */
649 smp_mb();
650
651 if (waitqueue_active(&fcc->flush_wait_queue))
652 wake_up(&fcc->flush_wait_queue);
653
654 if (fcc->f2fs_issue_flush) {
655 wait_for_completion(&cmd.wait);
656 atomic_dec(&fcc->queued_flush);
657 } else {
658 struct llist_node *list;
659
660 list = llist_del_all(&fcc->issue_list);
661 if (!list) {
662 wait_for_completion(&cmd.wait);
663 atomic_dec(&fcc->queued_flush);
664 } else {
665 struct flush_cmd *tmp, *next;
666
667 ret = submit_flush_wait(sbi, ino);
668
669 llist_for_each_entry_safe(tmp, next, list, llnode) {
670 if (tmp == &cmd) {
671 cmd.ret = ret;
672 atomic_dec(&fcc->queued_flush);
673 continue;
674 }
675 tmp->ret = ret;
676 complete(&tmp->wait);
677 }
678 }
679 }
680
681 return cmd.ret;
682}
683
684int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
685{
686 dev_t dev = sbi->sb->s_bdev->bd_dev;
687 struct flush_cmd_control *fcc;
688 int err = 0;
689
690 if (SM_I(sbi)->fcc_info) {
691 fcc = SM_I(sbi)->fcc_info;
692 if (fcc->f2fs_issue_flush)
693 return err;
694 goto init_thread;
695 }
696
697 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
698 if (!fcc)
699 return -ENOMEM;
700 atomic_set(&fcc->issued_flush, 0);
701 atomic_set(&fcc->queued_flush, 0);
702 init_waitqueue_head(&fcc->flush_wait_queue);
703 init_llist_head(&fcc->issue_list);
704 SM_I(sbi)->fcc_info = fcc;
705 if (!test_opt(sbi, FLUSH_MERGE))
706 return err;
707
708init_thread:
709 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
710 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
711 if (IS_ERR(fcc->f2fs_issue_flush)) {
712 err = PTR_ERR(fcc->f2fs_issue_flush);
713 kvfree(fcc);
714 SM_I(sbi)->fcc_info = NULL;
715 return err;
716 }
717
718 return err;
719}
720
721void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
722{
723 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
724
725 if (fcc && fcc->f2fs_issue_flush) {
726 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
727
728 fcc->f2fs_issue_flush = NULL;
729 kthread_stop(flush_thread);
730 }
731 if (free) {
732 kvfree(fcc);
733 SM_I(sbi)->fcc_info = NULL;
734 }
735}
736
737int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
738{
739 int ret = 0, i;
740
741 if (!sbi->s_ndevs)
742 return 0;
743
744 for (i = 1; i < sbi->s_ndevs; i++) {
745 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
746 continue;
747 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
748 if (ret)
749 break;
750
751 spin_lock(&sbi->dev_lock);
752 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
753 spin_unlock(&sbi->dev_lock);
754 }
755
756 return ret;
757}
758
759static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
760 enum dirty_type dirty_type)
761{
762 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
763
764 /* need not be added */
765 if (IS_CURSEG(sbi, segno))
766 return;
767
768 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
769 dirty_i->nr_dirty[dirty_type]++;
770
771 if (dirty_type == DIRTY) {
772 struct seg_entry *sentry = get_seg_entry(sbi, segno);
773 enum dirty_type t = sentry->type;
774
775 if (unlikely(t >= DIRTY)) {
776 f2fs_bug_on(sbi, 1);
777 return;
778 }
779 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
780 dirty_i->nr_dirty[t]++;
781 }
782}
783
784static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
785 enum dirty_type dirty_type)
786{
787 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
788
789 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
790 dirty_i->nr_dirty[dirty_type]--;
791
792 if (dirty_type == DIRTY) {
793 struct seg_entry *sentry = get_seg_entry(sbi, segno);
794 enum dirty_type t = sentry->type;
795
796 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
797 dirty_i->nr_dirty[t]--;
798
799 if (get_valid_blocks(sbi, segno, true) == 0)
800 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
801 dirty_i->victim_secmap);
802 }
803}
804
805/*
806 * Should not occur error such as -ENOMEM.
807 * Adding dirty entry into seglist is not critical operation.
808 * If a given segment is one of current working segments, it won't be added.
809 */
810static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
811{
812 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
813 unsigned short valid_blocks, ckpt_valid_blocks;
814
815 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
816 return;
817
818 mutex_lock(&dirty_i->seglist_lock);
819
820 valid_blocks = get_valid_blocks(sbi, segno, false);
821 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
822
823 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
824 ckpt_valid_blocks == sbi->blocks_per_seg)) {
825 __locate_dirty_segment(sbi, segno, PRE);
826 __remove_dirty_segment(sbi, segno, DIRTY);
827 } else if (valid_blocks < sbi->blocks_per_seg) {
828 __locate_dirty_segment(sbi, segno, DIRTY);
829 } else {
830 /* Recovery routine with SSR needs this */
831 __remove_dirty_segment(sbi, segno, DIRTY);
832 }
833
834 mutex_unlock(&dirty_i->seglist_lock);
835}
836
837/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
838void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
839{
840 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
841 unsigned int segno;
842
843 mutex_lock(&dirty_i->seglist_lock);
844 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
845 if (get_valid_blocks(sbi, segno, false))
846 continue;
847 if (IS_CURSEG(sbi, segno))
848 continue;
849 __locate_dirty_segment(sbi, segno, PRE);
850 __remove_dirty_segment(sbi, segno, DIRTY);
851 }
852 mutex_unlock(&dirty_i->seglist_lock);
853}
854
855int f2fs_disable_cp_again(struct f2fs_sb_info *sbi)
856{
857 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
858 block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg;
859 block_t holes[2] = {0, 0}; /* DATA and NODE */
860 struct seg_entry *se;
861 unsigned int segno;
862
863 mutex_lock(&dirty_i->seglist_lock);
864 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
865 se = get_seg_entry(sbi, segno);
866 if (IS_NODESEG(se->type))
867 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
868 else
869 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
870 }
871 mutex_unlock(&dirty_i->seglist_lock);
872
873 if (holes[DATA] > ovp || holes[NODE] > ovp)
874 return -EAGAIN;
875 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
876 dirty_segments(sbi) > overprovision_segments(sbi))
877 return -EAGAIN;
878 return 0;
879}
880
881/* This is only used by SBI_CP_DISABLED */
882static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
883{
884 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
885 unsigned int segno = 0;
886
887 mutex_lock(&dirty_i->seglist_lock);
888 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
889 if (get_valid_blocks(sbi, segno, false))
890 continue;
891 if (get_ckpt_valid_blocks(sbi, segno))
892 continue;
893 mutex_unlock(&dirty_i->seglist_lock);
894 return segno;
895 }
896 mutex_unlock(&dirty_i->seglist_lock);
897 return NULL_SEGNO;
898}
899
900static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
901 struct block_device *bdev, block_t lstart,
902 block_t start, block_t len)
903{
904 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
905 struct list_head *pend_list;
906 struct discard_cmd *dc;
907
908 f2fs_bug_on(sbi, !len);
909
910 pend_list = &dcc->pend_list[plist_idx(len)];
911
912 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
913 INIT_LIST_HEAD(&dc->list);
914 dc->bdev = bdev;
915 dc->lstart = lstart;
916 dc->start = start;
917 dc->len = len;
918 dc->ref = 0;
919 dc->state = D_PREP;
920 dc->queued = 0;
921 dc->error = 0;
922 init_completion(&dc->wait);
923 list_add_tail(&dc->list, pend_list);
924 spin_lock_init(&dc->lock);
925 dc->bio_ref = 0;
926 atomic_inc(&dcc->discard_cmd_cnt);
927 dcc->undiscard_blks += len;
928
929 return dc;
930}
931
932static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
933 struct block_device *bdev, block_t lstart,
934 block_t start, block_t len,
935 struct rb_node *parent, struct rb_node **p,
936 bool leftmost)
937{
938 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
939 struct discard_cmd *dc;
940
941 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
942
943 rb_link_node(&dc->rb_node, parent, p);
944 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
945
946 return dc;
947}
948
949static void __detach_discard_cmd(struct discard_cmd_control *dcc,
950 struct discard_cmd *dc)
951{
952 if (dc->state == D_DONE)
953 atomic_sub(dc->queued, &dcc->queued_discard);
954
955 list_del(&dc->list);
956 rb_erase_cached(&dc->rb_node, &dcc->root);
957 dcc->undiscard_blks -= dc->len;
958
959 kmem_cache_free(discard_cmd_slab, dc);
960
961 atomic_dec(&dcc->discard_cmd_cnt);
962}
963
964static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
965 struct discard_cmd *dc)
966{
967 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
968 unsigned long flags;
969
970 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
971
972 spin_lock_irqsave(&dc->lock, flags);
973 if (dc->bio_ref) {
974 spin_unlock_irqrestore(&dc->lock, flags);
975 return;
976 }
977 spin_unlock_irqrestore(&dc->lock, flags);
978
979 f2fs_bug_on(sbi, dc->ref);
980
981 if (dc->error == -EOPNOTSUPP)
982 dc->error = 0;
983
984 if (dc->error)
985 printk_ratelimited(
986 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
987 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
988 __detach_discard_cmd(dcc, dc);
989}
990
991static void f2fs_submit_discard_endio(struct bio *bio)
992{
993 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
994 unsigned long flags;
995
996 dc->error = blk_status_to_errno(bio->bi_status);
997
998 spin_lock_irqsave(&dc->lock, flags);
999 dc->bio_ref--;
1000 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1001 dc->state = D_DONE;
1002 complete_all(&dc->wait);
1003 }
1004 spin_unlock_irqrestore(&dc->lock, flags);
1005 bio_put(bio);
1006}
1007
1008static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1009 block_t start, block_t end)
1010{
1011#ifdef CONFIG_F2FS_CHECK_FS
1012 struct seg_entry *sentry;
1013 unsigned int segno;
1014 block_t blk = start;
1015 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1016 unsigned long *map;
1017
1018 while (blk < end) {
1019 segno = GET_SEGNO(sbi, blk);
1020 sentry = get_seg_entry(sbi, segno);
1021 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1022
1023 if (end < START_BLOCK(sbi, segno + 1))
1024 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1025 else
1026 size = max_blocks;
1027 map = (unsigned long *)(sentry->cur_valid_map);
1028 offset = __find_rev_next_bit(map, size, offset);
1029 f2fs_bug_on(sbi, offset != size);
1030 blk = START_BLOCK(sbi, segno + 1);
1031 }
1032#endif
1033}
1034
1035static void __init_discard_policy(struct f2fs_sb_info *sbi,
1036 struct discard_policy *dpolicy,
1037 int discard_type, unsigned int granularity)
1038{
1039 /* common policy */
1040 dpolicy->type = discard_type;
1041 dpolicy->sync = true;
1042 dpolicy->ordered = false;
1043 dpolicy->granularity = granularity;
1044
1045 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1046 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1047 dpolicy->timeout = 0;
1048
1049 if (discard_type == DPOLICY_BG) {
1050 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1051 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1052 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1053 dpolicy->io_aware = true;
1054 dpolicy->sync = false;
1055 dpolicy->ordered = true;
1056 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1057 dpolicy->granularity = 1;
1058 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1059 }
1060 } else if (discard_type == DPOLICY_FORCE) {
1061 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1062 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1063 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1064 dpolicy->io_aware = false;
1065 } else if (discard_type == DPOLICY_FSTRIM) {
1066 dpolicy->io_aware = false;
1067 } else if (discard_type == DPOLICY_UMOUNT) {
1068 dpolicy->max_requests = UINT_MAX;
1069 dpolicy->io_aware = false;
1070 /* we need to issue all to keep CP_TRIMMED_FLAG */
1071 dpolicy->granularity = 1;
1072 }
1073}
1074
1075static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1076 struct block_device *bdev, block_t lstart,
1077 block_t start, block_t len);
1078/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1079static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1080 struct discard_policy *dpolicy,
1081 struct discard_cmd *dc,
1082 unsigned int *issued)
1083{
1084 struct block_device *bdev = dc->bdev;
1085 struct request_queue *q = bdev_get_queue(bdev);
1086 unsigned int max_discard_blocks =
1087 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1088 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1089 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1090 &(dcc->fstrim_list) : &(dcc->wait_list);
1091 int flag = dpolicy->sync ? REQ_SYNC : 0;
1092 block_t lstart, start, len, total_len;
1093 int err = 0;
1094
1095 if (dc->state != D_PREP)
1096 return 0;
1097
1098 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1099 return 0;
1100
1101 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1102
1103 lstart = dc->lstart;
1104 start = dc->start;
1105 len = dc->len;
1106 total_len = len;
1107
1108 dc->len = 0;
1109
1110 while (total_len && *issued < dpolicy->max_requests && !err) {
1111 struct bio *bio = NULL;
1112 unsigned long flags;
1113 bool last = true;
1114
1115 if (len > max_discard_blocks) {
1116 len = max_discard_blocks;
1117 last = false;
1118 }
1119
1120 (*issued)++;
1121 if (*issued == dpolicy->max_requests)
1122 last = true;
1123
1124 dc->len += len;
1125
1126 if (time_to_inject(sbi, FAULT_DISCARD)) {
1127 f2fs_show_injection_info(FAULT_DISCARD);
1128 err = -EIO;
1129 goto submit;
1130 }
1131 err = __blkdev_issue_discard(bdev,
1132 SECTOR_FROM_BLOCK(start),
1133 SECTOR_FROM_BLOCK(len),
1134 GFP_NOFS, 0, &bio);
1135submit:
1136 if (err) {
1137 spin_lock_irqsave(&dc->lock, flags);
1138 if (dc->state == D_PARTIAL)
1139 dc->state = D_SUBMIT;
1140 spin_unlock_irqrestore(&dc->lock, flags);
1141
1142 break;
1143 }
1144
1145 f2fs_bug_on(sbi, !bio);
1146
1147 /*
1148 * should keep before submission to avoid D_DONE
1149 * right away
1150 */
1151 spin_lock_irqsave(&dc->lock, flags);
1152 if (last)
1153 dc->state = D_SUBMIT;
1154 else
1155 dc->state = D_PARTIAL;
1156 dc->bio_ref++;
1157 spin_unlock_irqrestore(&dc->lock, flags);
1158
1159 atomic_inc(&dcc->queued_discard);
1160 dc->queued++;
1161 list_move_tail(&dc->list, wait_list);
1162
1163 /* sanity check on discard range */
1164 __check_sit_bitmap(sbi, lstart, lstart + len);
1165
1166 bio->bi_private = dc;
1167 bio->bi_end_io = f2fs_submit_discard_endio;
1168 bio->bi_opf |= flag;
1169 submit_bio(bio);
1170
1171 atomic_inc(&dcc->issued_discard);
1172
1173 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1174
1175 lstart += len;
1176 start += len;
1177 total_len -= len;
1178 len = total_len;
1179 }
1180
1181 if (!err && len)
1182 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1183 return err;
1184}
1185
1186static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1187 struct block_device *bdev, block_t lstart,
1188 block_t start, block_t len,
1189 struct rb_node **insert_p,
1190 struct rb_node *insert_parent)
1191{
1192 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1193 struct rb_node **p;
1194 struct rb_node *parent = NULL;
1195 struct discard_cmd *dc = NULL;
1196 bool leftmost = true;
1197
1198 if (insert_p && insert_parent) {
1199 parent = insert_parent;
1200 p = insert_p;
1201 goto do_insert;
1202 }
1203
1204 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1205 lstart, &leftmost);
1206do_insert:
1207 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1208 p, leftmost);
1209 if (!dc)
1210 return NULL;
1211
1212 return dc;
1213}
1214
1215static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1216 struct discard_cmd *dc)
1217{
1218 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1219}
1220
1221static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1222 struct discard_cmd *dc, block_t blkaddr)
1223{
1224 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1225 struct discard_info di = dc->di;
1226 bool modified = false;
1227
1228 if (dc->state == D_DONE || dc->len == 1) {
1229 __remove_discard_cmd(sbi, dc);
1230 return;
1231 }
1232
1233 dcc->undiscard_blks -= di.len;
1234
1235 if (blkaddr > di.lstart) {
1236 dc->len = blkaddr - dc->lstart;
1237 dcc->undiscard_blks += dc->len;
1238 __relocate_discard_cmd(dcc, dc);
1239 modified = true;
1240 }
1241
1242 if (blkaddr < di.lstart + di.len - 1) {
1243 if (modified) {
1244 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1245 di.start + blkaddr + 1 - di.lstart,
1246 di.lstart + di.len - 1 - blkaddr,
1247 NULL, NULL);
1248 } else {
1249 dc->lstart++;
1250 dc->len--;
1251 dc->start++;
1252 dcc->undiscard_blks += dc->len;
1253 __relocate_discard_cmd(dcc, dc);
1254 }
1255 }
1256}
1257
1258static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1259 struct block_device *bdev, block_t lstart,
1260 block_t start, block_t len)
1261{
1262 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1263 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1264 struct discard_cmd *dc;
1265 struct discard_info di = {0};
1266 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1267 struct request_queue *q = bdev_get_queue(bdev);
1268 unsigned int max_discard_blocks =
1269 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1270 block_t end = lstart + len;
1271
1272 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1273 NULL, lstart,
1274 (struct rb_entry **)&prev_dc,
1275 (struct rb_entry **)&next_dc,
1276 &insert_p, &insert_parent, true, NULL);
1277 if (dc)
1278 prev_dc = dc;
1279
1280 if (!prev_dc) {
1281 di.lstart = lstart;
1282 di.len = next_dc ? next_dc->lstart - lstart : len;
1283 di.len = min(di.len, len);
1284 di.start = start;
1285 }
1286
1287 while (1) {
1288 struct rb_node *node;
1289 bool merged = false;
1290 struct discard_cmd *tdc = NULL;
1291
1292 if (prev_dc) {
1293 di.lstart = prev_dc->lstart + prev_dc->len;
1294 if (di.lstart < lstart)
1295 di.lstart = lstart;
1296 if (di.lstart >= end)
1297 break;
1298
1299 if (!next_dc || next_dc->lstart > end)
1300 di.len = end - di.lstart;
1301 else
1302 di.len = next_dc->lstart - di.lstart;
1303 di.start = start + di.lstart - lstart;
1304 }
1305
1306 if (!di.len)
1307 goto next;
1308
1309 if (prev_dc && prev_dc->state == D_PREP &&
1310 prev_dc->bdev == bdev &&
1311 __is_discard_back_mergeable(&di, &prev_dc->di,
1312 max_discard_blocks)) {
1313 prev_dc->di.len += di.len;
1314 dcc->undiscard_blks += di.len;
1315 __relocate_discard_cmd(dcc, prev_dc);
1316 di = prev_dc->di;
1317 tdc = prev_dc;
1318 merged = true;
1319 }
1320
1321 if (next_dc && next_dc->state == D_PREP &&
1322 next_dc->bdev == bdev &&
1323 __is_discard_front_mergeable(&di, &next_dc->di,
1324 max_discard_blocks)) {
1325 next_dc->di.lstart = di.lstart;
1326 next_dc->di.len += di.len;
1327 next_dc->di.start = di.start;
1328 dcc->undiscard_blks += di.len;
1329 __relocate_discard_cmd(dcc, next_dc);
1330 if (tdc)
1331 __remove_discard_cmd(sbi, tdc);
1332 merged = true;
1333 }
1334
1335 if (!merged) {
1336 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1337 di.len, NULL, NULL);
1338 }
1339 next:
1340 prev_dc = next_dc;
1341 if (!prev_dc)
1342 break;
1343
1344 node = rb_next(&prev_dc->rb_node);
1345 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1346 }
1347}
1348
1349static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1350 struct block_device *bdev, block_t blkstart, block_t blklen)
1351{
1352 block_t lblkstart = blkstart;
1353
1354 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1355
1356 if (sbi->s_ndevs) {
1357 int devi = f2fs_target_device_index(sbi, blkstart);
1358
1359 blkstart -= FDEV(devi).start_blk;
1360 }
1361 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1362 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1363 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1364 return 0;
1365}
1366
1367static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1368 struct discard_policy *dpolicy)
1369{
1370 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1371 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1372 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1373 struct discard_cmd *dc;
1374 struct blk_plug plug;
1375 unsigned int pos = dcc->next_pos;
1376 unsigned int issued = 0;
1377 bool io_interrupted = false;
1378
1379 mutex_lock(&dcc->cmd_lock);
1380 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1381 NULL, pos,
1382 (struct rb_entry **)&prev_dc,
1383 (struct rb_entry **)&next_dc,
1384 &insert_p, &insert_parent, true, NULL);
1385 if (!dc)
1386 dc = next_dc;
1387
1388 blk_start_plug(&plug);
1389
1390 while (dc) {
1391 struct rb_node *node;
1392 int err = 0;
1393
1394 if (dc->state != D_PREP)
1395 goto next;
1396
1397 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1398 io_interrupted = true;
1399 break;
1400 }
1401
1402 dcc->next_pos = dc->lstart + dc->len;
1403 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1404
1405 if (issued >= dpolicy->max_requests)
1406 break;
1407next:
1408 node = rb_next(&dc->rb_node);
1409 if (err)
1410 __remove_discard_cmd(sbi, dc);
1411 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1412 }
1413
1414 blk_finish_plug(&plug);
1415
1416 if (!dc)
1417 dcc->next_pos = 0;
1418
1419 mutex_unlock(&dcc->cmd_lock);
1420
1421 if (!issued && io_interrupted)
1422 issued = -1;
1423
1424 return issued;
1425}
1426
1427static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1428 struct discard_policy *dpolicy)
1429{
1430 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1431 struct list_head *pend_list;
1432 struct discard_cmd *dc, *tmp;
1433 struct blk_plug plug;
1434 int i, issued = 0;
1435 bool io_interrupted = false;
1436
1437 if (dpolicy->timeout != 0)
1438 f2fs_update_time(sbi, dpolicy->timeout);
1439
1440 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1441 if (dpolicy->timeout != 0 &&
1442 f2fs_time_over(sbi, dpolicy->timeout))
1443 break;
1444
1445 if (i + 1 < dpolicy->granularity)
1446 break;
1447
1448 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1449 return __issue_discard_cmd_orderly(sbi, dpolicy);
1450
1451 pend_list = &dcc->pend_list[i];
1452
1453 mutex_lock(&dcc->cmd_lock);
1454 if (list_empty(pend_list))
1455 goto next;
1456 if (unlikely(dcc->rbtree_check))
1457 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1458 &dcc->root));
1459 blk_start_plug(&plug);
1460 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1461 f2fs_bug_on(sbi, dc->state != D_PREP);
1462
1463 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1464 !is_idle(sbi, DISCARD_TIME)) {
1465 io_interrupted = true;
1466 break;
1467 }
1468
1469 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1470
1471 if (issued >= dpolicy->max_requests)
1472 break;
1473 }
1474 blk_finish_plug(&plug);
1475next:
1476 mutex_unlock(&dcc->cmd_lock);
1477
1478 if (issued >= dpolicy->max_requests || io_interrupted)
1479 break;
1480 }
1481
1482 if (!issued && io_interrupted)
1483 issued = -1;
1484
1485 return issued;
1486}
1487
1488static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1489{
1490 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1491 struct list_head *pend_list;
1492 struct discard_cmd *dc, *tmp;
1493 int i;
1494 bool dropped = false;
1495
1496 mutex_lock(&dcc->cmd_lock);
1497 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1498 pend_list = &dcc->pend_list[i];
1499 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1500 f2fs_bug_on(sbi, dc->state != D_PREP);
1501 __remove_discard_cmd(sbi, dc);
1502 dropped = true;
1503 }
1504 }
1505 mutex_unlock(&dcc->cmd_lock);
1506
1507 return dropped;
1508}
1509
1510void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1511{
1512 __drop_discard_cmd(sbi);
1513}
1514
1515static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1516 struct discard_cmd *dc)
1517{
1518 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1519 unsigned int len = 0;
1520
1521 wait_for_completion_io(&dc->wait);
1522 mutex_lock(&dcc->cmd_lock);
1523 f2fs_bug_on(sbi, dc->state != D_DONE);
1524 dc->ref--;
1525 if (!dc->ref) {
1526 if (!dc->error)
1527 len = dc->len;
1528 __remove_discard_cmd(sbi, dc);
1529 }
1530 mutex_unlock(&dcc->cmd_lock);
1531
1532 return len;
1533}
1534
1535static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1536 struct discard_policy *dpolicy,
1537 block_t start, block_t end)
1538{
1539 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1540 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1541 &(dcc->fstrim_list) : &(dcc->wait_list);
1542 struct discard_cmd *dc, *tmp;
1543 bool need_wait;
1544 unsigned int trimmed = 0;
1545
1546next:
1547 need_wait = false;
1548
1549 mutex_lock(&dcc->cmd_lock);
1550 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1551 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1552 continue;
1553 if (dc->len < dpolicy->granularity)
1554 continue;
1555 if (dc->state == D_DONE && !dc->ref) {
1556 wait_for_completion_io(&dc->wait);
1557 if (!dc->error)
1558 trimmed += dc->len;
1559 __remove_discard_cmd(sbi, dc);
1560 } else {
1561 dc->ref++;
1562 need_wait = true;
1563 break;
1564 }
1565 }
1566 mutex_unlock(&dcc->cmd_lock);
1567
1568 if (need_wait) {
1569 trimmed += __wait_one_discard_bio(sbi, dc);
1570 goto next;
1571 }
1572
1573 return trimmed;
1574}
1575
1576static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1577 struct discard_policy *dpolicy)
1578{
1579 struct discard_policy dp;
1580 unsigned int discard_blks;
1581
1582 if (dpolicy)
1583 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1584
1585 /* wait all */
1586 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1587 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1588 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1589 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1590
1591 return discard_blks;
1592}
1593
1594/* This should be covered by global mutex, &sit_i->sentry_lock */
1595static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1596{
1597 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1598 struct discard_cmd *dc;
1599 bool need_wait = false;
1600
1601 mutex_lock(&dcc->cmd_lock);
1602 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1603 NULL, blkaddr);
1604 if (dc) {
1605 if (dc->state == D_PREP) {
1606 __punch_discard_cmd(sbi, dc, blkaddr);
1607 } else {
1608 dc->ref++;
1609 need_wait = true;
1610 }
1611 }
1612 mutex_unlock(&dcc->cmd_lock);
1613
1614 if (need_wait)
1615 __wait_one_discard_bio(sbi, dc);
1616}
1617
1618void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1619{
1620 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1621
1622 if (dcc && dcc->f2fs_issue_discard) {
1623 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1624
1625 dcc->f2fs_issue_discard = NULL;
1626 kthread_stop(discard_thread);
1627 }
1628}
1629
1630/* This comes from f2fs_put_super */
1631bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1632{
1633 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1634 struct discard_policy dpolicy;
1635 bool dropped;
1636
1637 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1638 dcc->discard_granularity);
1639 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1640 __issue_discard_cmd(sbi, &dpolicy);
1641 dropped = __drop_discard_cmd(sbi);
1642
1643 /* just to make sure there is no pending discard commands */
1644 __wait_all_discard_cmd(sbi, NULL);
1645
1646 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1647 return dropped;
1648}
1649
1650static int issue_discard_thread(void *data)
1651{
1652 struct f2fs_sb_info *sbi = data;
1653 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1654 wait_queue_head_t *q = &dcc->discard_wait_queue;
1655 struct discard_policy dpolicy;
1656 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1657 int issued;
1658
1659 set_freezable();
1660
1661 do {
1662 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1663 dcc->discard_granularity);
1664
1665 wait_event_interruptible_timeout(*q,
1666 kthread_should_stop() || freezing(current) ||
1667 dcc->discard_wake,
1668 msecs_to_jiffies(wait_ms));
1669
1670 if (dcc->discard_wake)
1671 dcc->discard_wake = 0;
1672
1673 /* clean up pending candidates before going to sleep */
1674 if (atomic_read(&dcc->queued_discard))
1675 __wait_all_discard_cmd(sbi, NULL);
1676
1677 if (try_to_freeze())
1678 continue;
1679 if (f2fs_readonly(sbi->sb))
1680 continue;
1681 if (kthread_should_stop())
1682 return 0;
1683 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1684 wait_ms = dpolicy.max_interval;
1685 continue;
1686 }
1687
1688 if (sbi->gc_mode == GC_URGENT)
1689 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1690
1691 sb_start_intwrite(sbi->sb);
1692
1693 issued = __issue_discard_cmd(sbi, &dpolicy);
1694 if (issued > 0) {
1695 __wait_all_discard_cmd(sbi, &dpolicy);
1696 wait_ms = dpolicy.min_interval;
1697 } else if (issued == -1){
1698 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1699 if (!wait_ms)
1700 wait_ms = dpolicy.mid_interval;
1701 } else {
1702 wait_ms = dpolicy.max_interval;
1703 }
1704
1705 sb_end_intwrite(sbi->sb);
1706
1707 } while (!kthread_should_stop());
1708 return 0;
1709}
1710
1711#ifdef CONFIG_BLK_DEV_ZONED
1712static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1713 struct block_device *bdev, block_t blkstart, block_t blklen)
1714{
1715 sector_t sector, nr_sects;
1716 block_t lblkstart = blkstart;
1717 int devi = 0;
1718
1719 if (sbi->s_ndevs) {
1720 devi = f2fs_target_device_index(sbi, blkstart);
1721 blkstart -= FDEV(devi).start_blk;
1722 }
1723
1724 /*
1725 * We need to know the type of the zone: for conventional zones,
1726 * use regular discard if the drive supports it. For sequential
1727 * zones, reset the zone write pointer.
1728 */
1729 switch (get_blkz_type(sbi, bdev, blkstart)) {
1730
1731 case BLK_ZONE_TYPE_CONVENTIONAL:
1732 if (!blk_queue_discard(bdev_get_queue(bdev)))
1733 return 0;
1734 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1735 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1736 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1737 sector = SECTOR_FROM_BLOCK(blkstart);
1738 nr_sects = SECTOR_FROM_BLOCK(blklen);
1739
1740 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1741 nr_sects != bdev_zone_sectors(bdev)) {
1742 f2fs_msg(sbi->sb, KERN_INFO,
1743 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1744 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1745 blkstart, blklen);
1746 return -EIO;
1747 }
1748 trace_f2fs_issue_reset_zone(bdev, blkstart);
1749 return blkdev_reset_zones(bdev, sector,
1750 nr_sects, GFP_NOFS);
1751 default:
1752 /* Unknown zone type: broken device ? */
1753 return -EIO;
1754 }
1755}
1756#endif
1757
1758static int __issue_discard_async(struct f2fs_sb_info *sbi,
1759 struct block_device *bdev, block_t blkstart, block_t blklen)
1760{
1761#ifdef CONFIG_BLK_DEV_ZONED
1762 if (f2fs_sb_has_blkzoned(sbi) &&
1763 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1764 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1765#endif
1766 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1767}
1768
1769static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1770 block_t blkstart, block_t blklen)
1771{
1772 sector_t start = blkstart, len = 0;
1773 struct block_device *bdev;
1774 struct seg_entry *se;
1775 unsigned int offset;
1776 block_t i;
1777 int err = 0;
1778
1779 bdev = f2fs_target_device(sbi, blkstart, NULL);
1780
1781 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1782 if (i != start) {
1783 struct block_device *bdev2 =
1784 f2fs_target_device(sbi, i, NULL);
1785
1786 if (bdev2 != bdev) {
1787 err = __issue_discard_async(sbi, bdev,
1788 start, len);
1789 if (err)
1790 return err;
1791 bdev = bdev2;
1792 start = i;
1793 len = 0;
1794 }
1795 }
1796
1797 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1798 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1799
1800 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1801 sbi->discard_blks--;
1802 }
1803
1804 if (len)
1805 err = __issue_discard_async(sbi, bdev, start, len);
1806 return err;
1807}
1808
1809static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1810 bool check_only)
1811{
1812 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1813 int max_blocks = sbi->blocks_per_seg;
1814 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1815 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1816 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1817 unsigned long *discard_map = (unsigned long *)se->discard_map;
1818 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1819 unsigned int start = 0, end = -1;
1820 bool force = (cpc->reason & CP_DISCARD);
1821 struct discard_entry *de = NULL;
1822 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1823 int i;
1824
1825 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1826 return false;
1827
1828 if (!force) {
1829 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1830 SM_I(sbi)->dcc_info->nr_discards >=
1831 SM_I(sbi)->dcc_info->max_discards)
1832 return false;
1833 }
1834
1835 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1836 for (i = 0; i < entries; i++)
1837 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1838 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1839
1840 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1841 SM_I(sbi)->dcc_info->max_discards) {
1842 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1843 if (start >= max_blocks)
1844 break;
1845
1846 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1847 if (force && start && end != max_blocks
1848 && (end - start) < cpc->trim_minlen)
1849 continue;
1850
1851 if (check_only)
1852 return true;
1853
1854 if (!de) {
1855 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1856 GFP_F2FS_ZERO);
1857 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1858 list_add_tail(&de->list, head);
1859 }
1860
1861 for (i = start; i < end; i++)
1862 __set_bit_le(i, (void *)de->discard_map);
1863
1864 SM_I(sbi)->dcc_info->nr_discards += end - start;
1865 }
1866 return false;
1867}
1868
1869static void release_discard_addr(struct discard_entry *entry)
1870{
1871 list_del(&entry->list);
1872 kmem_cache_free(discard_entry_slab, entry);
1873}
1874
1875void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1876{
1877 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1878 struct discard_entry *entry, *this;
1879
1880 /* drop caches */
1881 list_for_each_entry_safe(entry, this, head, list)
1882 release_discard_addr(entry);
1883}
1884
1885/*
1886 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1887 */
1888static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1889{
1890 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1891 unsigned int segno;
1892
1893 mutex_lock(&dirty_i->seglist_lock);
1894 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1895 __set_test_and_free(sbi, segno);
1896 mutex_unlock(&dirty_i->seglist_lock);
1897}
1898
1899void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1900 struct cp_control *cpc)
1901{
1902 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1903 struct list_head *head = &dcc->entry_list;
1904 struct discard_entry *entry, *this;
1905 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1906 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1907 unsigned int start = 0, end = -1;
1908 unsigned int secno, start_segno;
1909 bool force = (cpc->reason & CP_DISCARD);
1910 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1911
1912 mutex_lock(&dirty_i->seglist_lock);
1913
1914 while (1) {
1915 int i;
1916
1917 if (need_align && end != -1)
1918 end--;
1919 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1920 if (start >= MAIN_SEGS(sbi))
1921 break;
1922 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1923 start + 1);
1924
1925 if (need_align) {
1926 start = rounddown(start, sbi->segs_per_sec);
1927 end = roundup(end, sbi->segs_per_sec);
1928 }
1929
1930 for (i = start; i < end; i++) {
1931 if (test_and_clear_bit(i, prefree_map))
1932 dirty_i->nr_dirty[PRE]--;
1933 }
1934
1935 if (!f2fs_realtime_discard_enable(sbi))
1936 continue;
1937
1938 if (force && start >= cpc->trim_start &&
1939 (end - 1) <= cpc->trim_end)
1940 continue;
1941
1942 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1943 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1944 (end - start) << sbi->log_blocks_per_seg);
1945 continue;
1946 }
1947next:
1948 secno = GET_SEC_FROM_SEG(sbi, start);
1949 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1950 if (!IS_CURSEC(sbi, secno) &&
1951 !get_valid_blocks(sbi, start, true))
1952 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1953 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1954
1955 start = start_segno + sbi->segs_per_sec;
1956 if (start < end)
1957 goto next;
1958 else
1959 end = start - 1;
1960 }
1961 mutex_unlock(&dirty_i->seglist_lock);
1962
1963 /* send small discards */
1964 list_for_each_entry_safe(entry, this, head, list) {
1965 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1966 bool is_valid = test_bit_le(0, entry->discard_map);
1967
1968find_next:
1969 if (is_valid) {
1970 next_pos = find_next_zero_bit_le(entry->discard_map,
1971 sbi->blocks_per_seg, cur_pos);
1972 len = next_pos - cur_pos;
1973
1974 if (f2fs_sb_has_blkzoned(sbi) ||
1975 (force && len < cpc->trim_minlen))
1976 goto skip;
1977
1978 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1979 len);
1980 total_len += len;
1981 } else {
1982 next_pos = find_next_bit_le(entry->discard_map,
1983 sbi->blocks_per_seg, cur_pos);
1984 }
1985skip:
1986 cur_pos = next_pos;
1987 is_valid = !is_valid;
1988
1989 if (cur_pos < sbi->blocks_per_seg)
1990 goto find_next;
1991
1992 release_discard_addr(entry);
1993 dcc->nr_discards -= total_len;
1994 }
1995
1996 wake_up_discard_thread(sbi, false);
1997}
1998
1999static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2000{
2001 dev_t dev = sbi->sb->s_bdev->bd_dev;
2002 struct discard_cmd_control *dcc;
2003 int err = 0, i;
2004
2005 if (SM_I(sbi)->dcc_info) {
2006 dcc = SM_I(sbi)->dcc_info;
2007 goto init_thread;
2008 }
2009
2010 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2011 if (!dcc)
2012 return -ENOMEM;
2013
2014 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2015 INIT_LIST_HEAD(&dcc->entry_list);
2016 for (i = 0; i < MAX_PLIST_NUM; i++)
2017 INIT_LIST_HEAD(&dcc->pend_list[i]);
2018 INIT_LIST_HEAD(&dcc->wait_list);
2019 INIT_LIST_HEAD(&dcc->fstrim_list);
2020 mutex_init(&dcc->cmd_lock);
2021 atomic_set(&dcc->issued_discard, 0);
2022 atomic_set(&dcc->queued_discard, 0);
2023 atomic_set(&dcc->discard_cmd_cnt, 0);
2024 dcc->nr_discards = 0;
2025 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2026 dcc->undiscard_blks = 0;
2027 dcc->next_pos = 0;
2028 dcc->root = RB_ROOT_CACHED;
2029 dcc->rbtree_check = false;
2030
2031 init_waitqueue_head(&dcc->discard_wait_queue);
2032 SM_I(sbi)->dcc_info = dcc;
2033init_thread:
2034 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2035 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2036 if (IS_ERR(dcc->f2fs_issue_discard)) {
2037 err = PTR_ERR(dcc->f2fs_issue_discard);
2038 kvfree(dcc);
2039 SM_I(sbi)->dcc_info = NULL;
2040 return err;
2041 }
2042
2043 return err;
2044}
2045
2046static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2047{
2048 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2049
2050 if (!dcc)
2051 return;
2052
2053 f2fs_stop_discard_thread(sbi);
2054
2055 kvfree(dcc);
2056 SM_I(sbi)->dcc_info = NULL;
2057}
2058
2059static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2060{
2061 struct sit_info *sit_i = SIT_I(sbi);
2062
2063 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2064 sit_i->dirty_sentries++;
2065 return false;
2066 }
2067
2068 return true;
2069}
2070
2071static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2072 unsigned int segno, int modified)
2073{
2074 struct seg_entry *se = get_seg_entry(sbi, segno);
2075 se->type = type;
2076 if (modified)
2077 __mark_sit_entry_dirty(sbi, segno);
2078}
2079
2080static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2081{
2082 struct seg_entry *se;
2083 unsigned int segno, offset;
2084 long int new_vblocks;
2085 bool exist;
2086#ifdef CONFIG_F2FS_CHECK_FS
2087 bool mir_exist;
2088#endif
2089
2090 segno = GET_SEGNO(sbi, blkaddr);
2091
2092 se = get_seg_entry(sbi, segno);
2093 new_vblocks = se->valid_blocks + del;
2094 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2095
2096 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2097 (new_vblocks > sbi->blocks_per_seg)));
2098
2099 se->valid_blocks = new_vblocks;
2100 se->mtime = get_mtime(sbi, false);
2101 if (se->mtime > SIT_I(sbi)->max_mtime)
2102 SIT_I(sbi)->max_mtime = se->mtime;
2103
2104 /* Update valid block bitmap */
2105 if (del > 0) {
2106 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2107#ifdef CONFIG_F2FS_CHECK_FS
2108 mir_exist = f2fs_test_and_set_bit(offset,
2109 se->cur_valid_map_mir);
2110 if (unlikely(exist != mir_exist)) {
2111 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2112 "when setting bitmap, blk:%u, old bit:%d",
2113 blkaddr, exist);
2114 f2fs_bug_on(sbi, 1);
2115 }
2116#endif
2117 if (unlikely(exist)) {
2118 f2fs_msg(sbi->sb, KERN_ERR,
2119 "Bitmap was wrongly set, blk:%u", blkaddr);
2120 f2fs_bug_on(sbi, 1);
2121 se->valid_blocks--;
2122 del = 0;
2123 }
2124
2125 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2126 sbi->discard_blks--;
2127
2128 /* don't overwrite by SSR to keep node chain */
2129 if (IS_NODESEG(se->type) &&
2130 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2131 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2132 se->ckpt_valid_blocks++;
2133 }
2134 } else {
2135 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2136#ifdef CONFIG_F2FS_CHECK_FS
2137 mir_exist = f2fs_test_and_clear_bit(offset,
2138 se->cur_valid_map_mir);
2139 if (unlikely(exist != mir_exist)) {
2140 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2141 "when clearing bitmap, blk:%u, old bit:%d",
2142 blkaddr, exist);
2143 f2fs_bug_on(sbi, 1);
2144 }
2145#endif
2146 if (unlikely(!exist)) {
2147 f2fs_msg(sbi->sb, KERN_ERR,
2148 "Bitmap was wrongly cleared, blk:%u", blkaddr);
2149 f2fs_bug_on(sbi, 1);
2150 se->valid_blocks++;
2151 del = 0;
2152 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2153 /*
2154 * If checkpoints are off, we must not reuse data that
2155 * was used in the previous checkpoint. If it was used
2156 * before, we must track that to know how much space we
2157 * really have.
2158 */
2159 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2160 sbi->unusable_block_count++;
2161 }
2162
2163 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2164 sbi->discard_blks++;
2165 }
2166 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2167 se->ckpt_valid_blocks += del;
2168
2169 __mark_sit_entry_dirty(sbi, segno);
2170
2171 /* update total number of valid blocks to be written in ckpt area */
2172 SIT_I(sbi)->written_valid_blocks += del;
2173
2174 if (__is_large_section(sbi))
2175 get_sec_entry(sbi, segno)->valid_blocks += del;
2176}
2177
2178void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2179{
2180 unsigned int segno = GET_SEGNO(sbi, addr);
2181 struct sit_info *sit_i = SIT_I(sbi);
2182
2183 f2fs_bug_on(sbi, addr == NULL_ADDR);
2184 if (addr == NEW_ADDR)
2185 return;
2186
2187 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2188
2189 /* add it into sit main buffer */
2190 down_write(&sit_i->sentry_lock);
2191
2192 update_sit_entry(sbi, addr, -1);
2193
2194 /* add it into dirty seglist */
2195 locate_dirty_segment(sbi, segno);
2196
2197 up_write(&sit_i->sentry_lock);
2198}
2199
2200bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2201{
2202 struct sit_info *sit_i = SIT_I(sbi);
2203 unsigned int segno, offset;
2204 struct seg_entry *se;
2205 bool is_cp = false;
2206
2207 if (!is_valid_data_blkaddr(sbi, blkaddr))
2208 return true;
2209
2210 down_read(&sit_i->sentry_lock);
2211
2212 segno = GET_SEGNO(sbi, blkaddr);
2213 se = get_seg_entry(sbi, segno);
2214 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2215
2216 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2217 is_cp = true;
2218
2219 up_read(&sit_i->sentry_lock);
2220
2221 return is_cp;
2222}
2223
2224/*
2225 * This function should be resided under the curseg_mutex lock
2226 */
2227static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2228 struct f2fs_summary *sum)
2229{
2230 struct curseg_info *curseg = CURSEG_I(sbi, type);
2231 void *addr = curseg->sum_blk;
2232 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2233 memcpy(addr, sum, sizeof(struct f2fs_summary));
2234}
2235
2236/*
2237 * Calculate the number of current summary pages for writing
2238 */
2239int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2240{
2241 int valid_sum_count = 0;
2242 int i, sum_in_page;
2243
2244 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2245 if (sbi->ckpt->alloc_type[i] == SSR)
2246 valid_sum_count += sbi->blocks_per_seg;
2247 else {
2248 if (for_ra)
2249 valid_sum_count += le16_to_cpu(
2250 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2251 else
2252 valid_sum_count += curseg_blkoff(sbi, i);
2253 }
2254 }
2255
2256 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2257 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2258 if (valid_sum_count <= sum_in_page)
2259 return 1;
2260 else if ((valid_sum_count - sum_in_page) <=
2261 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2262 return 2;
2263 return 3;
2264}
2265
2266/*
2267 * Caller should put this summary page
2268 */
2269struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2270{
2271 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2272}
2273
2274void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2275 void *src, block_t blk_addr)
2276{
2277 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2278
2279 memcpy(page_address(page), src, PAGE_SIZE);
2280 set_page_dirty(page);
2281 f2fs_put_page(page, 1);
2282}
2283
2284static void write_sum_page(struct f2fs_sb_info *sbi,
2285 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2286{
2287 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2288}
2289
2290static void write_current_sum_page(struct f2fs_sb_info *sbi,
2291 int type, block_t blk_addr)
2292{
2293 struct curseg_info *curseg = CURSEG_I(sbi, type);
2294 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2295 struct f2fs_summary_block *src = curseg->sum_blk;
2296 struct f2fs_summary_block *dst;
2297
2298 dst = (struct f2fs_summary_block *)page_address(page);
2299 memset(dst, 0, PAGE_SIZE);
2300
2301 mutex_lock(&curseg->curseg_mutex);
2302
2303 down_read(&curseg->journal_rwsem);
2304 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2305 up_read(&curseg->journal_rwsem);
2306
2307 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2308 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2309
2310 mutex_unlock(&curseg->curseg_mutex);
2311
2312 set_page_dirty(page);
2313 f2fs_put_page(page, 1);
2314}
2315
2316static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2317{
2318 struct curseg_info *curseg = CURSEG_I(sbi, type);
2319 unsigned int segno = curseg->segno + 1;
2320 struct free_segmap_info *free_i = FREE_I(sbi);
2321
2322 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2323 return !test_bit(segno, free_i->free_segmap);
2324 return 0;
2325}
2326
2327/*
2328 * Find a new segment from the free segments bitmap to right order
2329 * This function should be returned with success, otherwise BUG
2330 */
2331static void get_new_segment(struct f2fs_sb_info *sbi,
2332 unsigned int *newseg, bool new_sec, int dir)
2333{
2334 struct free_segmap_info *free_i = FREE_I(sbi);
2335 unsigned int segno, secno, zoneno;
2336 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2337 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2338 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2339 unsigned int left_start = hint;
2340 bool init = true;
2341 int go_left = 0;
2342 int i;
2343
2344 spin_lock(&free_i->segmap_lock);
2345
2346 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2347 segno = find_next_zero_bit(free_i->free_segmap,
2348 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2349 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2350 goto got_it;
2351 }
2352find_other_zone:
2353 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2354 if (secno >= MAIN_SECS(sbi)) {
2355 if (dir == ALLOC_RIGHT) {
2356 secno = find_next_zero_bit(free_i->free_secmap,
2357 MAIN_SECS(sbi), 0);
2358 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2359 } else {
2360 go_left = 1;
2361 left_start = hint - 1;
2362 }
2363 }
2364 if (go_left == 0)
2365 goto skip_left;
2366
2367 while (test_bit(left_start, free_i->free_secmap)) {
2368 if (left_start > 0) {
2369 left_start--;
2370 continue;
2371 }
2372 left_start = find_next_zero_bit(free_i->free_secmap,
2373 MAIN_SECS(sbi), 0);
2374 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2375 break;
2376 }
2377 secno = left_start;
2378skip_left:
2379 segno = GET_SEG_FROM_SEC(sbi, secno);
2380 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2381
2382 /* give up on finding another zone */
2383 if (!init)
2384 goto got_it;
2385 if (sbi->secs_per_zone == 1)
2386 goto got_it;
2387 if (zoneno == old_zoneno)
2388 goto got_it;
2389 if (dir == ALLOC_LEFT) {
2390 if (!go_left && zoneno + 1 >= total_zones)
2391 goto got_it;
2392 if (go_left && zoneno == 0)
2393 goto got_it;
2394 }
2395 for (i = 0; i < NR_CURSEG_TYPE; i++)
2396 if (CURSEG_I(sbi, i)->zone == zoneno)
2397 break;
2398
2399 if (i < NR_CURSEG_TYPE) {
2400 /* zone is in user, try another */
2401 if (go_left)
2402 hint = zoneno * sbi->secs_per_zone - 1;
2403 else if (zoneno + 1 >= total_zones)
2404 hint = 0;
2405 else
2406 hint = (zoneno + 1) * sbi->secs_per_zone;
2407 init = false;
2408 goto find_other_zone;
2409 }
2410got_it:
2411 /* set it as dirty segment in free segmap */
2412 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2413 __set_inuse(sbi, segno);
2414 *newseg = segno;
2415 spin_unlock(&free_i->segmap_lock);
2416}
2417
2418static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2419{
2420 struct curseg_info *curseg = CURSEG_I(sbi, type);
2421 struct summary_footer *sum_footer;
2422
2423 curseg->segno = curseg->next_segno;
2424 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2425 curseg->next_blkoff = 0;
2426 curseg->next_segno = NULL_SEGNO;
2427
2428 sum_footer = &(curseg->sum_blk->footer);
2429 memset(sum_footer, 0, sizeof(struct summary_footer));
2430 if (IS_DATASEG(type))
2431 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2432 if (IS_NODESEG(type))
2433 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2434 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2435}
2436
2437static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2438{
2439 /* if segs_per_sec is large than 1, we need to keep original policy. */
2440 if (__is_large_section(sbi))
2441 return CURSEG_I(sbi, type)->segno;
2442
2443 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2444 return 0;
2445
2446 if (test_opt(sbi, NOHEAP) &&
2447 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2448 return 0;
2449
2450 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2451 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2452
2453 /* find segments from 0 to reuse freed segments */
2454 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2455 return 0;
2456
2457 return CURSEG_I(sbi, type)->segno;
2458}
2459
2460/*
2461 * Allocate a current working segment.
2462 * This function always allocates a free segment in LFS manner.
2463 */
2464static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2465{
2466 struct curseg_info *curseg = CURSEG_I(sbi, type);
2467 unsigned int segno = curseg->segno;
2468 int dir = ALLOC_LEFT;
2469
2470 write_sum_page(sbi, curseg->sum_blk,
2471 GET_SUM_BLOCK(sbi, segno));
2472 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2473 dir = ALLOC_RIGHT;
2474
2475 if (test_opt(sbi, NOHEAP))
2476 dir = ALLOC_RIGHT;
2477
2478 segno = __get_next_segno(sbi, type);
2479 get_new_segment(sbi, &segno, new_sec, dir);
2480 curseg->next_segno = segno;
2481 reset_curseg(sbi, type, 1);
2482 curseg->alloc_type = LFS;
2483}
2484
2485static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2486 struct curseg_info *seg, block_t start)
2487{
2488 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2489 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2490 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2491 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2492 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2493 int i, pos;
2494
2495 for (i = 0; i < entries; i++)
2496 target_map[i] = ckpt_map[i] | cur_map[i];
2497
2498 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2499
2500 seg->next_blkoff = pos;
2501}
2502
2503/*
2504 * If a segment is written by LFS manner, next block offset is just obtained
2505 * by increasing the current block offset. However, if a segment is written by
2506 * SSR manner, next block offset obtained by calling __next_free_blkoff
2507 */
2508static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2509 struct curseg_info *seg)
2510{
2511 if (seg->alloc_type == SSR)
2512 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2513 else
2514 seg->next_blkoff++;
2515}
2516
2517/*
2518 * This function always allocates a used segment(from dirty seglist) by SSR
2519 * manner, so it should recover the existing segment information of valid blocks
2520 */
2521static void change_curseg(struct f2fs_sb_info *sbi, int type)
2522{
2523 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2524 struct curseg_info *curseg = CURSEG_I(sbi, type);
2525 unsigned int new_segno = curseg->next_segno;
2526 struct f2fs_summary_block *sum_node;
2527 struct page *sum_page;
2528
2529 write_sum_page(sbi, curseg->sum_blk,
2530 GET_SUM_BLOCK(sbi, curseg->segno));
2531 __set_test_and_inuse(sbi, new_segno);
2532
2533 mutex_lock(&dirty_i->seglist_lock);
2534 __remove_dirty_segment(sbi, new_segno, PRE);
2535 __remove_dirty_segment(sbi, new_segno, DIRTY);
2536 mutex_unlock(&dirty_i->seglist_lock);
2537
2538 reset_curseg(sbi, type, 1);
2539 curseg->alloc_type = SSR;
2540 __next_free_blkoff(sbi, curseg, 0);
2541
2542 sum_page = f2fs_get_sum_page(sbi, new_segno);
2543 f2fs_bug_on(sbi, IS_ERR(sum_page));
2544 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2545 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2546 f2fs_put_page(sum_page, 1);
2547}
2548
2549static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2550{
2551 struct curseg_info *curseg = CURSEG_I(sbi, type);
2552 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2553 unsigned segno = NULL_SEGNO;
2554 int i, cnt;
2555 bool reversed = false;
2556
2557 /* f2fs_need_SSR() already forces to do this */
2558 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2559 curseg->next_segno = segno;
2560 return 1;
2561 }
2562
2563 /* For node segments, let's do SSR more intensively */
2564 if (IS_NODESEG(type)) {
2565 if (type >= CURSEG_WARM_NODE) {
2566 reversed = true;
2567 i = CURSEG_COLD_NODE;
2568 } else {
2569 i = CURSEG_HOT_NODE;
2570 }
2571 cnt = NR_CURSEG_NODE_TYPE;
2572 } else {
2573 if (type >= CURSEG_WARM_DATA) {
2574 reversed = true;
2575 i = CURSEG_COLD_DATA;
2576 } else {
2577 i = CURSEG_HOT_DATA;
2578 }
2579 cnt = NR_CURSEG_DATA_TYPE;
2580 }
2581
2582 for (; cnt-- > 0; reversed ? i-- : i++) {
2583 if (i == type)
2584 continue;
2585 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2586 curseg->next_segno = segno;
2587 return 1;
2588 }
2589 }
2590
2591 /* find valid_blocks=0 in dirty list */
2592 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2593 segno = get_free_segment(sbi);
2594 if (segno != NULL_SEGNO) {
2595 curseg->next_segno = segno;
2596 return 1;
2597 }
2598 }
2599 return 0;
2600}
2601
2602/*
2603 * flush out current segment and replace it with new segment
2604 * This function should be returned with success, otherwise BUG
2605 */
2606static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2607 int type, bool force)
2608{
2609 struct curseg_info *curseg = CURSEG_I(sbi, type);
2610
2611 if (force)
2612 new_curseg(sbi, type, true);
2613 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2614 type == CURSEG_WARM_NODE)
2615 new_curseg(sbi, type, false);
2616 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2617 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2618 new_curseg(sbi, type, false);
2619 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2620 change_curseg(sbi, type);
2621 else
2622 new_curseg(sbi, type, false);
2623
2624 stat_inc_seg_type(sbi, curseg);
2625}
2626
2627void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2628{
2629 struct curseg_info *curseg;
2630 unsigned int old_segno;
2631 int i;
2632
2633 down_write(&SIT_I(sbi)->sentry_lock);
2634
2635 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2636 curseg = CURSEG_I(sbi, i);
2637 old_segno = curseg->segno;
2638 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2639 locate_dirty_segment(sbi, old_segno);
2640 }
2641
2642 up_write(&SIT_I(sbi)->sentry_lock);
2643}
2644
2645static const struct segment_allocation default_salloc_ops = {
2646 .allocate_segment = allocate_segment_by_default,
2647};
2648
2649bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2650 struct cp_control *cpc)
2651{
2652 __u64 trim_start = cpc->trim_start;
2653 bool has_candidate = false;
2654
2655 down_write(&SIT_I(sbi)->sentry_lock);
2656 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2657 if (add_discard_addrs(sbi, cpc, true)) {
2658 has_candidate = true;
2659 break;
2660 }
2661 }
2662 up_write(&SIT_I(sbi)->sentry_lock);
2663
2664 cpc->trim_start = trim_start;
2665 return has_candidate;
2666}
2667
2668static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2669 struct discard_policy *dpolicy,
2670 unsigned int start, unsigned int end)
2671{
2672 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2673 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2674 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2675 struct discard_cmd *dc;
2676 struct blk_plug plug;
2677 int issued;
2678 unsigned int trimmed = 0;
2679
2680next:
2681 issued = 0;
2682
2683 mutex_lock(&dcc->cmd_lock);
2684 if (unlikely(dcc->rbtree_check))
2685 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2686 &dcc->root));
2687
2688 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2689 NULL, start,
2690 (struct rb_entry **)&prev_dc,
2691 (struct rb_entry **)&next_dc,
2692 &insert_p, &insert_parent, true, NULL);
2693 if (!dc)
2694 dc = next_dc;
2695
2696 blk_start_plug(&plug);
2697
2698 while (dc && dc->lstart <= end) {
2699 struct rb_node *node;
2700 int err = 0;
2701
2702 if (dc->len < dpolicy->granularity)
2703 goto skip;
2704
2705 if (dc->state != D_PREP) {
2706 list_move_tail(&dc->list, &dcc->fstrim_list);
2707 goto skip;
2708 }
2709
2710 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2711
2712 if (issued >= dpolicy->max_requests) {
2713 start = dc->lstart + dc->len;
2714
2715 if (err)
2716 __remove_discard_cmd(sbi, dc);
2717
2718 blk_finish_plug(&plug);
2719 mutex_unlock(&dcc->cmd_lock);
2720 trimmed += __wait_all_discard_cmd(sbi, NULL);
2721 congestion_wait(BLK_RW_ASYNC, HZ/50);
2722 goto next;
2723 }
2724skip:
2725 node = rb_next(&dc->rb_node);
2726 if (err)
2727 __remove_discard_cmd(sbi, dc);
2728 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2729
2730 if (fatal_signal_pending(current))
2731 break;
2732 }
2733
2734 blk_finish_plug(&plug);
2735 mutex_unlock(&dcc->cmd_lock);
2736
2737 return trimmed;
2738}
2739
2740int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2741{
2742 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2743 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2744 unsigned int start_segno, end_segno;
2745 block_t start_block, end_block;
2746 struct cp_control cpc;
2747 struct discard_policy dpolicy;
2748 unsigned long long trimmed = 0;
2749 int err = 0;
2750 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2751
2752 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2753 return -EINVAL;
2754
2755 if (end < MAIN_BLKADDR(sbi))
2756 goto out;
2757
2758 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2759 f2fs_msg(sbi->sb, KERN_WARNING,
2760 "Found FS corruption, run fsck to fix.");
2761 return -EIO;
2762 }
2763
2764 /* start/end segment number in main_area */
2765 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2766 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2767 GET_SEGNO(sbi, end);
2768 if (need_align) {
2769 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2770 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2771 }
2772
2773 cpc.reason = CP_DISCARD;
2774 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2775 cpc.trim_start = start_segno;
2776 cpc.trim_end = end_segno;
2777
2778 if (sbi->discard_blks == 0)
2779 goto out;
2780
2781 mutex_lock(&sbi->gc_mutex);
2782 err = f2fs_write_checkpoint(sbi, &cpc);
2783 mutex_unlock(&sbi->gc_mutex);
2784 if (err)
2785 goto out;
2786
2787 /*
2788 * We filed discard candidates, but actually we don't need to wait for
2789 * all of them, since they'll be issued in idle time along with runtime
2790 * discard option. User configuration looks like using runtime discard
2791 * or periodic fstrim instead of it.
2792 */
2793 if (f2fs_realtime_discard_enable(sbi))
2794 goto out;
2795
2796 start_block = START_BLOCK(sbi, start_segno);
2797 end_block = START_BLOCK(sbi, end_segno + 1);
2798
2799 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2800 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2801 start_block, end_block);
2802
2803 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2804 start_block, end_block);
2805out:
2806 if (!err)
2807 range->len = F2FS_BLK_TO_BYTES(trimmed);
2808 return err;
2809}
2810
2811static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2812{
2813 struct curseg_info *curseg = CURSEG_I(sbi, type);
2814 if (curseg->next_blkoff < sbi->blocks_per_seg)
2815 return true;
2816 return false;
2817}
2818
2819int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2820{
2821 switch (hint) {
2822 case WRITE_LIFE_SHORT:
2823 return CURSEG_HOT_DATA;
2824 case WRITE_LIFE_EXTREME:
2825 return CURSEG_COLD_DATA;
2826 default:
2827 return CURSEG_WARM_DATA;
2828 }
2829}
2830
2831/* This returns write hints for each segment type. This hints will be
2832 * passed down to block layer. There are mapping tables which depend on
2833 * the mount option 'whint_mode'.
2834 *
2835 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2836 *
2837 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2838 *
2839 * User F2FS Block
2840 * ---- ---- -----
2841 * META WRITE_LIFE_NOT_SET
2842 * HOT_NODE "
2843 * WARM_NODE "
2844 * COLD_NODE "
2845 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2846 * extension list " "
2847 *
2848 * -- buffered io
2849 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2850 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2851 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2852 * WRITE_LIFE_NONE " "
2853 * WRITE_LIFE_MEDIUM " "
2854 * WRITE_LIFE_LONG " "
2855 *
2856 * -- direct io
2857 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2858 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2859 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2860 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2861 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2862 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2863 *
2864 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2865 *
2866 * User F2FS Block
2867 * ---- ---- -----
2868 * META WRITE_LIFE_MEDIUM;
2869 * HOT_NODE WRITE_LIFE_NOT_SET
2870 * WARM_NODE "
2871 * COLD_NODE WRITE_LIFE_NONE
2872 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2873 * extension list " "
2874 *
2875 * -- buffered io
2876 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2877 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2878 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2879 * WRITE_LIFE_NONE " "
2880 * WRITE_LIFE_MEDIUM " "
2881 * WRITE_LIFE_LONG " "
2882 *
2883 * -- direct io
2884 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2885 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2886 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2887 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2888 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2889 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2890 */
2891
2892enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2893 enum page_type type, enum temp_type temp)
2894{
2895 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2896 if (type == DATA) {
2897 if (temp == WARM)
2898 return WRITE_LIFE_NOT_SET;
2899 else if (temp == HOT)
2900 return WRITE_LIFE_SHORT;
2901 else if (temp == COLD)
2902 return WRITE_LIFE_EXTREME;
2903 } else {
2904 return WRITE_LIFE_NOT_SET;
2905 }
2906 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2907 if (type == DATA) {
2908 if (temp == WARM)
2909 return WRITE_LIFE_LONG;
2910 else if (temp == HOT)
2911 return WRITE_LIFE_SHORT;
2912 else if (temp == COLD)
2913 return WRITE_LIFE_EXTREME;
2914 } else if (type == NODE) {
2915 if (temp == WARM || temp == HOT)
2916 return WRITE_LIFE_NOT_SET;
2917 else if (temp == COLD)
2918 return WRITE_LIFE_NONE;
2919 } else if (type == META) {
2920 return WRITE_LIFE_MEDIUM;
2921 }
2922 }
2923 return WRITE_LIFE_NOT_SET;
2924}
2925
2926static int __get_segment_type_2(struct f2fs_io_info *fio)
2927{
2928 if (fio->type == DATA)
2929 return CURSEG_HOT_DATA;
2930 else
2931 return CURSEG_HOT_NODE;
2932}
2933
2934static int __get_segment_type_4(struct f2fs_io_info *fio)
2935{
2936 if (fio->type == DATA) {
2937 struct inode *inode = fio->page->mapping->host;
2938
2939 if (S_ISDIR(inode->i_mode))
2940 return CURSEG_HOT_DATA;
2941 else
2942 return CURSEG_COLD_DATA;
2943 } else {
2944 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2945 return CURSEG_WARM_NODE;
2946 else
2947 return CURSEG_COLD_NODE;
2948 }
2949}
2950
2951static int __get_segment_type_6(struct f2fs_io_info *fio)
2952{
2953 if (fio->type == DATA) {
2954 struct inode *inode = fio->page->mapping->host;
2955
2956 if (is_cold_data(fio->page) || file_is_cold(inode))
2957 return CURSEG_COLD_DATA;
2958 if (file_is_hot(inode) ||
2959 is_inode_flag_set(inode, FI_HOT_DATA) ||
2960 f2fs_is_atomic_file(inode) ||
2961 f2fs_is_volatile_file(inode))
2962 return CURSEG_HOT_DATA;
2963 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2964 } else {
2965 if (IS_DNODE(fio->page))
2966 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2967 CURSEG_HOT_NODE;
2968 return CURSEG_COLD_NODE;
2969 }
2970}
2971
2972static int __get_segment_type(struct f2fs_io_info *fio)
2973{
2974 int type = 0;
2975
2976 switch (F2FS_OPTION(fio->sbi).active_logs) {
2977 case 2:
2978 type = __get_segment_type_2(fio);
2979 break;
2980 case 4:
2981 type = __get_segment_type_4(fio);
2982 break;
2983 case 6:
2984 type = __get_segment_type_6(fio);
2985 break;
2986 default:
2987 f2fs_bug_on(fio->sbi, true);
2988 }
2989
2990 if (IS_HOT(type))
2991 fio->temp = HOT;
2992 else if (IS_WARM(type))
2993 fio->temp = WARM;
2994 else
2995 fio->temp = COLD;
2996 return type;
2997}
2998
2999void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3000 block_t old_blkaddr, block_t *new_blkaddr,
3001 struct f2fs_summary *sum, int type,
3002 struct f2fs_io_info *fio, bool add_list)
3003{
3004 struct sit_info *sit_i = SIT_I(sbi);
3005 struct curseg_info *curseg = CURSEG_I(sbi, type);
3006
3007 down_read(&SM_I(sbi)->curseg_lock);
3008
3009 mutex_lock(&curseg->curseg_mutex);
3010 down_write(&sit_i->sentry_lock);
3011
3012 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3013
3014 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3015
3016 /*
3017 * __add_sum_entry should be resided under the curseg_mutex
3018 * because, this function updates a summary entry in the
3019 * current summary block.
3020 */
3021 __add_sum_entry(sbi, type, sum);
3022
3023 __refresh_next_blkoff(sbi, curseg);
3024
3025 stat_inc_block_count(sbi, curseg);
3026
3027 /*
3028 * SIT information should be updated before segment allocation,
3029 * since SSR needs latest valid block information.
3030 */
3031 update_sit_entry(sbi, *new_blkaddr, 1);
3032 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3033 update_sit_entry(sbi, old_blkaddr, -1);
3034
3035 if (!__has_curseg_space(sbi, type))
3036 sit_i->s_ops->allocate_segment(sbi, type, false);
3037
3038 /*
3039 * segment dirty status should be updated after segment allocation,
3040 * so we just need to update status only one time after previous
3041 * segment being closed.
3042 */
3043 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3044 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3045
3046 up_write(&sit_i->sentry_lock);
3047
3048 if (page && IS_NODESEG(type)) {
3049 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3050
3051 f2fs_inode_chksum_set(sbi, page);
3052 }
3053
3054 if (add_list) {
3055 struct f2fs_bio_info *io;
3056
3057 INIT_LIST_HEAD(&fio->list);
3058 fio->in_list = true;
3059 fio->retry = false;
3060 io = sbi->write_io[fio->type] + fio->temp;
3061 spin_lock(&io->io_lock);
3062 list_add_tail(&fio->list, &io->io_list);
3063 spin_unlock(&io->io_lock);
3064 }
3065
3066 mutex_unlock(&curseg->curseg_mutex);
3067
3068 up_read(&SM_I(sbi)->curseg_lock);
3069}
3070
3071static void update_device_state(struct f2fs_io_info *fio)
3072{
3073 struct f2fs_sb_info *sbi = fio->sbi;
3074 unsigned int devidx;
3075
3076 if (!sbi->s_ndevs)
3077 return;
3078
3079 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3080
3081 /* update device state for fsync */
3082 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3083
3084 /* update device state for checkpoint */
3085 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3086 spin_lock(&sbi->dev_lock);
3087 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3088 spin_unlock(&sbi->dev_lock);
3089 }
3090}
3091
3092static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3093{
3094 int type = __get_segment_type(fio);
3095 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3096
3097 if (keep_order)
3098 down_read(&fio->sbi->io_order_lock);
3099reallocate:
3100 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3101 &fio->new_blkaddr, sum, type, fio, true);
3102 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3103 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3104 fio->old_blkaddr, fio->old_blkaddr);
3105
3106 /* writeout dirty page into bdev */
3107 f2fs_submit_page_write(fio);
3108 if (fio->retry) {
3109 fio->old_blkaddr = fio->new_blkaddr;
3110 goto reallocate;
3111 }
3112
3113 update_device_state(fio);
3114
3115 if (keep_order)
3116 up_read(&fio->sbi->io_order_lock);
3117}
3118
3119void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3120 enum iostat_type io_type)
3121{
3122 struct f2fs_io_info fio = {
3123 .sbi = sbi,
3124 .type = META,
3125 .temp = HOT,
3126 .op = REQ_OP_WRITE,
3127 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3128 .old_blkaddr = page->index,
3129 .new_blkaddr = page->index,
3130 .page = page,
3131 .encrypted_page = NULL,
3132 .in_list = false,
3133 };
3134
3135 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3136 fio.op_flags &= ~REQ_META;
3137
3138 set_page_writeback(page);
3139 ClearPageError(page);
3140 f2fs_submit_page_write(&fio);
3141
3142 stat_inc_meta_count(sbi, page->index);
3143 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3144}
3145
3146void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3147{
3148 struct f2fs_summary sum;
3149
3150 set_summary(&sum, nid, 0, 0);
3151 do_write_page(&sum, fio);
3152
3153 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3154}
3155
3156void f2fs_outplace_write_data(struct dnode_of_data *dn,
3157 struct f2fs_io_info *fio)
3158{
3159 struct f2fs_sb_info *sbi = fio->sbi;
3160 struct f2fs_summary sum;
3161
3162 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3163 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3164 do_write_page(&sum, fio);
3165 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3166
3167 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3168}
3169
3170int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3171{
3172 int err;
3173 struct f2fs_sb_info *sbi = fio->sbi;
3174
3175 fio->new_blkaddr = fio->old_blkaddr;
3176 /* i/o temperature is needed for passing down write hints */
3177 __get_segment_type(fio);
3178
3179 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
3180 GET_SEGNO(sbi, fio->new_blkaddr))->type));
3181
3182 stat_inc_inplace_blocks(fio->sbi);
3183
3184 err = f2fs_submit_page_bio(fio);
3185 if (!err)
3186 update_device_state(fio);
3187
3188 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3189
3190 return err;
3191}
3192
3193static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3194 unsigned int segno)
3195{
3196 int i;
3197
3198 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3199 if (CURSEG_I(sbi, i)->segno == segno)
3200 break;
3201 }
3202 return i;
3203}
3204
3205void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3206 block_t old_blkaddr, block_t new_blkaddr,
3207 bool recover_curseg, bool recover_newaddr)
3208{
3209 struct sit_info *sit_i = SIT_I(sbi);
3210 struct curseg_info *curseg;
3211 unsigned int segno, old_cursegno;
3212 struct seg_entry *se;
3213 int type;
3214 unsigned short old_blkoff;
3215
3216 segno = GET_SEGNO(sbi, new_blkaddr);
3217 se = get_seg_entry(sbi, segno);
3218 type = se->type;
3219
3220 down_write(&SM_I(sbi)->curseg_lock);
3221
3222 if (!recover_curseg) {
3223 /* for recovery flow */
3224 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3225 if (old_blkaddr == NULL_ADDR)
3226 type = CURSEG_COLD_DATA;
3227 else
3228 type = CURSEG_WARM_DATA;
3229 }
3230 } else {
3231 if (IS_CURSEG(sbi, segno)) {
3232 /* se->type is volatile as SSR allocation */
3233 type = __f2fs_get_curseg(sbi, segno);
3234 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3235 } else {
3236 type = CURSEG_WARM_DATA;
3237 }
3238 }
3239
3240 f2fs_bug_on(sbi, !IS_DATASEG(type));
3241 curseg = CURSEG_I(sbi, type);
3242
3243 mutex_lock(&curseg->curseg_mutex);
3244 down_write(&sit_i->sentry_lock);
3245
3246 old_cursegno = curseg->segno;
3247 old_blkoff = curseg->next_blkoff;
3248
3249 /* change the current segment */
3250 if (segno != curseg->segno) {
3251 curseg->next_segno = segno;
3252 change_curseg(sbi, type);
3253 }
3254
3255 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3256 __add_sum_entry(sbi, type, sum);
3257
3258 if (!recover_curseg || recover_newaddr)
3259 update_sit_entry(sbi, new_blkaddr, 1);
3260 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3261 invalidate_mapping_pages(META_MAPPING(sbi),
3262 old_blkaddr, old_blkaddr);
3263 update_sit_entry(sbi, old_blkaddr, -1);
3264 }
3265
3266 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3267 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3268
3269 locate_dirty_segment(sbi, old_cursegno);
3270
3271 if (recover_curseg) {
3272 if (old_cursegno != curseg->segno) {
3273 curseg->next_segno = old_cursegno;
3274 change_curseg(sbi, type);
3275 }
3276 curseg->next_blkoff = old_blkoff;
3277 }
3278
3279 up_write(&sit_i->sentry_lock);
3280 mutex_unlock(&curseg->curseg_mutex);
3281 up_write(&SM_I(sbi)->curseg_lock);
3282}
3283
3284void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3285 block_t old_addr, block_t new_addr,
3286 unsigned char version, bool recover_curseg,
3287 bool recover_newaddr)
3288{
3289 struct f2fs_summary sum;
3290
3291 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3292
3293 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3294 recover_curseg, recover_newaddr);
3295
3296 f2fs_update_data_blkaddr(dn, new_addr);
3297}
3298
3299void f2fs_wait_on_page_writeback(struct page *page,
3300 enum page_type type, bool ordered, bool locked)
3301{
3302 if (PageWriteback(page)) {
3303 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3304
3305 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3306 if (ordered) {
3307 wait_on_page_writeback(page);
3308 f2fs_bug_on(sbi, locked && PageWriteback(page));
3309 } else {
3310 wait_for_stable_page(page);
3311 }
3312 }
3313}
3314
3315void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3316{
3317 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3318 struct page *cpage;
3319
3320 if (!f2fs_post_read_required(inode))
3321 return;
3322
3323 if (!is_valid_data_blkaddr(sbi, blkaddr))
3324 return;
3325
3326 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3327 if (cpage) {
3328 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3329 f2fs_put_page(cpage, 1);
3330 }
3331}
3332
3333void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3334 block_t len)
3335{
3336 block_t i;
3337
3338 for (i = 0; i < len; i++)
3339 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3340}
3341
3342static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3343{
3344 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3345 struct curseg_info *seg_i;
3346 unsigned char *kaddr;
3347 struct page *page;
3348 block_t start;
3349 int i, j, offset;
3350
3351 start = start_sum_block(sbi);
3352
3353 page = f2fs_get_meta_page(sbi, start++);
3354 if (IS_ERR(page))
3355 return PTR_ERR(page);
3356 kaddr = (unsigned char *)page_address(page);
3357
3358 /* Step 1: restore nat cache */
3359 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3360 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3361
3362 /* Step 2: restore sit cache */
3363 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3364 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3365 offset = 2 * SUM_JOURNAL_SIZE;
3366
3367 /* Step 3: restore summary entries */
3368 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3369 unsigned short blk_off;
3370 unsigned int segno;
3371
3372 seg_i = CURSEG_I(sbi, i);
3373 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3374 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3375 seg_i->next_segno = segno;
3376 reset_curseg(sbi, i, 0);
3377 seg_i->alloc_type = ckpt->alloc_type[i];
3378 seg_i->next_blkoff = blk_off;
3379
3380 if (seg_i->alloc_type == SSR)
3381 blk_off = sbi->blocks_per_seg;
3382
3383 for (j = 0; j < blk_off; j++) {
3384 struct f2fs_summary *s;
3385 s = (struct f2fs_summary *)(kaddr + offset);
3386 seg_i->sum_blk->entries[j] = *s;
3387 offset += SUMMARY_SIZE;
3388 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3389 SUM_FOOTER_SIZE)
3390 continue;
3391
3392 f2fs_put_page(page, 1);
3393 page = NULL;
3394
3395 page = f2fs_get_meta_page(sbi, start++);
3396 if (IS_ERR(page))
3397 return PTR_ERR(page);
3398 kaddr = (unsigned char *)page_address(page);
3399 offset = 0;
3400 }
3401 }
3402 f2fs_put_page(page, 1);
3403 return 0;
3404}
3405
3406static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3407{
3408 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3409 struct f2fs_summary_block *sum;
3410 struct curseg_info *curseg;
3411 struct page *new;
3412 unsigned short blk_off;
3413 unsigned int segno = 0;
3414 block_t blk_addr = 0;
3415 int err = 0;
3416
3417 /* get segment number and block addr */
3418 if (IS_DATASEG(type)) {
3419 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3420 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3421 CURSEG_HOT_DATA]);
3422 if (__exist_node_summaries(sbi))
3423 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3424 else
3425 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3426 } else {
3427 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3428 CURSEG_HOT_NODE]);
3429 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3430 CURSEG_HOT_NODE]);
3431 if (__exist_node_summaries(sbi))
3432 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3433 type - CURSEG_HOT_NODE);
3434 else
3435 blk_addr = GET_SUM_BLOCK(sbi, segno);
3436 }
3437
3438 new = f2fs_get_meta_page(sbi, blk_addr);
3439 if (IS_ERR(new))
3440 return PTR_ERR(new);
3441 sum = (struct f2fs_summary_block *)page_address(new);
3442
3443 if (IS_NODESEG(type)) {
3444 if (__exist_node_summaries(sbi)) {
3445 struct f2fs_summary *ns = &sum->entries[0];
3446 int i;
3447 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3448 ns->version = 0;
3449 ns->ofs_in_node = 0;
3450 }
3451 } else {
3452 err = f2fs_restore_node_summary(sbi, segno, sum);
3453 if (err)
3454 goto out;
3455 }
3456 }
3457
3458 /* set uncompleted segment to curseg */
3459 curseg = CURSEG_I(sbi, type);
3460 mutex_lock(&curseg->curseg_mutex);
3461
3462 /* update journal info */
3463 down_write(&curseg->journal_rwsem);
3464 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3465 up_write(&curseg->journal_rwsem);
3466
3467 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3468 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3469 curseg->next_segno = segno;
3470 reset_curseg(sbi, type, 0);
3471 curseg->alloc_type = ckpt->alloc_type[type];
3472 curseg->next_blkoff = blk_off;
3473 mutex_unlock(&curseg->curseg_mutex);
3474out:
3475 f2fs_put_page(new, 1);
3476 return err;
3477}
3478
3479static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3480{
3481 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3482 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3483 int type = CURSEG_HOT_DATA;
3484 int err;
3485
3486 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3487 int npages = f2fs_npages_for_summary_flush(sbi, true);
3488
3489 if (npages >= 2)
3490 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3491 META_CP, true);
3492
3493 /* restore for compacted data summary */
3494 err = read_compacted_summaries(sbi);
3495 if (err)
3496 return err;
3497 type = CURSEG_HOT_NODE;
3498 }
3499
3500 if (__exist_node_summaries(sbi))
3501 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3502 NR_CURSEG_TYPE - type, META_CP, true);
3503
3504 for (; type <= CURSEG_COLD_NODE; type++) {
3505 err = read_normal_summaries(sbi, type);
3506 if (err)
3507 return err;
3508 }
3509
3510 /* sanity check for summary blocks */
3511 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3512 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3513 return -EINVAL;
3514
3515 return 0;
3516}
3517
3518static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3519{
3520 struct page *page;
3521 unsigned char *kaddr;
3522 struct f2fs_summary *summary;
3523 struct curseg_info *seg_i;
3524 int written_size = 0;
3525 int i, j;
3526
3527 page = f2fs_grab_meta_page(sbi, blkaddr++);
3528 kaddr = (unsigned char *)page_address(page);
3529 memset(kaddr, 0, PAGE_SIZE);
3530
3531 /* Step 1: write nat cache */
3532 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3533 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3534 written_size += SUM_JOURNAL_SIZE;
3535
3536 /* Step 2: write sit cache */
3537 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3538 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3539 written_size += SUM_JOURNAL_SIZE;
3540
3541 /* Step 3: write summary entries */
3542 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3543 unsigned short blkoff;
3544 seg_i = CURSEG_I(sbi, i);
3545 if (sbi->ckpt->alloc_type[i] == SSR)
3546 blkoff = sbi->blocks_per_seg;
3547 else
3548 blkoff = curseg_blkoff(sbi, i);
3549
3550 for (j = 0; j < blkoff; j++) {
3551 if (!page) {
3552 page = f2fs_grab_meta_page(sbi, blkaddr++);
3553 kaddr = (unsigned char *)page_address(page);
3554 memset(kaddr, 0, PAGE_SIZE);
3555 written_size = 0;
3556 }
3557 summary = (struct f2fs_summary *)(kaddr + written_size);
3558 *summary = seg_i->sum_blk->entries[j];
3559 written_size += SUMMARY_SIZE;
3560
3561 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3562 SUM_FOOTER_SIZE)
3563 continue;
3564
3565 set_page_dirty(page);
3566 f2fs_put_page(page, 1);
3567 page = NULL;
3568 }
3569 }
3570 if (page) {
3571 set_page_dirty(page);
3572 f2fs_put_page(page, 1);
3573 }
3574}
3575
3576static void write_normal_summaries(struct f2fs_sb_info *sbi,
3577 block_t blkaddr, int type)
3578{
3579 int i, end;
3580 if (IS_DATASEG(type))
3581 end = type + NR_CURSEG_DATA_TYPE;
3582 else
3583 end = type + NR_CURSEG_NODE_TYPE;
3584
3585 for (i = type; i < end; i++)
3586 write_current_sum_page(sbi, i, blkaddr + (i - type));
3587}
3588
3589void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3590{
3591 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3592 write_compacted_summaries(sbi, start_blk);
3593 else
3594 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3595}
3596
3597void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3598{
3599 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3600}
3601
3602int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3603 unsigned int val, int alloc)
3604{
3605 int i;
3606
3607 if (type == NAT_JOURNAL) {
3608 for (i = 0; i < nats_in_cursum(journal); i++) {
3609 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3610 return i;
3611 }
3612 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3613 return update_nats_in_cursum(journal, 1);
3614 } else if (type == SIT_JOURNAL) {
3615 for (i = 0; i < sits_in_cursum(journal); i++)
3616 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3617 return i;
3618 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3619 return update_sits_in_cursum(journal, 1);
3620 }
3621 return -1;
3622}
3623
3624static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3625 unsigned int segno)
3626{
3627 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3628}
3629
3630static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3631 unsigned int start)
3632{
3633 struct sit_info *sit_i = SIT_I(sbi);
3634 struct page *page;
3635 pgoff_t src_off, dst_off;
3636
3637 src_off = current_sit_addr(sbi, start);
3638 dst_off = next_sit_addr(sbi, src_off);
3639
3640 page = f2fs_grab_meta_page(sbi, dst_off);
3641 seg_info_to_sit_page(sbi, page, start);
3642
3643 set_page_dirty(page);
3644 set_to_next_sit(sit_i, start);
3645
3646 return page;
3647}
3648
3649static struct sit_entry_set *grab_sit_entry_set(void)
3650{
3651 struct sit_entry_set *ses =
3652 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3653
3654 ses->entry_cnt = 0;
3655 INIT_LIST_HEAD(&ses->set_list);
3656 return ses;
3657}
3658
3659static void release_sit_entry_set(struct sit_entry_set *ses)
3660{
3661 list_del(&ses->set_list);
3662 kmem_cache_free(sit_entry_set_slab, ses);
3663}
3664
3665static void adjust_sit_entry_set(struct sit_entry_set *ses,
3666 struct list_head *head)
3667{
3668 struct sit_entry_set *next = ses;
3669
3670 if (list_is_last(&ses->set_list, head))
3671 return;
3672
3673 list_for_each_entry_continue(next, head, set_list)
3674 if (ses->entry_cnt <= next->entry_cnt)
3675 break;
3676
3677 list_move_tail(&ses->set_list, &next->set_list);
3678}
3679
3680static void add_sit_entry(unsigned int segno, struct list_head *head)
3681{
3682 struct sit_entry_set *ses;
3683 unsigned int start_segno = START_SEGNO(segno);
3684
3685 list_for_each_entry(ses, head, set_list) {
3686 if (ses->start_segno == start_segno) {
3687 ses->entry_cnt++;
3688 adjust_sit_entry_set(ses, head);
3689 return;
3690 }
3691 }
3692
3693 ses = grab_sit_entry_set();
3694
3695 ses->start_segno = start_segno;
3696 ses->entry_cnt++;
3697 list_add(&ses->set_list, head);
3698}
3699
3700static void add_sits_in_set(struct f2fs_sb_info *sbi)
3701{
3702 struct f2fs_sm_info *sm_info = SM_I(sbi);
3703 struct list_head *set_list = &sm_info->sit_entry_set;
3704 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3705 unsigned int segno;
3706
3707 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3708 add_sit_entry(segno, set_list);
3709}
3710
3711static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3712{
3713 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3714 struct f2fs_journal *journal = curseg->journal;
3715 int i;
3716
3717 down_write(&curseg->journal_rwsem);
3718 for (i = 0; i < sits_in_cursum(journal); i++) {
3719 unsigned int segno;
3720 bool dirtied;
3721
3722 segno = le32_to_cpu(segno_in_journal(journal, i));
3723 dirtied = __mark_sit_entry_dirty(sbi, segno);
3724
3725 if (!dirtied)
3726 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3727 }
3728 update_sits_in_cursum(journal, -i);
3729 up_write(&curseg->journal_rwsem);
3730}
3731
3732/*
3733 * CP calls this function, which flushes SIT entries including sit_journal,
3734 * and moves prefree segs to free segs.
3735 */
3736void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3737{
3738 struct sit_info *sit_i = SIT_I(sbi);
3739 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3740 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3741 struct f2fs_journal *journal = curseg->journal;
3742 struct sit_entry_set *ses, *tmp;
3743 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3744 bool to_journal = true;
3745 struct seg_entry *se;
3746
3747 down_write(&sit_i->sentry_lock);
3748
3749 if (!sit_i->dirty_sentries)
3750 goto out;
3751
3752 /*
3753 * add and account sit entries of dirty bitmap in sit entry
3754 * set temporarily
3755 */
3756 add_sits_in_set(sbi);
3757
3758 /*
3759 * if there are no enough space in journal to store dirty sit
3760 * entries, remove all entries from journal and add and account
3761 * them in sit entry set.
3762 */
3763 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3764 remove_sits_in_journal(sbi);
3765
3766 /*
3767 * there are two steps to flush sit entries:
3768 * #1, flush sit entries to journal in current cold data summary block.
3769 * #2, flush sit entries to sit page.
3770 */
3771 list_for_each_entry_safe(ses, tmp, head, set_list) {
3772 struct page *page = NULL;
3773 struct f2fs_sit_block *raw_sit = NULL;
3774 unsigned int start_segno = ses->start_segno;
3775 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3776 (unsigned long)MAIN_SEGS(sbi));
3777 unsigned int segno = start_segno;
3778
3779 if (to_journal &&
3780 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3781 to_journal = false;
3782
3783 if (to_journal) {
3784 down_write(&curseg->journal_rwsem);
3785 } else {
3786 page = get_next_sit_page(sbi, start_segno);
3787 raw_sit = page_address(page);
3788 }
3789
3790 /* flush dirty sit entries in region of current sit set */
3791 for_each_set_bit_from(segno, bitmap, end) {
3792 int offset, sit_offset;
3793
3794 se = get_seg_entry(sbi, segno);
3795#ifdef CONFIG_F2FS_CHECK_FS
3796 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3797 SIT_VBLOCK_MAP_SIZE))
3798 f2fs_bug_on(sbi, 1);
3799#endif
3800
3801 /* add discard candidates */
3802 if (!(cpc->reason & CP_DISCARD)) {
3803 cpc->trim_start = segno;
3804 add_discard_addrs(sbi, cpc, false);
3805 }
3806
3807 if (to_journal) {
3808 offset = f2fs_lookup_journal_in_cursum(journal,
3809 SIT_JOURNAL, segno, 1);
3810 f2fs_bug_on(sbi, offset < 0);
3811 segno_in_journal(journal, offset) =
3812 cpu_to_le32(segno);
3813 seg_info_to_raw_sit(se,
3814 &sit_in_journal(journal, offset));
3815 check_block_count(sbi, segno,
3816 &sit_in_journal(journal, offset));
3817 } else {
3818 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3819 seg_info_to_raw_sit(se,
3820 &raw_sit->entries[sit_offset]);
3821 check_block_count(sbi, segno,
3822 &raw_sit->entries[sit_offset]);
3823 }
3824
3825 __clear_bit(segno, bitmap);
3826 sit_i->dirty_sentries--;
3827 ses->entry_cnt--;
3828 }
3829
3830 if (to_journal)
3831 up_write(&curseg->journal_rwsem);
3832 else
3833 f2fs_put_page(page, 1);
3834
3835 f2fs_bug_on(sbi, ses->entry_cnt);
3836 release_sit_entry_set(ses);
3837 }
3838
3839 f2fs_bug_on(sbi, !list_empty(head));
3840 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3841out:
3842 if (cpc->reason & CP_DISCARD) {
3843 __u64 trim_start = cpc->trim_start;
3844
3845 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3846 add_discard_addrs(sbi, cpc, false);
3847
3848 cpc->trim_start = trim_start;
3849 }
3850 up_write(&sit_i->sentry_lock);
3851
3852 set_prefree_as_free_segments(sbi);
3853}
3854
3855static int build_sit_info(struct f2fs_sb_info *sbi)
3856{
3857 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3858 struct sit_info *sit_i;
3859 unsigned int sit_segs, start;
3860 char *src_bitmap;
3861 unsigned int bitmap_size;
3862
3863 /* allocate memory for SIT information */
3864 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3865 if (!sit_i)
3866 return -ENOMEM;
3867
3868 SM_I(sbi)->sit_info = sit_i;
3869
3870 sit_i->sentries =
3871 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3872 MAIN_SEGS(sbi)),
3873 GFP_KERNEL);
3874 if (!sit_i->sentries)
3875 return -ENOMEM;
3876
3877 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3878 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3879 GFP_KERNEL);
3880 if (!sit_i->dirty_sentries_bitmap)
3881 return -ENOMEM;
3882
3883 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3884 sit_i->sentries[start].cur_valid_map
3885 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3886 sit_i->sentries[start].ckpt_valid_map
3887 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3888 if (!sit_i->sentries[start].cur_valid_map ||
3889 !sit_i->sentries[start].ckpt_valid_map)
3890 return -ENOMEM;
3891
3892#ifdef CONFIG_F2FS_CHECK_FS
3893 sit_i->sentries[start].cur_valid_map_mir
3894 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3895 if (!sit_i->sentries[start].cur_valid_map_mir)
3896 return -ENOMEM;
3897#endif
3898
3899 sit_i->sentries[start].discard_map
3900 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3901 GFP_KERNEL);
3902 if (!sit_i->sentries[start].discard_map)
3903 return -ENOMEM;
3904 }
3905
3906 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3907 if (!sit_i->tmp_map)
3908 return -ENOMEM;
3909
3910 if (__is_large_section(sbi)) {
3911 sit_i->sec_entries =
3912 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3913 MAIN_SECS(sbi)),
3914 GFP_KERNEL);
3915 if (!sit_i->sec_entries)
3916 return -ENOMEM;
3917 }
3918
3919 /* get information related with SIT */
3920 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3921
3922 /* setup SIT bitmap from ckeckpoint pack */
3923 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3924 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3925
3926 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3927 if (!sit_i->sit_bitmap)
3928 return -ENOMEM;
3929
3930#ifdef CONFIG_F2FS_CHECK_FS
3931 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3932 if (!sit_i->sit_bitmap_mir)
3933 return -ENOMEM;
3934#endif
3935
3936 /* init SIT information */
3937 sit_i->s_ops = &default_salloc_ops;
3938
3939 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3940 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3941 sit_i->written_valid_blocks = 0;
3942 sit_i->bitmap_size = bitmap_size;
3943 sit_i->dirty_sentries = 0;
3944 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3945 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3946 sit_i->mounted_time = ktime_get_real_seconds();
3947 init_rwsem(&sit_i->sentry_lock);
3948 return 0;
3949}
3950
3951static int build_free_segmap(struct f2fs_sb_info *sbi)
3952{
3953 struct free_segmap_info *free_i;
3954 unsigned int bitmap_size, sec_bitmap_size;
3955
3956 /* allocate memory for free segmap information */
3957 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3958 if (!free_i)
3959 return -ENOMEM;
3960
3961 SM_I(sbi)->free_info = free_i;
3962
3963 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3964 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3965 if (!free_i->free_segmap)
3966 return -ENOMEM;
3967
3968 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3969 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3970 if (!free_i->free_secmap)
3971 return -ENOMEM;
3972
3973 /* set all segments as dirty temporarily */
3974 memset(free_i->free_segmap, 0xff, bitmap_size);
3975 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3976
3977 /* init free segmap information */
3978 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3979 free_i->free_segments = 0;
3980 free_i->free_sections = 0;
3981 spin_lock_init(&free_i->segmap_lock);
3982 return 0;
3983}
3984
3985static int build_curseg(struct f2fs_sb_info *sbi)
3986{
3987 struct curseg_info *array;
3988 int i;
3989
3990 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
3991 GFP_KERNEL);
3992 if (!array)
3993 return -ENOMEM;
3994
3995 SM_I(sbi)->curseg_array = array;
3996
3997 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3998 mutex_init(&array[i].curseg_mutex);
3999 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4000 if (!array[i].sum_blk)
4001 return -ENOMEM;
4002 init_rwsem(&array[i].journal_rwsem);
4003 array[i].journal = f2fs_kzalloc(sbi,
4004 sizeof(struct f2fs_journal), GFP_KERNEL);
4005 if (!array[i].journal)
4006 return -ENOMEM;
4007 array[i].segno = NULL_SEGNO;
4008 array[i].next_blkoff = 0;
4009 }
4010 return restore_curseg_summaries(sbi);
4011}
4012
4013static int build_sit_entries(struct f2fs_sb_info *sbi)
4014{
4015 struct sit_info *sit_i = SIT_I(sbi);
4016 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4017 struct f2fs_journal *journal = curseg->journal;
4018 struct seg_entry *se;
4019 struct f2fs_sit_entry sit;
4020 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4021 unsigned int i, start, end;
4022 unsigned int readed, start_blk = 0;
4023 int err = 0;
4024 block_t total_node_blocks = 0;
4025
4026 do {
4027 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4028 META_SIT, true);
4029
4030 start = start_blk * sit_i->sents_per_block;
4031 end = (start_blk + readed) * sit_i->sents_per_block;
4032
4033 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4034 struct f2fs_sit_block *sit_blk;
4035 struct page *page;
4036
4037 se = &sit_i->sentries[start];
4038 page = get_current_sit_page(sbi, start);
4039 if (IS_ERR(page))
4040 return PTR_ERR(page);
4041 sit_blk = (struct f2fs_sit_block *)page_address(page);
4042 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4043 f2fs_put_page(page, 1);
4044
4045 err = check_block_count(sbi, start, &sit);
4046 if (err)
4047 return err;
4048 seg_info_from_raw_sit(se, &sit);
4049 if (IS_NODESEG(se->type))
4050 total_node_blocks += se->valid_blocks;
4051
4052 /* build discard map only one time */
4053 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4054 memset(se->discard_map, 0xff,
4055 SIT_VBLOCK_MAP_SIZE);
4056 } else {
4057 memcpy(se->discard_map,
4058 se->cur_valid_map,
4059 SIT_VBLOCK_MAP_SIZE);
4060 sbi->discard_blks +=
4061 sbi->blocks_per_seg -
4062 se->valid_blocks;
4063 }
4064
4065 if (__is_large_section(sbi))
4066 get_sec_entry(sbi, start)->valid_blocks +=
4067 se->valid_blocks;
4068 }
4069 start_blk += readed;
4070 } while (start_blk < sit_blk_cnt);
4071
4072 down_read(&curseg->journal_rwsem);
4073 for (i = 0; i < sits_in_cursum(journal); i++) {
4074 unsigned int old_valid_blocks;
4075
4076 start = le32_to_cpu(segno_in_journal(journal, i));
4077 if (start >= MAIN_SEGS(sbi)) {
4078 f2fs_msg(sbi->sb, KERN_ERR,
4079 "Wrong journal entry on segno %u",
4080 start);
4081 set_sbi_flag(sbi, SBI_NEED_FSCK);
4082 err = -EINVAL;
4083 break;
4084 }
4085
4086 se = &sit_i->sentries[start];
4087 sit = sit_in_journal(journal, i);
4088
4089 old_valid_blocks = se->valid_blocks;
4090 if (IS_NODESEG(se->type))
4091 total_node_blocks -= old_valid_blocks;
4092
4093 err = check_block_count(sbi, start, &sit);
4094 if (err)
4095 break;
4096 seg_info_from_raw_sit(se, &sit);
4097 if (IS_NODESEG(se->type))
4098 total_node_blocks += se->valid_blocks;
4099
4100 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4101 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4102 } else {
4103 memcpy(se->discard_map, se->cur_valid_map,
4104 SIT_VBLOCK_MAP_SIZE);
4105 sbi->discard_blks += old_valid_blocks;
4106 sbi->discard_blks -= se->valid_blocks;
4107 }
4108
4109 if (__is_large_section(sbi)) {
4110 get_sec_entry(sbi, start)->valid_blocks +=
4111 se->valid_blocks;
4112 get_sec_entry(sbi, start)->valid_blocks -=
4113 old_valid_blocks;
4114 }
4115 }
4116 up_read(&curseg->journal_rwsem);
4117
4118 if (!err && total_node_blocks != valid_node_count(sbi)) {
4119 f2fs_msg(sbi->sb, KERN_ERR,
4120 "SIT is corrupted node# %u vs %u",
4121 total_node_blocks, valid_node_count(sbi));
4122 set_sbi_flag(sbi, SBI_NEED_FSCK);
4123 err = -EINVAL;
4124 }
4125
4126 return err;
4127}
4128
4129static void init_free_segmap(struct f2fs_sb_info *sbi)
4130{
4131 unsigned int start;
4132 int type;
4133
4134 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4135 struct seg_entry *sentry = get_seg_entry(sbi, start);
4136 if (!sentry->valid_blocks)
4137 __set_free(sbi, start);
4138 else
4139 SIT_I(sbi)->written_valid_blocks +=
4140 sentry->valid_blocks;
4141 }
4142
4143 /* set use the current segments */
4144 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4145 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4146 __set_test_and_inuse(sbi, curseg_t->segno);
4147 }
4148}
4149
4150static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4151{
4152 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4153 struct free_segmap_info *free_i = FREE_I(sbi);
4154 unsigned int segno = 0, offset = 0;
4155 unsigned short valid_blocks;
4156
4157 while (1) {
4158 /* find dirty segment based on free segmap */
4159 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4160 if (segno >= MAIN_SEGS(sbi))
4161 break;
4162 offset = segno + 1;
4163 valid_blocks = get_valid_blocks(sbi, segno, false);
4164 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4165 continue;
4166 if (valid_blocks > sbi->blocks_per_seg) {
4167 f2fs_bug_on(sbi, 1);
4168 continue;
4169 }
4170 mutex_lock(&dirty_i->seglist_lock);
4171 __locate_dirty_segment(sbi, segno, DIRTY);
4172 mutex_unlock(&dirty_i->seglist_lock);
4173 }
4174}
4175
4176static int init_victim_secmap(struct f2fs_sb_info *sbi)
4177{
4178 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4179 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4180
4181 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4182 if (!dirty_i->victim_secmap)
4183 return -ENOMEM;
4184 return 0;
4185}
4186
4187static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4188{
4189 struct dirty_seglist_info *dirty_i;
4190 unsigned int bitmap_size, i;
4191
4192 /* allocate memory for dirty segments list information */
4193 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4194 GFP_KERNEL);
4195 if (!dirty_i)
4196 return -ENOMEM;
4197
4198 SM_I(sbi)->dirty_info = dirty_i;
4199 mutex_init(&dirty_i->seglist_lock);
4200
4201 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4202
4203 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4204 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4205 GFP_KERNEL);
4206 if (!dirty_i->dirty_segmap[i])
4207 return -ENOMEM;
4208 }
4209
4210 init_dirty_segmap(sbi);
4211 return init_victim_secmap(sbi);
4212}
4213
4214/*
4215 * Update min, max modified time for cost-benefit GC algorithm
4216 */
4217static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4218{
4219 struct sit_info *sit_i = SIT_I(sbi);
4220 unsigned int segno;
4221
4222 down_write(&sit_i->sentry_lock);
4223
4224 sit_i->min_mtime = ULLONG_MAX;
4225
4226 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4227 unsigned int i;
4228 unsigned long long mtime = 0;
4229
4230 for (i = 0; i < sbi->segs_per_sec; i++)
4231 mtime += get_seg_entry(sbi, segno + i)->mtime;
4232
4233 mtime = div_u64(mtime, sbi->segs_per_sec);
4234
4235 if (sit_i->min_mtime > mtime)
4236 sit_i->min_mtime = mtime;
4237 }
4238 sit_i->max_mtime = get_mtime(sbi, false);
4239 up_write(&sit_i->sentry_lock);
4240}
4241
4242int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4243{
4244 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4245 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4246 struct f2fs_sm_info *sm_info;
4247 int err;
4248
4249 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4250 if (!sm_info)
4251 return -ENOMEM;
4252
4253 /* init sm info */
4254 sbi->sm_info = sm_info;
4255 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4256 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4257 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4258 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4259 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4260 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4261 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4262 sm_info->rec_prefree_segments = sm_info->main_segments *
4263 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4264 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4265 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4266
4267 if (!test_opt(sbi, LFS))
4268 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4269 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4270 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4271 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4272 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4273 sm_info->min_ssr_sections = reserved_sections(sbi);
4274
4275 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4276
4277 init_rwsem(&sm_info->curseg_lock);
4278
4279 if (!f2fs_readonly(sbi->sb)) {
4280 err = f2fs_create_flush_cmd_control(sbi);
4281 if (err)
4282 return err;
4283 }
4284
4285 err = create_discard_cmd_control(sbi);
4286 if (err)
4287 return err;
4288
4289 err = build_sit_info(sbi);
4290 if (err)
4291 return err;
4292 err = build_free_segmap(sbi);
4293 if (err)
4294 return err;
4295 err = build_curseg(sbi);
4296 if (err)
4297 return err;
4298
4299 /* reinit free segmap based on SIT */
4300 err = build_sit_entries(sbi);
4301 if (err)
4302 return err;
4303
4304 init_free_segmap(sbi);
4305 err = build_dirty_segmap(sbi);
4306 if (err)
4307 return err;
4308
4309 init_min_max_mtime(sbi);
4310 return 0;
4311}
4312
4313static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4314 enum dirty_type dirty_type)
4315{
4316 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4317
4318 mutex_lock(&dirty_i->seglist_lock);
4319 kvfree(dirty_i->dirty_segmap[dirty_type]);
4320 dirty_i->nr_dirty[dirty_type] = 0;
4321 mutex_unlock(&dirty_i->seglist_lock);
4322}
4323
4324static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4325{
4326 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4327 kvfree(dirty_i->victim_secmap);
4328}
4329
4330static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4331{
4332 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4333 int i;
4334
4335 if (!dirty_i)
4336 return;
4337
4338 /* discard pre-free/dirty segments list */
4339 for (i = 0; i < NR_DIRTY_TYPE; i++)
4340 discard_dirty_segmap(sbi, i);
4341
4342 destroy_victim_secmap(sbi);
4343 SM_I(sbi)->dirty_info = NULL;
4344 kvfree(dirty_i);
4345}
4346
4347static void destroy_curseg(struct f2fs_sb_info *sbi)
4348{
4349 struct curseg_info *array = SM_I(sbi)->curseg_array;
4350 int i;
4351
4352 if (!array)
4353 return;
4354 SM_I(sbi)->curseg_array = NULL;
4355 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4356 kvfree(array[i].sum_blk);
4357 kvfree(array[i].journal);
4358 }
4359 kvfree(array);
4360}
4361
4362static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4363{
4364 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4365 if (!free_i)
4366 return;
4367 SM_I(sbi)->free_info = NULL;
4368 kvfree(free_i->free_segmap);
4369 kvfree(free_i->free_secmap);
4370 kvfree(free_i);
4371}
4372
4373static void destroy_sit_info(struct f2fs_sb_info *sbi)
4374{
4375 struct sit_info *sit_i = SIT_I(sbi);
4376 unsigned int start;
4377
4378 if (!sit_i)
4379 return;
4380
4381 if (sit_i->sentries) {
4382 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4383 kvfree(sit_i->sentries[start].cur_valid_map);
4384#ifdef CONFIG_F2FS_CHECK_FS
4385 kvfree(sit_i->sentries[start].cur_valid_map_mir);
4386#endif
4387 kvfree(sit_i->sentries[start].ckpt_valid_map);
4388 kvfree(sit_i->sentries[start].discard_map);
4389 }
4390 }
4391 kvfree(sit_i->tmp_map);
4392
4393 kvfree(sit_i->sentries);
4394 kvfree(sit_i->sec_entries);
4395 kvfree(sit_i->dirty_sentries_bitmap);
4396
4397 SM_I(sbi)->sit_info = NULL;
4398 kvfree(sit_i->sit_bitmap);
4399#ifdef CONFIG_F2FS_CHECK_FS
4400 kvfree(sit_i->sit_bitmap_mir);
4401#endif
4402 kvfree(sit_i);
4403}
4404
4405void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4406{
4407 struct f2fs_sm_info *sm_info = SM_I(sbi);
4408
4409 if (!sm_info)
4410 return;
4411 f2fs_destroy_flush_cmd_control(sbi, true);
4412 destroy_discard_cmd_control(sbi);
4413 destroy_dirty_segmap(sbi);
4414 destroy_curseg(sbi);
4415 destroy_free_segmap(sbi);
4416 destroy_sit_info(sbi);
4417 sbi->sm_info = NULL;
4418 kvfree(sm_info);
4419}
4420
4421int __init f2fs_create_segment_manager_caches(void)
4422{
4423 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4424 sizeof(struct discard_entry));
4425 if (!discard_entry_slab)
4426 goto fail;
4427
4428 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4429 sizeof(struct discard_cmd));
4430 if (!discard_cmd_slab)
4431 goto destroy_discard_entry;
4432
4433 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4434 sizeof(struct sit_entry_set));
4435 if (!sit_entry_set_slab)
4436 goto destroy_discard_cmd;
4437
4438 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4439 sizeof(struct inmem_pages));
4440 if (!inmem_entry_slab)
4441 goto destroy_sit_entry_set;
4442 return 0;
4443
4444destroy_sit_entry_set:
4445 kmem_cache_destroy(sit_entry_set_slab);
4446destroy_discard_cmd:
4447 kmem_cache_destroy(discard_cmd_slab);
4448destroy_discard_entry:
4449 kmem_cache_destroy(discard_entry_slab);
4450fail:
4451 return -ENOMEM;
4452}
4453
4454void f2fs_destroy_segment_manager_caches(void)
4455{
4456 kmem_cache_destroy(sit_entry_set_slab);
4457 kmem_cache_destroy(discard_cmd_slab);
4458 kmem_cache_destroy(discard_entry_slab);
4459 kmem_cache_destroy(inmem_entry_slab);
4460}