| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * fs/f2fs/node.c |
| 4 | * |
| 5 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| 6 | * http://www.samsung.com/ |
| 7 | */ |
| 8 | #include <linux/fs.h> |
| 9 | #include <linux/f2fs_fs.h> |
| 10 | #include <linux/mpage.h> |
| 11 | #include <linux/sched/mm.h> |
| 12 | #include <linux/blkdev.h> |
| 13 | #include <linux/pagevec.h> |
| 14 | #include <linux/swap.h> |
| 15 | |
| 16 | #include "f2fs.h" |
| 17 | #include "node.h" |
| 18 | #include "segment.h" |
| 19 | #include "xattr.h" |
| 20 | #include "iostat.h" |
| 21 | #include <trace/events/f2fs.h> |
| 22 | |
| 23 | #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock) |
| 24 | |
| 25 | static struct kmem_cache *nat_entry_slab; |
| 26 | static struct kmem_cache *free_nid_slab; |
| 27 | static struct kmem_cache *nat_entry_set_slab; |
| 28 | static struct kmem_cache *fsync_node_entry_slab; |
| 29 | |
| 30 | /* |
| 31 | * Check whether the given nid is within node id range. |
| 32 | */ |
| 33 | int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) |
| 34 | { |
| 35 | if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { |
| 36 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 37 | f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", |
| 38 | __func__, nid); |
| 39 | f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); |
| 40 | return -EFSCORRUPTED; |
| 41 | } |
| 42 | return 0; |
| 43 | } |
| 44 | |
| 45 | bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) |
| 46 | { |
| 47 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 48 | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| 49 | struct sysinfo val; |
| 50 | unsigned long avail_ram; |
| 51 | unsigned long mem_size = 0; |
| 52 | bool res = false; |
| 53 | |
| 54 | if (!nm_i) |
| 55 | return true; |
| 56 | |
| 57 | si_meminfo(&val); |
| 58 | |
| 59 | /* only uses low memory */ |
| 60 | avail_ram = val.totalram - val.totalhigh; |
| 61 | |
| 62 | /* |
| 63 | * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively |
| 64 | */ |
| 65 | if (type == FREE_NIDS) { |
| 66 | mem_size = (nm_i->nid_cnt[FREE_NID] * |
| 67 | sizeof(struct free_nid)) >> PAGE_SHIFT; |
| 68 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); |
| 69 | } else if (type == NAT_ENTRIES) { |
| 70 | mem_size = (nm_i->nat_cnt[TOTAL_NAT] * |
| 71 | sizeof(struct nat_entry)) >> PAGE_SHIFT; |
| 72 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); |
| 73 | if (excess_cached_nats(sbi)) |
| 74 | res = false; |
| 75 | } else if (type == DIRTY_DENTS) { |
| 76 | if (sbi->sb->s_bdi->wb.dirty_exceeded) |
| 77 | return false; |
| 78 | mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); |
| 79 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); |
| 80 | } else if (type == INO_ENTRIES) { |
| 81 | int i; |
| 82 | |
| 83 | for (i = 0; i < MAX_INO_ENTRY; i++) |
| 84 | mem_size += sbi->im[i].ino_num * |
| 85 | sizeof(struct ino_entry); |
| 86 | mem_size >>= PAGE_SHIFT; |
| 87 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); |
| 88 | } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) { |
| 89 | enum extent_type etype = type == READ_EXTENT_CACHE ? |
| 90 | EX_READ : EX_BLOCK_AGE; |
| 91 | struct extent_tree_info *eti = &sbi->extent_tree[etype]; |
| 92 | |
| 93 | mem_size = (atomic_read(&eti->total_ext_tree) * |
| 94 | sizeof(struct extent_tree) + |
| 95 | atomic_read(&eti->total_ext_node) * |
| 96 | sizeof(struct extent_node)) >> PAGE_SHIFT; |
| 97 | res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); |
| 98 | } else if (type == DISCARD_CACHE) { |
| 99 | mem_size = (atomic_read(&dcc->discard_cmd_cnt) * |
| 100 | sizeof(struct discard_cmd)) >> PAGE_SHIFT; |
| 101 | res = mem_size < (avail_ram * nm_i->ram_thresh / 100); |
| 102 | } else if (type == COMPRESS_PAGE) { |
| 103 | #ifdef CONFIG_F2FS_FS_COMPRESSION |
| 104 | unsigned long free_ram = val.freeram; |
| 105 | |
| 106 | /* |
| 107 | * free memory is lower than watermark or cached page count |
| 108 | * exceed threshold, deny caching compress page. |
| 109 | */ |
| 110 | res = (free_ram > avail_ram * sbi->compress_watermark / 100) && |
| 111 | (COMPRESS_MAPPING(sbi)->nrpages < |
| 112 | free_ram * sbi->compress_percent / 100); |
| 113 | #else |
| 114 | res = false; |
| 115 | #endif |
| 116 | } else { |
| 117 | if (!sbi->sb->s_bdi->wb.dirty_exceeded) |
| 118 | return true; |
| 119 | } |
| 120 | return res; |
| 121 | } |
| 122 | |
| 123 | static void clear_node_folio_dirty(struct folio *folio) |
| 124 | { |
| 125 | if (folio_test_dirty(folio)) { |
| 126 | f2fs_clear_page_cache_dirty_tag(folio); |
| 127 | folio_clear_dirty_for_io(folio); |
| 128 | dec_page_count(F2FS_F_SB(folio), F2FS_DIRTY_NODES); |
| 129 | } |
| 130 | folio_clear_uptodate(folio); |
| 131 | } |
| 132 | |
| 133 | static struct folio *get_current_nat_folio(struct f2fs_sb_info *sbi, nid_t nid) |
| 134 | { |
| 135 | return f2fs_get_meta_folio_retry(sbi, current_nat_addr(sbi, nid)); |
| 136 | } |
| 137 | |
| 138 | static struct folio *get_next_nat_folio(struct f2fs_sb_info *sbi, nid_t nid) |
| 139 | { |
| 140 | struct folio *src_folio; |
| 141 | struct folio *dst_folio; |
| 142 | pgoff_t dst_off; |
| 143 | void *src_addr; |
| 144 | void *dst_addr; |
| 145 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 146 | |
| 147 | dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); |
| 148 | |
| 149 | /* get current nat block page with lock */ |
| 150 | src_folio = get_current_nat_folio(sbi, nid); |
| 151 | if (IS_ERR(src_folio)) |
| 152 | return src_folio; |
| 153 | dst_folio = f2fs_grab_meta_folio(sbi, dst_off); |
| 154 | f2fs_bug_on(sbi, folio_test_dirty(src_folio)); |
| 155 | |
| 156 | src_addr = folio_address(src_folio); |
| 157 | dst_addr = folio_address(dst_folio); |
| 158 | memcpy(dst_addr, src_addr, PAGE_SIZE); |
| 159 | folio_mark_dirty(dst_folio); |
| 160 | f2fs_folio_put(src_folio, true); |
| 161 | |
| 162 | set_to_next_nat(nm_i, nid); |
| 163 | |
| 164 | return dst_folio; |
| 165 | } |
| 166 | |
| 167 | static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, |
| 168 | nid_t nid, bool no_fail) |
| 169 | { |
| 170 | struct nat_entry *new; |
| 171 | |
| 172 | new = f2fs_kmem_cache_alloc(nat_entry_slab, |
| 173 | GFP_F2FS_ZERO, no_fail, sbi); |
| 174 | if (new) { |
| 175 | nat_set_nid(new, nid); |
| 176 | nat_reset_flag(new); |
| 177 | } |
| 178 | return new; |
| 179 | } |
| 180 | |
| 181 | static void __free_nat_entry(struct nat_entry *e) |
| 182 | { |
| 183 | kmem_cache_free(nat_entry_slab, e); |
| 184 | } |
| 185 | |
| 186 | /* must be locked by nat_tree_lock */ |
| 187 | static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, |
| 188 | struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail, bool init_dirty) |
| 189 | { |
| 190 | if (no_fail) |
| 191 | f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); |
| 192 | else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) |
| 193 | return NULL; |
| 194 | |
| 195 | if (raw_ne) |
| 196 | node_info_from_raw_nat(&ne->ni, raw_ne); |
| 197 | |
| 198 | if (init_dirty) { |
| 199 | INIT_LIST_HEAD(&ne->list); |
| 200 | nm_i->nat_cnt[TOTAL_NAT]++; |
| 201 | return ne; |
| 202 | } |
| 203 | |
| 204 | spin_lock(&nm_i->nat_list_lock); |
| 205 | list_add_tail(&ne->list, &nm_i->nat_entries); |
| 206 | spin_unlock(&nm_i->nat_list_lock); |
| 207 | |
| 208 | nm_i->nat_cnt[TOTAL_NAT]++; |
| 209 | nm_i->nat_cnt[RECLAIMABLE_NAT]++; |
| 210 | return ne; |
| 211 | } |
| 212 | |
| 213 | static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n, bool for_dirty) |
| 214 | { |
| 215 | struct nat_entry *ne; |
| 216 | |
| 217 | ne = radix_tree_lookup(&nm_i->nat_root, n); |
| 218 | |
| 219 | /* |
| 220 | * for recent accessed nat entry which will not be dirtied soon |
| 221 | * later, move it to tail of lru list. |
| 222 | */ |
| 223 | if (ne && !get_nat_flag(ne, IS_DIRTY) && !for_dirty) { |
| 224 | spin_lock(&nm_i->nat_list_lock); |
| 225 | if (!list_empty(&ne->list)) |
| 226 | list_move_tail(&ne->list, &nm_i->nat_entries); |
| 227 | spin_unlock(&nm_i->nat_list_lock); |
| 228 | } |
| 229 | |
| 230 | return ne; |
| 231 | } |
| 232 | |
| 233 | static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, |
| 234 | nid_t start, unsigned int nr, struct nat_entry **ep) |
| 235 | { |
| 236 | return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); |
| 237 | } |
| 238 | |
| 239 | static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) |
| 240 | { |
| 241 | radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); |
| 242 | nm_i->nat_cnt[TOTAL_NAT]--; |
| 243 | nm_i->nat_cnt[RECLAIMABLE_NAT]--; |
| 244 | __free_nat_entry(e); |
| 245 | } |
| 246 | |
| 247 | static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, |
| 248 | struct nat_entry *ne) |
| 249 | { |
| 250 | nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); |
| 251 | struct nat_entry_set *head; |
| 252 | |
| 253 | head = radix_tree_lookup(&nm_i->nat_set_root, set); |
| 254 | if (!head) { |
| 255 | head = f2fs_kmem_cache_alloc(nat_entry_set_slab, |
| 256 | GFP_NOFS, true, NULL); |
| 257 | |
| 258 | INIT_LIST_HEAD(&head->entry_list); |
| 259 | INIT_LIST_HEAD(&head->set_list); |
| 260 | head->set = set; |
| 261 | head->entry_cnt = 0; |
| 262 | f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); |
| 263 | } |
| 264 | return head; |
| 265 | } |
| 266 | |
| 267 | static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, |
| 268 | struct nat_entry *ne, bool init_dirty) |
| 269 | { |
| 270 | struct nat_entry_set *head; |
| 271 | bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; |
| 272 | |
| 273 | if (!new_ne) |
| 274 | head = __grab_nat_entry_set(nm_i, ne); |
| 275 | |
| 276 | /* |
| 277 | * update entry_cnt in below condition: |
| 278 | * 1. update NEW_ADDR to valid block address; |
| 279 | * 2. update old block address to new one; |
| 280 | */ |
| 281 | if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || |
| 282 | !get_nat_flag(ne, IS_DIRTY))) |
| 283 | head->entry_cnt++; |
| 284 | |
| 285 | set_nat_flag(ne, IS_PREALLOC, new_ne); |
| 286 | |
| 287 | if (get_nat_flag(ne, IS_DIRTY)) |
| 288 | goto refresh_list; |
| 289 | |
| 290 | nm_i->nat_cnt[DIRTY_NAT]++; |
| 291 | if (!init_dirty) |
| 292 | nm_i->nat_cnt[RECLAIMABLE_NAT]--; |
| 293 | set_nat_flag(ne, IS_DIRTY, true); |
| 294 | refresh_list: |
| 295 | spin_lock(&nm_i->nat_list_lock); |
| 296 | if (new_ne) |
| 297 | list_del_init(&ne->list); |
| 298 | else |
| 299 | list_move_tail(&ne->list, &head->entry_list); |
| 300 | spin_unlock(&nm_i->nat_list_lock); |
| 301 | } |
| 302 | |
| 303 | static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, |
| 304 | struct nat_entry_set *set, struct nat_entry *ne) |
| 305 | { |
| 306 | spin_lock(&nm_i->nat_list_lock); |
| 307 | list_move_tail(&ne->list, &nm_i->nat_entries); |
| 308 | spin_unlock(&nm_i->nat_list_lock); |
| 309 | |
| 310 | set_nat_flag(ne, IS_DIRTY, false); |
| 311 | set->entry_cnt--; |
| 312 | nm_i->nat_cnt[DIRTY_NAT]--; |
| 313 | nm_i->nat_cnt[RECLAIMABLE_NAT]++; |
| 314 | } |
| 315 | |
| 316 | static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, |
| 317 | nid_t start, unsigned int nr, struct nat_entry_set **ep) |
| 318 | { |
| 319 | return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, |
| 320 | start, nr); |
| 321 | } |
| 322 | |
| 323 | bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct folio *folio) |
| 324 | { |
| 325 | return is_node_folio(folio) && IS_DNODE(folio) && is_cold_node(folio); |
| 326 | } |
| 327 | |
| 328 | void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) |
| 329 | { |
| 330 | spin_lock_init(&sbi->fsync_node_lock); |
| 331 | INIT_LIST_HEAD(&sbi->fsync_node_list); |
| 332 | sbi->fsync_seg_id = 0; |
| 333 | sbi->fsync_node_num = 0; |
| 334 | } |
| 335 | |
| 336 | static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, |
| 337 | struct folio *folio) |
| 338 | { |
| 339 | struct fsync_node_entry *fn; |
| 340 | unsigned long flags; |
| 341 | unsigned int seq_id; |
| 342 | |
| 343 | fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, |
| 344 | GFP_NOFS, true, NULL); |
| 345 | |
| 346 | folio_get(folio); |
| 347 | fn->folio = folio; |
| 348 | INIT_LIST_HEAD(&fn->list); |
| 349 | |
| 350 | spin_lock_irqsave(&sbi->fsync_node_lock, flags); |
| 351 | list_add_tail(&fn->list, &sbi->fsync_node_list); |
| 352 | fn->seq_id = sbi->fsync_seg_id++; |
| 353 | seq_id = fn->seq_id; |
| 354 | sbi->fsync_node_num++; |
| 355 | spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); |
| 356 | |
| 357 | return seq_id; |
| 358 | } |
| 359 | |
| 360 | void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct folio *folio) |
| 361 | { |
| 362 | struct fsync_node_entry *fn; |
| 363 | unsigned long flags; |
| 364 | |
| 365 | spin_lock_irqsave(&sbi->fsync_node_lock, flags); |
| 366 | list_for_each_entry(fn, &sbi->fsync_node_list, list) { |
| 367 | if (fn->folio == folio) { |
| 368 | list_del(&fn->list); |
| 369 | sbi->fsync_node_num--; |
| 370 | spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); |
| 371 | kmem_cache_free(fsync_node_entry_slab, fn); |
| 372 | folio_put(folio); |
| 373 | return; |
| 374 | } |
| 375 | } |
| 376 | spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); |
| 377 | f2fs_bug_on(sbi, 1); |
| 378 | } |
| 379 | |
| 380 | void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) |
| 381 | { |
| 382 | unsigned long flags; |
| 383 | |
| 384 | spin_lock_irqsave(&sbi->fsync_node_lock, flags); |
| 385 | sbi->fsync_seg_id = 0; |
| 386 | spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); |
| 387 | } |
| 388 | |
| 389 | int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) |
| 390 | { |
| 391 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 392 | struct nat_entry *e; |
| 393 | bool need = false; |
| 394 | |
| 395 | f2fs_down_read(&nm_i->nat_tree_lock); |
| 396 | e = __lookup_nat_cache(nm_i, nid, false); |
| 397 | if (e) { |
| 398 | if (!get_nat_flag(e, IS_CHECKPOINTED) && |
| 399 | !get_nat_flag(e, HAS_FSYNCED_INODE)) |
| 400 | need = true; |
| 401 | } |
| 402 | f2fs_up_read(&nm_i->nat_tree_lock); |
| 403 | return need; |
| 404 | } |
| 405 | |
| 406 | bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) |
| 407 | { |
| 408 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 409 | struct nat_entry *e; |
| 410 | bool is_cp = true; |
| 411 | |
| 412 | f2fs_down_read(&nm_i->nat_tree_lock); |
| 413 | e = __lookup_nat_cache(nm_i, nid, false); |
| 414 | if (e && !get_nat_flag(e, IS_CHECKPOINTED)) |
| 415 | is_cp = false; |
| 416 | f2fs_up_read(&nm_i->nat_tree_lock); |
| 417 | return is_cp; |
| 418 | } |
| 419 | |
| 420 | bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) |
| 421 | { |
| 422 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 423 | struct nat_entry *e; |
| 424 | bool need_update = true; |
| 425 | |
| 426 | f2fs_down_read(&nm_i->nat_tree_lock); |
| 427 | e = __lookup_nat_cache(nm_i, ino, false); |
| 428 | if (e && get_nat_flag(e, HAS_LAST_FSYNC) && |
| 429 | (get_nat_flag(e, IS_CHECKPOINTED) || |
| 430 | get_nat_flag(e, HAS_FSYNCED_INODE))) |
| 431 | need_update = false; |
| 432 | f2fs_up_read(&nm_i->nat_tree_lock); |
| 433 | return need_update; |
| 434 | } |
| 435 | |
| 436 | /* must be locked by nat_tree_lock */ |
| 437 | static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, |
| 438 | struct f2fs_nat_entry *ne) |
| 439 | { |
| 440 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 441 | struct nat_entry *new, *e; |
| 442 | |
| 443 | /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ |
| 444 | if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) |
| 445 | return; |
| 446 | |
| 447 | new = __alloc_nat_entry(sbi, nid, false); |
| 448 | if (!new) |
| 449 | return; |
| 450 | |
| 451 | f2fs_down_write(&nm_i->nat_tree_lock); |
| 452 | e = __lookup_nat_cache(nm_i, nid, false); |
| 453 | if (!e) |
| 454 | e = __init_nat_entry(nm_i, new, ne, false, false); |
| 455 | else |
| 456 | f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || |
| 457 | nat_get_blkaddr(e) != |
| 458 | le32_to_cpu(ne->block_addr) || |
| 459 | nat_get_version(e) != ne->version); |
| 460 | f2fs_up_write(&nm_i->nat_tree_lock); |
| 461 | if (e != new) |
| 462 | __free_nat_entry(new); |
| 463 | } |
| 464 | |
| 465 | static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, |
| 466 | block_t new_blkaddr, bool fsync_done) |
| 467 | { |
| 468 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 469 | struct nat_entry *e; |
| 470 | struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); |
| 471 | bool init_dirty = false; |
| 472 | |
| 473 | f2fs_down_write(&nm_i->nat_tree_lock); |
| 474 | e = __lookup_nat_cache(nm_i, ni->nid, true); |
| 475 | if (!e) { |
| 476 | init_dirty = true; |
| 477 | e = __init_nat_entry(nm_i, new, NULL, true, true); |
| 478 | copy_node_info(&e->ni, ni); |
| 479 | f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); |
| 480 | } else if (new_blkaddr == NEW_ADDR) { |
| 481 | /* |
| 482 | * when nid is reallocated, |
| 483 | * previous nat entry can be remained in nat cache. |
| 484 | * So, reinitialize it with new information. |
| 485 | */ |
| 486 | copy_node_info(&e->ni, ni); |
| 487 | f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); |
| 488 | } |
| 489 | /* let's free early to reduce memory consumption */ |
| 490 | if (e != new) |
| 491 | __free_nat_entry(new); |
| 492 | |
| 493 | /* sanity check */ |
| 494 | f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); |
| 495 | f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && |
| 496 | new_blkaddr == NULL_ADDR); |
| 497 | f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && |
| 498 | new_blkaddr == NEW_ADDR); |
| 499 | f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && |
| 500 | new_blkaddr == NEW_ADDR); |
| 501 | |
| 502 | /* increment version no as node is removed */ |
| 503 | if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { |
| 504 | unsigned char version = nat_get_version(e); |
| 505 | |
| 506 | nat_set_version(e, inc_node_version(version)); |
| 507 | } |
| 508 | |
| 509 | /* change address */ |
| 510 | nat_set_blkaddr(e, new_blkaddr); |
| 511 | if (!__is_valid_data_blkaddr(new_blkaddr)) |
| 512 | set_nat_flag(e, IS_CHECKPOINTED, false); |
| 513 | __set_nat_cache_dirty(nm_i, e, init_dirty); |
| 514 | |
| 515 | /* update fsync_mark if its inode nat entry is still alive */ |
| 516 | if (ni->nid != ni->ino) |
| 517 | e = __lookup_nat_cache(nm_i, ni->ino, false); |
| 518 | if (e) { |
| 519 | if (fsync_done && ni->nid == ni->ino) |
| 520 | set_nat_flag(e, HAS_FSYNCED_INODE, true); |
| 521 | set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); |
| 522 | } |
| 523 | f2fs_up_write(&nm_i->nat_tree_lock); |
| 524 | } |
| 525 | |
| 526 | int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) |
| 527 | { |
| 528 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 529 | int nr = nr_shrink; |
| 530 | |
| 531 | if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) |
| 532 | return 0; |
| 533 | |
| 534 | spin_lock(&nm_i->nat_list_lock); |
| 535 | while (nr_shrink) { |
| 536 | struct nat_entry *ne; |
| 537 | |
| 538 | if (list_empty(&nm_i->nat_entries)) |
| 539 | break; |
| 540 | |
| 541 | ne = list_first_entry(&nm_i->nat_entries, |
| 542 | struct nat_entry, list); |
| 543 | list_del(&ne->list); |
| 544 | spin_unlock(&nm_i->nat_list_lock); |
| 545 | |
| 546 | __del_from_nat_cache(nm_i, ne); |
| 547 | nr_shrink--; |
| 548 | |
| 549 | spin_lock(&nm_i->nat_list_lock); |
| 550 | } |
| 551 | spin_unlock(&nm_i->nat_list_lock); |
| 552 | |
| 553 | f2fs_up_write(&nm_i->nat_tree_lock); |
| 554 | return nr - nr_shrink; |
| 555 | } |
| 556 | |
| 557 | int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, |
| 558 | struct node_info *ni, bool checkpoint_context) |
| 559 | { |
| 560 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 561 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 562 | struct f2fs_journal *journal = curseg->journal; |
| 563 | nid_t start_nid = START_NID(nid); |
| 564 | struct f2fs_nat_block *nat_blk; |
| 565 | struct folio *folio = NULL; |
| 566 | struct f2fs_nat_entry ne; |
| 567 | struct nat_entry *e; |
| 568 | pgoff_t index; |
| 569 | int i; |
| 570 | bool need_cache = true; |
| 571 | |
| 572 | ni->flag = 0; |
| 573 | ni->nid = nid; |
| 574 | retry: |
| 575 | /* Check nat cache */ |
| 576 | f2fs_down_read(&nm_i->nat_tree_lock); |
| 577 | e = __lookup_nat_cache(nm_i, nid, false); |
| 578 | if (e) { |
| 579 | ni->ino = nat_get_ino(e); |
| 580 | ni->blk_addr = nat_get_blkaddr(e); |
| 581 | ni->version = nat_get_version(e); |
| 582 | f2fs_up_read(&nm_i->nat_tree_lock); |
| 583 | if (IS_ENABLED(CONFIG_F2FS_CHECK_FS)) { |
| 584 | need_cache = false; |
| 585 | goto sanity_check; |
| 586 | } |
| 587 | return 0; |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * Check current segment summary by trying to grab journal_rwsem first. |
| 592 | * This sem is on the critical path on the checkpoint requiring the above |
| 593 | * nat_tree_lock. Therefore, we should retry, if we failed to grab here |
| 594 | * while not bothering checkpoint. |
| 595 | */ |
| 596 | if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { |
| 597 | down_read(&curseg->journal_rwsem); |
| 598 | } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || |
| 599 | !down_read_trylock(&curseg->journal_rwsem)) { |
| 600 | f2fs_up_read(&nm_i->nat_tree_lock); |
| 601 | goto retry; |
| 602 | } |
| 603 | |
| 604 | i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); |
| 605 | if (i >= 0) { |
| 606 | ne = nat_in_journal(journal, i); |
| 607 | node_info_from_raw_nat(ni, &ne); |
| 608 | } |
| 609 | up_read(&curseg->journal_rwsem); |
| 610 | if (i >= 0) { |
| 611 | f2fs_up_read(&nm_i->nat_tree_lock); |
| 612 | goto sanity_check; |
| 613 | } |
| 614 | |
| 615 | /* Fill node_info from nat page */ |
| 616 | index = current_nat_addr(sbi, nid); |
| 617 | f2fs_up_read(&nm_i->nat_tree_lock); |
| 618 | |
| 619 | folio = f2fs_get_meta_folio(sbi, index); |
| 620 | if (IS_ERR(folio)) |
| 621 | return PTR_ERR(folio); |
| 622 | |
| 623 | nat_blk = folio_address(folio); |
| 624 | ne = nat_blk->entries[nid - start_nid]; |
| 625 | node_info_from_raw_nat(ni, &ne); |
| 626 | f2fs_folio_put(folio, true); |
| 627 | sanity_check: |
| 628 | if (__is_valid_data_blkaddr(ni->blk_addr) && |
| 629 | !f2fs_is_valid_blkaddr(sbi, ni->blk_addr, |
| 630 | DATA_GENERIC_ENHANCE)) { |
| 631 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 632 | f2fs_err_ratelimited(sbi, |
| 633 | "f2fs_get_node_info of %pS: inconsistent nat entry, " |
| 634 | "ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u", |
| 635 | __builtin_return_address(0), |
| 636 | ni->ino, ni->nid, ni->blk_addr, ni->version, ni->flag); |
| 637 | f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT); |
| 638 | return -EFSCORRUPTED; |
| 639 | } |
| 640 | |
| 641 | /* cache nat entry */ |
| 642 | if (need_cache) |
| 643 | cache_nat_entry(sbi, nid, &ne); |
| 644 | return 0; |
| 645 | } |
| 646 | |
| 647 | /* |
| 648 | * readahead MAX_RA_NODE number of node pages. |
| 649 | */ |
| 650 | static void f2fs_ra_node_pages(struct folio *parent, int start, int n) |
| 651 | { |
| 652 | struct f2fs_sb_info *sbi = F2FS_F_SB(parent); |
| 653 | struct blk_plug plug; |
| 654 | int i, end; |
| 655 | nid_t nid; |
| 656 | |
| 657 | blk_start_plug(&plug); |
| 658 | |
| 659 | /* Then, try readahead for siblings of the desired node */ |
| 660 | end = start + n; |
| 661 | end = min(end, (int)NIDS_PER_BLOCK); |
| 662 | for (i = start; i < end; i++) { |
| 663 | nid = get_nid(parent, i, false); |
| 664 | f2fs_ra_node_page(sbi, nid); |
| 665 | } |
| 666 | |
| 667 | blk_finish_plug(&plug); |
| 668 | } |
| 669 | |
| 670 | pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) |
| 671 | { |
| 672 | const long direct_index = ADDRS_PER_INODE(dn->inode); |
| 673 | const long direct_blks = ADDRS_PER_BLOCK(dn->inode); |
| 674 | const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; |
| 675 | unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); |
| 676 | int cur_level = dn->cur_level; |
| 677 | int max_level = dn->max_level; |
| 678 | pgoff_t base = 0; |
| 679 | |
| 680 | if (!dn->max_level) |
| 681 | return pgofs + 1; |
| 682 | |
| 683 | while (max_level-- > cur_level) |
| 684 | skipped_unit *= NIDS_PER_BLOCK; |
| 685 | |
| 686 | switch (dn->max_level) { |
| 687 | case 3: |
| 688 | base += 2 * indirect_blks; |
| 689 | fallthrough; |
| 690 | case 2: |
| 691 | base += 2 * direct_blks; |
| 692 | fallthrough; |
| 693 | case 1: |
| 694 | base += direct_index; |
| 695 | break; |
| 696 | default: |
| 697 | f2fs_bug_on(F2FS_I_SB(dn->inode), 1); |
| 698 | } |
| 699 | |
| 700 | return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * The maximum depth is four. |
| 705 | * Offset[0] will have raw inode offset. |
| 706 | */ |
| 707 | static int get_node_path(struct inode *inode, long block, |
| 708 | int offset[4], unsigned int noffset[4]) |
| 709 | { |
| 710 | const long direct_index = ADDRS_PER_INODE(inode); |
| 711 | const long direct_blks = ADDRS_PER_BLOCK(inode); |
| 712 | const long dptrs_per_blk = NIDS_PER_BLOCK; |
| 713 | const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; |
| 714 | const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; |
| 715 | int n = 0; |
| 716 | int level = 0; |
| 717 | |
| 718 | noffset[0] = 0; |
| 719 | |
| 720 | if (block < direct_index) { |
| 721 | offset[n] = block; |
| 722 | goto got; |
| 723 | } |
| 724 | block -= direct_index; |
| 725 | if (block < direct_blks) { |
| 726 | offset[n++] = NODE_DIR1_BLOCK; |
| 727 | noffset[n] = 1; |
| 728 | offset[n] = block; |
| 729 | level = 1; |
| 730 | goto got; |
| 731 | } |
| 732 | block -= direct_blks; |
| 733 | if (block < direct_blks) { |
| 734 | offset[n++] = NODE_DIR2_BLOCK; |
| 735 | noffset[n] = 2; |
| 736 | offset[n] = block; |
| 737 | level = 1; |
| 738 | goto got; |
| 739 | } |
| 740 | block -= direct_blks; |
| 741 | if (block < indirect_blks) { |
| 742 | offset[n++] = NODE_IND1_BLOCK; |
| 743 | noffset[n] = 3; |
| 744 | offset[n++] = block / direct_blks; |
| 745 | noffset[n] = 4 + offset[n - 1]; |
| 746 | offset[n] = block % direct_blks; |
| 747 | level = 2; |
| 748 | goto got; |
| 749 | } |
| 750 | block -= indirect_blks; |
| 751 | if (block < indirect_blks) { |
| 752 | offset[n++] = NODE_IND2_BLOCK; |
| 753 | noffset[n] = 4 + dptrs_per_blk; |
| 754 | offset[n++] = block / direct_blks; |
| 755 | noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; |
| 756 | offset[n] = block % direct_blks; |
| 757 | level = 2; |
| 758 | goto got; |
| 759 | } |
| 760 | block -= indirect_blks; |
| 761 | if (block < dindirect_blks) { |
| 762 | offset[n++] = NODE_DIND_BLOCK; |
| 763 | noffset[n] = 5 + (dptrs_per_blk * 2); |
| 764 | offset[n++] = block / indirect_blks; |
| 765 | noffset[n] = 6 + (dptrs_per_blk * 2) + |
| 766 | offset[n - 1] * (dptrs_per_blk + 1); |
| 767 | offset[n++] = (block / direct_blks) % dptrs_per_blk; |
| 768 | noffset[n] = 7 + (dptrs_per_blk * 2) + |
| 769 | offset[n - 2] * (dptrs_per_blk + 1) + |
| 770 | offset[n - 1]; |
| 771 | offset[n] = block % direct_blks; |
| 772 | level = 3; |
| 773 | goto got; |
| 774 | } else { |
| 775 | return -E2BIG; |
| 776 | } |
| 777 | got: |
| 778 | return level; |
| 779 | } |
| 780 | |
| 781 | static struct folio *f2fs_get_node_folio_ra(struct folio *parent, int start); |
| 782 | |
| 783 | /* |
| 784 | * Caller should call f2fs_put_dnode(dn). |
| 785 | * Also, it should grab and release a rwsem by calling f2fs_lock_op() and |
| 786 | * f2fs_unlock_op() only if mode is set with ALLOC_NODE. |
| 787 | */ |
| 788 | int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) |
| 789 | { |
| 790 | struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| 791 | struct folio *nfolio[4]; |
| 792 | struct folio *parent = NULL; |
| 793 | int offset[4]; |
| 794 | unsigned int noffset[4]; |
| 795 | nid_t nids[4]; |
| 796 | int level, i = 0; |
| 797 | int err = 0; |
| 798 | |
| 799 | level = get_node_path(dn->inode, index, offset, noffset); |
| 800 | if (level < 0) |
| 801 | return level; |
| 802 | |
| 803 | nids[0] = dn->inode->i_ino; |
| 804 | |
| 805 | if (!dn->inode_folio) { |
| 806 | nfolio[0] = f2fs_get_inode_folio(sbi, nids[0]); |
| 807 | if (IS_ERR(nfolio[0])) |
| 808 | return PTR_ERR(nfolio[0]); |
| 809 | } else { |
| 810 | nfolio[0] = dn->inode_folio; |
| 811 | } |
| 812 | |
| 813 | /* if inline_data is set, should not report any block indices */ |
| 814 | if (f2fs_has_inline_data(dn->inode) && index) { |
| 815 | err = -ENOENT; |
| 816 | f2fs_folio_put(nfolio[0], true); |
| 817 | goto release_out; |
| 818 | } |
| 819 | |
| 820 | parent = nfolio[0]; |
| 821 | if (level != 0) |
| 822 | nids[1] = get_nid(parent, offset[0], true); |
| 823 | dn->inode_folio = nfolio[0]; |
| 824 | dn->inode_folio_locked = true; |
| 825 | |
| 826 | /* get indirect or direct nodes */ |
| 827 | for (i = 1; i <= level; i++) { |
| 828 | bool done = false; |
| 829 | |
| 830 | if (nids[i] && nids[i] == dn->inode->i_ino) { |
| 831 | err = -EFSCORRUPTED; |
| 832 | f2fs_err_ratelimited(sbi, |
| 833 | "inode mapping table is corrupted, run fsck to fix it, " |
| 834 | "ino:%lu, nid:%u, level:%d, offset:%d", |
| 835 | dn->inode->i_ino, nids[i], level, offset[level]); |
| 836 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 837 | goto release_pages; |
| 838 | } |
| 839 | |
| 840 | if (!nids[i] && mode == ALLOC_NODE) { |
| 841 | /* alloc new node */ |
| 842 | if (!f2fs_alloc_nid(sbi, &(nids[i]))) { |
| 843 | err = -ENOSPC; |
| 844 | goto release_pages; |
| 845 | } |
| 846 | |
| 847 | dn->nid = nids[i]; |
| 848 | nfolio[i] = f2fs_new_node_folio(dn, noffset[i]); |
| 849 | if (IS_ERR(nfolio[i])) { |
| 850 | f2fs_alloc_nid_failed(sbi, nids[i]); |
| 851 | err = PTR_ERR(nfolio[i]); |
| 852 | goto release_pages; |
| 853 | } |
| 854 | |
| 855 | set_nid(parent, offset[i - 1], nids[i], i == 1); |
| 856 | f2fs_alloc_nid_done(sbi, nids[i]); |
| 857 | done = true; |
| 858 | } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { |
| 859 | nfolio[i] = f2fs_get_node_folio_ra(parent, offset[i - 1]); |
| 860 | if (IS_ERR(nfolio[i])) { |
| 861 | err = PTR_ERR(nfolio[i]); |
| 862 | goto release_pages; |
| 863 | } |
| 864 | done = true; |
| 865 | } |
| 866 | if (i == 1) { |
| 867 | dn->inode_folio_locked = false; |
| 868 | folio_unlock(parent); |
| 869 | } else { |
| 870 | f2fs_folio_put(parent, true); |
| 871 | } |
| 872 | |
| 873 | if (!done) { |
| 874 | nfolio[i] = f2fs_get_node_folio(sbi, nids[i]); |
| 875 | if (IS_ERR(nfolio[i])) { |
| 876 | err = PTR_ERR(nfolio[i]); |
| 877 | f2fs_folio_put(nfolio[0], false); |
| 878 | goto release_out; |
| 879 | } |
| 880 | } |
| 881 | if (i < level) { |
| 882 | parent = nfolio[i]; |
| 883 | nids[i + 1] = get_nid(parent, offset[i], false); |
| 884 | } |
| 885 | } |
| 886 | dn->nid = nids[level]; |
| 887 | dn->ofs_in_node = offset[level]; |
| 888 | dn->node_folio = nfolio[level]; |
| 889 | dn->data_blkaddr = f2fs_data_blkaddr(dn); |
| 890 | |
| 891 | if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && |
| 892 | f2fs_sb_has_readonly(sbi)) { |
| 893 | unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; |
| 894 | unsigned int ofs_in_node = dn->ofs_in_node; |
| 895 | pgoff_t fofs = index; |
| 896 | unsigned int c_len; |
| 897 | block_t blkaddr; |
| 898 | |
| 899 | /* should align fofs and ofs_in_node to cluster_size */ |
| 900 | if (fofs % cluster_size) { |
| 901 | fofs = round_down(fofs, cluster_size); |
| 902 | ofs_in_node = round_down(ofs_in_node, cluster_size); |
| 903 | } |
| 904 | |
| 905 | c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node); |
| 906 | if (!c_len) |
| 907 | goto out; |
| 908 | |
| 909 | blkaddr = data_blkaddr(dn->inode, dn->node_folio, ofs_in_node); |
| 910 | if (blkaddr == COMPRESS_ADDR) |
| 911 | blkaddr = data_blkaddr(dn->inode, dn->node_folio, |
| 912 | ofs_in_node + 1); |
| 913 | |
| 914 | f2fs_update_read_extent_tree_range_compressed(dn->inode, |
| 915 | fofs, blkaddr, cluster_size, c_len); |
| 916 | } |
| 917 | out: |
| 918 | return 0; |
| 919 | |
| 920 | release_pages: |
| 921 | f2fs_folio_put(parent, true); |
| 922 | if (i > 1) |
| 923 | f2fs_folio_put(nfolio[0], false); |
| 924 | release_out: |
| 925 | dn->inode_folio = NULL; |
| 926 | dn->node_folio = NULL; |
| 927 | if (err == -ENOENT) { |
| 928 | dn->cur_level = i; |
| 929 | dn->max_level = level; |
| 930 | dn->ofs_in_node = offset[level]; |
| 931 | } |
| 932 | return err; |
| 933 | } |
| 934 | |
| 935 | static int truncate_node(struct dnode_of_data *dn) |
| 936 | { |
| 937 | struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| 938 | struct node_info ni; |
| 939 | int err; |
| 940 | pgoff_t index; |
| 941 | |
| 942 | err = f2fs_get_node_info(sbi, dn->nid, &ni, false); |
| 943 | if (err) |
| 944 | return err; |
| 945 | |
| 946 | if (ni.blk_addr != NEW_ADDR && |
| 947 | !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) { |
| 948 | f2fs_err_ratelimited(sbi, |
| 949 | "nat entry is corrupted, run fsck to fix it, ino:%u, " |
| 950 | "nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr); |
| 951 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 952 | f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT); |
| 953 | return -EFSCORRUPTED; |
| 954 | } |
| 955 | |
| 956 | /* Deallocate node address */ |
| 957 | f2fs_invalidate_blocks(sbi, ni.blk_addr, 1); |
| 958 | dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); |
| 959 | set_node_addr(sbi, &ni, NULL_ADDR, false); |
| 960 | |
| 961 | if (dn->nid == dn->inode->i_ino) { |
| 962 | f2fs_remove_orphan_inode(sbi, dn->nid); |
| 963 | dec_valid_inode_count(sbi); |
| 964 | f2fs_inode_synced(dn->inode); |
| 965 | } |
| 966 | |
| 967 | clear_node_folio_dirty(dn->node_folio); |
| 968 | set_sbi_flag(sbi, SBI_IS_DIRTY); |
| 969 | |
| 970 | index = dn->node_folio->index; |
| 971 | f2fs_folio_put(dn->node_folio, true); |
| 972 | |
| 973 | invalidate_mapping_pages(NODE_MAPPING(sbi), |
| 974 | index, index); |
| 975 | |
| 976 | dn->node_folio = NULL; |
| 977 | trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); |
| 978 | |
| 979 | return 0; |
| 980 | } |
| 981 | |
| 982 | static int truncate_dnode(struct dnode_of_data *dn) |
| 983 | { |
| 984 | struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| 985 | struct folio *folio; |
| 986 | int err; |
| 987 | |
| 988 | if (dn->nid == 0) |
| 989 | return 1; |
| 990 | |
| 991 | /* get direct node */ |
| 992 | folio = f2fs_get_node_folio(sbi, dn->nid); |
| 993 | if (PTR_ERR(folio) == -ENOENT) |
| 994 | return 1; |
| 995 | else if (IS_ERR(folio)) |
| 996 | return PTR_ERR(folio); |
| 997 | |
| 998 | if (IS_INODE(folio) || ino_of_node(folio) != dn->inode->i_ino) { |
| 999 | f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u", |
| 1000 | dn->inode->i_ino, dn->nid, ino_of_node(folio)); |
| 1001 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 1002 | f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE); |
| 1003 | f2fs_folio_put(folio, true); |
| 1004 | return -EFSCORRUPTED; |
| 1005 | } |
| 1006 | |
| 1007 | /* Make dnode_of_data for parameter */ |
| 1008 | dn->node_folio = folio; |
| 1009 | dn->ofs_in_node = 0; |
| 1010 | f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); |
| 1011 | err = truncate_node(dn); |
| 1012 | if (err) { |
| 1013 | f2fs_folio_put(folio, true); |
| 1014 | return err; |
| 1015 | } |
| 1016 | |
| 1017 | return 1; |
| 1018 | } |
| 1019 | |
| 1020 | static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, |
| 1021 | int ofs, int depth) |
| 1022 | { |
| 1023 | struct dnode_of_data rdn = *dn; |
| 1024 | struct folio *folio; |
| 1025 | struct f2fs_node *rn; |
| 1026 | nid_t child_nid; |
| 1027 | unsigned int child_nofs; |
| 1028 | int freed = 0; |
| 1029 | int i, ret; |
| 1030 | |
| 1031 | if (dn->nid == 0) |
| 1032 | return NIDS_PER_BLOCK + 1; |
| 1033 | |
| 1034 | trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); |
| 1035 | |
| 1036 | folio = f2fs_get_node_folio(F2FS_I_SB(dn->inode), dn->nid); |
| 1037 | if (IS_ERR(folio)) { |
| 1038 | trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(folio)); |
| 1039 | return PTR_ERR(folio); |
| 1040 | } |
| 1041 | |
| 1042 | f2fs_ra_node_pages(folio, ofs, NIDS_PER_BLOCK); |
| 1043 | |
| 1044 | rn = F2FS_NODE(folio); |
| 1045 | if (depth < 3) { |
| 1046 | for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { |
| 1047 | child_nid = le32_to_cpu(rn->in.nid[i]); |
| 1048 | if (child_nid == 0) |
| 1049 | continue; |
| 1050 | rdn.nid = child_nid; |
| 1051 | ret = truncate_dnode(&rdn); |
| 1052 | if (ret < 0) |
| 1053 | goto out_err; |
| 1054 | if (set_nid(folio, i, 0, false)) |
| 1055 | dn->node_changed = true; |
| 1056 | } |
| 1057 | } else { |
| 1058 | child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; |
| 1059 | for (i = ofs; i < NIDS_PER_BLOCK; i++) { |
| 1060 | child_nid = le32_to_cpu(rn->in.nid[i]); |
| 1061 | if (child_nid == 0) { |
| 1062 | child_nofs += NIDS_PER_BLOCK + 1; |
| 1063 | continue; |
| 1064 | } |
| 1065 | rdn.nid = child_nid; |
| 1066 | ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); |
| 1067 | if (ret == (NIDS_PER_BLOCK + 1)) { |
| 1068 | if (set_nid(folio, i, 0, false)) |
| 1069 | dn->node_changed = true; |
| 1070 | child_nofs += ret; |
| 1071 | } else if (ret < 0 && ret != -ENOENT) { |
| 1072 | goto out_err; |
| 1073 | } |
| 1074 | } |
| 1075 | freed = child_nofs; |
| 1076 | } |
| 1077 | |
| 1078 | if (!ofs) { |
| 1079 | /* remove current indirect node */ |
| 1080 | dn->node_folio = folio; |
| 1081 | ret = truncate_node(dn); |
| 1082 | if (ret) |
| 1083 | goto out_err; |
| 1084 | freed++; |
| 1085 | } else { |
| 1086 | f2fs_folio_put(folio, true); |
| 1087 | } |
| 1088 | trace_f2fs_truncate_nodes_exit(dn->inode, freed); |
| 1089 | return freed; |
| 1090 | |
| 1091 | out_err: |
| 1092 | f2fs_folio_put(folio, true); |
| 1093 | trace_f2fs_truncate_nodes_exit(dn->inode, ret); |
| 1094 | return ret; |
| 1095 | } |
| 1096 | |
| 1097 | static int truncate_partial_nodes(struct dnode_of_data *dn, |
| 1098 | struct f2fs_inode *ri, int *offset, int depth) |
| 1099 | { |
| 1100 | struct folio *folios[2]; |
| 1101 | nid_t nid[3]; |
| 1102 | nid_t child_nid; |
| 1103 | int err = 0; |
| 1104 | int i; |
| 1105 | int idx = depth - 2; |
| 1106 | |
| 1107 | nid[0] = get_nid(dn->inode_folio, offset[0], true); |
| 1108 | if (!nid[0]) |
| 1109 | return 0; |
| 1110 | |
| 1111 | /* get indirect nodes in the path */ |
| 1112 | for (i = 0; i < idx + 1; i++) { |
| 1113 | /* reference count'll be increased */ |
| 1114 | folios[i] = f2fs_get_node_folio(F2FS_I_SB(dn->inode), nid[i]); |
| 1115 | if (IS_ERR(folios[i])) { |
| 1116 | err = PTR_ERR(folios[i]); |
| 1117 | idx = i - 1; |
| 1118 | goto fail; |
| 1119 | } |
| 1120 | nid[i + 1] = get_nid(folios[i], offset[i + 1], false); |
| 1121 | } |
| 1122 | |
| 1123 | f2fs_ra_node_pages(folios[idx], offset[idx + 1], NIDS_PER_BLOCK); |
| 1124 | |
| 1125 | /* free direct nodes linked to a partial indirect node */ |
| 1126 | for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { |
| 1127 | child_nid = get_nid(folios[idx], i, false); |
| 1128 | if (!child_nid) |
| 1129 | continue; |
| 1130 | dn->nid = child_nid; |
| 1131 | err = truncate_dnode(dn); |
| 1132 | if (err < 0) |
| 1133 | goto fail; |
| 1134 | if (set_nid(folios[idx], i, 0, false)) |
| 1135 | dn->node_changed = true; |
| 1136 | } |
| 1137 | |
| 1138 | if (offset[idx + 1] == 0) { |
| 1139 | dn->node_folio = folios[idx]; |
| 1140 | dn->nid = nid[idx]; |
| 1141 | err = truncate_node(dn); |
| 1142 | if (err) |
| 1143 | goto fail; |
| 1144 | } else { |
| 1145 | f2fs_folio_put(folios[idx], true); |
| 1146 | } |
| 1147 | offset[idx]++; |
| 1148 | offset[idx + 1] = 0; |
| 1149 | idx--; |
| 1150 | fail: |
| 1151 | for (i = idx; i >= 0; i--) |
| 1152 | f2fs_folio_put(folios[i], true); |
| 1153 | |
| 1154 | trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); |
| 1155 | |
| 1156 | return err; |
| 1157 | } |
| 1158 | |
| 1159 | /* |
| 1160 | * All the block addresses of data and nodes should be nullified. |
| 1161 | */ |
| 1162 | int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) |
| 1163 | { |
| 1164 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 1165 | int err = 0, cont = 1; |
| 1166 | int level, offset[4], noffset[4]; |
| 1167 | unsigned int nofs = 0; |
| 1168 | struct f2fs_inode *ri; |
| 1169 | struct dnode_of_data dn; |
| 1170 | struct folio *folio; |
| 1171 | |
| 1172 | trace_f2fs_truncate_inode_blocks_enter(inode, from); |
| 1173 | |
| 1174 | level = get_node_path(inode, from, offset, noffset); |
| 1175 | if (level <= 0) { |
| 1176 | if (!level) { |
| 1177 | level = -EFSCORRUPTED; |
| 1178 | f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u", |
| 1179 | __func__, inode->i_ino, |
| 1180 | from, ADDRS_PER_INODE(inode)); |
| 1181 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 1182 | } |
| 1183 | trace_f2fs_truncate_inode_blocks_exit(inode, level); |
| 1184 | return level; |
| 1185 | } |
| 1186 | |
| 1187 | folio = f2fs_get_inode_folio(sbi, inode->i_ino); |
| 1188 | if (IS_ERR(folio)) { |
| 1189 | trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(folio)); |
| 1190 | return PTR_ERR(folio); |
| 1191 | } |
| 1192 | |
| 1193 | set_new_dnode(&dn, inode, folio, NULL, 0); |
| 1194 | folio_unlock(folio); |
| 1195 | |
| 1196 | ri = F2FS_INODE(folio); |
| 1197 | switch (level) { |
| 1198 | case 0: |
| 1199 | case 1: |
| 1200 | nofs = noffset[1]; |
| 1201 | break; |
| 1202 | case 2: |
| 1203 | nofs = noffset[1]; |
| 1204 | if (!offset[level - 1]) |
| 1205 | goto skip_partial; |
| 1206 | err = truncate_partial_nodes(&dn, ri, offset, level); |
| 1207 | if (err < 0 && err != -ENOENT) |
| 1208 | goto fail; |
| 1209 | nofs += 1 + NIDS_PER_BLOCK; |
| 1210 | break; |
| 1211 | case 3: |
| 1212 | nofs = 5 + 2 * NIDS_PER_BLOCK; |
| 1213 | if (!offset[level - 1]) |
| 1214 | goto skip_partial; |
| 1215 | err = truncate_partial_nodes(&dn, ri, offset, level); |
| 1216 | if (err < 0 && err != -ENOENT) |
| 1217 | goto fail; |
| 1218 | break; |
| 1219 | default: |
| 1220 | BUG(); |
| 1221 | } |
| 1222 | |
| 1223 | skip_partial: |
| 1224 | while (cont) { |
| 1225 | dn.nid = get_nid(folio, offset[0], true); |
| 1226 | switch (offset[0]) { |
| 1227 | case NODE_DIR1_BLOCK: |
| 1228 | case NODE_DIR2_BLOCK: |
| 1229 | err = truncate_dnode(&dn); |
| 1230 | break; |
| 1231 | |
| 1232 | case NODE_IND1_BLOCK: |
| 1233 | case NODE_IND2_BLOCK: |
| 1234 | err = truncate_nodes(&dn, nofs, offset[1], 2); |
| 1235 | break; |
| 1236 | |
| 1237 | case NODE_DIND_BLOCK: |
| 1238 | err = truncate_nodes(&dn, nofs, offset[1], 3); |
| 1239 | cont = 0; |
| 1240 | break; |
| 1241 | |
| 1242 | default: |
| 1243 | BUG(); |
| 1244 | } |
| 1245 | if (err == -ENOENT) { |
| 1246 | set_sbi_flag(F2FS_F_SB(folio), SBI_NEED_FSCK); |
| 1247 | f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); |
| 1248 | f2fs_err_ratelimited(sbi, |
| 1249 | "truncate node fail, ino:%lu, nid:%u, " |
| 1250 | "offset[0]:%d, offset[1]:%d, nofs:%d", |
| 1251 | inode->i_ino, dn.nid, offset[0], |
| 1252 | offset[1], nofs); |
| 1253 | err = 0; |
| 1254 | } |
| 1255 | if (err < 0) |
| 1256 | goto fail; |
| 1257 | if (offset[1] == 0 && get_nid(folio, offset[0], true)) { |
| 1258 | folio_lock(folio); |
| 1259 | BUG_ON(!is_node_folio(folio)); |
| 1260 | set_nid(folio, offset[0], 0, true); |
| 1261 | folio_unlock(folio); |
| 1262 | } |
| 1263 | offset[1] = 0; |
| 1264 | offset[0]++; |
| 1265 | nofs += err; |
| 1266 | } |
| 1267 | fail: |
| 1268 | f2fs_folio_put(folio, false); |
| 1269 | trace_f2fs_truncate_inode_blocks_exit(inode, err); |
| 1270 | return err > 0 ? 0 : err; |
| 1271 | } |
| 1272 | |
| 1273 | /* caller must lock inode page */ |
| 1274 | int f2fs_truncate_xattr_node(struct inode *inode) |
| 1275 | { |
| 1276 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 1277 | nid_t nid = F2FS_I(inode)->i_xattr_nid; |
| 1278 | struct dnode_of_data dn; |
| 1279 | struct folio *nfolio; |
| 1280 | int err; |
| 1281 | |
| 1282 | if (!nid) |
| 1283 | return 0; |
| 1284 | |
| 1285 | nfolio = f2fs_get_xnode_folio(sbi, nid); |
| 1286 | if (IS_ERR(nfolio)) |
| 1287 | return PTR_ERR(nfolio); |
| 1288 | |
| 1289 | set_new_dnode(&dn, inode, NULL, nfolio, nid); |
| 1290 | err = truncate_node(&dn); |
| 1291 | if (err) { |
| 1292 | f2fs_folio_put(nfolio, true); |
| 1293 | return err; |
| 1294 | } |
| 1295 | |
| 1296 | f2fs_i_xnid_write(inode, 0); |
| 1297 | |
| 1298 | return 0; |
| 1299 | } |
| 1300 | |
| 1301 | /* |
| 1302 | * Caller should grab and release a rwsem by calling f2fs_lock_op() and |
| 1303 | * f2fs_unlock_op(). |
| 1304 | */ |
| 1305 | int f2fs_remove_inode_page(struct inode *inode) |
| 1306 | { |
| 1307 | struct dnode_of_data dn; |
| 1308 | int err; |
| 1309 | |
| 1310 | set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); |
| 1311 | err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); |
| 1312 | if (err) |
| 1313 | return err; |
| 1314 | |
| 1315 | err = f2fs_truncate_xattr_node(inode); |
| 1316 | if (err) { |
| 1317 | f2fs_put_dnode(&dn); |
| 1318 | return err; |
| 1319 | } |
| 1320 | |
| 1321 | /* remove potential inline_data blocks */ |
| 1322 | if (!IS_DEVICE_ALIASING(inode) && |
| 1323 | (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || |
| 1324 | S_ISLNK(inode->i_mode))) |
| 1325 | f2fs_truncate_data_blocks_range(&dn, 1); |
| 1326 | |
| 1327 | /* 0 is possible, after f2fs_new_inode() has failed */ |
| 1328 | if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { |
| 1329 | f2fs_put_dnode(&dn); |
| 1330 | return -EIO; |
| 1331 | } |
| 1332 | |
| 1333 | if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { |
| 1334 | f2fs_warn(F2FS_I_SB(inode), |
| 1335 | "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", |
| 1336 | inode->i_ino, (unsigned long long)inode->i_blocks); |
| 1337 | set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); |
| 1338 | } |
| 1339 | |
| 1340 | /* will put inode & node pages */ |
| 1341 | err = truncate_node(&dn); |
| 1342 | if (err) { |
| 1343 | f2fs_put_dnode(&dn); |
| 1344 | return err; |
| 1345 | } |
| 1346 | return 0; |
| 1347 | } |
| 1348 | |
| 1349 | struct folio *f2fs_new_inode_folio(struct inode *inode) |
| 1350 | { |
| 1351 | struct dnode_of_data dn; |
| 1352 | |
| 1353 | /* allocate inode page for new inode */ |
| 1354 | set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); |
| 1355 | |
| 1356 | /* caller should f2fs_folio_put(folio, true); */ |
| 1357 | return f2fs_new_node_folio(&dn, 0); |
| 1358 | } |
| 1359 | |
| 1360 | struct folio *f2fs_new_node_folio(struct dnode_of_data *dn, unsigned int ofs) |
| 1361 | { |
| 1362 | struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| 1363 | struct node_info new_ni; |
| 1364 | struct folio *folio; |
| 1365 | int err; |
| 1366 | |
| 1367 | if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) |
| 1368 | return ERR_PTR(-EPERM); |
| 1369 | |
| 1370 | folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), dn->nid, false); |
| 1371 | if (IS_ERR(folio)) |
| 1372 | return folio; |
| 1373 | |
| 1374 | if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) |
| 1375 | goto fail; |
| 1376 | |
| 1377 | #ifdef CONFIG_F2FS_CHECK_FS |
| 1378 | err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); |
| 1379 | if (err) { |
| 1380 | dec_valid_node_count(sbi, dn->inode, !ofs); |
| 1381 | goto fail; |
| 1382 | } |
| 1383 | if (unlikely(new_ni.blk_addr != NULL_ADDR)) { |
| 1384 | err = -EFSCORRUPTED; |
| 1385 | dec_valid_node_count(sbi, dn->inode, !ofs); |
| 1386 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 1387 | f2fs_warn_ratelimited(sbi, |
| 1388 | "f2fs_new_node_folio: inconsistent nat entry, " |
| 1389 | "ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u", |
| 1390 | new_ni.ino, new_ni.nid, new_ni.blk_addr, |
| 1391 | new_ni.version, new_ni.flag); |
| 1392 | f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT); |
| 1393 | goto fail; |
| 1394 | } |
| 1395 | #endif |
| 1396 | new_ni.nid = dn->nid; |
| 1397 | new_ni.ino = dn->inode->i_ino; |
| 1398 | new_ni.blk_addr = NULL_ADDR; |
| 1399 | new_ni.flag = 0; |
| 1400 | new_ni.version = 0; |
| 1401 | set_node_addr(sbi, &new_ni, NEW_ADDR, false); |
| 1402 | |
| 1403 | f2fs_folio_wait_writeback(folio, NODE, true, true); |
| 1404 | fill_node_footer(folio, dn->nid, dn->inode->i_ino, ofs, true); |
| 1405 | set_cold_node(folio, S_ISDIR(dn->inode->i_mode)); |
| 1406 | if (!folio_test_uptodate(folio)) |
| 1407 | folio_mark_uptodate(folio); |
| 1408 | if (folio_mark_dirty(folio)) |
| 1409 | dn->node_changed = true; |
| 1410 | |
| 1411 | if (f2fs_has_xattr_block(ofs)) |
| 1412 | f2fs_i_xnid_write(dn->inode, dn->nid); |
| 1413 | |
| 1414 | if (ofs == 0) |
| 1415 | inc_valid_inode_count(sbi); |
| 1416 | return folio; |
| 1417 | fail: |
| 1418 | clear_node_folio_dirty(folio); |
| 1419 | f2fs_folio_put(folio, true); |
| 1420 | return ERR_PTR(err); |
| 1421 | } |
| 1422 | |
| 1423 | /* |
| 1424 | * Caller should do after getting the following values. |
| 1425 | * 0: f2fs_folio_put(folio, false) |
| 1426 | * LOCKED_PAGE or error: f2fs_folio_put(folio, true) |
| 1427 | */ |
| 1428 | static int read_node_folio(struct folio *folio, blk_opf_t op_flags) |
| 1429 | { |
| 1430 | struct f2fs_sb_info *sbi = F2FS_F_SB(folio); |
| 1431 | struct node_info ni; |
| 1432 | struct f2fs_io_info fio = { |
| 1433 | .sbi = sbi, |
| 1434 | .type = NODE, |
| 1435 | .op = REQ_OP_READ, |
| 1436 | .op_flags = op_flags, |
| 1437 | .folio = folio, |
| 1438 | .encrypted_page = NULL, |
| 1439 | }; |
| 1440 | int err; |
| 1441 | |
| 1442 | if (folio_test_uptodate(folio)) { |
| 1443 | if (!f2fs_inode_chksum_verify(sbi, folio)) { |
| 1444 | folio_clear_uptodate(folio); |
| 1445 | return -EFSBADCRC; |
| 1446 | } |
| 1447 | return LOCKED_PAGE; |
| 1448 | } |
| 1449 | |
| 1450 | err = f2fs_get_node_info(sbi, folio->index, &ni, false); |
| 1451 | if (err) |
| 1452 | return err; |
| 1453 | |
| 1454 | /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ |
| 1455 | if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) { |
| 1456 | folio_clear_uptodate(folio); |
| 1457 | return -ENOENT; |
| 1458 | } |
| 1459 | |
| 1460 | fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; |
| 1461 | |
| 1462 | err = f2fs_submit_page_bio(&fio); |
| 1463 | |
| 1464 | if (!err) |
| 1465 | f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE); |
| 1466 | |
| 1467 | return err; |
| 1468 | } |
| 1469 | |
| 1470 | /* |
| 1471 | * Readahead a node page |
| 1472 | */ |
| 1473 | void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) |
| 1474 | { |
| 1475 | struct folio *afolio; |
| 1476 | int err; |
| 1477 | |
| 1478 | if (!nid) |
| 1479 | return; |
| 1480 | if (f2fs_check_nid_range(sbi, nid)) |
| 1481 | return; |
| 1482 | |
| 1483 | afolio = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); |
| 1484 | if (afolio) |
| 1485 | return; |
| 1486 | |
| 1487 | afolio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false); |
| 1488 | if (IS_ERR(afolio)) |
| 1489 | return; |
| 1490 | |
| 1491 | err = read_node_folio(afolio, REQ_RAHEAD); |
| 1492 | f2fs_folio_put(afolio, err ? true : false); |
| 1493 | } |
| 1494 | |
| 1495 | static int sanity_check_node_footer(struct f2fs_sb_info *sbi, |
| 1496 | struct folio *folio, pgoff_t nid, |
| 1497 | enum node_type ntype) |
| 1498 | { |
| 1499 | if (unlikely(nid != nid_of_node(folio) || |
| 1500 | (ntype == NODE_TYPE_INODE && !IS_INODE(folio)) || |
| 1501 | (ntype == NODE_TYPE_XATTR && |
| 1502 | !f2fs_has_xattr_block(ofs_of_node(folio))) || |
| 1503 | time_to_inject(sbi, FAULT_INCONSISTENT_FOOTER))) { |
| 1504 | f2fs_warn(sbi, "inconsistent node block, node_type:%d, nid:%lu, " |
| 1505 | "node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", |
| 1506 | ntype, nid, nid_of_node(folio), ino_of_node(folio), |
| 1507 | ofs_of_node(folio), cpver_of_node(folio), |
| 1508 | next_blkaddr_of_node(folio)); |
| 1509 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 1510 | f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER); |
| 1511 | return -EFSCORRUPTED; |
| 1512 | } |
| 1513 | return 0; |
| 1514 | } |
| 1515 | |
| 1516 | static struct folio *__get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid, |
| 1517 | struct folio *parent, int start, enum node_type ntype) |
| 1518 | { |
| 1519 | struct folio *folio; |
| 1520 | int err; |
| 1521 | |
| 1522 | if (!nid) |
| 1523 | return ERR_PTR(-ENOENT); |
| 1524 | if (f2fs_check_nid_range(sbi, nid)) |
| 1525 | return ERR_PTR(-EINVAL); |
| 1526 | repeat: |
| 1527 | folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false); |
| 1528 | if (IS_ERR(folio)) |
| 1529 | return folio; |
| 1530 | |
| 1531 | err = read_node_folio(folio, 0); |
| 1532 | if (err < 0) |
| 1533 | goto out_put_err; |
| 1534 | if (err == LOCKED_PAGE) |
| 1535 | goto page_hit; |
| 1536 | |
| 1537 | if (parent) |
| 1538 | f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); |
| 1539 | |
| 1540 | folio_lock(folio); |
| 1541 | |
| 1542 | if (unlikely(!is_node_folio(folio))) { |
| 1543 | f2fs_folio_put(folio, true); |
| 1544 | goto repeat; |
| 1545 | } |
| 1546 | |
| 1547 | if (unlikely(!folio_test_uptodate(folio))) { |
| 1548 | err = -EIO; |
| 1549 | goto out_err; |
| 1550 | } |
| 1551 | |
| 1552 | if (!f2fs_inode_chksum_verify(sbi, folio)) { |
| 1553 | err = -EFSBADCRC; |
| 1554 | goto out_err; |
| 1555 | } |
| 1556 | page_hit: |
| 1557 | err = sanity_check_node_footer(sbi, folio, nid, ntype); |
| 1558 | if (!err) |
| 1559 | return folio; |
| 1560 | out_err: |
| 1561 | folio_clear_uptodate(folio); |
| 1562 | out_put_err: |
| 1563 | /* ENOENT comes from read_node_folio which is not an error. */ |
| 1564 | if (err != -ENOENT) |
| 1565 | f2fs_handle_page_eio(sbi, folio, NODE); |
| 1566 | f2fs_folio_put(folio, true); |
| 1567 | return ERR_PTR(err); |
| 1568 | } |
| 1569 | |
| 1570 | struct folio *f2fs_get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid) |
| 1571 | { |
| 1572 | return __get_node_folio(sbi, nid, NULL, 0, NODE_TYPE_REGULAR); |
| 1573 | } |
| 1574 | |
| 1575 | struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino) |
| 1576 | { |
| 1577 | return __get_node_folio(sbi, ino, NULL, 0, NODE_TYPE_INODE); |
| 1578 | } |
| 1579 | |
| 1580 | struct folio *f2fs_get_xnode_folio(struct f2fs_sb_info *sbi, pgoff_t xnid) |
| 1581 | { |
| 1582 | return __get_node_folio(sbi, xnid, NULL, 0, NODE_TYPE_XATTR); |
| 1583 | } |
| 1584 | |
| 1585 | static struct folio *f2fs_get_node_folio_ra(struct folio *parent, int start) |
| 1586 | { |
| 1587 | struct f2fs_sb_info *sbi = F2FS_F_SB(parent); |
| 1588 | nid_t nid = get_nid(parent, start, false); |
| 1589 | |
| 1590 | return __get_node_folio(sbi, nid, parent, start, NODE_TYPE_REGULAR); |
| 1591 | } |
| 1592 | |
| 1593 | static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) |
| 1594 | { |
| 1595 | struct inode *inode; |
| 1596 | struct folio *folio; |
| 1597 | int ret; |
| 1598 | |
| 1599 | /* should flush inline_data before evict_inode */ |
| 1600 | inode = ilookup(sbi->sb, ino); |
| 1601 | if (!inode) |
| 1602 | return; |
| 1603 | |
| 1604 | folio = f2fs_filemap_get_folio(inode->i_mapping, 0, |
| 1605 | FGP_LOCK|FGP_NOWAIT, 0); |
| 1606 | if (IS_ERR(folio)) |
| 1607 | goto iput_out; |
| 1608 | |
| 1609 | if (!folio_test_uptodate(folio)) |
| 1610 | goto folio_out; |
| 1611 | |
| 1612 | if (!folio_test_dirty(folio)) |
| 1613 | goto folio_out; |
| 1614 | |
| 1615 | if (!folio_clear_dirty_for_io(folio)) |
| 1616 | goto folio_out; |
| 1617 | |
| 1618 | ret = f2fs_write_inline_data(inode, folio); |
| 1619 | inode_dec_dirty_pages(inode); |
| 1620 | f2fs_remove_dirty_inode(inode); |
| 1621 | if (ret) |
| 1622 | folio_mark_dirty(folio); |
| 1623 | folio_out: |
| 1624 | f2fs_folio_put(folio, true); |
| 1625 | iput_out: |
| 1626 | iput(inode); |
| 1627 | } |
| 1628 | |
| 1629 | static struct folio *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) |
| 1630 | { |
| 1631 | pgoff_t index; |
| 1632 | struct folio_batch fbatch; |
| 1633 | struct folio *last_folio = NULL; |
| 1634 | int nr_folios; |
| 1635 | |
| 1636 | folio_batch_init(&fbatch); |
| 1637 | index = 0; |
| 1638 | |
| 1639 | while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, |
| 1640 | (pgoff_t)-1, PAGECACHE_TAG_DIRTY, |
| 1641 | &fbatch))) { |
| 1642 | int i; |
| 1643 | |
| 1644 | for (i = 0; i < nr_folios; i++) { |
| 1645 | struct folio *folio = fbatch.folios[i]; |
| 1646 | |
| 1647 | if (unlikely(f2fs_cp_error(sbi))) { |
| 1648 | f2fs_folio_put(last_folio, false); |
| 1649 | folio_batch_release(&fbatch); |
| 1650 | return ERR_PTR(-EIO); |
| 1651 | } |
| 1652 | |
| 1653 | if (!IS_DNODE(folio) || !is_cold_node(folio)) |
| 1654 | continue; |
| 1655 | if (ino_of_node(folio) != ino) |
| 1656 | continue; |
| 1657 | |
| 1658 | folio_lock(folio); |
| 1659 | |
| 1660 | if (unlikely(!is_node_folio(folio))) { |
| 1661 | continue_unlock: |
| 1662 | folio_unlock(folio); |
| 1663 | continue; |
| 1664 | } |
| 1665 | if (ino_of_node(folio) != ino) |
| 1666 | goto continue_unlock; |
| 1667 | |
| 1668 | if (!folio_test_dirty(folio)) { |
| 1669 | /* someone wrote it for us */ |
| 1670 | goto continue_unlock; |
| 1671 | } |
| 1672 | |
| 1673 | if (last_folio) |
| 1674 | f2fs_folio_put(last_folio, false); |
| 1675 | |
| 1676 | folio_get(folio); |
| 1677 | last_folio = folio; |
| 1678 | folio_unlock(folio); |
| 1679 | } |
| 1680 | folio_batch_release(&fbatch); |
| 1681 | cond_resched(); |
| 1682 | } |
| 1683 | return last_folio; |
| 1684 | } |
| 1685 | |
| 1686 | static bool __write_node_folio(struct folio *folio, bool atomic, bool *submitted, |
| 1687 | struct writeback_control *wbc, bool do_balance, |
| 1688 | enum iostat_type io_type, unsigned int *seq_id) |
| 1689 | { |
| 1690 | struct f2fs_sb_info *sbi = F2FS_F_SB(folio); |
| 1691 | nid_t nid; |
| 1692 | struct node_info ni; |
| 1693 | struct f2fs_io_info fio = { |
| 1694 | .sbi = sbi, |
| 1695 | .ino = ino_of_node(folio), |
| 1696 | .type = NODE, |
| 1697 | .op = REQ_OP_WRITE, |
| 1698 | .op_flags = wbc_to_write_flags(wbc), |
| 1699 | .folio = folio, |
| 1700 | .encrypted_page = NULL, |
| 1701 | .submitted = 0, |
| 1702 | .io_type = io_type, |
| 1703 | .io_wbc = wbc, |
| 1704 | }; |
| 1705 | unsigned int seq; |
| 1706 | |
| 1707 | trace_f2fs_writepage(folio, NODE); |
| 1708 | |
| 1709 | if (unlikely(f2fs_cp_error(sbi))) { |
| 1710 | /* keep node pages in remount-ro mode */ |
| 1711 | if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) |
| 1712 | goto redirty_out; |
| 1713 | folio_clear_uptodate(folio); |
| 1714 | dec_page_count(sbi, F2FS_DIRTY_NODES); |
| 1715 | folio_unlock(folio); |
| 1716 | return true; |
| 1717 | } |
| 1718 | |
| 1719 | if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| 1720 | goto redirty_out; |
| 1721 | |
| 1722 | if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && |
| 1723 | wbc->sync_mode == WB_SYNC_NONE && |
| 1724 | IS_DNODE(folio) && is_cold_node(folio)) |
| 1725 | goto redirty_out; |
| 1726 | |
| 1727 | /* get old block addr of this node page */ |
| 1728 | nid = nid_of_node(folio); |
| 1729 | f2fs_bug_on(sbi, folio->index != nid); |
| 1730 | |
| 1731 | if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) |
| 1732 | goto redirty_out; |
| 1733 | |
| 1734 | f2fs_down_read(&sbi->node_write); |
| 1735 | |
| 1736 | /* This page is already truncated */ |
| 1737 | if (unlikely(ni.blk_addr == NULL_ADDR)) { |
| 1738 | folio_clear_uptodate(folio); |
| 1739 | dec_page_count(sbi, F2FS_DIRTY_NODES); |
| 1740 | f2fs_up_read(&sbi->node_write); |
| 1741 | folio_unlock(folio); |
| 1742 | return true; |
| 1743 | } |
| 1744 | |
| 1745 | if (__is_valid_data_blkaddr(ni.blk_addr) && |
| 1746 | !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, |
| 1747 | DATA_GENERIC_ENHANCE)) { |
| 1748 | f2fs_up_read(&sbi->node_write); |
| 1749 | goto redirty_out; |
| 1750 | } |
| 1751 | |
| 1752 | if (atomic && !test_opt(sbi, NOBARRIER)) |
| 1753 | fio.op_flags |= REQ_PREFLUSH | REQ_FUA; |
| 1754 | |
| 1755 | /* should add to global list before clearing PAGECACHE status */ |
| 1756 | if (f2fs_in_warm_node_list(sbi, folio)) { |
| 1757 | seq = f2fs_add_fsync_node_entry(sbi, folio); |
| 1758 | if (seq_id) |
| 1759 | *seq_id = seq; |
| 1760 | } |
| 1761 | |
| 1762 | folio_start_writeback(folio); |
| 1763 | |
| 1764 | fio.old_blkaddr = ni.blk_addr; |
| 1765 | f2fs_do_write_node_page(nid, &fio); |
| 1766 | set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(folio)); |
| 1767 | dec_page_count(sbi, F2FS_DIRTY_NODES); |
| 1768 | f2fs_up_read(&sbi->node_write); |
| 1769 | |
| 1770 | folio_unlock(folio); |
| 1771 | |
| 1772 | if (unlikely(f2fs_cp_error(sbi))) { |
| 1773 | f2fs_submit_merged_write(sbi, NODE); |
| 1774 | submitted = NULL; |
| 1775 | } |
| 1776 | if (submitted) |
| 1777 | *submitted = fio.submitted; |
| 1778 | |
| 1779 | if (do_balance) |
| 1780 | f2fs_balance_fs(sbi, false); |
| 1781 | return true; |
| 1782 | |
| 1783 | redirty_out: |
| 1784 | folio_redirty_for_writepage(wbc, folio); |
| 1785 | folio_unlock(folio); |
| 1786 | return false; |
| 1787 | } |
| 1788 | |
| 1789 | int f2fs_move_node_folio(struct folio *node_folio, int gc_type) |
| 1790 | { |
| 1791 | int err = 0; |
| 1792 | |
| 1793 | if (gc_type == FG_GC) { |
| 1794 | struct writeback_control wbc = { |
| 1795 | .sync_mode = WB_SYNC_ALL, |
| 1796 | .nr_to_write = 1, |
| 1797 | }; |
| 1798 | |
| 1799 | f2fs_folio_wait_writeback(node_folio, NODE, true, true); |
| 1800 | |
| 1801 | folio_mark_dirty(node_folio); |
| 1802 | |
| 1803 | if (!folio_clear_dirty_for_io(node_folio)) { |
| 1804 | err = -EAGAIN; |
| 1805 | goto out_page; |
| 1806 | } |
| 1807 | |
| 1808 | if (!__write_node_folio(node_folio, false, NULL, |
| 1809 | &wbc, false, FS_GC_NODE_IO, NULL)) |
| 1810 | err = -EAGAIN; |
| 1811 | goto release_page; |
| 1812 | } else { |
| 1813 | /* set page dirty and write it */ |
| 1814 | if (!folio_test_writeback(node_folio)) |
| 1815 | folio_mark_dirty(node_folio); |
| 1816 | } |
| 1817 | out_page: |
| 1818 | folio_unlock(node_folio); |
| 1819 | release_page: |
| 1820 | f2fs_folio_put(node_folio, false); |
| 1821 | return err; |
| 1822 | } |
| 1823 | |
| 1824 | int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, |
| 1825 | struct writeback_control *wbc, bool atomic, |
| 1826 | unsigned int *seq_id) |
| 1827 | { |
| 1828 | pgoff_t index; |
| 1829 | struct folio_batch fbatch; |
| 1830 | int ret = 0; |
| 1831 | struct folio *last_folio = NULL; |
| 1832 | bool marked = false; |
| 1833 | nid_t ino = inode->i_ino; |
| 1834 | int nr_folios; |
| 1835 | int nwritten = 0; |
| 1836 | |
| 1837 | if (atomic) { |
| 1838 | last_folio = last_fsync_dnode(sbi, ino); |
| 1839 | if (IS_ERR_OR_NULL(last_folio)) |
| 1840 | return PTR_ERR_OR_ZERO(last_folio); |
| 1841 | } |
| 1842 | retry: |
| 1843 | folio_batch_init(&fbatch); |
| 1844 | index = 0; |
| 1845 | |
| 1846 | while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, |
| 1847 | (pgoff_t)-1, PAGECACHE_TAG_DIRTY, |
| 1848 | &fbatch))) { |
| 1849 | int i; |
| 1850 | |
| 1851 | for (i = 0; i < nr_folios; i++) { |
| 1852 | struct folio *folio = fbatch.folios[i]; |
| 1853 | bool submitted = false; |
| 1854 | |
| 1855 | if (unlikely(f2fs_cp_error(sbi))) { |
| 1856 | f2fs_folio_put(last_folio, false); |
| 1857 | folio_batch_release(&fbatch); |
| 1858 | ret = -EIO; |
| 1859 | goto out; |
| 1860 | } |
| 1861 | |
| 1862 | if (!IS_DNODE(folio) || !is_cold_node(folio)) |
| 1863 | continue; |
| 1864 | if (ino_of_node(folio) != ino) |
| 1865 | continue; |
| 1866 | |
| 1867 | folio_lock(folio); |
| 1868 | |
| 1869 | if (unlikely(!is_node_folio(folio))) { |
| 1870 | continue_unlock: |
| 1871 | folio_unlock(folio); |
| 1872 | continue; |
| 1873 | } |
| 1874 | if (ino_of_node(folio) != ino) |
| 1875 | goto continue_unlock; |
| 1876 | |
| 1877 | if (!folio_test_dirty(folio) && folio != last_folio) { |
| 1878 | /* someone wrote it for us */ |
| 1879 | goto continue_unlock; |
| 1880 | } |
| 1881 | |
| 1882 | f2fs_folio_wait_writeback(folio, NODE, true, true); |
| 1883 | |
| 1884 | set_fsync_mark(folio, 0); |
| 1885 | set_dentry_mark(folio, 0); |
| 1886 | |
| 1887 | if (!atomic || folio == last_folio) { |
| 1888 | set_fsync_mark(folio, 1); |
| 1889 | percpu_counter_inc(&sbi->rf_node_block_count); |
| 1890 | if (IS_INODE(folio)) { |
| 1891 | if (is_inode_flag_set(inode, |
| 1892 | FI_DIRTY_INODE)) |
| 1893 | f2fs_update_inode(inode, folio); |
| 1894 | set_dentry_mark(folio, |
| 1895 | f2fs_need_dentry_mark(sbi, ino)); |
| 1896 | } |
| 1897 | /* may be written by other thread */ |
| 1898 | if (!folio_test_dirty(folio)) |
| 1899 | folio_mark_dirty(folio); |
| 1900 | } |
| 1901 | |
| 1902 | if (!folio_clear_dirty_for_io(folio)) |
| 1903 | goto continue_unlock; |
| 1904 | |
| 1905 | if (!__write_node_folio(folio, atomic && |
| 1906 | folio == last_folio, |
| 1907 | &submitted, wbc, true, |
| 1908 | FS_NODE_IO, seq_id)) { |
| 1909 | f2fs_folio_put(last_folio, false); |
| 1910 | folio_batch_release(&fbatch); |
| 1911 | ret = -EIO; |
| 1912 | goto out; |
| 1913 | } |
| 1914 | if (submitted) |
| 1915 | nwritten++; |
| 1916 | |
| 1917 | if (folio == last_folio) { |
| 1918 | f2fs_folio_put(folio, false); |
| 1919 | folio_batch_release(&fbatch); |
| 1920 | marked = true; |
| 1921 | goto out; |
| 1922 | } |
| 1923 | } |
| 1924 | folio_batch_release(&fbatch); |
| 1925 | cond_resched(); |
| 1926 | } |
| 1927 | if (atomic && !marked) { |
| 1928 | f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", |
| 1929 | ino, last_folio->index); |
| 1930 | folio_lock(last_folio); |
| 1931 | f2fs_folio_wait_writeback(last_folio, NODE, true, true); |
| 1932 | folio_mark_dirty(last_folio); |
| 1933 | folio_unlock(last_folio); |
| 1934 | goto retry; |
| 1935 | } |
| 1936 | out: |
| 1937 | if (nwritten) |
| 1938 | f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); |
| 1939 | return ret; |
| 1940 | } |
| 1941 | |
| 1942 | static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) |
| 1943 | { |
| 1944 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 1945 | bool clean; |
| 1946 | |
| 1947 | if (inode->i_ino != ino) |
| 1948 | return 0; |
| 1949 | |
| 1950 | if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) |
| 1951 | return 0; |
| 1952 | |
| 1953 | spin_lock(&sbi->inode_lock[DIRTY_META]); |
| 1954 | clean = list_empty(&F2FS_I(inode)->gdirty_list); |
| 1955 | spin_unlock(&sbi->inode_lock[DIRTY_META]); |
| 1956 | |
| 1957 | if (clean) |
| 1958 | return 0; |
| 1959 | |
| 1960 | inode = igrab(inode); |
| 1961 | if (!inode) |
| 1962 | return 0; |
| 1963 | return 1; |
| 1964 | } |
| 1965 | |
| 1966 | static bool flush_dirty_inode(struct folio *folio) |
| 1967 | { |
| 1968 | struct f2fs_sb_info *sbi = F2FS_F_SB(folio); |
| 1969 | struct inode *inode; |
| 1970 | nid_t ino = ino_of_node(folio); |
| 1971 | |
| 1972 | inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); |
| 1973 | if (!inode) |
| 1974 | return false; |
| 1975 | |
| 1976 | f2fs_update_inode(inode, folio); |
| 1977 | folio_unlock(folio); |
| 1978 | |
| 1979 | iput(inode); |
| 1980 | return true; |
| 1981 | } |
| 1982 | |
| 1983 | void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) |
| 1984 | { |
| 1985 | pgoff_t index = 0; |
| 1986 | struct folio_batch fbatch; |
| 1987 | int nr_folios; |
| 1988 | |
| 1989 | folio_batch_init(&fbatch); |
| 1990 | |
| 1991 | while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, |
| 1992 | (pgoff_t)-1, PAGECACHE_TAG_DIRTY, |
| 1993 | &fbatch))) { |
| 1994 | int i; |
| 1995 | |
| 1996 | for (i = 0; i < nr_folios; i++) { |
| 1997 | struct folio *folio = fbatch.folios[i]; |
| 1998 | |
| 1999 | if (!IS_INODE(folio)) |
| 2000 | continue; |
| 2001 | |
| 2002 | folio_lock(folio); |
| 2003 | |
| 2004 | if (unlikely(!is_node_folio(folio))) |
| 2005 | goto unlock; |
| 2006 | if (!folio_test_dirty(folio)) |
| 2007 | goto unlock; |
| 2008 | |
| 2009 | /* flush inline_data, if it's async context. */ |
| 2010 | if (folio_test_f2fs_inline(folio)) { |
| 2011 | folio_clear_f2fs_inline(folio); |
| 2012 | folio_unlock(folio); |
| 2013 | flush_inline_data(sbi, ino_of_node(folio)); |
| 2014 | continue; |
| 2015 | } |
| 2016 | unlock: |
| 2017 | folio_unlock(folio); |
| 2018 | } |
| 2019 | folio_batch_release(&fbatch); |
| 2020 | cond_resched(); |
| 2021 | } |
| 2022 | } |
| 2023 | |
| 2024 | int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, |
| 2025 | struct writeback_control *wbc, |
| 2026 | bool do_balance, enum iostat_type io_type) |
| 2027 | { |
| 2028 | pgoff_t index; |
| 2029 | struct folio_batch fbatch; |
| 2030 | int step = 0; |
| 2031 | int nwritten = 0; |
| 2032 | int ret = 0; |
| 2033 | int nr_folios, done = 0; |
| 2034 | |
| 2035 | folio_batch_init(&fbatch); |
| 2036 | |
| 2037 | next_step: |
| 2038 | index = 0; |
| 2039 | |
| 2040 | while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), |
| 2041 | &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY, |
| 2042 | &fbatch))) { |
| 2043 | int i; |
| 2044 | |
| 2045 | for (i = 0; i < nr_folios; i++) { |
| 2046 | struct folio *folio = fbatch.folios[i]; |
| 2047 | bool submitted = false; |
| 2048 | |
| 2049 | /* give a priority to WB_SYNC threads */ |
| 2050 | if (atomic_read(&sbi->wb_sync_req[NODE]) && |
| 2051 | wbc->sync_mode == WB_SYNC_NONE) { |
| 2052 | done = 1; |
| 2053 | break; |
| 2054 | } |
| 2055 | |
| 2056 | /* |
| 2057 | * flushing sequence with step: |
| 2058 | * 0. indirect nodes |
| 2059 | * 1. dentry dnodes |
| 2060 | * 2. file dnodes |
| 2061 | */ |
| 2062 | if (step == 0 && IS_DNODE(folio)) |
| 2063 | continue; |
| 2064 | if (step == 1 && (!IS_DNODE(folio) || |
| 2065 | is_cold_node(folio))) |
| 2066 | continue; |
| 2067 | if (step == 2 && (!IS_DNODE(folio) || |
| 2068 | !is_cold_node(folio))) |
| 2069 | continue; |
| 2070 | lock_node: |
| 2071 | if (wbc->sync_mode == WB_SYNC_ALL) |
| 2072 | folio_lock(folio); |
| 2073 | else if (!folio_trylock(folio)) |
| 2074 | continue; |
| 2075 | |
| 2076 | if (unlikely(!is_node_folio(folio))) { |
| 2077 | continue_unlock: |
| 2078 | folio_unlock(folio); |
| 2079 | continue; |
| 2080 | } |
| 2081 | |
| 2082 | if (!folio_test_dirty(folio)) { |
| 2083 | /* someone wrote it for us */ |
| 2084 | goto continue_unlock; |
| 2085 | } |
| 2086 | |
| 2087 | /* flush inline_data/inode, if it's async context. */ |
| 2088 | if (!do_balance) |
| 2089 | goto write_node; |
| 2090 | |
| 2091 | /* flush inline_data */ |
| 2092 | if (folio_test_f2fs_inline(folio)) { |
| 2093 | folio_clear_f2fs_inline(folio); |
| 2094 | folio_unlock(folio); |
| 2095 | flush_inline_data(sbi, ino_of_node(folio)); |
| 2096 | goto lock_node; |
| 2097 | } |
| 2098 | |
| 2099 | /* flush dirty inode */ |
| 2100 | if (IS_INODE(folio) && flush_dirty_inode(folio)) |
| 2101 | goto lock_node; |
| 2102 | write_node: |
| 2103 | f2fs_folio_wait_writeback(folio, NODE, true, true); |
| 2104 | |
| 2105 | if (!folio_clear_dirty_for_io(folio)) |
| 2106 | goto continue_unlock; |
| 2107 | |
| 2108 | set_fsync_mark(folio, 0); |
| 2109 | set_dentry_mark(folio, 0); |
| 2110 | |
| 2111 | if (!__write_node_folio(folio, false, &submitted, |
| 2112 | wbc, do_balance, io_type, NULL)) { |
| 2113 | folio_batch_release(&fbatch); |
| 2114 | ret = -EIO; |
| 2115 | goto out; |
| 2116 | } |
| 2117 | if (submitted) |
| 2118 | nwritten++; |
| 2119 | |
| 2120 | if (--wbc->nr_to_write == 0) |
| 2121 | break; |
| 2122 | } |
| 2123 | folio_batch_release(&fbatch); |
| 2124 | cond_resched(); |
| 2125 | |
| 2126 | if (wbc->nr_to_write == 0) { |
| 2127 | step = 2; |
| 2128 | break; |
| 2129 | } |
| 2130 | } |
| 2131 | |
| 2132 | if (step < 2) { |
| 2133 | if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && |
| 2134 | wbc->sync_mode == WB_SYNC_NONE && step == 1) |
| 2135 | goto out; |
| 2136 | step++; |
| 2137 | goto next_step; |
| 2138 | } |
| 2139 | out: |
| 2140 | if (nwritten) |
| 2141 | f2fs_submit_merged_write(sbi, NODE); |
| 2142 | |
| 2143 | if (unlikely(f2fs_cp_error(sbi))) |
| 2144 | return -EIO; |
| 2145 | return ret; |
| 2146 | } |
| 2147 | |
| 2148 | int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, |
| 2149 | unsigned int seq_id) |
| 2150 | { |
| 2151 | struct fsync_node_entry *fn; |
| 2152 | struct list_head *head = &sbi->fsync_node_list; |
| 2153 | unsigned long flags; |
| 2154 | unsigned int cur_seq_id = 0; |
| 2155 | |
| 2156 | while (seq_id && cur_seq_id < seq_id) { |
| 2157 | struct folio *folio; |
| 2158 | |
| 2159 | spin_lock_irqsave(&sbi->fsync_node_lock, flags); |
| 2160 | if (list_empty(head)) { |
| 2161 | spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); |
| 2162 | break; |
| 2163 | } |
| 2164 | fn = list_first_entry(head, struct fsync_node_entry, list); |
| 2165 | if (fn->seq_id > seq_id) { |
| 2166 | spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); |
| 2167 | break; |
| 2168 | } |
| 2169 | cur_seq_id = fn->seq_id; |
| 2170 | folio = fn->folio; |
| 2171 | folio_get(folio); |
| 2172 | spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); |
| 2173 | |
| 2174 | f2fs_folio_wait_writeback(folio, NODE, true, false); |
| 2175 | |
| 2176 | folio_put(folio); |
| 2177 | } |
| 2178 | |
| 2179 | return filemap_check_errors(NODE_MAPPING(sbi)); |
| 2180 | } |
| 2181 | |
| 2182 | static int f2fs_write_node_pages(struct address_space *mapping, |
| 2183 | struct writeback_control *wbc) |
| 2184 | { |
| 2185 | struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); |
| 2186 | struct blk_plug plug; |
| 2187 | long diff; |
| 2188 | |
| 2189 | if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| 2190 | goto skip_write; |
| 2191 | |
| 2192 | /* balancing f2fs's metadata in background */ |
| 2193 | f2fs_balance_fs_bg(sbi, true); |
| 2194 | |
| 2195 | /* collect a number of dirty node pages and write together */ |
| 2196 | if (wbc->sync_mode != WB_SYNC_ALL && |
| 2197 | get_pages(sbi, F2FS_DIRTY_NODES) < |
| 2198 | nr_pages_to_skip(sbi, NODE)) |
| 2199 | goto skip_write; |
| 2200 | |
| 2201 | if (wbc->sync_mode == WB_SYNC_ALL) |
| 2202 | atomic_inc(&sbi->wb_sync_req[NODE]); |
| 2203 | else if (atomic_read(&sbi->wb_sync_req[NODE])) { |
| 2204 | /* to avoid potential deadlock */ |
| 2205 | if (current->plug) |
| 2206 | blk_finish_plug(current->plug); |
| 2207 | goto skip_write; |
| 2208 | } |
| 2209 | |
| 2210 | trace_f2fs_writepages(mapping->host, wbc, NODE); |
| 2211 | |
| 2212 | diff = nr_pages_to_write(sbi, NODE, wbc); |
| 2213 | blk_start_plug(&plug); |
| 2214 | f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); |
| 2215 | blk_finish_plug(&plug); |
| 2216 | wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); |
| 2217 | |
| 2218 | if (wbc->sync_mode == WB_SYNC_ALL) |
| 2219 | atomic_dec(&sbi->wb_sync_req[NODE]); |
| 2220 | return 0; |
| 2221 | |
| 2222 | skip_write: |
| 2223 | wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); |
| 2224 | trace_f2fs_writepages(mapping->host, wbc, NODE); |
| 2225 | return 0; |
| 2226 | } |
| 2227 | |
| 2228 | static bool f2fs_dirty_node_folio(struct address_space *mapping, |
| 2229 | struct folio *folio) |
| 2230 | { |
| 2231 | trace_f2fs_set_page_dirty(folio, NODE); |
| 2232 | |
| 2233 | if (!folio_test_uptodate(folio)) |
| 2234 | folio_mark_uptodate(folio); |
| 2235 | #ifdef CONFIG_F2FS_CHECK_FS |
| 2236 | if (IS_INODE(folio)) |
| 2237 | f2fs_inode_chksum_set(F2FS_M_SB(mapping), folio); |
| 2238 | #endif |
| 2239 | if (filemap_dirty_folio(mapping, folio)) { |
| 2240 | inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); |
| 2241 | folio_set_f2fs_reference(folio); |
| 2242 | return true; |
| 2243 | } |
| 2244 | return false; |
| 2245 | } |
| 2246 | |
| 2247 | /* |
| 2248 | * Structure of the f2fs node operations |
| 2249 | */ |
| 2250 | const struct address_space_operations f2fs_node_aops = { |
| 2251 | .writepages = f2fs_write_node_pages, |
| 2252 | .dirty_folio = f2fs_dirty_node_folio, |
| 2253 | .invalidate_folio = f2fs_invalidate_folio, |
| 2254 | .release_folio = f2fs_release_folio, |
| 2255 | .migrate_folio = filemap_migrate_folio, |
| 2256 | }; |
| 2257 | |
| 2258 | static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, |
| 2259 | nid_t n) |
| 2260 | { |
| 2261 | return radix_tree_lookup(&nm_i->free_nid_root, n); |
| 2262 | } |
| 2263 | |
| 2264 | static int __insert_free_nid(struct f2fs_sb_info *sbi, |
| 2265 | struct free_nid *i) |
| 2266 | { |
| 2267 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2268 | int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); |
| 2269 | |
| 2270 | if (err) |
| 2271 | return err; |
| 2272 | |
| 2273 | nm_i->nid_cnt[FREE_NID]++; |
| 2274 | list_add_tail(&i->list, &nm_i->free_nid_list); |
| 2275 | return 0; |
| 2276 | } |
| 2277 | |
| 2278 | static void __remove_free_nid(struct f2fs_sb_info *sbi, |
| 2279 | struct free_nid *i, enum nid_state state) |
| 2280 | { |
| 2281 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2282 | |
| 2283 | f2fs_bug_on(sbi, state != i->state); |
| 2284 | nm_i->nid_cnt[state]--; |
| 2285 | if (state == FREE_NID) |
| 2286 | list_del(&i->list); |
| 2287 | radix_tree_delete(&nm_i->free_nid_root, i->nid); |
| 2288 | } |
| 2289 | |
| 2290 | static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, |
| 2291 | enum nid_state org_state, enum nid_state dst_state) |
| 2292 | { |
| 2293 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2294 | |
| 2295 | f2fs_bug_on(sbi, org_state != i->state); |
| 2296 | i->state = dst_state; |
| 2297 | nm_i->nid_cnt[org_state]--; |
| 2298 | nm_i->nid_cnt[dst_state]++; |
| 2299 | |
| 2300 | switch (dst_state) { |
| 2301 | case PREALLOC_NID: |
| 2302 | list_del(&i->list); |
| 2303 | break; |
| 2304 | case FREE_NID: |
| 2305 | list_add_tail(&i->list, &nm_i->free_nid_list); |
| 2306 | break; |
| 2307 | default: |
| 2308 | BUG_ON(1); |
| 2309 | } |
| 2310 | } |
| 2311 | |
| 2312 | static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, |
| 2313 | bool set, bool build) |
| 2314 | { |
| 2315 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2316 | unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); |
| 2317 | unsigned int nid_ofs = nid - START_NID(nid); |
| 2318 | |
| 2319 | if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) |
| 2320 | return; |
| 2321 | |
| 2322 | if (set) { |
| 2323 | if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) |
| 2324 | return; |
| 2325 | __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); |
| 2326 | nm_i->free_nid_count[nat_ofs]++; |
| 2327 | } else { |
| 2328 | if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) |
| 2329 | return; |
| 2330 | __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); |
| 2331 | if (!build) |
| 2332 | nm_i->free_nid_count[nat_ofs]--; |
| 2333 | } |
| 2334 | } |
| 2335 | |
| 2336 | /* return if the nid is recognized as free */ |
| 2337 | static bool add_free_nid(struct f2fs_sb_info *sbi, |
| 2338 | nid_t nid, bool build, bool update) |
| 2339 | { |
| 2340 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2341 | struct free_nid *i, *e; |
| 2342 | struct nat_entry *ne; |
| 2343 | int err; |
| 2344 | bool ret = false; |
| 2345 | |
| 2346 | /* 0 nid should not be used */ |
| 2347 | if (unlikely(nid == 0)) |
| 2348 | return false; |
| 2349 | |
| 2350 | if (unlikely(f2fs_check_nid_range(sbi, nid))) |
| 2351 | return false; |
| 2352 | |
| 2353 | i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); |
| 2354 | i->nid = nid; |
| 2355 | i->state = FREE_NID; |
| 2356 | |
| 2357 | err = radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); |
| 2358 | f2fs_bug_on(sbi, err); |
| 2359 | |
| 2360 | err = -EINVAL; |
| 2361 | |
| 2362 | spin_lock(&nm_i->nid_list_lock); |
| 2363 | |
| 2364 | if (build) { |
| 2365 | /* |
| 2366 | * Thread A Thread B |
| 2367 | * - f2fs_create |
| 2368 | * - f2fs_new_inode |
| 2369 | * - f2fs_alloc_nid |
| 2370 | * - __insert_nid_to_list(PREALLOC_NID) |
| 2371 | * - f2fs_balance_fs_bg |
| 2372 | * - f2fs_build_free_nids |
| 2373 | * - __f2fs_build_free_nids |
| 2374 | * - scan_nat_page |
| 2375 | * - add_free_nid |
| 2376 | * - __lookup_nat_cache |
| 2377 | * - f2fs_add_link |
| 2378 | * - f2fs_init_inode_metadata |
| 2379 | * - f2fs_new_inode_folio |
| 2380 | * - f2fs_new_node_folio |
| 2381 | * - set_node_addr |
| 2382 | * - f2fs_alloc_nid_done |
| 2383 | * - __remove_nid_from_list(PREALLOC_NID) |
| 2384 | * - __insert_nid_to_list(FREE_NID) |
| 2385 | */ |
| 2386 | ne = __lookup_nat_cache(nm_i, nid, false); |
| 2387 | if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || |
| 2388 | nat_get_blkaddr(ne) != NULL_ADDR)) |
| 2389 | goto err_out; |
| 2390 | |
| 2391 | e = __lookup_free_nid_list(nm_i, nid); |
| 2392 | if (e) { |
| 2393 | if (e->state == FREE_NID) |
| 2394 | ret = true; |
| 2395 | goto err_out; |
| 2396 | } |
| 2397 | } |
| 2398 | ret = true; |
| 2399 | err = __insert_free_nid(sbi, i); |
| 2400 | err_out: |
| 2401 | if (update) { |
| 2402 | update_free_nid_bitmap(sbi, nid, ret, build); |
| 2403 | if (!build) |
| 2404 | nm_i->available_nids++; |
| 2405 | } |
| 2406 | spin_unlock(&nm_i->nid_list_lock); |
| 2407 | radix_tree_preload_end(); |
| 2408 | |
| 2409 | if (err) |
| 2410 | kmem_cache_free(free_nid_slab, i); |
| 2411 | return ret; |
| 2412 | } |
| 2413 | |
| 2414 | static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) |
| 2415 | { |
| 2416 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2417 | struct free_nid *i; |
| 2418 | bool need_free = false; |
| 2419 | |
| 2420 | spin_lock(&nm_i->nid_list_lock); |
| 2421 | i = __lookup_free_nid_list(nm_i, nid); |
| 2422 | if (i && i->state == FREE_NID) { |
| 2423 | __remove_free_nid(sbi, i, FREE_NID); |
| 2424 | need_free = true; |
| 2425 | } |
| 2426 | spin_unlock(&nm_i->nid_list_lock); |
| 2427 | |
| 2428 | if (need_free) |
| 2429 | kmem_cache_free(free_nid_slab, i); |
| 2430 | } |
| 2431 | |
| 2432 | static int scan_nat_page(struct f2fs_sb_info *sbi, |
| 2433 | struct f2fs_nat_block *nat_blk, nid_t start_nid) |
| 2434 | { |
| 2435 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2436 | block_t blk_addr; |
| 2437 | unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); |
| 2438 | int i; |
| 2439 | |
| 2440 | __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); |
| 2441 | |
| 2442 | i = start_nid % NAT_ENTRY_PER_BLOCK; |
| 2443 | |
| 2444 | for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { |
| 2445 | if (unlikely(start_nid >= nm_i->max_nid)) |
| 2446 | break; |
| 2447 | |
| 2448 | blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); |
| 2449 | |
| 2450 | if (blk_addr == NEW_ADDR) |
| 2451 | return -EFSCORRUPTED; |
| 2452 | |
| 2453 | if (blk_addr == NULL_ADDR) { |
| 2454 | add_free_nid(sbi, start_nid, true, true); |
| 2455 | } else { |
| 2456 | spin_lock(&NM_I(sbi)->nid_list_lock); |
| 2457 | update_free_nid_bitmap(sbi, start_nid, false, true); |
| 2458 | spin_unlock(&NM_I(sbi)->nid_list_lock); |
| 2459 | } |
| 2460 | } |
| 2461 | |
| 2462 | return 0; |
| 2463 | } |
| 2464 | |
| 2465 | static void scan_curseg_cache(struct f2fs_sb_info *sbi) |
| 2466 | { |
| 2467 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 2468 | struct f2fs_journal *journal = curseg->journal; |
| 2469 | int i; |
| 2470 | |
| 2471 | down_read(&curseg->journal_rwsem); |
| 2472 | for (i = 0; i < nats_in_cursum(journal); i++) { |
| 2473 | block_t addr; |
| 2474 | nid_t nid; |
| 2475 | |
| 2476 | addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); |
| 2477 | nid = le32_to_cpu(nid_in_journal(journal, i)); |
| 2478 | if (addr == NULL_ADDR) |
| 2479 | add_free_nid(sbi, nid, true, false); |
| 2480 | else |
| 2481 | remove_free_nid(sbi, nid); |
| 2482 | } |
| 2483 | up_read(&curseg->journal_rwsem); |
| 2484 | } |
| 2485 | |
| 2486 | static void scan_free_nid_bits(struct f2fs_sb_info *sbi) |
| 2487 | { |
| 2488 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2489 | unsigned int i, idx; |
| 2490 | nid_t nid; |
| 2491 | |
| 2492 | f2fs_down_read(&nm_i->nat_tree_lock); |
| 2493 | |
| 2494 | for (i = 0; i < nm_i->nat_blocks; i++) { |
| 2495 | if (!test_bit_le(i, nm_i->nat_block_bitmap)) |
| 2496 | continue; |
| 2497 | if (!nm_i->free_nid_count[i]) |
| 2498 | continue; |
| 2499 | for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { |
| 2500 | idx = find_next_bit_le(nm_i->free_nid_bitmap[i], |
| 2501 | NAT_ENTRY_PER_BLOCK, idx); |
| 2502 | if (idx >= NAT_ENTRY_PER_BLOCK) |
| 2503 | break; |
| 2504 | |
| 2505 | nid = i * NAT_ENTRY_PER_BLOCK + idx; |
| 2506 | add_free_nid(sbi, nid, true, false); |
| 2507 | |
| 2508 | if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) |
| 2509 | goto out; |
| 2510 | } |
| 2511 | } |
| 2512 | out: |
| 2513 | scan_curseg_cache(sbi); |
| 2514 | |
| 2515 | f2fs_up_read(&nm_i->nat_tree_lock); |
| 2516 | } |
| 2517 | |
| 2518 | static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, |
| 2519 | bool sync, bool mount) |
| 2520 | { |
| 2521 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2522 | int i = 0, ret; |
| 2523 | nid_t nid = nm_i->next_scan_nid; |
| 2524 | |
| 2525 | if (unlikely(nid >= nm_i->max_nid)) |
| 2526 | nid = 0; |
| 2527 | |
| 2528 | if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) |
| 2529 | nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; |
| 2530 | |
| 2531 | /* Enough entries */ |
| 2532 | if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) |
| 2533 | return 0; |
| 2534 | |
| 2535 | if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) |
| 2536 | return 0; |
| 2537 | |
| 2538 | if (!mount) { |
| 2539 | /* try to find free nids in free_nid_bitmap */ |
| 2540 | scan_free_nid_bits(sbi); |
| 2541 | |
| 2542 | if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) |
| 2543 | return 0; |
| 2544 | } |
| 2545 | |
| 2546 | /* readahead nat pages to be scanned */ |
| 2547 | f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, |
| 2548 | META_NAT, true); |
| 2549 | |
| 2550 | f2fs_down_read(&nm_i->nat_tree_lock); |
| 2551 | |
| 2552 | while (1) { |
| 2553 | if (!test_bit_le(NAT_BLOCK_OFFSET(nid), |
| 2554 | nm_i->nat_block_bitmap)) { |
| 2555 | struct folio *folio = get_current_nat_folio(sbi, nid); |
| 2556 | |
| 2557 | if (IS_ERR(folio)) { |
| 2558 | ret = PTR_ERR(folio); |
| 2559 | } else { |
| 2560 | ret = scan_nat_page(sbi, folio_address(folio), |
| 2561 | nid); |
| 2562 | f2fs_folio_put(folio, true); |
| 2563 | } |
| 2564 | |
| 2565 | if (ret) { |
| 2566 | f2fs_up_read(&nm_i->nat_tree_lock); |
| 2567 | |
| 2568 | if (ret == -EFSCORRUPTED) { |
| 2569 | f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); |
| 2570 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 2571 | f2fs_handle_error(sbi, |
| 2572 | ERROR_INCONSISTENT_NAT); |
| 2573 | } |
| 2574 | |
| 2575 | return ret; |
| 2576 | } |
| 2577 | } |
| 2578 | |
| 2579 | nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); |
| 2580 | if (unlikely(nid >= nm_i->max_nid)) |
| 2581 | nid = 0; |
| 2582 | |
| 2583 | if (++i >= FREE_NID_PAGES) |
| 2584 | break; |
| 2585 | } |
| 2586 | |
| 2587 | /* go to the next free nat pages to find free nids abundantly */ |
| 2588 | nm_i->next_scan_nid = nid; |
| 2589 | |
| 2590 | /* find free nids from current sum_pages */ |
| 2591 | scan_curseg_cache(sbi); |
| 2592 | |
| 2593 | f2fs_up_read(&nm_i->nat_tree_lock); |
| 2594 | |
| 2595 | f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), |
| 2596 | nm_i->ra_nid_pages, META_NAT, false); |
| 2597 | |
| 2598 | return 0; |
| 2599 | } |
| 2600 | |
| 2601 | int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) |
| 2602 | { |
| 2603 | int ret; |
| 2604 | |
| 2605 | mutex_lock(&NM_I(sbi)->build_lock); |
| 2606 | ret = __f2fs_build_free_nids(sbi, sync, mount); |
| 2607 | mutex_unlock(&NM_I(sbi)->build_lock); |
| 2608 | |
| 2609 | return ret; |
| 2610 | } |
| 2611 | |
| 2612 | /* |
| 2613 | * If this function returns success, caller can obtain a new nid |
| 2614 | * from second parameter of this function. |
| 2615 | * The returned nid could be used ino as well as nid when inode is created. |
| 2616 | */ |
| 2617 | bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) |
| 2618 | { |
| 2619 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2620 | struct free_nid *i = NULL; |
| 2621 | retry: |
| 2622 | if (time_to_inject(sbi, FAULT_ALLOC_NID)) |
| 2623 | return false; |
| 2624 | |
| 2625 | spin_lock(&nm_i->nid_list_lock); |
| 2626 | |
| 2627 | if (unlikely(nm_i->available_nids == 0)) { |
| 2628 | spin_unlock(&nm_i->nid_list_lock); |
| 2629 | return false; |
| 2630 | } |
| 2631 | |
| 2632 | /* We should not use stale free nids created by f2fs_build_free_nids */ |
| 2633 | if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { |
| 2634 | f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); |
| 2635 | i = list_first_entry(&nm_i->free_nid_list, |
| 2636 | struct free_nid, list); |
| 2637 | *nid = i->nid; |
| 2638 | |
| 2639 | __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); |
| 2640 | nm_i->available_nids--; |
| 2641 | |
| 2642 | update_free_nid_bitmap(sbi, *nid, false, false); |
| 2643 | |
| 2644 | spin_unlock(&nm_i->nid_list_lock); |
| 2645 | return true; |
| 2646 | } |
| 2647 | spin_unlock(&nm_i->nid_list_lock); |
| 2648 | |
| 2649 | /* Let's scan nat pages and its caches to get free nids */ |
| 2650 | if (!f2fs_build_free_nids(sbi, true, false)) |
| 2651 | goto retry; |
| 2652 | return false; |
| 2653 | } |
| 2654 | |
| 2655 | /* |
| 2656 | * f2fs_alloc_nid() should be called prior to this function. |
| 2657 | */ |
| 2658 | void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) |
| 2659 | { |
| 2660 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2661 | struct free_nid *i; |
| 2662 | |
| 2663 | spin_lock(&nm_i->nid_list_lock); |
| 2664 | i = __lookup_free_nid_list(nm_i, nid); |
| 2665 | f2fs_bug_on(sbi, !i); |
| 2666 | __remove_free_nid(sbi, i, PREALLOC_NID); |
| 2667 | spin_unlock(&nm_i->nid_list_lock); |
| 2668 | |
| 2669 | kmem_cache_free(free_nid_slab, i); |
| 2670 | } |
| 2671 | |
| 2672 | /* |
| 2673 | * f2fs_alloc_nid() should be called prior to this function. |
| 2674 | */ |
| 2675 | void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) |
| 2676 | { |
| 2677 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2678 | struct free_nid *i; |
| 2679 | bool need_free = false; |
| 2680 | |
| 2681 | if (!nid) |
| 2682 | return; |
| 2683 | |
| 2684 | spin_lock(&nm_i->nid_list_lock); |
| 2685 | i = __lookup_free_nid_list(nm_i, nid); |
| 2686 | f2fs_bug_on(sbi, !i); |
| 2687 | |
| 2688 | if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { |
| 2689 | __remove_free_nid(sbi, i, PREALLOC_NID); |
| 2690 | need_free = true; |
| 2691 | } else { |
| 2692 | __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); |
| 2693 | } |
| 2694 | |
| 2695 | nm_i->available_nids++; |
| 2696 | |
| 2697 | update_free_nid_bitmap(sbi, nid, true, false); |
| 2698 | |
| 2699 | spin_unlock(&nm_i->nid_list_lock); |
| 2700 | |
| 2701 | if (need_free) |
| 2702 | kmem_cache_free(free_nid_slab, i); |
| 2703 | } |
| 2704 | |
| 2705 | int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) |
| 2706 | { |
| 2707 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2708 | int nr = nr_shrink; |
| 2709 | |
| 2710 | if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) |
| 2711 | return 0; |
| 2712 | |
| 2713 | if (!mutex_trylock(&nm_i->build_lock)) |
| 2714 | return 0; |
| 2715 | |
| 2716 | while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { |
| 2717 | struct free_nid *i, *next; |
| 2718 | unsigned int batch = SHRINK_NID_BATCH_SIZE; |
| 2719 | |
| 2720 | spin_lock(&nm_i->nid_list_lock); |
| 2721 | list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { |
| 2722 | if (!nr_shrink || !batch || |
| 2723 | nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) |
| 2724 | break; |
| 2725 | __remove_free_nid(sbi, i, FREE_NID); |
| 2726 | kmem_cache_free(free_nid_slab, i); |
| 2727 | nr_shrink--; |
| 2728 | batch--; |
| 2729 | } |
| 2730 | spin_unlock(&nm_i->nid_list_lock); |
| 2731 | } |
| 2732 | |
| 2733 | mutex_unlock(&nm_i->build_lock); |
| 2734 | |
| 2735 | return nr - nr_shrink; |
| 2736 | } |
| 2737 | |
| 2738 | int f2fs_recover_inline_xattr(struct inode *inode, struct folio *folio) |
| 2739 | { |
| 2740 | void *src_addr, *dst_addr; |
| 2741 | size_t inline_size; |
| 2742 | struct folio *ifolio; |
| 2743 | struct f2fs_inode *ri; |
| 2744 | |
| 2745 | ifolio = f2fs_get_inode_folio(F2FS_I_SB(inode), inode->i_ino); |
| 2746 | if (IS_ERR(ifolio)) |
| 2747 | return PTR_ERR(ifolio); |
| 2748 | |
| 2749 | ri = F2FS_INODE(folio); |
| 2750 | if (ri->i_inline & F2FS_INLINE_XATTR) { |
| 2751 | if (!f2fs_has_inline_xattr(inode)) { |
| 2752 | set_inode_flag(inode, FI_INLINE_XATTR); |
| 2753 | stat_inc_inline_xattr(inode); |
| 2754 | } |
| 2755 | } else { |
| 2756 | if (f2fs_has_inline_xattr(inode)) { |
| 2757 | stat_dec_inline_xattr(inode); |
| 2758 | clear_inode_flag(inode, FI_INLINE_XATTR); |
| 2759 | } |
| 2760 | goto update_inode; |
| 2761 | } |
| 2762 | |
| 2763 | dst_addr = inline_xattr_addr(inode, ifolio); |
| 2764 | src_addr = inline_xattr_addr(inode, folio); |
| 2765 | inline_size = inline_xattr_size(inode); |
| 2766 | |
| 2767 | f2fs_folio_wait_writeback(ifolio, NODE, true, true); |
| 2768 | memcpy(dst_addr, src_addr, inline_size); |
| 2769 | update_inode: |
| 2770 | f2fs_update_inode(inode, ifolio); |
| 2771 | f2fs_folio_put(ifolio, true); |
| 2772 | return 0; |
| 2773 | } |
| 2774 | |
| 2775 | int f2fs_recover_xattr_data(struct inode *inode, struct folio *folio) |
| 2776 | { |
| 2777 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 2778 | nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; |
| 2779 | nid_t new_xnid; |
| 2780 | struct dnode_of_data dn; |
| 2781 | struct node_info ni; |
| 2782 | struct folio *xfolio; |
| 2783 | int err; |
| 2784 | |
| 2785 | if (!prev_xnid) |
| 2786 | goto recover_xnid; |
| 2787 | |
| 2788 | /* 1: invalidate the previous xattr nid */ |
| 2789 | err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); |
| 2790 | if (err) |
| 2791 | return err; |
| 2792 | |
| 2793 | f2fs_invalidate_blocks(sbi, ni.blk_addr, 1); |
| 2794 | dec_valid_node_count(sbi, inode, false); |
| 2795 | set_node_addr(sbi, &ni, NULL_ADDR, false); |
| 2796 | |
| 2797 | recover_xnid: |
| 2798 | /* 2: update xattr nid in inode */ |
| 2799 | if (!f2fs_alloc_nid(sbi, &new_xnid)) |
| 2800 | return -ENOSPC; |
| 2801 | |
| 2802 | set_new_dnode(&dn, inode, NULL, NULL, new_xnid); |
| 2803 | xfolio = f2fs_new_node_folio(&dn, XATTR_NODE_OFFSET); |
| 2804 | if (IS_ERR(xfolio)) { |
| 2805 | f2fs_alloc_nid_failed(sbi, new_xnid); |
| 2806 | return PTR_ERR(xfolio); |
| 2807 | } |
| 2808 | |
| 2809 | f2fs_alloc_nid_done(sbi, new_xnid); |
| 2810 | f2fs_update_inode_page(inode); |
| 2811 | |
| 2812 | /* 3: update and set xattr node page dirty */ |
| 2813 | if (folio) { |
| 2814 | memcpy(F2FS_NODE(xfolio), F2FS_NODE(folio), |
| 2815 | VALID_XATTR_BLOCK_SIZE); |
| 2816 | folio_mark_dirty(xfolio); |
| 2817 | } |
| 2818 | f2fs_folio_put(xfolio, true); |
| 2819 | |
| 2820 | return 0; |
| 2821 | } |
| 2822 | |
| 2823 | int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct folio *folio) |
| 2824 | { |
| 2825 | struct f2fs_inode *src, *dst; |
| 2826 | nid_t ino = ino_of_node(folio); |
| 2827 | struct node_info old_ni, new_ni; |
| 2828 | struct folio *ifolio; |
| 2829 | int err; |
| 2830 | |
| 2831 | err = f2fs_get_node_info(sbi, ino, &old_ni, false); |
| 2832 | if (err) |
| 2833 | return err; |
| 2834 | |
| 2835 | if (unlikely(old_ni.blk_addr != NULL_ADDR)) |
| 2836 | return -EINVAL; |
| 2837 | retry: |
| 2838 | ifolio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), ino, false); |
| 2839 | if (IS_ERR(ifolio)) { |
| 2840 | memalloc_retry_wait(GFP_NOFS); |
| 2841 | goto retry; |
| 2842 | } |
| 2843 | |
| 2844 | /* Should not use this inode from free nid list */ |
| 2845 | remove_free_nid(sbi, ino); |
| 2846 | |
| 2847 | if (!folio_test_uptodate(ifolio)) |
| 2848 | folio_mark_uptodate(ifolio); |
| 2849 | fill_node_footer(ifolio, ino, ino, 0, true); |
| 2850 | set_cold_node(ifolio, false); |
| 2851 | |
| 2852 | src = F2FS_INODE(folio); |
| 2853 | dst = F2FS_INODE(ifolio); |
| 2854 | |
| 2855 | memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); |
| 2856 | dst->i_size = 0; |
| 2857 | dst->i_blocks = cpu_to_le64(1); |
| 2858 | dst->i_links = cpu_to_le32(1); |
| 2859 | dst->i_xattr_nid = 0; |
| 2860 | dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); |
| 2861 | if (dst->i_inline & F2FS_EXTRA_ATTR) { |
| 2862 | dst->i_extra_isize = src->i_extra_isize; |
| 2863 | |
| 2864 | if (f2fs_sb_has_flexible_inline_xattr(sbi) && |
| 2865 | F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), |
| 2866 | i_inline_xattr_size)) |
| 2867 | dst->i_inline_xattr_size = src->i_inline_xattr_size; |
| 2868 | |
| 2869 | if (f2fs_sb_has_project_quota(sbi) && |
| 2870 | F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), |
| 2871 | i_projid)) |
| 2872 | dst->i_projid = src->i_projid; |
| 2873 | |
| 2874 | if (f2fs_sb_has_inode_crtime(sbi) && |
| 2875 | F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), |
| 2876 | i_crtime_nsec)) { |
| 2877 | dst->i_crtime = src->i_crtime; |
| 2878 | dst->i_crtime_nsec = src->i_crtime_nsec; |
| 2879 | } |
| 2880 | } |
| 2881 | |
| 2882 | new_ni = old_ni; |
| 2883 | new_ni.ino = ino; |
| 2884 | |
| 2885 | if (unlikely(inc_valid_node_count(sbi, NULL, true))) |
| 2886 | WARN_ON(1); |
| 2887 | set_node_addr(sbi, &new_ni, NEW_ADDR, false); |
| 2888 | inc_valid_inode_count(sbi); |
| 2889 | folio_mark_dirty(ifolio); |
| 2890 | f2fs_folio_put(ifolio, true); |
| 2891 | return 0; |
| 2892 | } |
| 2893 | |
| 2894 | int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, |
| 2895 | unsigned int segno, struct f2fs_summary_block *sum) |
| 2896 | { |
| 2897 | struct f2fs_node *rn; |
| 2898 | struct f2fs_summary *sum_entry; |
| 2899 | block_t addr; |
| 2900 | int i, idx, last_offset, nrpages; |
| 2901 | |
| 2902 | /* scan the node segment */ |
| 2903 | last_offset = BLKS_PER_SEG(sbi); |
| 2904 | addr = START_BLOCK(sbi, segno); |
| 2905 | sum_entry = &sum->entries[0]; |
| 2906 | |
| 2907 | for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { |
| 2908 | nrpages = bio_max_segs(last_offset - i); |
| 2909 | |
| 2910 | /* readahead node pages */ |
| 2911 | f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); |
| 2912 | |
| 2913 | for (idx = addr; idx < addr + nrpages; idx++) { |
| 2914 | struct folio *folio = f2fs_get_tmp_folio(sbi, idx); |
| 2915 | |
| 2916 | if (IS_ERR(folio)) |
| 2917 | return PTR_ERR(folio); |
| 2918 | |
| 2919 | rn = F2FS_NODE(folio); |
| 2920 | sum_entry->nid = rn->footer.nid; |
| 2921 | sum_entry->version = 0; |
| 2922 | sum_entry->ofs_in_node = 0; |
| 2923 | sum_entry++; |
| 2924 | f2fs_folio_put(folio, true); |
| 2925 | } |
| 2926 | |
| 2927 | invalidate_mapping_pages(META_MAPPING(sbi), addr, |
| 2928 | addr + nrpages); |
| 2929 | } |
| 2930 | return 0; |
| 2931 | } |
| 2932 | |
| 2933 | static void remove_nats_in_journal(struct f2fs_sb_info *sbi) |
| 2934 | { |
| 2935 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 2936 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 2937 | struct f2fs_journal *journal = curseg->journal; |
| 2938 | int i; |
| 2939 | bool init_dirty; |
| 2940 | |
| 2941 | down_write(&curseg->journal_rwsem); |
| 2942 | for (i = 0; i < nats_in_cursum(journal); i++) { |
| 2943 | struct nat_entry *ne; |
| 2944 | struct f2fs_nat_entry raw_ne; |
| 2945 | nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); |
| 2946 | |
| 2947 | if (f2fs_check_nid_range(sbi, nid)) |
| 2948 | continue; |
| 2949 | |
| 2950 | init_dirty = false; |
| 2951 | |
| 2952 | raw_ne = nat_in_journal(journal, i); |
| 2953 | |
| 2954 | ne = __lookup_nat_cache(nm_i, nid, true); |
| 2955 | if (!ne) { |
| 2956 | init_dirty = true; |
| 2957 | ne = __alloc_nat_entry(sbi, nid, true); |
| 2958 | __init_nat_entry(nm_i, ne, &raw_ne, true, true); |
| 2959 | } |
| 2960 | |
| 2961 | /* |
| 2962 | * if a free nat in journal has not been used after last |
| 2963 | * checkpoint, we should remove it from available nids, |
| 2964 | * since later we will add it again. |
| 2965 | */ |
| 2966 | if (!get_nat_flag(ne, IS_DIRTY) && |
| 2967 | le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { |
| 2968 | spin_lock(&nm_i->nid_list_lock); |
| 2969 | nm_i->available_nids--; |
| 2970 | spin_unlock(&nm_i->nid_list_lock); |
| 2971 | } |
| 2972 | |
| 2973 | __set_nat_cache_dirty(nm_i, ne, init_dirty); |
| 2974 | } |
| 2975 | update_nats_in_cursum(journal, -i); |
| 2976 | up_write(&curseg->journal_rwsem); |
| 2977 | } |
| 2978 | |
| 2979 | static void __adjust_nat_entry_set(struct nat_entry_set *nes, |
| 2980 | struct list_head *head, int max) |
| 2981 | { |
| 2982 | struct nat_entry_set *cur; |
| 2983 | |
| 2984 | if (nes->entry_cnt >= max) |
| 2985 | goto add_out; |
| 2986 | |
| 2987 | list_for_each_entry(cur, head, set_list) { |
| 2988 | if (cur->entry_cnt >= nes->entry_cnt) { |
| 2989 | list_add(&nes->set_list, cur->set_list.prev); |
| 2990 | return; |
| 2991 | } |
| 2992 | } |
| 2993 | add_out: |
| 2994 | list_add_tail(&nes->set_list, head); |
| 2995 | } |
| 2996 | |
| 2997 | static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, |
| 2998 | const struct f2fs_nat_block *nat_blk) |
| 2999 | { |
| 3000 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 3001 | unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; |
| 3002 | int valid = 0; |
| 3003 | int i = 0; |
| 3004 | |
| 3005 | if (!enabled_nat_bits(sbi, NULL)) |
| 3006 | return; |
| 3007 | |
| 3008 | if (nat_index == 0) { |
| 3009 | valid = 1; |
| 3010 | i = 1; |
| 3011 | } |
| 3012 | for (; i < NAT_ENTRY_PER_BLOCK; i++) { |
| 3013 | if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) |
| 3014 | valid++; |
| 3015 | } |
| 3016 | if (valid == 0) { |
| 3017 | __set_bit_le(nat_index, nm_i->empty_nat_bits); |
| 3018 | __clear_bit_le(nat_index, nm_i->full_nat_bits); |
| 3019 | return; |
| 3020 | } |
| 3021 | |
| 3022 | __clear_bit_le(nat_index, nm_i->empty_nat_bits); |
| 3023 | if (valid == NAT_ENTRY_PER_BLOCK) |
| 3024 | __set_bit_le(nat_index, nm_i->full_nat_bits); |
| 3025 | else |
| 3026 | __clear_bit_le(nat_index, nm_i->full_nat_bits); |
| 3027 | } |
| 3028 | |
| 3029 | static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, |
| 3030 | struct nat_entry_set *set, struct cp_control *cpc) |
| 3031 | { |
| 3032 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 3033 | struct f2fs_journal *journal = curseg->journal; |
| 3034 | nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; |
| 3035 | bool to_journal = true; |
| 3036 | struct f2fs_nat_block *nat_blk; |
| 3037 | struct nat_entry *ne, *cur; |
| 3038 | struct folio *folio = NULL; |
| 3039 | |
| 3040 | /* |
| 3041 | * there are two steps to flush nat entries: |
| 3042 | * #1, flush nat entries to journal in current hot data summary block. |
| 3043 | * #2, flush nat entries to nat page. |
| 3044 | */ |
| 3045 | if (enabled_nat_bits(sbi, cpc) || |
| 3046 | !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) |
| 3047 | to_journal = false; |
| 3048 | |
| 3049 | if (to_journal) { |
| 3050 | down_write(&curseg->journal_rwsem); |
| 3051 | } else { |
| 3052 | folio = get_next_nat_folio(sbi, start_nid); |
| 3053 | if (IS_ERR(folio)) |
| 3054 | return PTR_ERR(folio); |
| 3055 | |
| 3056 | nat_blk = folio_address(folio); |
| 3057 | f2fs_bug_on(sbi, !nat_blk); |
| 3058 | } |
| 3059 | |
| 3060 | /* flush dirty nats in nat entry set */ |
| 3061 | list_for_each_entry_safe(ne, cur, &set->entry_list, list) { |
| 3062 | struct f2fs_nat_entry *raw_ne; |
| 3063 | nid_t nid = nat_get_nid(ne); |
| 3064 | int offset; |
| 3065 | |
| 3066 | f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); |
| 3067 | |
| 3068 | if (to_journal) { |
| 3069 | offset = f2fs_lookup_journal_in_cursum(journal, |
| 3070 | NAT_JOURNAL, nid, 1); |
| 3071 | f2fs_bug_on(sbi, offset < 0); |
| 3072 | raw_ne = &nat_in_journal(journal, offset); |
| 3073 | nid_in_journal(journal, offset) = cpu_to_le32(nid); |
| 3074 | } else { |
| 3075 | raw_ne = &nat_blk->entries[nid - start_nid]; |
| 3076 | } |
| 3077 | raw_nat_from_node_info(raw_ne, &ne->ni); |
| 3078 | nat_reset_flag(ne); |
| 3079 | __clear_nat_cache_dirty(NM_I(sbi), set, ne); |
| 3080 | if (nat_get_blkaddr(ne) == NULL_ADDR) { |
| 3081 | add_free_nid(sbi, nid, false, true); |
| 3082 | } else { |
| 3083 | spin_lock(&NM_I(sbi)->nid_list_lock); |
| 3084 | update_free_nid_bitmap(sbi, nid, false, false); |
| 3085 | spin_unlock(&NM_I(sbi)->nid_list_lock); |
| 3086 | } |
| 3087 | } |
| 3088 | |
| 3089 | if (to_journal) { |
| 3090 | up_write(&curseg->journal_rwsem); |
| 3091 | } else { |
| 3092 | __update_nat_bits(sbi, start_nid, nat_blk); |
| 3093 | f2fs_folio_put(folio, true); |
| 3094 | } |
| 3095 | |
| 3096 | /* Allow dirty nats by node block allocation in write_begin */ |
| 3097 | if (!set->entry_cnt) { |
| 3098 | radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); |
| 3099 | kmem_cache_free(nat_entry_set_slab, set); |
| 3100 | } |
| 3101 | return 0; |
| 3102 | } |
| 3103 | |
| 3104 | /* |
| 3105 | * This function is called during the checkpointing process. |
| 3106 | */ |
| 3107 | int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) |
| 3108 | { |
| 3109 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 3110 | struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| 3111 | struct f2fs_journal *journal = curseg->journal; |
| 3112 | struct nat_entry_set *setvec[NAT_VEC_SIZE]; |
| 3113 | struct nat_entry_set *set, *tmp; |
| 3114 | unsigned int found; |
| 3115 | nid_t set_idx = 0; |
| 3116 | LIST_HEAD(sets); |
| 3117 | int err = 0; |
| 3118 | |
| 3119 | /* |
| 3120 | * during unmount, let's flush nat_bits before checking |
| 3121 | * nat_cnt[DIRTY_NAT]. |
| 3122 | */ |
| 3123 | if (enabled_nat_bits(sbi, cpc)) { |
| 3124 | f2fs_down_write(&nm_i->nat_tree_lock); |
| 3125 | remove_nats_in_journal(sbi); |
| 3126 | f2fs_up_write(&nm_i->nat_tree_lock); |
| 3127 | } |
| 3128 | |
| 3129 | if (!nm_i->nat_cnt[DIRTY_NAT]) |
| 3130 | return 0; |
| 3131 | |
| 3132 | f2fs_down_write(&nm_i->nat_tree_lock); |
| 3133 | |
| 3134 | /* |
| 3135 | * if there are no enough space in journal to store dirty nat |
| 3136 | * entries, remove all entries from journal and merge them |
| 3137 | * into nat entry set. |
| 3138 | */ |
| 3139 | if (enabled_nat_bits(sbi, cpc) || |
| 3140 | !__has_cursum_space(journal, |
| 3141 | nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) |
| 3142 | remove_nats_in_journal(sbi); |
| 3143 | |
| 3144 | while ((found = __gang_lookup_nat_set(nm_i, |
| 3145 | set_idx, NAT_VEC_SIZE, setvec))) { |
| 3146 | unsigned idx; |
| 3147 | |
| 3148 | set_idx = setvec[found - 1]->set + 1; |
| 3149 | for (idx = 0; idx < found; idx++) |
| 3150 | __adjust_nat_entry_set(setvec[idx], &sets, |
| 3151 | MAX_NAT_JENTRIES(journal)); |
| 3152 | } |
| 3153 | |
| 3154 | /* flush dirty nats in nat entry set */ |
| 3155 | list_for_each_entry_safe(set, tmp, &sets, set_list) { |
| 3156 | err = __flush_nat_entry_set(sbi, set, cpc); |
| 3157 | if (err) |
| 3158 | break; |
| 3159 | } |
| 3160 | |
| 3161 | f2fs_up_write(&nm_i->nat_tree_lock); |
| 3162 | /* Allow dirty nats by node block allocation in write_begin */ |
| 3163 | |
| 3164 | return err; |
| 3165 | } |
| 3166 | |
| 3167 | static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) |
| 3168 | { |
| 3169 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| 3170 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 3171 | unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; |
| 3172 | unsigned int i; |
| 3173 | __u64 cp_ver = cur_cp_version(ckpt); |
| 3174 | block_t nat_bits_addr; |
| 3175 | |
| 3176 | if (!enabled_nat_bits(sbi, NULL)) |
| 3177 | return 0; |
| 3178 | |
| 3179 | nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); |
| 3180 | nm_i->nat_bits = f2fs_kvzalloc(sbi, |
| 3181 | F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL); |
| 3182 | if (!nm_i->nat_bits) |
| 3183 | return -ENOMEM; |
| 3184 | |
| 3185 | nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) - |
| 3186 | nm_i->nat_bits_blocks; |
| 3187 | for (i = 0; i < nm_i->nat_bits_blocks; i++) { |
| 3188 | struct folio *folio; |
| 3189 | |
| 3190 | folio = f2fs_get_meta_folio(sbi, nat_bits_addr++); |
| 3191 | if (IS_ERR(folio)) |
| 3192 | return PTR_ERR(folio); |
| 3193 | |
| 3194 | memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i), |
| 3195 | folio_address(folio), F2FS_BLKSIZE); |
| 3196 | f2fs_folio_put(folio, true); |
| 3197 | } |
| 3198 | |
| 3199 | cp_ver |= (cur_cp_crc(ckpt) << 32); |
| 3200 | if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { |
| 3201 | disable_nat_bits(sbi, true); |
| 3202 | return 0; |
| 3203 | } |
| 3204 | |
| 3205 | nm_i->full_nat_bits = nm_i->nat_bits + 8; |
| 3206 | nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; |
| 3207 | |
| 3208 | f2fs_notice(sbi, "Found nat_bits in checkpoint"); |
| 3209 | return 0; |
| 3210 | } |
| 3211 | |
| 3212 | static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) |
| 3213 | { |
| 3214 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 3215 | unsigned int i = 0; |
| 3216 | nid_t nid, last_nid; |
| 3217 | |
| 3218 | if (!enabled_nat_bits(sbi, NULL)) |
| 3219 | return; |
| 3220 | |
| 3221 | for (i = 0; i < nm_i->nat_blocks; i++) { |
| 3222 | i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); |
| 3223 | if (i >= nm_i->nat_blocks) |
| 3224 | break; |
| 3225 | |
| 3226 | __set_bit_le(i, nm_i->nat_block_bitmap); |
| 3227 | |
| 3228 | nid = i * NAT_ENTRY_PER_BLOCK; |
| 3229 | last_nid = nid + NAT_ENTRY_PER_BLOCK; |
| 3230 | |
| 3231 | spin_lock(&NM_I(sbi)->nid_list_lock); |
| 3232 | for (; nid < last_nid; nid++) |
| 3233 | update_free_nid_bitmap(sbi, nid, true, true); |
| 3234 | spin_unlock(&NM_I(sbi)->nid_list_lock); |
| 3235 | } |
| 3236 | |
| 3237 | for (i = 0; i < nm_i->nat_blocks; i++) { |
| 3238 | i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); |
| 3239 | if (i >= nm_i->nat_blocks) |
| 3240 | break; |
| 3241 | |
| 3242 | __set_bit_le(i, nm_i->nat_block_bitmap); |
| 3243 | } |
| 3244 | } |
| 3245 | |
| 3246 | static int init_node_manager(struct f2fs_sb_info *sbi) |
| 3247 | { |
| 3248 | struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); |
| 3249 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 3250 | unsigned char *version_bitmap; |
| 3251 | unsigned int nat_segs; |
| 3252 | int err; |
| 3253 | |
| 3254 | nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); |
| 3255 | |
| 3256 | /* segment_count_nat includes pair segment so divide to 2. */ |
| 3257 | nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; |
| 3258 | nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); |
| 3259 | nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; |
| 3260 | |
| 3261 | /* not used nids: 0, node, meta, (and root counted as valid node) */ |
| 3262 | nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - |
| 3263 | F2FS_RESERVED_NODE_NUM; |
| 3264 | nm_i->nid_cnt[FREE_NID] = 0; |
| 3265 | nm_i->nid_cnt[PREALLOC_NID] = 0; |
| 3266 | nm_i->ram_thresh = DEF_RAM_THRESHOLD; |
| 3267 | nm_i->ra_nid_pages = DEF_RA_NID_PAGES; |
| 3268 | nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; |
| 3269 | nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; |
| 3270 | |
| 3271 | INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); |
| 3272 | INIT_LIST_HEAD(&nm_i->free_nid_list); |
| 3273 | INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); |
| 3274 | INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); |
| 3275 | INIT_LIST_HEAD(&nm_i->nat_entries); |
| 3276 | spin_lock_init(&nm_i->nat_list_lock); |
| 3277 | |
| 3278 | mutex_init(&nm_i->build_lock); |
| 3279 | spin_lock_init(&nm_i->nid_list_lock); |
| 3280 | init_f2fs_rwsem(&nm_i->nat_tree_lock); |
| 3281 | |
| 3282 | nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); |
| 3283 | nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); |
| 3284 | version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); |
| 3285 | nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, |
| 3286 | GFP_KERNEL); |
| 3287 | if (!nm_i->nat_bitmap) |
| 3288 | return -ENOMEM; |
| 3289 | |
| 3290 | if (!test_opt(sbi, NAT_BITS)) |
| 3291 | disable_nat_bits(sbi, true); |
| 3292 | |
| 3293 | err = __get_nat_bitmaps(sbi); |
| 3294 | if (err) |
| 3295 | return err; |
| 3296 | |
| 3297 | #ifdef CONFIG_F2FS_CHECK_FS |
| 3298 | nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, |
| 3299 | GFP_KERNEL); |
| 3300 | if (!nm_i->nat_bitmap_mir) |
| 3301 | return -ENOMEM; |
| 3302 | #endif |
| 3303 | |
| 3304 | return 0; |
| 3305 | } |
| 3306 | |
| 3307 | static int init_free_nid_cache(struct f2fs_sb_info *sbi) |
| 3308 | { |
| 3309 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 3310 | int i; |
| 3311 | |
| 3312 | nm_i->free_nid_bitmap = |
| 3313 | f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), |
| 3314 | nm_i->nat_blocks), |
| 3315 | GFP_KERNEL); |
| 3316 | if (!nm_i->free_nid_bitmap) |
| 3317 | return -ENOMEM; |
| 3318 | |
| 3319 | for (i = 0; i < nm_i->nat_blocks; i++) { |
| 3320 | nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, |
| 3321 | f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); |
| 3322 | if (!nm_i->free_nid_bitmap[i]) |
| 3323 | return -ENOMEM; |
| 3324 | } |
| 3325 | |
| 3326 | nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, |
| 3327 | GFP_KERNEL); |
| 3328 | if (!nm_i->nat_block_bitmap) |
| 3329 | return -ENOMEM; |
| 3330 | |
| 3331 | nm_i->free_nid_count = |
| 3332 | f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), |
| 3333 | nm_i->nat_blocks), |
| 3334 | GFP_KERNEL); |
| 3335 | if (!nm_i->free_nid_count) |
| 3336 | return -ENOMEM; |
| 3337 | return 0; |
| 3338 | } |
| 3339 | |
| 3340 | int f2fs_build_node_manager(struct f2fs_sb_info *sbi) |
| 3341 | { |
| 3342 | int err; |
| 3343 | |
| 3344 | sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), |
| 3345 | GFP_KERNEL); |
| 3346 | if (!sbi->nm_info) |
| 3347 | return -ENOMEM; |
| 3348 | |
| 3349 | err = init_node_manager(sbi); |
| 3350 | if (err) |
| 3351 | return err; |
| 3352 | |
| 3353 | err = init_free_nid_cache(sbi); |
| 3354 | if (err) |
| 3355 | return err; |
| 3356 | |
| 3357 | /* load free nid status from nat_bits table */ |
| 3358 | load_free_nid_bitmap(sbi); |
| 3359 | |
| 3360 | return f2fs_build_free_nids(sbi, true, true); |
| 3361 | } |
| 3362 | |
| 3363 | void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) |
| 3364 | { |
| 3365 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 3366 | struct free_nid *i, *next_i; |
| 3367 | void *vec[NAT_VEC_SIZE]; |
| 3368 | struct nat_entry **natvec = (struct nat_entry **)vec; |
| 3369 | struct nat_entry_set **setvec = (struct nat_entry_set **)vec; |
| 3370 | nid_t nid = 0; |
| 3371 | unsigned int found; |
| 3372 | |
| 3373 | if (!nm_i) |
| 3374 | return; |
| 3375 | |
| 3376 | /* destroy free nid list */ |
| 3377 | spin_lock(&nm_i->nid_list_lock); |
| 3378 | list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { |
| 3379 | __remove_free_nid(sbi, i, FREE_NID); |
| 3380 | spin_unlock(&nm_i->nid_list_lock); |
| 3381 | kmem_cache_free(free_nid_slab, i); |
| 3382 | spin_lock(&nm_i->nid_list_lock); |
| 3383 | } |
| 3384 | f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); |
| 3385 | f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); |
| 3386 | f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); |
| 3387 | spin_unlock(&nm_i->nid_list_lock); |
| 3388 | |
| 3389 | /* destroy nat cache */ |
| 3390 | f2fs_down_write(&nm_i->nat_tree_lock); |
| 3391 | while ((found = __gang_lookup_nat_cache(nm_i, |
| 3392 | nid, NAT_VEC_SIZE, natvec))) { |
| 3393 | unsigned idx; |
| 3394 | |
| 3395 | nid = nat_get_nid(natvec[found - 1]) + 1; |
| 3396 | for (idx = 0; idx < found; idx++) { |
| 3397 | spin_lock(&nm_i->nat_list_lock); |
| 3398 | list_del(&natvec[idx]->list); |
| 3399 | spin_unlock(&nm_i->nat_list_lock); |
| 3400 | |
| 3401 | __del_from_nat_cache(nm_i, natvec[idx]); |
| 3402 | } |
| 3403 | } |
| 3404 | f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); |
| 3405 | |
| 3406 | /* destroy nat set cache */ |
| 3407 | nid = 0; |
| 3408 | memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE); |
| 3409 | while ((found = __gang_lookup_nat_set(nm_i, |
| 3410 | nid, NAT_VEC_SIZE, setvec))) { |
| 3411 | unsigned idx; |
| 3412 | |
| 3413 | nid = setvec[found - 1]->set + 1; |
| 3414 | for (idx = 0; idx < found; idx++) { |
| 3415 | /* entry_cnt is not zero, when cp_error was occurred */ |
| 3416 | f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); |
| 3417 | radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); |
| 3418 | kmem_cache_free(nat_entry_set_slab, setvec[idx]); |
| 3419 | } |
| 3420 | } |
| 3421 | f2fs_up_write(&nm_i->nat_tree_lock); |
| 3422 | |
| 3423 | kvfree(nm_i->nat_block_bitmap); |
| 3424 | if (nm_i->free_nid_bitmap) { |
| 3425 | int i; |
| 3426 | |
| 3427 | for (i = 0; i < nm_i->nat_blocks; i++) |
| 3428 | kvfree(nm_i->free_nid_bitmap[i]); |
| 3429 | kvfree(nm_i->free_nid_bitmap); |
| 3430 | } |
| 3431 | kvfree(nm_i->free_nid_count); |
| 3432 | |
| 3433 | kfree(nm_i->nat_bitmap); |
| 3434 | kvfree(nm_i->nat_bits); |
| 3435 | #ifdef CONFIG_F2FS_CHECK_FS |
| 3436 | kfree(nm_i->nat_bitmap_mir); |
| 3437 | #endif |
| 3438 | sbi->nm_info = NULL; |
| 3439 | kfree(nm_i); |
| 3440 | } |
| 3441 | |
| 3442 | int __init f2fs_create_node_manager_caches(void) |
| 3443 | { |
| 3444 | nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", |
| 3445 | sizeof(struct nat_entry)); |
| 3446 | if (!nat_entry_slab) |
| 3447 | goto fail; |
| 3448 | |
| 3449 | free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", |
| 3450 | sizeof(struct free_nid)); |
| 3451 | if (!free_nid_slab) |
| 3452 | goto destroy_nat_entry; |
| 3453 | |
| 3454 | nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", |
| 3455 | sizeof(struct nat_entry_set)); |
| 3456 | if (!nat_entry_set_slab) |
| 3457 | goto destroy_free_nid; |
| 3458 | |
| 3459 | fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", |
| 3460 | sizeof(struct fsync_node_entry)); |
| 3461 | if (!fsync_node_entry_slab) |
| 3462 | goto destroy_nat_entry_set; |
| 3463 | return 0; |
| 3464 | |
| 3465 | destroy_nat_entry_set: |
| 3466 | kmem_cache_destroy(nat_entry_set_slab); |
| 3467 | destroy_free_nid: |
| 3468 | kmem_cache_destroy(free_nid_slab); |
| 3469 | destroy_nat_entry: |
| 3470 | kmem_cache_destroy(nat_entry_slab); |
| 3471 | fail: |
| 3472 | return -ENOMEM; |
| 3473 | } |
| 3474 | |
| 3475 | void f2fs_destroy_node_manager_caches(void) |
| 3476 | { |
| 3477 | kmem_cache_destroy(fsync_node_entry_slab); |
| 3478 | kmem_cache_destroy(nat_entry_set_slab); |
| 3479 | kmem_cache_destroy(free_nid_slab); |
| 3480 | kmem_cache_destroy(nat_entry_slab); |
| 3481 | } |