| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * fs/f2fs/checkpoint.c |
| 4 | * |
| 5 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| 6 | * http://www.samsung.com/ |
| 7 | */ |
| 8 | #include <linux/fs.h> |
| 9 | #include <linux/bio.h> |
| 10 | #include <linux/mpage.h> |
| 11 | #include <linux/writeback.h> |
| 12 | #include <linux/blkdev.h> |
| 13 | #include <linux/f2fs_fs.h> |
| 14 | #include <linux/pagevec.h> |
| 15 | #include <linux/swap.h> |
| 16 | #include <linux/kthread.h> |
| 17 | |
| 18 | #include "f2fs.h" |
| 19 | #include "node.h" |
| 20 | #include "segment.h" |
| 21 | #include "iostat.h" |
| 22 | #include <trace/events/f2fs.h> |
| 23 | |
| 24 | #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_RT, 3)) |
| 25 | |
| 26 | static struct kmem_cache *ino_entry_slab; |
| 27 | struct kmem_cache *f2fs_inode_entry_slab; |
| 28 | |
| 29 | void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, |
| 30 | unsigned char reason) |
| 31 | { |
| 32 | f2fs_build_fault_attr(sbi, 0, 0, FAULT_ALL); |
| 33 | if (!end_io) |
| 34 | f2fs_flush_merged_writes(sbi); |
| 35 | f2fs_handle_critical_error(sbi, reason); |
| 36 | } |
| 37 | |
| 38 | /* |
| 39 | * We guarantee no failure on the returned page. |
| 40 | */ |
| 41 | struct folio *f2fs_grab_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index) |
| 42 | { |
| 43 | struct address_space *mapping = META_MAPPING(sbi); |
| 44 | struct folio *folio; |
| 45 | repeat: |
| 46 | folio = f2fs_grab_cache_folio(mapping, index, false); |
| 47 | if (IS_ERR(folio)) { |
| 48 | cond_resched(); |
| 49 | goto repeat; |
| 50 | } |
| 51 | f2fs_folio_wait_writeback(folio, META, true, true); |
| 52 | if (!folio_test_uptodate(folio)) |
| 53 | folio_mark_uptodate(folio); |
| 54 | return folio; |
| 55 | } |
| 56 | |
| 57 | static struct folio *__get_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index, |
| 58 | bool is_meta) |
| 59 | { |
| 60 | struct address_space *mapping = META_MAPPING(sbi); |
| 61 | struct folio *folio; |
| 62 | struct f2fs_io_info fio = { |
| 63 | .sbi = sbi, |
| 64 | .type = META, |
| 65 | .op = REQ_OP_READ, |
| 66 | .op_flags = REQ_META | REQ_PRIO, |
| 67 | .old_blkaddr = index, |
| 68 | .new_blkaddr = index, |
| 69 | .encrypted_page = NULL, |
| 70 | .is_por = !is_meta ? 1 : 0, |
| 71 | }; |
| 72 | int err; |
| 73 | |
| 74 | if (unlikely(!is_meta)) |
| 75 | fio.op_flags &= ~REQ_META; |
| 76 | repeat: |
| 77 | folio = f2fs_grab_cache_folio(mapping, index, false); |
| 78 | if (IS_ERR(folio)) { |
| 79 | cond_resched(); |
| 80 | goto repeat; |
| 81 | } |
| 82 | if (folio_test_uptodate(folio)) |
| 83 | goto out; |
| 84 | |
| 85 | fio.page = &folio->page; |
| 86 | |
| 87 | err = f2fs_submit_page_bio(&fio); |
| 88 | if (err) { |
| 89 | f2fs_folio_put(folio, true); |
| 90 | return ERR_PTR(err); |
| 91 | } |
| 92 | |
| 93 | f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE); |
| 94 | |
| 95 | folio_lock(folio); |
| 96 | if (unlikely(!is_meta_folio(folio))) { |
| 97 | f2fs_folio_put(folio, true); |
| 98 | goto repeat; |
| 99 | } |
| 100 | |
| 101 | if (unlikely(!folio_test_uptodate(folio))) { |
| 102 | f2fs_handle_page_eio(sbi, folio, META); |
| 103 | f2fs_folio_put(folio, true); |
| 104 | return ERR_PTR(-EIO); |
| 105 | } |
| 106 | out: |
| 107 | return folio; |
| 108 | } |
| 109 | |
| 110 | struct folio *f2fs_get_meta_folio(struct f2fs_sb_info *sbi, pgoff_t index) |
| 111 | { |
| 112 | return __get_meta_folio(sbi, index, true); |
| 113 | } |
| 114 | |
| 115 | struct folio *f2fs_get_meta_folio_retry(struct f2fs_sb_info *sbi, pgoff_t index) |
| 116 | { |
| 117 | struct folio *folio; |
| 118 | int count = 0; |
| 119 | |
| 120 | retry: |
| 121 | folio = __get_meta_folio(sbi, index, true); |
| 122 | if (IS_ERR(folio)) { |
| 123 | if (PTR_ERR(folio) == -EIO && |
| 124 | ++count <= DEFAULT_RETRY_IO_COUNT) |
| 125 | goto retry; |
| 126 | f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE); |
| 127 | } |
| 128 | return folio; |
| 129 | } |
| 130 | |
| 131 | /* for POR only */ |
| 132 | struct folio *f2fs_get_tmp_folio(struct f2fs_sb_info *sbi, pgoff_t index) |
| 133 | { |
| 134 | return __get_meta_folio(sbi, index, false); |
| 135 | } |
| 136 | |
| 137 | static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, |
| 138 | int type) |
| 139 | { |
| 140 | struct seg_entry *se; |
| 141 | unsigned int segno, offset; |
| 142 | bool exist; |
| 143 | |
| 144 | if (type == DATA_GENERIC) |
| 145 | return true; |
| 146 | |
| 147 | segno = GET_SEGNO(sbi, blkaddr); |
| 148 | offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); |
| 149 | se = get_seg_entry(sbi, segno); |
| 150 | |
| 151 | exist = f2fs_test_bit(offset, se->cur_valid_map); |
| 152 | |
| 153 | /* skip data, if we already have an error in checkpoint. */ |
| 154 | if (unlikely(f2fs_cp_error(sbi))) |
| 155 | return exist; |
| 156 | |
| 157 | if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) || |
| 158 | (!exist && type == DATA_GENERIC_ENHANCE)) |
| 159 | goto out_err; |
| 160 | if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE) |
| 161 | goto out_handle; |
| 162 | return exist; |
| 163 | |
| 164 | out_err: |
| 165 | f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", |
| 166 | blkaddr, exist); |
| 167 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 168 | dump_stack(); |
| 169 | out_handle: |
| 170 | f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); |
| 171 | return exist; |
| 172 | } |
| 173 | |
| 174 | static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, |
| 175 | block_t blkaddr, int type) |
| 176 | { |
| 177 | switch (type) { |
| 178 | case META_NAT: |
| 179 | break; |
| 180 | case META_SIT: |
| 181 | if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) |
| 182 | goto check_only; |
| 183 | break; |
| 184 | case META_SSA: |
| 185 | if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || |
| 186 | blkaddr < SM_I(sbi)->ssa_blkaddr)) |
| 187 | goto check_only; |
| 188 | break; |
| 189 | case META_CP: |
| 190 | if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || |
| 191 | blkaddr < __start_cp_addr(sbi))) |
| 192 | goto check_only; |
| 193 | break; |
| 194 | case META_POR: |
| 195 | if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || |
| 196 | blkaddr < MAIN_BLKADDR(sbi))) |
| 197 | goto check_only; |
| 198 | break; |
| 199 | case DATA_GENERIC: |
| 200 | case DATA_GENERIC_ENHANCE: |
| 201 | case DATA_GENERIC_ENHANCE_READ: |
| 202 | case DATA_GENERIC_ENHANCE_UPDATE: |
| 203 | if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || |
| 204 | blkaddr < MAIN_BLKADDR(sbi))) { |
| 205 | |
| 206 | /* Skip to emit an error message. */ |
| 207 | if (unlikely(f2fs_cp_error(sbi))) |
| 208 | return false; |
| 209 | |
| 210 | f2fs_warn(sbi, "access invalid blkaddr:%u", |
| 211 | blkaddr); |
| 212 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 213 | dump_stack(); |
| 214 | goto err; |
| 215 | } else { |
| 216 | return __is_bitmap_valid(sbi, blkaddr, type); |
| 217 | } |
| 218 | break; |
| 219 | case META_GENERIC: |
| 220 | if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || |
| 221 | blkaddr >= MAIN_BLKADDR(sbi))) |
| 222 | goto err; |
| 223 | break; |
| 224 | default: |
| 225 | BUG(); |
| 226 | } |
| 227 | |
| 228 | return true; |
| 229 | err: |
| 230 | f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); |
| 231 | check_only: |
| 232 | return false; |
| 233 | } |
| 234 | |
| 235 | bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, |
| 236 | block_t blkaddr, int type) |
| 237 | { |
| 238 | if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY)) |
| 239 | return false; |
| 240 | return __f2fs_is_valid_blkaddr(sbi, blkaddr, type); |
| 241 | } |
| 242 | |
| 243 | bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi, |
| 244 | block_t blkaddr, int type) |
| 245 | { |
| 246 | return __f2fs_is_valid_blkaddr(sbi, blkaddr, type); |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * Readahead CP/NAT/SIT/SSA/POR pages |
| 251 | */ |
| 252 | int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, |
| 253 | int type, bool sync) |
| 254 | { |
| 255 | block_t blkno = start; |
| 256 | struct f2fs_io_info fio = { |
| 257 | .sbi = sbi, |
| 258 | .type = META, |
| 259 | .op = REQ_OP_READ, |
| 260 | .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, |
| 261 | .encrypted_page = NULL, |
| 262 | .in_list = 0, |
| 263 | .is_por = (type == META_POR) ? 1 : 0, |
| 264 | }; |
| 265 | struct blk_plug plug; |
| 266 | int err; |
| 267 | |
| 268 | if (unlikely(type == META_POR)) |
| 269 | fio.op_flags &= ~REQ_META; |
| 270 | |
| 271 | blk_start_plug(&plug); |
| 272 | for (; nrpages-- > 0; blkno++) { |
| 273 | struct folio *folio; |
| 274 | |
| 275 | if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) |
| 276 | goto out; |
| 277 | |
| 278 | switch (type) { |
| 279 | case META_NAT: |
| 280 | if (unlikely(blkno >= |
| 281 | NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) |
| 282 | blkno = 0; |
| 283 | /* get nat block addr */ |
| 284 | fio.new_blkaddr = current_nat_addr(sbi, |
| 285 | blkno * NAT_ENTRY_PER_BLOCK); |
| 286 | break; |
| 287 | case META_SIT: |
| 288 | if (unlikely(blkno >= TOTAL_SEGS(sbi))) |
| 289 | goto out; |
| 290 | /* get sit block addr */ |
| 291 | fio.new_blkaddr = current_sit_addr(sbi, |
| 292 | blkno * SIT_ENTRY_PER_BLOCK); |
| 293 | break; |
| 294 | case META_SSA: |
| 295 | case META_CP: |
| 296 | case META_POR: |
| 297 | fio.new_blkaddr = blkno; |
| 298 | break; |
| 299 | default: |
| 300 | BUG(); |
| 301 | } |
| 302 | |
| 303 | folio = f2fs_grab_cache_folio(META_MAPPING(sbi), |
| 304 | fio.new_blkaddr, false); |
| 305 | if (IS_ERR(folio)) |
| 306 | continue; |
| 307 | if (folio_test_uptodate(folio)) { |
| 308 | f2fs_folio_put(folio, true); |
| 309 | continue; |
| 310 | } |
| 311 | |
| 312 | fio.page = &folio->page; |
| 313 | err = f2fs_submit_page_bio(&fio); |
| 314 | f2fs_folio_put(folio, err ? true : false); |
| 315 | |
| 316 | if (!err) |
| 317 | f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, |
| 318 | F2FS_BLKSIZE); |
| 319 | } |
| 320 | out: |
| 321 | blk_finish_plug(&plug); |
| 322 | return blkno - start; |
| 323 | } |
| 324 | |
| 325 | void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, |
| 326 | unsigned int ra_blocks) |
| 327 | { |
| 328 | struct folio *folio; |
| 329 | bool readahead = false; |
| 330 | |
| 331 | if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) |
| 332 | return; |
| 333 | |
| 334 | folio = filemap_get_folio(META_MAPPING(sbi), index); |
| 335 | if (IS_ERR(folio) || !folio_test_uptodate(folio)) |
| 336 | readahead = true; |
| 337 | f2fs_folio_put(folio, false); |
| 338 | |
| 339 | if (readahead) |
| 340 | f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); |
| 341 | } |
| 342 | |
| 343 | static bool __f2fs_write_meta_folio(struct folio *folio, |
| 344 | struct writeback_control *wbc, |
| 345 | enum iostat_type io_type) |
| 346 | { |
| 347 | struct f2fs_sb_info *sbi = F2FS_F_SB(folio); |
| 348 | |
| 349 | trace_f2fs_writepage(folio, META); |
| 350 | |
| 351 | if (unlikely(f2fs_cp_error(sbi))) { |
| 352 | if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) { |
| 353 | folio_clear_uptodate(folio); |
| 354 | dec_page_count(sbi, F2FS_DIRTY_META); |
| 355 | folio_unlock(folio); |
| 356 | return true; |
| 357 | } |
| 358 | goto redirty_out; |
| 359 | } |
| 360 | if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| 361 | goto redirty_out; |
| 362 | |
| 363 | f2fs_do_write_meta_page(sbi, folio, io_type); |
| 364 | dec_page_count(sbi, F2FS_DIRTY_META); |
| 365 | |
| 366 | folio_unlock(folio); |
| 367 | |
| 368 | if (unlikely(f2fs_cp_error(sbi))) |
| 369 | f2fs_submit_merged_write(sbi, META); |
| 370 | |
| 371 | return true; |
| 372 | |
| 373 | redirty_out: |
| 374 | folio_redirty_for_writepage(wbc, folio); |
| 375 | return false; |
| 376 | } |
| 377 | |
| 378 | static int f2fs_write_meta_pages(struct address_space *mapping, |
| 379 | struct writeback_control *wbc) |
| 380 | { |
| 381 | struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); |
| 382 | long diff, written; |
| 383 | |
| 384 | if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| 385 | goto skip_write; |
| 386 | |
| 387 | /* collect a number of dirty meta pages and write together */ |
| 388 | if (wbc->sync_mode != WB_SYNC_ALL && |
| 389 | get_pages(sbi, F2FS_DIRTY_META) < |
| 390 | nr_pages_to_skip(sbi, META)) |
| 391 | goto skip_write; |
| 392 | |
| 393 | /* if locked failed, cp will flush dirty pages instead */ |
| 394 | if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) |
| 395 | goto skip_write; |
| 396 | |
| 397 | trace_f2fs_writepages(mapping->host, wbc, META); |
| 398 | diff = nr_pages_to_write(sbi, META, wbc); |
| 399 | written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); |
| 400 | f2fs_up_write(&sbi->cp_global_sem); |
| 401 | wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); |
| 402 | return 0; |
| 403 | |
| 404 | skip_write: |
| 405 | wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); |
| 406 | trace_f2fs_writepages(mapping->host, wbc, META); |
| 407 | return 0; |
| 408 | } |
| 409 | |
| 410 | long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, |
| 411 | long nr_to_write, enum iostat_type io_type) |
| 412 | { |
| 413 | struct address_space *mapping = META_MAPPING(sbi); |
| 414 | pgoff_t index = 0, prev = ULONG_MAX; |
| 415 | struct folio_batch fbatch; |
| 416 | long nwritten = 0; |
| 417 | int nr_folios; |
| 418 | struct writeback_control wbc = {}; |
| 419 | struct blk_plug plug; |
| 420 | |
| 421 | folio_batch_init(&fbatch); |
| 422 | |
| 423 | blk_start_plug(&plug); |
| 424 | |
| 425 | while ((nr_folios = filemap_get_folios_tag(mapping, &index, |
| 426 | (pgoff_t)-1, |
| 427 | PAGECACHE_TAG_DIRTY, &fbatch))) { |
| 428 | int i; |
| 429 | |
| 430 | for (i = 0; i < nr_folios; i++) { |
| 431 | struct folio *folio = fbatch.folios[i]; |
| 432 | |
| 433 | if (nr_to_write != LONG_MAX && i != 0 && |
| 434 | folio->index != prev + |
| 435 | folio_nr_pages(fbatch.folios[i-1])) { |
| 436 | folio_batch_release(&fbatch); |
| 437 | goto stop; |
| 438 | } |
| 439 | |
| 440 | folio_lock(folio); |
| 441 | |
| 442 | if (unlikely(!is_meta_folio(folio))) { |
| 443 | continue_unlock: |
| 444 | folio_unlock(folio); |
| 445 | continue; |
| 446 | } |
| 447 | if (!folio_test_dirty(folio)) { |
| 448 | /* someone wrote it for us */ |
| 449 | goto continue_unlock; |
| 450 | } |
| 451 | |
| 452 | f2fs_folio_wait_writeback(folio, META, true, true); |
| 453 | |
| 454 | if (!folio_clear_dirty_for_io(folio)) |
| 455 | goto continue_unlock; |
| 456 | |
| 457 | if (!__f2fs_write_meta_folio(folio, &wbc, |
| 458 | io_type)) { |
| 459 | folio_unlock(folio); |
| 460 | break; |
| 461 | } |
| 462 | nwritten += folio_nr_pages(folio); |
| 463 | prev = folio->index; |
| 464 | if (unlikely(nwritten >= nr_to_write)) |
| 465 | break; |
| 466 | } |
| 467 | folio_batch_release(&fbatch); |
| 468 | cond_resched(); |
| 469 | } |
| 470 | stop: |
| 471 | if (nwritten) |
| 472 | f2fs_submit_merged_write(sbi, type); |
| 473 | |
| 474 | blk_finish_plug(&plug); |
| 475 | |
| 476 | return nwritten; |
| 477 | } |
| 478 | |
| 479 | static bool f2fs_dirty_meta_folio(struct address_space *mapping, |
| 480 | struct folio *folio) |
| 481 | { |
| 482 | trace_f2fs_set_page_dirty(folio, META); |
| 483 | |
| 484 | if (!folio_test_uptodate(folio)) |
| 485 | folio_mark_uptodate(folio); |
| 486 | if (filemap_dirty_folio(mapping, folio)) { |
| 487 | inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); |
| 488 | set_page_private_reference(&folio->page); |
| 489 | return true; |
| 490 | } |
| 491 | return false; |
| 492 | } |
| 493 | |
| 494 | const struct address_space_operations f2fs_meta_aops = { |
| 495 | .writepages = f2fs_write_meta_pages, |
| 496 | .dirty_folio = f2fs_dirty_meta_folio, |
| 497 | .invalidate_folio = f2fs_invalidate_folio, |
| 498 | .release_folio = f2fs_release_folio, |
| 499 | .migrate_folio = filemap_migrate_folio, |
| 500 | }; |
| 501 | |
| 502 | static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, |
| 503 | unsigned int devidx, int type) |
| 504 | { |
| 505 | struct inode_management *im = &sbi->im[type]; |
| 506 | struct ino_entry *e = NULL, *new = NULL; |
| 507 | int ret; |
| 508 | |
| 509 | if (type == FLUSH_INO) { |
| 510 | rcu_read_lock(); |
| 511 | e = radix_tree_lookup(&im->ino_root, ino); |
| 512 | rcu_read_unlock(); |
| 513 | } |
| 514 | |
| 515 | retry: |
| 516 | if (!e) |
| 517 | new = f2fs_kmem_cache_alloc(ino_entry_slab, |
| 518 | GFP_NOFS, true, NULL); |
| 519 | |
| 520 | ret = radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); |
| 521 | f2fs_bug_on(sbi, ret); |
| 522 | |
| 523 | spin_lock(&im->ino_lock); |
| 524 | e = radix_tree_lookup(&im->ino_root, ino); |
| 525 | if (!e) { |
| 526 | if (!new) { |
| 527 | spin_unlock(&im->ino_lock); |
| 528 | radix_tree_preload_end(); |
| 529 | goto retry; |
| 530 | } |
| 531 | e = new; |
| 532 | if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) |
| 533 | f2fs_bug_on(sbi, 1); |
| 534 | |
| 535 | memset(e, 0, sizeof(struct ino_entry)); |
| 536 | e->ino = ino; |
| 537 | |
| 538 | list_add_tail(&e->list, &im->ino_list); |
| 539 | if (type != ORPHAN_INO) |
| 540 | im->ino_num++; |
| 541 | } |
| 542 | |
| 543 | if (type == FLUSH_INO) |
| 544 | f2fs_set_bit(devidx, (char *)&e->dirty_device); |
| 545 | |
| 546 | spin_unlock(&im->ino_lock); |
| 547 | radix_tree_preload_end(); |
| 548 | |
| 549 | if (new && e != new) |
| 550 | kmem_cache_free(ino_entry_slab, new); |
| 551 | } |
| 552 | |
| 553 | static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) |
| 554 | { |
| 555 | struct inode_management *im = &sbi->im[type]; |
| 556 | struct ino_entry *e; |
| 557 | |
| 558 | spin_lock(&im->ino_lock); |
| 559 | e = radix_tree_lookup(&im->ino_root, ino); |
| 560 | if (e) { |
| 561 | list_del(&e->list); |
| 562 | radix_tree_delete(&im->ino_root, ino); |
| 563 | im->ino_num--; |
| 564 | spin_unlock(&im->ino_lock); |
| 565 | kmem_cache_free(ino_entry_slab, e); |
| 566 | return; |
| 567 | } |
| 568 | spin_unlock(&im->ino_lock); |
| 569 | } |
| 570 | |
| 571 | void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) |
| 572 | { |
| 573 | /* add new dirty ino entry into list */ |
| 574 | __add_ino_entry(sbi, ino, 0, type); |
| 575 | } |
| 576 | |
| 577 | void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) |
| 578 | { |
| 579 | /* remove dirty ino entry from list */ |
| 580 | __remove_ino_entry(sbi, ino, type); |
| 581 | } |
| 582 | |
| 583 | /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ |
| 584 | bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) |
| 585 | { |
| 586 | struct inode_management *im = &sbi->im[mode]; |
| 587 | struct ino_entry *e; |
| 588 | |
| 589 | spin_lock(&im->ino_lock); |
| 590 | e = radix_tree_lookup(&im->ino_root, ino); |
| 591 | spin_unlock(&im->ino_lock); |
| 592 | return e ? true : false; |
| 593 | } |
| 594 | |
| 595 | void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) |
| 596 | { |
| 597 | struct ino_entry *e, *tmp; |
| 598 | int i; |
| 599 | |
| 600 | for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { |
| 601 | struct inode_management *im = &sbi->im[i]; |
| 602 | |
| 603 | spin_lock(&im->ino_lock); |
| 604 | list_for_each_entry_safe(e, tmp, &im->ino_list, list) { |
| 605 | list_del(&e->list); |
| 606 | radix_tree_delete(&im->ino_root, e->ino); |
| 607 | kmem_cache_free(ino_entry_slab, e); |
| 608 | im->ino_num--; |
| 609 | } |
| 610 | spin_unlock(&im->ino_lock); |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, |
| 615 | unsigned int devidx, int type) |
| 616 | { |
| 617 | __add_ino_entry(sbi, ino, devidx, type); |
| 618 | } |
| 619 | |
| 620 | bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, |
| 621 | unsigned int devidx, int type) |
| 622 | { |
| 623 | struct inode_management *im = &sbi->im[type]; |
| 624 | struct ino_entry *e; |
| 625 | bool is_dirty = false; |
| 626 | |
| 627 | spin_lock(&im->ino_lock); |
| 628 | e = radix_tree_lookup(&im->ino_root, ino); |
| 629 | if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) |
| 630 | is_dirty = true; |
| 631 | spin_unlock(&im->ino_lock); |
| 632 | return is_dirty; |
| 633 | } |
| 634 | |
| 635 | int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) |
| 636 | { |
| 637 | struct inode_management *im = &sbi->im[ORPHAN_INO]; |
| 638 | int err = 0; |
| 639 | |
| 640 | spin_lock(&im->ino_lock); |
| 641 | |
| 642 | if (time_to_inject(sbi, FAULT_ORPHAN)) { |
| 643 | spin_unlock(&im->ino_lock); |
| 644 | return -ENOSPC; |
| 645 | } |
| 646 | |
| 647 | if (unlikely(im->ino_num >= sbi->max_orphans)) |
| 648 | err = -ENOSPC; |
| 649 | else |
| 650 | im->ino_num++; |
| 651 | spin_unlock(&im->ino_lock); |
| 652 | |
| 653 | return err; |
| 654 | } |
| 655 | |
| 656 | void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) |
| 657 | { |
| 658 | struct inode_management *im = &sbi->im[ORPHAN_INO]; |
| 659 | |
| 660 | spin_lock(&im->ino_lock); |
| 661 | f2fs_bug_on(sbi, im->ino_num == 0); |
| 662 | im->ino_num--; |
| 663 | spin_unlock(&im->ino_lock); |
| 664 | } |
| 665 | |
| 666 | void f2fs_add_orphan_inode(struct inode *inode) |
| 667 | { |
| 668 | /* add new orphan ino entry into list */ |
| 669 | __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); |
| 670 | f2fs_update_inode_page(inode); |
| 671 | } |
| 672 | |
| 673 | void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) |
| 674 | { |
| 675 | /* remove orphan entry from orphan list */ |
| 676 | __remove_ino_entry(sbi, ino, ORPHAN_INO); |
| 677 | } |
| 678 | |
| 679 | static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) |
| 680 | { |
| 681 | struct inode *inode; |
| 682 | struct node_info ni; |
| 683 | int err; |
| 684 | |
| 685 | inode = f2fs_iget_retry(sbi->sb, ino); |
| 686 | if (IS_ERR(inode)) { |
| 687 | /* |
| 688 | * there should be a bug that we can't find the entry |
| 689 | * to orphan inode. |
| 690 | */ |
| 691 | f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); |
| 692 | return PTR_ERR(inode); |
| 693 | } |
| 694 | |
| 695 | err = f2fs_dquot_initialize(inode); |
| 696 | if (err) { |
| 697 | iput(inode); |
| 698 | goto err_out; |
| 699 | } |
| 700 | |
| 701 | clear_nlink(inode); |
| 702 | |
| 703 | /* truncate all the data during iput */ |
| 704 | iput(inode); |
| 705 | |
| 706 | err = f2fs_get_node_info(sbi, ino, &ni, false); |
| 707 | if (err) |
| 708 | goto err_out; |
| 709 | |
| 710 | /* ENOMEM was fully retried in f2fs_evict_inode. */ |
| 711 | if (ni.blk_addr != NULL_ADDR) { |
| 712 | err = -EIO; |
| 713 | goto err_out; |
| 714 | } |
| 715 | return 0; |
| 716 | |
| 717 | err_out: |
| 718 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 719 | f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", |
| 720 | __func__, ino); |
| 721 | return err; |
| 722 | } |
| 723 | |
| 724 | int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) |
| 725 | { |
| 726 | block_t start_blk, orphan_blocks, i, j; |
| 727 | int err = 0; |
| 728 | |
| 729 | if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) |
| 730 | return 0; |
| 731 | |
| 732 | if (f2fs_hw_is_readonly(sbi)) { |
| 733 | f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); |
| 734 | return 0; |
| 735 | } |
| 736 | |
| 737 | if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) |
| 738 | f2fs_info(sbi, "orphan cleanup on readonly fs"); |
| 739 | |
| 740 | start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); |
| 741 | orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); |
| 742 | |
| 743 | f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); |
| 744 | |
| 745 | for (i = 0; i < orphan_blocks; i++) { |
| 746 | struct folio *folio; |
| 747 | struct f2fs_orphan_block *orphan_blk; |
| 748 | |
| 749 | folio = f2fs_get_meta_folio(sbi, start_blk + i); |
| 750 | if (IS_ERR(folio)) { |
| 751 | err = PTR_ERR(folio); |
| 752 | goto out; |
| 753 | } |
| 754 | |
| 755 | orphan_blk = folio_address(folio); |
| 756 | for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { |
| 757 | nid_t ino = le32_to_cpu(orphan_blk->ino[j]); |
| 758 | |
| 759 | err = recover_orphan_inode(sbi, ino); |
| 760 | if (err) { |
| 761 | f2fs_folio_put(folio, true); |
| 762 | goto out; |
| 763 | } |
| 764 | } |
| 765 | f2fs_folio_put(folio, true); |
| 766 | } |
| 767 | /* clear Orphan Flag */ |
| 768 | clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); |
| 769 | out: |
| 770 | set_sbi_flag(sbi, SBI_IS_RECOVERED); |
| 771 | |
| 772 | return err; |
| 773 | } |
| 774 | |
| 775 | static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) |
| 776 | { |
| 777 | struct list_head *head; |
| 778 | struct f2fs_orphan_block *orphan_blk = NULL; |
| 779 | unsigned int nentries = 0; |
| 780 | unsigned short index = 1; |
| 781 | unsigned short orphan_blocks; |
| 782 | struct folio *folio = NULL; |
| 783 | struct ino_entry *orphan = NULL; |
| 784 | struct inode_management *im = &sbi->im[ORPHAN_INO]; |
| 785 | |
| 786 | orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); |
| 787 | |
| 788 | /* |
| 789 | * we don't need to do spin_lock(&im->ino_lock) here, since all the |
| 790 | * orphan inode operations are covered under f2fs_lock_op(). |
| 791 | * And, spin_lock should be avoided due to page operations below. |
| 792 | */ |
| 793 | head = &im->ino_list; |
| 794 | |
| 795 | /* loop for each orphan inode entry and write them in journal block */ |
| 796 | list_for_each_entry(orphan, head, list) { |
| 797 | if (!folio) { |
| 798 | folio = f2fs_grab_meta_folio(sbi, start_blk++); |
| 799 | orphan_blk = folio_address(folio); |
| 800 | memset(orphan_blk, 0, sizeof(*orphan_blk)); |
| 801 | } |
| 802 | |
| 803 | orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); |
| 804 | |
| 805 | if (nentries == F2FS_ORPHANS_PER_BLOCK) { |
| 806 | /* |
| 807 | * an orphan block is full of 1020 entries, |
| 808 | * then we need to flush current orphan blocks |
| 809 | * and bring another one in memory |
| 810 | */ |
| 811 | orphan_blk->blk_addr = cpu_to_le16(index); |
| 812 | orphan_blk->blk_count = cpu_to_le16(orphan_blocks); |
| 813 | orphan_blk->entry_count = cpu_to_le32(nentries); |
| 814 | folio_mark_dirty(folio); |
| 815 | f2fs_folio_put(folio, true); |
| 816 | index++; |
| 817 | nentries = 0; |
| 818 | folio = NULL; |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | if (folio) { |
| 823 | orphan_blk->blk_addr = cpu_to_le16(index); |
| 824 | orphan_blk->blk_count = cpu_to_le16(orphan_blocks); |
| 825 | orphan_blk->entry_count = cpu_to_le32(nentries); |
| 826 | folio_mark_dirty(folio); |
| 827 | f2fs_folio_put(folio, true); |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | static __u32 f2fs_checkpoint_chksum(struct f2fs_checkpoint *ckpt) |
| 832 | { |
| 833 | unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); |
| 834 | __u32 chksum; |
| 835 | |
| 836 | chksum = f2fs_crc32(ckpt, chksum_ofs); |
| 837 | if (chksum_ofs < CP_CHKSUM_OFFSET) { |
| 838 | chksum_ofs += sizeof(chksum); |
| 839 | chksum = f2fs_chksum(chksum, (__u8 *)ckpt + chksum_ofs, |
| 840 | F2FS_BLKSIZE - chksum_ofs); |
| 841 | } |
| 842 | return chksum; |
| 843 | } |
| 844 | |
| 845 | static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, |
| 846 | struct f2fs_checkpoint **cp_block, struct folio **cp_folio, |
| 847 | unsigned long long *version) |
| 848 | { |
| 849 | size_t crc_offset = 0; |
| 850 | __u32 crc; |
| 851 | |
| 852 | *cp_folio = f2fs_get_meta_folio(sbi, cp_addr); |
| 853 | if (IS_ERR(*cp_folio)) |
| 854 | return PTR_ERR(*cp_folio); |
| 855 | |
| 856 | *cp_block = folio_address(*cp_folio); |
| 857 | |
| 858 | crc_offset = le32_to_cpu((*cp_block)->checksum_offset); |
| 859 | if (crc_offset < CP_MIN_CHKSUM_OFFSET || |
| 860 | crc_offset > CP_CHKSUM_OFFSET) { |
| 861 | f2fs_folio_put(*cp_folio, true); |
| 862 | f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); |
| 863 | return -EINVAL; |
| 864 | } |
| 865 | |
| 866 | crc = f2fs_checkpoint_chksum(*cp_block); |
| 867 | if (crc != cur_cp_crc(*cp_block)) { |
| 868 | f2fs_folio_put(*cp_folio, true); |
| 869 | f2fs_warn(sbi, "invalid crc value"); |
| 870 | return -EINVAL; |
| 871 | } |
| 872 | |
| 873 | *version = cur_cp_version(*cp_block); |
| 874 | return 0; |
| 875 | } |
| 876 | |
| 877 | static struct folio *validate_checkpoint(struct f2fs_sb_info *sbi, |
| 878 | block_t cp_addr, unsigned long long *version) |
| 879 | { |
| 880 | struct folio *cp_folio_1 = NULL, *cp_folio_2 = NULL; |
| 881 | struct f2fs_checkpoint *cp_block = NULL; |
| 882 | unsigned long long cur_version = 0, pre_version = 0; |
| 883 | unsigned int cp_blocks; |
| 884 | int err; |
| 885 | |
| 886 | err = get_checkpoint_version(sbi, cp_addr, &cp_block, |
| 887 | &cp_folio_1, version); |
| 888 | if (err) |
| 889 | return NULL; |
| 890 | |
| 891 | cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); |
| 892 | |
| 893 | if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) { |
| 894 | f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", |
| 895 | le32_to_cpu(cp_block->cp_pack_total_block_count)); |
| 896 | goto invalid_cp; |
| 897 | } |
| 898 | pre_version = *version; |
| 899 | |
| 900 | cp_addr += cp_blocks - 1; |
| 901 | err = get_checkpoint_version(sbi, cp_addr, &cp_block, |
| 902 | &cp_folio_2, version); |
| 903 | if (err) |
| 904 | goto invalid_cp; |
| 905 | cur_version = *version; |
| 906 | |
| 907 | if (cur_version == pre_version) { |
| 908 | *version = cur_version; |
| 909 | f2fs_folio_put(cp_folio_2, true); |
| 910 | return cp_folio_1; |
| 911 | } |
| 912 | f2fs_folio_put(cp_folio_2, true); |
| 913 | invalid_cp: |
| 914 | f2fs_folio_put(cp_folio_1, true); |
| 915 | return NULL; |
| 916 | } |
| 917 | |
| 918 | int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) |
| 919 | { |
| 920 | struct f2fs_checkpoint *cp_block; |
| 921 | struct f2fs_super_block *fsb = sbi->raw_super; |
| 922 | struct folio *cp1, *cp2, *cur_folio; |
| 923 | unsigned long blk_size = sbi->blocksize; |
| 924 | unsigned long long cp1_version = 0, cp2_version = 0; |
| 925 | unsigned long long cp_start_blk_no; |
| 926 | unsigned int cp_blks = 1 + __cp_payload(sbi); |
| 927 | block_t cp_blk_no; |
| 928 | int i; |
| 929 | int err; |
| 930 | |
| 931 | sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), |
| 932 | GFP_KERNEL); |
| 933 | if (!sbi->ckpt) |
| 934 | return -ENOMEM; |
| 935 | /* |
| 936 | * Finding out valid cp block involves read both |
| 937 | * sets( cp pack 1 and cp pack 2) |
| 938 | */ |
| 939 | cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); |
| 940 | cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); |
| 941 | |
| 942 | /* The second checkpoint pack should start at the next segment */ |
| 943 | cp_start_blk_no += ((unsigned long long)1) << |
| 944 | le32_to_cpu(fsb->log_blocks_per_seg); |
| 945 | cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); |
| 946 | |
| 947 | if (cp1 && cp2) { |
| 948 | if (ver_after(cp2_version, cp1_version)) |
| 949 | cur_folio = cp2; |
| 950 | else |
| 951 | cur_folio = cp1; |
| 952 | } else if (cp1) { |
| 953 | cur_folio = cp1; |
| 954 | } else if (cp2) { |
| 955 | cur_folio = cp2; |
| 956 | } else { |
| 957 | err = -EFSCORRUPTED; |
| 958 | goto fail_no_cp; |
| 959 | } |
| 960 | |
| 961 | cp_block = folio_address(cur_folio); |
| 962 | memcpy(sbi->ckpt, cp_block, blk_size); |
| 963 | |
| 964 | if (cur_folio == cp1) |
| 965 | sbi->cur_cp_pack = 1; |
| 966 | else |
| 967 | sbi->cur_cp_pack = 2; |
| 968 | |
| 969 | /* Sanity checking of checkpoint */ |
| 970 | if (f2fs_sanity_check_ckpt(sbi)) { |
| 971 | err = -EFSCORRUPTED; |
| 972 | goto free_fail_no_cp; |
| 973 | } |
| 974 | |
| 975 | if (cp_blks <= 1) |
| 976 | goto done; |
| 977 | |
| 978 | cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); |
| 979 | if (cur_folio == cp2) |
| 980 | cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg)); |
| 981 | |
| 982 | for (i = 1; i < cp_blks; i++) { |
| 983 | void *sit_bitmap_ptr; |
| 984 | unsigned char *ckpt = (unsigned char *)sbi->ckpt; |
| 985 | |
| 986 | cur_folio = f2fs_get_meta_folio(sbi, cp_blk_no + i); |
| 987 | if (IS_ERR(cur_folio)) { |
| 988 | err = PTR_ERR(cur_folio); |
| 989 | goto free_fail_no_cp; |
| 990 | } |
| 991 | sit_bitmap_ptr = folio_address(cur_folio); |
| 992 | memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); |
| 993 | f2fs_folio_put(cur_folio, true); |
| 994 | } |
| 995 | done: |
| 996 | f2fs_folio_put(cp1, true); |
| 997 | f2fs_folio_put(cp2, true); |
| 998 | return 0; |
| 999 | |
| 1000 | free_fail_no_cp: |
| 1001 | f2fs_folio_put(cp1, true); |
| 1002 | f2fs_folio_put(cp2, true); |
| 1003 | fail_no_cp: |
| 1004 | kvfree(sbi->ckpt); |
| 1005 | return err; |
| 1006 | } |
| 1007 | |
| 1008 | static void __add_dirty_inode(struct inode *inode, enum inode_type type) |
| 1009 | { |
| 1010 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 1011 | int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; |
| 1012 | |
| 1013 | if (is_inode_flag_set(inode, flag)) |
| 1014 | return; |
| 1015 | |
| 1016 | set_inode_flag(inode, flag); |
| 1017 | list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); |
| 1018 | stat_inc_dirty_inode(sbi, type); |
| 1019 | } |
| 1020 | |
| 1021 | static void __remove_dirty_inode(struct inode *inode, enum inode_type type) |
| 1022 | { |
| 1023 | int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; |
| 1024 | |
| 1025 | if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) |
| 1026 | return; |
| 1027 | |
| 1028 | list_del_init(&F2FS_I(inode)->dirty_list); |
| 1029 | clear_inode_flag(inode, flag); |
| 1030 | stat_dec_dirty_inode(F2FS_I_SB(inode), type); |
| 1031 | } |
| 1032 | |
| 1033 | void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) |
| 1034 | { |
| 1035 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 1036 | enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; |
| 1037 | |
| 1038 | if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && |
| 1039 | !S_ISLNK(inode->i_mode)) |
| 1040 | return; |
| 1041 | |
| 1042 | spin_lock(&sbi->inode_lock[type]); |
| 1043 | if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) |
| 1044 | __add_dirty_inode(inode, type); |
| 1045 | inode_inc_dirty_pages(inode); |
| 1046 | spin_unlock(&sbi->inode_lock[type]); |
| 1047 | |
| 1048 | set_page_private_reference(&folio->page); |
| 1049 | } |
| 1050 | |
| 1051 | void f2fs_remove_dirty_inode(struct inode *inode) |
| 1052 | { |
| 1053 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 1054 | enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; |
| 1055 | |
| 1056 | if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && |
| 1057 | !S_ISLNK(inode->i_mode)) |
| 1058 | return; |
| 1059 | |
| 1060 | if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) |
| 1061 | return; |
| 1062 | |
| 1063 | spin_lock(&sbi->inode_lock[type]); |
| 1064 | __remove_dirty_inode(inode, type); |
| 1065 | spin_unlock(&sbi->inode_lock[type]); |
| 1066 | } |
| 1067 | |
| 1068 | int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, |
| 1069 | bool from_cp) |
| 1070 | { |
| 1071 | struct list_head *head; |
| 1072 | struct inode *inode; |
| 1073 | struct f2fs_inode_info *fi; |
| 1074 | bool is_dir = (type == DIR_INODE); |
| 1075 | unsigned long ino = 0; |
| 1076 | |
| 1077 | trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, |
| 1078 | get_pages(sbi, is_dir ? |
| 1079 | F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); |
| 1080 | retry: |
| 1081 | if (unlikely(f2fs_cp_error(sbi))) { |
| 1082 | trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, |
| 1083 | get_pages(sbi, is_dir ? |
| 1084 | F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); |
| 1085 | return -EIO; |
| 1086 | } |
| 1087 | |
| 1088 | spin_lock(&sbi->inode_lock[type]); |
| 1089 | |
| 1090 | head = &sbi->inode_list[type]; |
| 1091 | if (list_empty(head)) { |
| 1092 | spin_unlock(&sbi->inode_lock[type]); |
| 1093 | trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, |
| 1094 | get_pages(sbi, is_dir ? |
| 1095 | F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); |
| 1096 | return 0; |
| 1097 | } |
| 1098 | fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); |
| 1099 | inode = igrab(&fi->vfs_inode); |
| 1100 | spin_unlock(&sbi->inode_lock[type]); |
| 1101 | if (inode) { |
| 1102 | unsigned long cur_ino = inode->i_ino; |
| 1103 | |
| 1104 | if (from_cp) |
| 1105 | F2FS_I(inode)->cp_task = current; |
| 1106 | F2FS_I(inode)->wb_task = current; |
| 1107 | |
| 1108 | filemap_fdatawrite(inode->i_mapping); |
| 1109 | |
| 1110 | F2FS_I(inode)->wb_task = NULL; |
| 1111 | if (from_cp) |
| 1112 | F2FS_I(inode)->cp_task = NULL; |
| 1113 | |
| 1114 | iput(inode); |
| 1115 | /* We need to give cpu to another writers. */ |
| 1116 | if (ino == cur_ino) |
| 1117 | cond_resched(); |
| 1118 | else |
| 1119 | ino = cur_ino; |
| 1120 | } else { |
| 1121 | /* |
| 1122 | * We should submit bio, since it exists several |
| 1123 | * writebacking dentry pages in the freeing inode. |
| 1124 | */ |
| 1125 | f2fs_submit_merged_write(sbi, DATA); |
| 1126 | cond_resched(); |
| 1127 | } |
| 1128 | goto retry; |
| 1129 | } |
| 1130 | |
| 1131 | static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) |
| 1132 | { |
| 1133 | struct list_head *head = &sbi->inode_list[DIRTY_META]; |
| 1134 | struct inode *inode; |
| 1135 | struct f2fs_inode_info *fi; |
| 1136 | s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); |
| 1137 | |
| 1138 | while (total--) { |
| 1139 | if (unlikely(f2fs_cp_error(sbi))) |
| 1140 | return -EIO; |
| 1141 | |
| 1142 | spin_lock(&sbi->inode_lock[DIRTY_META]); |
| 1143 | if (list_empty(head)) { |
| 1144 | spin_unlock(&sbi->inode_lock[DIRTY_META]); |
| 1145 | return 0; |
| 1146 | } |
| 1147 | fi = list_first_entry(head, struct f2fs_inode_info, |
| 1148 | gdirty_list); |
| 1149 | inode = igrab(&fi->vfs_inode); |
| 1150 | spin_unlock(&sbi->inode_lock[DIRTY_META]); |
| 1151 | if (inode) { |
| 1152 | sync_inode_metadata(inode, 0); |
| 1153 | |
| 1154 | /* it's on eviction */ |
| 1155 | if (is_inode_flag_set(inode, FI_DIRTY_INODE)) |
| 1156 | f2fs_update_inode_page(inode); |
| 1157 | iput(inode); |
| 1158 | } |
| 1159 | } |
| 1160 | return 0; |
| 1161 | } |
| 1162 | |
| 1163 | static void __prepare_cp_block(struct f2fs_sb_info *sbi) |
| 1164 | { |
| 1165 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| 1166 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1167 | nid_t last_nid = nm_i->next_scan_nid; |
| 1168 | |
| 1169 | next_free_nid(sbi, &last_nid); |
| 1170 | ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); |
| 1171 | ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); |
| 1172 | ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); |
| 1173 | ckpt->next_free_nid = cpu_to_le32(last_nid); |
| 1174 | |
| 1175 | /* update user_block_counts */ |
| 1176 | sbi->last_valid_block_count = sbi->total_valid_block_count; |
| 1177 | percpu_counter_set(&sbi->alloc_valid_block_count, 0); |
| 1178 | percpu_counter_set(&sbi->rf_node_block_count, 0); |
| 1179 | } |
| 1180 | |
| 1181 | static bool __need_flush_quota(struct f2fs_sb_info *sbi) |
| 1182 | { |
| 1183 | bool ret = false; |
| 1184 | |
| 1185 | if (!is_journalled_quota(sbi)) |
| 1186 | return false; |
| 1187 | |
| 1188 | if (!f2fs_down_write_trylock(&sbi->quota_sem)) |
| 1189 | return true; |
| 1190 | if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { |
| 1191 | ret = false; |
| 1192 | } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { |
| 1193 | ret = false; |
| 1194 | } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { |
| 1195 | clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); |
| 1196 | ret = true; |
| 1197 | } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { |
| 1198 | ret = true; |
| 1199 | } |
| 1200 | f2fs_up_write(&sbi->quota_sem); |
| 1201 | return ret; |
| 1202 | } |
| 1203 | |
| 1204 | /* |
| 1205 | * Freeze all the FS-operations for checkpoint. |
| 1206 | */ |
| 1207 | static int block_operations(struct f2fs_sb_info *sbi) |
| 1208 | { |
| 1209 | struct writeback_control wbc = { |
| 1210 | .sync_mode = WB_SYNC_ALL, |
| 1211 | .nr_to_write = LONG_MAX, |
| 1212 | }; |
| 1213 | int err = 0, cnt = 0; |
| 1214 | |
| 1215 | /* |
| 1216 | * Let's flush inline_data in dirty node pages. |
| 1217 | */ |
| 1218 | f2fs_flush_inline_data(sbi); |
| 1219 | |
| 1220 | retry_flush_quotas: |
| 1221 | f2fs_lock_all(sbi); |
| 1222 | if (__need_flush_quota(sbi)) { |
| 1223 | bool need_lock = sbi->umount_lock_holder != current; |
| 1224 | |
| 1225 | if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { |
| 1226 | set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); |
| 1227 | set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); |
| 1228 | goto retry_flush_dents; |
| 1229 | } |
| 1230 | f2fs_unlock_all(sbi); |
| 1231 | |
| 1232 | /* don't grab s_umount lock during mount/umount/remount/freeze/quotactl */ |
| 1233 | if (!need_lock) { |
| 1234 | f2fs_do_quota_sync(sbi->sb, -1); |
| 1235 | } else if (down_read_trylock(&sbi->sb->s_umount)) { |
| 1236 | f2fs_do_quota_sync(sbi->sb, -1); |
| 1237 | up_read(&sbi->sb->s_umount); |
| 1238 | } |
| 1239 | cond_resched(); |
| 1240 | goto retry_flush_quotas; |
| 1241 | } |
| 1242 | |
| 1243 | retry_flush_dents: |
| 1244 | /* write all the dirty dentry pages */ |
| 1245 | if (get_pages(sbi, F2FS_DIRTY_DENTS)) { |
| 1246 | f2fs_unlock_all(sbi); |
| 1247 | err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true); |
| 1248 | if (err) |
| 1249 | return err; |
| 1250 | cond_resched(); |
| 1251 | goto retry_flush_quotas; |
| 1252 | } |
| 1253 | |
| 1254 | /* |
| 1255 | * POR: we should ensure that there are no dirty node pages |
| 1256 | * until finishing nat/sit flush. inode->i_blocks can be updated. |
| 1257 | */ |
| 1258 | f2fs_down_write(&sbi->node_change); |
| 1259 | |
| 1260 | if (get_pages(sbi, F2FS_DIRTY_IMETA)) { |
| 1261 | f2fs_up_write(&sbi->node_change); |
| 1262 | f2fs_unlock_all(sbi); |
| 1263 | err = f2fs_sync_inode_meta(sbi); |
| 1264 | if (err) |
| 1265 | return err; |
| 1266 | cond_resched(); |
| 1267 | goto retry_flush_quotas; |
| 1268 | } |
| 1269 | |
| 1270 | retry_flush_nodes: |
| 1271 | f2fs_down_write(&sbi->node_write); |
| 1272 | |
| 1273 | if (get_pages(sbi, F2FS_DIRTY_NODES)) { |
| 1274 | f2fs_up_write(&sbi->node_write); |
| 1275 | atomic_inc(&sbi->wb_sync_req[NODE]); |
| 1276 | err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); |
| 1277 | atomic_dec(&sbi->wb_sync_req[NODE]); |
| 1278 | if (err) { |
| 1279 | f2fs_up_write(&sbi->node_change); |
| 1280 | f2fs_unlock_all(sbi); |
| 1281 | return err; |
| 1282 | } |
| 1283 | cond_resched(); |
| 1284 | goto retry_flush_nodes; |
| 1285 | } |
| 1286 | |
| 1287 | /* |
| 1288 | * sbi->node_change is used only for AIO write_begin path which produces |
| 1289 | * dirty node blocks and some checkpoint values by block allocation. |
| 1290 | */ |
| 1291 | __prepare_cp_block(sbi); |
| 1292 | f2fs_up_write(&sbi->node_change); |
| 1293 | return err; |
| 1294 | } |
| 1295 | |
| 1296 | static void unblock_operations(struct f2fs_sb_info *sbi) |
| 1297 | { |
| 1298 | f2fs_up_write(&sbi->node_write); |
| 1299 | f2fs_unlock_all(sbi); |
| 1300 | } |
| 1301 | |
| 1302 | void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) |
| 1303 | { |
| 1304 | DEFINE_WAIT(wait); |
| 1305 | |
| 1306 | for (;;) { |
| 1307 | if (!get_pages(sbi, type)) |
| 1308 | break; |
| 1309 | |
| 1310 | if (unlikely(f2fs_cp_error(sbi) && |
| 1311 | !is_sbi_flag_set(sbi, SBI_IS_CLOSE))) |
| 1312 | break; |
| 1313 | |
| 1314 | if (type == F2FS_DIRTY_META) |
| 1315 | f2fs_sync_meta_pages(sbi, META, LONG_MAX, |
| 1316 | FS_CP_META_IO); |
| 1317 | else if (type == F2FS_WB_CP_DATA) |
| 1318 | f2fs_submit_merged_write(sbi, DATA); |
| 1319 | |
| 1320 | prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); |
| 1321 | io_schedule_timeout(DEFAULT_IO_TIMEOUT); |
| 1322 | } |
| 1323 | finish_wait(&sbi->cp_wait, &wait); |
| 1324 | } |
| 1325 | |
| 1326 | static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) |
| 1327 | { |
| 1328 | unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; |
| 1329 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| 1330 | unsigned long flags; |
| 1331 | |
| 1332 | spin_lock_irqsave(&sbi->cp_lock, flags); |
| 1333 | |
| 1334 | if ((cpc->reason & CP_UMOUNT) && |
| 1335 | le32_to_cpu(ckpt->cp_pack_total_block_count) > |
| 1336 | sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) |
| 1337 | disable_nat_bits(sbi, false); |
| 1338 | |
| 1339 | if (cpc->reason & CP_TRIMMED) |
| 1340 | __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); |
| 1341 | else |
| 1342 | __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); |
| 1343 | |
| 1344 | if (cpc->reason & CP_UMOUNT) |
| 1345 | __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); |
| 1346 | else |
| 1347 | __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); |
| 1348 | |
| 1349 | if (cpc->reason & CP_FASTBOOT) |
| 1350 | __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); |
| 1351 | else |
| 1352 | __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); |
| 1353 | |
| 1354 | if (orphan_num) |
| 1355 | __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); |
| 1356 | else |
| 1357 | __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); |
| 1358 | |
| 1359 | if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) |
| 1360 | __set_ckpt_flags(ckpt, CP_FSCK_FLAG); |
| 1361 | |
| 1362 | if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) |
| 1363 | __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); |
| 1364 | else |
| 1365 | __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); |
| 1366 | |
| 1367 | if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) |
| 1368 | __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); |
| 1369 | else |
| 1370 | __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); |
| 1371 | |
| 1372 | if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) |
| 1373 | __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); |
| 1374 | else |
| 1375 | __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); |
| 1376 | |
| 1377 | if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) |
| 1378 | __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); |
| 1379 | else |
| 1380 | __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); |
| 1381 | |
| 1382 | if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) |
| 1383 | __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); |
| 1384 | |
| 1385 | /* set this flag to activate crc|cp_ver for recovery */ |
| 1386 | __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); |
| 1387 | __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); |
| 1388 | |
| 1389 | spin_unlock_irqrestore(&sbi->cp_lock, flags); |
| 1390 | } |
| 1391 | |
| 1392 | static void commit_checkpoint(struct f2fs_sb_info *sbi, |
| 1393 | void *src, block_t blk_addr) |
| 1394 | { |
| 1395 | struct writeback_control wbc = {}; |
| 1396 | |
| 1397 | /* |
| 1398 | * filemap_get_folios_tag and folio_lock again will take |
| 1399 | * some extra time. Therefore, f2fs_update_meta_pages and |
| 1400 | * f2fs_sync_meta_pages are combined in this function. |
| 1401 | */ |
| 1402 | struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr); |
| 1403 | |
| 1404 | memcpy(folio_address(folio), src, PAGE_SIZE); |
| 1405 | |
| 1406 | folio_mark_dirty(folio); |
| 1407 | if (unlikely(!folio_clear_dirty_for_io(folio))) |
| 1408 | f2fs_bug_on(sbi, 1); |
| 1409 | |
| 1410 | /* writeout cp pack 2 page */ |
| 1411 | if (unlikely(!__f2fs_write_meta_folio(folio, &wbc, FS_CP_META_IO))) { |
| 1412 | if (f2fs_cp_error(sbi)) { |
| 1413 | f2fs_folio_put(folio, true); |
| 1414 | return; |
| 1415 | } |
| 1416 | f2fs_bug_on(sbi, true); |
| 1417 | } |
| 1418 | |
| 1419 | f2fs_folio_put(folio, false); |
| 1420 | |
| 1421 | /* submit checkpoint (with barrier if NOBARRIER is not set) */ |
| 1422 | f2fs_submit_merged_write(sbi, META_FLUSH); |
| 1423 | } |
| 1424 | |
| 1425 | static inline u64 get_sectors_written(struct block_device *bdev) |
| 1426 | { |
| 1427 | return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); |
| 1428 | } |
| 1429 | |
| 1430 | u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) |
| 1431 | { |
| 1432 | if (f2fs_is_multi_device(sbi)) { |
| 1433 | u64 sectors = 0; |
| 1434 | int i; |
| 1435 | |
| 1436 | for (i = 0; i < sbi->s_ndevs; i++) |
| 1437 | sectors += get_sectors_written(FDEV(i).bdev); |
| 1438 | |
| 1439 | return sectors; |
| 1440 | } |
| 1441 | |
| 1442 | return get_sectors_written(sbi->sb->s_bdev); |
| 1443 | } |
| 1444 | |
| 1445 | static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) |
| 1446 | { |
| 1447 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| 1448 | struct f2fs_nm_info *nm_i = NM_I(sbi); |
| 1449 | unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; |
| 1450 | block_t start_blk; |
| 1451 | unsigned int data_sum_blocks, orphan_blocks; |
| 1452 | __u32 crc32 = 0; |
| 1453 | int i; |
| 1454 | int cp_payload_blks = __cp_payload(sbi); |
| 1455 | struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); |
| 1456 | u64 kbytes_written; |
| 1457 | int err; |
| 1458 | |
| 1459 | /* Flush all the NAT/SIT pages */ |
| 1460 | f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); |
| 1461 | |
| 1462 | /* start to update checkpoint, cp ver is already updated previously */ |
| 1463 | ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); |
| 1464 | ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); |
| 1465 | for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { |
| 1466 | struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE); |
| 1467 | |
| 1468 | ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno); |
| 1469 | ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff); |
| 1470 | ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type; |
| 1471 | } |
| 1472 | for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { |
| 1473 | struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA); |
| 1474 | |
| 1475 | ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno); |
| 1476 | ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff); |
| 1477 | ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type; |
| 1478 | } |
| 1479 | |
| 1480 | /* 2 cp + n data seg summary + orphan inode blocks */ |
| 1481 | data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); |
| 1482 | spin_lock_irqsave(&sbi->cp_lock, flags); |
| 1483 | if (data_sum_blocks < NR_CURSEG_DATA_TYPE) |
| 1484 | __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); |
| 1485 | else |
| 1486 | __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); |
| 1487 | spin_unlock_irqrestore(&sbi->cp_lock, flags); |
| 1488 | |
| 1489 | orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); |
| 1490 | ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + |
| 1491 | orphan_blocks); |
| 1492 | |
| 1493 | if (__remain_node_summaries(cpc->reason)) |
| 1494 | ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + |
| 1495 | cp_payload_blks + data_sum_blocks + |
| 1496 | orphan_blocks + NR_CURSEG_NODE_TYPE); |
| 1497 | else |
| 1498 | ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + |
| 1499 | cp_payload_blks + data_sum_blocks + |
| 1500 | orphan_blocks); |
| 1501 | |
| 1502 | /* update ckpt flag for checkpoint */ |
| 1503 | update_ckpt_flags(sbi, cpc); |
| 1504 | |
| 1505 | /* update SIT/NAT bitmap */ |
| 1506 | get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); |
| 1507 | get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); |
| 1508 | |
| 1509 | crc32 = f2fs_checkpoint_chksum(ckpt); |
| 1510 | *((__le32 *)((unsigned char *)ckpt + |
| 1511 | le32_to_cpu(ckpt->checksum_offset))) |
| 1512 | = cpu_to_le32(crc32); |
| 1513 | |
| 1514 | start_blk = __start_cp_next_addr(sbi); |
| 1515 | |
| 1516 | /* write nat bits */ |
| 1517 | if (enabled_nat_bits(sbi, cpc)) { |
| 1518 | __u64 cp_ver = cur_cp_version(ckpt); |
| 1519 | block_t blk; |
| 1520 | |
| 1521 | cp_ver |= ((__u64)crc32 << 32); |
| 1522 | *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); |
| 1523 | |
| 1524 | blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks; |
| 1525 | for (i = 0; i < nm_i->nat_bits_blocks; i++) |
| 1526 | f2fs_update_meta_page(sbi, nm_i->nat_bits + |
| 1527 | F2FS_BLK_TO_BYTES(i), blk + i); |
| 1528 | } |
| 1529 | |
| 1530 | /* write out checkpoint buffer at block 0 */ |
| 1531 | f2fs_update_meta_page(sbi, ckpt, start_blk++); |
| 1532 | |
| 1533 | for (i = 1; i < 1 + cp_payload_blks; i++) |
| 1534 | f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, |
| 1535 | start_blk++); |
| 1536 | |
| 1537 | if (orphan_num) { |
| 1538 | write_orphan_inodes(sbi, start_blk); |
| 1539 | start_blk += orphan_blocks; |
| 1540 | } |
| 1541 | |
| 1542 | f2fs_write_data_summaries(sbi, start_blk); |
| 1543 | start_blk += data_sum_blocks; |
| 1544 | |
| 1545 | /* Record write statistics in the hot node summary */ |
| 1546 | kbytes_written = sbi->kbytes_written; |
| 1547 | kbytes_written += (f2fs_get_sectors_written(sbi) - |
| 1548 | sbi->sectors_written_start) >> 1; |
| 1549 | seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); |
| 1550 | |
| 1551 | if (__remain_node_summaries(cpc->reason)) { |
| 1552 | f2fs_write_node_summaries(sbi, start_blk); |
| 1553 | start_blk += NR_CURSEG_NODE_TYPE; |
| 1554 | } |
| 1555 | |
| 1556 | /* Here, we have one bio having CP pack except cp pack 2 page */ |
| 1557 | f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); |
| 1558 | /* Wait for all dirty meta pages to be submitted for IO */ |
| 1559 | f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); |
| 1560 | |
| 1561 | /* wait for previous submitted meta pages writeback */ |
| 1562 | f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); |
| 1563 | |
| 1564 | /* flush all device cache */ |
| 1565 | err = f2fs_flush_device_cache(sbi); |
| 1566 | if (err) |
| 1567 | return err; |
| 1568 | |
| 1569 | /* barrier and flush checkpoint cp pack 2 page if it can */ |
| 1570 | commit_checkpoint(sbi, ckpt, start_blk); |
| 1571 | f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); |
| 1572 | |
| 1573 | /* |
| 1574 | * invalidate intermediate page cache borrowed from meta inode which are |
| 1575 | * used for migration of encrypted, verity or compressed inode's blocks. |
| 1576 | */ |
| 1577 | if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || |
| 1578 | f2fs_sb_has_compression(sbi)) |
| 1579 | f2fs_bug_on(sbi, |
| 1580 | invalidate_inode_pages2_range(META_MAPPING(sbi), |
| 1581 | MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1)); |
| 1582 | |
| 1583 | f2fs_release_ino_entry(sbi, false); |
| 1584 | |
| 1585 | f2fs_reset_fsync_node_info(sbi); |
| 1586 | |
| 1587 | clear_sbi_flag(sbi, SBI_IS_DIRTY); |
| 1588 | clear_sbi_flag(sbi, SBI_NEED_CP); |
| 1589 | clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); |
| 1590 | |
| 1591 | spin_lock(&sbi->stat_lock); |
| 1592 | sbi->unusable_block_count = 0; |
| 1593 | spin_unlock(&sbi->stat_lock); |
| 1594 | |
| 1595 | __set_cp_next_pack(sbi); |
| 1596 | |
| 1597 | /* |
| 1598 | * redirty superblock if metadata like node page or inode cache is |
| 1599 | * updated during writing checkpoint. |
| 1600 | */ |
| 1601 | if (get_pages(sbi, F2FS_DIRTY_NODES) || |
| 1602 | get_pages(sbi, F2FS_DIRTY_IMETA)) |
| 1603 | set_sbi_flag(sbi, SBI_IS_DIRTY); |
| 1604 | |
| 1605 | f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); |
| 1606 | |
| 1607 | return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; |
| 1608 | } |
| 1609 | |
| 1610 | int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) |
| 1611 | { |
| 1612 | struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| 1613 | unsigned long long ckpt_ver; |
| 1614 | int err = 0; |
| 1615 | |
| 1616 | if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) |
| 1617 | return -EROFS; |
| 1618 | |
| 1619 | if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { |
| 1620 | if (cpc->reason != CP_PAUSE) |
| 1621 | return 0; |
| 1622 | f2fs_warn(sbi, "Start checkpoint disabled!"); |
| 1623 | } |
| 1624 | if (cpc->reason != CP_RESIZE) |
| 1625 | f2fs_down_write(&sbi->cp_global_sem); |
| 1626 | |
| 1627 | if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && |
| 1628 | ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || |
| 1629 | ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) |
| 1630 | goto out; |
| 1631 | if (unlikely(f2fs_cp_error(sbi))) { |
| 1632 | err = -EIO; |
| 1633 | goto out; |
| 1634 | } |
| 1635 | |
| 1636 | trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); |
| 1637 | |
| 1638 | err = block_operations(sbi); |
| 1639 | if (err) |
| 1640 | goto out; |
| 1641 | |
| 1642 | trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); |
| 1643 | |
| 1644 | f2fs_flush_merged_writes(sbi); |
| 1645 | |
| 1646 | /* this is the case of multiple fstrims without any changes */ |
| 1647 | if (cpc->reason & CP_DISCARD) { |
| 1648 | if (!f2fs_exist_trim_candidates(sbi, cpc)) { |
| 1649 | unblock_operations(sbi); |
| 1650 | goto out; |
| 1651 | } |
| 1652 | |
| 1653 | if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && |
| 1654 | SIT_I(sbi)->dirty_sentries == 0 && |
| 1655 | prefree_segments(sbi) == 0) { |
| 1656 | f2fs_flush_sit_entries(sbi, cpc); |
| 1657 | f2fs_clear_prefree_segments(sbi, cpc); |
| 1658 | unblock_operations(sbi); |
| 1659 | goto out; |
| 1660 | } |
| 1661 | } |
| 1662 | |
| 1663 | /* |
| 1664 | * update checkpoint pack index |
| 1665 | * Increase the version number so that |
| 1666 | * SIT entries and seg summaries are written at correct place |
| 1667 | */ |
| 1668 | ckpt_ver = cur_cp_version(ckpt); |
| 1669 | ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); |
| 1670 | |
| 1671 | /* write cached NAT/SIT entries to NAT/SIT area */ |
| 1672 | err = f2fs_flush_nat_entries(sbi, cpc); |
| 1673 | if (err) { |
| 1674 | f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); |
| 1675 | f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); |
| 1676 | goto stop; |
| 1677 | } |
| 1678 | |
| 1679 | f2fs_flush_sit_entries(sbi, cpc); |
| 1680 | |
| 1681 | /* save inmem log status */ |
| 1682 | f2fs_save_inmem_curseg(sbi); |
| 1683 | |
| 1684 | err = do_checkpoint(sbi, cpc); |
| 1685 | if (err) { |
| 1686 | f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); |
| 1687 | f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); |
| 1688 | f2fs_release_discard_addrs(sbi); |
| 1689 | } else { |
| 1690 | f2fs_clear_prefree_segments(sbi, cpc); |
| 1691 | } |
| 1692 | |
| 1693 | f2fs_restore_inmem_curseg(sbi); |
| 1694 | f2fs_reinit_atgc_curseg(sbi); |
| 1695 | stat_inc_cp_count(sbi); |
| 1696 | stop: |
| 1697 | unblock_operations(sbi); |
| 1698 | |
| 1699 | if (cpc->reason & CP_RECOVERY) |
| 1700 | f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); |
| 1701 | |
| 1702 | /* update CP_TIME to trigger checkpoint periodically */ |
| 1703 | f2fs_update_time(sbi, CP_TIME); |
| 1704 | trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); |
| 1705 | out: |
| 1706 | if (cpc->reason != CP_RESIZE) |
| 1707 | f2fs_up_write(&sbi->cp_global_sem); |
| 1708 | return err; |
| 1709 | } |
| 1710 | |
| 1711 | void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) |
| 1712 | { |
| 1713 | int i; |
| 1714 | |
| 1715 | for (i = 0; i < MAX_INO_ENTRY; i++) { |
| 1716 | struct inode_management *im = &sbi->im[i]; |
| 1717 | |
| 1718 | INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); |
| 1719 | spin_lock_init(&im->ino_lock); |
| 1720 | INIT_LIST_HEAD(&im->ino_list); |
| 1721 | im->ino_num = 0; |
| 1722 | } |
| 1723 | |
| 1724 | sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS - |
| 1725 | NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * |
| 1726 | F2FS_ORPHANS_PER_BLOCK; |
| 1727 | } |
| 1728 | |
| 1729 | int __init f2fs_create_checkpoint_caches(void) |
| 1730 | { |
| 1731 | ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", |
| 1732 | sizeof(struct ino_entry)); |
| 1733 | if (!ino_entry_slab) |
| 1734 | return -ENOMEM; |
| 1735 | f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", |
| 1736 | sizeof(struct inode_entry)); |
| 1737 | if (!f2fs_inode_entry_slab) { |
| 1738 | kmem_cache_destroy(ino_entry_slab); |
| 1739 | return -ENOMEM; |
| 1740 | } |
| 1741 | return 0; |
| 1742 | } |
| 1743 | |
| 1744 | void f2fs_destroy_checkpoint_caches(void) |
| 1745 | { |
| 1746 | kmem_cache_destroy(ino_entry_slab); |
| 1747 | kmem_cache_destroy(f2fs_inode_entry_slab); |
| 1748 | } |
| 1749 | |
| 1750 | static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) |
| 1751 | { |
| 1752 | struct cp_control cpc = { .reason = CP_SYNC, }; |
| 1753 | int err; |
| 1754 | |
| 1755 | f2fs_down_write(&sbi->gc_lock); |
| 1756 | err = f2fs_write_checkpoint(sbi, &cpc); |
| 1757 | f2fs_up_write(&sbi->gc_lock); |
| 1758 | |
| 1759 | return err; |
| 1760 | } |
| 1761 | |
| 1762 | static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) |
| 1763 | { |
| 1764 | struct ckpt_req_control *cprc = &sbi->cprc_info; |
| 1765 | struct ckpt_req *req, *next; |
| 1766 | struct llist_node *dispatch_list; |
| 1767 | u64 sum_diff = 0, diff, count = 0; |
| 1768 | int ret; |
| 1769 | |
| 1770 | dispatch_list = llist_del_all(&cprc->issue_list); |
| 1771 | if (!dispatch_list) |
| 1772 | return; |
| 1773 | dispatch_list = llist_reverse_order(dispatch_list); |
| 1774 | |
| 1775 | ret = __write_checkpoint_sync(sbi); |
| 1776 | atomic_inc(&cprc->issued_ckpt); |
| 1777 | |
| 1778 | llist_for_each_entry_safe(req, next, dispatch_list, llnode) { |
| 1779 | diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); |
| 1780 | req->ret = ret; |
| 1781 | complete(&req->wait); |
| 1782 | |
| 1783 | sum_diff += diff; |
| 1784 | count++; |
| 1785 | } |
| 1786 | atomic_sub(count, &cprc->queued_ckpt); |
| 1787 | atomic_add(count, &cprc->total_ckpt); |
| 1788 | |
| 1789 | spin_lock(&cprc->stat_lock); |
| 1790 | cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); |
| 1791 | if (cprc->peak_time < cprc->cur_time) |
| 1792 | cprc->peak_time = cprc->cur_time; |
| 1793 | spin_unlock(&cprc->stat_lock); |
| 1794 | } |
| 1795 | |
| 1796 | static int issue_checkpoint_thread(void *data) |
| 1797 | { |
| 1798 | struct f2fs_sb_info *sbi = data; |
| 1799 | struct ckpt_req_control *cprc = &sbi->cprc_info; |
| 1800 | wait_queue_head_t *q = &cprc->ckpt_wait_queue; |
| 1801 | repeat: |
| 1802 | if (kthread_should_stop()) |
| 1803 | return 0; |
| 1804 | |
| 1805 | if (!llist_empty(&cprc->issue_list)) |
| 1806 | __checkpoint_and_complete_reqs(sbi); |
| 1807 | |
| 1808 | wait_event_interruptible(*q, |
| 1809 | kthread_should_stop() || !llist_empty(&cprc->issue_list)); |
| 1810 | goto repeat; |
| 1811 | } |
| 1812 | |
| 1813 | static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, |
| 1814 | struct ckpt_req *wait_req) |
| 1815 | { |
| 1816 | struct ckpt_req_control *cprc = &sbi->cprc_info; |
| 1817 | |
| 1818 | if (!llist_empty(&cprc->issue_list)) { |
| 1819 | __checkpoint_and_complete_reqs(sbi); |
| 1820 | } else { |
| 1821 | /* already dispatched by issue_checkpoint_thread */ |
| 1822 | if (wait_req) |
| 1823 | wait_for_completion(&wait_req->wait); |
| 1824 | } |
| 1825 | } |
| 1826 | |
| 1827 | static void init_ckpt_req(struct ckpt_req *req) |
| 1828 | { |
| 1829 | memset(req, 0, sizeof(struct ckpt_req)); |
| 1830 | |
| 1831 | init_completion(&req->wait); |
| 1832 | req->queue_time = ktime_get(); |
| 1833 | } |
| 1834 | |
| 1835 | int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) |
| 1836 | { |
| 1837 | struct ckpt_req_control *cprc = &sbi->cprc_info; |
| 1838 | struct ckpt_req req; |
| 1839 | struct cp_control cpc; |
| 1840 | |
| 1841 | cpc.reason = __get_cp_reason(sbi); |
| 1842 | if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC || |
| 1843 | sbi->umount_lock_holder == current) { |
| 1844 | int ret; |
| 1845 | |
| 1846 | f2fs_down_write(&sbi->gc_lock); |
| 1847 | ret = f2fs_write_checkpoint(sbi, &cpc); |
| 1848 | f2fs_up_write(&sbi->gc_lock); |
| 1849 | |
| 1850 | return ret; |
| 1851 | } |
| 1852 | |
| 1853 | if (!cprc->f2fs_issue_ckpt) |
| 1854 | return __write_checkpoint_sync(sbi); |
| 1855 | |
| 1856 | init_ckpt_req(&req); |
| 1857 | |
| 1858 | llist_add(&req.llnode, &cprc->issue_list); |
| 1859 | atomic_inc(&cprc->queued_ckpt); |
| 1860 | |
| 1861 | /* |
| 1862 | * update issue_list before we wake up issue_checkpoint thread, |
| 1863 | * this smp_mb() pairs with another barrier in ___wait_event(), |
| 1864 | * see more details in comments of waitqueue_active(). |
| 1865 | */ |
| 1866 | smp_mb(); |
| 1867 | |
| 1868 | if (waitqueue_active(&cprc->ckpt_wait_queue)) |
| 1869 | wake_up(&cprc->ckpt_wait_queue); |
| 1870 | |
| 1871 | if (cprc->f2fs_issue_ckpt) |
| 1872 | wait_for_completion(&req.wait); |
| 1873 | else |
| 1874 | flush_remained_ckpt_reqs(sbi, &req); |
| 1875 | |
| 1876 | return req.ret; |
| 1877 | } |
| 1878 | |
| 1879 | int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) |
| 1880 | { |
| 1881 | dev_t dev = sbi->sb->s_bdev->bd_dev; |
| 1882 | struct ckpt_req_control *cprc = &sbi->cprc_info; |
| 1883 | |
| 1884 | if (cprc->f2fs_issue_ckpt) |
| 1885 | return 0; |
| 1886 | |
| 1887 | cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, |
| 1888 | "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); |
| 1889 | if (IS_ERR(cprc->f2fs_issue_ckpt)) { |
| 1890 | int err = PTR_ERR(cprc->f2fs_issue_ckpt); |
| 1891 | |
| 1892 | cprc->f2fs_issue_ckpt = NULL; |
| 1893 | return err; |
| 1894 | } |
| 1895 | |
| 1896 | set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); |
| 1897 | |
| 1898 | return 0; |
| 1899 | } |
| 1900 | |
| 1901 | void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) |
| 1902 | { |
| 1903 | struct ckpt_req_control *cprc = &sbi->cprc_info; |
| 1904 | struct task_struct *ckpt_task; |
| 1905 | |
| 1906 | if (!cprc->f2fs_issue_ckpt) |
| 1907 | return; |
| 1908 | |
| 1909 | ckpt_task = cprc->f2fs_issue_ckpt; |
| 1910 | cprc->f2fs_issue_ckpt = NULL; |
| 1911 | kthread_stop(ckpt_task); |
| 1912 | |
| 1913 | f2fs_flush_ckpt_thread(sbi); |
| 1914 | } |
| 1915 | |
| 1916 | void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi) |
| 1917 | { |
| 1918 | struct ckpt_req_control *cprc = &sbi->cprc_info; |
| 1919 | |
| 1920 | flush_remained_ckpt_reqs(sbi, NULL); |
| 1921 | |
| 1922 | /* Let's wait for the previous dispatched checkpoint. */ |
| 1923 | while (atomic_read(&cprc->queued_ckpt)) |
| 1924 | io_schedule_timeout(DEFAULT_IO_TIMEOUT); |
| 1925 | } |
| 1926 | |
| 1927 | void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) |
| 1928 | { |
| 1929 | struct ckpt_req_control *cprc = &sbi->cprc_info; |
| 1930 | |
| 1931 | atomic_set(&cprc->issued_ckpt, 0); |
| 1932 | atomic_set(&cprc->total_ckpt, 0); |
| 1933 | atomic_set(&cprc->queued_ckpt, 0); |
| 1934 | cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; |
| 1935 | init_waitqueue_head(&cprc->ckpt_wait_queue); |
| 1936 | init_llist_head(&cprc->issue_list); |
| 1937 | spin_lock_init(&cprc->stat_lock); |
| 1938 | } |