| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com |
| 4 | * Written by Alex Tomas <alex@clusterfs.com> |
| 5 | */ |
| 6 | |
| 7 | |
| 8 | /* |
| 9 | * mballoc.c contains the multiblocks allocation routines |
| 10 | */ |
| 11 | |
| 12 | #include "ext4_jbd2.h" |
| 13 | #include "mballoc.h" |
| 14 | #include <linux/log2.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/nospec.h> |
| 18 | #include <linux/backing-dev.h> |
| 19 | #include <linux/freezer.h> |
| 20 | #include <trace/events/ext4.h> |
| 21 | #include <kunit/static_stub.h> |
| 22 | |
| 23 | /* |
| 24 | * MUSTDO: |
| 25 | * - test ext4_ext_search_left() and ext4_ext_search_right() |
| 26 | * - search for metadata in few groups |
| 27 | * |
| 28 | * TODO v4: |
| 29 | * - normalization should take into account whether file is still open |
| 30 | * - discard preallocations if no free space left (policy?) |
| 31 | * - don't normalize tails |
| 32 | * - quota |
| 33 | * - reservation for superuser |
| 34 | * |
| 35 | * TODO v3: |
| 36 | * - bitmap read-ahead (proposed by Oleg Drokin aka green) |
| 37 | * - track min/max extents in each group for better group selection |
| 38 | * - mb_mark_used() may allocate chunk right after splitting buddy |
| 39 | * - tree of groups sorted by number of free blocks |
| 40 | * - error handling |
| 41 | */ |
| 42 | |
| 43 | /* |
| 44 | * The allocation request involve request for multiple number of blocks |
| 45 | * near to the goal(block) value specified. |
| 46 | * |
| 47 | * During initialization phase of the allocator we decide to use the |
| 48 | * group preallocation or inode preallocation depending on the size of |
| 49 | * the file. The size of the file could be the resulting file size we |
| 50 | * would have after allocation, or the current file size, which ever |
| 51 | * is larger. If the size is less than sbi->s_mb_stream_request we |
| 52 | * select to use the group preallocation. The default value of |
| 53 | * s_mb_stream_request is 16 blocks. This can also be tuned via |
| 54 | * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in |
| 55 | * terms of number of blocks. |
| 56 | * |
| 57 | * The main motivation for having small file use group preallocation is to |
| 58 | * ensure that we have small files closer together on the disk. |
| 59 | * |
| 60 | * First stage the allocator looks at the inode prealloc list, |
| 61 | * ext4_inode_info->i_prealloc_list, which contains list of prealloc |
| 62 | * spaces for this particular inode. The inode prealloc space is |
| 63 | * represented as: |
| 64 | * |
| 65 | * pa_lstart -> the logical start block for this prealloc space |
| 66 | * pa_pstart -> the physical start block for this prealloc space |
| 67 | * pa_len -> length for this prealloc space (in clusters) |
| 68 | * pa_free -> free space available in this prealloc space (in clusters) |
| 69 | * |
| 70 | * The inode preallocation space is used looking at the _logical_ start |
| 71 | * block. If only the logical file block falls within the range of prealloc |
| 72 | * space we will consume the particular prealloc space. This makes sure that |
| 73 | * we have contiguous physical blocks representing the file blocks |
| 74 | * |
| 75 | * The important thing to be noted in case of inode prealloc space is that |
| 76 | * we don't modify the values associated to inode prealloc space except |
| 77 | * pa_free. |
| 78 | * |
| 79 | * If we are not able to find blocks in the inode prealloc space and if we |
| 80 | * have the group allocation flag set then we look at the locality group |
| 81 | * prealloc space. These are per CPU prealloc list represented as |
| 82 | * |
| 83 | * ext4_sb_info.s_locality_groups[smp_processor_id()] |
| 84 | * |
| 85 | * The reason for having a per cpu locality group is to reduce the contention |
| 86 | * between CPUs. It is possible to get scheduled at this point. |
| 87 | * |
| 88 | * The locality group prealloc space is used looking at whether we have |
| 89 | * enough free space (pa_free) within the prealloc space. |
| 90 | * |
| 91 | * If we can't allocate blocks via inode prealloc or/and locality group |
| 92 | * prealloc then we look at the buddy cache. The buddy cache is represented |
| 93 | * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets |
| 94 | * mapped to the buddy and bitmap information regarding different |
| 95 | * groups. The buddy information is attached to buddy cache inode so that |
| 96 | * we can access them through the page cache. The information regarding |
| 97 | * each group is loaded via ext4_mb_load_buddy. The information involve |
| 98 | * block bitmap and buddy information. The information are stored in the |
| 99 | * inode as: |
| 100 | * |
| 101 | * { page } |
| 102 | * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... |
| 103 | * |
| 104 | * |
| 105 | * one block each for bitmap and buddy information. So for each group we |
| 106 | * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / |
| 107 | * blocksize) blocks. So it can have information regarding groups_per_page |
| 108 | * which is blocks_per_page/2 |
| 109 | * |
| 110 | * The buddy cache inode is not stored on disk. The inode is thrown |
| 111 | * away when the filesystem is unmounted. |
| 112 | * |
| 113 | * We look for count number of blocks in the buddy cache. If we were able |
| 114 | * to locate that many free blocks we return with additional information |
| 115 | * regarding rest of the contiguous physical block available |
| 116 | * |
| 117 | * Before allocating blocks via buddy cache we normalize the request |
| 118 | * blocks. This ensure we ask for more blocks that we needed. The extra |
| 119 | * blocks that we get after allocation is added to the respective prealloc |
| 120 | * list. In case of inode preallocation we follow a list of heuristics |
| 121 | * based on file size. This can be found in ext4_mb_normalize_request. If |
| 122 | * we are doing a group prealloc we try to normalize the request to |
| 123 | * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is |
| 124 | * dependent on the cluster size; for non-bigalloc file systems, it is |
| 125 | * 512 blocks. This can be tuned via |
| 126 | * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in |
| 127 | * terms of number of blocks. If we have mounted the file system with -O |
| 128 | * stripe=<value> option the group prealloc request is normalized to the |
| 129 | * smallest multiple of the stripe value (sbi->s_stripe) which is |
| 130 | * greater than the default mb_group_prealloc. |
| 131 | * |
| 132 | * If "mb_optimize_scan" mount option is set, we maintain in memory group info |
| 133 | * structures in two data structures: |
| 134 | * |
| 135 | * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) |
| 136 | * |
| 137 | * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) |
| 138 | * |
| 139 | * This is an array of lists where the index in the array represents the |
| 140 | * largest free order in the buddy bitmap of the participating group infos of |
| 141 | * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total |
| 142 | * number of buddy bitmap orders possible) number of lists. Group-infos are |
| 143 | * placed in appropriate lists. |
| 144 | * |
| 145 | * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) |
| 146 | * |
| 147 | * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) |
| 148 | * |
| 149 | * This is an array of lists where in the i-th list there are groups with |
| 150 | * average fragment size >= 2^i and < 2^(i+1). The average fragment size |
| 151 | * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. |
| 152 | * Note that we don't bother with a special list for completely empty groups |
| 153 | * so we only have MB_NUM_ORDERS(sb) lists. |
| 154 | * |
| 155 | * When "mb_optimize_scan" mount option is set, mballoc consults the above data |
| 156 | * structures to decide the order in which groups are to be traversed for |
| 157 | * fulfilling an allocation request. |
| 158 | * |
| 159 | * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order |
| 160 | * >= the order of the request. We directly look at the largest free order list |
| 161 | * in the data structure (1) above where largest_free_order = order of the |
| 162 | * request. If that list is empty, we look at remaining list in the increasing |
| 163 | * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED |
| 164 | * lookup in O(1) time. |
| 165 | * |
| 166 | * At CR_GOAL_LEN_FAST, we only consider groups where |
| 167 | * average fragment size > request size. So, we lookup a group which has average |
| 168 | * fragment size just above or equal to request size using our average fragment |
| 169 | * size group lists (data structure 2) in O(1) time. |
| 170 | * |
| 171 | * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied |
| 172 | * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in |
| 173 | * CR_GOAL_LEN_FAST suggests that there is no BG that has avg |
| 174 | * fragment size > goal length. So before falling to the slower |
| 175 | * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and |
| 176 | * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big |
| 177 | * enough average fragment size. This increases the chances of finding a |
| 178 | * suitable block group in O(1) time and results in faster allocation at the |
| 179 | * cost of reduced size of allocation. |
| 180 | * |
| 181 | * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in |
| 182 | * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and |
| 183 | * CR_GOAL_LEN_FAST phase. |
| 184 | * |
| 185 | * The regular allocator (using the buddy cache) supports a few tunables. |
| 186 | * |
| 187 | * /sys/fs/ext4/<partition>/mb_min_to_scan |
| 188 | * /sys/fs/ext4/<partition>/mb_max_to_scan |
| 189 | * /sys/fs/ext4/<partition>/mb_order2_req |
| 190 | * /sys/fs/ext4/<partition>/mb_max_linear_groups |
| 191 | * |
| 192 | * The regular allocator uses buddy scan only if the request len is power of |
| 193 | * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The |
| 194 | * value of s_mb_order2_reqs can be tuned via |
| 195 | * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to |
| 196 | * stripe size (sbi->s_stripe), we try to search for contiguous block in |
| 197 | * stripe size. This should result in better allocation on RAID setups. If |
| 198 | * not, we search in the specific group using bitmap for best extents. The |
| 199 | * tunable min_to_scan and max_to_scan control the behaviour here. |
| 200 | * min_to_scan indicate how long the mballoc __must__ look for a best |
| 201 | * extent and max_to_scan indicates how long the mballoc __can__ look for a |
| 202 | * best extent in the found extents. Searching for the blocks starts with |
| 203 | * the group specified as the goal value in allocation context via |
| 204 | * ac_g_ex. Each group is first checked based on the criteria whether it |
| 205 | * can be used for allocation. ext4_mb_good_group explains how the groups are |
| 206 | * checked. |
| 207 | * |
| 208 | * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not |
| 209 | * get traversed linearly. That may result in subsequent allocations being not |
| 210 | * close to each other. And so, the underlying device may get filled up in a |
| 211 | * non-linear fashion. While that may not matter on non-rotational devices, for |
| 212 | * rotational devices that may result in higher seek times. "mb_max_linear_groups" |
| 213 | * tells mballoc how many groups mballoc should search linearly before |
| 214 | * performing consulting above data structures for more efficient lookups. For |
| 215 | * non rotational devices, this value defaults to 0 and for rotational devices |
| 216 | * this is set to MB_DEFAULT_LINEAR_LIMIT. |
| 217 | * |
| 218 | * Both the prealloc space are getting populated as above. So for the first |
| 219 | * request we will hit the buddy cache which will result in this prealloc |
| 220 | * space getting filled. The prealloc space is then later used for the |
| 221 | * subsequent request. |
| 222 | */ |
| 223 | |
| 224 | /* |
| 225 | * mballoc operates on the following data: |
| 226 | * - on-disk bitmap |
| 227 | * - in-core buddy (actually includes buddy and bitmap) |
| 228 | * - preallocation descriptors (PAs) |
| 229 | * |
| 230 | * there are two types of preallocations: |
| 231 | * - inode |
| 232 | * assiged to specific inode and can be used for this inode only. |
| 233 | * it describes part of inode's space preallocated to specific |
| 234 | * physical blocks. any block from that preallocated can be used |
| 235 | * independent. the descriptor just tracks number of blocks left |
| 236 | * unused. so, before taking some block from descriptor, one must |
| 237 | * make sure corresponded logical block isn't allocated yet. this |
| 238 | * also means that freeing any block within descriptor's range |
| 239 | * must discard all preallocated blocks. |
| 240 | * - locality group |
| 241 | * assigned to specific locality group which does not translate to |
| 242 | * permanent set of inodes: inode can join and leave group. space |
| 243 | * from this type of preallocation can be used for any inode. thus |
| 244 | * it's consumed from the beginning to the end. |
| 245 | * |
| 246 | * relation between them can be expressed as: |
| 247 | * in-core buddy = on-disk bitmap + preallocation descriptors |
| 248 | * |
| 249 | * this mean blocks mballoc considers used are: |
| 250 | * - allocated blocks (persistent) |
| 251 | * - preallocated blocks (non-persistent) |
| 252 | * |
| 253 | * consistency in mballoc world means that at any time a block is either |
| 254 | * free or used in ALL structures. notice: "any time" should not be read |
| 255 | * literally -- time is discrete and delimited by locks. |
| 256 | * |
| 257 | * to keep it simple, we don't use block numbers, instead we count number of |
| 258 | * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. |
| 259 | * |
| 260 | * all operations can be expressed as: |
| 261 | * - init buddy: buddy = on-disk + PAs |
| 262 | * - new PA: buddy += N; PA = N |
| 263 | * - use inode PA: on-disk += N; PA -= N |
| 264 | * - discard inode PA buddy -= on-disk - PA; PA = 0 |
| 265 | * - use locality group PA on-disk += N; PA -= N |
| 266 | * - discard locality group PA buddy -= PA; PA = 0 |
| 267 | * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap |
| 268 | * is used in real operation because we can't know actual used |
| 269 | * bits from PA, only from on-disk bitmap |
| 270 | * |
| 271 | * if we follow this strict logic, then all operations above should be atomic. |
| 272 | * given some of them can block, we'd have to use something like semaphores |
| 273 | * killing performance on high-end SMP hardware. let's try to relax it using |
| 274 | * the following knowledge: |
| 275 | * 1) if buddy is referenced, it's already initialized |
| 276 | * 2) while block is used in buddy and the buddy is referenced, |
| 277 | * nobody can re-allocate that block |
| 278 | * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has |
| 279 | * bit set and PA claims same block, it's OK. IOW, one can set bit in |
| 280 | * on-disk bitmap if buddy has same bit set or/and PA covers corresponded |
| 281 | * block |
| 282 | * |
| 283 | * so, now we're building a concurrency table: |
| 284 | * - init buddy vs. |
| 285 | * - new PA |
| 286 | * blocks for PA are allocated in the buddy, buddy must be referenced |
| 287 | * until PA is linked to allocation group to avoid concurrent buddy init |
| 288 | * - use inode PA |
| 289 | * we need to make sure that either on-disk bitmap or PA has uptodate data |
| 290 | * given (3) we care that PA-=N operation doesn't interfere with init |
| 291 | * - discard inode PA |
| 292 | * the simplest way would be to have buddy initialized by the discard |
| 293 | * - use locality group PA |
| 294 | * again PA-=N must be serialized with init |
| 295 | * - discard locality group PA |
| 296 | * the simplest way would be to have buddy initialized by the discard |
| 297 | * - new PA vs. |
| 298 | * - use inode PA |
| 299 | * i_data_sem serializes them |
| 300 | * - discard inode PA |
| 301 | * discard process must wait until PA isn't used by another process |
| 302 | * - use locality group PA |
| 303 | * some mutex should serialize them |
| 304 | * - discard locality group PA |
| 305 | * discard process must wait until PA isn't used by another process |
| 306 | * - use inode PA |
| 307 | * - use inode PA |
| 308 | * i_data_sem or another mutex should serializes them |
| 309 | * - discard inode PA |
| 310 | * discard process must wait until PA isn't used by another process |
| 311 | * - use locality group PA |
| 312 | * nothing wrong here -- they're different PAs covering different blocks |
| 313 | * - discard locality group PA |
| 314 | * discard process must wait until PA isn't used by another process |
| 315 | * |
| 316 | * now we're ready to make few consequences: |
| 317 | * - PA is referenced and while it is no discard is possible |
| 318 | * - PA is referenced until block isn't marked in on-disk bitmap |
| 319 | * - PA changes only after on-disk bitmap |
| 320 | * - discard must not compete with init. either init is done before |
| 321 | * any discard or they're serialized somehow |
| 322 | * - buddy init as sum of on-disk bitmap and PAs is done atomically |
| 323 | * |
| 324 | * a special case when we've used PA to emptiness. no need to modify buddy |
| 325 | * in this case, but we should care about concurrent init |
| 326 | * |
| 327 | */ |
| 328 | |
| 329 | /* |
| 330 | * Logic in few words: |
| 331 | * |
| 332 | * - allocation: |
| 333 | * load group |
| 334 | * find blocks |
| 335 | * mark bits in on-disk bitmap |
| 336 | * release group |
| 337 | * |
| 338 | * - use preallocation: |
| 339 | * find proper PA (per-inode or group) |
| 340 | * load group |
| 341 | * mark bits in on-disk bitmap |
| 342 | * release group |
| 343 | * release PA |
| 344 | * |
| 345 | * - free: |
| 346 | * load group |
| 347 | * mark bits in on-disk bitmap |
| 348 | * release group |
| 349 | * |
| 350 | * - discard preallocations in group: |
| 351 | * mark PAs deleted |
| 352 | * move them onto local list |
| 353 | * load on-disk bitmap |
| 354 | * load group |
| 355 | * remove PA from object (inode or locality group) |
| 356 | * mark free blocks in-core |
| 357 | * |
| 358 | * - discard inode's preallocations: |
| 359 | */ |
| 360 | |
| 361 | /* |
| 362 | * Locking rules |
| 363 | * |
| 364 | * Locks: |
| 365 | * - bitlock on a group (group) |
| 366 | * - object (inode/locality) (object) |
| 367 | * - per-pa lock (pa) |
| 368 | * - cr_power2_aligned lists lock (cr_power2_aligned) |
| 369 | * - cr_goal_len_fast lists lock (cr_goal_len_fast) |
| 370 | * |
| 371 | * Paths: |
| 372 | * - new pa |
| 373 | * object |
| 374 | * group |
| 375 | * |
| 376 | * - find and use pa: |
| 377 | * pa |
| 378 | * |
| 379 | * - release consumed pa: |
| 380 | * pa |
| 381 | * group |
| 382 | * object |
| 383 | * |
| 384 | * - generate in-core bitmap: |
| 385 | * group |
| 386 | * pa |
| 387 | * |
| 388 | * - discard all for given object (inode, locality group): |
| 389 | * object |
| 390 | * pa |
| 391 | * group |
| 392 | * |
| 393 | * - discard all for given group: |
| 394 | * group |
| 395 | * pa |
| 396 | * group |
| 397 | * object |
| 398 | * |
| 399 | * - allocation path (ext4_mb_regular_allocator) |
| 400 | * group |
| 401 | * cr_power2_aligned/cr_goal_len_fast |
| 402 | */ |
| 403 | static struct kmem_cache *ext4_pspace_cachep; |
| 404 | static struct kmem_cache *ext4_ac_cachep; |
| 405 | static struct kmem_cache *ext4_free_data_cachep; |
| 406 | |
| 407 | /* We create slab caches for groupinfo data structures based on the |
| 408 | * superblock block size. There will be one per mounted filesystem for |
| 409 | * each unique s_blocksize_bits */ |
| 410 | #define NR_GRPINFO_CACHES 8 |
| 411 | static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; |
| 412 | |
| 413 | static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { |
| 414 | "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", |
| 415 | "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", |
| 416 | "ext4_groupinfo_64k", "ext4_groupinfo_128k" |
| 417 | }; |
| 418 | |
| 419 | static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, |
| 420 | ext4_group_t group); |
| 421 | static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); |
| 422 | |
| 423 | static bool ext4_mb_good_group(struct ext4_allocation_context *ac, |
| 424 | ext4_group_t group, enum criteria cr); |
| 425 | |
| 426 | static int ext4_try_to_trim_range(struct super_block *sb, |
| 427 | struct ext4_buddy *e4b, ext4_grpblk_t start, |
| 428 | ext4_grpblk_t max, ext4_grpblk_t minblocks); |
| 429 | |
| 430 | /* |
| 431 | * The algorithm using this percpu seq counter goes below: |
| 432 | * 1. We sample the percpu discard_pa_seq counter before trying for block |
| 433 | * allocation in ext4_mb_new_blocks(). |
| 434 | * 2. We increment this percpu discard_pa_seq counter when we either allocate |
| 435 | * or free these blocks i.e. while marking those blocks as used/free in |
| 436 | * mb_mark_used()/mb_free_blocks(). |
| 437 | * 3. We also increment this percpu seq counter when we successfully identify |
| 438 | * that the bb_prealloc_list is not empty and hence proceed for discarding |
| 439 | * of those PAs inside ext4_mb_discard_group_preallocations(). |
| 440 | * |
| 441 | * Now to make sure that the regular fast path of block allocation is not |
| 442 | * affected, as a small optimization we only sample the percpu seq counter |
| 443 | * on that cpu. Only when the block allocation fails and when freed blocks |
| 444 | * found were 0, that is when we sample percpu seq counter for all cpus using |
| 445 | * below function ext4_get_discard_pa_seq_sum(). This happens after making |
| 446 | * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. |
| 447 | */ |
| 448 | static DEFINE_PER_CPU(u64, discard_pa_seq); |
| 449 | static inline u64 ext4_get_discard_pa_seq_sum(void) |
| 450 | { |
| 451 | int __cpu; |
| 452 | u64 __seq = 0; |
| 453 | |
| 454 | for_each_possible_cpu(__cpu) |
| 455 | __seq += per_cpu(discard_pa_seq, __cpu); |
| 456 | return __seq; |
| 457 | } |
| 458 | |
| 459 | static inline void *mb_correct_addr_and_bit(int *bit, void *addr) |
| 460 | { |
| 461 | #if BITS_PER_LONG == 64 |
| 462 | *bit += ((unsigned long) addr & 7UL) << 3; |
| 463 | addr = (void *) ((unsigned long) addr & ~7UL); |
| 464 | #elif BITS_PER_LONG == 32 |
| 465 | *bit += ((unsigned long) addr & 3UL) << 3; |
| 466 | addr = (void *) ((unsigned long) addr & ~3UL); |
| 467 | #else |
| 468 | #error "how many bits you are?!" |
| 469 | #endif |
| 470 | return addr; |
| 471 | } |
| 472 | |
| 473 | static inline int mb_test_bit(int bit, void *addr) |
| 474 | { |
| 475 | /* |
| 476 | * ext4_test_bit on architecture like powerpc |
| 477 | * needs unsigned long aligned address |
| 478 | */ |
| 479 | addr = mb_correct_addr_and_bit(&bit, addr); |
| 480 | return ext4_test_bit(bit, addr); |
| 481 | } |
| 482 | |
| 483 | static inline void mb_set_bit(int bit, void *addr) |
| 484 | { |
| 485 | addr = mb_correct_addr_and_bit(&bit, addr); |
| 486 | ext4_set_bit(bit, addr); |
| 487 | } |
| 488 | |
| 489 | static inline void mb_clear_bit(int bit, void *addr) |
| 490 | { |
| 491 | addr = mb_correct_addr_and_bit(&bit, addr); |
| 492 | ext4_clear_bit(bit, addr); |
| 493 | } |
| 494 | |
| 495 | static inline int mb_test_and_clear_bit(int bit, void *addr) |
| 496 | { |
| 497 | addr = mb_correct_addr_and_bit(&bit, addr); |
| 498 | return ext4_test_and_clear_bit(bit, addr); |
| 499 | } |
| 500 | |
| 501 | static inline int mb_find_next_zero_bit(void *addr, int max, int start) |
| 502 | { |
| 503 | int fix = 0, ret, tmpmax; |
| 504 | addr = mb_correct_addr_and_bit(&fix, addr); |
| 505 | tmpmax = max + fix; |
| 506 | start += fix; |
| 507 | |
| 508 | ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; |
| 509 | if (ret > max) |
| 510 | return max; |
| 511 | return ret; |
| 512 | } |
| 513 | |
| 514 | static inline int mb_find_next_bit(void *addr, int max, int start) |
| 515 | { |
| 516 | int fix = 0, ret, tmpmax; |
| 517 | addr = mb_correct_addr_and_bit(&fix, addr); |
| 518 | tmpmax = max + fix; |
| 519 | start += fix; |
| 520 | |
| 521 | ret = ext4_find_next_bit(addr, tmpmax, start) - fix; |
| 522 | if (ret > max) |
| 523 | return max; |
| 524 | return ret; |
| 525 | } |
| 526 | |
| 527 | static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) |
| 528 | { |
| 529 | char *bb; |
| 530 | |
| 531 | BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); |
| 532 | BUG_ON(max == NULL); |
| 533 | |
| 534 | if (order > e4b->bd_blkbits + 1) { |
| 535 | *max = 0; |
| 536 | return NULL; |
| 537 | } |
| 538 | |
| 539 | /* at order 0 we see each particular block */ |
| 540 | if (order == 0) { |
| 541 | *max = 1 << (e4b->bd_blkbits + 3); |
| 542 | return e4b->bd_bitmap; |
| 543 | } |
| 544 | |
| 545 | bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; |
| 546 | *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; |
| 547 | |
| 548 | return bb; |
| 549 | } |
| 550 | |
| 551 | #ifdef DOUBLE_CHECK |
| 552 | static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, |
| 553 | int first, int count) |
| 554 | { |
| 555 | int i; |
| 556 | struct super_block *sb = e4b->bd_sb; |
| 557 | |
| 558 | if (unlikely(e4b->bd_info->bb_bitmap == NULL)) |
| 559 | return; |
| 560 | assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); |
| 561 | for (i = 0; i < count; i++) { |
| 562 | if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { |
| 563 | ext4_fsblk_t blocknr; |
| 564 | |
| 565 | blocknr = ext4_group_first_block_no(sb, e4b->bd_group); |
| 566 | blocknr += EXT4_C2B(EXT4_SB(sb), first + i); |
| 567 | ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, |
| 568 | EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
| 569 | ext4_grp_locked_error(sb, e4b->bd_group, |
| 570 | inode ? inode->i_ino : 0, |
| 571 | blocknr, |
| 572 | "freeing block already freed " |
| 573 | "(bit %u)", |
| 574 | first + i); |
| 575 | } |
| 576 | mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) |
| 581 | { |
| 582 | int i; |
| 583 | |
| 584 | if (unlikely(e4b->bd_info->bb_bitmap == NULL)) |
| 585 | return; |
| 586 | assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); |
| 587 | for (i = 0; i < count; i++) { |
| 588 | BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); |
| 589 | mb_set_bit(first + i, e4b->bd_info->bb_bitmap); |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) |
| 594 | { |
| 595 | if (unlikely(e4b->bd_info->bb_bitmap == NULL)) |
| 596 | return; |
| 597 | if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { |
| 598 | unsigned char *b1, *b2; |
| 599 | int i; |
| 600 | b1 = (unsigned char *) e4b->bd_info->bb_bitmap; |
| 601 | b2 = (unsigned char *) bitmap; |
| 602 | for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { |
| 603 | if (b1[i] != b2[i]) { |
| 604 | ext4_msg(e4b->bd_sb, KERN_ERR, |
| 605 | "corruption in group %u " |
| 606 | "at byte %u(%u): %x in copy != %x " |
| 607 | "on disk/prealloc", |
| 608 | e4b->bd_group, i, i * 8, b1[i], b2[i]); |
| 609 | BUG(); |
| 610 | } |
| 611 | } |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | static void mb_group_bb_bitmap_alloc(struct super_block *sb, |
| 616 | struct ext4_group_info *grp, ext4_group_t group) |
| 617 | { |
| 618 | struct buffer_head *bh; |
| 619 | |
| 620 | grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); |
| 621 | if (!grp->bb_bitmap) |
| 622 | return; |
| 623 | |
| 624 | bh = ext4_read_block_bitmap(sb, group); |
| 625 | if (IS_ERR_OR_NULL(bh)) { |
| 626 | kfree(grp->bb_bitmap); |
| 627 | grp->bb_bitmap = NULL; |
| 628 | return; |
| 629 | } |
| 630 | |
| 631 | memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); |
| 632 | put_bh(bh); |
| 633 | } |
| 634 | |
| 635 | static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) |
| 636 | { |
| 637 | kfree(grp->bb_bitmap); |
| 638 | } |
| 639 | |
| 640 | #else |
| 641 | static inline void mb_free_blocks_double(struct inode *inode, |
| 642 | struct ext4_buddy *e4b, int first, int count) |
| 643 | { |
| 644 | return; |
| 645 | } |
| 646 | static inline void mb_mark_used_double(struct ext4_buddy *e4b, |
| 647 | int first, int count) |
| 648 | { |
| 649 | return; |
| 650 | } |
| 651 | static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) |
| 652 | { |
| 653 | return; |
| 654 | } |
| 655 | |
| 656 | static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, |
| 657 | struct ext4_group_info *grp, ext4_group_t group) |
| 658 | { |
| 659 | return; |
| 660 | } |
| 661 | |
| 662 | static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) |
| 663 | { |
| 664 | return; |
| 665 | } |
| 666 | #endif |
| 667 | |
| 668 | #ifdef AGGRESSIVE_CHECK |
| 669 | |
| 670 | #define MB_CHECK_ASSERT(assert) \ |
| 671 | do { \ |
| 672 | if (!(assert)) { \ |
| 673 | printk(KERN_EMERG \ |
| 674 | "Assertion failure in %s() at %s:%d: \"%s\"\n", \ |
| 675 | function, file, line, # assert); \ |
| 676 | BUG(); \ |
| 677 | } \ |
| 678 | } while (0) |
| 679 | |
| 680 | static void __mb_check_buddy(struct ext4_buddy *e4b, char *file, |
| 681 | const char *function, int line) |
| 682 | { |
| 683 | struct super_block *sb = e4b->bd_sb; |
| 684 | int order = e4b->bd_blkbits + 1; |
| 685 | int max; |
| 686 | int max2; |
| 687 | int i; |
| 688 | int j; |
| 689 | int k; |
| 690 | int count; |
| 691 | struct ext4_group_info *grp; |
| 692 | int fragments = 0; |
| 693 | int fstart; |
| 694 | struct list_head *cur; |
| 695 | void *buddy; |
| 696 | void *buddy2; |
| 697 | |
| 698 | if (e4b->bd_info->bb_check_counter++ % 10) |
| 699 | return; |
| 700 | |
| 701 | while (order > 1) { |
| 702 | buddy = mb_find_buddy(e4b, order, &max); |
| 703 | MB_CHECK_ASSERT(buddy); |
| 704 | buddy2 = mb_find_buddy(e4b, order - 1, &max2); |
| 705 | MB_CHECK_ASSERT(buddy2); |
| 706 | MB_CHECK_ASSERT(buddy != buddy2); |
| 707 | MB_CHECK_ASSERT(max * 2 == max2); |
| 708 | |
| 709 | count = 0; |
| 710 | for (i = 0; i < max; i++) { |
| 711 | |
| 712 | if (mb_test_bit(i, buddy)) { |
| 713 | /* only single bit in buddy2 may be 0 */ |
| 714 | if (!mb_test_bit(i << 1, buddy2)) { |
| 715 | MB_CHECK_ASSERT( |
| 716 | mb_test_bit((i<<1)+1, buddy2)); |
| 717 | } |
| 718 | continue; |
| 719 | } |
| 720 | |
| 721 | /* both bits in buddy2 must be 1 */ |
| 722 | MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); |
| 723 | MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); |
| 724 | |
| 725 | for (j = 0; j < (1 << order); j++) { |
| 726 | k = (i * (1 << order)) + j; |
| 727 | MB_CHECK_ASSERT( |
| 728 | !mb_test_bit(k, e4b->bd_bitmap)); |
| 729 | } |
| 730 | count++; |
| 731 | } |
| 732 | MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); |
| 733 | order--; |
| 734 | } |
| 735 | |
| 736 | fstart = -1; |
| 737 | buddy = mb_find_buddy(e4b, 0, &max); |
| 738 | for (i = 0; i < max; i++) { |
| 739 | if (!mb_test_bit(i, buddy)) { |
| 740 | MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); |
| 741 | if (fstart == -1) { |
| 742 | fragments++; |
| 743 | fstart = i; |
| 744 | } |
| 745 | continue; |
| 746 | } |
| 747 | fstart = -1; |
| 748 | /* check used bits only */ |
| 749 | for (j = 0; j < e4b->bd_blkbits + 1; j++) { |
| 750 | buddy2 = mb_find_buddy(e4b, j, &max2); |
| 751 | k = i >> j; |
| 752 | MB_CHECK_ASSERT(k < max2); |
| 753 | MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); |
| 754 | } |
| 755 | } |
| 756 | MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); |
| 757 | MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); |
| 758 | |
| 759 | grp = ext4_get_group_info(sb, e4b->bd_group); |
| 760 | if (!grp) |
| 761 | return; |
| 762 | list_for_each(cur, &grp->bb_prealloc_list) { |
| 763 | ext4_group_t groupnr; |
| 764 | struct ext4_prealloc_space *pa; |
| 765 | pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); |
| 766 | ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); |
| 767 | MB_CHECK_ASSERT(groupnr == e4b->bd_group); |
| 768 | for (i = 0; i < pa->pa_len; i++) |
| 769 | MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); |
| 770 | } |
| 771 | } |
| 772 | #undef MB_CHECK_ASSERT |
| 773 | #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ |
| 774 | __FILE__, __func__, __LINE__) |
| 775 | #else |
| 776 | #define mb_check_buddy(e4b) |
| 777 | #endif |
| 778 | |
| 779 | /* |
| 780 | * Divide blocks started from @first with length @len into |
| 781 | * smaller chunks with power of 2 blocks. |
| 782 | * Clear the bits in bitmap which the blocks of the chunk(s) covered, |
| 783 | * then increase bb_counters[] for corresponded chunk size. |
| 784 | */ |
| 785 | static void ext4_mb_mark_free_simple(struct super_block *sb, |
| 786 | void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, |
| 787 | struct ext4_group_info *grp) |
| 788 | { |
| 789 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 790 | ext4_grpblk_t min; |
| 791 | ext4_grpblk_t max; |
| 792 | ext4_grpblk_t chunk; |
| 793 | unsigned int border; |
| 794 | |
| 795 | BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); |
| 796 | |
| 797 | border = 2 << sb->s_blocksize_bits; |
| 798 | |
| 799 | while (len > 0) { |
| 800 | /* find how many blocks can be covered since this position */ |
| 801 | max = ffs(first | border) - 1; |
| 802 | |
| 803 | /* find how many blocks of power 2 we need to mark */ |
| 804 | min = fls(len) - 1; |
| 805 | |
| 806 | if (max < min) |
| 807 | min = max; |
| 808 | chunk = 1 << min; |
| 809 | |
| 810 | /* mark multiblock chunks only */ |
| 811 | grp->bb_counters[min]++; |
| 812 | if (min > 0) |
| 813 | mb_clear_bit(first >> min, |
| 814 | buddy + sbi->s_mb_offsets[min]); |
| 815 | |
| 816 | len -= chunk; |
| 817 | first += chunk; |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) |
| 822 | { |
| 823 | int order; |
| 824 | |
| 825 | /* |
| 826 | * We don't bother with a special lists groups with only 1 block free |
| 827 | * extents and for completely empty groups. |
| 828 | */ |
| 829 | order = fls(len) - 2; |
| 830 | if (order < 0) |
| 831 | return 0; |
| 832 | if (order == MB_NUM_ORDERS(sb)) |
| 833 | order--; |
| 834 | if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb))) |
| 835 | order = MB_NUM_ORDERS(sb) - 1; |
| 836 | return order; |
| 837 | } |
| 838 | |
| 839 | /* Move group to appropriate avg_fragment_size list */ |
| 840 | static void |
| 841 | mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) |
| 842 | { |
| 843 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 844 | int new_order; |
| 845 | |
| 846 | if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0) |
| 847 | return; |
| 848 | |
| 849 | new_order = mb_avg_fragment_size_order(sb, |
| 850 | grp->bb_free / grp->bb_fragments); |
| 851 | if (new_order == grp->bb_avg_fragment_size_order) |
| 852 | return; |
| 853 | |
| 854 | if (grp->bb_avg_fragment_size_order != -1) { |
| 855 | write_lock(&sbi->s_mb_avg_fragment_size_locks[ |
| 856 | grp->bb_avg_fragment_size_order]); |
| 857 | list_del(&grp->bb_avg_fragment_size_node); |
| 858 | write_unlock(&sbi->s_mb_avg_fragment_size_locks[ |
| 859 | grp->bb_avg_fragment_size_order]); |
| 860 | } |
| 861 | grp->bb_avg_fragment_size_order = new_order; |
| 862 | write_lock(&sbi->s_mb_avg_fragment_size_locks[ |
| 863 | grp->bb_avg_fragment_size_order]); |
| 864 | list_add_tail(&grp->bb_avg_fragment_size_node, |
| 865 | &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); |
| 866 | write_unlock(&sbi->s_mb_avg_fragment_size_locks[ |
| 867 | grp->bb_avg_fragment_size_order]); |
| 868 | } |
| 869 | |
| 870 | /* |
| 871 | * Choose next group by traversing largest_free_order lists. Updates *new_cr if |
| 872 | * cr level needs an update. |
| 873 | */ |
| 874 | static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, |
| 875 | enum criteria *new_cr, ext4_group_t *group) |
| 876 | { |
| 877 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 878 | struct ext4_group_info *iter; |
| 879 | int i; |
| 880 | |
| 881 | if (ac->ac_status == AC_STATUS_FOUND) |
| 882 | return; |
| 883 | |
| 884 | if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) |
| 885 | atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); |
| 886 | |
| 887 | for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { |
| 888 | if (list_empty(&sbi->s_mb_largest_free_orders[i])) |
| 889 | continue; |
| 890 | read_lock(&sbi->s_mb_largest_free_orders_locks[i]); |
| 891 | if (list_empty(&sbi->s_mb_largest_free_orders[i])) { |
| 892 | read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); |
| 893 | continue; |
| 894 | } |
| 895 | list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], |
| 896 | bb_largest_free_order_node) { |
| 897 | if (sbi->s_mb_stats) |
| 898 | atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); |
| 899 | if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { |
| 900 | *group = iter->bb_group; |
| 901 | ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; |
| 902 | read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); |
| 903 | return; |
| 904 | } |
| 905 | } |
| 906 | read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); |
| 907 | } |
| 908 | |
| 909 | /* Increment cr and search again if no group is found */ |
| 910 | *new_cr = CR_GOAL_LEN_FAST; |
| 911 | } |
| 912 | |
| 913 | /* |
| 914 | * Find a suitable group of given order from the average fragments list. |
| 915 | */ |
| 916 | static struct ext4_group_info * |
| 917 | ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) |
| 918 | { |
| 919 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 920 | struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; |
| 921 | rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; |
| 922 | struct ext4_group_info *grp = NULL, *iter; |
| 923 | enum criteria cr = ac->ac_criteria; |
| 924 | |
| 925 | if (list_empty(frag_list)) |
| 926 | return NULL; |
| 927 | read_lock(frag_list_lock); |
| 928 | if (list_empty(frag_list)) { |
| 929 | read_unlock(frag_list_lock); |
| 930 | return NULL; |
| 931 | } |
| 932 | list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { |
| 933 | if (sbi->s_mb_stats) |
| 934 | atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); |
| 935 | if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { |
| 936 | grp = iter; |
| 937 | break; |
| 938 | } |
| 939 | } |
| 940 | read_unlock(frag_list_lock); |
| 941 | return grp; |
| 942 | } |
| 943 | |
| 944 | /* |
| 945 | * Choose next group by traversing average fragment size list of suitable |
| 946 | * order. Updates *new_cr if cr level needs an update. |
| 947 | */ |
| 948 | static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, |
| 949 | enum criteria *new_cr, ext4_group_t *group) |
| 950 | { |
| 951 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 952 | struct ext4_group_info *grp = NULL; |
| 953 | int i; |
| 954 | |
| 955 | if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { |
| 956 | if (sbi->s_mb_stats) |
| 957 | atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); |
| 958 | } |
| 959 | |
| 960 | for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); |
| 961 | i < MB_NUM_ORDERS(ac->ac_sb); i++) { |
| 962 | grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); |
| 963 | if (grp) { |
| 964 | *group = grp->bb_group; |
| 965 | ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; |
| 966 | return; |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | /* |
| 971 | * CR_BEST_AVAIL_LEN works based on the concept that we have |
| 972 | * a larger normalized goal len request which can be trimmed to |
| 973 | * a smaller goal len such that it can still satisfy original |
| 974 | * request len. However, allocation request for non-regular |
| 975 | * files never gets normalized. |
| 976 | * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). |
| 977 | */ |
| 978 | if (ac->ac_flags & EXT4_MB_HINT_DATA) |
| 979 | *new_cr = CR_BEST_AVAIL_LEN; |
| 980 | else |
| 981 | *new_cr = CR_GOAL_LEN_SLOW; |
| 982 | } |
| 983 | |
| 984 | /* |
| 985 | * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment |
| 986 | * order we have and proactively trim the goal request length to that order to |
| 987 | * find a suitable group faster. |
| 988 | * |
| 989 | * This optimizes allocation speed at the cost of slightly reduced |
| 990 | * preallocations. However, we make sure that we don't trim the request too |
| 991 | * much and fall to CR_GOAL_LEN_SLOW in that case. |
| 992 | */ |
| 993 | static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, |
| 994 | enum criteria *new_cr, ext4_group_t *group) |
| 995 | { |
| 996 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 997 | struct ext4_group_info *grp = NULL; |
| 998 | int i, order, min_order; |
| 999 | unsigned long num_stripe_clusters = 0; |
| 1000 | |
| 1001 | if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { |
| 1002 | if (sbi->s_mb_stats) |
| 1003 | atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); |
| 1004 | } |
| 1005 | |
| 1006 | /* |
| 1007 | * mb_avg_fragment_size_order() returns order in a way that makes |
| 1008 | * retrieving back the length using (1 << order) inaccurate. Hence, use |
| 1009 | * fls() instead since we need to know the actual length while modifying |
| 1010 | * goal length. |
| 1011 | */ |
| 1012 | order = fls(ac->ac_g_ex.fe_len) - 1; |
| 1013 | if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb))) |
| 1014 | order = MB_NUM_ORDERS(ac->ac_sb); |
| 1015 | min_order = order - sbi->s_mb_best_avail_max_trim_order; |
| 1016 | if (min_order < 0) |
| 1017 | min_order = 0; |
| 1018 | |
| 1019 | if (sbi->s_stripe > 0) { |
| 1020 | /* |
| 1021 | * We are assuming that stripe size is always a multiple of |
| 1022 | * cluster ratio otherwise __ext4_fill_super exists early. |
| 1023 | */ |
| 1024 | num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); |
| 1025 | if (1 << min_order < num_stripe_clusters) |
| 1026 | /* |
| 1027 | * We consider 1 order less because later we round |
| 1028 | * up the goal len to num_stripe_clusters |
| 1029 | */ |
| 1030 | min_order = fls(num_stripe_clusters) - 1; |
| 1031 | } |
| 1032 | |
| 1033 | if (1 << min_order < ac->ac_o_ex.fe_len) |
| 1034 | min_order = fls(ac->ac_o_ex.fe_len); |
| 1035 | |
| 1036 | for (i = order; i >= min_order; i--) { |
| 1037 | int frag_order; |
| 1038 | /* |
| 1039 | * Scale down goal len to make sure we find something |
| 1040 | * in the free fragments list. Basically, reduce |
| 1041 | * preallocations. |
| 1042 | */ |
| 1043 | ac->ac_g_ex.fe_len = 1 << i; |
| 1044 | |
| 1045 | if (num_stripe_clusters > 0) { |
| 1046 | /* |
| 1047 | * Try to round up the adjusted goal length to |
| 1048 | * stripe size (in cluster units) multiple for |
| 1049 | * efficiency. |
| 1050 | */ |
| 1051 | ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, |
| 1052 | num_stripe_clusters); |
| 1053 | } |
| 1054 | |
| 1055 | frag_order = mb_avg_fragment_size_order(ac->ac_sb, |
| 1056 | ac->ac_g_ex.fe_len); |
| 1057 | |
| 1058 | grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); |
| 1059 | if (grp) { |
| 1060 | *group = grp->bb_group; |
| 1061 | ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; |
| 1062 | return; |
| 1063 | } |
| 1064 | } |
| 1065 | |
| 1066 | /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ |
| 1067 | ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; |
| 1068 | *new_cr = CR_GOAL_LEN_SLOW; |
| 1069 | } |
| 1070 | |
| 1071 | static inline int should_optimize_scan(struct ext4_allocation_context *ac) |
| 1072 | { |
| 1073 | if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) |
| 1074 | return 0; |
| 1075 | if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) |
| 1076 | return 0; |
| 1077 | if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) |
| 1078 | return 0; |
| 1079 | return 1; |
| 1080 | } |
| 1081 | |
| 1082 | /* |
| 1083 | * Return next linear group for allocation. |
| 1084 | */ |
| 1085 | static ext4_group_t |
| 1086 | next_linear_group(ext4_group_t group, ext4_group_t ngroups) |
| 1087 | { |
| 1088 | /* |
| 1089 | * Artificially restricted ngroups for non-extent |
| 1090 | * files makes group > ngroups possible on first loop. |
| 1091 | */ |
| 1092 | return group + 1 >= ngroups ? 0 : group + 1; |
| 1093 | } |
| 1094 | |
| 1095 | /* |
| 1096 | * ext4_mb_choose_next_group: choose next group for allocation. |
| 1097 | * |
| 1098 | * @ac Allocation Context |
| 1099 | * @new_cr This is an output parameter. If the there is no good group |
| 1100 | * available at current CR level, this field is updated to indicate |
| 1101 | * the new cr level that should be used. |
| 1102 | * @group This is an input / output parameter. As an input it indicates the |
| 1103 | * next group that the allocator intends to use for allocation. As |
| 1104 | * output, this field indicates the next group that should be used as |
| 1105 | * determined by the optimization functions. |
| 1106 | * @ngroups Total number of groups |
| 1107 | */ |
| 1108 | static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, |
| 1109 | enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) |
| 1110 | { |
| 1111 | *new_cr = ac->ac_criteria; |
| 1112 | |
| 1113 | if (!should_optimize_scan(ac)) { |
| 1114 | *group = next_linear_group(*group, ngroups); |
| 1115 | return; |
| 1116 | } |
| 1117 | |
| 1118 | /* |
| 1119 | * Optimized scanning can return non adjacent groups which can cause |
| 1120 | * seek overhead for rotational disks. So try few linear groups before |
| 1121 | * trying optimized scan. |
| 1122 | */ |
| 1123 | if (ac->ac_groups_linear_remaining) { |
| 1124 | *group = next_linear_group(*group, ngroups); |
| 1125 | ac->ac_groups_linear_remaining--; |
| 1126 | return; |
| 1127 | } |
| 1128 | |
| 1129 | if (*new_cr == CR_POWER2_ALIGNED) { |
| 1130 | ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group); |
| 1131 | } else if (*new_cr == CR_GOAL_LEN_FAST) { |
| 1132 | ext4_mb_choose_next_group_goal_fast(ac, new_cr, group); |
| 1133 | } else if (*new_cr == CR_BEST_AVAIL_LEN) { |
| 1134 | ext4_mb_choose_next_group_best_avail(ac, new_cr, group); |
| 1135 | } else { |
| 1136 | /* |
| 1137 | * TODO: For CR_GOAL_LEN_SLOW, we can arrange groups in an |
| 1138 | * rb tree sorted by bb_free. But until that happens, we should |
| 1139 | * never come here. |
| 1140 | */ |
| 1141 | WARN_ON(1); |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | /* |
| 1146 | * Cache the order of the largest free extent we have available in this block |
| 1147 | * group. |
| 1148 | */ |
| 1149 | static void |
| 1150 | mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) |
| 1151 | { |
| 1152 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 1153 | int i; |
| 1154 | |
| 1155 | for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) |
| 1156 | if (grp->bb_counters[i] > 0) |
| 1157 | break; |
| 1158 | /* No need to move between order lists? */ |
| 1159 | if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || |
| 1160 | i == grp->bb_largest_free_order) { |
| 1161 | grp->bb_largest_free_order = i; |
| 1162 | return; |
| 1163 | } |
| 1164 | |
| 1165 | if (grp->bb_largest_free_order >= 0) { |
| 1166 | write_lock(&sbi->s_mb_largest_free_orders_locks[ |
| 1167 | grp->bb_largest_free_order]); |
| 1168 | list_del_init(&grp->bb_largest_free_order_node); |
| 1169 | write_unlock(&sbi->s_mb_largest_free_orders_locks[ |
| 1170 | grp->bb_largest_free_order]); |
| 1171 | } |
| 1172 | grp->bb_largest_free_order = i; |
| 1173 | if (grp->bb_largest_free_order >= 0 && grp->bb_free) { |
| 1174 | write_lock(&sbi->s_mb_largest_free_orders_locks[ |
| 1175 | grp->bb_largest_free_order]); |
| 1176 | list_add_tail(&grp->bb_largest_free_order_node, |
| 1177 | &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); |
| 1178 | write_unlock(&sbi->s_mb_largest_free_orders_locks[ |
| 1179 | grp->bb_largest_free_order]); |
| 1180 | } |
| 1181 | } |
| 1182 | |
| 1183 | static noinline_for_stack |
| 1184 | void ext4_mb_generate_buddy(struct super_block *sb, |
| 1185 | void *buddy, void *bitmap, ext4_group_t group, |
| 1186 | struct ext4_group_info *grp) |
| 1187 | { |
| 1188 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 1189 | ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); |
| 1190 | ext4_grpblk_t i = 0; |
| 1191 | ext4_grpblk_t first; |
| 1192 | ext4_grpblk_t len; |
| 1193 | unsigned free = 0; |
| 1194 | unsigned fragments = 0; |
| 1195 | unsigned long long period = get_cycles(); |
| 1196 | |
| 1197 | /* initialize buddy from bitmap which is aggregation |
| 1198 | * of on-disk bitmap and preallocations */ |
| 1199 | i = mb_find_next_zero_bit(bitmap, max, 0); |
| 1200 | grp->bb_first_free = i; |
| 1201 | while (i < max) { |
| 1202 | fragments++; |
| 1203 | first = i; |
| 1204 | i = mb_find_next_bit(bitmap, max, i); |
| 1205 | len = i - first; |
| 1206 | free += len; |
| 1207 | if (len > 1) |
| 1208 | ext4_mb_mark_free_simple(sb, buddy, first, len, grp); |
| 1209 | else |
| 1210 | grp->bb_counters[0]++; |
| 1211 | if (i < max) |
| 1212 | i = mb_find_next_zero_bit(bitmap, max, i); |
| 1213 | } |
| 1214 | grp->bb_fragments = fragments; |
| 1215 | |
| 1216 | if (free != grp->bb_free) { |
| 1217 | ext4_grp_locked_error(sb, group, 0, 0, |
| 1218 | "block bitmap and bg descriptor " |
| 1219 | "inconsistent: %u vs %u free clusters", |
| 1220 | free, grp->bb_free); |
| 1221 | /* |
| 1222 | * If we intend to continue, we consider group descriptor |
| 1223 | * corrupt and update bb_free using bitmap value |
| 1224 | */ |
| 1225 | grp->bb_free = free; |
| 1226 | ext4_mark_group_bitmap_corrupted(sb, group, |
| 1227 | EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
| 1228 | } |
| 1229 | mb_set_largest_free_order(sb, grp); |
| 1230 | mb_update_avg_fragment_size(sb, grp); |
| 1231 | |
| 1232 | clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); |
| 1233 | |
| 1234 | period = get_cycles() - period; |
| 1235 | atomic_inc(&sbi->s_mb_buddies_generated); |
| 1236 | atomic64_add(period, &sbi->s_mb_generation_time); |
| 1237 | } |
| 1238 | |
| 1239 | static void mb_regenerate_buddy(struct ext4_buddy *e4b) |
| 1240 | { |
| 1241 | int count; |
| 1242 | int order = 1; |
| 1243 | void *buddy; |
| 1244 | |
| 1245 | while ((buddy = mb_find_buddy(e4b, order++, &count))) |
| 1246 | mb_set_bits(buddy, 0, count); |
| 1247 | |
| 1248 | e4b->bd_info->bb_fragments = 0; |
| 1249 | memset(e4b->bd_info->bb_counters, 0, |
| 1250 | sizeof(*e4b->bd_info->bb_counters) * |
| 1251 | (e4b->bd_sb->s_blocksize_bits + 2)); |
| 1252 | |
| 1253 | ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, |
| 1254 | e4b->bd_bitmap, e4b->bd_group, e4b->bd_info); |
| 1255 | } |
| 1256 | |
| 1257 | /* The buddy information is attached the buddy cache inode |
| 1258 | * for convenience. The information regarding each group |
| 1259 | * is loaded via ext4_mb_load_buddy. The information involve |
| 1260 | * block bitmap and buddy information. The information are |
| 1261 | * stored in the inode as |
| 1262 | * |
| 1263 | * { page } |
| 1264 | * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... |
| 1265 | * |
| 1266 | * |
| 1267 | * one block each for bitmap and buddy information. |
| 1268 | * So for each group we take up 2 blocks. A page can |
| 1269 | * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. |
| 1270 | * So it can have information regarding groups_per_page which |
| 1271 | * is blocks_per_page/2 |
| 1272 | * |
| 1273 | * Locking note: This routine takes the block group lock of all groups |
| 1274 | * for this page; do not hold this lock when calling this routine! |
| 1275 | */ |
| 1276 | |
| 1277 | static int ext4_mb_init_cache(struct folio *folio, char *incore, gfp_t gfp) |
| 1278 | { |
| 1279 | ext4_group_t ngroups; |
| 1280 | unsigned int blocksize; |
| 1281 | int blocks_per_page; |
| 1282 | int groups_per_page; |
| 1283 | int err = 0; |
| 1284 | int i; |
| 1285 | ext4_group_t first_group, group; |
| 1286 | int first_block; |
| 1287 | struct super_block *sb; |
| 1288 | struct buffer_head *bhs; |
| 1289 | struct buffer_head **bh = NULL; |
| 1290 | struct inode *inode; |
| 1291 | char *data; |
| 1292 | char *bitmap; |
| 1293 | struct ext4_group_info *grinfo; |
| 1294 | |
| 1295 | inode = folio->mapping->host; |
| 1296 | sb = inode->i_sb; |
| 1297 | ngroups = ext4_get_groups_count(sb); |
| 1298 | blocksize = i_blocksize(inode); |
| 1299 | blocks_per_page = PAGE_SIZE / blocksize; |
| 1300 | |
| 1301 | mb_debug(sb, "init folio %lu\n", folio->index); |
| 1302 | |
| 1303 | groups_per_page = blocks_per_page >> 1; |
| 1304 | if (groups_per_page == 0) |
| 1305 | groups_per_page = 1; |
| 1306 | |
| 1307 | /* allocate buffer_heads to read bitmaps */ |
| 1308 | if (groups_per_page > 1) { |
| 1309 | i = sizeof(struct buffer_head *) * groups_per_page; |
| 1310 | bh = kzalloc(i, gfp); |
| 1311 | if (bh == NULL) |
| 1312 | return -ENOMEM; |
| 1313 | } else |
| 1314 | bh = &bhs; |
| 1315 | |
| 1316 | first_group = folio->index * blocks_per_page / 2; |
| 1317 | |
| 1318 | /* read all groups the folio covers into the cache */ |
| 1319 | for (i = 0, group = first_group; i < groups_per_page; i++, group++) { |
| 1320 | if (group >= ngroups) |
| 1321 | break; |
| 1322 | |
| 1323 | grinfo = ext4_get_group_info(sb, group); |
| 1324 | if (!grinfo) |
| 1325 | continue; |
| 1326 | /* |
| 1327 | * If page is uptodate then we came here after online resize |
| 1328 | * which added some new uninitialized group info structs, so |
| 1329 | * we must skip all initialized uptodate buddies on the folio, |
| 1330 | * which may be currently in use by an allocating task. |
| 1331 | */ |
| 1332 | if (folio_test_uptodate(folio) && |
| 1333 | !EXT4_MB_GRP_NEED_INIT(grinfo)) { |
| 1334 | bh[i] = NULL; |
| 1335 | continue; |
| 1336 | } |
| 1337 | bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); |
| 1338 | if (IS_ERR(bh[i])) { |
| 1339 | err = PTR_ERR(bh[i]); |
| 1340 | bh[i] = NULL; |
| 1341 | goto out; |
| 1342 | } |
| 1343 | mb_debug(sb, "read bitmap for group %u\n", group); |
| 1344 | } |
| 1345 | |
| 1346 | /* wait for I/O completion */ |
| 1347 | for (i = 0, group = first_group; i < groups_per_page; i++, group++) { |
| 1348 | int err2; |
| 1349 | |
| 1350 | if (!bh[i]) |
| 1351 | continue; |
| 1352 | err2 = ext4_wait_block_bitmap(sb, group, bh[i]); |
| 1353 | if (!err) |
| 1354 | err = err2; |
| 1355 | } |
| 1356 | |
| 1357 | first_block = folio->index * blocks_per_page; |
| 1358 | for (i = 0; i < blocks_per_page; i++) { |
| 1359 | group = (first_block + i) >> 1; |
| 1360 | if (group >= ngroups) |
| 1361 | break; |
| 1362 | |
| 1363 | if (!bh[group - first_group]) |
| 1364 | /* skip initialized uptodate buddy */ |
| 1365 | continue; |
| 1366 | |
| 1367 | if (!buffer_verified(bh[group - first_group])) |
| 1368 | /* Skip faulty bitmaps */ |
| 1369 | continue; |
| 1370 | err = 0; |
| 1371 | |
| 1372 | /* |
| 1373 | * data carry information regarding this |
| 1374 | * particular group in the format specified |
| 1375 | * above |
| 1376 | * |
| 1377 | */ |
| 1378 | data = folio_address(folio) + (i * blocksize); |
| 1379 | bitmap = bh[group - first_group]->b_data; |
| 1380 | |
| 1381 | /* |
| 1382 | * We place the buddy block and bitmap block |
| 1383 | * close together |
| 1384 | */ |
| 1385 | grinfo = ext4_get_group_info(sb, group); |
| 1386 | if (!grinfo) { |
| 1387 | err = -EFSCORRUPTED; |
| 1388 | goto out; |
| 1389 | } |
| 1390 | if ((first_block + i) & 1) { |
| 1391 | /* this is block of buddy */ |
| 1392 | BUG_ON(incore == NULL); |
| 1393 | mb_debug(sb, "put buddy for group %u in folio %lu/%x\n", |
| 1394 | group, folio->index, i * blocksize); |
| 1395 | trace_ext4_mb_buddy_bitmap_load(sb, group); |
| 1396 | grinfo->bb_fragments = 0; |
| 1397 | memset(grinfo->bb_counters, 0, |
| 1398 | sizeof(*grinfo->bb_counters) * |
| 1399 | (MB_NUM_ORDERS(sb))); |
| 1400 | /* |
| 1401 | * incore got set to the group block bitmap below |
| 1402 | */ |
| 1403 | ext4_lock_group(sb, group); |
| 1404 | /* init the buddy */ |
| 1405 | memset(data, 0xff, blocksize); |
| 1406 | ext4_mb_generate_buddy(sb, data, incore, group, grinfo); |
| 1407 | ext4_unlock_group(sb, group); |
| 1408 | incore = NULL; |
| 1409 | } else { |
| 1410 | /* this is block of bitmap */ |
| 1411 | BUG_ON(incore != NULL); |
| 1412 | mb_debug(sb, "put bitmap for group %u in folio %lu/%x\n", |
| 1413 | group, folio->index, i * blocksize); |
| 1414 | trace_ext4_mb_bitmap_load(sb, group); |
| 1415 | |
| 1416 | /* see comments in ext4_mb_put_pa() */ |
| 1417 | ext4_lock_group(sb, group); |
| 1418 | memcpy(data, bitmap, blocksize); |
| 1419 | |
| 1420 | /* mark all preallocated blks used in in-core bitmap */ |
| 1421 | ext4_mb_generate_from_pa(sb, data, group); |
| 1422 | WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); |
| 1423 | ext4_unlock_group(sb, group); |
| 1424 | |
| 1425 | /* set incore so that the buddy information can be |
| 1426 | * generated using this |
| 1427 | */ |
| 1428 | incore = data; |
| 1429 | } |
| 1430 | } |
| 1431 | folio_mark_uptodate(folio); |
| 1432 | |
| 1433 | out: |
| 1434 | if (bh) { |
| 1435 | for (i = 0; i < groups_per_page; i++) |
| 1436 | brelse(bh[i]); |
| 1437 | if (bh != &bhs) |
| 1438 | kfree(bh); |
| 1439 | } |
| 1440 | return err; |
| 1441 | } |
| 1442 | |
| 1443 | /* |
| 1444 | * Lock the buddy and bitmap pages. This make sure other parallel init_group |
| 1445 | * on the same buddy page doesn't happen whild holding the buddy page lock. |
| 1446 | * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap |
| 1447 | * are on the same page e4b->bd_buddy_folio is NULL and return value is 0. |
| 1448 | */ |
| 1449 | static int ext4_mb_get_buddy_page_lock(struct super_block *sb, |
| 1450 | ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) |
| 1451 | { |
| 1452 | struct inode *inode = EXT4_SB(sb)->s_buddy_cache; |
| 1453 | int block, pnum, poff; |
| 1454 | int blocks_per_page; |
| 1455 | struct folio *folio; |
| 1456 | |
| 1457 | e4b->bd_buddy_folio = NULL; |
| 1458 | e4b->bd_bitmap_folio = NULL; |
| 1459 | |
| 1460 | blocks_per_page = PAGE_SIZE / sb->s_blocksize; |
| 1461 | /* |
| 1462 | * the buddy cache inode stores the block bitmap |
| 1463 | * and buddy information in consecutive blocks. |
| 1464 | * So for each group we need two blocks. |
| 1465 | */ |
| 1466 | block = group * 2; |
| 1467 | pnum = block / blocks_per_page; |
| 1468 | poff = block % blocks_per_page; |
| 1469 | folio = __filemap_get_folio(inode->i_mapping, pnum, |
| 1470 | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); |
| 1471 | if (IS_ERR(folio)) |
| 1472 | return PTR_ERR(folio); |
| 1473 | BUG_ON(folio->mapping != inode->i_mapping); |
| 1474 | e4b->bd_bitmap_folio = folio; |
| 1475 | e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize); |
| 1476 | |
| 1477 | if (blocks_per_page >= 2) { |
| 1478 | /* buddy and bitmap are on the same page */ |
| 1479 | return 0; |
| 1480 | } |
| 1481 | |
| 1482 | /* blocks_per_page == 1, hence we need another page for the buddy */ |
| 1483 | folio = __filemap_get_folio(inode->i_mapping, block + 1, |
| 1484 | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); |
| 1485 | if (IS_ERR(folio)) |
| 1486 | return PTR_ERR(folio); |
| 1487 | BUG_ON(folio->mapping != inode->i_mapping); |
| 1488 | e4b->bd_buddy_folio = folio; |
| 1489 | return 0; |
| 1490 | } |
| 1491 | |
| 1492 | static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) |
| 1493 | { |
| 1494 | if (e4b->bd_bitmap_folio) { |
| 1495 | folio_unlock(e4b->bd_bitmap_folio); |
| 1496 | folio_put(e4b->bd_bitmap_folio); |
| 1497 | } |
| 1498 | if (e4b->bd_buddy_folio) { |
| 1499 | folio_unlock(e4b->bd_buddy_folio); |
| 1500 | folio_put(e4b->bd_buddy_folio); |
| 1501 | } |
| 1502 | } |
| 1503 | |
| 1504 | /* |
| 1505 | * Locking note: This routine calls ext4_mb_init_cache(), which takes the |
| 1506 | * block group lock of all groups for this page; do not hold the BG lock when |
| 1507 | * calling this routine! |
| 1508 | */ |
| 1509 | static noinline_for_stack |
| 1510 | int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) |
| 1511 | { |
| 1512 | |
| 1513 | struct ext4_group_info *this_grp; |
| 1514 | struct ext4_buddy e4b; |
| 1515 | struct folio *folio; |
| 1516 | int ret = 0; |
| 1517 | |
| 1518 | might_sleep(); |
| 1519 | mb_debug(sb, "init group %u\n", group); |
| 1520 | this_grp = ext4_get_group_info(sb, group); |
| 1521 | if (!this_grp) |
| 1522 | return -EFSCORRUPTED; |
| 1523 | |
| 1524 | /* |
| 1525 | * This ensures that we don't reinit the buddy cache |
| 1526 | * page which map to the group from which we are already |
| 1527 | * allocating. If we are looking at the buddy cache we would |
| 1528 | * have taken a reference using ext4_mb_load_buddy and that |
| 1529 | * would have pinned buddy page to page cache. |
| 1530 | * The call to ext4_mb_get_buddy_page_lock will mark the |
| 1531 | * page accessed. |
| 1532 | */ |
| 1533 | ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); |
| 1534 | if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { |
| 1535 | /* |
| 1536 | * somebody initialized the group |
| 1537 | * return without doing anything |
| 1538 | */ |
| 1539 | goto err; |
| 1540 | } |
| 1541 | |
| 1542 | folio = e4b.bd_bitmap_folio; |
| 1543 | ret = ext4_mb_init_cache(folio, NULL, gfp); |
| 1544 | if (ret) |
| 1545 | goto err; |
| 1546 | if (!folio_test_uptodate(folio)) { |
| 1547 | ret = -EIO; |
| 1548 | goto err; |
| 1549 | } |
| 1550 | |
| 1551 | if (e4b.bd_buddy_folio == NULL) { |
| 1552 | /* |
| 1553 | * If both the bitmap and buddy are in |
| 1554 | * the same page we don't need to force |
| 1555 | * init the buddy |
| 1556 | */ |
| 1557 | ret = 0; |
| 1558 | goto err; |
| 1559 | } |
| 1560 | /* init buddy cache */ |
| 1561 | folio = e4b.bd_buddy_folio; |
| 1562 | ret = ext4_mb_init_cache(folio, e4b.bd_bitmap, gfp); |
| 1563 | if (ret) |
| 1564 | goto err; |
| 1565 | if (!folio_test_uptodate(folio)) { |
| 1566 | ret = -EIO; |
| 1567 | goto err; |
| 1568 | } |
| 1569 | err: |
| 1570 | ext4_mb_put_buddy_page_lock(&e4b); |
| 1571 | return ret; |
| 1572 | } |
| 1573 | |
| 1574 | /* |
| 1575 | * Locking note: This routine calls ext4_mb_init_cache(), which takes the |
| 1576 | * block group lock of all groups for this page; do not hold the BG lock when |
| 1577 | * calling this routine! |
| 1578 | */ |
| 1579 | static noinline_for_stack int |
| 1580 | ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, |
| 1581 | struct ext4_buddy *e4b, gfp_t gfp) |
| 1582 | { |
| 1583 | int blocks_per_page; |
| 1584 | int block; |
| 1585 | int pnum; |
| 1586 | int poff; |
| 1587 | struct folio *folio; |
| 1588 | int ret; |
| 1589 | struct ext4_group_info *grp; |
| 1590 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 1591 | struct inode *inode = sbi->s_buddy_cache; |
| 1592 | |
| 1593 | might_sleep(); |
| 1594 | mb_debug(sb, "load group %u\n", group); |
| 1595 | |
| 1596 | blocks_per_page = PAGE_SIZE / sb->s_blocksize; |
| 1597 | grp = ext4_get_group_info(sb, group); |
| 1598 | if (!grp) |
| 1599 | return -EFSCORRUPTED; |
| 1600 | |
| 1601 | e4b->bd_blkbits = sb->s_blocksize_bits; |
| 1602 | e4b->bd_info = grp; |
| 1603 | e4b->bd_sb = sb; |
| 1604 | e4b->bd_group = group; |
| 1605 | e4b->bd_buddy_folio = NULL; |
| 1606 | e4b->bd_bitmap_folio = NULL; |
| 1607 | |
| 1608 | if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { |
| 1609 | /* |
| 1610 | * we need full data about the group |
| 1611 | * to make a good selection |
| 1612 | */ |
| 1613 | ret = ext4_mb_init_group(sb, group, gfp); |
| 1614 | if (ret) |
| 1615 | return ret; |
| 1616 | } |
| 1617 | |
| 1618 | /* |
| 1619 | * the buddy cache inode stores the block bitmap |
| 1620 | * and buddy information in consecutive blocks. |
| 1621 | * So for each group we need two blocks. |
| 1622 | */ |
| 1623 | block = group * 2; |
| 1624 | pnum = block / blocks_per_page; |
| 1625 | poff = block % blocks_per_page; |
| 1626 | |
| 1627 | /* Avoid locking the folio in the fast path ... */ |
| 1628 | folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0); |
| 1629 | if (IS_ERR(folio) || !folio_test_uptodate(folio)) { |
| 1630 | if (!IS_ERR(folio)) |
| 1631 | /* |
| 1632 | * drop the folio reference and try |
| 1633 | * to get the folio with lock. If we |
| 1634 | * are not uptodate that implies |
| 1635 | * somebody just created the folio but |
| 1636 | * is yet to initialize it. So |
| 1637 | * wait for it to initialize. |
| 1638 | */ |
| 1639 | folio_put(folio); |
| 1640 | folio = __filemap_get_folio(inode->i_mapping, pnum, |
| 1641 | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); |
| 1642 | if (!IS_ERR(folio)) { |
| 1643 | if (WARN_RATELIMIT(folio->mapping != inode->i_mapping, |
| 1644 | "ext4: bitmap's mapping != inode->i_mapping\n")) { |
| 1645 | /* should never happen */ |
| 1646 | folio_unlock(folio); |
| 1647 | ret = -EINVAL; |
| 1648 | goto err; |
| 1649 | } |
| 1650 | if (!folio_test_uptodate(folio)) { |
| 1651 | ret = ext4_mb_init_cache(folio, NULL, gfp); |
| 1652 | if (ret) { |
| 1653 | folio_unlock(folio); |
| 1654 | goto err; |
| 1655 | } |
| 1656 | mb_cmp_bitmaps(e4b, folio_address(folio) + |
| 1657 | (poff * sb->s_blocksize)); |
| 1658 | } |
| 1659 | folio_unlock(folio); |
| 1660 | } |
| 1661 | } |
| 1662 | if (IS_ERR(folio)) { |
| 1663 | ret = PTR_ERR(folio); |
| 1664 | goto err; |
| 1665 | } |
| 1666 | if (!folio_test_uptodate(folio)) { |
| 1667 | ret = -EIO; |
| 1668 | goto err; |
| 1669 | } |
| 1670 | |
| 1671 | /* Folios marked accessed already */ |
| 1672 | e4b->bd_bitmap_folio = folio; |
| 1673 | e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize); |
| 1674 | |
| 1675 | block++; |
| 1676 | pnum = block / blocks_per_page; |
| 1677 | poff = block % blocks_per_page; |
| 1678 | |
| 1679 | folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0); |
| 1680 | if (IS_ERR(folio) || !folio_test_uptodate(folio)) { |
| 1681 | if (!IS_ERR(folio)) |
| 1682 | folio_put(folio); |
| 1683 | folio = __filemap_get_folio(inode->i_mapping, pnum, |
| 1684 | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); |
| 1685 | if (!IS_ERR(folio)) { |
| 1686 | if (WARN_RATELIMIT(folio->mapping != inode->i_mapping, |
| 1687 | "ext4: buddy bitmap's mapping != inode->i_mapping\n")) { |
| 1688 | /* should never happen */ |
| 1689 | folio_unlock(folio); |
| 1690 | ret = -EINVAL; |
| 1691 | goto err; |
| 1692 | } |
| 1693 | if (!folio_test_uptodate(folio)) { |
| 1694 | ret = ext4_mb_init_cache(folio, e4b->bd_bitmap, |
| 1695 | gfp); |
| 1696 | if (ret) { |
| 1697 | folio_unlock(folio); |
| 1698 | goto err; |
| 1699 | } |
| 1700 | } |
| 1701 | folio_unlock(folio); |
| 1702 | } |
| 1703 | } |
| 1704 | if (IS_ERR(folio)) { |
| 1705 | ret = PTR_ERR(folio); |
| 1706 | goto err; |
| 1707 | } |
| 1708 | if (!folio_test_uptodate(folio)) { |
| 1709 | ret = -EIO; |
| 1710 | goto err; |
| 1711 | } |
| 1712 | |
| 1713 | /* Folios marked accessed already */ |
| 1714 | e4b->bd_buddy_folio = folio; |
| 1715 | e4b->bd_buddy = folio_address(folio) + (poff * sb->s_blocksize); |
| 1716 | |
| 1717 | return 0; |
| 1718 | |
| 1719 | err: |
| 1720 | if (!IS_ERR_OR_NULL(folio)) |
| 1721 | folio_put(folio); |
| 1722 | if (e4b->bd_bitmap_folio) |
| 1723 | folio_put(e4b->bd_bitmap_folio); |
| 1724 | |
| 1725 | e4b->bd_buddy = NULL; |
| 1726 | e4b->bd_bitmap = NULL; |
| 1727 | return ret; |
| 1728 | } |
| 1729 | |
| 1730 | static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, |
| 1731 | struct ext4_buddy *e4b) |
| 1732 | { |
| 1733 | return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); |
| 1734 | } |
| 1735 | |
| 1736 | static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) |
| 1737 | { |
| 1738 | if (e4b->bd_bitmap_folio) |
| 1739 | folio_put(e4b->bd_bitmap_folio); |
| 1740 | if (e4b->bd_buddy_folio) |
| 1741 | folio_put(e4b->bd_buddy_folio); |
| 1742 | } |
| 1743 | |
| 1744 | |
| 1745 | static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) |
| 1746 | { |
| 1747 | int order = 1, max; |
| 1748 | void *bb; |
| 1749 | |
| 1750 | BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); |
| 1751 | BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); |
| 1752 | |
| 1753 | while (order <= e4b->bd_blkbits + 1) { |
| 1754 | bb = mb_find_buddy(e4b, order, &max); |
| 1755 | if (!mb_test_bit(block >> order, bb)) { |
| 1756 | /* this block is part of buddy of order 'order' */ |
| 1757 | return order; |
| 1758 | } |
| 1759 | order++; |
| 1760 | } |
| 1761 | return 0; |
| 1762 | } |
| 1763 | |
| 1764 | static void mb_clear_bits(void *bm, int cur, int len) |
| 1765 | { |
| 1766 | __u32 *addr; |
| 1767 | |
| 1768 | len = cur + len; |
| 1769 | while (cur < len) { |
| 1770 | if ((cur & 31) == 0 && (len - cur) >= 32) { |
| 1771 | /* fast path: clear whole word at once */ |
| 1772 | addr = bm + (cur >> 3); |
| 1773 | *addr = 0; |
| 1774 | cur += 32; |
| 1775 | continue; |
| 1776 | } |
| 1777 | mb_clear_bit(cur, bm); |
| 1778 | cur++; |
| 1779 | } |
| 1780 | } |
| 1781 | |
| 1782 | /* clear bits in given range |
| 1783 | * will return first found zero bit if any, -1 otherwise |
| 1784 | */ |
| 1785 | static int mb_test_and_clear_bits(void *bm, int cur, int len) |
| 1786 | { |
| 1787 | __u32 *addr; |
| 1788 | int zero_bit = -1; |
| 1789 | |
| 1790 | len = cur + len; |
| 1791 | while (cur < len) { |
| 1792 | if ((cur & 31) == 0 && (len - cur) >= 32) { |
| 1793 | /* fast path: clear whole word at once */ |
| 1794 | addr = bm + (cur >> 3); |
| 1795 | if (*addr != (__u32)(-1) && zero_bit == -1) |
| 1796 | zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); |
| 1797 | *addr = 0; |
| 1798 | cur += 32; |
| 1799 | continue; |
| 1800 | } |
| 1801 | if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) |
| 1802 | zero_bit = cur; |
| 1803 | cur++; |
| 1804 | } |
| 1805 | |
| 1806 | return zero_bit; |
| 1807 | } |
| 1808 | |
| 1809 | void mb_set_bits(void *bm, int cur, int len) |
| 1810 | { |
| 1811 | __u32 *addr; |
| 1812 | |
| 1813 | len = cur + len; |
| 1814 | while (cur < len) { |
| 1815 | if ((cur & 31) == 0 && (len - cur) >= 32) { |
| 1816 | /* fast path: set whole word at once */ |
| 1817 | addr = bm + (cur >> 3); |
| 1818 | *addr = 0xffffffff; |
| 1819 | cur += 32; |
| 1820 | continue; |
| 1821 | } |
| 1822 | mb_set_bit(cur, bm); |
| 1823 | cur++; |
| 1824 | } |
| 1825 | } |
| 1826 | |
| 1827 | static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) |
| 1828 | { |
| 1829 | if (mb_test_bit(*bit + side, bitmap)) { |
| 1830 | mb_clear_bit(*bit, bitmap); |
| 1831 | (*bit) -= side; |
| 1832 | return 1; |
| 1833 | } |
| 1834 | else { |
| 1835 | (*bit) += side; |
| 1836 | mb_set_bit(*bit, bitmap); |
| 1837 | return -1; |
| 1838 | } |
| 1839 | } |
| 1840 | |
| 1841 | static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) |
| 1842 | { |
| 1843 | int max; |
| 1844 | int order = 1; |
| 1845 | void *buddy = mb_find_buddy(e4b, order, &max); |
| 1846 | |
| 1847 | while (buddy) { |
| 1848 | void *buddy2; |
| 1849 | |
| 1850 | /* Bits in range [first; last] are known to be set since |
| 1851 | * corresponding blocks were allocated. Bits in range |
| 1852 | * (first; last) will stay set because they form buddies on |
| 1853 | * upper layer. We just deal with borders if they don't |
| 1854 | * align with upper layer and then go up. |
| 1855 | * Releasing entire group is all about clearing |
| 1856 | * single bit of highest order buddy. |
| 1857 | */ |
| 1858 | |
| 1859 | /* Example: |
| 1860 | * --------------------------------- |
| 1861 | * | 1 | 1 | 1 | 1 | |
| 1862 | * --------------------------------- |
| 1863 | * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| 1864 | * --------------------------------- |
| 1865 | * 0 1 2 3 4 5 6 7 |
| 1866 | * \_____________________/ |
| 1867 | * |
| 1868 | * Neither [1] nor [6] is aligned to above layer. |
| 1869 | * Left neighbour [0] is free, so mark it busy, |
| 1870 | * decrease bb_counters and extend range to |
| 1871 | * [0; 6] |
| 1872 | * Right neighbour [7] is busy. It can't be coaleasced with [6], so |
| 1873 | * mark [6] free, increase bb_counters and shrink range to |
| 1874 | * [0; 5]. |
| 1875 | * Then shift range to [0; 2], go up and do the same. |
| 1876 | */ |
| 1877 | |
| 1878 | |
| 1879 | if (first & 1) |
| 1880 | e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); |
| 1881 | if (!(last & 1)) |
| 1882 | e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); |
| 1883 | if (first > last) |
| 1884 | break; |
| 1885 | order++; |
| 1886 | |
| 1887 | buddy2 = mb_find_buddy(e4b, order, &max); |
| 1888 | if (!buddy2) { |
| 1889 | mb_clear_bits(buddy, first, last - first + 1); |
| 1890 | e4b->bd_info->bb_counters[order - 1] += last - first + 1; |
| 1891 | break; |
| 1892 | } |
| 1893 | first >>= 1; |
| 1894 | last >>= 1; |
| 1895 | buddy = buddy2; |
| 1896 | } |
| 1897 | } |
| 1898 | |
| 1899 | static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, |
| 1900 | int first, int count) |
| 1901 | { |
| 1902 | int left_is_free = 0; |
| 1903 | int right_is_free = 0; |
| 1904 | int block; |
| 1905 | int last = first + count - 1; |
| 1906 | struct super_block *sb = e4b->bd_sb; |
| 1907 | |
| 1908 | if (WARN_ON(count == 0)) |
| 1909 | return; |
| 1910 | BUG_ON(last >= (sb->s_blocksize << 3)); |
| 1911 | assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); |
| 1912 | /* Don't bother if the block group is corrupt. */ |
| 1913 | if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) |
| 1914 | return; |
| 1915 | |
| 1916 | mb_check_buddy(e4b); |
| 1917 | mb_free_blocks_double(inode, e4b, first, count); |
| 1918 | |
| 1919 | /* access memory sequentially: check left neighbour, |
| 1920 | * clear range and then check right neighbour |
| 1921 | */ |
| 1922 | if (first != 0) |
| 1923 | left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); |
| 1924 | block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); |
| 1925 | if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) |
| 1926 | right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); |
| 1927 | |
| 1928 | if (unlikely(block != -1)) { |
| 1929 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 1930 | ext4_fsblk_t blocknr; |
| 1931 | |
| 1932 | /* |
| 1933 | * Fastcommit replay can free already freed blocks which |
| 1934 | * corrupts allocation info. Regenerate it. |
| 1935 | */ |
| 1936 | if (sbi->s_mount_state & EXT4_FC_REPLAY) { |
| 1937 | mb_regenerate_buddy(e4b); |
| 1938 | goto check; |
| 1939 | } |
| 1940 | |
| 1941 | blocknr = ext4_group_first_block_no(sb, e4b->bd_group); |
| 1942 | blocknr += EXT4_C2B(sbi, block); |
| 1943 | ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, |
| 1944 | EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
| 1945 | ext4_grp_locked_error(sb, e4b->bd_group, |
| 1946 | inode ? inode->i_ino : 0, blocknr, |
| 1947 | "freeing already freed block (bit %u); block bitmap corrupt.", |
| 1948 | block); |
| 1949 | return; |
| 1950 | } |
| 1951 | |
| 1952 | this_cpu_inc(discard_pa_seq); |
| 1953 | e4b->bd_info->bb_free += count; |
| 1954 | if (first < e4b->bd_info->bb_first_free) |
| 1955 | e4b->bd_info->bb_first_free = first; |
| 1956 | |
| 1957 | /* let's maintain fragments counter */ |
| 1958 | if (left_is_free && right_is_free) |
| 1959 | e4b->bd_info->bb_fragments--; |
| 1960 | else if (!left_is_free && !right_is_free) |
| 1961 | e4b->bd_info->bb_fragments++; |
| 1962 | |
| 1963 | /* buddy[0] == bd_bitmap is a special case, so handle |
| 1964 | * it right away and let mb_buddy_mark_free stay free of |
| 1965 | * zero order checks. |
| 1966 | * Check if neighbours are to be coaleasced, |
| 1967 | * adjust bitmap bb_counters and borders appropriately. |
| 1968 | */ |
| 1969 | if (first & 1) { |
| 1970 | first += !left_is_free; |
| 1971 | e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; |
| 1972 | } |
| 1973 | if (!(last & 1)) { |
| 1974 | last -= !right_is_free; |
| 1975 | e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; |
| 1976 | } |
| 1977 | |
| 1978 | if (first <= last) |
| 1979 | mb_buddy_mark_free(e4b, first >> 1, last >> 1); |
| 1980 | |
| 1981 | mb_set_largest_free_order(sb, e4b->bd_info); |
| 1982 | mb_update_avg_fragment_size(sb, e4b->bd_info); |
| 1983 | check: |
| 1984 | mb_check_buddy(e4b); |
| 1985 | } |
| 1986 | |
| 1987 | static int mb_find_extent(struct ext4_buddy *e4b, int block, |
| 1988 | int needed, struct ext4_free_extent *ex) |
| 1989 | { |
| 1990 | int max, order, next; |
| 1991 | void *buddy; |
| 1992 | |
| 1993 | assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); |
| 1994 | BUG_ON(ex == NULL); |
| 1995 | |
| 1996 | buddy = mb_find_buddy(e4b, 0, &max); |
| 1997 | BUG_ON(buddy == NULL); |
| 1998 | BUG_ON(block >= max); |
| 1999 | if (mb_test_bit(block, buddy)) { |
| 2000 | ex->fe_len = 0; |
| 2001 | ex->fe_start = 0; |
| 2002 | ex->fe_group = 0; |
| 2003 | return 0; |
| 2004 | } |
| 2005 | |
| 2006 | /* find actual order */ |
| 2007 | order = mb_find_order_for_block(e4b, block); |
| 2008 | |
| 2009 | ex->fe_len = (1 << order) - (block & ((1 << order) - 1)); |
| 2010 | ex->fe_start = block; |
| 2011 | ex->fe_group = e4b->bd_group; |
| 2012 | |
| 2013 | block = block >> order; |
| 2014 | |
| 2015 | while (needed > ex->fe_len && |
| 2016 | mb_find_buddy(e4b, order, &max)) { |
| 2017 | |
| 2018 | if (block + 1 >= max) |
| 2019 | break; |
| 2020 | |
| 2021 | next = (block + 1) * (1 << order); |
| 2022 | if (mb_test_bit(next, e4b->bd_bitmap)) |
| 2023 | break; |
| 2024 | |
| 2025 | order = mb_find_order_for_block(e4b, next); |
| 2026 | |
| 2027 | block = next >> order; |
| 2028 | ex->fe_len += 1 << order; |
| 2029 | } |
| 2030 | |
| 2031 | if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { |
| 2032 | /* Should never happen! (but apparently sometimes does?!?) */ |
| 2033 | WARN_ON(1); |
| 2034 | ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, |
| 2035 | "corruption or bug in mb_find_extent " |
| 2036 | "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", |
| 2037 | block, order, needed, ex->fe_group, ex->fe_start, |
| 2038 | ex->fe_len, ex->fe_logical); |
| 2039 | ex->fe_len = 0; |
| 2040 | ex->fe_start = 0; |
| 2041 | ex->fe_group = 0; |
| 2042 | } |
| 2043 | return ex->fe_len; |
| 2044 | } |
| 2045 | |
| 2046 | static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) |
| 2047 | { |
| 2048 | int ord; |
| 2049 | int mlen = 0; |
| 2050 | int max = 0; |
| 2051 | int start = ex->fe_start; |
| 2052 | int len = ex->fe_len; |
| 2053 | unsigned ret = 0; |
| 2054 | int len0 = len; |
| 2055 | void *buddy; |
| 2056 | int ord_start, ord_end; |
| 2057 | |
| 2058 | BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); |
| 2059 | BUG_ON(e4b->bd_group != ex->fe_group); |
| 2060 | assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); |
| 2061 | mb_check_buddy(e4b); |
| 2062 | mb_mark_used_double(e4b, start, len); |
| 2063 | |
| 2064 | this_cpu_inc(discard_pa_seq); |
| 2065 | e4b->bd_info->bb_free -= len; |
| 2066 | if (e4b->bd_info->bb_first_free == start) |
| 2067 | e4b->bd_info->bb_first_free += len; |
| 2068 | |
| 2069 | /* let's maintain fragments counter */ |
| 2070 | if (start != 0) |
| 2071 | mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); |
| 2072 | if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) |
| 2073 | max = !mb_test_bit(start + len, e4b->bd_bitmap); |
| 2074 | if (mlen && max) |
| 2075 | e4b->bd_info->bb_fragments++; |
| 2076 | else if (!mlen && !max) |
| 2077 | e4b->bd_info->bb_fragments--; |
| 2078 | |
| 2079 | /* let's maintain buddy itself */ |
| 2080 | while (len) { |
| 2081 | ord = mb_find_order_for_block(e4b, start); |
| 2082 | |
| 2083 | if (((start >> ord) << ord) == start && len >= (1 << ord)) { |
| 2084 | /* the whole chunk may be allocated at once! */ |
| 2085 | mlen = 1 << ord; |
| 2086 | buddy = mb_find_buddy(e4b, ord, &max); |
| 2087 | BUG_ON((start >> ord) >= max); |
| 2088 | mb_set_bit(start >> ord, buddy); |
| 2089 | e4b->bd_info->bb_counters[ord]--; |
| 2090 | start += mlen; |
| 2091 | len -= mlen; |
| 2092 | BUG_ON(len < 0); |
| 2093 | continue; |
| 2094 | } |
| 2095 | |
| 2096 | /* store for history */ |
| 2097 | if (ret == 0) |
| 2098 | ret = len | (ord << 16); |
| 2099 | |
| 2100 | BUG_ON(ord <= 0); |
| 2101 | buddy = mb_find_buddy(e4b, ord, &max); |
| 2102 | mb_set_bit(start >> ord, buddy); |
| 2103 | e4b->bd_info->bb_counters[ord]--; |
| 2104 | |
| 2105 | ord_start = (start >> ord) << ord; |
| 2106 | ord_end = ord_start + (1 << ord); |
| 2107 | /* first chunk */ |
| 2108 | if (start > ord_start) |
| 2109 | ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy, |
| 2110 | ord_start, start - ord_start, |
| 2111 | e4b->bd_info); |
| 2112 | |
| 2113 | /* last chunk */ |
| 2114 | if (start + len < ord_end) { |
| 2115 | ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy, |
| 2116 | start + len, |
| 2117 | ord_end - (start + len), |
| 2118 | e4b->bd_info); |
| 2119 | break; |
| 2120 | } |
| 2121 | len = start + len - ord_end; |
| 2122 | start = ord_end; |
| 2123 | } |
| 2124 | mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); |
| 2125 | |
| 2126 | mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); |
| 2127 | mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); |
| 2128 | mb_check_buddy(e4b); |
| 2129 | |
| 2130 | return ret; |
| 2131 | } |
| 2132 | |
| 2133 | /* |
| 2134 | * Must be called under group lock! |
| 2135 | */ |
| 2136 | static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, |
| 2137 | struct ext4_buddy *e4b) |
| 2138 | { |
| 2139 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 2140 | int ret; |
| 2141 | |
| 2142 | BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); |
| 2143 | BUG_ON(ac->ac_status == AC_STATUS_FOUND); |
| 2144 | |
| 2145 | ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); |
| 2146 | ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; |
| 2147 | ret = mb_mark_used(e4b, &ac->ac_b_ex); |
| 2148 | |
| 2149 | /* preallocation can change ac_b_ex, thus we store actually |
| 2150 | * allocated blocks for history */ |
| 2151 | ac->ac_f_ex = ac->ac_b_ex; |
| 2152 | |
| 2153 | ac->ac_status = AC_STATUS_FOUND; |
| 2154 | ac->ac_tail = ret & 0xffff; |
| 2155 | ac->ac_buddy = ret >> 16; |
| 2156 | |
| 2157 | /* |
| 2158 | * take the page reference. We want the page to be pinned |
| 2159 | * so that we don't get a ext4_mb_init_cache_call for this |
| 2160 | * group until we update the bitmap. That would mean we |
| 2161 | * double allocate blocks. The reference is dropped |
| 2162 | * in ext4_mb_release_context |
| 2163 | */ |
| 2164 | ac->ac_bitmap_folio = e4b->bd_bitmap_folio; |
| 2165 | folio_get(ac->ac_bitmap_folio); |
| 2166 | ac->ac_buddy_folio = e4b->bd_buddy_folio; |
| 2167 | folio_get(ac->ac_buddy_folio); |
| 2168 | /* store last allocated for subsequent stream allocation */ |
| 2169 | if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { |
| 2170 | spin_lock(&sbi->s_md_lock); |
| 2171 | sbi->s_mb_last_group = ac->ac_f_ex.fe_group; |
| 2172 | sbi->s_mb_last_start = ac->ac_f_ex.fe_start; |
| 2173 | spin_unlock(&sbi->s_md_lock); |
| 2174 | } |
| 2175 | /* |
| 2176 | * As we've just preallocated more space than |
| 2177 | * user requested originally, we store allocated |
| 2178 | * space in a special descriptor. |
| 2179 | */ |
| 2180 | if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) |
| 2181 | ext4_mb_new_preallocation(ac); |
| 2182 | |
| 2183 | } |
| 2184 | |
| 2185 | static void ext4_mb_check_limits(struct ext4_allocation_context *ac, |
| 2186 | struct ext4_buddy *e4b, |
| 2187 | int finish_group) |
| 2188 | { |
| 2189 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 2190 | struct ext4_free_extent *bex = &ac->ac_b_ex; |
| 2191 | struct ext4_free_extent *gex = &ac->ac_g_ex; |
| 2192 | |
| 2193 | if (ac->ac_status == AC_STATUS_FOUND) |
| 2194 | return; |
| 2195 | /* |
| 2196 | * We don't want to scan for a whole year |
| 2197 | */ |
| 2198 | if (ac->ac_found > sbi->s_mb_max_to_scan && |
| 2199 | !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { |
| 2200 | ac->ac_status = AC_STATUS_BREAK; |
| 2201 | return; |
| 2202 | } |
| 2203 | |
| 2204 | /* |
| 2205 | * Haven't found good chunk so far, let's continue |
| 2206 | */ |
| 2207 | if (bex->fe_len < gex->fe_len) |
| 2208 | return; |
| 2209 | |
| 2210 | if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) |
| 2211 | ext4_mb_use_best_found(ac, e4b); |
| 2212 | } |
| 2213 | |
| 2214 | /* |
| 2215 | * The routine checks whether found extent is good enough. If it is, |
| 2216 | * then the extent gets marked used and flag is set to the context |
| 2217 | * to stop scanning. Otherwise, the extent is compared with the |
| 2218 | * previous found extent and if new one is better, then it's stored |
| 2219 | * in the context. Later, the best found extent will be used, if |
| 2220 | * mballoc can't find good enough extent. |
| 2221 | * |
| 2222 | * The algorithm used is roughly as follows: |
| 2223 | * |
| 2224 | * * If free extent found is exactly as big as goal, then |
| 2225 | * stop the scan and use it immediately |
| 2226 | * |
| 2227 | * * If free extent found is smaller than goal, then keep retrying |
| 2228 | * upto a max of sbi->s_mb_max_to_scan times (default 200). After |
| 2229 | * that stop scanning and use whatever we have. |
| 2230 | * |
| 2231 | * * If free extent found is bigger than goal, then keep retrying |
| 2232 | * upto a max of sbi->s_mb_min_to_scan times (default 10) before |
| 2233 | * stopping the scan and using the extent. |
| 2234 | * |
| 2235 | * |
| 2236 | * FIXME: real allocation policy is to be designed yet! |
| 2237 | */ |
| 2238 | static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, |
| 2239 | struct ext4_free_extent *ex, |
| 2240 | struct ext4_buddy *e4b) |
| 2241 | { |
| 2242 | struct ext4_free_extent *bex = &ac->ac_b_ex; |
| 2243 | struct ext4_free_extent *gex = &ac->ac_g_ex; |
| 2244 | |
| 2245 | BUG_ON(ex->fe_len <= 0); |
| 2246 | BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); |
| 2247 | BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); |
| 2248 | BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); |
| 2249 | |
| 2250 | ac->ac_found++; |
| 2251 | ac->ac_cX_found[ac->ac_criteria]++; |
| 2252 | |
| 2253 | /* |
| 2254 | * The special case - take what you catch first |
| 2255 | */ |
| 2256 | if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { |
| 2257 | *bex = *ex; |
| 2258 | ext4_mb_use_best_found(ac, e4b); |
| 2259 | return; |
| 2260 | } |
| 2261 | |
| 2262 | /* |
| 2263 | * Let's check whether the chuck is good enough |
| 2264 | */ |
| 2265 | if (ex->fe_len == gex->fe_len) { |
| 2266 | *bex = *ex; |
| 2267 | ext4_mb_use_best_found(ac, e4b); |
| 2268 | return; |
| 2269 | } |
| 2270 | |
| 2271 | /* |
| 2272 | * If this is first found extent, just store it in the context |
| 2273 | */ |
| 2274 | if (bex->fe_len == 0) { |
| 2275 | *bex = *ex; |
| 2276 | return; |
| 2277 | } |
| 2278 | |
| 2279 | /* |
| 2280 | * If new found extent is better, store it in the context |
| 2281 | */ |
| 2282 | if (bex->fe_len < gex->fe_len) { |
| 2283 | /* if the request isn't satisfied, any found extent |
| 2284 | * larger than previous best one is better */ |
| 2285 | if (ex->fe_len > bex->fe_len) |
| 2286 | *bex = *ex; |
| 2287 | } else if (ex->fe_len > gex->fe_len) { |
| 2288 | /* if the request is satisfied, then we try to find |
| 2289 | * an extent that still satisfy the request, but is |
| 2290 | * smaller than previous one */ |
| 2291 | if (ex->fe_len < bex->fe_len) |
| 2292 | *bex = *ex; |
| 2293 | } |
| 2294 | |
| 2295 | ext4_mb_check_limits(ac, e4b, 0); |
| 2296 | } |
| 2297 | |
| 2298 | static noinline_for_stack |
| 2299 | void ext4_mb_try_best_found(struct ext4_allocation_context *ac, |
| 2300 | struct ext4_buddy *e4b) |
| 2301 | { |
| 2302 | struct ext4_free_extent ex = ac->ac_b_ex; |
| 2303 | ext4_group_t group = ex.fe_group; |
| 2304 | int max; |
| 2305 | int err; |
| 2306 | |
| 2307 | BUG_ON(ex.fe_len <= 0); |
| 2308 | err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); |
| 2309 | if (err) |
| 2310 | return; |
| 2311 | |
| 2312 | ext4_lock_group(ac->ac_sb, group); |
| 2313 | if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) |
| 2314 | goto out; |
| 2315 | |
| 2316 | max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); |
| 2317 | |
| 2318 | if (max > 0) { |
| 2319 | ac->ac_b_ex = ex; |
| 2320 | ext4_mb_use_best_found(ac, e4b); |
| 2321 | } |
| 2322 | |
| 2323 | out: |
| 2324 | ext4_unlock_group(ac->ac_sb, group); |
| 2325 | ext4_mb_unload_buddy(e4b); |
| 2326 | } |
| 2327 | |
| 2328 | static noinline_for_stack |
| 2329 | int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, |
| 2330 | struct ext4_buddy *e4b) |
| 2331 | { |
| 2332 | ext4_group_t group = ac->ac_g_ex.fe_group; |
| 2333 | int max; |
| 2334 | int err; |
| 2335 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 2336 | struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); |
| 2337 | struct ext4_free_extent ex; |
| 2338 | |
| 2339 | if (!grp) |
| 2340 | return -EFSCORRUPTED; |
| 2341 | if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) |
| 2342 | return 0; |
| 2343 | if (grp->bb_free == 0) |
| 2344 | return 0; |
| 2345 | |
| 2346 | err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); |
| 2347 | if (err) |
| 2348 | return err; |
| 2349 | |
| 2350 | ext4_lock_group(ac->ac_sb, group); |
| 2351 | if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) |
| 2352 | goto out; |
| 2353 | |
| 2354 | max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, |
| 2355 | ac->ac_g_ex.fe_len, &ex); |
| 2356 | ex.fe_logical = 0xDEADFA11; /* debug value */ |
| 2357 | |
| 2358 | if (max >= ac->ac_g_ex.fe_len && |
| 2359 | ac->ac_g_ex.fe_len == EXT4_NUM_B2C(sbi, sbi->s_stripe)) { |
| 2360 | ext4_fsblk_t start; |
| 2361 | |
| 2362 | start = ext4_grp_offs_to_block(ac->ac_sb, &ex); |
| 2363 | /* use do_div to get remainder (would be 64-bit modulo) */ |
| 2364 | if (do_div(start, sbi->s_stripe) == 0) { |
| 2365 | ac->ac_found++; |
| 2366 | ac->ac_b_ex = ex; |
| 2367 | ext4_mb_use_best_found(ac, e4b); |
| 2368 | } |
| 2369 | } else if (max >= ac->ac_g_ex.fe_len) { |
| 2370 | BUG_ON(ex.fe_len <= 0); |
| 2371 | BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); |
| 2372 | BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); |
| 2373 | ac->ac_found++; |
| 2374 | ac->ac_b_ex = ex; |
| 2375 | ext4_mb_use_best_found(ac, e4b); |
| 2376 | } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { |
| 2377 | /* Sometimes, caller may want to merge even small |
| 2378 | * number of blocks to an existing extent */ |
| 2379 | BUG_ON(ex.fe_len <= 0); |
| 2380 | BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); |
| 2381 | BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); |
| 2382 | ac->ac_found++; |
| 2383 | ac->ac_b_ex = ex; |
| 2384 | ext4_mb_use_best_found(ac, e4b); |
| 2385 | } |
| 2386 | out: |
| 2387 | ext4_unlock_group(ac->ac_sb, group); |
| 2388 | ext4_mb_unload_buddy(e4b); |
| 2389 | |
| 2390 | return 0; |
| 2391 | } |
| 2392 | |
| 2393 | /* |
| 2394 | * The routine scans buddy structures (not bitmap!) from given order |
| 2395 | * to max order and tries to find big enough chunk to satisfy the req |
| 2396 | */ |
| 2397 | static noinline_for_stack |
| 2398 | void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, |
| 2399 | struct ext4_buddy *e4b) |
| 2400 | { |
| 2401 | struct super_block *sb = ac->ac_sb; |
| 2402 | struct ext4_group_info *grp = e4b->bd_info; |
| 2403 | void *buddy; |
| 2404 | int i; |
| 2405 | int k; |
| 2406 | int max; |
| 2407 | |
| 2408 | BUG_ON(ac->ac_2order <= 0); |
| 2409 | for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { |
| 2410 | if (grp->bb_counters[i] == 0) |
| 2411 | continue; |
| 2412 | |
| 2413 | buddy = mb_find_buddy(e4b, i, &max); |
| 2414 | if (WARN_RATELIMIT(buddy == NULL, |
| 2415 | "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) |
| 2416 | continue; |
| 2417 | |
| 2418 | k = mb_find_next_zero_bit(buddy, max, 0); |
| 2419 | if (k >= max) { |
| 2420 | ext4_mark_group_bitmap_corrupted(ac->ac_sb, |
| 2421 | e4b->bd_group, |
| 2422 | EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
| 2423 | ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, |
| 2424 | "%d free clusters of order %d. But found 0", |
| 2425 | grp->bb_counters[i], i); |
| 2426 | break; |
| 2427 | } |
| 2428 | ac->ac_found++; |
| 2429 | ac->ac_cX_found[ac->ac_criteria]++; |
| 2430 | |
| 2431 | ac->ac_b_ex.fe_len = 1 << i; |
| 2432 | ac->ac_b_ex.fe_start = k << i; |
| 2433 | ac->ac_b_ex.fe_group = e4b->bd_group; |
| 2434 | |
| 2435 | ext4_mb_use_best_found(ac, e4b); |
| 2436 | |
| 2437 | BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); |
| 2438 | |
| 2439 | if (EXT4_SB(sb)->s_mb_stats) |
| 2440 | atomic_inc(&EXT4_SB(sb)->s_bal_2orders); |
| 2441 | |
| 2442 | break; |
| 2443 | } |
| 2444 | } |
| 2445 | |
| 2446 | /* |
| 2447 | * The routine scans the group and measures all found extents. |
| 2448 | * In order to optimize scanning, caller must pass number of |
| 2449 | * free blocks in the group, so the routine can know upper limit. |
| 2450 | */ |
| 2451 | static noinline_for_stack |
| 2452 | void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, |
| 2453 | struct ext4_buddy *e4b) |
| 2454 | { |
| 2455 | struct super_block *sb = ac->ac_sb; |
| 2456 | void *bitmap = e4b->bd_bitmap; |
| 2457 | struct ext4_free_extent ex; |
| 2458 | int i, j, freelen; |
| 2459 | int free; |
| 2460 | |
| 2461 | free = e4b->bd_info->bb_free; |
| 2462 | if (WARN_ON(free <= 0)) |
| 2463 | return; |
| 2464 | |
| 2465 | i = e4b->bd_info->bb_first_free; |
| 2466 | |
| 2467 | while (free && ac->ac_status == AC_STATUS_CONTINUE) { |
| 2468 | i = mb_find_next_zero_bit(bitmap, |
| 2469 | EXT4_CLUSTERS_PER_GROUP(sb), i); |
| 2470 | if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { |
| 2471 | /* |
| 2472 | * IF we have corrupt bitmap, we won't find any |
| 2473 | * free blocks even though group info says we |
| 2474 | * have free blocks |
| 2475 | */ |
| 2476 | ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, |
| 2477 | EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
| 2478 | ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, |
| 2479 | "%d free clusters as per " |
| 2480 | "group info. But bitmap says 0", |
| 2481 | free); |
| 2482 | break; |
| 2483 | } |
| 2484 | |
| 2485 | if (!ext4_mb_cr_expensive(ac->ac_criteria)) { |
| 2486 | /* |
| 2487 | * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are |
| 2488 | * sure that this group will have a large enough |
| 2489 | * continuous free extent, so skip over the smaller free |
| 2490 | * extents |
| 2491 | */ |
| 2492 | j = mb_find_next_bit(bitmap, |
| 2493 | EXT4_CLUSTERS_PER_GROUP(sb), i); |
| 2494 | freelen = j - i; |
| 2495 | |
| 2496 | if (freelen < ac->ac_g_ex.fe_len) { |
| 2497 | i = j; |
| 2498 | free -= freelen; |
| 2499 | continue; |
| 2500 | } |
| 2501 | } |
| 2502 | |
| 2503 | mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); |
| 2504 | if (WARN_ON(ex.fe_len <= 0)) |
| 2505 | break; |
| 2506 | if (free < ex.fe_len) { |
| 2507 | ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, |
| 2508 | EXT4_GROUP_INFO_BBITMAP_CORRUPT); |
| 2509 | ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, |
| 2510 | "%d free clusters as per " |
| 2511 | "group info. But got %d blocks", |
| 2512 | free, ex.fe_len); |
| 2513 | /* |
| 2514 | * The number of free blocks differs. This mostly |
| 2515 | * indicate that the bitmap is corrupt. So exit |
| 2516 | * without claiming the space. |
| 2517 | */ |
| 2518 | break; |
| 2519 | } |
| 2520 | ex.fe_logical = 0xDEADC0DE; /* debug value */ |
| 2521 | ext4_mb_measure_extent(ac, &ex, e4b); |
| 2522 | |
| 2523 | i += ex.fe_len; |
| 2524 | free -= ex.fe_len; |
| 2525 | } |
| 2526 | |
| 2527 | ext4_mb_check_limits(ac, e4b, 1); |
| 2528 | } |
| 2529 | |
| 2530 | /* |
| 2531 | * This is a special case for storages like raid5 |
| 2532 | * we try to find stripe-aligned chunks for stripe-size-multiple requests |
| 2533 | */ |
| 2534 | static noinline_for_stack |
| 2535 | void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, |
| 2536 | struct ext4_buddy *e4b) |
| 2537 | { |
| 2538 | struct super_block *sb = ac->ac_sb; |
| 2539 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 2540 | void *bitmap = e4b->bd_bitmap; |
| 2541 | struct ext4_free_extent ex; |
| 2542 | ext4_fsblk_t first_group_block; |
| 2543 | ext4_fsblk_t a; |
| 2544 | ext4_grpblk_t i, stripe; |
| 2545 | int max; |
| 2546 | |
| 2547 | BUG_ON(sbi->s_stripe == 0); |
| 2548 | |
| 2549 | /* find first stripe-aligned block in group */ |
| 2550 | first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); |
| 2551 | |
| 2552 | a = first_group_block + sbi->s_stripe - 1; |
| 2553 | do_div(a, sbi->s_stripe); |
| 2554 | i = (a * sbi->s_stripe) - first_group_block; |
| 2555 | |
| 2556 | stripe = EXT4_NUM_B2C(sbi, sbi->s_stripe); |
| 2557 | i = EXT4_B2C(sbi, i); |
| 2558 | while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { |
| 2559 | if (!mb_test_bit(i, bitmap)) { |
| 2560 | max = mb_find_extent(e4b, i, stripe, &ex); |
| 2561 | if (max >= stripe) { |
| 2562 | ac->ac_found++; |
| 2563 | ac->ac_cX_found[ac->ac_criteria]++; |
| 2564 | ex.fe_logical = 0xDEADF00D; /* debug value */ |
| 2565 | ac->ac_b_ex = ex; |
| 2566 | ext4_mb_use_best_found(ac, e4b); |
| 2567 | break; |
| 2568 | } |
| 2569 | } |
| 2570 | i += stripe; |
| 2571 | } |
| 2572 | } |
| 2573 | |
| 2574 | /* |
| 2575 | * This is also called BEFORE we load the buddy bitmap. |
| 2576 | * Returns either 1 or 0 indicating that the group is either suitable |
| 2577 | * for the allocation or not. |
| 2578 | */ |
| 2579 | static bool ext4_mb_good_group(struct ext4_allocation_context *ac, |
| 2580 | ext4_group_t group, enum criteria cr) |
| 2581 | { |
| 2582 | ext4_grpblk_t free, fragments; |
| 2583 | int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); |
| 2584 | struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); |
| 2585 | |
| 2586 | BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); |
| 2587 | |
| 2588 | if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) |
| 2589 | return false; |
| 2590 | |
| 2591 | free = grp->bb_free; |
| 2592 | if (free == 0) |
| 2593 | return false; |
| 2594 | |
| 2595 | fragments = grp->bb_fragments; |
| 2596 | if (fragments == 0) |
| 2597 | return false; |
| 2598 | |
| 2599 | switch (cr) { |
| 2600 | case CR_POWER2_ALIGNED: |
| 2601 | BUG_ON(ac->ac_2order == 0); |
| 2602 | |
| 2603 | /* Avoid using the first bg of a flexgroup for data files */ |
| 2604 | if ((ac->ac_flags & EXT4_MB_HINT_DATA) && |
| 2605 | (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && |
| 2606 | ((group % flex_size) == 0)) |
| 2607 | return false; |
| 2608 | |
| 2609 | if (free < ac->ac_g_ex.fe_len) |
| 2610 | return false; |
| 2611 | |
| 2612 | if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) |
| 2613 | return true; |
| 2614 | |
| 2615 | if (grp->bb_largest_free_order < ac->ac_2order) |
| 2616 | return false; |
| 2617 | |
| 2618 | return true; |
| 2619 | case CR_GOAL_LEN_FAST: |
| 2620 | case CR_BEST_AVAIL_LEN: |
| 2621 | if ((free / fragments) >= ac->ac_g_ex.fe_len) |
| 2622 | return true; |
| 2623 | break; |
| 2624 | case CR_GOAL_LEN_SLOW: |
| 2625 | if (free >= ac->ac_g_ex.fe_len) |
| 2626 | return true; |
| 2627 | break; |
| 2628 | case CR_ANY_FREE: |
| 2629 | return true; |
| 2630 | default: |
| 2631 | BUG(); |
| 2632 | } |
| 2633 | |
| 2634 | return false; |
| 2635 | } |
| 2636 | |
| 2637 | /* |
| 2638 | * This could return negative error code if something goes wrong |
| 2639 | * during ext4_mb_init_group(). This should not be called with |
| 2640 | * ext4_lock_group() held. |
| 2641 | * |
| 2642 | * Note: because we are conditionally operating with the group lock in |
| 2643 | * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this |
| 2644 | * function using __acquire and __release. This means we need to be |
| 2645 | * super careful before messing with the error path handling via "goto |
| 2646 | * out"! |
| 2647 | */ |
| 2648 | static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, |
| 2649 | ext4_group_t group, enum criteria cr) |
| 2650 | { |
| 2651 | struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); |
| 2652 | struct super_block *sb = ac->ac_sb; |
| 2653 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 2654 | bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; |
| 2655 | ext4_grpblk_t free; |
| 2656 | int ret = 0; |
| 2657 | |
| 2658 | if (!grp) |
| 2659 | return -EFSCORRUPTED; |
| 2660 | if (sbi->s_mb_stats) |
| 2661 | atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); |
| 2662 | if (should_lock) { |
| 2663 | ext4_lock_group(sb, group); |
| 2664 | __release(ext4_group_lock_ptr(sb, group)); |
| 2665 | } |
| 2666 | free = grp->bb_free; |
| 2667 | if (free == 0) |
| 2668 | goto out; |
| 2669 | /* |
| 2670 | * In all criterias except CR_ANY_FREE we try to avoid groups that |
| 2671 | * can't possibly satisfy the full goal request due to insufficient |
| 2672 | * free blocks. |
| 2673 | */ |
| 2674 | if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) |
| 2675 | goto out; |
| 2676 | if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) |
| 2677 | goto out; |
| 2678 | if (should_lock) { |
| 2679 | __acquire(ext4_group_lock_ptr(sb, group)); |
| 2680 | ext4_unlock_group(sb, group); |
| 2681 | } |
| 2682 | |
| 2683 | /* We only do this if the grp has never been initialized */ |
| 2684 | if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { |
| 2685 | struct ext4_group_desc *gdp = |
| 2686 | ext4_get_group_desc(sb, group, NULL); |
| 2687 | int ret; |
| 2688 | |
| 2689 | /* |
| 2690 | * CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic |
| 2691 | * search to find large good chunks almost for free. If buddy |
| 2692 | * data is not ready, then this optimization makes no sense. But |
| 2693 | * we never skip the first block group in a flex_bg, since this |
| 2694 | * gets used for metadata block allocation, and we want to make |
| 2695 | * sure we locate metadata blocks in the first block group in |
| 2696 | * the flex_bg if possible. |
| 2697 | */ |
| 2698 | if (!ext4_mb_cr_expensive(cr) && |
| 2699 | (!sbi->s_log_groups_per_flex || |
| 2700 | ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && |
| 2701 | !(ext4_has_group_desc_csum(sb) && |
| 2702 | (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) |
| 2703 | return 0; |
| 2704 | ret = ext4_mb_init_group(sb, group, GFP_NOFS); |
| 2705 | if (ret) |
| 2706 | return ret; |
| 2707 | } |
| 2708 | |
| 2709 | if (should_lock) { |
| 2710 | ext4_lock_group(sb, group); |
| 2711 | __release(ext4_group_lock_ptr(sb, group)); |
| 2712 | } |
| 2713 | ret = ext4_mb_good_group(ac, group, cr); |
| 2714 | out: |
| 2715 | if (should_lock) { |
| 2716 | __acquire(ext4_group_lock_ptr(sb, group)); |
| 2717 | ext4_unlock_group(sb, group); |
| 2718 | } |
| 2719 | return ret; |
| 2720 | } |
| 2721 | |
| 2722 | /* |
| 2723 | * Start prefetching @nr block bitmaps starting at @group. |
| 2724 | * Return the next group which needs to be prefetched. |
| 2725 | */ |
| 2726 | ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, |
| 2727 | unsigned int nr, int *cnt) |
| 2728 | { |
| 2729 | ext4_group_t ngroups = ext4_get_groups_count(sb); |
| 2730 | struct buffer_head *bh; |
| 2731 | struct blk_plug plug; |
| 2732 | |
| 2733 | blk_start_plug(&plug); |
| 2734 | while (nr-- > 0) { |
| 2735 | struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, |
| 2736 | NULL); |
| 2737 | struct ext4_group_info *grp = ext4_get_group_info(sb, group); |
| 2738 | |
| 2739 | /* |
| 2740 | * Prefetch block groups with free blocks; but don't |
| 2741 | * bother if it is marked uninitialized on disk, since |
| 2742 | * it won't require I/O to read. Also only try to |
| 2743 | * prefetch once, so we avoid getblk() call, which can |
| 2744 | * be expensive. |
| 2745 | */ |
| 2746 | if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && |
| 2747 | EXT4_MB_GRP_NEED_INIT(grp) && |
| 2748 | ext4_free_group_clusters(sb, gdp) > 0 ) { |
| 2749 | bh = ext4_read_block_bitmap_nowait(sb, group, true); |
| 2750 | if (bh && !IS_ERR(bh)) { |
| 2751 | if (!buffer_uptodate(bh) && cnt) |
| 2752 | (*cnt)++; |
| 2753 | brelse(bh); |
| 2754 | } |
| 2755 | } |
| 2756 | if (++group >= ngroups) |
| 2757 | group = 0; |
| 2758 | } |
| 2759 | blk_finish_plug(&plug); |
| 2760 | return group; |
| 2761 | } |
| 2762 | |
| 2763 | /* |
| 2764 | * Prefetching reads the block bitmap into the buffer cache; but we |
| 2765 | * need to make sure that the buddy bitmap in the page cache has been |
| 2766 | * initialized. Note that ext4_mb_init_group() will block if the I/O |
| 2767 | * is not yet completed, or indeed if it was not initiated by |
| 2768 | * ext4_mb_prefetch did not start the I/O. |
| 2769 | * |
| 2770 | * TODO: We should actually kick off the buddy bitmap setup in a work |
| 2771 | * queue when the buffer I/O is completed, so that we don't block |
| 2772 | * waiting for the block allocation bitmap read to finish when |
| 2773 | * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). |
| 2774 | */ |
| 2775 | void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, |
| 2776 | unsigned int nr) |
| 2777 | { |
| 2778 | struct ext4_group_desc *gdp; |
| 2779 | struct ext4_group_info *grp; |
| 2780 | |
| 2781 | while (nr-- > 0) { |
| 2782 | if (!group) |
| 2783 | group = ext4_get_groups_count(sb); |
| 2784 | group--; |
| 2785 | gdp = ext4_get_group_desc(sb, group, NULL); |
| 2786 | grp = ext4_get_group_info(sb, group); |
| 2787 | |
| 2788 | if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && |
| 2789 | ext4_free_group_clusters(sb, gdp) > 0) { |
| 2790 | if (ext4_mb_init_group(sb, group, GFP_NOFS)) |
| 2791 | break; |
| 2792 | } |
| 2793 | } |
| 2794 | } |
| 2795 | |
| 2796 | static noinline_for_stack int |
| 2797 | ext4_mb_regular_allocator(struct ext4_allocation_context *ac) |
| 2798 | { |
| 2799 | ext4_group_t prefetch_grp = 0, ngroups, group, i; |
| 2800 | enum criteria new_cr, cr = CR_GOAL_LEN_FAST; |
| 2801 | int err = 0, first_err = 0; |
| 2802 | unsigned int nr = 0, prefetch_ios = 0; |
| 2803 | struct ext4_sb_info *sbi; |
| 2804 | struct super_block *sb; |
| 2805 | struct ext4_buddy e4b; |
| 2806 | int lost; |
| 2807 | |
| 2808 | sb = ac->ac_sb; |
| 2809 | sbi = EXT4_SB(sb); |
| 2810 | ngroups = ext4_get_groups_count(sb); |
| 2811 | /* non-extent files are limited to low blocks/groups */ |
| 2812 | if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) |
| 2813 | ngroups = sbi->s_blockfile_groups; |
| 2814 | |
| 2815 | BUG_ON(ac->ac_status == AC_STATUS_FOUND); |
| 2816 | |
| 2817 | /* first, try the goal */ |
| 2818 | err = ext4_mb_find_by_goal(ac, &e4b); |
| 2819 | if (err || ac->ac_status == AC_STATUS_FOUND) |
| 2820 | goto out; |
| 2821 | |
| 2822 | if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) |
| 2823 | goto out; |
| 2824 | |
| 2825 | /* |
| 2826 | * ac->ac_2order is set only if the fe_len is a power of 2 |
| 2827 | * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED |
| 2828 | * so that we try exact allocation using buddy. |
| 2829 | */ |
| 2830 | i = fls(ac->ac_g_ex.fe_len); |
| 2831 | ac->ac_2order = 0; |
| 2832 | /* |
| 2833 | * We search using buddy data only if the order of the request |
| 2834 | * is greater than equal to the sbi_s_mb_order2_reqs |
| 2835 | * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req |
| 2836 | * We also support searching for power-of-two requests only for |
| 2837 | * requests upto maximum buddy size we have constructed. |
| 2838 | */ |
| 2839 | if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { |
| 2840 | if (is_power_of_2(ac->ac_g_ex.fe_len)) |
| 2841 | ac->ac_2order = array_index_nospec(i - 1, |
| 2842 | MB_NUM_ORDERS(sb)); |
| 2843 | } |
| 2844 | |
| 2845 | /* if stream allocation is enabled, use global goal */ |
| 2846 | if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { |
| 2847 | /* TBD: may be hot point */ |
| 2848 | spin_lock(&sbi->s_md_lock); |
| 2849 | ac->ac_g_ex.fe_group = sbi->s_mb_last_group; |
| 2850 | ac->ac_g_ex.fe_start = sbi->s_mb_last_start; |
| 2851 | spin_unlock(&sbi->s_md_lock); |
| 2852 | } |
| 2853 | |
| 2854 | /* |
| 2855 | * Let's just scan groups to find more-less suitable blocks We |
| 2856 | * start with CR_GOAL_LEN_FAST, unless it is power of 2 |
| 2857 | * aligned, in which case let's do that faster approach first. |
| 2858 | */ |
| 2859 | if (ac->ac_2order) |
| 2860 | cr = CR_POWER2_ALIGNED; |
| 2861 | repeat: |
| 2862 | for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { |
| 2863 | ac->ac_criteria = cr; |
| 2864 | /* |
| 2865 | * searching for the right group start |
| 2866 | * from the goal value specified |
| 2867 | */ |
| 2868 | group = ac->ac_g_ex.fe_group; |
| 2869 | ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; |
| 2870 | prefetch_grp = group; |
| 2871 | nr = 0; |
| 2872 | |
| 2873 | for (i = 0, new_cr = cr; i < ngroups; i++, |
| 2874 | ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { |
| 2875 | int ret = 0; |
| 2876 | |
| 2877 | cond_resched(); |
| 2878 | if (new_cr != cr) { |
| 2879 | cr = new_cr; |
| 2880 | goto repeat; |
| 2881 | } |
| 2882 | |
| 2883 | /* |
| 2884 | * Batch reads of the block allocation bitmaps |
| 2885 | * to get multiple READs in flight; limit |
| 2886 | * prefetching at inexpensive CR, otherwise mballoc |
| 2887 | * can spend a lot of time loading imperfect groups |
| 2888 | */ |
| 2889 | if ((prefetch_grp == group) && |
| 2890 | (ext4_mb_cr_expensive(cr) || |
| 2891 | prefetch_ios < sbi->s_mb_prefetch_limit)) { |
| 2892 | nr = sbi->s_mb_prefetch; |
| 2893 | if (ext4_has_feature_flex_bg(sb)) { |
| 2894 | nr = 1 << sbi->s_log_groups_per_flex; |
| 2895 | nr -= group & (nr - 1); |
| 2896 | nr = min(nr, sbi->s_mb_prefetch); |
| 2897 | } |
| 2898 | prefetch_grp = ext4_mb_prefetch(sb, group, |
| 2899 | nr, &prefetch_ios); |
| 2900 | } |
| 2901 | |
| 2902 | /* This now checks without needing the buddy page */ |
| 2903 | ret = ext4_mb_good_group_nolock(ac, group, cr); |
| 2904 | if (ret <= 0) { |
| 2905 | if (!first_err) |
| 2906 | first_err = ret; |
| 2907 | continue; |
| 2908 | } |
| 2909 | |
| 2910 | err = ext4_mb_load_buddy(sb, group, &e4b); |
| 2911 | if (err) |
| 2912 | goto out; |
| 2913 | |
| 2914 | ext4_lock_group(sb, group); |
| 2915 | |
| 2916 | /* |
| 2917 | * We need to check again after locking the |
| 2918 | * block group |
| 2919 | */ |
| 2920 | ret = ext4_mb_good_group(ac, group, cr); |
| 2921 | if (ret == 0) { |
| 2922 | ext4_unlock_group(sb, group); |
| 2923 | ext4_mb_unload_buddy(&e4b); |
| 2924 | continue; |
| 2925 | } |
| 2926 | |
| 2927 | ac->ac_groups_scanned++; |
| 2928 | if (cr == CR_POWER2_ALIGNED) |
| 2929 | ext4_mb_simple_scan_group(ac, &e4b); |
| 2930 | else { |
| 2931 | bool is_stripe_aligned = |
| 2932 | (sbi->s_stripe >= |
| 2933 | sbi->s_cluster_ratio) && |
| 2934 | !(ac->ac_g_ex.fe_len % |
| 2935 | EXT4_NUM_B2C(sbi, sbi->s_stripe)); |
| 2936 | |
| 2937 | if ((cr == CR_GOAL_LEN_FAST || |
| 2938 | cr == CR_BEST_AVAIL_LEN) && |
| 2939 | is_stripe_aligned) |
| 2940 | ext4_mb_scan_aligned(ac, &e4b); |
| 2941 | |
| 2942 | if (ac->ac_status == AC_STATUS_CONTINUE) |
| 2943 | ext4_mb_complex_scan_group(ac, &e4b); |
| 2944 | } |
| 2945 | |
| 2946 | ext4_unlock_group(sb, group); |
| 2947 | ext4_mb_unload_buddy(&e4b); |
| 2948 | |
| 2949 | if (ac->ac_status != AC_STATUS_CONTINUE) |
| 2950 | break; |
| 2951 | } |
| 2952 | /* Processed all groups and haven't found blocks */ |
| 2953 | if (sbi->s_mb_stats && i == ngroups) |
| 2954 | atomic64_inc(&sbi->s_bal_cX_failed[cr]); |
| 2955 | |
| 2956 | if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) |
| 2957 | /* Reset goal length to original goal length before |
| 2958 | * falling into CR_GOAL_LEN_SLOW */ |
| 2959 | ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; |
| 2960 | } |
| 2961 | |
| 2962 | if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && |
| 2963 | !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { |
| 2964 | /* |
| 2965 | * We've been searching too long. Let's try to allocate |
| 2966 | * the best chunk we've found so far |
| 2967 | */ |
| 2968 | ext4_mb_try_best_found(ac, &e4b); |
| 2969 | if (ac->ac_status != AC_STATUS_FOUND) { |
| 2970 | /* |
| 2971 | * Someone more lucky has already allocated it. |
| 2972 | * The only thing we can do is just take first |
| 2973 | * found block(s) |
| 2974 | */ |
| 2975 | lost = atomic_inc_return(&sbi->s_mb_lost_chunks); |
| 2976 | mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", |
| 2977 | ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, |
| 2978 | ac->ac_b_ex.fe_len, lost); |
| 2979 | |
| 2980 | ac->ac_b_ex.fe_group = 0; |
| 2981 | ac->ac_b_ex.fe_start = 0; |
| 2982 | ac->ac_b_ex.fe_len = 0; |
| 2983 | ac->ac_status = AC_STATUS_CONTINUE; |
| 2984 | ac->ac_flags |= EXT4_MB_HINT_FIRST; |
| 2985 | cr = CR_ANY_FREE; |
| 2986 | goto repeat; |
| 2987 | } |
| 2988 | } |
| 2989 | |
| 2990 | if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) |
| 2991 | atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); |
| 2992 | out: |
| 2993 | if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) |
| 2994 | err = first_err; |
| 2995 | |
| 2996 | mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", |
| 2997 | ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, |
| 2998 | ac->ac_flags, cr, err); |
| 2999 | |
| 3000 | if (nr) |
| 3001 | ext4_mb_prefetch_fini(sb, prefetch_grp, nr); |
| 3002 | |
| 3003 | return err; |
| 3004 | } |
| 3005 | |
| 3006 | static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) |
| 3007 | { |
| 3008 | struct super_block *sb = pde_data(file_inode(seq->file)); |
| 3009 | ext4_group_t group; |
| 3010 | |
| 3011 | if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) |
| 3012 | return NULL; |
| 3013 | group = *pos + 1; |
| 3014 | return (void *) ((unsigned long) group); |
| 3015 | } |
| 3016 | |
| 3017 | static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) |
| 3018 | { |
| 3019 | struct super_block *sb = pde_data(file_inode(seq->file)); |
| 3020 | ext4_group_t group; |
| 3021 | |
| 3022 | ++*pos; |
| 3023 | if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) |
| 3024 | return NULL; |
| 3025 | group = *pos + 1; |
| 3026 | return (void *) ((unsigned long) group); |
| 3027 | } |
| 3028 | |
| 3029 | static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) |
| 3030 | { |
| 3031 | struct super_block *sb = pde_data(file_inode(seq->file)); |
| 3032 | ext4_group_t group = (ext4_group_t) ((unsigned long) v); |
| 3033 | int i, err; |
| 3034 | char nbuf[16]; |
| 3035 | struct ext4_buddy e4b; |
| 3036 | struct ext4_group_info *grinfo; |
| 3037 | unsigned char blocksize_bits = min_t(unsigned char, |
| 3038 | sb->s_blocksize_bits, |
| 3039 | EXT4_MAX_BLOCK_LOG_SIZE); |
| 3040 | DEFINE_RAW_FLEX(struct ext4_group_info, sg, bb_counters, |
| 3041 | EXT4_MAX_BLOCK_LOG_SIZE + 2); |
| 3042 | |
| 3043 | group--; |
| 3044 | if (group == 0) |
| 3045 | seq_puts(seq, "#group: free frags first [" |
| 3046 | " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " |
| 3047 | " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); |
| 3048 | |
| 3049 | i = (blocksize_bits + 2) * sizeof(sg->bb_counters[0]) + |
| 3050 | sizeof(struct ext4_group_info); |
| 3051 | |
| 3052 | grinfo = ext4_get_group_info(sb, group); |
| 3053 | if (!grinfo) |
| 3054 | return 0; |
| 3055 | /* Load the group info in memory only if not already loaded. */ |
| 3056 | if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { |
| 3057 | err = ext4_mb_load_buddy(sb, group, &e4b); |
| 3058 | if (err) { |
| 3059 | seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf)); |
| 3060 | return 0; |
| 3061 | } |
| 3062 | ext4_mb_unload_buddy(&e4b); |
| 3063 | } |
| 3064 | |
| 3065 | /* |
| 3066 | * We care only about free space counters in the group info and |
| 3067 | * these are safe to access even after the buddy has been unloaded |
| 3068 | */ |
| 3069 | memcpy(sg, grinfo, i); |
| 3070 | seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg->bb_free, |
| 3071 | sg->bb_fragments, sg->bb_first_free); |
| 3072 | for (i = 0; i <= 13; i++) |
| 3073 | seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? |
| 3074 | sg->bb_counters[i] : 0); |
| 3075 | seq_puts(seq, " ]"); |
| 3076 | if (EXT4_MB_GRP_BBITMAP_CORRUPT(sg)) |
| 3077 | seq_puts(seq, " Block bitmap corrupted!"); |
| 3078 | seq_putc(seq, '\n'); |
| 3079 | return 0; |
| 3080 | } |
| 3081 | |
| 3082 | static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) |
| 3083 | { |
| 3084 | } |
| 3085 | |
| 3086 | const struct seq_operations ext4_mb_seq_groups_ops = { |
| 3087 | .start = ext4_mb_seq_groups_start, |
| 3088 | .next = ext4_mb_seq_groups_next, |
| 3089 | .stop = ext4_mb_seq_groups_stop, |
| 3090 | .show = ext4_mb_seq_groups_show, |
| 3091 | }; |
| 3092 | |
| 3093 | int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) |
| 3094 | { |
| 3095 | struct super_block *sb = seq->private; |
| 3096 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 3097 | |
| 3098 | seq_puts(seq, "mballoc:\n"); |
| 3099 | if (!sbi->s_mb_stats) { |
| 3100 | seq_puts(seq, "\tmb stats collection turned off.\n"); |
| 3101 | seq_puts( |
| 3102 | seq, |
| 3103 | "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); |
| 3104 | return 0; |
| 3105 | } |
| 3106 | seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); |
| 3107 | seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); |
| 3108 | |
| 3109 | seq_printf(seq, "\tgroups_scanned: %u\n", |
| 3110 | atomic_read(&sbi->s_bal_groups_scanned)); |
| 3111 | |
| 3112 | /* CR_POWER2_ALIGNED stats */ |
| 3113 | seq_puts(seq, "\tcr_p2_aligned_stats:\n"); |
| 3114 | seq_printf(seq, "\t\thits: %llu\n", |
| 3115 | atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); |
| 3116 | seq_printf( |
| 3117 | seq, "\t\tgroups_considered: %llu\n", |
| 3118 | atomic64_read( |
| 3119 | &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); |
| 3120 | seq_printf(seq, "\t\textents_scanned: %u\n", |
| 3121 | atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); |
| 3122 | seq_printf(seq, "\t\tuseless_loops: %llu\n", |
| 3123 | atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); |
| 3124 | seq_printf(seq, "\t\tbad_suggestions: %u\n", |
| 3125 | atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); |
| 3126 | |
| 3127 | /* CR_GOAL_LEN_FAST stats */ |
| 3128 | seq_puts(seq, "\tcr_goal_fast_stats:\n"); |
| 3129 | seq_printf(seq, "\t\thits: %llu\n", |
| 3130 | atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); |
| 3131 | seq_printf(seq, "\t\tgroups_considered: %llu\n", |
| 3132 | atomic64_read( |
| 3133 | &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); |
| 3134 | seq_printf(seq, "\t\textents_scanned: %u\n", |
| 3135 | atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); |
| 3136 | seq_printf(seq, "\t\tuseless_loops: %llu\n", |
| 3137 | atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); |
| 3138 | seq_printf(seq, "\t\tbad_suggestions: %u\n", |
| 3139 | atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); |
| 3140 | |
| 3141 | /* CR_BEST_AVAIL_LEN stats */ |
| 3142 | seq_puts(seq, "\tcr_best_avail_stats:\n"); |
| 3143 | seq_printf(seq, "\t\thits: %llu\n", |
| 3144 | atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); |
| 3145 | seq_printf( |
| 3146 | seq, "\t\tgroups_considered: %llu\n", |
| 3147 | atomic64_read( |
| 3148 | &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); |
| 3149 | seq_printf(seq, "\t\textents_scanned: %u\n", |
| 3150 | atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); |
| 3151 | seq_printf(seq, "\t\tuseless_loops: %llu\n", |
| 3152 | atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); |
| 3153 | seq_printf(seq, "\t\tbad_suggestions: %u\n", |
| 3154 | atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); |
| 3155 | |
| 3156 | /* CR_GOAL_LEN_SLOW stats */ |
| 3157 | seq_puts(seq, "\tcr_goal_slow_stats:\n"); |
| 3158 | seq_printf(seq, "\t\thits: %llu\n", |
| 3159 | atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); |
| 3160 | seq_printf(seq, "\t\tgroups_considered: %llu\n", |
| 3161 | atomic64_read( |
| 3162 | &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); |
| 3163 | seq_printf(seq, "\t\textents_scanned: %u\n", |
| 3164 | atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); |
| 3165 | seq_printf(seq, "\t\tuseless_loops: %llu\n", |
| 3166 | atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); |
| 3167 | |
| 3168 | /* CR_ANY_FREE stats */ |
| 3169 | seq_puts(seq, "\tcr_any_free_stats:\n"); |
| 3170 | seq_printf(seq, "\t\thits: %llu\n", |
| 3171 | atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); |
| 3172 | seq_printf( |
| 3173 | seq, "\t\tgroups_considered: %llu\n", |
| 3174 | atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); |
| 3175 | seq_printf(seq, "\t\textents_scanned: %u\n", |
| 3176 | atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); |
| 3177 | seq_printf(seq, "\t\tuseless_loops: %llu\n", |
| 3178 | atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); |
| 3179 | |
| 3180 | /* Aggregates */ |
| 3181 | seq_printf(seq, "\textents_scanned: %u\n", |
| 3182 | atomic_read(&sbi->s_bal_ex_scanned)); |
| 3183 | seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); |
| 3184 | seq_printf(seq, "\t\tlen_goal_hits: %u\n", |
| 3185 | atomic_read(&sbi->s_bal_len_goals)); |
| 3186 | seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); |
| 3187 | seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); |
| 3188 | seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); |
| 3189 | seq_printf(seq, "\tbuddies_generated: %u/%u\n", |
| 3190 | atomic_read(&sbi->s_mb_buddies_generated), |
| 3191 | ext4_get_groups_count(sb)); |
| 3192 | seq_printf(seq, "\tbuddies_time_used: %llu\n", |
| 3193 | atomic64_read(&sbi->s_mb_generation_time)); |
| 3194 | seq_printf(seq, "\tpreallocated: %u\n", |
| 3195 | atomic_read(&sbi->s_mb_preallocated)); |
| 3196 | seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); |
| 3197 | return 0; |
| 3198 | } |
| 3199 | |
| 3200 | static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) |
| 3201 | { |
| 3202 | struct super_block *sb = pde_data(file_inode(seq->file)); |
| 3203 | unsigned long position; |
| 3204 | |
| 3205 | if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) |
| 3206 | return NULL; |
| 3207 | position = *pos + 1; |
| 3208 | return (void *) ((unsigned long) position); |
| 3209 | } |
| 3210 | |
| 3211 | static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) |
| 3212 | { |
| 3213 | struct super_block *sb = pde_data(file_inode(seq->file)); |
| 3214 | unsigned long position; |
| 3215 | |
| 3216 | ++*pos; |
| 3217 | if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) |
| 3218 | return NULL; |
| 3219 | position = *pos + 1; |
| 3220 | return (void *) ((unsigned long) position); |
| 3221 | } |
| 3222 | |
| 3223 | static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) |
| 3224 | { |
| 3225 | struct super_block *sb = pde_data(file_inode(seq->file)); |
| 3226 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 3227 | unsigned long position = ((unsigned long) v); |
| 3228 | struct ext4_group_info *grp; |
| 3229 | unsigned int count; |
| 3230 | |
| 3231 | position--; |
| 3232 | if (position >= MB_NUM_ORDERS(sb)) { |
| 3233 | position -= MB_NUM_ORDERS(sb); |
| 3234 | if (position == 0) |
| 3235 | seq_puts(seq, "avg_fragment_size_lists:\n"); |
| 3236 | |
| 3237 | count = 0; |
| 3238 | read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); |
| 3239 | list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], |
| 3240 | bb_avg_fragment_size_node) |
| 3241 | count++; |
| 3242 | read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); |
| 3243 | seq_printf(seq, "\tlist_order_%u_groups: %u\n", |
| 3244 | (unsigned int)position, count); |
| 3245 | return 0; |
| 3246 | } |
| 3247 | |
| 3248 | if (position == 0) { |
| 3249 | seq_printf(seq, "optimize_scan: %d\n", |
| 3250 | test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); |
| 3251 | seq_puts(seq, "max_free_order_lists:\n"); |
| 3252 | } |
| 3253 | count = 0; |
| 3254 | read_lock(&sbi->s_mb_largest_free_orders_locks[position]); |
| 3255 | list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], |
| 3256 | bb_largest_free_order_node) |
| 3257 | count++; |
| 3258 | read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); |
| 3259 | seq_printf(seq, "\tlist_order_%u_groups: %u\n", |
| 3260 | (unsigned int)position, count); |
| 3261 | |
| 3262 | return 0; |
| 3263 | } |
| 3264 | |
| 3265 | static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) |
| 3266 | { |
| 3267 | } |
| 3268 | |
| 3269 | const struct seq_operations ext4_mb_seq_structs_summary_ops = { |
| 3270 | .start = ext4_mb_seq_structs_summary_start, |
| 3271 | .next = ext4_mb_seq_structs_summary_next, |
| 3272 | .stop = ext4_mb_seq_structs_summary_stop, |
| 3273 | .show = ext4_mb_seq_structs_summary_show, |
| 3274 | }; |
| 3275 | |
| 3276 | static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) |
| 3277 | { |
| 3278 | int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; |
| 3279 | struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; |
| 3280 | |
| 3281 | BUG_ON(!cachep); |
| 3282 | return cachep; |
| 3283 | } |
| 3284 | |
| 3285 | /* |
| 3286 | * Allocate the top-level s_group_info array for the specified number |
| 3287 | * of groups |
| 3288 | */ |
| 3289 | int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) |
| 3290 | { |
| 3291 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 3292 | unsigned size; |
| 3293 | struct ext4_group_info ***old_groupinfo, ***new_groupinfo; |
| 3294 | |
| 3295 | size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> |
| 3296 | EXT4_DESC_PER_BLOCK_BITS(sb); |
| 3297 | if (size <= sbi->s_group_info_size) |
| 3298 | return 0; |
| 3299 | |
| 3300 | size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); |
| 3301 | new_groupinfo = kvzalloc(size, GFP_KERNEL); |
| 3302 | if (!new_groupinfo) { |
| 3303 | ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); |
| 3304 | return -ENOMEM; |
| 3305 | } |
| 3306 | rcu_read_lock(); |
| 3307 | old_groupinfo = rcu_dereference(sbi->s_group_info); |
| 3308 | if (old_groupinfo) |
| 3309 | memcpy(new_groupinfo, old_groupinfo, |
| 3310 | sbi->s_group_info_size * sizeof(*sbi->s_group_info)); |
| 3311 | rcu_read_unlock(); |
| 3312 | rcu_assign_pointer(sbi->s_group_info, new_groupinfo); |
| 3313 | sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); |
| 3314 | if (old_groupinfo) |
| 3315 | ext4_kvfree_array_rcu(old_groupinfo); |
| 3316 | ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", |
| 3317 | sbi->s_group_info_size); |
| 3318 | return 0; |
| 3319 | } |
| 3320 | |
| 3321 | /* Create and initialize ext4_group_info data for the given group. */ |
| 3322 | int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, |
| 3323 | struct ext4_group_desc *desc) |
| 3324 | { |
| 3325 | int i; |
| 3326 | int metalen = 0; |
| 3327 | int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); |
| 3328 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 3329 | struct ext4_group_info **meta_group_info; |
| 3330 | struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); |
| 3331 | |
| 3332 | /* |
| 3333 | * First check if this group is the first of a reserved block. |
| 3334 | * If it's true, we have to allocate a new table of pointers |
| 3335 | * to ext4_group_info structures |
| 3336 | */ |
| 3337 | if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { |
| 3338 | metalen = sizeof(*meta_group_info) << |
| 3339 | EXT4_DESC_PER_BLOCK_BITS(sb); |
| 3340 | meta_group_info = kmalloc(metalen, GFP_NOFS); |
| 3341 | if (meta_group_info == NULL) { |
| 3342 | ext4_msg(sb, KERN_ERR, "can't allocate mem " |
| 3343 | "for a buddy group"); |
| 3344 | return -ENOMEM; |
| 3345 | } |
| 3346 | rcu_read_lock(); |
| 3347 | rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; |
| 3348 | rcu_read_unlock(); |
| 3349 | } |
| 3350 | |
| 3351 | meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); |
| 3352 | i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); |
| 3353 | |
| 3354 | meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); |
| 3355 | if (meta_group_info[i] == NULL) { |
| 3356 | ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); |
| 3357 | goto exit_group_info; |
| 3358 | } |
| 3359 | set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, |
| 3360 | &(meta_group_info[i]->bb_state)); |
| 3361 | |
| 3362 | /* |
| 3363 | * initialize bb_free to be able to skip |
| 3364 | * empty groups without initialization |
| 3365 | */ |
| 3366 | if (ext4_has_group_desc_csum(sb) && |
| 3367 | (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { |
| 3368 | meta_group_info[i]->bb_free = |
| 3369 | ext4_free_clusters_after_init(sb, group, desc); |
| 3370 | } else { |
| 3371 | meta_group_info[i]->bb_free = |
| 3372 | ext4_free_group_clusters(sb, desc); |
| 3373 | } |
| 3374 | |
| 3375 | INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); |
| 3376 | init_rwsem(&meta_group_info[i]->alloc_sem); |
| 3377 | meta_group_info[i]->bb_free_root = RB_ROOT; |
| 3378 | INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); |
| 3379 | INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); |
| 3380 | meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ |
| 3381 | meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ |
| 3382 | meta_group_info[i]->bb_group = group; |
| 3383 | |
| 3384 | mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); |
| 3385 | return 0; |
| 3386 | |
| 3387 | exit_group_info: |
| 3388 | /* If a meta_group_info table has been allocated, release it now */ |
| 3389 | if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { |
| 3390 | struct ext4_group_info ***group_info; |
| 3391 | |
| 3392 | rcu_read_lock(); |
| 3393 | group_info = rcu_dereference(sbi->s_group_info); |
| 3394 | kfree(group_info[idx]); |
| 3395 | group_info[idx] = NULL; |
| 3396 | rcu_read_unlock(); |
| 3397 | } |
| 3398 | return -ENOMEM; |
| 3399 | } /* ext4_mb_add_groupinfo */ |
| 3400 | |
| 3401 | static int ext4_mb_init_backend(struct super_block *sb) |
| 3402 | { |
| 3403 | ext4_group_t ngroups = ext4_get_groups_count(sb); |
| 3404 | ext4_group_t i; |
| 3405 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 3406 | int err; |
| 3407 | struct ext4_group_desc *desc; |
| 3408 | struct ext4_group_info ***group_info; |
| 3409 | struct kmem_cache *cachep; |
| 3410 | |
| 3411 | err = ext4_mb_alloc_groupinfo(sb, ngroups); |
| 3412 | if (err) |
| 3413 | return err; |
| 3414 | |
| 3415 | sbi->s_buddy_cache = new_inode(sb); |
| 3416 | if (sbi->s_buddy_cache == NULL) { |
| 3417 | ext4_msg(sb, KERN_ERR, "can't get new inode"); |
| 3418 | goto err_freesgi; |
| 3419 | } |
| 3420 | /* To avoid potentially colliding with an valid on-disk inode number, |
| 3421 | * use EXT4_BAD_INO for the buddy cache inode number. This inode is |
| 3422 | * not in the inode hash, so it should never be found by iget(), but |
| 3423 | * this will avoid confusion if it ever shows up during debugging. */ |
| 3424 | sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; |
| 3425 | EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; |
| 3426 | for (i = 0; i < ngroups; i++) { |
| 3427 | cond_resched(); |
| 3428 | desc = ext4_get_group_desc(sb, i, NULL); |
| 3429 | if (desc == NULL) { |
| 3430 | ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); |
| 3431 | goto err_freebuddy; |
| 3432 | } |
| 3433 | if (ext4_mb_add_groupinfo(sb, i, desc) != 0) |
| 3434 | goto err_freebuddy; |
| 3435 | } |
| 3436 | |
| 3437 | if (ext4_has_feature_flex_bg(sb)) { |
| 3438 | /* a single flex group is supposed to be read by a single IO. |
| 3439 | * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is |
| 3440 | * unsigned integer, so the maximum shift is 32. |
| 3441 | */ |
| 3442 | if (sbi->s_es->s_log_groups_per_flex >= 32) { |
| 3443 | ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); |
| 3444 | goto err_freebuddy; |
| 3445 | } |
| 3446 | sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, |
| 3447 | BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); |
| 3448 | sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ |
| 3449 | } else { |
| 3450 | sbi->s_mb_prefetch = 32; |
| 3451 | } |
| 3452 | if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) |
| 3453 | sbi->s_mb_prefetch = ext4_get_groups_count(sb); |
| 3454 | /* |
| 3455 | * now many real IOs to prefetch within a single allocation at |
| 3456 | * CR_POWER2_ALIGNED. Given CR_POWER2_ALIGNED is an CPU-related |
| 3457 | * optimization we shouldn't try to load too many groups, at some point |
| 3458 | * we should start to use what we've got in memory. |
| 3459 | * with an average random access time 5ms, it'd take a second to get |
| 3460 | * 200 groups (* N with flex_bg), so let's make this limit 4 |
| 3461 | */ |
| 3462 | sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; |
| 3463 | if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) |
| 3464 | sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); |
| 3465 | |
| 3466 | return 0; |
| 3467 | |
| 3468 | err_freebuddy: |
| 3469 | cachep = get_groupinfo_cache(sb->s_blocksize_bits); |
| 3470 | while (i-- > 0) { |
| 3471 | struct ext4_group_info *grp = ext4_get_group_info(sb, i); |
| 3472 | |
| 3473 | if (grp) |
| 3474 | kmem_cache_free(cachep, grp); |
| 3475 | } |
| 3476 | i = sbi->s_group_info_size; |
| 3477 | rcu_read_lock(); |
| 3478 | group_info = rcu_dereference(sbi->s_group_info); |
| 3479 | while (i-- > 0) |
| 3480 | kfree(group_info[i]); |
| 3481 | rcu_read_unlock(); |
| 3482 | iput(sbi->s_buddy_cache); |
| 3483 | err_freesgi: |
| 3484 | rcu_read_lock(); |
| 3485 | kvfree(rcu_dereference(sbi->s_group_info)); |
| 3486 | rcu_read_unlock(); |
| 3487 | return -ENOMEM; |
| 3488 | } |
| 3489 | |
| 3490 | static void ext4_groupinfo_destroy_slabs(void) |
| 3491 | { |
| 3492 | int i; |
| 3493 | |
| 3494 | for (i = 0; i < NR_GRPINFO_CACHES; i++) { |
| 3495 | kmem_cache_destroy(ext4_groupinfo_caches[i]); |
| 3496 | ext4_groupinfo_caches[i] = NULL; |
| 3497 | } |
| 3498 | } |
| 3499 | |
| 3500 | static int ext4_groupinfo_create_slab(size_t size) |
| 3501 | { |
| 3502 | static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); |
| 3503 | int slab_size; |
| 3504 | int blocksize_bits = order_base_2(size); |
| 3505 | int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; |
| 3506 | struct kmem_cache *cachep; |
| 3507 | |
| 3508 | if (cache_index >= NR_GRPINFO_CACHES) |
| 3509 | return -EINVAL; |
| 3510 | |
| 3511 | if (unlikely(cache_index < 0)) |
| 3512 | cache_index = 0; |
| 3513 | |
| 3514 | mutex_lock(&ext4_grpinfo_slab_create_mutex); |
| 3515 | if (ext4_groupinfo_caches[cache_index]) { |
| 3516 | mutex_unlock(&ext4_grpinfo_slab_create_mutex); |
| 3517 | return 0; /* Already created */ |
| 3518 | } |
| 3519 | |
| 3520 | slab_size = offsetof(struct ext4_group_info, |
| 3521 | bb_counters[blocksize_bits + 2]); |
| 3522 | |
| 3523 | cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], |
| 3524 | slab_size, 0, SLAB_RECLAIM_ACCOUNT, |
| 3525 | NULL); |
| 3526 | |
| 3527 | ext4_groupinfo_caches[cache_index] = cachep; |
| 3528 | |
| 3529 | mutex_unlock(&ext4_grpinfo_slab_create_mutex); |
| 3530 | if (!cachep) { |
| 3531 | printk(KERN_EMERG |
| 3532 | "EXT4-fs: no memory for groupinfo slab cache\n"); |
| 3533 | return -ENOMEM; |
| 3534 | } |
| 3535 | |
| 3536 | return 0; |
| 3537 | } |
| 3538 | |
| 3539 | static void ext4_discard_work(struct work_struct *work) |
| 3540 | { |
| 3541 | struct ext4_sb_info *sbi = container_of(work, |
| 3542 | struct ext4_sb_info, s_discard_work); |
| 3543 | struct super_block *sb = sbi->s_sb; |
| 3544 | struct ext4_free_data *fd, *nfd; |
| 3545 | struct ext4_buddy e4b; |
| 3546 | LIST_HEAD(discard_list); |
| 3547 | ext4_group_t grp, load_grp; |
| 3548 | int err = 0; |
| 3549 | |
| 3550 | spin_lock(&sbi->s_md_lock); |
| 3551 | list_splice_init(&sbi->s_discard_list, &discard_list); |
| 3552 | spin_unlock(&sbi->s_md_lock); |
| 3553 | |
| 3554 | load_grp = UINT_MAX; |
| 3555 | list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { |
| 3556 | /* |
| 3557 | * If filesystem is umounting or no memory or suffering |
| 3558 | * from no space, give up the discard |
| 3559 | */ |
| 3560 | if ((sb->s_flags & SB_ACTIVE) && !err && |
| 3561 | !atomic_read(&sbi->s_retry_alloc_pending)) { |
| 3562 | grp = fd->efd_group; |
| 3563 | if (grp != load_grp) { |
| 3564 | if (load_grp != UINT_MAX) |
| 3565 | ext4_mb_unload_buddy(&e4b); |
| 3566 | |
| 3567 | err = ext4_mb_load_buddy(sb, grp, &e4b); |
| 3568 | if (err) { |
| 3569 | kmem_cache_free(ext4_free_data_cachep, fd); |
| 3570 | load_grp = UINT_MAX; |
| 3571 | continue; |
| 3572 | } else { |
| 3573 | load_grp = grp; |
| 3574 | } |
| 3575 | } |
| 3576 | |
| 3577 | ext4_lock_group(sb, grp); |
| 3578 | ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, |
| 3579 | fd->efd_start_cluster + fd->efd_count - 1, 1); |
| 3580 | ext4_unlock_group(sb, grp); |
| 3581 | } |
| 3582 | kmem_cache_free(ext4_free_data_cachep, fd); |
| 3583 | } |
| 3584 | |
| 3585 | if (load_grp != UINT_MAX) |
| 3586 | ext4_mb_unload_buddy(&e4b); |
| 3587 | } |
| 3588 | |
| 3589 | int ext4_mb_init(struct super_block *sb) |
| 3590 | { |
| 3591 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 3592 | unsigned i, j; |
| 3593 | unsigned offset, offset_incr; |
| 3594 | unsigned max; |
| 3595 | int ret; |
| 3596 | |
| 3597 | i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); |
| 3598 | |
| 3599 | sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); |
| 3600 | if (sbi->s_mb_offsets == NULL) { |
| 3601 | ret = -ENOMEM; |
| 3602 | goto out; |
| 3603 | } |
| 3604 | |
| 3605 | i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); |
| 3606 | sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); |
| 3607 | if (sbi->s_mb_maxs == NULL) { |
| 3608 | ret = -ENOMEM; |
| 3609 | goto out; |
| 3610 | } |
| 3611 | |
| 3612 | ret = ext4_groupinfo_create_slab(sb->s_blocksize); |
| 3613 | if (ret < 0) |
| 3614 | goto out; |
| 3615 | |
| 3616 | /* order 0 is regular bitmap */ |
| 3617 | sbi->s_mb_maxs[0] = sb->s_blocksize << 3; |
| 3618 | sbi->s_mb_offsets[0] = 0; |
| 3619 | |
| 3620 | i = 1; |
| 3621 | offset = 0; |
| 3622 | offset_incr = 1 << (sb->s_blocksize_bits - 1); |
| 3623 | max = sb->s_blocksize << 2; |
| 3624 | do { |
| 3625 | sbi->s_mb_offsets[i] = offset; |
| 3626 | sbi->s_mb_maxs[i] = max; |
| 3627 | offset += offset_incr; |
| 3628 | offset_incr = offset_incr >> 1; |
| 3629 | max = max >> 1; |
| 3630 | i++; |
| 3631 | } while (i < MB_NUM_ORDERS(sb)); |
| 3632 | |
| 3633 | sbi->s_mb_avg_fragment_size = |
| 3634 | kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), |
| 3635 | GFP_KERNEL); |
| 3636 | if (!sbi->s_mb_avg_fragment_size) { |
| 3637 | ret = -ENOMEM; |
| 3638 | goto out; |
| 3639 | } |
| 3640 | sbi->s_mb_avg_fragment_size_locks = |
| 3641 | kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), |
| 3642 | GFP_KERNEL); |
| 3643 | if (!sbi->s_mb_avg_fragment_size_locks) { |
| 3644 | ret = -ENOMEM; |
| 3645 | goto out; |
| 3646 | } |
| 3647 | for (i = 0; i < MB_NUM_ORDERS(sb); i++) { |
| 3648 | INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); |
| 3649 | rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); |
| 3650 | } |
| 3651 | sbi->s_mb_largest_free_orders = |
| 3652 | kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), |
| 3653 | GFP_KERNEL); |
| 3654 | if (!sbi->s_mb_largest_free_orders) { |
| 3655 | ret = -ENOMEM; |
| 3656 | goto out; |
| 3657 | } |
| 3658 | sbi->s_mb_largest_free_orders_locks = |
| 3659 | kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), |
| 3660 | GFP_KERNEL); |
| 3661 | if (!sbi->s_mb_largest_free_orders_locks) { |
| 3662 | ret = -ENOMEM; |
| 3663 | goto out; |
| 3664 | } |
| 3665 | for (i = 0; i < MB_NUM_ORDERS(sb); i++) { |
| 3666 | INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); |
| 3667 | rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); |
| 3668 | } |
| 3669 | |
| 3670 | spin_lock_init(&sbi->s_md_lock); |
| 3671 | sbi->s_mb_free_pending = 0; |
| 3672 | INIT_LIST_HEAD(&sbi->s_freed_data_list[0]); |
| 3673 | INIT_LIST_HEAD(&sbi->s_freed_data_list[1]); |
| 3674 | INIT_LIST_HEAD(&sbi->s_discard_list); |
| 3675 | INIT_WORK(&sbi->s_discard_work, ext4_discard_work); |
| 3676 | atomic_set(&sbi->s_retry_alloc_pending, 0); |
| 3677 | |
| 3678 | sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; |
| 3679 | sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; |
| 3680 | sbi->s_mb_stats = MB_DEFAULT_STATS; |
| 3681 | sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; |
| 3682 | sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; |
| 3683 | sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; |
| 3684 | |
| 3685 | /* |
| 3686 | * The default group preallocation is 512, which for 4k block |
| 3687 | * sizes translates to 2 megabytes. However for bigalloc file |
| 3688 | * systems, this is probably too big (i.e, if the cluster size |
| 3689 | * is 1 megabyte, then group preallocation size becomes half a |
| 3690 | * gigabyte!). As a default, we will keep a two megabyte |
| 3691 | * group pralloc size for cluster sizes up to 64k, and after |
| 3692 | * that, we will force a minimum group preallocation size of |
| 3693 | * 32 clusters. This translates to 8 megs when the cluster |
| 3694 | * size is 256k, and 32 megs when the cluster size is 1 meg, |
| 3695 | * which seems reasonable as a default. |
| 3696 | */ |
| 3697 | sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> |
| 3698 | sbi->s_cluster_bits, 32); |
| 3699 | /* |
| 3700 | * If there is a s_stripe > 1, then we set the s_mb_group_prealloc |
| 3701 | * to the lowest multiple of s_stripe which is bigger than |
| 3702 | * the s_mb_group_prealloc as determined above. We want |
| 3703 | * the preallocation size to be an exact multiple of the |
| 3704 | * RAID stripe size so that preallocations don't fragment |
| 3705 | * the stripes. |
| 3706 | */ |
| 3707 | if (sbi->s_stripe > 1) { |
| 3708 | sbi->s_mb_group_prealloc = roundup( |
| 3709 | sbi->s_mb_group_prealloc, EXT4_NUM_B2C(sbi, sbi->s_stripe)); |
| 3710 | } |
| 3711 | |
| 3712 | sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); |
| 3713 | if (sbi->s_locality_groups == NULL) { |
| 3714 | ret = -ENOMEM; |
| 3715 | goto out; |
| 3716 | } |
| 3717 | for_each_possible_cpu(i) { |
| 3718 | struct ext4_locality_group *lg; |
| 3719 | lg = per_cpu_ptr(sbi->s_locality_groups, i); |
| 3720 | mutex_init(&lg->lg_mutex); |
| 3721 | for (j = 0; j < PREALLOC_TB_SIZE; j++) |
| 3722 | INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); |
| 3723 | spin_lock_init(&lg->lg_prealloc_lock); |
| 3724 | } |
| 3725 | |
| 3726 | if (bdev_nonrot(sb->s_bdev)) |
| 3727 | sbi->s_mb_max_linear_groups = 0; |
| 3728 | else |
| 3729 | sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; |
| 3730 | /* init file for buddy data */ |
| 3731 | ret = ext4_mb_init_backend(sb); |
| 3732 | if (ret != 0) |
| 3733 | goto out_free_locality_groups; |
| 3734 | |
| 3735 | return 0; |
| 3736 | |
| 3737 | out_free_locality_groups: |
| 3738 | free_percpu(sbi->s_locality_groups); |
| 3739 | sbi->s_locality_groups = NULL; |
| 3740 | out: |
| 3741 | kfree(sbi->s_mb_avg_fragment_size); |
| 3742 | kfree(sbi->s_mb_avg_fragment_size_locks); |
| 3743 | kfree(sbi->s_mb_largest_free_orders); |
| 3744 | kfree(sbi->s_mb_largest_free_orders_locks); |
| 3745 | kfree(sbi->s_mb_offsets); |
| 3746 | sbi->s_mb_offsets = NULL; |
| 3747 | kfree(sbi->s_mb_maxs); |
| 3748 | sbi->s_mb_maxs = NULL; |
| 3749 | return ret; |
| 3750 | } |
| 3751 | |
| 3752 | /* need to called with the ext4 group lock held */ |
| 3753 | static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) |
| 3754 | { |
| 3755 | struct ext4_prealloc_space *pa; |
| 3756 | struct list_head *cur, *tmp; |
| 3757 | int count = 0; |
| 3758 | |
| 3759 | list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { |
| 3760 | pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); |
| 3761 | list_del(&pa->pa_group_list); |
| 3762 | count++; |
| 3763 | kmem_cache_free(ext4_pspace_cachep, pa); |
| 3764 | } |
| 3765 | return count; |
| 3766 | } |
| 3767 | |
| 3768 | void ext4_mb_release(struct super_block *sb) |
| 3769 | { |
| 3770 | ext4_group_t ngroups = ext4_get_groups_count(sb); |
| 3771 | ext4_group_t i; |
| 3772 | int num_meta_group_infos; |
| 3773 | struct ext4_group_info *grinfo, ***group_info; |
| 3774 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 3775 | struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); |
| 3776 | int count; |
| 3777 | |
| 3778 | if (test_opt(sb, DISCARD)) { |
| 3779 | /* |
| 3780 | * wait the discard work to drain all of ext4_free_data |
| 3781 | */ |
| 3782 | flush_work(&sbi->s_discard_work); |
| 3783 | WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); |
| 3784 | } |
| 3785 | |
| 3786 | if (sbi->s_group_info) { |
| 3787 | for (i = 0; i < ngroups; i++) { |
| 3788 | cond_resched(); |
| 3789 | grinfo = ext4_get_group_info(sb, i); |
| 3790 | if (!grinfo) |
| 3791 | continue; |
| 3792 | mb_group_bb_bitmap_free(grinfo); |
| 3793 | ext4_lock_group(sb, i); |
| 3794 | count = ext4_mb_cleanup_pa(grinfo); |
| 3795 | if (count) |
| 3796 | mb_debug(sb, "mballoc: %d PAs left\n", |
| 3797 | count); |
| 3798 | ext4_unlock_group(sb, i); |
| 3799 | kmem_cache_free(cachep, grinfo); |
| 3800 | } |
| 3801 | num_meta_group_infos = (ngroups + |
| 3802 | EXT4_DESC_PER_BLOCK(sb) - 1) >> |
| 3803 | EXT4_DESC_PER_BLOCK_BITS(sb); |
| 3804 | rcu_read_lock(); |
| 3805 | group_info = rcu_dereference(sbi->s_group_info); |
| 3806 | for (i = 0; i < num_meta_group_infos; i++) |
| 3807 | kfree(group_info[i]); |
| 3808 | kvfree(group_info); |
| 3809 | rcu_read_unlock(); |
| 3810 | } |
| 3811 | kfree(sbi->s_mb_avg_fragment_size); |
| 3812 | kfree(sbi->s_mb_avg_fragment_size_locks); |
| 3813 | kfree(sbi->s_mb_largest_free_orders); |
| 3814 | kfree(sbi->s_mb_largest_free_orders_locks); |
| 3815 | kfree(sbi->s_mb_offsets); |
| 3816 | kfree(sbi->s_mb_maxs); |
| 3817 | iput(sbi->s_buddy_cache); |
| 3818 | if (sbi->s_mb_stats) { |
| 3819 | ext4_msg(sb, KERN_INFO, |
| 3820 | "mballoc: %u blocks %u reqs (%u success)", |
| 3821 | atomic_read(&sbi->s_bal_allocated), |
| 3822 | atomic_read(&sbi->s_bal_reqs), |
| 3823 | atomic_read(&sbi->s_bal_success)); |
| 3824 | ext4_msg(sb, KERN_INFO, |
| 3825 | "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " |
| 3826 | "%u 2^N hits, %u breaks, %u lost", |
| 3827 | atomic_read(&sbi->s_bal_ex_scanned), |
| 3828 | atomic_read(&sbi->s_bal_groups_scanned), |
| 3829 | atomic_read(&sbi->s_bal_goals), |
| 3830 | atomic_read(&sbi->s_bal_2orders), |
| 3831 | atomic_read(&sbi->s_bal_breaks), |
| 3832 | atomic_read(&sbi->s_mb_lost_chunks)); |
| 3833 | ext4_msg(sb, KERN_INFO, |
| 3834 | "mballoc: %u generated and it took %llu", |
| 3835 | atomic_read(&sbi->s_mb_buddies_generated), |
| 3836 | atomic64_read(&sbi->s_mb_generation_time)); |
| 3837 | ext4_msg(sb, KERN_INFO, |
| 3838 | "mballoc: %u preallocated, %u discarded", |
| 3839 | atomic_read(&sbi->s_mb_preallocated), |
| 3840 | atomic_read(&sbi->s_mb_discarded)); |
| 3841 | } |
| 3842 | |
| 3843 | free_percpu(sbi->s_locality_groups); |
| 3844 | } |
| 3845 | |
| 3846 | static inline int ext4_issue_discard(struct super_block *sb, |
| 3847 | ext4_group_t block_group, ext4_grpblk_t cluster, int count) |
| 3848 | { |
| 3849 | ext4_fsblk_t discard_block; |
| 3850 | |
| 3851 | discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + |
| 3852 | ext4_group_first_block_no(sb, block_group)); |
| 3853 | count = EXT4_C2B(EXT4_SB(sb), count); |
| 3854 | trace_ext4_discard_blocks(sb, |
| 3855 | (unsigned long long) discard_block, count); |
| 3856 | |
| 3857 | return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); |
| 3858 | } |
| 3859 | |
| 3860 | static void ext4_free_data_in_buddy(struct super_block *sb, |
| 3861 | struct ext4_free_data *entry) |
| 3862 | { |
| 3863 | struct ext4_buddy e4b; |
| 3864 | struct ext4_group_info *db; |
| 3865 | int err, count = 0; |
| 3866 | |
| 3867 | mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", |
| 3868 | entry->efd_count, entry->efd_group, entry); |
| 3869 | |
| 3870 | err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); |
| 3871 | /* we expect to find existing buddy because it's pinned */ |
| 3872 | BUG_ON(err != 0); |
| 3873 | |
| 3874 | spin_lock(&EXT4_SB(sb)->s_md_lock); |
| 3875 | EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; |
| 3876 | spin_unlock(&EXT4_SB(sb)->s_md_lock); |
| 3877 | |
| 3878 | db = e4b.bd_info; |
| 3879 | /* there are blocks to put in buddy to make them really free */ |
| 3880 | count += entry->efd_count; |
| 3881 | ext4_lock_group(sb, entry->efd_group); |
| 3882 | /* Take it out of per group rb tree */ |
| 3883 | rb_erase(&entry->efd_node, &(db->bb_free_root)); |
| 3884 | mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); |
| 3885 | |
| 3886 | /* |
| 3887 | * Clear the trimmed flag for the group so that the next |
| 3888 | * ext4_trim_fs can trim it. |
| 3889 | */ |
| 3890 | EXT4_MB_GRP_CLEAR_TRIMMED(db); |
| 3891 | |
| 3892 | if (!db->bb_free_root.rb_node) { |
| 3893 | /* No more items in the per group rb tree |
| 3894 | * balance refcounts from ext4_mb_free_metadata() |
| 3895 | */ |
| 3896 | folio_put(e4b.bd_buddy_folio); |
| 3897 | folio_put(e4b.bd_bitmap_folio); |
| 3898 | } |
| 3899 | ext4_unlock_group(sb, entry->efd_group); |
| 3900 | ext4_mb_unload_buddy(&e4b); |
| 3901 | |
| 3902 | mb_debug(sb, "freed %d blocks in 1 structures\n", count); |
| 3903 | } |
| 3904 | |
| 3905 | /* |
| 3906 | * This function is called by the jbd2 layer once the commit has finished, |
| 3907 | * so we know we can free the blocks that were released with that commit. |
| 3908 | */ |
| 3909 | void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) |
| 3910 | { |
| 3911 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 3912 | struct ext4_free_data *entry, *tmp; |
| 3913 | LIST_HEAD(freed_data_list); |
| 3914 | struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1]; |
| 3915 | bool wake; |
| 3916 | |
| 3917 | list_replace_init(s_freed_head, &freed_data_list); |
| 3918 | |
| 3919 | list_for_each_entry(entry, &freed_data_list, efd_list) |
| 3920 | ext4_free_data_in_buddy(sb, entry); |
| 3921 | |
| 3922 | if (test_opt(sb, DISCARD)) { |
| 3923 | spin_lock(&sbi->s_md_lock); |
| 3924 | wake = list_empty(&sbi->s_discard_list); |
| 3925 | list_splice_tail(&freed_data_list, &sbi->s_discard_list); |
| 3926 | spin_unlock(&sbi->s_md_lock); |
| 3927 | if (wake) |
| 3928 | queue_work(system_unbound_wq, &sbi->s_discard_work); |
| 3929 | } else { |
| 3930 | list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) |
| 3931 | kmem_cache_free(ext4_free_data_cachep, entry); |
| 3932 | } |
| 3933 | } |
| 3934 | |
| 3935 | int __init ext4_init_mballoc(void) |
| 3936 | { |
| 3937 | ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, |
| 3938 | SLAB_RECLAIM_ACCOUNT); |
| 3939 | if (ext4_pspace_cachep == NULL) |
| 3940 | goto out; |
| 3941 | |
| 3942 | ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, |
| 3943 | SLAB_RECLAIM_ACCOUNT); |
| 3944 | if (ext4_ac_cachep == NULL) |
| 3945 | goto out_pa_free; |
| 3946 | |
| 3947 | ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, |
| 3948 | SLAB_RECLAIM_ACCOUNT); |
| 3949 | if (ext4_free_data_cachep == NULL) |
| 3950 | goto out_ac_free; |
| 3951 | |
| 3952 | return 0; |
| 3953 | |
| 3954 | out_ac_free: |
| 3955 | kmem_cache_destroy(ext4_ac_cachep); |
| 3956 | out_pa_free: |
| 3957 | kmem_cache_destroy(ext4_pspace_cachep); |
| 3958 | out: |
| 3959 | return -ENOMEM; |
| 3960 | } |
| 3961 | |
| 3962 | void ext4_exit_mballoc(void) |
| 3963 | { |
| 3964 | /* |
| 3965 | * Wait for completion of call_rcu()'s on ext4_pspace_cachep |
| 3966 | * before destroying the slab cache. |
| 3967 | */ |
| 3968 | rcu_barrier(); |
| 3969 | kmem_cache_destroy(ext4_pspace_cachep); |
| 3970 | kmem_cache_destroy(ext4_ac_cachep); |
| 3971 | kmem_cache_destroy(ext4_free_data_cachep); |
| 3972 | ext4_groupinfo_destroy_slabs(); |
| 3973 | } |
| 3974 | |
| 3975 | #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001 |
| 3976 | #define EXT4_MB_SYNC_UPDATE 0x0002 |
| 3977 | static int |
| 3978 | ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state, |
| 3979 | ext4_group_t group, ext4_grpblk_t blkoff, |
| 3980 | ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed) |
| 3981 | { |
| 3982 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 3983 | struct buffer_head *bitmap_bh = NULL; |
| 3984 | struct ext4_group_desc *gdp; |
| 3985 | struct buffer_head *gdp_bh; |
| 3986 | int err; |
| 3987 | unsigned int i, already, changed = len; |
| 3988 | |
| 3989 | KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context, |
| 3990 | handle, sb, state, group, blkoff, len, |
| 3991 | flags, ret_changed); |
| 3992 | |
| 3993 | if (ret_changed) |
| 3994 | *ret_changed = 0; |
| 3995 | bitmap_bh = ext4_read_block_bitmap(sb, group); |
| 3996 | if (IS_ERR(bitmap_bh)) |
| 3997 | return PTR_ERR(bitmap_bh); |
| 3998 | |
| 3999 | if (handle) { |
| 4000 | BUFFER_TRACE(bitmap_bh, "getting write access"); |
| 4001 | err = ext4_journal_get_write_access(handle, sb, bitmap_bh, |
| 4002 | EXT4_JTR_NONE); |
| 4003 | if (err) |
| 4004 | goto out_err; |
| 4005 | } |
| 4006 | |
| 4007 | err = -EIO; |
| 4008 | gdp = ext4_get_group_desc(sb, group, &gdp_bh); |
| 4009 | if (!gdp) |
| 4010 | goto out_err; |
| 4011 | |
| 4012 | if (handle) { |
| 4013 | BUFFER_TRACE(gdp_bh, "get_write_access"); |
| 4014 | err = ext4_journal_get_write_access(handle, sb, gdp_bh, |
| 4015 | EXT4_JTR_NONE); |
| 4016 | if (err) |
| 4017 | goto out_err; |
| 4018 | } |
| 4019 | |
| 4020 | ext4_lock_group(sb, group); |
| 4021 | if (ext4_has_group_desc_csum(sb) && |
| 4022 | (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { |
| 4023 | gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); |
| 4024 | ext4_free_group_clusters_set(sb, gdp, |
| 4025 | ext4_free_clusters_after_init(sb, group, gdp)); |
| 4026 | } |
| 4027 | |
| 4028 | if (flags & EXT4_MB_BITMAP_MARKED_CHECK) { |
| 4029 | already = 0; |
| 4030 | for (i = 0; i < len; i++) |
| 4031 | if (mb_test_bit(blkoff + i, bitmap_bh->b_data) == |
| 4032 | state) |
| 4033 | already++; |
| 4034 | changed = len - already; |
| 4035 | } |
| 4036 | |
| 4037 | if (state) { |
| 4038 | mb_set_bits(bitmap_bh->b_data, blkoff, len); |
| 4039 | ext4_free_group_clusters_set(sb, gdp, |
| 4040 | ext4_free_group_clusters(sb, gdp) - changed); |
| 4041 | } else { |
| 4042 | mb_clear_bits(bitmap_bh->b_data, blkoff, len); |
| 4043 | ext4_free_group_clusters_set(sb, gdp, |
| 4044 | ext4_free_group_clusters(sb, gdp) + changed); |
| 4045 | } |
| 4046 | |
| 4047 | ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); |
| 4048 | ext4_group_desc_csum_set(sb, group, gdp); |
| 4049 | ext4_unlock_group(sb, group); |
| 4050 | if (ret_changed) |
| 4051 | *ret_changed = changed; |
| 4052 | |
| 4053 | if (sbi->s_log_groups_per_flex) { |
| 4054 | ext4_group_t flex_group = ext4_flex_group(sbi, group); |
| 4055 | struct flex_groups *fg = sbi_array_rcu_deref(sbi, |
| 4056 | s_flex_groups, flex_group); |
| 4057 | |
| 4058 | if (state) |
| 4059 | atomic64_sub(changed, &fg->free_clusters); |
| 4060 | else |
| 4061 | atomic64_add(changed, &fg->free_clusters); |
| 4062 | } |
| 4063 | |
| 4064 | err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); |
| 4065 | if (err) |
| 4066 | goto out_err; |
| 4067 | err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); |
| 4068 | if (err) |
| 4069 | goto out_err; |
| 4070 | |
| 4071 | if (flags & EXT4_MB_SYNC_UPDATE) { |
| 4072 | sync_dirty_buffer(bitmap_bh); |
| 4073 | sync_dirty_buffer(gdp_bh); |
| 4074 | } |
| 4075 | |
| 4076 | out_err: |
| 4077 | brelse(bitmap_bh); |
| 4078 | return err; |
| 4079 | } |
| 4080 | |
| 4081 | /* |
| 4082 | * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps |
| 4083 | * Returns 0 if success or error code |
| 4084 | */ |
| 4085 | static noinline_for_stack int |
| 4086 | ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, |
| 4087 | handle_t *handle, unsigned int reserv_clstrs) |
| 4088 | { |
| 4089 | struct ext4_group_desc *gdp; |
| 4090 | struct ext4_sb_info *sbi; |
| 4091 | struct super_block *sb; |
| 4092 | ext4_fsblk_t block; |
| 4093 | int err, len; |
| 4094 | int flags = 0; |
| 4095 | ext4_grpblk_t changed; |
| 4096 | |
| 4097 | BUG_ON(ac->ac_status != AC_STATUS_FOUND); |
| 4098 | BUG_ON(ac->ac_b_ex.fe_len <= 0); |
| 4099 | |
| 4100 | sb = ac->ac_sb; |
| 4101 | sbi = EXT4_SB(sb); |
| 4102 | |
| 4103 | gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL); |
| 4104 | if (!gdp) |
| 4105 | return -EIO; |
| 4106 | ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, |
| 4107 | ext4_free_group_clusters(sb, gdp)); |
| 4108 | |
| 4109 | block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); |
| 4110 | len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); |
| 4111 | if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { |
| 4112 | ext4_error(sb, "Allocating blocks %llu-%llu which overlap " |
| 4113 | "fs metadata", block, block+len); |
| 4114 | /* File system mounted not to panic on error |
| 4115 | * Fix the bitmap and return EFSCORRUPTED |
| 4116 | * We leak some of the blocks here. |
| 4117 | */ |
| 4118 | err = ext4_mb_mark_context(handle, sb, true, |
| 4119 | ac->ac_b_ex.fe_group, |
| 4120 | ac->ac_b_ex.fe_start, |
| 4121 | ac->ac_b_ex.fe_len, |
| 4122 | 0, NULL); |
| 4123 | if (!err) |
| 4124 | err = -EFSCORRUPTED; |
| 4125 | return err; |
| 4126 | } |
| 4127 | |
| 4128 | #ifdef AGGRESSIVE_CHECK |
| 4129 | flags |= EXT4_MB_BITMAP_MARKED_CHECK; |
| 4130 | #endif |
| 4131 | err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group, |
| 4132 | ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len, |
| 4133 | flags, &changed); |
| 4134 | |
| 4135 | if (err && changed == 0) |
| 4136 | return err; |
| 4137 | |
| 4138 | #ifdef AGGRESSIVE_CHECK |
| 4139 | BUG_ON(changed != ac->ac_b_ex.fe_len); |
| 4140 | #endif |
| 4141 | percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); |
| 4142 | /* |
| 4143 | * Now reduce the dirty block count also. Should not go negative |
| 4144 | */ |
| 4145 | if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) |
| 4146 | /* release all the reserved blocks if non delalloc */ |
| 4147 | percpu_counter_sub(&sbi->s_dirtyclusters_counter, |
| 4148 | reserv_clstrs); |
| 4149 | |
| 4150 | return err; |
| 4151 | } |
| 4152 | |
| 4153 | /* |
| 4154 | * Idempotent helper for Ext4 fast commit replay path to set the state of |
| 4155 | * blocks in bitmaps and update counters. |
| 4156 | */ |
| 4157 | void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, |
| 4158 | int len, bool state) |
| 4159 | { |
| 4160 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 4161 | ext4_group_t group; |
| 4162 | ext4_grpblk_t blkoff; |
| 4163 | int err = 0; |
| 4164 | unsigned int clen, thisgrp_len; |
| 4165 | |
| 4166 | while (len > 0) { |
| 4167 | ext4_get_group_no_and_offset(sb, block, &group, &blkoff); |
| 4168 | |
| 4169 | /* |
| 4170 | * Check to see if we are freeing blocks across a group |
| 4171 | * boundary. |
| 4172 | * In case of flex_bg, this can happen that (block, len) may |
| 4173 | * span across more than one group. In that case we need to |
| 4174 | * get the corresponding group metadata to work with. |
| 4175 | * For this we have goto again loop. |
| 4176 | */ |
| 4177 | thisgrp_len = min_t(unsigned int, (unsigned int)len, |
| 4178 | EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); |
| 4179 | clen = EXT4_NUM_B2C(sbi, thisgrp_len); |
| 4180 | |
| 4181 | if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { |
| 4182 | ext4_error(sb, "Marking blocks in system zone - " |
| 4183 | "Block = %llu, len = %u", |
| 4184 | block, thisgrp_len); |
| 4185 | break; |
| 4186 | } |
| 4187 | |
| 4188 | err = ext4_mb_mark_context(NULL, sb, state, |
| 4189 | group, blkoff, clen, |
| 4190 | EXT4_MB_BITMAP_MARKED_CHECK | |
| 4191 | EXT4_MB_SYNC_UPDATE, |
| 4192 | NULL); |
| 4193 | if (err) |
| 4194 | break; |
| 4195 | |
| 4196 | block += thisgrp_len; |
| 4197 | len -= thisgrp_len; |
| 4198 | BUG_ON(len < 0); |
| 4199 | } |
| 4200 | } |
| 4201 | |
| 4202 | /* |
| 4203 | * here we normalize request for locality group |
| 4204 | * Group request are normalized to s_mb_group_prealloc, which goes to |
| 4205 | * s_strip if we set the same via mount option. |
| 4206 | * s_mb_group_prealloc can be configured via |
| 4207 | * /sys/fs/ext4/<partition>/mb_group_prealloc |
| 4208 | * |
| 4209 | * XXX: should we try to preallocate more than the group has now? |
| 4210 | */ |
| 4211 | static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) |
| 4212 | { |
| 4213 | struct super_block *sb = ac->ac_sb; |
| 4214 | struct ext4_locality_group *lg = ac->ac_lg; |
| 4215 | |
| 4216 | BUG_ON(lg == NULL); |
| 4217 | ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; |
| 4218 | mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); |
| 4219 | } |
| 4220 | |
| 4221 | /* |
| 4222 | * This function returns the next element to look at during inode |
| 4223 | * PA rbtree walk. We assume that we have held the inode PA rbtree lock |
| 4224 | * (ei->i_prealloc_lock) |
| 4225 | * |
| 4226 | * new_start The start of the range we want to compare |
| 4227 | * cur_start The existing start that we are comparing against |
| 4228 | * node The node of the rb_tree |
| 4229 | */ |
| 4230 | static inline struct rb_node* |
| 4231 | ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) |
| 4232 | { |
| 4233 | if (new_start < cur_start) |
| 4234 | return node->rb_left; |
| 4235 | else |
| 4236 | return node->rb_right; |
| 4237 | } |
| 4238 | |
| 4239 | static inline void |
| 4240 | ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, |
| 4241 | ext4_lblk_t start, loff_t end) |
| 4242 | { |
| 4243 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 4244 | struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); |
| 4245 | struct ext4_prealloc_space *tmp_pa; |
| 4246 | ext4_lblk_t tmp_pa_start; |
| 4247 | loff_t tmp_pa_end; |
| 4248 | struct rb_node *iter; |
| 4249 | |
| 4250 | read_lock(&ei->i_prealloc_lock); |
| 4251 | for (iter = ei->i_prealloc_node.rb_node; iter; |
| 4252 | iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { |
| 4253 | tmp_pa = rb_entry(iter, struct ext4_prealloc_space, |
| 4254 | pa_node.inode_node); |
| 4255 | tmp_pa_start = tmp_pa->pa_lstart; |
| 4256 | tmp_pa_end = pa_logical_end(sbi, tmp_pa); |
| 4257 | |
| 4258 | spin_lock(&tmp_pa->pa_lock); |
| 4259 | if (tmp_pa->pa_deleted == 0) |
| 4260 | BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); |
| 4261 | spin_unlock(&tmp_pa->pa_lock); |
| 4262 | } |
| 4263 | read_unlock(&ei->i_prealloc_lock); |
| 4264 | } |
| 4265 | |
| 4266 | /* |
| 4267 | * Given an allocation context "ac" and a range "start", "end", check |
| 4268 | * and adjust boundaries if the range overlaps with any of the existing |
| 4269 | * preallocatoins stored in the corresponding inode of the allocation context. |
| 4270 | * |
| 4271 | * Parameters: |
| 4272 | * ac allocation context |
| 4273 | * start start of the new range |
| 4274 | * end end of the new range |
| 4275 | */ |
| 4276 | static inline void |
| 4277 | ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, |
| 4278 | ext4_lblk_t *start, loff_t *end) |
| 4279 | { |
| 4280 | struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); |
| 4281 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 4282 | struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; |
| 4283 | struct rb_node *iter; |
| 4284 | ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; |
| 4285 | loff_t new_end, tmp_pa_end, left_pa_end = -1; |
| 4286 | |
| 4287 | new_start = *start; |
| 4288 | new_end = *end; |
| 4289 | |
| 4290 | /* |
| 4291 | * Adjust the normalized range so that it doesn't overlap with any |
| 4292 | * existing preallocated blocks(PAs). Make sure to hold the rbtree lock |
| 4293 | * so it doesn't change underneath us. |
| 4294 | */ |
| 4295 | read_lock(&ei->i_prealloc_lock); |
| 4296 | |
| 4297 | /* Step 1: find any one immediate neighboring PA of the normalized range */ |
| 4298 | for (iter = ei->i_prealloc_node.rb_node; iter; |
| 4299 | iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, |
| 4300 | tmp_pa_start, iter)) { |
| 4301 | tmp_pa = rb_entry(iter, struct ext4_prealloc_space, |
| 4302 | pa_node.inode_node); |
| 4303 | tmp_pa_start = tmp_pa->pa_lstart; |
| 4304 | tmp_pa_end = pa_logical_end(sbi, tmp_pa); |
| 4305 | |
| 4306 | /* PA must not overlap original request */ |
| 4307 | spin_lock(&tmp_pa->pa_lock); |
| 4308 | if (tmp_pa->pa_deleted == 0) |
| 4309 | BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || |
| 4310 | ac->ac_o_ex.fe_logical < tmp_pa_start)); |
| 4311 | spin_unlock(&tmp_pa->pa_lock); |
| 4312 | } |
| 4313 | |
| 4314 | /* |
| 4315 | * Step 2: check if the found PA is left or right neighbor and |
| 4316 | * get the other neighbor |
| 4317 | */ |
| 4318 | if (tmp_pa) { |
| 4319 | if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { |
| 4320 | struct rb_node *tmp; |
| 4321 | |
| 4322 | left_pa = tmp_pa; |
| 4323 | tmp = rb_next(&left_pa->pa_node.inode_node); |
| 4324 | if (tmp) { |
| 4325 | right_pa = rb_entry(tmp, |
| 4326 | struct ext4_prealloc_space, |
| 4327 | pa_node.inode_node); |
| 4328 | } |
| 4329 | } else { |
| 4330 | struct rb_node *tmp; |
| 4331 | |
| 4332 | right_pa = tmp_pa; |
| 4333 | tmp = rb_prev(&right_pa->pa_node.inode_node); |
| 4334 | if (tmp) { |
| 4335 | left_pa = rb_entry(tmp, |
| 4336 | struct ext4_prealloc_space, |
| 4337 | pa_node.inode_node); |
| 4338 | } |
| 4339 | } |
| 4340 | } |
| 4341 | |
| 4342 | /* Step 3: get the non deleted neighbors */ |
| 4343 | if (left_pa) { |
| 4344 | for (iter = &left_pa->pa_node.inode_node;; |
| 4345 | iter = rb_prev(iter)) { |
| 4346 | if (!iter) { |
| 4347 | left_pa = NULL; |
| 4348 | break; |
| 4349 | } |
| 4350 | |
| 4351 | tmp_pa = rb_entry(iter, struct ext4_prealloc_space, |
| 4352 | pa_node.inode_node); |
| 4353 | left_pa = tmp_pa; |
| 4354 | spin_lock(&tmp_pa->pa_lock); |
| 4355 | if (tmp_pa->pa_deleted == 0) { |
| 4356 | spin_unlock(&tmp_pa->pa_lock); |
| 4357 | break; |
| 4358 | } |
| 4359 | spin_unlock(&tmp_pa->pa_lock); |
| 4360 | } |
| 4361 | } |
| 4362 | |
| 4363 | if (right_pa) { |
| 4364 | for (iter = &right_pa->pa_node.inode_node;; |
| 4365 | iter = rb_next(iter)) { |
| 4366 | if (!iter) { |
| 4367 | right_pa = NULL; |
| 4368 | break; |
| 4369 | } |
| 4370 | |
| 4371 | tmp_pa = rb_entry(iter, struct ext4_prealloc_space, |
| 4372 | pa_node.inode_node); |
| 4373 | right_pa = tmp_pa; |
| 4374 | spin_lock(&tmp_pa->pa_lock); |
| 4375 | if (tmp_pa->pa_deleted == 0) { |
| 4376 | spin_unlock(&tmp_pa->pa_lock); |
| 4377 | break; |
| 4378 | } |
| 4379 | spin_unlock(&tmp_pa->pa_lock); |
| 4380 | } |
| 4381 | } |
| 4382 | |
| 4383 | if (left_pa) { |
| 4384 | left_pa_end = pa_logical_end(sbi, left_pa); |
| 4385 | BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); |
| 4386 | } |
| 4387 | |
| 4388 | if (right_pa) { |
| 4389 | right_pa_start = right_pa->pa_lstart; |
| 4390 | BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); |
| 4391 | } |
| 4392 | |
| 4393 | /* Step 4: trim our normalized range to not overlap with the neighbors */ |
| 4394 | if (left_pa) { |
| 4395 | if (left_pa_end > new_start) |
| 4396 | new_start = left_pa_end; |
| 4397 | } |
| 4398 | |
| 4399 | if (right_pa) { |
| 4400 | if (right_pa_start < new_end) |
| 4401 | new_end = right_pa_start; |
| 4402 | } |
| 4403 | read_unlock(&ei->i_prealloc_lock); |
| 4404 | |
| 4405 | /* XXX: extra loop to check we really don't overlap preallocations */ |
| 4406 | ext4_mb_pa_assert_overlap(ac, new_start, new_end); |
| 4407 | |
| 4408 | *start = new_start; |
| 4409 | *end = new_end; |
| 4410 | } |
| 4411 | |
| 4412 | /* |
| 4413 | * Normalization means making request better in terms of |
| 4414 | * size and alignment |
| 4415 | */ |
| 4416 | static noinline_for_stack void |
| 4417 | ext4_mb_normalize_request(struct ext4_allocation_context *ac, |
| 4418 | struct ext4_allocation_request *ar) |
| 4419 | { |
| 4420 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 4421 | struct ext4_super_block *es = sbi->s_es; |
| 4422 | int bsbits, max; |
| 4423 | loff_t size, start_off, end; |
| 4424 | loff_t orig_size __maybe_unused; |
| 4425 | ext4_lblk_t start; |
| 4426 | |
| 4427 | /* do normalize only data requests, metadata requests |
| 4428 | do not need preallocation */ |
| 4429 | if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) |
| 4430 | return; |
| 4431 | |
| 4432 | /* sometime caller may want exact blocks */ |
| 4433 | if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) |
| 4434 | return; |
| 4435 | |
| 4436 | /* caller may indicate that preallocation isn't |
| 4437 | * required (it's a tail, for example) */ |
| 4438 | if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) |
| 4439 | return; |
| 4440 | |
| 4441 | if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { |
| 4442 | ext4_mb_normalize_group_request(ac); |
| 4443 | return ; |
| 4444 | } |
| 4445 | |
| 4446 | bsbits = ac->ac_sb->s_blocksize_bits; |
| 4447 | |
| 4448 | /* first, let's learn actual file size |
| 4449 | * given current request is allocated */ |
| 4450 | size = extent_logical_end(sbi, &ac->ac_o_ex); |
| 4451 | size = size << bsbits; |
| 4452 | if (size < i_size_read(ac->ac_inode)) |
| 4453 | size = i_size_read(ac->ac_inode); |
| 4454 | orig_size = size; |
| 4455 | |
| 4456 | /* max size of free chunks */ |
| 4457 | max = 2 << bsbits; |
| 4458 | |
| 4459 | #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ |
| 4460 | (req <= (size) || max <= (chunk_size)) |
| 4461 | |
| 4462 | /* first, try to predict filesize */ |
| 4463 | /* XXX: should this table be tunable? */ |
| 4464 | start_off = 0; |
| 4465 | if (size <= 16 * 1024) { |
| 4466 | size = 16 * 1024; |
| 4467 | } else if (size <= 32 * 1024) { |
| 4468 | size = 32 * 1024; |
| 4469 | } else if (size <= 64 * 1024) { |
| 4470 | size = 64 * 1024; |
| 4471 | } else if (size <= 128 * 1024) { |
| 4472 | size = 128 * 1024; |
| 4473 | } else if (size <= 256 * 1024) { |
| 4474 | size = 256 * 1024; |
| 4475 | } else if (size <= 512 * 1024) { |
| 4476 | size = 512 * 1024; |
| 4477 | } else if (size <= 1024 * 1024) { |
| 4478 | size = 1024 * 1024; |
| 4479 | } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { |
| 4480 | start_off = ((loff_t)ac->ac_o_ex.fe_logical >> |
| 4481 | (21 - bsbits)) << 21; |
| 4482 | size = 2 * 1024 * 1024; |
| 4483 | } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { |
| 4484 | start_off = ((loff_t)ac->ac_o_ex.fe_logical >> |
| 4485 | (22 - bsbits)) << 22; |
| 4486 | size = 4 * 1024 * 1024; |
| 4487 | } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), |
| 4488 | (8<<20)>>bsbits, max, 8 * 1024)) { |
| 4489 | start_off = ((loff_t)ac->ac_o_ex.fe_logical >> |
| 4490 | (23 - bsbits)) << 23; |
| 4491 | size = 8 * 1024 * 1024; |
| 4492 | } else { |
| 4493 | start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; |
| 4494 | size = (loff_t) EXT4_C2B(sbi, |
| 4495 | ac->ac_o_ex.fe_len) << bsbits; |
| 4496 | } |
| 4497 | size = size >> bsbits; |
| 4498 | start = start_off >> bsbits; |
| 4499 | |
| 4500 | /* |
| 4501 | * For tiny groups (smaller than 8MB) the chosen allocation |
| 4502 | * alignment may be larger than group size. Make sure the |
| 4503 | * alignment does not move allocation to a different group which |
| 4504 | * makes mballoc fail assertions later. |
| 4505 | */ |
| 4506 | start = max(start, rounddown(ac->ac_o_ex.fe_logical, |
| 4507 | (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); |
| 4508 | |
| 4509 | /* avoid unnecessary preallocation that may trigger assertions */ |
| 4510 | if (start + size > EXT_MAX_BLOCKS) |
| 4511 | size = EXT_MAX_BLOCKS - start; |
| 4512 | |
| 4513 | /* don't cover already allocated blocks in selected range */ |
| 4514 | if (ar->pleft && start <= ar->lleft) { |
| 4515 | size -= ar->lleft + 1 - start; |
| 4516 | start = ar->lleft + 1; |
| 4517 | } |
| 4518 | if (ar->pright && start + size - 1 >= ar->lright) |
| 4519 | size -= start + size - ar->lright; |
| 4520 | |
| 4521 | /* |
| 4522 | * Trim allocation request for filesystems with artificially small |
| 4523 | * groups. |
| 4524 | */ |
| 4525 | if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) |
| 4526 | size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); |
| 4527 | |
| 4528 | end = start + size; |
| 4529 | |
| 4530 | ext4_mb_pa_adjust_overlap(ac, &start, &end); |
| 4531 | |
| 4532 | size = end - start; |
| 4533 | |
| 4534 | /* |
| 4535 | * In this function "start" and "size" are normalized for better |
| 4536 | * alignment and length such that we could preallocate more blocks. |
| 4537 | * This normalization is done such that original request of |
| 4538 | * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and |
| 4539 | * "size" boundaries. |
| 4540 | * (Note fe_len can be relaxed since FS block allocation API does not |
| 4541 | * provide gurantee on number of contiguous blocks allocation since that |
| 4542 | * depends upon free space left, etc). |
| 4543 | * In case of inode pa, later we use the allocated blocks |
| 4544 | * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated |
| 4545 | * range of goal/best blocks [start, size] to put it at the |
| 4546 | * ac_o_ex.fe_logical extent of this inode. |
| 4547 | * (See ext4_mb_use_inode_pa() for more details) |
| 4548 | */ |
| 4549 | if (start + size <= ac->ac_o_ex.fe_logical || |
| 4550 | start > ac->ac_o_ex.fe_logical) { |
| 4551 | ext4_msg(ac->ac_sb, KERN_ERR, |
| 4552 | "start %lu, size %lu, fe_logical %lu", |
| 4553 | (unsigned long) start, (unsigned long) size, |
| 4554 | (unsigned long) ac->ac_o_ex.fe_logical); |
| 4555 | BUG(); |
| 4556 | } |
| 4557 | BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); |
| 4558 | |
| 4559 | /* now prepare goal request */ |
| 4560 | |
| 4561 | /* XXX: is it better to align blocks WRT to logical |
| 4562 | * placement or satisfy big request as is */ |
| 4563 | ac->ac_g_ex.fe_logical = start; |
| 4564 | ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); |
| 4565 | ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; |
| 4566 | |
| 4567 | /* define goal start in order to merge */ |
| 4568 | if (ar->pright && (ar->lright == (start + size)) && |
| 4569 | ar->pright >= size && |
| 4570 | ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { |
| 4571 | /* merge to the right */ |
| 4572 | ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, |
| 4573 | &ac->ac_g_ex.fe_group, |
| 4574 | &ac->ac_g_ex.fe_start); |
| 4575 | ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; |
| 4576 | } |
| 4577 | if (ar->pleft && (ar->lleft + 1 == start) && |
| 4578 | ar->pleft + 1 < ext4_blocks_count(es)) { |
| 4579 | /* merge to the left */ |
| 4580 | ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, |
| 4581 | &ac->ac_g_ex.fe_group, |
| 4582 | &ac->ac_g_ex.fe_start); |
| 4583 | ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; |
| 4584 | } |
| 4585 | |
| 4586 | mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, |
| 4587 | orig_size, start); |
| 4588 | } |
| 4589 | |
| 4590 | static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) |
| 4591 | { |
| 4592 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 4593 | |
| 4594 | if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { |
| 4595 | atomic_inc(&sbi->s_bal_reqs); |
| 4596 | atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); |
| 4597 | if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) |
| 4598 | atomic_inc(&sbi->s_bal_success); |
| 4599 | |
| 4600 | atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); |
| 4601 | for (int i=0; i<EXT4_MB_NUM_CRS; i++) { |
| 4602 | atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); |
| 4603 | } |
| 4604 | |
| 4605 | atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); |
| 4606 | if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && |
| 4607 | ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) |
| 4608 | atomic_inc(&sbi->s_bal_goals); |
| 4609 | /* did we allocate as much as normalizer originally wanted? */ |
| 4610 | if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) |
| 4611 | atomic_inc(&sbi->s_bal_len_goals); |
| 4612 | |
| 4613 | if (ac->ac_found > sbi->s_mb_max_to_scan) |
| 4614 | atomic_inc(&sbi->s_bal_breaks); |
| 4615 | } |
| 4616 | |
| 4617 | if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) |
| 4618 | trace_ext4_mballoc_alloc(ac); |
| 4619 | else |
| 4620 | trace_ext4_mballoc_prealloc(ac); |
| 4621 | } |
| 4622 | |
| 4623 | /* |
| 4624 | * Called on failure; free up any blocks from the inode PA for this |
| 4625 | * context. We don't need this for MB_GROUP_PA because we only change |
| 4626 | * pa_free in ext4_mb_release_context(), but on failure, we've already |
| 4627 | * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. |
| 4628 | */ |
| 4629 | static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) |
| 4630 | { |
| 4631 | struct ext4_prealloc_space *pa = ac->ac_pa; |
| 4632 | struct ext4_buddy e4b; |
| 4633 | int err; |
| 4634 | |
| 4635 | if (pa == NULL) { |
| 4636 | if (ac->ac_f_ex.fe_len == 0) |
| 4637 | return; |
| 4638 | err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); |
| 4639 | if (WARN_RATELIMIT(err, |
| 4640 | "ext4: mb_load_buddy failed (%d)", err)) |
| 4641 | /* |
| 4642 | * This should never happen since we pin the |
| 4643 | * pages in the ext4_allocation_context so |
| 4644 | * ext4_mb_load_buddy() should never fail. |
| 4645 | */ |
| 4646 | return; |
| 4647 | ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); |
| 4648 | mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, |
| 4649 | ac->ac_f_ex.fe_len); |
| 4650 | ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); |
| 4651 | ext4_mb_unload_buddy(&e4b); |
| 4652 | return; |
| 4653 | } |
| 4654 | if (pa->pa_type == MB_INODE_PA) { |
| 4655 | spin_lock(&pa->pa_lock); |
| 4656 | pa->pa_free += ac->ac_b_ex.fe_len; |
| 4657 | spin_unlock(&pa->pa_lock); |
| 4658 | } |
| 4659 | } |
| 4660 | |
| 4661 | /* |
| 4662 | * use blocks preallocated to inode |
| 4663 | */ |
| 4664 | static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, |
| 4665 | struct ext4_prealloc_space *pa) |
| 4666 | { |
| 4667 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 4668 | ext4_fsblk_t start; |
| 4669 | ext4_fsblk_t end; |
| 4670 | int len; |
| 4671 | |
| 4672 | /* found preallocated blocks, use them */ |
| 4673 | start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); |
| 4674 | end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), |
| 4675 | start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); |
| 4676 | len = EXT4_NUM_B2C(sbi, end - start); |
| 4677 | ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, |
| 4678 | &ac->ac_b_ex.fe_start); |
| 4679 | ac->ac_b_ex.fe_len = len; |
| 4680 | ac->ac_status = AC_STATUS_FOUND; |
| 4681 | ac->ac_pa = pa; |
| 4682 | |
| 4683 | BUG_ON(start < pa->pa_pstart); |
| 4684 | BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); |
| 4685 | BUG_ON(pa->pa_free < len); |
| 4686 | BUG_ON(ac->ac_b_ex.fe_len <= 0); |
| 4687 | pa->pa_free -= len; |
| 4688 | |
| 4689 | mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); |
| 4690 | } |
| 4691 | |
| 4692 | /* |
| 4693 | * use blocks preallocated to locality group |
| 4694 | */ |
| 4695 | static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, |
| 4696 | struct ext4_prealloc_space *pa) |
| 4697 | { |
| 4698 | unsigned int len = ac->ac_o_ex.fe_len; |
| 4699 | |
| 4700 | ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, |
| 4701 | &ac->ac_b_ex.fe_group, |
| 4702 | &ac->ac_b_ex.fe_start); |
| 4703 | ac->ac_b_ex.fe_len = len; |
| 4704 | ac->ac_status = AC_STATUS_FOUND; |
| 4705 | ac->ac_pa = pa; |
| 4706 | |
| 4707 | /* we don't correct pa_pstart or pa_len here to avoid |
| 4708 | * possible race when the group is being loaded concurrently |
| 4709 | * instead we correct pa later, after blocks are marked |
| 4710 | * in on-disk bitmap -- see ext4_mb_release_context() |
| 4711 | * Other CPUs are prevented from allocating from this pa by lg_mutex |
| 4712 | */ |
| 4713 | mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", |
| 4714 | pa->pa_lstart, len, pa); |
| 4715 | } |
| 4716 | |
| 4717 | /* |
| 4718 | * Return the prealloc space that have minimal distance |
| 4719 | * from the goal block. @cpa is the prealloc |
| 4720 | * space that is having currently known minimal distance |
| 4721 | * from the goal block. |
| 4722 | */ |
| 4723 | static struct ext4_prealloc_space * |
| 4724 | ext4_mb_check_group_pa(ext4_fsblk_t goal_block, |
| 4725 | struct ext4_prealloc_space *pa, |
| 4726 | struct ext4_prealloc_space *cpa) |
| 4727 | { |
| 4728 | ext4_fsblk_t cur_distance, new_distance; |
| 4729 | |
| 4730 | if (cpa == NULL) { |
| 4731 | atomic_inc(&pa->pa_count); |
| 4732 | return pa; |
| 4733 | } |
| 4734 | cur_distance = abs(goal_block - cpa->pa_pstart); |
| 4735 | new_distance = abs(goal_block - pa->pa_pstart); |
| 4736 | |
| 4737 | if (cur_distance <= new_distance) |
| 4738 | return cpa; |
| 4739 | |
| 4740 | /* drop the previous reference */ |
| 4741 | atomic_dec(&cpa->pa_count); |
| 4742 | atomic_inc(&pa->pa_count); |
| 4743 | return pa; |
| 4744 | } |
| 4745 | |
| 4746 | /* |
| 4747 | * check if found pa meets EXT4_MB_HINT_GOAL_ONLY |
| 4748 | */ |
| 4749 | static bool |
| 4750 | ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, |
| 4751 | struct ext4_prealloc_space *pa) |
| 4752 | { |
| 4753 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 4754 | ext4_fsblk_t start; |
| 4755 | |
| 4756 | if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) |
| 4757 | return true; |
| 4758 | |
| 4759 | /* |
| 4760 | * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted |
| 4761 | * in ext4_mb_normalize_request and will keep same with ac_o_ex |
| 4762 | * from ext4_mb_initialize_context. Choose ac_g_ex here to keep |
| 4763 | * consistent with ext4_mb_find_by_goal. |
| 4764 | */ |
| 4765 | start = pa->pa_pstart + |
| 4766 | (ac->ac_g_ex.fe_logical - pa->pa_lstart); |
| 4767 | if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) |
| 4768 | return false; |
| 4769 | |
| 4770 | if (ac->ac_g_ex.fe_len > pa->pa_len - |
| 4771 | EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) |
| 4772 | return false; |
| 4773 | |
| 4774 | return true; |
| 4775 | } |
| 4776 | |
| 4777 | /* |
| 4778 | * search goal blocks in preallocated space |
| 4779 | */ |
| 4780 | static noinline_for_stack bool |
| 4781 | ext4_mb_use_preallocated(struct ext4_allocation_context *ac) |
| 4782 | { |
| 4783 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 4784 | int order, i; |
| 4785 | struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); |
| 4786 | struct ext4_locality_group *lg; |
| 4787 | struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; |
| 4788 | struct rb_node *iter; |
| 4789 | ext4_fsblk_t goal_block; |
| 4790 | |
| 4791 | /* only data can be preallocated */ |
| 4792 | if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) |
| 4793 | return false; |
| 4794 | |
| 4795 | /* |
| 4796 | * first, try per-file preallocation by searching the inode pa rbtree. |
| 4797 | * |
| 4798 | * Here, we can't do a direct traversal of the tree because |
| 4799 | * ext4_mb_discard_group_preallocation() can paralelly mark the pa |
| 4800 | * deleted and that can cause direct traversal to skip some entries. |
| 4801 | */ |
| 4802 | read_lock(&ei->i_prealloc_lock); |
| 4803 | |
| 4804 | if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { |
| 4805 | goto try_group_pa; |
| 4806 | } |
| 4807 | |
| 4808 | /* |
| 4809 | * Step 1: Find a pa with logical start immediately adjacent to the |
| 4810 | * original logical start. This could be on the left or right. |
| 4811 | * |
| 4812 | * (tmp_pa->pa_lstart never changes so we can skip locking for it). |
| 4813 | */ |
| 4814 | for (iter = ei->i_prealloc_node.rb_node; iter; |
| 4815 | iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, |
| 4816 | tmp_pa->pa_lstart, iter)) { |
| 4817 | tmp_pa = rb_entry(iter, struct ext4_prealloc_space, |
| 4818 | pa_node.inode_node); |
| 4819 | } |
| 4820 | |
| 4821 | /* |
| 4822 | * Step 2: The adjacent pa might be to the right of logical start, find |
| 4823 | * the left adjacent pa. After this step we'd have a valid tmp_pa whose |
| 4824 | * logical start is towards the left of original request's logical start |
| 4825 | */ |
| 4826 | if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { |
| 4827 | struct rb_node *tmp; |
| 4828 | tmp = rb_prev(&tmp_pa->pa_node.inode_node); |
| 4829 | |
| 4830 | if (tmp) { |
| 4831 | tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, |
| 4832 | pa_node.inode_node); |
| 4833 | } else { |
| 4834 | /* |
| 4835 | * If there is no adjacent pa to the left then finding |
| 4836 | * an overlapping pa is not possible hence stop searching |
| 4837 | * inode pa tree |
| 4838 | */ |
| 4839 | goto try_group_pa; |
| 4840 | } |
| 4841 | } |
| 4842 | |
| 4843 | BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); |
| 4844 | |
| 4845 | /* |
| 4846 | * Step 3: If the left adjacent pa is deleted, keep moving left to find |
| 4847 | * the first non deleted adjacent pa. After this step we should have a |
| 4848 | * valid tmp_pa which is guaranteed to be non deleted. |
| 4849 | */ |
| 4850 | for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { |
| 4851 | if (!iter) { |
| 4852 | /* |
| 4853 | * no non deleted left adjacent pa, so stop searching |
| 4854 | * inode pa tree |
| 4855 | */ |
| 4856 | goto try_group_pa; |
| 4857 | } |
| 4858 | tmp_pa = rb_entry(iter, struct ext4_prealloc_space, |
| 4859 | pa_node.inode_node); |
| 4860 | spin_lock(&tmp_pa->pa_lock); |
| 4861 | if (tmp_pa->pa_deleted == 0) { |
| 4862 | /* |
| 4863 | * We will keep holding the pa_lock from |
| 4864 | * this point on because we don't want group discard |
| 4865 | * to delete this pa underneath us. Since group |
| 4866 | * discard is anyways an ENOSPC operation it |
| 4867 | * should be okay for it to wait a few more cycles. |
| 4868 | */ |
| 4869 | break; |
| 4870 | } else { |
| 4871 | spin_unlock(&tmp_pa->pa_lock); |
| 4872 | } |
| 4873 | } |
| 4874 | |
| 4875 | BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); |
| 4876 | BUG_ON(tmp_pa->pa_deleted == 1); |
| 4877 | |
| 4878 | /* |
| 4879 | * Step 4: We now have the non deleted left adjacent pa. Only this |
| 4880 | * pa can possibly satisfy the request hence check if it overlaps |
| 4881 | * original logical start and stop searching if it doesn't. |
| 4882 | */ |
| 4883 | if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { |
| 4884 | spin_unlock(&tmp_pa->pa_lock); |
| 4885 | goto try_group_pa; |
| 4886 | } |
| 4887 | |
| 4888 | /* non-extent files can't have physical blocks past 2^32 */ |
| 4889 | if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && |
| 4890 | (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > |
| 4891 | EXT4_MAX_BLOCK_FILE_PHYS)) { |
| 4892 | /* |
| 4893 | * Since PAs don't overlap, we won't find any other PA to |
| 4894 | * satisfy this. |
| 4895 | */ |
| 4896 | spin_unlock(&tmp_pa->pa_lock); |
| 4897 | goto try_group_pa; |
| 4898 | } |
| 4899 | |
| 4900 | if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { |
| 4901 | atomic_inc(&tmp_pa->pa_count); |
| 4902 | ext4_mb_use_inode_pa(ac, tmp_pa); |
| 4903 | spin_unlock(&tmp_pa->pa_lock); |
| 4904 | read_unlock(&ei->i_prealloc_lock); |
| 4905 | return true; |
| 4906 | } else { |
| 4907 | /* |
| 4908 | * We found a valid overlapping pa but couldn't use it because |
| 4909 | * it had no free blocks. This should ideally never happen |
| 4910 | * because: |
| 4911 | * |
| 4912 | * 1. When a new inode pa is added to rbtree it must have |
| 4913 | * pa_free > 0 since otherwise we won't actually need |
| 4914 | * preallocation. |
| 4915 | * |
| 4916 | * 2. An inode pa that is in the rbtree can only have it's |
| 4917 | * pa_free become zero when another thread calls: |
| 4918 | * ext4_mb_new_blocks |
| 4919 | * ext4_mb_use_preallocated |
| 4920 | * ext4_mb_use_inode_pa |
| 4921 | * |
| 4922 | * 3. Further, after the above calls make pa_free == 0, we will |
| 4923 | * immediately remove it from the rbtree in: |
| 4924 | * ext4_mb_new_blocks |
| 4925 | * ext4_mb_release_context |
| 4926 | * ext4_mb_put_pa |
| 4927 | * |
| 4928 | * 4. Since the pa_free becoming 0 and pa_free getting removed |
| 4929 | * from tree both happen in ext4_mb_new_blocks, which is always |
| 4930 | * called with i_data_sem held for data allocations, we can be |
| 4931 | * sure that another process will never see a pa in rbtree with |
| 4932 | * pa_free == 0. |
| 4933 | */ |
| 4934 | WARN_ON_ONCE(tmp_pa->pa_free == 0); |
| 4935 | } |
| 4936 | spin_unlock(&tmp_pa->pa_lock); |
| 4937 | try_group_pa: |
| 4938 | read_unlock(&ei->i_prealloc_lock); |
| 4939 | |
| 4940 | /* can we use group allocation? */ |
| 4941 | if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) |
| 4942 | return false; |
| 4943 | |
| 4944 | /* inode may have no locality group for some reason */ |
| 4945 | lg = ac->ac_lg; |
| 4946 | if (lg == NULL) |
| 4947 | return false; |
| 4948 | order = fls(ac->ac_o_ex.fe_len) - 1; |
| 4949 | if (order > PREALLOC_TB_SIZE - 1) |
| 4950 | /* The max size of hash table is PREALLOC_TB_SIZE */ |
| 4951 | order = PREALLOC_TB_SIZE - 1; |
| 4952 | |
| 4953 | goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); |
| 4954 | /* |
| 4955 | * search for the prealloc space that is having |
| 4956 | * minimal distance from the goal block. |
| 4957 | */ |
| 4958 | for (i = order; i < PREALLOC_TB_SIZE; i++) { |
| 4959 | rcu_read_lock(); |
| 4960 | list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], |
| 4961 | pa_node.lg_list) { |
| 4962 | spin_lock(&tmp_pa->pa_lock); |
| 4963 | if (tmp_pa->pa_deleted == 0 && |
| 4964 | tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { |
| 4965 | |
| 4966 | cpa = ext4_mb_check_group_pa(goal_block, |
| 4967 | tmp_pa, cpa); |
| 4968 | } |
| 4969 | spin_unlock(&tmp_pa->pa_lock); |
| 4970 | } |
| 4971 | rcu_read_unlock(); |
| 4972 | } |
| 4973 | if (cpa) { |
| 4974 | ext4_mb_use_group_pa(ac, cpa); |
| 4975 | return true; |
| 4976 | } |
| 4977 | return false; |
| 4978 | } |
| 4979 | |
| 4980 | /* |
| 4981 | * the function goes through all preallocation in this group and marks them |
| 4982 | * used in in-core bitmap. buddy must be generated from this bitmap |
| 4983 | * Need to be called with ext4 group lock held |
| 4984 | */ |
| 4985 | static noinline_for_stack |
| 4986 | void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, |
| 4987 | ext4_group_t group) |
| 4988 | { |
| 4989 | struct ext4_group_info *grp = ext4_get_group_info(sb, group); |
| 4990 | struct ext4_prealloc_space *pa; |
| 4991 | struct list_head *cur; |
| 4992 | ext4_group_t groupnr; |
| 4993 | ext4_grpblk_t start; |
| 4994 | int preallocated = 0; |
| 4995 | int len; |
| 4996 | |
| 4997 | if (!grp) |
| 4998 | return; |
| 4999 | |
| 5000 | /* all form of preallocation discards first load group, |
| 5001 | * so the only competing code is preallocation use. |
| 5002 | * we don't need any locking here |
| 5003 | * notice we do NOT ignore preallocations with pa_deleted |
| 5004 | * otherwise we could leave used blocks available for |
| 5005 | * allocation in buddy when concurrent ext4_mb_put_pa() |
| 5006 | * is dropping preallocation |
| 5007 | */ |
| 5008 | list_for_each(cur, &grp->bb_prealloc_list) { |
| 5009 | pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); |
| 5010 | spin_lock(&pa->pa_lock); |
| 5011 | ext4_get_group_no_and_offset(sb, pa->pa_pstart, |
| 5012 | &groupnr, &start); |
| 5013 | len = pa->pa_len; |
| 5014 | spin_unlock(&pa->pa_lock); |
| 5015 | if (unlikely(len == 0)) |
| 5016 | continue; |
| 5017 | BUG_ON(groupnr != group); |
| 5018 | mb_set_bits(bitmap, start, len); |
| 5019 | preallocated += len; |
| 5020 | } |
| 5021 | mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); |
| 5022 | } |
| 5023 | |
| 5024 | static void ext4_mb_mark_pa_deleted(struct super_block *sb, |
| 5025 | struct ext4_prealloc_space *pa) |
| 5026 | { |
| 5027 | struct ext4_inode_info *ei; |
| 5028 | |
| 5029 | if (pa->pa_deleted) { |
| 5030 | ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", |
| 5031 | pa->pa_type, pa->pa_pstart, pa->pa_lstart, |
| 5032 | pa->pa_len); |
| 5033 | return; |
| 5034 | } |
| 5035 | |
| 5036 | pa->pa_deleted = 1; |
| 5037 | |
| 5038 | if (pa->pa_type == MB_INODE_PA) { |
| 5039 | ei = EXT4_I(pa->pa_inode); |
| 5040 | atomic_dec(&ei->i_prealloc_active); |
| 5041 | } |
| 5042 | } |
| 5043 | |
| 5044 | static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) |
| 5045 | { |
| 5046 | BUG_ON(!pa); |
| 5047 | BUG_ON(atomic_read(&pa->pa_count)); |
| 5048 | BUG_ON(pa->pa_deleted == 0); |
| 5049 | kmem_cache_free(ext4_pspace_cachep, pa); |
| 5050 | } |
| 5051 | |
| 5052 | static void ext4_mb_pa_callback(struct rcu_head *head) |
| 5053 | { |
| 5054 | struct ext4_prealloc_space *pa; |
| 5055 | |
| 5056 | pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); |
| 5057 | ext4_mb_pa_free(pa); |
| 5058 | } |
| 5059 | |
| 5060 | /* |
| 5061 | * drops a reference to preallocated space descriptor |
| 5062 | * if this was the last reference and the space is consumed |
| 5063 | */ |
| 5064 | static void ext4_mb_put_pa(struct ext4_allocation_context *ac, |
| 5065 | struct super_block *sb, struct ext4_prealloc_space *pa) |
| 5066 | { |
| 5067 | ext4_group_t grp; |
| 5068 | ext4_fsblk_t grp_blk; |
| 5069 | struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); |
| 5070 | |
| 5071 | /* in this short window concurrent discard can set pa_deleted */ |
| 5072 | spin_lock(&pa->pa_lock); |
| 5073 | if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { |
| 5074 | spin_unlock(&pa->pa_lock); |
| 5075 | return; |
| 5076 | } |
| 5077 | |
| 5078 | if (pa->pa_deleted == 1) { |
| 5079 | spin_unlock(&pa->pa_lock); |
| 5080 | return; |
| 5081 | } |
| 5082 | |
| 5083 | ext4_mb_mark_pa_deleted(sb, pa); |
| 5084 | spin_unlock(&pa->pa_lock); |
| 5085 | |
| 5086 | grp_blk = pa->pa_pstart; |
| 5087 | /* |
| 5088 | * If doing group-based preallocation, pa_pstart may be in the |
| 5089 | * next group when pa is used up |
| 5090 | */ |
| 5091 | if (pa->pa_type == MB_GROUP_PA) |
| 5092 | grp_blk--; |
| 5093 | |
| 5094 | grp = ext4_get_group_number(sb, grp_blk); |
| 5095 | |
| 5096 | /* |
| 5097 | * possible race: |
| 5098 | * |
| 5099 | * P1 (buddy init) P2 (regular allocation) |
| 5100 | * find block B in PA |
| 5101 | * copy on-disk bitmap to buddy |
| 5102 | * mark B in on-disk bitmap |
| 5103 | * drop PA from group |
| 5104 | * mark all PAs in buddy |
| 5105 | * |
| 5106 | * thus, P1 initializes buddy with B available. to prevent this |
| 5107 | * we make "copy" and "mark all PAs" atomic and serialize "drop PA" |
| 5108 | * against that pair |
| 5109 | */ |
| 5110 | ext4_lock_group(sb, grp); |
| 5111 | list_del(&pa->pa_group_list); |
| 5112 | ext4_unlock_group(sb, grp); |
| 5113 | |
| 5114 | if (pa->pa_type == MB_INODE_PA) { |
| 5115 | write_lock(pa->pa_node_lock.inode_lock); |
| 5116 | rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); |
| 5117 | write_unlock(pa->pa_node_lock.inode_lock); |
| 5118 | ext4_mb_pa_free(pa); |
| 5119 | } else { |
| 5120 | spin_lock(pa->pa_node_lock.lg_lock); |
| 5121 | list_del_rcu(&pa->pa_node.lg_list); |
| 5122 | spin_unlock(pa->pa_node_lock.lg_lock); |
| 5123 | call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); |
| 5124 | } |
| 5125 | } |
| 5126 | |
| 5127 | static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) |
| 5128 | { |
| 5129 | struct rb_node **iter = &root->rb_node, *parent = NULL; |
| 5130 | struct ext4_prealloc_space *iter_pa, *new_pa; |
| 5131 | ext4_lblk_t iter_start, new_start; |
| 5132 | |
| 5133 | while (*iter) { |
| 5134 | iter_pa = rb_entry(*iter, struct ext4_prealloc_space, |
| 5135 | pa_node.inode_node); |
| 5136 | new_pa = rb_entry(new, struct ext4_prealloc_space, |
| 5137 | pa_node.inode_node); |
| 5138 | iter_start = iter_pa->pa_lstart; |
| 5139 | new_start = new_pa->pa_lstart; |
| 5140 | |
| 5141 | parent = *iter; |
| 5142 | if (new_start < iter_start) |
| 5143 | iter = &((*iter)->rb_left); |
| 5144 | else |
| 5145 | iter = &((*iter)->rb_right); |
| 5146 | } |
| 5147 | |
| 5148 | rb_link_node(new, parent, iter); |
| 5149 | rb_insert_color(new, root); |
| 5150 | } |
| 5151 | |
| 5152 | /* |
| 5153 | * creates new preallocated space for given inode |
| 5154 | */ |
| 5155 | static noinline_for_stack void |
| 5156 | ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) |
| 5157 | { |
| 5158 | struct super_block *sb = ac->ac_sb; |
| 5159 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 5160 | struct ext4_prealloc_space *pa; |
| 5161 | struct ext4_group_info *grp; |
| 5162 | struct ext4_inode_info *ei; |
| 5163 | |
| 5164 | /* preallocate only when found space is larger then requested */ |
| 5165 | BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); |
| 5166 | BUG_ON(ac->ac_status != AC_STATUS_FOUND); |
| 5167 | BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); |
| 5168 | BUG_ON(ac->ac_pa == NULL); |
| 5169 | |
| 5170 | pa = ac->ac_pa; |
| 5171 | |
| 5172 | if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { |
| 5173 | struct ext4_free_extent ex = { |
| 5174 | .fe_logical = ac->ac_g_ex.fe_logical, |
| 5175 | .fe_len = ac->ac_orig_goal_len, |
| 5176 | }; |
| 5177 | loff_t orig_goal_end = extent_logical_end(sbi, &ex); |
| 5178 | loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex); |
| 5179 | |
| 5180 | /* |
| 5181 | * We can't allocate as much as normalizer wants, so we try |
| 5182 | * to get proper lstart to cover the original request, except |
| 5183 | * when the goal doesn't cover the original request as below: |
| 5184 | * |
| 5185 | * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048 |
| 5186 | * best_ex:0/200(200) -> adjusted: 1848/2048(200) |
| 5187 | */ |
| 5188 | BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); |
| 5189 | BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); |
| 5190 | |
| 5191 | /* |
| 5192 | * Use the below logic for adjusting best extent as it keeps |
| 5193 | * fragmentation in check while ensuring logical range of best |
| 5194 | * extent doesn't overflow out of goal extent: |
| 5195 | * |
| 5196 | * 1. Check if best ex can be kept at end of goal (before |
| 5197 | * cr_best_avail trimmed it) and still cover original start |
| 5198 | * 2. Else, check if best ex can be kept at start of goal and |
| 5199 | * still cover original end |
| 5200 | * 3. Else, keep the best ex at start of original request. |
| 5201 | */ |
| 5202 | ex.fe_len = ac->ac_b_ex.fe_len; |
| 5203 | |
| 5204 | ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); |
| 5205 | if (ac->ac_o_ex.fe_logical >= ex.fe_logical) |
| 5206 | goto adjust_bex; |
| 5207 | |
| 5208 | ex.fe_logical = ac->ac_g_ex.fe_logical; |
| 5209 | if (o_ex_end <= extent_logical_end(sbi, &ex)) |
| 5210 | goto adjust_bex; |
| 5211 | |
| 5212 | ex.fe_logical = ac->ac_o_ex.fe_logical; |
| 5213 | adjust_bex: |
| 5214 | ac->ac_b_ex.fe_logical = ex.fe_logical; |
| 5215 | |
| 5216 | BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); |
| 5217 | BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); |
| 5218 | } |
| 5219 | |
| 5220 | pa->pa_lstart = ac->ac_b_ex.fe_logical; |
| 5221 | pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); |
| 5222 | pa->pa_len = ac->ac_b_ex.fe_len; |
| 5223 | pa->pa_free = pa->pa_len; |
| 5224 | spin_lock_init(&pa->pa_lock); |
| 5225 | INIT_LIST_HEAD(&pa->pa_group_list); |
| 5226 | pa->pa_deleted = 0; |
| 5227 | pa->pa_type = MB_INODE_PA; |
| 5228 | |
| 5229 | mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, |
| 5230 | pa->pa_len, pa->pa_lstart); |
| 5231 | trace_ext4_mb_new_inode_pa(ac, pa); |
| 5232 | |
| 5233 | atomic_add(pa->pa_free, &sbi->s_mb_preallocated); |
| 5234 | ext4_mb_use_inode_pa(ac, pa); |
| 5235 | |
| 5236 | ei = EXT4_I(ac->ac_inode); |
| 5237 | grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); |
| 5238 | if (!grp) |
| 5239 | return; |
| 5240 | |
| 5241 | pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; |
| 5242 | pa->pa_inode = ac->ac_inode; |
| 5243 | |
| 5244 | list_add(&pa->pa_group_list, &grp->bb_prealloc_list); |
| 5245 | |
| 5246 | write_lock(pa->pa_node_lock.inode_lock); |
| 5247 | ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); |
| 5248 | write_unlock(pa->pa_node_lock.inode_lock); |
| 5249 | atomic_inc(&ei->i_prealloc_active); |
| 5250 | } |
| 5251 | |
| 5252 | /* |
| 5253 | * creates new preallocated space for locality group inodes belongs to |
| 5254 | */ |
| 5255 | static noinline_for_stack void |
| 5256 | ext4_mb_new_group_pa(struct ext4_allocation_context *ac) |
| 5257 | { |
| 5258 | struct super_block *sb = ac->ac_sb; |
| 5259 | struct ext4_locality_group *lg; |
| 5260 | struct ext4_prealloc_space *pa; |
| 5261 | struct ext4_group_info *grp; |
| 5262 | |
| 5263 | /* preallocate only when found space is larger then requested */ |
| 5264 | BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); |
| 5265 | BUG_ON(ac->ac_status != AC_STATUS_FOUND); |
| 5266 | BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); |
| 5267 | BUG_ON(ac->ac_pa == NULL); |
| 5268 | |
| 5269 | pa = ac->ac_pa; |
| 5270 | |
| 5271 | pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); |
| 5272 | pa->pa_lstart = pa->pa_pstart; |
| 5273 | pa->pa_len = ac->ac_b_ex.fe_len; |
| 5274 | pa->pa_free = pa->pa_len; |
| 5275 | spin_lock_init(&pa->pa_lock); |
| 5276 | INIT_LIST_HEAD(&pa->pa_node.lg_list); |
| 5277 | INIT_LIST_HEAD(&pa->pa_group_list); |
| 5278 | pa->pa_deleted = 0; |
| 5279 | pa->pa_type = MB_GROUP_PA; |
| 5280 | |
| 5281 | mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, |
| 5282 | pa->pa_len, pa->pa_lstart); |
| 5283 | trace_ext4_mb_new_group_pa(ac, pa); |
| 5284 | |
| 5285 | ext4_mb_use_group_pa(ac, pa); |
| 5286 | atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); |
| 5287 | |
| 5288 | grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); |
| 5289 | if (!grp) |
| 5290 | return; |
| 5291 | lg = ac->ac_lg; |
| 5292 | BUG_ON(lg == NULL); |
| 5293 | |
| 5294 | pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; |
| 5295 | pa->pa_inode = NULL; |
| 5296 | |
| 5297 | list_add(&pa->pa_group_list, &grp->bb_prealloc_list); |
| 5298 | |
| 5299 | /* |
| 5300 | * We will later add the new pa to the right bucket |
| 5301 | * after updating the pa_free in ext4_mb_release_context |
| 5302 | */ |
| 5303 | } |
| 5304 | |
| 5305 | static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) |
| 5306 | { |
| 5307 | if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) |
| 5308 | ext4_mb_new_group_pa(ac); |
| 5309 | else |
| 5310 | ext4_mb_new_inode_pa(ac); |
| 5311 | } |
| 5312 | |
| 5313 | /* |
| 5314 | * finds all unused blocks in on-disk bitmap, frees them in |
| 5315 | * in-core bitmap and buddy. |
| 5316 | * @pa must be unlinked from inode and group lists, so that |
| 5317 | * nobody else can find/use it. |
| 5318 | * the caller MUST hold group/inode locks. |
| 5319 | * TODO: optimize the case when there are no in-core structures yet |
| 5320 | */ |
| 5321 | static noinline_for_stack void |
| 5322 | ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, |
| 5323 | struct ext4_prealloc_space *pa) |
| 5324 | { |
| 5325 | struct super_block *sb = e4b->bd_sb; |
| 5326 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 5327 | unsigned int end; |
| 5328 | unsigned int next; |
| 5329 | ext4_group_t group; |
| 5330 | ext4_grpblk_t bit; |
| 5331 | unsigned long long grp_blk_start; |
| 5332 | int free = 0; |
| 5333 | |
| 5334 | BUG_ON(pa->pa_deleted == 0); |
| 5335 | ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); |
| 5336 | grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); |
| 5337 | BUG_ON(group != e4b->bd_group && pa->pa_len != 0); |
| 5338 | end = bit + pa->pa_len; |
| 5339 | |
| 5340 | while (bit < end) { |
| 5341 | bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); |
| 5342 | if (bit >= end) |
| 5343 | break; |
| 5344 | next = mb_find_next_bit(bitmap_bh->b_data, end, bit); |
| 5345 | mb_debug(sb, "free preallocated %u/%u in group %u\n", |
| 5346 | (unsigned) ext4_group_first_block_no(sb, group) + bit, |
| 5347 | (unsigned) next - bit, (unsigned) group); |
| 5348 | free += next - bit; |
| 5349 | |
| 5350 | trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); |
| 5351 | trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + |
| 5352 | EXT4_C2B(sbi, bit)), |
| 5353 | next - bit); |
| 5354 | mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); |
| 5355 | bit = next + 1; |
| 5356 | } |
| 5357 | if (free != pa->pa_free) { |
| 5358 | ext4_msg(e4b->bd_sb, KERN_CRIT, |
| 5359 | "pa %p: logic %lu, phys. %lu, len %d", |
| 5360 | pa, (unsigned long) pa->pa_lstart, |
| 5361 | (unsigned long) pa->pa_pstart, |
| 5362 | pa->pa_len); |
| 5363 | ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", |
| 5364 | free, pa->pa_free); |
| 5365 | /* |
| 5366 | * pa is already deleted so we use the value obtained |
| 5367 | * from the bitmap and continue. |
| 5368 | */ |
| 5369 | } |
| 5370 | atomic_add(free, &sbi->s_mb_discarded); |
| 5371 | } |
| 5372 | |
| 5373 | static noinline_for_stack void |
| 5374 | ext4_mb_release_group_pa(struct ext4_buddy *e4b, |
| 5375 | struct ext4_prealloc_space *pa) |
| 5376 | { |
| 5377 | struct super_block *sb = e4b->bd_sb; |
| 5378 | ext4_group_t group; |
| 5379 | ext4_grpblk_t bit; |
| 5380 | |
| 5381 | trace_ext4_mb_release_group_pa(sb, pa); |
| 5382 | BUG_ON(pa->pa_deleted == 0); |
| 5383 | ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); |
| 5384 | if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { |
| 5385 | ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", |
| 5386 | e4b->bd_group, group, pa->pa_pstart); |
| 5387 | return; |
| 5388 | } |
| 5389 | mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); |
| 5390 | atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); |
| 5391 | trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); |
| 5392 | } |
| 5393 | |
| 5394 | /* |
| 5395 | * releases all preallocations in given group |
| 5396 | * |
| 5397 | * first, we need to decide discard policy: |
| 5398 | * - when do we discard |
| 5399 | * 1) ENOSPC |
| 5400 | * - how many do we discard |
| 5401 | * 1) how many requested |
| 5402 | */ |
| 5403 | static noinline_for_stack int |
| 5404 | ext4_mb_discard_group_preallocations(struct super_block *sb, |
| 5405 | ext4_group_t group, int *busy) |
| 5406 | { |
| 5407 | struct ext4_group_info *grp = ext4_get_group_info(sb, group); |
| 5408 | struct buffer_head *bitmap_bh = NULL; |
| 5409 | struct ext4_prealloc_space *pa, *tmp; |
| 5410 | LIST_HEAD(list); |
| 5411 | struct ext4_buddy e4b; |
| 5412 | struct ext4_inode_info *ei; |
| 5413 | int err; |
| 5414 | int free = 0; |
| 5415 | |
| 5416 | if (!grp) |
| 5417 | return 0; |
| 5418 | mb_debug(sb, "discard preallocation for group %u\n", group); |
| 5419 | if (list_empty(&grp->bb_prealloc_list)) |
| 5420 | goto out_dbg; |
| 5421 | |
| 5422 | bitmap_bh = ext4_read_block_bitmap(sb, group); |
| 5423 | if (IS_ERR(bitmap_bh)) { |
| 5424 | err = PTR_ERR(bitmap_bh); |
| 5425 | ext4_error_err(sb, -err, |
| 5426 | "Error %d reading block bitmap for %u", |
| 5427 | err, group); |
| 5428 | goto out_dbg; |
| 5429 | } |
| 5430 | |
| 5431 | err = ext4_mb_load_buddy(sb, group, &e4b); |
| 5432 | if (err) { |
| 5433 | ext4_warning(sb, "Error %d loading buddy information for %u", |
| 5434 | err, group); |
| 5435 | put_bh(bitmap_bh); |
| 5436 | goto out_dbg; |
| 5437 | } |
| 5438 | |
| 5439 | ext4_lock_group(sb, group); |
| 5440 | list_for_each_entry_safe(pa, tmp, |
| 5441 | &grp->bb_prealloc_list, pa_group_list) { |
| 5442 | spin_lock(&pa->pa_lock); |
| 5443 | if (atomic_read(&pa->pa_count)) { |
| 5444 | spin_unlock(&pa->pa_lock); |
| 5445 | *busy = 1; |
| 5446 | continue; |
| 5447 | } |
| 5448 | if (pa->pa_deleted) { |
| 5449 | spin_unlock(&pa->pa_lock); |
| 5450 | continue; |
| 5451 | } |
| 5452 | |
| 5453 | /* seems this one can be freed ... */ |
| 5454 | ext4_mb_mark_pa_deleted(sb, pa); |
| 5455 | |
| 5456 | if (!free) |
| 5457 | this_cpu_inc(discard_pa_seq); |
| 5458 | |
| 5459 | /* we can trust pa_free ... */ |
| 5460 | free += pa->pa_free; |
| 5461 | |
| 5462 | spin_unlock(&pa->pa_lock); |
| 5463 | |
| 5464 | list_del(&pa->pa_group_list); |
| 5465 | list_add(&pa->u.pa_tmp_list, &list); |
| 5466 | } |
| 5467 | |
| 5468 | /* now free all selected PAs */ |
| 5469 | list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { |
| 5470 | |
| 5471 | /* remove from object (inode or locality group) */ |
| 5472 | if (pa->pa_type == MB_GROUP_PA) { |
| 5473 | spin_lock(pa->pa_node_lock.lg_lock); |
| 5474 | list_del_rcu(&pa->pa_node.lg_list); |
| 5475 | spin_unlock(pa->pa_node_lock.lg_lock); |
| 5476 | } else { |
| 5477 | write_lock(pa->pa_node_lock.inode_lock); |
| 5478 | ei = EXT4_I(pa->pa_inode); |
| 5479 | rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); |
| 5480 | write_unlock(pa->pa_node_lock.inode_lock); |
| 5481 | } |
| 5482 | |
| 5483 | list_del(&pa->u.pa_tmp_list); |
| 5484 | |
| 5485 | if (pa->pa_type == MB_GROUP_PA) { |
| 5486 | ext4_mb_release_group_pa(&e4b, pa); |
| 5487 | call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); |
| 5488 | } else { |
| 5489 | ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); |
| 5490 | ext4_mb_pa_free(pa); |
| 5491 | } |
| 5492 | } |
| 5493 | |
| 5494 | ext4_unlock_group(sb, group); |
| 5495 | ext4_mb_unload_buddy(&e4b); |
| 5496 | put_bh(bitmap_bh); |
| 5497 | out_dbg: |
| 5498 | mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", |
| 5499 | free, group, grp->bb_free); |
| 5500 | return free; |
| 5501 | } |
| 5502 | |
| 5503 | /* |
| 5504 | * releases all non-used preallocated blocks for given inode |
| 5505 | * |
| 5506 | * It's important to discard preallocations under i_data_sem |
| 5507 | * We don't want another block to be served from the prealloc |
| 5508 | * space when we are discarding the inode prealloc space. |
| 5509 | * |
| 5510 | * FIXME!! Make sure it is valid at all the call sites |
| 5511 | */ |
| 5512 | void ext4_discard_preallocations(struct inode *inode) |
| 5513 | { |
| 5514 | struct ext4_inode_info *ei = EXT4_I(inode); |
| 5515 | struct super_block *sb = inode->i_sb; |
| 5516 | struct buffer_head *bitmap_bh = NULL; |
| 5517 | struct ext4_prealloc_space *pa, *tmp; |
| 5518 | ext4_group_t group = 0; |
| 5519 | LIST_HEAD(list); |
| 5520 | struct ext4_buddy e4b; |
| 5521 | struct rb_node *iter; |
| 5522 | int err; |
| 5523 | |
| 5524 | if (!S_ISREG(inode->i_mode)) |
| 5525 | return; |
| 5526 | |
| 5527 | if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) |
| 5528 | return; |
| 5529 | |
| 5530 | mb_debug(sb, "discard preallocation for inode %lu\n", |
| 5531 | inode->i_ino); |
| 5532 | trace_ext4_discard_preallocations(inode, |
| 5533 | atomic_read(&ei->i_prealloc_active)); |
| 5534 | |
| 5535 | repeat: |
| 5536 | /* first, collect all pa's in the inode */ |
| 5537 | write_lock(&ei->i_prealloc_lock); |
| 5538 | for (iter = rb_first(&ei->i_prealloc_node); iter; |
| 5539 | iter = rb_next(iter)) { |
| 5540 | pa = rb_entry(iter, struct ext4_prealloc_space, |
| 5541 | pa_node.inode_node); |
| 5542 | BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); |
| 5543 | |
| 5544 | spin_lock(&pa->pa_lock); |
| 5545 | if (atomic_read(&pa->pa_count)) { |
| 5546 | /* this shouldn't happen often - nobody should |
| 5547 | * use preallocation while we're discarding it */ |
| 5548 | spin_unlock(&pa->pa_lock); |
| 5549 | write_unlock(&ei->i_prealloc_lock); |
| 5550 | ext4_msg(sb, KERN_ERR, |
| 5551 | "uh-oh! used pa while discarding"); |
| 5552 | WARN_ON(1); |
| 5553 | schedule_timeout_uninterruptible(HZ); |
| 5554 | goto repeat; |
| 5555 | |
| 5556 | } |
| 5557 | if (pa->pa_deleted == 0) { |
| 5558 | ext4_mb_mark_pa_deleted(sb, pa); |
| 5559 | spin_unlock(&pa->pa_lock); |
| 5560 | rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); |
| 5561 | list_add(&pa->u.pa_tmp_list, &list); |
| 5562 | continue; |
| 5563 | } |
| 5564 | |
| 5565 | /* someone is deleting pa right now */ |
| 5566 | spin_unlock(&pa->pa_lock); |
| 5567 | write_unlock(&ei->i_prealloc_lock); |
| 5568 | |
| 5569 | /* we have to wait here because pa_deleted |
| 5570 | * doesn't mean pa is already unlinked from |
| 5571 | * the list. as we might be called from |
| 5572 | * ->clear_inode() the inode will get freed |
| 5573 | * and concurrent thread which is unlinking |
| 5574 | * pa from inode's list may access already |
| 5575 | * freed memory, bad-bad-bad */ |
| 5576 | |
| 5577 | /* XXX: if this happens too often, we can |
| 5578 | * add a flag to force wait only in case |
| 5579 | * of ->clear_inode(), but not in case of |
| 5580 | * regular truncate */ |
| 5581 | schedule_timeout_uninterruptible(HZ); |
| 5582 | goto repeat; |
| 5583 | } |
| 5584 | write_unlock(&ei->i_prealloc_lock); |
| 5585 | |
| 5586 | list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { |
| 5587 | BUG_ON(pa->pa_type != MB_INODE_PA); |
| 5588 | group = ext4_get_group_number(sb, pa->pa_pstart); |
| 5589 | |
| 5590 | err = ext4_mb_load_buddy_gfp(sb, group, &e4b, |
| 5591 | GFP_NOFS|__GFP_NOFAIL); |
| 5592 | if (err) { |
| 5593 | ext4_error_err(sb, -err, "Error %d loading buddy information for %u", |
| 5594 | err, group); |
| 5595 | continue; |
| 5596 | } |
| 5597 | |
| 5598 | bitmap_bh = ext4_read_block_bitmap(sb, group); |
| 5599 | if (IS_ERR(bitmap_bh)) { |
| 5600 | err = PTR_ERR(bitmap_bh); |
| 5601 | ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", |
| 5602 | err, group); |
| 5603 | ext4_mb_unload_buddy(&e4b); |
| 5604 | continue; |
| 5605 | } |
| 5606 | |
| 5607 | ext4_lock_group(sb, group); |
| 5608 | list_del(&pa->pa_group_list); |
| 5609 | ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); |
| 5610 | ext4_unlock_group(sb, group); |
| 5611 | |
| 5612 | ext4_mb_unload_buddy(&e4b); |
| 5613 | put_bh(bitmap_bh); |
| 5614 | |
| 5615 | list_del(&pa->u.pa_tmp_list); |
| 5616 | ext4_mb_pa_free(pa); |
| 5617 | } |
| 5618 | } |
| 5619 | |
| 5620 | static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) |
| 5621 | { |
| 5622 | struct ext4_prealloc_space *pa; |
| 5623 | |
| 5624 | BUG_ON(ext4_pspace_cachep == NULL); |
| 5625 | pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); |
| 5626 | if (!pa) |
| 5627 | return -ENOMEM; |
| 5628 | atomic_set(&pa->pa_count, 1); |
| 5629 | ac->ac_pa = pa; |
| 5630 | return 0; |
| 5631 | } |
| 5632 | |
| 5633 | static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) |
| 5634 | { |
| 5635 | struct ext4_prealloc_space *pa = ac->ac_pa; |
| 5636 | |
| 5637 | BUG_ON(!pa); |
| 5638 | ac->ac_pa = NULL; |
| 5639 | WARN_ON(!atomic_dec_and_test(&pa->pa_count)); |
| 5640 | /* |
| 5641 | * current function is only called due to an error or due to |
| 5642 | * len of found blocks < len of requested blocks hence the PA has not |
| 5643 | * been added to grp->bb_prealloc_list. So we don't need to lock it |
| 5644 | */ |
| 5645 | pa->pa_deleted = 1; |
| 5646 | ext4_mb_pa_free(pa); |
| 5647 | } |
| 5648 | |
| 5649 | #ifdef CONFIG_EXT4_DEBUG |
| 5650 | static inline void ext4_mb_show_pa(struct super_block *sb) |
| 5651 | { |
| 5652 | ext4_group_t i, ngroups; |
| 5653 | |
| 5654 | if (ext4_emergency_state(sb)) |
| 5655 | return; |
| 5656 | |
| 5657 | ngroups = ext4_get_groups_count(sb); |
| 5658 | mb_debug(sb, "groups: "); |
| 5659 | for (i = 0; i < ngroups; i++) { |
| 5660 | struct ext4_group_info *grp = ext4_get_group_info(sb, i); |
| 5661 | struct ext4_prealloc_space *pa; |
| 5662 | ext4_grpblk_t start; |
| 5663 | struct list_head *cur; |
| 5664 | |
| 5665 | if (!grp) |
| 5666 | continue; |
| 5667 | ext4_lock_group(sb, i); |
| 5668 | list_for_each(cur, &grp->bb_prealloc_list) { |
| 5669 | pa = list_entry(cur, struct ext4_prealloc_space, |
| 5670 | pa_group_list); |
| 5671 | spin_lock(&pa->pa_lock); |
| 5672 | ext4_get_group_no_and_offset(sb, pa->pa_pstart, |
| 5673 | NULL, &start); |
| 5674 | spin_unlock(&pa->pa_lock); |
| 5675 | mb_debug(sb, "PA:%u:%d:%d\n", i, start, |
| 5676 | pa->pa_len); |
| 5677 | } |
| 5678 | ext4_unlock_group(sb, i); |
| 5679 | mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, |
| 5680 | grp->bb_fragments); |
| 5681 | } |
| 5682 | } |
| 5683 | |
| 5684 | static void ext4_mb_show_ac(struct ext4_allocation_context *ac) |
| 5685 | { |
| 5686 | struct super_block *sb = ac->ac_sb; |
| 5687 | |
| 5688 | if (ext4_emergency_state(sb)) |
| 5689 | return; |
| 5690 | |
| 5691 | mb_debug(sb, "Can't allocate:" |
| 5692 | " Allocation context details:"); |
| 5693 | mb_debug(sb, "status %u flags 0x%x", |
| 5694 | ac->ac_status, ac->ac_flags); |
| 5695 | mb_debug(sb, "orig %lu/%lu/%lu@%lu, " |
| 5696 | "goal %lu/%lu/%lu@%lu, " |
| 5697 | "best %lu/%lu/%lu@%lu cr %d", |
| 5698 | (unsigned long)ac->ac_o_ex.fe_group, |
| 5699 | (unsigned long)ac->ac_o_ex.fe_start, |
| 5700 | (unsigned long)ac->ac_o_ex.fe_len, |
| 5701 | (unsigned long)ac->ac_o_ex.fe_logical, |
| 5702 | (unsigned long)ac->ac_g_ex.fe_group, |
| 5703 | (unsigned long)ac->ac_g_ex.fe_start, |
| 5704 | (unsigned long)ac->ac_g_ex.fe_len, |
| 5705 | (unsigned long)ac->ac_g_ex.fe_logical, |
| 5706 | (unsigned long)ac->ac_b_ex.fe_group, |
| 5707 | (unsigned long)ac->ac_b_ex.fe_start, |
| 5708 | (unsigned long)ac->ac_b_ex.fe_len, |
| 5709 | (unsigned long)ac->ac_b_ex.fe_logical, |
| 5710 | (int)ac->ac_criteria); |
| 5711 | mb_debug(sb, "%u found", ac->ac_found); |
| 5712 | mb_debug(sb, "used pa: %s, ", str_yes_no(ac->ac_pa)); |
| 5713 | if (ac->ac_pa) |
| 5714 | mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? |
| 5715 | "group pa" : "inode pa"); |
| 5716 | ext4_mb_show_pa(sb); |
| 5717 | } |
| 5718 | #else |
| 5719 | static inline void ext4_mb_show_pa(struct super_block *sb) |
| 5720 | { |
| 5721 | } |
| 5722 | static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) |
| 5723 | { |
| 5724 | ext4_mb_show_pa(ac->ac_sb); |
| 5725 | } |
| 5726 | #endif |
| 5727 | |
| 5728 | /* |
| 5729 | * We use locality group preallocation for small size file. The size of the |
| 5730 | * file is determined by the current size or the resulting size after |
| 5731 | * allocation which ever is larger |
| 5732 | * |
| 5733 | * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req |
| 5734 | */ |
| 5735 | static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) |
| 5736 | { |
| 5737 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 5738 | int bsbits = ac->ac_sb->s_blocksize_bits; |
| 5739 | loff_t size, isize; |
| 5740 | bool inode_pa_eligible, group_pa_eligible; |
| 5741 | |
| 5742 | if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) |
| 5743 | return; |
| 5744 | |
| 5745 | if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) |
| 5746 | return; |
| 5747 | |
| 5748 | group_pa_eligible = sbi->s_mb_group_prealloc > 0; |
| 5749 | inode_pa_eligible = true; |
| 5750 | size = extent_logical_end(sbi, &ac->ac_o_ex); |
| 5751 | isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) |
| 5752 | >> bsbits; |
| 5753 | |
| 5754 | /* No point in using inode preallocation for closed files */ |
| 5755 | if ((size == isize) && !ext4_fs_is_busy(sbi) && |
| 5756 | !inode_is_open_for_write(ac->ac_inode)) |
| 5757 | inode_pa_eligible = false; |
| 5758 | |
| 5759 | size = max(size, isize); |
| 5760 | /* Don't use group allocation for large files */ |
| 5761 | if (size > sbi->s_mb_stream_request) |
| 5762 | group_pa_eligible = false; |
| 5763 | |
| 5764 | if (!group_pa_eligible) { |
| 5765 | if (inode_pa_eligible) |
| 5766 | ac->ac_flags |= EXT4_MB_STREAM_ALLOC; |
| 5767 | else |
| 5768 | ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; |
| 5769 | return; |
| 5770 | } |
| 5771 | |
| 5772 | BUG_ON(ac->ac_lg != NULL); |
| 5773 | /* |
| 5774 | * locality group prealloc space are per cpu. The reason for having |
| 5775 | * per cpu locality group is to reduce the contention between block |
| 5776 | * request from multiple CPUs. |
| 5777 | */ |
| 5778 | ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); |
| 5779 | |
| 5780 | /* we're going to use group allocation */ |
| 5781 | ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; |
| 5782 | |
| 5783 | /* serialize all allocations in the group */ |
| 5784 | mutex_lock(&ac->ac_lg->lg_mutex); |
| 5785 | } |
| 5786 | |
| 5787 | static noinline_for_stack void |
| 5788 | ext4_mb_initialize_context(struct ext4_allocation_context *ac, |
| 5789 | struct ext4_allocation_request *ar) |
| 5790 | { |
| 5791 | struct super_block *sb = ar->inode->i_sb; |
| 5792 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 5793 | struct ext4_super_block *es = sbi->s_es; |
| 5794 | ext4_group_t group; |
| 5795 | unsigned int len; |
| 5796 | ext4_fsblk_t goal; |
| 5797 | ext4_grpblk_t block; |
| 5798 | |
| 5799 | /* we can't allocate > group size */ |
| 5800 | len = ar->len; |
| 5801 | |
| 5802 | /* just a dirty hack to filter too big requests */ |
| 5803 | if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) |
| 5804 | len = EXT4_CLUSTERS_PER_GROUP(sb); |
| 5805 | |
| 5806 | /* start searching from the goal */ |
| 5807 | goal = ar->goal; |
| 5808 | if (goal < le32_to_cpu(es->s_first_data_block) || |
| 5809 | goal >= ext4_blocks_count(es)) |
| 5810 | goal = le32_to_cpu(es->s_first_data_block); |
| 5811 | ext4_get_group_no_and_offset(sb, goal, &group, &block); |
| 5812 | |
| 5813 | /* set up allocation goals */ |
| 5814 | ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); |
| 5815 | ac->ac_status = AC_STATUS_CONTINUE; |
| 5816 | ac->ac_sb = sb; |
| 5817 | ac->ac_inode = ar->inode; |
| 5818 | ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; |
| 5819 | ac->ac_o_ex.fe_group = group; |
| 5820 | ac->ac_o_ex.fe_start = block; |
| 5821 | ac->ac_o_ex.fe_len = len; |
| 5822 | ac->ac_g_ex = ac->ac_o_ex; |
| 5823 | ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; |
| 5824 | ac->ac_flags = ar->flags; |
| 5825 | |
| 5826 | /* we have to define context: we'll work with a file or |
| 5827 | * locality group. this is a policy, actually */ |
| 5828 | ext4_mb_group_or_file(ac); |
| 5829 | |
| 5830 | mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " |
| 5831 | "left: %u/%u, right %u/%u to %swritable\n", |
| 5832 | (unsigned) ar->len, (unsigned) ar->logical, |
| 5833 | (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, |
| 5834 | (unsigned) ar->lleft, (unsigned) ar->pleft, |
| 5835 | (unsigned) ar->lright, (unsigned) ar->pright, |
| 5836 | inode_is_open_for_write(ar->inode) ? "" : "non-"); |
| 5837 | } |
| 5838 | |
| 5839 | static noinline_for_stack void |
| 5840 | ext4_mb_discard_lg_preallocations(struct super_block *sb, |
| 5841 | struct ext4_locality_group *lg, |
| 5842 | int order, int total_entries) |
| 5843 | { |
| 5844 | ext4_group_t group = 0; |
| 5845 | struct ext4_buddy e4b; |
| 5846 | LIST_HEAD(discard_list); |
| 5847 | struct ext4_prealloc_space *pa, *tmp; |
| 5848 | |
| 5849 | mb_debug(sb, "discard locality group preallocation\n"); |
| 5850 | |
| 5851 | spin_lock(&lg->lg_prealloc_lock); |
| 5852 | list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], |
| 5853 | pa_node.lg_list, |
| 5854 | lockdep_is_held(&lg->lg_prealloc_lock)) { |
| 5855 | spin_lock(&pa->pa_lock); |
| 5856 | if (atomic_read(&pa->pa_count)) { |
| 5857 | /* |
| 5858 | * This is the pa that we just used |
| 5859 | * for block allocation. So don't |
| 5860 | * free that |
| 5861 | */ |
| 5862 | spin_unlock(&pa->pa_lock); |
| 5863 | continue; |
| 5864 | } |
| 5865 | if (pa->pa_deleted) { |
| 5866 | spin_unlock(&pa->pa_lock); |
| 5867 | continue; |
| 5868 | } |
| 5869 | /* only lg prealloc space */ |
| 5870 | BUG_ON(pa->pa_type != MB_GROUP_PA); |
| 5871 | |
| 5872 | /* seems this one can be freed ... */ |
| 5873 | ext4_mb_mark_pa_deleted(sb, pa); |
| 5874 | spin_unlock(&pa->pa_lock); |
| 5875 | |
| 5876 | list_del_rcu(&pa->pa_node.lg_list); |
| 5877 | list_add(&pa->u.pa_tmp_list, &discard_list); |
| 5878 | |
| 5879 | total_entries--; |
| 5880 | if (total_entries <= 5) { |
| 5881 | /* |
| 5882 | * we want to keep only 5 entries |
| 5883 | * allowing it to grow to 8. This |
| 5884 | * mak sure we don't call discard |
| 5885 | * soon for this list. |
| 5886 | */ |
| 5887 | break; |
| 5888 | } |
| 5889 | } |
| 5890 | spin_unlock(&lg->lg_prealloc_lock); |
| 5891 | |
| 5892 | list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { |
| 5893 | int err; |
| 5894 | |
| 5895 | group = ext4_get_group_number(sb, pa->pa_pstart); |
| 5896 | err = ext4_mb_load_buddy_gfp(sb, group, &e4b, |
| 5897 | GFP_NOFS|__GFP_NOFAIL); |
| 5898 | if (err) { |
| 5899 | ext4_error_err(sb, -err, "Error %d loading buddy information for %u", |
| 5900 | err, group); |
| 5901 | continue; |
| 5902 | } |
| 5903 | ext4_lock_group(sb, group); |
| 5904 | list_del(&pa->pa_group_list); |
| 5905 | ext4_mb_release_group_pa(&e4b, pa); |
| 5906 | ext4_unlock_group(sb, group); |
| 5907 | |
| 5908 | ext4_mb_unload_buddy(&e4b); |
| 5909 | list_del(&pa->u.pa_tmp_list); |
| 5910 | call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); |
| 5911 | } |
| 5912 | } |
| 5913 | |
| 5914 | /* |
| 5915 | * We have incremented pa_count. So it cannot be freed at this |
| 5916 | * point. Also we hold lg_mutex. So no parallel allocation is |
| 5917 | * possible from this lg. That means pa_free cannot be updated. |
| 5918 | * |
| 5919 | * A parallel ext4_mb_discard_group_preallocations is possible. |
| 5920 | * which can cause the lg_prealloc_list to be updated. |
| 5921 | */ |
| 5922 | |
| 5923 | static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) |
| 5924 | { |
| 5925 | int order, added = 0, lg_prealloc_count = 1; |
| 5926 | struct super_block *sb = ac->ac_sb; |
| 5927 | struct ext4_locality_group *lg = ac->ac_lg; |
| 5928 | struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; |
| 5929 | |
| 5930 | order = fls(pa->pa_free) - 1; |
| 5931 | if (order > PREALLOC_TB_SIZE - 1) |
| 5932 | /* The max size of hash table is PREALLOC_TB_SIZE */ |
| 5933 | order = PREALLOC_TB_SIZE - 1; |
| 5934 | /* Add the prealloc space to lg */ |
| 5935 | spin_lock(&lg->lg_prealloc_lock); |
| 5936 | list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], |
| 5937 | pa_node.lg_list, |
| 5938 | lockdep_is_held(&lg->lg_prealloc_lock)) { |
| 5939 | spin_lock(&tmp_pa->pa_lock); |
| 5940 | if (tmp_pa->pa_deleted) { |
| 5941 | spin_unlock(&tmp_pa->pa_lock); |
| 5942 | continue; |
| 5943 | } |
| 5944 | if (!added && pa->pa_free < tmp_pa->pa_free) { |
| 5945 | /* Add to the tail of the previous entry */ |
| 5946 | list_add_tail_rcu(&pa->pa_node.lg_list, |
| 5947 | &tmp_pa->pa_node.lg_list); |
| 5948 | added = 1; |
| 5949 | /* |
| 5950 | * we want to count the total |
| 5951 | * number of entries in the list |
| 5952 | */ |
| 5953 | } |
| 5954 | spin_unlock(&tmp_pa->pa_lock); |
| 5955 | lg_prealloc_count++; |
| 5956 | } |
| 5957 | if (!added) |
| 5958 | list_add_tail_rcu(&pa->pa_node.lg_list, |
| 5959 | &lg->lg_prealloc_list[order]); |
| 5960 | spin_unlock(&lg->lg_prealloc_lock); |
| 5961 | |
| 5962 | /* Now trim the list to be not more than 8 elements */ |
| 5963 | if (lg_prealloc_count > 8) |
| 5964 | ext4_mb_discard_lg_preallocations(sb, lg, |
| 5965 | order, lg_prealloc_count); |
| 5966 | } |
| 5967 | |
| 5968 | /* |
| 5969 | * release all resource we used in allocation |
| 5970 | */ |
| 5971 | static void ext4_mb_release_context(struct ext4_allocation_context *ac) |
| 5972 | { |
| 5973 | struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); |
| 5974 | struct ext4_prealloc_space *pa = ac->ac_pa; |
| 5975 | if (pa) { |
| 5976 | if (pa->pa_type == MB_GROUP_PA) { |
| 5977 | /* see comment in ext4_mb_use_group_pa() */ |
| 5978 | spin_lock(&pa->pa_lock); |
| 5979 | pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); |
| 5980 | pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); |
| 5981 | pa->pa_free -= ac->ac_b_ex.fe_len; |
| 5982 | pa->pa_len -= ac->ac_b_ex.fe_len; |
| 5983 | spin_unlock(&pa->pa_lock); |
| 5984 | |
| 5985 | /* |
| 5986 | * We want to add the pa to the right bucket. |
| 5987 | * Remove it from the list and while adding |
| 5988 | * make sure the list to which we are adding |
| 5989 | * doesn't grow big. |
| 5990 | */ |
| 5991 | if (likely(pa->pa_free)) { |
| 5992 | spin_lock(pa->pa_node_lock.lg_lock); |
| 5993 | list_del_rcu(&pa->pa_node.lg_list); |
| 5994 | spin_unlock(pa->pa_node_lock.lg_lock); |
| 5995 | ext4_mb_add_n_trim(ac); |
| 5996 | } |
| 5997 | } |
| 5998 | |
| 5999 | ext4_mb_put_pa(ac, ac->ac_sb, pa); |
| 6000 | } |
| 6001 | if (ac->ac_bitmap_folio) |
| 6002 | folio_put(ac->ac_bitmap_folio); |
| 6003 | if (ac->ac_buddy_folio) |
| 6004 | folio_put(ac->ac_buddy_folio); |
| 6005 | if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) |
| 6006 | mutex_unlock(&ac->ac_lg->lg_mutex); |
| 6007 | ext4_mb_collect_stats(ac); |
| 6008 | } |
| 6009 | |
| 6010 | static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) |
| 6011 | { |
| 6012 | ext4_group_t i, ngroups = ext4_get_groups_count(sb); |
| 6013 | int ret; |
| 6014 | int freed = 0, busy = 0; |
| 6015 | int retry = 0; |
| 6016 | |
| 6017 | trace_ext4_mb_discard_preallocations(sb, needed); |
| 6018 | |
| 6019 | if (needed == 0) |
| 6020 | needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; |
| 6021 | repeat: |
| 6022 | for (i = 0; i < ngroups && needed > 0; i++) { |
| 6023 | ret = ext4_mb_discard_group_preallocations(sb, i, &busy); |
| 6024 | freed += ret; |
| 6025 | needed -= ret; |
| 6026 | cond_resched(); |
| 6027 | } |
| 6028 | |
| 6029 | if (needed > 0 && busy && ++retry < 3) { |
| 6030 | busy = 0; |
| 6031 | goto repeat; |
| 6032 | } |
| 6033 | |
| 6034 | return freed; |
| 6035 | } |
| 6036 | |
| 6037 | static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, |
| 6038 | struct ext4_allocation_context *ac, u64 *seq) |
| 6039 | { |
| 6040 | int freed; |
| 6041 | u64 seq_retry = 0; |
| 6042 | bool ret = false; |
| 6043 | |
| 6044 | freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); |
| 6045 | if (freed) { |
| 6046 | ret = true; |
| 6047 | goto out_dbg; |
| 6048 | } |
| 6049 | seq_retry = ext4_get_discard_pa_seq_sum(); |
| 6050 | if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { |
| 6051 | ac->ac_flags |= EXT4_MB_STRICT_CHECK; |
| 6052 | *seq = seq_retry; |
| 6053 | ret = true; |
| 6054 | } |
| 6055 | |
| 6056 | out_dbg: |
| 6057 | mb_debug(sb, "freed %d, retry ? %s\n", freed, str_yes_no(ret)); |
| 6058 | return ret; |
| 6059 | } |
| 6060 | |
| 6061 | /* |
| 6062 | * Simple allocator for Ext4 fast commit replay path. It searches for blocks |
| 6063 | * linearly starting at the goal block and also excludes the blocks which |
| 6064 | * are going to be in use after fast commit replay. |
| 6065 | */ |
| 6066 | static ext4_fsblk_t |
| 6067 | ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) |
| 6068 | { |
| 6069 | struct buffer_head *bitmap_bh; |
| 6070 | struct super_block *sb = ar->inode->i_sb; |
| 6071 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 6072 | ext4_group_t group, nr; |
| 6073 | ext4_grpblk_t blkoff; |
| 6074 | ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); |
| 6075 | ext4_grpblk_t i = 0; |
| 6076 | ext4_fsblk_t goal, block; |
| 6077 | struct ext4_super_block *es = sbi->s_es; |
| 6078 | |
| 6079 | goal = ar->goal; |
| 6080 | if (goal < le32_to_cpu(es->s_first_data_block) || |
| 6081 | goal >= ext4_blocks_count(es)) |
| 6082 | goal = le32_to_cpu(es->s_first_data_block); |
| 6083 | |
| 6084 | ar->len = 0; |
| 6085 | ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); |
| 6086 | for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { |
| 6087 | bitmap_bh = ext4_read_block_bitmap(sb, group); |
| 6088 | if (IS_ERR(bitmap_bh)) { |
| 6089 | *errp = PTR_ERR(bitmap_bh); |
| 6090 | pr_warn("Failed to read block bitmap\n"); |
| 6091 | return 0; |
| 6092 | } |
| 6093 | |
| 6094 | while (1) { |
| 6095 | i = mb_find_next_zero_bit(bitmap_bh->b_data, max, |
| 6096 | blkoff); |
| 6097 | if (i >= max) |
| 6098 | break; |
| 6099 | if (ext4_fc_replay_check_excluded(sb, |
| 6100 | ext4_group_first_block_no(sb, group) + |
| 6101 | EXT4_C2B(sbi, i))) { |
| 6102 | blkoff = i + 1; |
| 6103 | } else |
| 6104 | break; |
| 6105 | } |
| 6106 | brelse(bitmap_bh); |
| 6107 | if (i < max) |
| 6108 | break; |
| 6109 | |
| 6110 | if (++group >= ext4_get_groups_count(sb)) |
| 6111 | group = 0; |
| 6112 | |
| 6113 | blkoff = 0; |
| 6114 | } |
| 6115 | |
| 6116 | if (i >= max) { |
| 6117 | *errp = -ENOSPC; |
| 6118 | return 0; |
| 6119 | } |
| 6120 | |
| 6121 | block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); |
| 6122 | ext4_mb_mark_bb(sb, block, 1, true); |
| 6123 | ar->len = 1; |
| 6124 | |
| 6125 | *errp = 0; |
| 6126 | return block; |
| 6127 | } |
| 6128 | |
| 6129 | /* |
| 6130 | * Main entry point into mballoc to allocate blocks |
| 6131 | * it tries to use preallocation first, then falls back |
| 6132 | * to usual allocation |
| 6133 | */ |
| 6134 | ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, |
| 6135 | struct ext4_allocation_request *ar, int *errp) |
| 6136 | { |
| 6137 | struct ext4_allocation_context *ac = NULL; |
| 6138 | struct ext4_sb_info *sbi; |
| 6139 | struct super_block *sb; |
| 6140 | ext4_fsblk_t block = 0; |
| 6141 | unsigned int inquota = 0; |
| 6142 | unsigned int reserv_clstrs = 0; |
| 6143 | int retries = 0; |
| 6144 | u64 seq; |
| 6145 | |
| 6146 | might_sleep(); |
| 6147 | sb = ar->inode->i_sb; |
| 6148 | sbi = EXT4_SB(sb); |
| 6149 | |
| 6150 | trace_ext4_request_blocks(ar); |
| 6151 | if (sbi->s_mount_state & EXT4_FC_REPLAY) |
| 6152 | return ext4_mb_new_blocks_simple(ar, errp); |
| 6153 | |
| 6154 | /* Allow to use superuser reservation for quota file */ |
| 6155 | if (ext4_is_quota_file(ar->inode)) |
| 6156 | ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; |
| 6157 | |
| 6158 | if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { |
| 6159 | /* Without delayed allocation we need to verify |
| 6160 | * there is enough free blocks to do block allocation |
| 6161 | * and verify allocation doesn't exceed the quota limits. |
| 6162 | */ |
| 6163 | while (ar->len && |
| 6164 | ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { |
| 6165 | |
| 6166 | /* let others to free the space */ |
| 6167 | cond_resched(); |
| 6168 | ar->len = ar->len >> 1; |
| 6169 | } |
| 6170 | if (!ar->len) { |
| 6171 | ext4_mb_show_pa(sb); |
| 6172 | *errp = -ENOSPC; |
| 6173 | return 0; |
| 6174 | } |
| 6175 | reserv_clstrs = ar->len; |
| 6176 | if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { |
| 6177 | dquot_alloc_block_nofail(ar->inode, |
| 6178 | EXT4_C2B(sbi, ar->len)); |
| 6179 | } else { |
| 6180 | while (ar->len && |
| 6181 | dquot_alloc_block(ar->inode, |
| 6182 | EXT4_C2B(sbi, ar->len))) { |
| 6183 | |
| 6184 | ar->flags |= EXT4_MB_HINT_NOPREALLOC; |
| 6185 | ar->len--; |
| 6186 | } |
| 6187 | } |
| 6188 | inquota = ar->len; |
| 6189 | if (ar->len == 0) { |
| 6190 | *errp = -EDQUOT; |
| 6191 | goto out; |
| 6192 | } |
| 6193 | } |
| 6194 | |
| 6195 | ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); |
| 6196 | if (!ac) { |
| 6197 | ar->len = 0; |
| 6198 | *errp = -ENOMEM; |
| 6199 | goto out; |
| 6200 | } |
| 6201 | |
| 6202 | ext4_mb_initialize_context(ac, ar); |
| 6203 | |
| 6204 | ac->ac_op = EXT4_MB_HISTORY_PREALLOC; |
| 6205 | seq = this_cpu_read(discard_pa_seq); |
| 6206 | if (!ext4_mb_use_preallocated(ac)) { |
| 6207 | ac->ac_op = EXT4_MB_HISTORY_ALLOC; |
| 6208 | ext4_mb_normalize_request(ac, ar); |
| 6209 | |
| 6210 | *errp = ext4_mb_pa_alloc(ac); |
| 6211 | if (*errp) |
| 6212 | goto errout; |
| 6213 | repeat: |
| 6214 | /* allocate space in core */ |
| 6215 | *errp = ext4_mb_regular_allocator(ac); |
| 6216 | /* |
| 6217 | * pa allocated above is added to grp->bb_prealloc_list only |
| 6218 | * when we were able to allocate some block i.e. when |
| 6219 | * ac->ac_status == AC_STATUS_FOUND. |
| 6220 | * And error from above mean ac->ac_status != AC_STATUS_FOUND |
| 6221 | * So we have to free this pa here itself. |
| 6222 | */ |
| 6223 | if (*errp) { |
| 6224 | ext4_mb_pa_put_free(ac); |
| 6225 | ext4_discard_allocated_blocks(ac); |
| 6226 | goto errout; |
| 6227 | } |
| 6228 | if (ac->ac_status == AC_STATUS_FOUND && |
| 6229 | ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) |
| 6230 | ext4_mb_pa_put_free(ac); |
| 6231 | } |
| 6232 | if (likely(ac->ac_status == AC_STATUS_FOUND)) { |
| 6233 | *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); |
| 6234 | if (*errp) { |
| 6235 | ext4_discard_allocated_blocks(ac); |
| 6236 | goto errout; |
| 6237 | } else { |
| 6238 | block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); |
| 6239 | ar->len = ac->ac_b_ex.fe_len; |
| 6240 | } |
| 6241 | } else { |
| 6242 | if (++retries < 3 && |
| 6243 | ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) |
| 6244 | goto repeat; |
| 6245 | /* |
| 6246 | * If block allocation fails then the pa allocated above |
| 6247 | * needs to be freed here itself. |
| 6248 | */ |
| 6249 | ext4_mb_pa_put_free(ac); |
| 6250 | *errp = -ENOSPC; |
| 6251 | } |
| 6252 | |
| 6253 | if (*errp) { |
| 6254 | errout: |
| 6255 | ac->ac_b_ex.fe_len = 0; |
| 6256 | ar->len = 0; |
| 6257 | ext4_mb_show_ac(ac); |
| 6258 | } |
| 6259 | ext4_mb_release_context(ac); |
| 6260 | kmem_cache_free(ext4_ac_cachep, ac); |
| 6261 | out: |
| 6262 | if (inquota && ar->len < inquota) |
| 6263 | dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); |
| 6264 | if (!ar->len) { |
| 6265 | if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) |
| 6266 | /* release all the reserved blocks if non delalloc */ |
| 6267 | percpu_counter_sub(&sbi->s_dirtyclusters_counter, |
| 6268 | reserv_clstrs); |
| 6269 | } |
| 6270 | |
| 6271 | trace_ext4_allocate_blocks(ar, (unsigned long long)block); |
| 6272 | |
| 6273 | return block; |
| 6274 | } |
| 6275 | |
| 6276 | /* |
| 6277 | * We can merge two free data extents only if the physical blocks |
| 6278 | * are contiguous, AND the extents were freed by the same transaction, |
| 6279 | * AND the blocks are associated with the same group. |
| 6280 | */ |
| 6281 | static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, |
| 6282 | struct ext4_free_data *entry, |
| 6283 | struct ext4_free_data *new_entry, |
| 6284 | struct rb_root *entry_rb_root) |
| 6285 | { |
| 6286 | if ((entry->efd_tid != new_entry->efd_tid) || |
| 6287 | (entry->efd_group != new_entry->efd_group)) |
| 6288 | return; |
| 6289 | if (entry->efd_start_cluster + entry->efd_count == |
| 6290 | new_entry->efd_start_cluster) { |
| 6291 | new_entry->efd_start_cluster = entry->efd_start_cluster; |
| 6292 | new_entry->efd_count += entry->efd_count; |
| 6293 | } else if (new_entry->efd_start_cluster + new_entry->efd_count == |
| 6294 | entry->efd_start_cluster) { |
| 6295 | new_entry->efd_count += entry->efd_count; |
| 6296 | } else |
| 6297 | return; |
| 6298 | spin_lock(&sbi->s_md_lock); |
| 6299 | list_del(&entry->efd_list); |
| 6300 | spin_unlock(&sbi->s_md_lock); |
| 6301 | rb_erase(&entry->efd_node, entry_rb_root); |
| 6302 | kmem_cache_free(ext4_free_data_cachep, entry); |
| 6303 | } |
| 6304 | |
| 6305 | static noinline_for_stack void |
| 6306 | ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, |
| 6307 | struct ext4_free_data *new_entry) |
| 6308 | { |
| 6309 | ext4_group_t group = e4b->bd_group; |
| 6310 | ext4_grpblk_t cluster; |
| 6311 | ext4_grpblk_t clusters = new_entry->efd_count; |
| 6312 | struct ext4_free_data *entry; |
| 6313 | struct ext4_group_info *db = e4b->bd_info; |
| 6314 | struct super_block *sb = e4b->bd_sb; |
| 6315 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 6316 | struct rb_node **n = &db->bb_free_root.rb_node, *node; |
| 6317 | struct rb_node *parent = NULL, *new_node; |
| 6318 | |
| 6319 | BUG_ON(!ext4_handle_valid(handle)); |
| 6320 | BUG_ON(e4b->bd_bitmap_folio == NULL); |
| 6321 | BUG_ON(e4b->bd_buddy_folio == NULL); |
| 6322 | |
| 6323 | new_node = &new_entry->efd_node; |
| 6324 | cluster = new_entry->efd_start_cluster; |
| 6325 | |
| 6326 | if (!*n) { |
| 6327 | /* first free block exent. We need to |
| 6328 | protect buddy cache from being freed, |
| 6329 | * otherwise we'll refresh it from |
| 6330 | * on-disk bitmap and lose not-yet-available |
| 6331 | * blocks */ |
| 6332 | folio_get(e4b->bd_buddy_folio); |
| 6333 | folio_get(e4b->bd_bitmap_folio); |
| 6334 | } |
| 6335 | while (*n) { |
| 6336 | parent = *n; |
| 6337 | entry = rb_entry(parent, struct ext4_free_data, efd_node); |
| 6338 | if (cluster < entry->efd_start_cluster) |
| 6339 | n = &(*n)->rb_left; |
| 6340 | else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) |
| 6341 | n = &(*n)->rb_right; |
| 6342 | else { |
| 6343 | ext4_grp_locked_error(sb, group, 0, |
| 6344 | ext4_group_first_block_no(sb, group) + |
| 6345 | EXT4_C2B(sbi, cluster), |
| 6346 | "Block already on to-be-freed list"); |
| 6347 | kmem_cache_free(ext4_free_data_cachep, new_entry); |
| 6348 | return; |
| 6349 | } |
| 6350 | } |
| 6351 | |
| 6352 | rb_link_node(new_node, parent, n); |
| 6353 | rb_insert_color(new_node, &db->bb_free_root); |
| 6354 | |
| 6355 | /* Now try to see the extent can be merged to left and right */ |
| 6356 | node = rb_prev(new_node); |
| 6357 | if (node) { |
| 6358 | entry = rb_entry(node, struct ext4_free_data, efd_node); |
| 6359 | ext4_try_merge_freed_extent(sbi, entry, new_entry, |
| 6360 | &(db->bb_free_root)); |
| 6361 | } |
| 6362 | |
| 6363 | node = rb_next(new_node); |
| 6364 | if (node) { |
| 6365 | entry = rb_entry(node, struct ext4_free_data, efd_node); |
| 6366 | ext4_try_merge_freed_extent(sbi, entry, new_entry, |
| 6367 | &(db->bb_free_root)); |
| 6368 | } |
| 6369 | |
| 6370 | spin_lock(&sbi->s_md_lock); |
| 6371 | list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]); |
| 6372 | sbi->s_mb_free_pending += clusters; |
| 6373 | spin_unlock(&sbi->s_md_lock); |
| 6374 | } |
| 6375 | |
| 6376 | static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, |
| 6377 | unsigned long count) |
| 6378 | { |
| 6379 | struct super_block *sb = inode->i_sb; |
| 6380 | ext4_group_t group; |
| 6381 | ext4_grpblk_t blkoff; |
| 6382 | |
| 6383 | ext4_get_group_no_and_offset(sb, block, &group, &blkoff); |
| 6384 | ext4_mb_mark_context(NULL, sb, false, group, blkoff, count, |
| 6385 | EXT4_MB_BITMAP_MARKED_CHECK | |
| 6386 | EXT4_MB_SYNC_UPDATE, |
| 6387 | NULL); |
| 6388 | } |
| 6389 | |
| 6390 | /** |
| 6391 | * ext4_mb_clear_bb() -- helper function for freeing blocks. |
| 6392 | * Used by ext4_free_blocks() |
| 6393 | * @handle: handle for this transaction |
| 6394 | * @inode: inode |
| 6395 | * @block: starting physical block to be freed |
| 6396 | * @count: number of blocks to be freed |
| 6397 | * @flags: flags used by ext4_free_blocks |
| 6398 | */ |
| 6399 | static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, |
| 6400 | ext4_fsblk_t block, unsigned long count, |
| 6401 | int flags) |
| 6402 | { |
| 6403 | struct super_block *sb = inode->i_sb; |
| 6404 | struct ext4_group_info *grp; |
| 6405 | unsigned int overflow; |
| 6406 | ext4_grpblk_t bit; |
| 6407 | ext4_group_t block_group; |
| 6408 | struct ext4_sb_info *sbi; |
| 6409 | struct ext4_buddy e4b; |
| 6410 | unsigned int count_clusters; |
| 6411 | int err = 0; |
| 6412 | int mark_flags = 0; |
| 6413 | ext4_grpblk_t changed; |
| 6414 | |
| 6415 | sbi = EXT4_SB(sb); |
| 6416 | |
| 6417 | if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && |
| 6418 | !ext4_inode_block_valid(inode, block, count)) { |
| 6419 | ext4_error(sb, "Freeing blocks in system zone - " |
| 6420 | "Block = %llu, count = %lu", block, count); |
| 6421 | /* err = 0. ext4_std_error should be a no op */ |
| 6422 | goto error_out; |
| 6423 | } |
| 6424 | flags |= EXT4_FREE_BLOCKS_VALIDATED; |
| 6425 | |
| 6426 | do_more: |
| 6427 | overflow = 0; |
| 6428 | ext4_get_group_no_and_offset(sb, block, &block_group, &bit); |
| 6429 | |
| 6430 | grp = ext4_get_group_info(sb, block_group); |
| 6431 | if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) |
| 6432 | return; |
| 6433 | |
| 6434 | /* |
| 6435 | * Check to see if we are freeing blocks across a group |
| 6436 | * boundary. |
| 6437 | */ |
| 6438 | if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { |
| 6439 | overflow = EXT4_C2B(sbi, bit) + count - |
| 6440 | EXT4_BLOCKS_PER_GROUP(sb); |
| 6441 | count -= overflow; |
| 6442 | /* The range changed so it's no longer validated */ |
| 6443 | flags &= ~EXT4_FREE_BLOCKS_VALIDATED; |
| 6444 | } |
| 6445 | count_clusters = EXT4_NUM_B2C(sbi, count); |
| 6446 | trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); |
| 6447 | |
| 6448 | /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ |
| 6449 | err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, |
| 6450 | GFP_NOFS|__GFP_NOFAIL); |
| 6451 | if (err) |
| 6452 | goto error_out; |
| 6453 | |
| 6454 | if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && |
| 6455 | !ext4_inode_block_valid(inode, block, count)) { |
| 6456 | ext4_error(sb, "Freeing blocks in system zone - " |
| 6457 | "Block = %llu, count = %lu", block, count); |
| 6458 | /* err = 0. ext4_std_error should be a no op */ |
| 6459 | goto error_clean; |
| 6460 | } |
| 6461 | |
| 6462 | #ifdef AGGRESSIVE_CHECK |
| 6463 | mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK; |
| 6464 | #endif |
| 6465 | err = ext4_mb_mark_context(handle, sb, false, block_group, bit, |
| 6466 | count_clusters, mark_flags, &changed); |
| 6467 | |
| 6468 | |
| 6469 | if (err && changed == 0) |
| 6470 | goto error_clean; |
| 6471 | |
| 6472 | #ifdef AGGRESSIVE_CHECK |
| 6473 | BUG_ON(changed != count_clusters); |
| 6474 | #endif |
| 6475 | |
| 6476 | /* |
| 6477 | * We need to make sure we don't reuse the freed block until after the |
| 6478 | * transaction is committed. We make an exception if the inode is to be |
| 6479 | * written in writeback mode since writeback mode has weak data |
| 6480 | * consistency guarantees. |
| 6481 | */ |
| 6482 | if (ext4_handle_valid(handle) && |
| 6483 | ((flags & EXT4_FREE_BLOCKS_METADATA) || |
| 6484 | !ext4_should_writeback_data(inode))) { |
| 6485 | struct ext4_free_data *new_entry; |
| 6486 | /* |
| 6487 | * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed |
| 6488 | * to fail. |
| 6489 | */ |
| 6490 | new_entry = kmem_cache_alloc(ext4_free_data_cachep, |
| 6491 | GFP_NOFS|__GFP_NOFAIL); |
| 6492 | new_entry->efd_start_cluster = bit; |
| 6493 | new_entry->efd_group = block_group; |
| 6494 | new_entry->efd_count = count_clusters; |
| 6495 | new_entry->efd_tid = handle->h_transaction->t_tid; |
| 6496 | |
| 6497 | ext4_lock_group(sb, block_group); |
| 6498 | ext4_mb_free_metadata(handle, &e4b, new_entry); |
| 6499 | } else { |
| 6500 | if (test_opt(sb, DISCARD)) { |
| 6501 | err = ext4_issue_discard(sb, block_group, bit, |
| 6502 | count_clusters); |
| 6503 | /* |
| 6504 | * Ignore EOPNOTSUPP error. This is consistent with |
| 6505 | * what happens when using journal. |
| 6506 | */ |
| 6507 | if (err == -EOPNOTSUPP) |
| 6508 | err = 0; |
| 6509 | if (err) |
| 6510 | ext4_msg(sb, KERN_WARNING, "discard request in" |
| 6511 | " group:%u block:%d count:%lu failed" |
| 6512 | " with %d", block_group, bit, count, |
| 6513 | err); |
| 6514 | } |
| 6515 | |
| 6516 | EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); |
| 6517 | |
| 6518 | ext4_lock_group(sb, block_group); |
| 6519 | mb_free_blocks(inode, &e4b, bit, count_clusters); |
| 6520 | } |
| 6521 | |
| 6522 | ext4_unlock_group(sb, block_group); |
| 6523 | |
| 6524 | /* |
| 6525 | * on a bigalloc file system, defer the s_freeclusters_counter |
| 6526 | * update to the caller (ext4_remove_space and friends) so they |
| 6527 | * can determine if a cluster freed here should be rereserved |
| 6528 | */ |
| 6529 | if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { |
| 6530 | if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) |
| 6531 | dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); |
| 6532 | percpu_counter_add(&sbi->s_freeclusters_counter, |
| 6533 | count_clusters); |
| 6534 | } |
| 6535 | |
| 6536 | if (overflow && !err) { |
| 6537 | block += count; |
| 6538 | count = overflow; |
| 6539 | ext4_mb_unload_buddy(&e4b); |
| 6540 | /* The range changed so it's no longer validated */ |
| 6541 | flags &= ~EXT4_FREE_BLOCKS_VALIDATED; |
| 6542 | goto do_more; |
| 6543 | } |
| 6544 | |
| 6545 | error_clean: |
| 6546 | ext4_mb_unload_buddy(&e4b); |
| 6547 | error_out: |
| 6548 | ext4_std_error(sb, err); |
| 6549 | } |
| 6550 | |
| 6551 | /** |
| 6552 | * ext4_free_blocks() -- Free given blocks and update quota |
| 6553 | * @handle: handle for this transaction |
| 6554 | * @inode: inode |
| 6555 | * @bh: optional buffer of the block to be freed |
| 6556 | * @block: starting physical block to be freed |
| 6557 | * @count: number of blocks to be freed |
| 6558 | * @flags: flags used by ext4_free_blocks |
| 6559 | */ |
| 6560 | void ext4_free_blocks(handle_t *handle, struct inode *inode, |
| 6561 | struct buffer_head *bh, ext4_fsblk_t block, |
| 6562 | unsigned long count, int flags) |
| 6563 | { |
| 6564 | struct super_block *sb = inode->i_sb; |
| 6565 | unsigned int overflow; |
| 6566 | struct ext4_sb_info *sbi; |
| 6567 | |
| 6568 | sbi = EXT4_SB(sb); |
| 6569 | |
| 6570 | if (bh) { |
| 6571 | if (block) |
| 6572 | BUG_ON(block != bh->b_blocknr); |
| 6573 | else |
| 6574 | block = bh->b_blocknr; |
| 6575 | } |
| 6576 | |
| 6577 | if (sbi->s_mount_state & EXT4_FC_REPLAY) { |
| 6578 | ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); |
| 6579 | return; |
| 6580 | } |
| 6581 | |
| 6582 | might_sleep(); |
| 6583 | |
| 6584 | if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && |
| 6585 | !ext4_inode_block_valid(inode, block, count)) { |
| 6586 | ext4_error(sb, "Freeing blocks not in datazone - " |
| 6587 | "block = %llu, count = %lu", block, count); |
| 6588 | return; |
| 6589 | } |
| 6590 | flags |= EXT4_FREE_BLOCKS_VALIDATED; |
| 6591 | |
| 6592 | ext4_debug("freeing block %llu\n", block); |
| 6593 | trace_ext4_free_blocks(inode, block, count, flags); |
| 6594 | |
| 6595 | if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { |
| 6596 | BUG_ON(count > 1); |
| 6597 | |
| 6598 | ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, |
| 6599 | inode, bh, block); |
| 6600 | } |
| 6601 | |
| 6602 | /* |
| 6603 | * If the extent to be freed does not begin on a cluster |
| 6604 | * boundary, we need to deal with partial clusters at the |
| 6605 | * beginning and end of the extent. Normally we will free |
| 6606 | * blocks at the beginning or the end unless we are explicitly |
| 6607 | * requested to avoid doing so. |
| 6608 | */ |
| 6609 | overflow = EXT4_PBLK_COFF(sbi, block); |
| 6610 | if (overflow) { |
| 6611 | if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { |
| 6612 | overflow = sbi->s_cluster_ratio - overflow; |
| 6613 | block += overflow; |
| 6614 | if (count > overflow) |
| 6615 | count -= overflow; |
| 6616 | else |
| 6617 | return; |
| 6618 | } else { |
| 6619 | block -= overflow; |
| 6620 | count += overflow; |
| 6621 | } |
| 6622 | /* The range changed so it's no longer validated */ |
| 6623 | flags &= ~EXT4_FREE_BLOCKS_VALIDATED; |
| 6624 | } |
| 6625 | overflow = EXT4_LBLK_COFF(sbi, count); |
| 6626 | if (overflow) { |
| 6627 | if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { |
| 6628 | if (count > overflow) |
| 6629 | count -= overflow; |
| 6630 | else |
| 6631 | return; |
| 6632 | } else |
| 6633 | count += sbi->s_cluster_ratio - overflow; |
| 6634 | /* The range changed so it's no longer validated */ |
| 6635 | flags &= ~EXT4_FREE_BLOCKS_VALIDATED; |
| 6636 | } |
| 6637 | |
| 6638 | if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { |
| 6639 | int i; |
| 6640 | int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; |
| 6641 | |
| 6642 | for (i = 0; i < count; i++) { |
| 6643 | cond_resched(); |
| 6644 | if (is_metadata) |
| 6645 | bh = sb_find_get_block_nonatomic(inode->i_sb, |
| 6646 | block + i); |
| 6647 | ext4_forget(handle, is_metadata, inode, bh, block + i); |
| 6648 | } |
| 6649 | } |
| 6650 | |
| 6651 | ext4_mb_clear_bb(handle, inode, block, count, flags); |
| 6652 | } |
| 6653 | |
| 6654 | /** |
| 6655 | * ext4_group_add_blocks() -- Add given blocks to an existing group |
| 6656 | * @handle: handle to this transaction |
| 6657 | * @sb: super block |
| 6658 | * @block: start physical block to add to the block group |
| 6659 | * @count: number of blocks to free |
| 6660 | * |
| 6661 | * This marks the blocks as free in the bitmap and buddy. |
| 6662 | */ |
| 6663 | int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, |
| 6664 | ext4_fsblk_t block, unsigned long count) |
| 6665 | { |
| 6666 | ext4_group_t block_group; |
| 6667 | ext4_grpblk_t bit; |
| 6668 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 6669 | struct ext4_buddy e4b; |
| 6670 | int err = 0; |
| 6671 | ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); |
| 6672 | ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); |
| 6673 | unsigned long cluster_count = last_cluster - first_cluster + 1; |
| 6674 | ext4_grpblk_t changed; |
| 6675 | |
| 6676 | ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); |
| 6677 | |
| 6678 | if (cluster_count == 0) |
| 6679 | return 0; |
| 6680 | |
| 6681 | ext4_get_group_no_and_offset(sb, block, &block_group, &bit); |
| 6682 | /* |
| 6683 | * Check to see if we are freeing blocks across a group |
| 6684 | * boundary. |
| 6685 | */ |
| 6686 | if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { |
| 6687 | ext4_warning(sb, "too many blocks added to group %u", |
| 6688 | block_group); |
| 6689 | err = -EINVAL; |
| 6690 | goto error_out; |
| 6691 | } |
| 6692 | |
| 6693 | err = ext4_mb_load_buddy(sb, block_group, &e4b); |
| 6694 | if (err) |
| 6695 | goto error_out; |
| 6696 | |
| 6697 | if (!ext4_sb_block_valid(sb, NULL, block, count)) { |
| 6698 | ext4_error(sb, "Adding blocks in system zones - " |
| 6699 | "Block = %llu, count = %lu", |
| 6700 | block, count); |
| 6701 | err = -EINVAL; |
| 6702 | goto error_clean; |
| 6703 | } |
| 6704 | |
| 6705 | err = ext4_mb_mark_context(handle, sb, false, block_group, bit, |
| 6706 | cluster_count, EXT4_MB_BITMAP_MARKED_CHECK, |
| 6707 | &changed); |
| 6708 | if (err && changed == 0) |
| 6709 | goto error_clean; |
| 6710 | |
| 6711 | if (changed != cluster_count) |
| 6712 | ext4_error(sb, "bit already cleared in group %u", block_group); |
| 6713 | |
| 6714 | ext4_lock_group(sb, block_group); |
| 6715 | mb_free_blocks(NULL, &e4b, bit, cluster_count); |
| 6716 | ext4_unlock_group(sb, block_group); |
| 6717 | percpu_counter_add(&sbi->s_freeclusters_counter, |
| 6718 | changed); |
| 6719 | |
| 6720 | error_clean: |
| 6721 | ext4_mb_unload_buddy(&e4b); |
| 6722 | error_out: |
| 6723 | ext4_std_error(sb, err); |
| 6724 | return err; |
| 6725 | } |
| 6726 | |
| 6727 | /** |
| 6728 | * ext4_trim_extent -- function to TRIM one single free extent in the group |
| 6729 | * @sb: super block for the file system |
| 6730 | * @start: starting block of the free extent in the alloc. group |
| 6731 | * @count: number of blocks to TRIM |
| 6732 | * @e4b: ext4 buddy for the group |
| 6733 | * |
| 6734 | * Trim "count" blocks starting at "start" in the "group". To assure that no |
| 6735 | * one will allocate those blocks, mark it as used in buddy bitmap. This must |
| 6736 | * be called with under the group lock. |
| 6737 | */ |
| 6738 | static int ext4_trim_extent(struct super_block *sb, |
| 6739 | int start, int count, struct ext4_buddy *e4b) |
| 6740 | __releases(bitlock) |
| 6741 | __acquires(bitlock) |
| 6742 | { |
| 6743 | struct ext4_free_extent ex; |
| 6744 | ext4_group_t group = e4b->bd_group; |
| 6745 | int ret = 0; |
| 6746 | |
| 6747 | trace_ext4_trim_extent(sb, group, start, count); |
| 6748 | |
| 6749 | assert_spin_locked(ext4_group_lock_ptr(sb, group)); |
| 6750 | |
| 6751 | ex.fe_start = start; |
| 6752 | ex.fe_group = group; |
| 6753 | ex.fe_len = count; |
| 6754 | |
| 6755 | /* |
| 6756 | * Mark blocks used, so no one can reuse them while |
| 6757 | * being trimmed. |
| 6758 | */ |
| 6759 | mb_mark_used(e4b, &ex); |
| 6760 | ext4_unlock_group(sb, group); |
| 6761 | ret = ext4_issue_discard(sb, group, start, count); |
| 6762 | ext4_lock_group(sb, group); |
| 6763 | mb_free_blocks(NULL, e4b, start, ex.fe_len); |
| 6764 | return ret; |
| 6765 | } |
| 6766 | |
| 6767 | static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, |
| 6768 | ext4_group_t grp) |
| 6769 | { |
| 6770 | unsigned long nr_clusters_in_group; |
| 6771 | |
| 6772 | if (grp < (ext4_get_groups_count(sb) - 1)) |
| 6773 | nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); |
| 6774 | else |
| 6775 | nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - |
| 6776 | ext4_group_first_block_no(sb, grp)) |
| 6777 | >> EXT4_CLUSTER_BITS(sb); |
| 6778 | |
| 6779 | return nr_clusters_in_group - 1; |
| 6780 | } |
| 6781 | |
| 6782 | static bool ext4_trim_interrupted(void) |
| 6783 | { |
| 6784 | return fatal_signal_pending(current) || freezing(current); |
| 6785 | } |
| 6786 | |
| 6787 | static int ext4_try_to_trim_range(struct super_block *sb, |
| 6788 | struct ext4_buddy *e4b, ext4_grpblk_t start, |
| 6789 | ext4_grpblk_t max, ext4_grpblk_t minblocks) |
| 6790 | __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) |
| 6791 | __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) |
| 6792 | { |
| 6793 | ext4_grpblk_t next, count, free_count, last, origin_start; |
| 6794 | bool set_trimmed = false; |
| 6795 | void *bitmap; |
| 6796 | |
| 6797 | if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) |
| 6798 | return 0; |
| 6799 | |
| 6800 | last = ext4_last_grp_cluster(sb, e4b->bd_group); |
| 6801 | bitmap = e4b->bd_bitmap; |
| 6802 | if (start == 0 && max >= last) |
| 6803 | set_trimmed = true; |
| 6804 | origin_start = start; |
| 6805 | start = max(e4b->bd_info->bb_first_free, start); |
| 6806 | count = 0; |
| 6807 | free_count = 0; |
| 6808 | |
| 6809 | while (start <= max) { |
| 6810 | start = mb_find_next_zero_bit(bitmap, max + 1, start); |
| 6811 | if (start > max) |
| 6812 | break; |
| 6813 | |
| 6814 | next = mb_find_next_bit(bitmap, last + 1, start); |
| 6815 | if (origin_start == 0 && next >= last) |
| 6816 | set_trimmed = true; |
| 6817 | |
| 6818 | if ((next - start) >= minblocks) { |
| 6819 | int ret = ext4_trim_extent(sb, start, next - start, e4b); |
| 6820 | |
| 6821 | if (ret && ret != -EOPNOTSUPP) |
| 6822 | return count; |
| 6823 | count += next - start; |
| 6824 | } |
| 6825 | free_count += next - start; |
| 6826 | start = next + 1; |
| 6827 | |
| 6828 | if (ext4_trim_interrupted()) |
| 6829 | return count; |
| 6830 | |
| 6831 | if (need_resched()) { |
| 6832 | ext4_unlock_group(sb, e4b->bd_group); |
| 6833 | cond_resched(); |
| 6834 | ext4_lock_group(sb, e4b->bd_group); |
| 6835 | } |
| 6836 | |
| 6837 | if ((e4b->bd_info->bb_free - free_count) < minblocks) |
| 6838 | break; |
| 6839 | } |
| 6840 | |
| 6841 | if (set_trimmed) |
| 6842 | EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); |
| 6843 | |
| 6844 | return count; |
| 6845 | } |
| 6846 | |
| 6847 | /** |
| 6848 | * ext4_trim_all_free -- function to trim all free space in alloc. group |
| 6849 | * @sb: super block for file system |
| 6850 | * @group: group to be trimmed |
| 6851 | * @start: first group block to examine |
| 6852 | * @max: last group block to examine |
| 6853 | * @minblocks: minimum extent block count |
| 6854 | * |
| 6855 | * ext4_trim_all_free walks through group's block bitmap searching for free |
| 6856 | * extents. When the free extent is found, mark it as used in group buddy |
| 6857 | * bitmap. Then issue a TRIM command on this extent and free the extent in |
| 6858 | * the group buddy bitmap. |
| 6859 | */ |
| 6860 | static ext4_grpblk_t |
| 6861 | ext4_trim_all_free(struct super_block *sb, ext4_group_t group, |
| 6862 | ext4_grpblk_t start, ext4_grpblk_t max, |
| 6863 | ext4_grpblk_t minblocks) |
| 6864 | { |
| 6865 | struct ext4_buddy e4b; |
| 6866 | int ret; |
| 6867 | |
| 6868 | trace_ext4_trim_all_free(sb, group, start, max); |
| 6869 | |
| 6870 | ret = ext4_mb_load_buddy(sb, group, &e4b); |
| 6871 | if (ret) { |
| 6872 | ext4_warning(sb, "Error %d loading buddy information for %u", |
| 6873 | ret, group); |
| 6874 | return ret; |
| 6875 | } |
| 6876 | |
| 6877 | ext4_lock_group(sb, group); |
| 6878 | |
| 6879 | if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || |
| 6880 | minblocks < EXT4_SB(sb)->s_last_trim_minblks) |
| 6881 | ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); |
| 6882 | else |
| 6883 | ret = 0; |
| 6884 | |
| 6885 | ext4_unlock_group(sb, group); |
| 6886 | ext4_mb_unload_buddy(&e4b); |
| 6887 | |
| 6888 | ext4_debug("trimmed %d blocks in the group %d\n", |
| 6889 | ret, group); |
| 6890 | |
| 6891 | return ret; |
| 6892 | } |
| 6893 | |
| 6894 | /** |
| 6895 | * ext4_trim_fs() -- trim ioctl handle function |
| 6896 | * @sb: superblock for filesystem |
| 6897 | * @range: fstrim_range structure |
| 6898 | * |
| 6899 | * start: First Byte to trim |
| 6900 | * len: number of Bytes to trim from start |
| 6901 | * minlen: minimum extent length in Bytes |
| 6902 | * ext4_trim_fs goes through all allocation groups containing Bytes from |
| 6903 | * start to start+len. For each such a group ext4_trim_all_free function |
| 6904 | * is invoked to trim all free space. |
| 6905 | */ |
| 6906 | int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) |
| 6907 | { |
| 6908 | unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); |
| 6909 | struct ext4_group_info *grp; |
| 6910 | ext4_group_t group, first_group, last_group; |
| 6911 | ext4_grpblk_t cnt = 0, first_cluster, last_cluster; |
| 6912 | uint64_t start, end, minlen, trimmed = 0; |
| 6913 | ext4_fsblk_t first_data_blk = |
| 6914 | le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); |
| 6915 | ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); |
| 6916 | int ret = 0; |
| 6917 | |
| 6918 | start = range->start >> sb->s_blocksize_bits; |
| 6919 | end = start + (range->len >> sb->s_blocksize_bits) - 1; |
| 6920 | minlen = EXT4_NUM_B2C(EXT4_SB(sb), |
| 6921 | range->minlen >> sb->s_blocksize_bits); |
| 6922 | |
| 6923 | if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || |
| 6924 | start >= max_blks || |
| 6925 | range->len < sb->s_blocksize) |
| 6926 | return -EINVAL; |
| 6927 | /* No point to try to trim less than discard granularity */ |
| 6928 | if (range->minlen < discard_granularity) { |
| 6929 | minlen = EXT4_NUM_B2C(EXT4_SB(sb), |
| 6930 | discard_granularity >> sb->s_blocksize_bits); |
| 6931 | if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) |
| 6932 | goto out; |
| 6933 | } |
| 6934 | if (end >= max_blks - 1) |
| 6935 | end = max_blks - 1; |
| 6936 | if (end <= first_data_blk) |
| 6937 | goto out; |
| 6938 | if (start < first_data_blk) |
| 6939 | start = first_data_blk; |
| 6940 | |
| 6941 | /* Determine first and last group to examine based on start and end */ |
| 6942 | ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, |
| 6943 | &first_group, &first_cluster); |
| 6944 | ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, |
| 6945 | &last_group, &last_cluster); |
| 6946 | |
| 6947 | /* end now represents the last cluster to discard in this group */ |
| 6948 | end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; |
| 6949 | |
| 6950 | for (group = first_group; group <= last_group; group++) { |
| 6951 | if (ext4_trim_interrupted()) |
| 6952 | break; |
| 6953 | grp = ext4_get_group_info(sb, group); |
| 6954 | if (!grp) |
| 6955 | continue; |
| 6956 | /* We only do this if the grp has never been initialized */ |
| 6957 | if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { |
| 6958 | ret = ext4_mb_init_group(sb, group, GFP_NOFS); |
| 6959 | if (ret) |
| 6960 | break; |
| 6961 | } |
| 6962 | |
| 6963 | /* |
| 6964 | * For all the groups except the last one, last cluster will |
| 6965 | * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to |
| 6966 | * change it for the last group, note that last_cluster is |
| 6967 | * already computed earlier by ext4_get_group_no_and_offset() |
| 6968 | */ |
| 6969 | if (group == last_group) |
| 6970 | end = last_cluster; |
| 6971 | if (grp->bb_free >= minlen) { |
| 6972 | cnt = ext4_trim_all_free(sb, group, first_cluster, |
| 6973 | end, minlen); |
| 6974 | if (cnt < 0) { |
| 6975 | ret = cnt; |
| 6976 | break; |
| 6977 | } |
| 6978 | trimmed += cnt; |
| 6979 | } |
| 6980 | |
| 6981 | /* |
| 6982 | * For every group except the first one, we are sure |
| 6983 | * that the first cluster to discard will be cluster #0. |
| 6984 | */ |
| 6985 | first_cluster = 0; |
| 6986 | } |
| 6987 | |
| 6988 | if (!ret) |
| 6989 | EXT4_SB(sb)->s_last_trim_minblks = minlen; |
| 6990 | |
| 6991 | out: |
| 6992 | range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; |
| 6993 | return ret; |
| 6994 | } |
| 6995 | |
| 6996 | /* Iterate all the free extents in the group. */ |
| 6997 | int |
| 6998 | ext4_mballoc_query_range( |
| 6999 | struct super_block *sb, |
| 7000 | ext4_group_t group, |
| 7001 | ext4_grpblk_t first, |
| 7002 | ext4_grpblk_t end, |
| 7003 | ext4_mballoc_query_range_fn meta_formatter, |
| 7004 | ext4_mballoc_query_range_fn formatter, |
| 7005 | void *priv) |
| 7006 | { |
| 7007 | void *bitmap; |
| 7008 | ext4_grpblk_t start, next; |
| 7009 | struct ext4_buddy e4b; |
| 7010 | int error; |
| 7011 | |
| 7012 | error = ext4_mb_load_buddy(sb, group, &e4b); |
| 7013 | if (error) |
| 7014 | return error; |
| 7015 | bitmap = e4b.bd_bitmap; |
| 7016 | |
| 7017 | ext4_lock_group(sb, group); |
| 7018 | |
| 7019 | start = max(e4b.bd_info->bb_first_free, first); |
| 7020 | if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) |
| 7021 | end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; |
| 7022 | if (meta_formatter && start != first) { |
| 7023 | if (start > end) |
| 7024 | start = end; |
| 7025 | ext4_unlock_group(sb, group); |
| 7026 | error = meta_formatter(sb, group, first, start - first, |
| 7027 | priv); |
| 7028 | if (error) |
| 7029 | goto out_unload; |
| 7030 | ext4_lock_group(sb, group); |
| 7031 | } |
| 7032 | while (start <= end) { |
| 7033 | start = mb_find_next_zero_bit(bitmap, end + 1, start); |
| 7034 | if (start > end) |
| 7035 | break; |
| 7036 | next = mb_find_next_bit(bitmap, end + 1, start); |
| 7037 | |
| 7038 | ext4_unlock_group(sb, group); |
| 7039 | error = formatter(sb, group, start, next - start, priv); |
| 7040 | if (error) |
| 7041 | goto out_unload; |
| 7042 | ext4_lock_group(sb, group); |
| 7043 | |
| 7044 | start = next + 1; |
| 7045 | } |
| 7046 | |
| 7047 | ext4_unlock_group(sb, group); |
| 7048 | out_unload: |
| 7049 | ext4_mb_unload_buddy(&e4b); |
| 7050 | |
| 7051 | return error; |
| 7052 | } |
| 7053 | |
| 7054 | #ifdef CONFIG_EXT4_KUNIT_TESTS |
| 7055 | #include "mballoc-test.c" |
| 7056 | #endif |