ext4: improve journal credit handling in set xattr paths
[linux-2.6-block.git] / fs / ext4 / inode.c
... / ...
CommitLineData
1/*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
25#include <linux/dax.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30#include <linux/pagevec.h>
31#include <linux/mpage.h>
32#include <linux/namei.h>
33#include <linux/uio.h>
34#include <linux/bio.h>
35#include <linux/workqueue.h>
36#include <linux/kernel.h>
37#include <linux/printk.h>
38#include <linux/slab.h>
39#include <linux/bitops.h>
40#include <linux/iomap.h>
41
42#include "ext4_jbd2.h"
43#include "xattr.h"
44#include "acl.h"
45#include "truncate.h"
46
47#include <trace/events/ext4.h>
48
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81}
82
83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85{
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102}
103
104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106{
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119}
120
121static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123{
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136}
137
138static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142
143/*
144 * Test whether an inode is a fast symlink.
145 */
146int ext4_inode_is_fast_symlink(struct inode *inode)
147{
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151 if (ext4_has_inline_data(inode))
152 return 0;
153
154 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155}
156
157/*
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
160 * this transaction.
161 */
162int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 int nblocks)
164{
165 int ret;
166
167 /*
168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
172 */
173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 jbd_debug(2, "restarting handle %p\n", handle);
175 up_write(&EXT4_I(inode)->i_data_sem);
176 ret = ext4_journal_restart(handle, nblocks);
177 down_write(&EXT4_I(inode)->i_data_sem);
178 ext4_discard_preallocations(inode);
179
180 return ret;
181}
182
183/*
184 * Called at the last iput() if i_nlink is zero.
185 */
186void ext4_evict_inode(struct inode *inode)
187{
188 handle_t *handle;
189 int err;
190 int extra_credits = 3;
191 struct ext4_xattr_ino_array *lea_ino_array = NULL;
192
193 trace_ext4_evict_inode(inode);
194
195 if (inode->i_nlink) {
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220 jbd2_complete_transaction(journal, commit_tid);
221 filemap_write_and_wait(&inode->i_data);
222 }
223 truncate_inode_pages_final(&inode->i_data);
224
225 goto no_delete;
226 }
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
231
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241
242 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, extra_credits);
243 if (IS_ERR(handle)) {
244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
250 ext4_orphan_del(NULL, inode);
251 sb_end_intwrite(inode->i_sb);
252 goto no_delete;
253 }
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256
257 /*
258 * Delete xattr inode before deleting the main inode.
259 */
260 err = ext4_xattr_delete_inode(handle, inode, &lea_ino_array);
261 if (err) {
262 ext4_warning(inode->i_sb,
263 "couldn't delete inode's xattr (err %d)", err);
264 goto stop_handle;
265 }
266
267 if (!IS_NOQUOTA(inode))
268 extra_credits += 2 * EXT4_QUOTA_DEL_BLOCKS(inode->i_sb);
269
270 if (!ext4_handle_has_enough_credits(handle,
271 ext4_blocks_for_truncate(inode) + extra_credits)) {
272 err = ext4_journal_extend(handle,
273 ext4_blocks_for_truncate(inode) + extra_credits);
274 if (err > 0)
275 err = ext4_journal_restart(handle,
276 ext4_blocks_for_truncate(inode) + extra_credits);
277 if (err != 0) {
278 ext4_warning(inode->i_sb,
279 "couldn't extend journal (err %d)", err);
280 goto stop_handle;
281 }
282 }
283
284 inode->i_size = 0;
285 err = ext4_mark_inode_dirty(handle, inode);
286 if (err) {
287 ext4_warning(inode->i_sb,
288 "couldn't mark inode dirty (err %d)", err);
289 goto stop_handle;
290 }
291 if (inode->i_blocks) {
292 err = ext4_truncate(inode);
293 if (err) {
294 ext4_error(inode->i_sb,
295 "couldn't truncate inode %lu (err %d)",
296 inode->i_ino, err);
297 goto stop_handle;
298 }
299 }
300
301 /*
302 * ext4_ext_truncate() doesn't reserve any slop when it
303 * restarts journal transactions; therefore there may not be
304 * enough credits left in the handle to remove the inode from
305 * the orphan list and set the dtime field.
306 */
307 if (!ext4_handle_has_enough_credits(handle, extra_credits)) {
308 err = ext4_journal_extend(handle, extra_credits);
309 if (err > 0)
310 err = ext4_journal_restart(handle, extra_credits);
311 if (err != 0) {
312 ext4_warning(inode->i_sb,
313 "couldn't extend journal (err %d)", err);
314 stop_handle:
315 ext4_journal_stop(handle);
316 ext4_orphan_del(NULL, inode);
317 sb_end_intwrite(inode->i_sb);
318 goto no_delete;
319 }
320 }
321
322 /*
323 * Kill off the orphan record which ext4_truncate created.
324 * AKPM: I think this can be inside the above `if'.
325 * Note that ext4_orphan_del() has to be able to cope with the
326 * deletion of a non-existent orphan - this is because we don't
327 * know if ext4_truncate() actually created an orphan record.
328 * (Well, we could do this if we need to, but heck - it works)
329 */
330 ext4_orphan_del(handle, inode);
331 EXT4_I(inode)->i_dtime = get_seconds();
332
333 /*
334 * One subtle ordering requirement: if anything has gone wrong
335 * (transaction abort, IO errors, whatever), then we can still
336 * do these next steps (the fs will already have been marked as
337 * having errors), but we can't free the inode if the mark_dirty
338 * fails.
339 */
340 if (ext4_mark_inode_dirty(handle, inode))
341 /* If that failed, just do the required in-core inode clear. */
342 ext4_clear_inode(inode);
343 else
344 ext4_free_inode(handle, inode);
345
346 ext4_journal_stop(handle);
347 sb_end_intwrite(inode->i_sb);
348
349 if (lea_ino_array != NULL)
350 ext4_xattr_inode_array_free(inode, lea_ino_array);
351 return;
352no_delete:
353 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
354}
355
356#ifdef CONFIG_QUOTA
357qsize_t *ext4_get_reserved_space(struct inode *inode)
358{
359 return &EXT4_I(inode)->i_reserved_quota;
360}
361#endif
362
363/*
364 * Called with i_data_sem down, which is important since we can call
365 * ext4_discard_preallocations() from here.
366 */
367void ext4_da_update_reserve_space(struct inode *inode,
368 int used, int quota_claim)
369{
370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
371 struct ext4_inode_info *ei = EXT4_I(inode);
372
373 spin_lock(&ei->i_block_reservation_lock);
374 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
375 if (unlikely(used > ei->i_reserved_data_blocks)) {
376 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
377 "with only %d reserved data blocks",
378 __func__, inode->i_ino, used,
379 ei->i_reserved_data_blocks);
380 WARN_ON(1);
381 used = ei->i_reserved_data_blocks;
382 }
383
384 /* Update per-inode reservations */
385 ei->i_reserved_data_blocks -= used;
386 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
387
388 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
389
390 /* Update quota subsystem for data blocks */
391 if (quota_claim)
392 dquot_claim_block(inode, EXT4_C2B(sbi, used));
393 else {
394 /*
395 * We did fallocate with an offset that is already delayed
396 * allocated. So on delayed allocated writeback we should
397 * not re-claim the quota for fallocated blocks.
398 */
399 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
400 }
401
402 /*
403 * If we have done all the pending block allocations and if
404 * there aren't any writers on the inode, we can discard the
405 * inode's preallocations.
406 */
407 if ((ei->i_reserved_data_blocks == 0) &&
408 (atomic_read(&inode->i_writecount) == 0))
409 ext4_discard_preallocations(inode);
410}
411
412static int __check_block_validity(struct inode *inode, const char *func,
413 unsigned int line,
414 struct ext4_map_blocks *map)
415{
416 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
417 map->m_len)) {
418 ext4_error_inode(inode, func, line, map->m_pblk,
419 "lblock %lu mapped to illegal pblock "
420 "(length %d)", (unsigned long) map->m_lblk,
421 map->m_len);
422 return -EFSCORRUPTED;
423 }
424 return 0;
425}
426
427int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
428 ext4_lblk_t len)
429{
430 int ret;
431
432 if (ext4_encrypted_inode(inode))
433 return fscrypt_zeroout_range(inode, lblk, pblk, len);
434
435 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
436 if (ret > 0)
437 ret = 0;
438
439 return ret;
440}
441
442#define check_block_validity(inode, map) \
443 __check_block_validity((inode), __func__, __LINE__, (map))
444
445#ifdef ES_AGGRESSIVE_TEST
446static void ext4_map_blocks_es_recheck(handle_t *handle,
447 struct inode *inode,
448 struct ext4_map_blocks *es_map,
449 struct ext4_map_blocks *map,
450 int flags)
451{
452 int retval;
453
454 map->m_flags = 0;
455 /*
456 * There is a race window that the result is not the same.
457 * e.g. xfstests #223 when dioread_nolock enables. The reason
458 * is that we lookup a block mapping in extent status tree with
459 * out taking i_data_sem. So at the time the unwritten extent
460 * could be converted.
461 */
462 down_read(&EXT4_I(inode)->i_data_sem);
463 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
464 retval = ext4_ext_map_blocks(handle, inode, map, flags &
465 EXT4_GET_BLOCKS_KEEP_SIZE);
466 } else {
467 retval = ext4_ind_map_blocks(handle, inode, map, flags &
468 EXT4_GET_BLOCKS_KEEP_SIZE);
469 }
470 up_read((&EXT4_I(inode)->i_data_sem));
471
472 /*
473 * We don't check m_len because extent will be collpased in status
474 * tree. So the m_len might not equal.
475 */
476 if (es_map->m_lblk != map->m_lblk ||
477 es_map->m_flags != map->m_flags ||
478 es_map->m_pblk != map->m_pblk) {
479 printk("ES cache assertion failed for inode: %lu "
480 "es_cached ex [%d/%d/%llu/%x] != "
481 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
482 inode->i_ino, es_map->m_lblk, es_map->m_len,
483 es_map->m_pblk, es_map->m_flags, map->m_lblk,
484 map->m_len, map->m_pblk, map->m_flags,
485 retval, flags);
486 }
487}
488#endif /* ES_AGGRESSIVE_TEST */
489
490/*
491 * The ext4_map_blocks() function tries to look up the requested blocks,
492 * and returns if the blocks are already mapped.
493 *
494 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
495 * and store the allocated blocks in the result buffer head and mark it
496 * mapped.
497 *
498 * If file type is extents based, it will call ext4_ext_map_blocks(),
499 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
500 * based files
501 *
502 * On success, it returns the number of blocks being mapped or allocated. if
503 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
504 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
505 *
506 * It returns 0 if plain look up failed (blocks have not been allocated), in
507 * that case, @map is returned as unmapped but we still do fill map->m_len to
508 * indicate the length of a hole starting at map->m_lblk.
509 *
510 * It returns the error in case of allocation failure.
511 */
512int ext4_map_blocks(handle_t *handle, struct inode *inode,
513 struct ext4_map_blocks *map, int flags)
514{
515 struct extent_status es;
516 int retval;
517 int ret = 0;
518#ifdef ES_AGGRESSIVE_TEST
519 struct ext4_map_blocks orig_map;
520
521 memcpy(&orig_map, map, sizeof(*map));
522#endif
523
524 map->m_flags = 0;
525 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
526 "logical block %lu\n", inode->i_ino, flags, map->m_len,
527 (unsigned long) map->m_lblk);
528
529 /*
530 * ext4_map_blocks returns an int, and m_len is an unsigned int
531 */
532 if (unlikely(map->m_len > INT_MAX))
533 map->m_len = INT_MAX;
534
535 /* We can handle the block number less than EXT_MAX_BLOCKS */
536 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
537 return -EFSCORRUPTED;
538
539 /* Lookup extent status tree firstly */
540 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
541 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
542 map->m_pblk = ext4_es_pblock(&es) +
543 map->m_lblk - es.es_lblk;
544 map->m_flags |= ext4_es_is_written(&es) ?
545 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
546 retval = es.es_len - (map->m_lblk - es.es_lblk);
547 if (retval > map->m_len)
548 retval = map->m_len;
549 map->m_len = retval;
550 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
551 map->m_pblk = 0;
552 retval = es.es_len - (map->m_lblk - es.es_lblk);
553 if (retval > map->m_len)
554 retval = map->m_len;
555 map->m_len = retval;
556 retval = 0;
557 } else {
558 BUG_ON(1);
559 }
560#ifdef ES_AGGRESSIVE_TEST
561 ext4_map_blocks_es_recheck(handle, inode, map,
562 &orig_map, flags);
563#endif
564 goto found;
565 }
566
567 /*
568 * Try to see if we can get the block without requesting a new
569 * file system block.
570 */
571 down_read(&EXT4_I(inode)->i_data_sem);
572 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
573 retval = ext4_ext_map_blocks(handle, inode, map, flags &
574 EXT4_GET_BLOCKS_KEEP_SIZE);
575 } else {
576 retval = ext4_ind_map_blocks(handle, inode, map, flags &
577 EXT4_GET_BLOCKS_KEEP_SIZE);
578 }
579 if (retval > 0) {
580 unsigned int status;
581
582 if (unlikely(retval != map->m_len)) {
583 ext4_warning(inode->i_sb,
584 "ES len assertion failed for inode "
585 "%lu: retval %d != map->m_len %d",
586 inode->i_ino, retval, map->m_len);
587 WARN_ON(1);
588 }
589
590 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
591 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
592 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
593 !(status & EXTENT_STATUS_WRITTEN) &&
594 ext4_find_delalloc_range(inode, map->m_lblk,
595 map->m_lblk + map->m_len - 1))
596 status |= EXTENT_STATUS_DELAYED;
597 ret = ext4_es_insert_extent(inode, map->m_lblk,
598 map->m_len, map->m_pblk, status);
599 if (ret < 0)
600 retval = ret;
601 }
602 up_read((&EXT4_I(inode)->i_data_sem));
603
604found:
605 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
606 ret = check_block_validity(inode, map);
607 if (ret != 0)
608 return ret;
609 }
610
611 /* If it is only a block(s) look up */
612 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
613 return retval;
614
615 /*
616 * Returns if the blocks have already allocated
617 *
618 * Note that if blocks have been preallocated
619 * ext4_ext_get_block() returns the create = 0
620 * with buffer head unmapped.
621 */
622 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
623 /*
624 * If we need to convert extent to unwritten
625 * we continue and do the actual work in
626 * ext4_ext_map_blocks()
627 */
628 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
629 return retval;
630
631 /*
632 * Here we clear m_flags because after allocating an new extent,
633 * it will be set again.
634 */
635 map->m_flags &= ~EXT4_MAP_FLAGS;
636
637 /*
638 * New blocks allocate and/or writing to unwritten extent
639 * will possibly result in updating i_data, so we take
640 * the write lock of i_data_sem, and call get_block()
641 * with create == 1 flag.
642 */
643 down_write(&EXT4_I(inode)->i_data_sem);
644
645 /*
646 * We need to check for EXT4 here because migrate
647 * could have changed the inode type in between
648 */
649 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
650 retval = ext4_ext_map_blocks(handle, inode, map, flags);
651 } else {
652 retval = ext4_ind_map_blocks(handle, inode, map, flags);
653
654 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
655 /*
656 * We allocated new blocks which will result in
657 * i_data's format changing. Force the migrate
658 * to fail by clearing migrate flags
659 */
660 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
661 }
662
663 /*
664 * Update reserved blocks/metadata blocks after successful
665 * block allocation which had been deferred till now. We don't
666 * support fallocate for non extent files. So we can update
667 * reserve space here.
668 */
669 if ((retval > 0) &&
670 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
671 ext4_da_update_reserve_space(inode, retval, 1);
672 }
673
674 if (retval > 0) {
675 unsigned int status;
676
677 if (unlikely(retval != map->m_len)) {
678 ext4_warning(inode->i_sb,
679 "ES len assertion failed for inode "
680 "%lu: retval %d != map->m_len %d",
681 inode->i_ino, retval, map->m_len);
682 WARN_ON(1);
683 }
684
685 /*
686 * We have to zeroout blocks before inserting them into extent
687 * status tree. Otherwise someone could look them up there and
688 * use them before they are really zeroed. We also have to
689 * unmap metadata before zeroing as otherwise writeback can
690 * overwrite zeros with stale data from block device.
691 */
692 if (flags & EXT4_GET_BLOCKS_ZERO &&
693 map->m_flags & EXT4_MAP_MAPPED &&
694 map->m_flags & EXT4_MAP_NEW) {
695 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
696 map->m_len);
697 ret = ext4_issue_zeroout(inode, map->m_lblk,
698 map->m_pblk, map->m_len);
699 if (ret) {
700 retval = ret;
701 goto out_sem;
702 }
703 }
704
705 /*
706 * If the extent has been zeroed out, we don't need to update
707 * extent status tree.
708 */
709 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
710 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
711 if (ext4_es_is_written(&es))
712 goto out_sem;
713 }
714 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
715 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
716 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
717 !(status & EXTENT_STATUS_WRITTEN) &&
718 ext4_find_delalloc_range(inode, map->m_lblk,
719 map->m_lblk + map->m_len - 1))
720 status |= EXTENT_STATUS_DELAYED;
721 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
722 map->m_pblk, status);
723 if (ret < 0) {
724 retval = ret;
725 goto out_sem;
726 }
727 }
728
729out_sem:
730 up_write((&EXT4_I(inode)->i_data_sem));
731 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
732 ret = check_block_validity(inode, map);
733 if (ret != 0)
734 return ret;
735
736 /*
737 * Inodes with freshly allocated blocks where contents will be
738 * visible after transaction commit must be on transaction's
739 * ordered data list.
740 */
741 if (map->m_flags & EXT4_MAP_NEW &&
742 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
743 !(flags & EXT4_GET_BLOCKS_ZERO) &&
744 !IS_NOQUOTA(inode) &&
745 ext4_should_order_data(inode)) {
746 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
747 ret = ext4_jbd2_inode_add_wait(handle, inode);
748 else
749 ret = ext4_jbd2_inode_add_write(handle, inode);
750 if (ret)
751 return ret;
752 }
753 }
754 return retval;
755}
756
757/*
758 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
759 * we have to be careful as someone else may be manipulating b_state as well.
760 */
761static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
762{
763 unsigned long old_state;
764 unsigned long new_state;
765
766 flags &= EXT4_MAP_FLAGS;
767
768 /* Dummy buffer_head? Set non-atomically. */
769 if (!bh->b_page) {
770 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
771 return;
772 }
773 /*
774 * Someone else may be modifying b_state. Be careful! This is ugly but
775 * once we get rid of using bh as a container for mapping information
776 * to pass to / from get_block functions, this can go away.
777 */
778 do {
779 old_state = READ_ONCE(bh->b_state);
780 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
781 } while (unlikely(
782 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
783}
784
785static int _ext4_get_block(struct inode *inode, sector_t iblock,
786 struct buffer_head *bh, int flags)
787{
788 struct ext4_map_blocks map;
789 int ret = 0;
790
791 if (ext4_has_inline_data(inode))
792 return -ERANGE;
793
794 map.m_lblk = iblock;
795 map.m_len = bh->b_size >> inode->i_blkbits;
796
797 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
798 flags);
799 if (ret > 0) {
800 map_bh(bh, inode->i_sb, map.m_pblk);
801 ext4_update_bh_state(bh, map.m_flags);
802 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
803 ret = 0;
804 } else if (ret == 0) {
805 /* hole case, need to fill in bh->b_size */
806 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
807 }
808 return ret;
809}
810
811int ext4_get_block(struct inode *inode, sector_t iblock,
812 struct buffer_head *bh, int create)
813{
814 return _ext4_get_block(inode, iblock, bh,
815 create ? EXT4_GET_BLOCKS_CREATE : 0);
816}
817
818/*
819 * Get block function used when preparing for buffered write if we require
820 * creating an unwritten extent if blocks haven't been allocated. The extent
821 * will be converted to written after the IO is complete.
822 */
823int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
824 struct buffer_head *bh_result, int create)
825{
826 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
827 inode->i_ino, create);
828 return _ext4_get_block(inode, iblock, bh_result,
829 EXT4_GET_BLOCKS_IO_CREATE_EXT);
830}
831
832/* Maximum number of blocks we map for direct IO at once. */
833#define DIO_MAX_BLOCKS 4096
834
835/*
836 * Get blocks function for the cases that need to start a transaction -
837 * generally difference cases of direct IO and DAX IO. It also handles retries
838 * in case of ENOSPC.
839 */
840static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
841 struct buffer_head *bh_result, int flags)
842{
843 int dio_credits;
844 handle_t *handle;
845 int retries = 0;
846 int ret;
847
848 /* Trim mapping request to maximum we can map at once for DIO */
849 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
850 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
851 dio_credits = ext4_chunk_trans_blocks(inode,
852 bh_result->b_size >> inode->i_blkbits);
853retry:
854 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
855 if (IS_ERR(handle))
856 return PTR_ERR(handle);
857
858 ret = _ext4_get_block(inode, iblock, bh_result, flags);
859 ext4_journal_stop(handle);
860
861 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
862 goto retry;
863 return ret;
864}
865
866/* Get block function for DIO reads and writes to inodes without extents */
867int ext4_dio_get_block(struct inode *inode, sector_t iblock,
868 struct buffer_head *bh, int create)
869{
870 /* We don't expect handle for direct IO */
871 WARN_ON_ONCE(ext4_journal_current_handle());
872
873 if (!create)
874 return _ext4_get_block(inode, iblock, bh, 0);
875 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
876}
877
878/*
879 * Get block function for AIO DIO writes when we create unwritten extent if
880 * blocks are not allocated yet. The extent will be converted to written
881 * after IO is complete.
882 */
883static int ext4_dio_get_block_unwritten_async(struct inode *inode,
884 sector_t iblock, struct buffer_head *bh_result, int create)
885{
886 int ret;
887
888 /* We don't expect handle for direct IO */
889 WARN_ON_ONCE(ext4_journal_current_handle());
890
891 ret = ext4_get_block_trans(inode, iblock, bh_result,
892 EXT4_GET_BLOCKS_IO_CREATE_EXT);
893
894 /*
895 * When doing DIO using unwritten extents, we need io_end to convert
896 * unwritten extents to written on IO completion. We allocate io_end
897 * once we spot unwritten extent and store it in b_private. Generic
898 * DIO code keeps b_private set and furthermore passes the value to
899 * our completion callback in 'private' argument.
900 */
901 if (!ret && buffer_unwritten(bh_result)) {
902 if (!bh_result->b_private) {
903 ext4_io_end_t *io_end;
904
905 io_end = ext4_init_io_end(inode, GFP_KERNEL);
906 if (!io_end)
907 return -ENOMEM;
908 bh_result->b_private = io_end;
909 ext4_set_io_unwritten_flag(inode, io_end);
910 }
911 set_buffer_defer_completion(bh_result);
912 }
913
914 return ret;
915}
916
917/*
918 * Get block function for non-AIO DIO writes when we create unwritten extent if
919 * blocks are not allocated yet. The extent will be converted to written
920 * after IO is complete from ext4_ext_direct_IO() function.
921 */
922static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
923 sector_t iblock, struct buffer_head *bh_result, int create)
924{
925 int ret;
926
927 /* We don't expect handle for direct IO */
928 WARN_ON_ONCE(ext4_journal_current_handle());
929
930 ret = ext4_get_block_trans(inode, iblock, bh_result,
931 EXT4_GET_BLOCKS_IO_CREATE_EXT);
932
933 /*
934 * Mark inode as having pending DIO writes to unwritten extents.
935 * ext4_ext_direct_IO() checks this flag and converts extents to
936 * written.
937 */
938 if (!ret && buffer_unwritten(bh_result))
939 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
940
941 return ret;
942}
943
944static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
945 struct buffer_head *bh_result, int create)
946{
947 int ret;
948
949 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
950 inode->i_ino, create);
951 /* We don't expect handle for direct IO */
952 WARN_ON_ONCE(ext4_journal_current_handle());
953
954 ret = _ext4_get_block(inode, iblock, bh_result, 0);
955 /*
956 * Blocks should have been preallocated! ext4_file_write_iter() checks
957 * that.
958 */
959 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
960
961 return ret;
962}
963
964
965/*
966 * `handle' can be NULL if create is zero
967 */
968struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
969 ext4_lblk_t block, int map_flags)
970{
971 struct ext4_map_blocks map;
972 struct buffer_head *bh;
973 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
974 int err;
975
976 J_ASSERT(handle != NULL || create == 0);
977
978 map.m_lblk = block;
979 map.m_len = 1;
980 err = ext4_map_blocks(handle, inode, &map, map_flags);
981
982 if (err == 0)
983 return create ? ERR_PTR(-ENOSPC) : NULL;
984 if (err < 0)
985 return ERR_PTR(err);
986
987 bh = sb_getblk(inode->i_sb, map.m_pblk);
988 if (unlikely(!bh))
989 return ERR_PTR(-ENOMEM);
990 if (map.m_flags & EXT4_MAP_NEW) {
991 J_ASSERT(create != 0);
992 J_ASSERT(handle != NULL);
993
994 /*
995 * Now that we do not always journal data, we should
996 * keep in mind whether this should always journal the
997 * new buffer as metadata. For now, regular file
998 * writes use ext4_get_block instead, so it's not a
999 * problem.
1000 */
1001 lock_buffer(bh);
1002 BUFFER_TRACE(bh, "call get_create_access");
1003 err = ext4_journal_get_create_access(handle, bh);
1004 if (unlikely(err)) {
1005 unlock_buffer(bh);
1006 goto errout;
1007 }
1008 if (!buffer_uptodate(bh)) {
1009 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1010 set_buffer_uptodate(bh);
1011 }
1012 unlock_buffer(bh);
1013 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1014 err = ext4_handle_dirty_metadata(handle, inode, bh);
1015 if (unlikely(err))
1016 goto errout;
1017 } else
1018 BUFFER_TRACE(bh, "not a new buffer");
1019 return bh;
1020errout:
1021 brelse(bh);
1022 return ERR_PTR(err);
1023}
1024
1025struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1026 ext4_lblk_t block, int map_flags)
1027{
1028 struct buffer_head *bh;
1029
1030 bh = ext4_getblk(handle, inode, block, map_flags);
1031 if (IS_ERR(bh))
1032 return bh;
1033 if (!bh || buffer_uptodate(bh))
1034 return bh;
1035 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1036 wait_on_buffer(bh);
1037 if (buffer_uptodate(bh))
1038 return bh;
1039 put_bh(bh);
1040 return ERR_PTR(-EIO);
1041}
1042
1043int ext4_walk_page_buffers(handle_t *handle,
1044 struct buffer_head *head,
1045 unsigned from,
1046 unsigned to,
1047 int *partial,
1048 int (*fn)(handle_t *handle,
1049 struct buffer_head *bh))
1050{
1051 struct buffer_head *bh;
1052 unsigned block_start, block_end;
1053 unsigned blocksize = head->b_size;
1054 int err, ret = 0;
1055 struct buffer_head *next;
1056
1057 for (bh = head, block_start = 0;
1058 ret == 0 && (bh != head || !block_start);
1059 block_start = block_end, bh = next) {
1060 next = bh->b_this_page;
1061 block_end = block_start + blocksize;
1062 if (block_end <= from || block_start >= to) {
1063 if (partial && !buffer_uptodate(bh))
1064 *partial = 1;
1065 continue;
1066 }
1067 err = (*fn)(handle, bh);
1068 if (!ret)
1069 ret = err;
1070 }
1071 return ret;
1072}
1073
1074/*
1075 * To preserve ordering, it is essential that the hole instantiation and
1076 * the data write be encapsulated in a single transaction. We cannot
1077 * close off a transaction and start a new one between the ext4_get_block()
1078 * and the commit_write(). So doing the jbd2_journal_start at the start of
1079 * prepare_write() is the right place.
1080 *
1081 * Also, this function can nest inside ext4_writepage(). In that case, we
1082 * *know* that ext4_writepage() has generated enough buffer credits to do the
1083 * whole page. So we won't block on the journal in that case, which is good,
1084 * because the caller may be PF_MEMALLOC.
1085 *
1086 * By accident, ext4 can be reentered when a transaction is open via
1087 * quota file writes. If we were to commit the transaction while thus
1088 * reentered, there can be a deadlock - we would be holding a quota
1089 * lock, and the commit would never complete if another thread had a
1090 * transaction open and was blocking on the quota lock - a ranking
1091 * violation.
1092 *
1093 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1094 * will _not_ run commit under these circumstances because handle->h_ref
1095 * is elevated. We'll still have enough credits for the tiny quotafile
1096 * write.
1097 */
1098int do_journal_get_write_access(handle_t *handle,
1099 struct buffer_head *bh)
1100{
1101 int dirty = buffer_dirty(bh);
1102 int ret;
1103
1104 if (!buffer_mapped(bh) || buffer_freed(bh))
1105 return 0;
1106 /*
1107 * __block_write_begin() could have dirtied some buffers. Clean
1108 * the dirty bit as jbd2_journal_get_write_access() could complain
1109 * otherwise about fs integrity issues. Setting of the dirty bit
1110 * by __block_write_begin() isn't a real problem here as we clear
1111 * the bit before releasing a page lock and thus writeback cannot
1112 * ever write the buffer.
1113 */
1114 if (dirty)
1115 clear_buffer_dirty(bh);
1116 BUFFER_TRACE(bh, "get write access");
1117 ret = ext4_journal_get_write_access(handle, bh);
1118 if (!ret && dirty)
1119 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1120 return ret;
1121}
1122
1123#ifdef CONFIG_EXT4_FS_ENCRYPTION
1124static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1125 get_block_t *get_block)
1126{
1127 unsigned from = pos & (PAGE_SIZE - 1);
1128 unsigned to = from + len;
1129 struct inode *inode = page->mapping->host;
1130 unsigned block_start, block_end;
1131 sector_t block;
1132 int err = 0;
1133 unsigned blocksize = inode->i_sb->s_blocksize;
1134 unsigned bbits;
1135 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1136 bool decrypt = false;
1137
1138 BUG_ON(!PageLocked(page));
1139 BUG_ON(from > PAGE_SIZE);
1140 BUG_ON(to > PAGE_SIZE);
1141 BUG_ON(from > to);
1142
1143 if (!page_has_buffers(page))
1144 create_empty_buffers(page, blocksize, 0);
1145 head = page_buffers(page);
1146 bbits = ilog2(blocksize);
1147 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1148
1149 for (bh = head, block_start = 0; bh != head || !block_start;
1150 block++, block_start = block_end, bh = bh->b_this_page) {
1151 block_end = block_start + blocksize;
1152 if (block_end <= from || block_start >= to) {
1153 if (PageUptodate(page)) {
1154 if (!buffer_uptodate(bh))
1155 set_buffer_uptodate(bh);
1156 }
1157 continue;
1158 }
1159 if (buffer_new(bh))
1160 clear_buffer_new(bh);
1161 if (!buffer_mapped(bh)) {
1162 WARN_ON(bh->b_size != blocksize);
1163 err = get_block(inode, block, bh, 1);
1164 if (err)
1165 break;
1166 if (buffer_new(bh)) {
1167 clean_bdev_bh_alias(bh);
1168 if (PageUptodate(page)) {
1169 clear_buffer_new(bh);
1170 set_buffer_uptodate(bh);
1171 mark_buffer_dirty(bh);
1172 continue;
1173 }
1174 if (block_end > to || block_start < from)
1175 zero_user_segments(page, to, block_end,
1176 block_start, from);
1177 continue;
1178 }
1179 }
1180 if (PageUptodate(page)) {
1181 if (!buffer_uptodate(bh))
1182 set_buffer_uptodate(bh);
1183 continue;
1184 }
1185 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1186 !buffer_unwritten(bh) &&
1187 (block_start < from || block_end > to)) {
1188 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1189 *wait_bh++ = bh;
1190 decrypt = ext4_encrypted_inode(inode) &&
1191 S_ISREG(inode->i_mode);
1192 }
1193 }
1194 /*
1195 * If we issued read requests, let them complete.
1196 */
1197 while (wait_bh > wait) {
1198 wait_on_buffer(*--wait_bh);
1199 if (!buffer_uptodate(*wait_bh))
1200 err = -EIO;
1201 }
1202 if (unlikely(err))
1203 page_zero_new_buffers(page, from, to);
1204 else if (decrypt)
1205 err = fscrypt_decrypt_page(page->mapping->host, page,
1206 PAGE_SIZE, 0, page->index);
1207 return err;
1208}
1209#endif
1210
1211static int ext4_write_begin(struct file *file, struct address_space *mapping,
1212 loff_t pos, unsigned len, unsigned flags,
1213 struct page **pagep, void **fsdata)
1214{
1215 struct inode *inode = mapping->host;
1216 int ret, needed_blocks;
1217 handle_t *handle;
1218 int retries = 0;
1219 struct page *page;
1220 pgoff_t index;
1221 unsigned from, to;
1222
1223 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1224 return -EIO;
1225
1226 trace_ext4_write_begin(inode, pos, len, flags);
1227 /*
1228 * Reserve one block more for addition to orphan list in case
1229 * we allocate blocks but write fails for some reason
1230 */
1231 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1232 index = pos >> PAGE_SHIFT;
1233 from = pos & (PAGE_SIZE - 1);
1234 to = from + len;
1235
1236 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1237 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1238 flags, pagep);
1239 if (ret < 0)
1240 return ret;
1241 if (ret == 1)
1242 return 0;
1243 }
1244
1245 /*
1246 * grab_cache_page_write_begin() can take a long time if the
1247 * system is thrashing due to memory pressure, or if the page
1248 * is being written back. So grab it first before we start
1249 * the transaction handle. This also allows us to allocate
1250 * the page (if needed) without using GFP_NOFS.
1251 */
1252retry_grab:
1253 page = grab_cache_page_write_begin(mapping, index, flags);
1254 if (!page)
1255 return -ENOMEM;
1256 unlock_page(page);
1257
1258retry_journal:
1259 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1260 if (IS_ERR(handle)) {
1261 put_page(page);
1262 return PTR_ERR(handle);
1263 }
1264
1265 lock_page(page);
1266 if (page->mapping != mapping) {
1267 /* The page got truncated from under us */
1268 unlock_page(page);
1269 put_page(page);
1270 ext4_journal_stop(handle);
1271 goto retry_grab;
1272 }
1273 /* In case writeback began while the page was unlocked */
1274 wait_for_stable_page(page);
1275
1276#ifdef CONFIG_EXT4_FS_ENCRYPTION
1277 if (ext4_should_dioread_nolock(inode))
1278 ret = ext4_block_write_begin(page, pos, len,
1279 ext4_get_block_unwritten);
1280 else
1281 ret = ext4_block_write_begin(page, pos, len,
1282 ext4_get_block);
1283#else
1284 if (ext4_should_dioread_nolock(inode))
1285 ret = __block_write_begin(page, pos, len,
1286 ext4_get_block_unwritten);
1287 else
1288 ret = __block_write_begin(page, pos, len, ext4_get_block);
1289#endif
1290 if (!ret && ext4_should_journal_data(inode)) {
1291 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1292 from, to, NULL,
1293 do_journal_get_write_access);
1294 }
1295
1296 if (ret) {
1297 unlock_page(page);
1298 /*
1299 * __block_write_begin may have instantiated a few blocks
1300 * outside i_size. Trim these off again. Don't need
1301 * i_size_read because we hold i_mutex.
1302 *
1303 * Add inode to orphan list in case we crash before
1304 * truncate finishes
1305 */
1306 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1307 ext4_orphan_add(handle, inode);
1308
1309 ext4_journal_stop(handle);
1310 if (pos + len > inode->i_size) {
1311 ext4_truncate_failed_write(inode);
1312 /*
1313 * If truncate failed early the inode might
1314 * still be on the orphan list; we need to
1315 * make sure the inode is removed from the
1316 * orphan list in that case.
1317 */
1318 if (inode->i_nlink)
1319 ext4_orphan_del(NULL, inode);
1320 }
1321
1322 if (ret == -ENOSPC &&
1323 ext4_should_retry_alloc(inode->i_sb, &retries))
1324 goto retry_journal;
1325 put_page(page);
1326 return ret;
1327 }
1328 *pagep = page;
1329 return ret;
1330}
1331
1332/* For write_end() in data=journal mode */
1333static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1334{
1335 int ret;
1336 if (!buffer_mapped(bh) || buffer_freed(bh))
1337 return 0;
1338 set_buffer_uptodate(bh);
1339 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1340 clear_buffer_meta(bh);
1341 clear_buffer_prio(bh);
1342 return ret;
1343}
1344
1345/*
1346 * We need to pick up the new inode size which generic_commit_write gave us
1347 * `file' can be NULL - eg, when called from page_symlink().
1348 *
1349 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1350 * buffers are managed internally.
1351 */
1352static int ext4_write_end(struct file *file,
1353 struct address_space *mapping,
1354 loff_t pos, unsigned len, unsigned copied,
1355 struct page *page, void *fsdata)
1356{
1357 handle_t *handle = ext4_journal_current_handle();
1358 struct inode *inode = mapping->host;
1359 loff_t old_size = inode->i_size;
1360 int ret = 0, ret2;
1361 int i_size_changed = 0;
1362
1363 trace_ext4_write_end(inode, pos, len, copied);
1364 if (ext4_has_inline_data(inode)) {
1365 ret = ext4_write_inline_data_end(inode, pos, len,
1366 copied, page);
1367 if (ret < 0) {
1368 unlock_page(page);
1369 put_page(page);
1370 goto errout;
1371 }
1372 copied = ret;
1373 } else
1374 copied = block_write_end(file, mapping, pos,
1375 len, copied, page, fsdata);
1376 /*
1377 * it's important to update i_size while still holding page lock:
1378 * page writeout could otherwise come in and zero beyond i_size.
1379 */
1380 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1381 unlock_page(page);
1382 put_page(page);
1383
1384 if (old_size < pos)
1385 pagecache_isize_extended(inode, old_size, pos);
1386 /*
1387 * Don't mark the inode dirty under page lock. First, it unnecessarily
1388 * makes the holding time of page lock longer. Second, it forces lock
1389 * ordering of page lock and transaction start for journaling
1390 * filesystems.
1391 */
1392 if (i_size_changed)
1393 ext4_mark_inode_dirty(handle, inode);
1394
1395 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1396 /* if we have allocated more blocks and copied
1397 * less. We will have blocks allocated outside
1398 * inode->i_size. So truncate them
1399 */
1400 ext4_orphan_add(handle, inode);
1401errout:
1402 ret2 = ext4_journal_stop(handle);
1403 if (!ret)
1404 ret = ret2;
1405
1406 if (pos + len > inode->i_size) {
1407 ext4_truncate_failed_write(inode);
1408 /*
1409 * If truncate failed early the inode might still be
1410 * on the orphan list; we need to make sure the inode
1411 * is removed from the orphan list in that case.
1412 */
1413 if (inode->i_nlink)
1414 ext4_orphan_del(NULL, inode);
1415 }
1416
1417 return ret ? ret : copied;
1418}
1419
1420/*
1421 * This is a private version of page_zero_new_buffers() which doesn't
1422 * set the buffer to be dirty, since in data=journalled mode we need
1423 * to call ext4_handle_dirty_metadata() instead.
1424 */
1425static void ext4_journalled_zero_new_buffers(handle_t *handle,
1426 struct page *page,
1427 unsigned from, unsigned to)
1428{
1429 unsigned int block_start = 0, block_end;
1430 struct buffer_head *head, *bh;
1431
1432 bh = head = page_buffers(page);
1433 do {
1434 block_end = block_start + bh->b_size;
1435 if (buffer_new(bh)) {
1436 if (block_end > from && block_start < to) {
1437 if (!PageUptodate(page)) {
1438 unsigned start, size;
1439
1440 start = max(from, block_start);
1441 size = min(to, block_end) - start;
1442
1443 zero_user(page, start, size);
1444 write_end_fn(handle, bh);
1445 }
1446 clear_buffer_new(bh);
1447 }
1448 }
1449 block_start = block_end;
1450 bh = bh->b_this_page;
1451 } while (bh != head);
1452}
1453
1454static int ext4_journalled_write_end(struct file *file,
1455 struct address_space *mapping,
1456 loff_t pos, unsigned len, unsigned copied,
1457 struct page *page, void *fsdata)
1458{
1459 handle_t *handle = ext4_journal_current_handle();
1460 struct inode *inode = mapping->host;
1461 loff_t old_size = inode->i_size;
1462 int ret = 0, ret2;
1463 int partial = 0;
1464 unsigned from, to;
1465 int size_changed = 0;
1466
1467 trace_ext4_journalled_write_end(inode, pos, len, copied);
1468 from = pos & (PAGE_SIZE - 1);
1469 to = from + len;
1470
1471 BUG_ON(!ext4_handle_valid(handle));
1472
1473 if (ext4_has_inline_data(inode)) {
1474 ret = ext4_write_inline_data_end(inode, pos, len,
1475 copied, page);
1476 if (ret < 0) {
1477 unlock_page(page);
1478 put_page(page);
1479 goto errout;
1480 }
1481 copied = ret;
1482 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1483 copied = 0;
1484 ext4_journalled_zero_new_buffers(handle, page, from, to);
1485 } else {
1486 if (unlikely(copied < len))
1487 ext4_journalled_zero_new_buffers(handle, page,
1488 from + copied, to);
1489 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1490 from + copied, &partial,
1491 write_end_fn);
1492 if (!partial)
1493 SetPageUptodate(page);
1494 }
1495 size_changed = ext4_update_inode_size(inode, pos + copied);
1496 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1497 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1498 unlock_page(page);
1499 put_page(page);
1500
1501 if (old_size < pos)
1502 pagecache_isize_extended(inode, old_size, pos);
1503
1504 if (size_changed) {
1505 ret2 = ext4_mark_inode_dirty(handle, inode);
1506 if (!ret)
1507 ret = ret2;
1508 }
1509
1510 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1511 /* if we have allocated more blocks and copied
1512 * less. We will have blocks allocated outside
1513 * inode->i_size. So truncate them
1514 */
1515 ext4_orphan_add(handle, inode);
1516
1517errout:
1518 ret2 = ext4_journal_stop(handle);
1519 if (!ret)
1520 ret = ret2;
1521 if (pos + len > inode->i_size) {
1522 ext4_truncate_failed_write(inode);
1523 /*
1524 * If truncate failed early the inode might still be
1525 * on the orphan list; we need to make sure the inode
1526 * is removed from the orphan list in that case.
1527 */
1528 if (inode->i_nlink)
1529 ext4_orphan_del(NULL, inode);
1530 }
1531
1532 return ret ? ret : copied;
1533}
1534
1535/*
1536 * Reserve space for a single cluster
1537 */
1538static int ext4_da_reserve_space(struct inode *inode)
1539{
1540 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1541 struct ext4_inode_info *ei = EXT4_I(inode);
1542 int ret;
1543
1544 /*
1545 * We will charge metadata quota at writeout time; this saves
1546 * us from metadata over-estimation, though we may go over by
1547 * a small amount in the end. Here we just reserve for data.
1548 */
1549 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1550 if (ret)
1551 return ret;
1552
1553 spin_lock(&ei->i_block_reservation_lock);
1554 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1555 spin_unlock(&ei->i_block_reservation_lock);
1556 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1557 return -ENOSPC;
1558 }
1559 ei->i_reserved_data_blocks++;
1560 trace_ext4_da_reserve_space(inode);
1561 spin_unlock(&ei->i_block_reservation_lock);
1562
1563 return 0; /* success */
1564}
1565
1566static void ext4_da_release_space(struct inode *inode, int to_free)
1567{
1568 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1569 struct ext4_inode_info *ei = EXT4_I(inode);
1570
1571 if (!to_free)
1572 return; /* Nothing to release, exit */
1573
1574 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1575
1576 trace_ext4_da_release_space(inode, to_free);
1577 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1578 /*
1579 * if there aren't enough reserved blocks, then the
1580 * counter is messed up somewhere. Since this
1581 * function is called from invalidate page, it's
1582 * harmless to return without any action.
1583 */
1584 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1585 "ino %lu, to_free %d with only %d reserved "
1586 "data blocks", inode->i_ino, to_free,
1587 ei->i_reserved_data_blocks);
1588 WARN_ON(1);
1589 to_free = ei->i_reserved_data_blocks;
1590 }
1591 ei->i_reserved_data_blocks -= to_free;
1592
1593 /* update fs dirty data blocks counter */
1594 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1595
1596 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1597
1598 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1599}
1600
1601static void ext4_da_page_release_reservation(struct page *page,
1602 unsigned int offset,
1603 unsigned int length)
1604{
1605 int to_release = 0, contiguous_blks = 0;
1606 struct buffer_head *head, *bh;
1607 unsigned int curr_off = 0;
1608 struct inode *inode = page->mapping->host;
1609 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1610 unsigned int stop = offset + length;
1611 int num_clusters;
1612 ext4_fsblk_t lblk;
1613
1614 BUG_ON(stop > PAGE_SIZE || stop < length);
1615
1616 head = page_buffers(page);
1617 bh = head;
1618 do {
1619 unsigned int next_off = curr_off + bh->b_size;
1620
1621 if (next_off > stop)
1622 break;
1623
1624 if ((offset <= curr_off) && (buffer_delay(bh))) {
1625 to_release++;
1626 contiguous_blks++;
1627 clear_buffer_delay(bh);
1628 } else if (contiguous_blks) {
1629 lblk = page->index <<
1630 (PAGE_SHIFT - inode->i_blkbits);
1631 lblk += (curr_off >> inode->i_blkbits) -
1632 contiguous_blks;
1633 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1634 contiguous_blks = 0;
1635 }
1636 curr_off = next_off;
1637 } while ((bh = bh->b_this_page) != head);
1638
1639 if (contiguous_blks) {
1640 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1641 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1642 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1643 }
1644
1645 /* If we have released all the blocks belonging to a cluster, then we
1646 * need to release the reserved space for that cluster. */
1647 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1648 while (num_clusters > 0) {
1649 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1650 ((num_clusters - 1) << sbi->s_cluster_bits);
1651 if (sbi->s_cluster_ratio == 1 ||
1652 !ext4_find_delalloc_cluster(inode, lblk))
1653 ext4_da_release_space(inode, 1);
1654
1655 num_clusters--;
1656 }
1657}
1658
1659/*
1660 * Delayed allocation stuff
1661 */
1662
1663struct mpage_da_data {
1664 struct inode *inode;
1665 struct writeback_control *wbc;
1666
1667 pgoff_t first_page; /* The first page to write */
1668 pgoff_t next_page; /* Current page to examine */
1669 pgoff_t last_page; /* Last page to examine */
1670 /*
1671 * Extent to map - this can be after first_page because that can be
1672 * fully mapped. We somewhat abuse m_flags to store whether the extent
1673 * is delalloc or unwritten.
1674 */
1675 struct ext4_map_blocks map;
1676 struct ext4_io_submit io_submit; /* IO submission data */
1677 unsigned int do_map:1;
1678};
1679
1680static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1681 bool invalidate)
1682{
1683 int nr_pages, i;
1684 pgoff_t index, end;
1685 struct pagevec pvec;
1686 struct inode *inode = mpd->inode;
1687 struct address_space *mapping = inode->i_mapping;
1688
1689 /* This is necessary when next_page == 0. */
1690 if (mpd->first_page >= mpd->next_page)
1691 return;
1692
1693 index = mpd->first_page;
1694 end = mpd->next_page - 1;
1695 if (invalidate) {
1696 ext4_lblk_t start, last;
1697 start = index << (PAGE_SHIFT - inode->i_blkbits);
1698 last = end << (PAGE_SHIFT - inode->i_blkbits);
1699 ext4_es_remove_extent(inode, start, last - start + 1);
1700 }
1701
1702 pagevec_init(&pvec, 0);
1703 while (index <= end) {
1704 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1705 if (nr_pages == 0)
1706 break;
1707 for (i = 0; i < nr_pages; i++) {
1708 struct page *page = pvec.pages[i];
1709 if (page->index > end)
1710 break;
1711 BUG_ON(!PageLocked(page));
1712 BUG_ON(PageWriteback(page));
1713 if (invalidate) {
1714 if (page_mapped(page))
1715 clear_page_dirty_for_io(page);
1716 block_invalidatepage(page, 0, PAGE_SIZE);
1717 ClearPageUptodate(page);
1718 }
1719 unlock_page(page);
1720 }
1721 index = pvec.pages[nr_pages - 1]->index + 1;
1722 pagevec_release(&pvec);
1723 }
1724}
1725
1726static void ext4_print_free_blocks(struct inode *inode)
1727{
1728 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1729 struct super_block *sb = inode->i_sb;
1730 struct ext4_inode_info *ei = EXT4_I(inode);
1731
1732 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1733 EXT4_C2B(EXT4_SB(inode->i_sb),
1734 ext4_count_free_clusters(sb)));
1735 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1736 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1737 (long long) EXT4_C2B(EXT4_SB(sb),
1738 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1739 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1740 (long long) EXT4_C2B(EXT4_SB(sb),
1741 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1742 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1743 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1744 ei->i_reserved_data_blocks);
1745 return;
1746}
1747
1748static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1749{
1750 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1751}
1752
1753/*
1754 * This function is grabs code from the very beginning of
1755 * ext4_map_blocks, but assumes that the caller is from delayed write
1756 * time. This function looks up the requested blocks and sets the
1757 * buffer delay bit under the protection of i_data_sem.
1758 */
1759static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1760 struct ext4_map_blocks *map,
1761 struct buffer_head *bh)
1762{
1763 struct extent_status es;
1764 int retval;
1765 sector_t invalid_block = ~((sector_t) 0xffff);
1766#ifdef ES_AGGRESSIVE_TEST
1767 struct ext4_map_blocks orig_map;
1768
1769 memcpy(&orig_map, map, sizeof(*map));
1770#endif
1771
1772 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1773 invalid_block = ~0;
1774
1775 map->m_flags = 0;
1776 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1777 "logical block %lu\n", inode->i_ino, map->m_len,
1778 (unsigned long) map->m_lblk);
1779
1780 /* Lookup extent status tree firstly */
1781 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1782 if (ext4_es_is_hole(&es)) {
1783 retval = 0;
1784 down_read(&EXT4_I(inode)->i_data_sem);
1785 goto add_delayed;
1786 }
1787
1788 /*
1789 * Delayed extent could be allocated by fallocate.
1790 * So we need to check it.
1791 */
1792 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1793 map_bh(bh, inode->i_sb, invalid_block);
1794 set_buffer_new(bh);
1795 set_buffer_delay(bh);
1796 return 0;
1797 }
1798
1799 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1800 retval = es.es_len - (iblock - es.es_lblk);
1801 if (retval > map->m_len)
1802 retval = map->m_len;
1803 map->m_len = retval;
1804 if (ext4_es_is_written(&es))
1805 map->m_flags |= EXT4_MAP_MAPPED;
1806 else if (ext4_es_is_unwritten(&es))
1807 map->m_flags |= EXT4_MAP_UNWRITTEN;
1808 else
1809 BUG_ON(1);
1810
1811#ifdef ES_AGGRESSIVE_TEST
1812 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1813#endif
1814 return retval;
1815 }
1816
1817 /*
1818 * Try to see if we can get the block without requesting a new
1819 * file system block.
1820 */
1821 down_read(&EXT4_I(inode)->i_data_sem);
1822 if (ext4_has_inline_data(inode))
1823 retval = 0;
1824 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1825 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1826 else
1827 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1828
1829add_delayed:
1830 if (retval == 0) {
1831 int ret;
1832 /*
1833 * XXX: __block_prepare_write() unmaps passed block,
1834 * is it OK?
1835 */
1836 /*
1837 * If the block was allocated from previously allocated cluster,
1838 * then we don't need to reserve it again. However we still need
1839 * to reserve metadata for every block we're going to write.
1840 */
1841 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1842 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1843 ret = ext4_da_reserve_space(inode);
1844 if (ret) {
1845 /* not enough space to reserve */
1846 retval = ret;
1847 goto out_unlock;
1848 }
1849 }
1850
1851 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1852 ~0, EXTENT_STATUS_DELAYED);
1853 if (ret) {
1854 retval = ret;
1855 goto out_unlock;
1856 }
1857
1858 map_bh(bh, inode->i_sb, invalid_block);
1859 set_buffer_new(bh);
1860 set_buffer_delay(bh);
1861 } else if (retval > 0) {
1862 int ret;
1863 unsigned int status;
1864
1865 if (unlikely(retval != map->m_len)) {
1866 ext4_warning(inode->i_sb,
1867 "ES len assertion failed for inode "
1868 "%lu: retval %d != map->m_len %d",
1869 inode->i_ino, retval, map->m_len);
1870 WARN_ON(1);
1871 }
1872
1873 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1874 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1875 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1876 map->m_pblk, status);
1877 if (ret != 0)
1878 retval = ret;
1879 }
1880
1881out_unlock:
1882 up_read((&EXT4_I(inode)->i_data_sem));
1883
1884 return retval;
1885}
1886
1887/*
1888 * This is a special get_block_t callback which is used by
1889 * ext4_da_write_begin(). It will either return mapped block or
1890 * reserve space for a single block.
1891 *
1892 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1893 * We also have b_blocknr = -1 and b_bdev initialized properly
1894 *
1895 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1896 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1897 * initialized properly.
1898 */
1899int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1900 struct buffer_head *bh, int create)
1901{
1902 struct ext4_map_blocks map;
1903 int ret = 0;
1904
1905 BUG_ON(create == 0);
1906 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1907
1908 map.m_lblk = iblock;
1909 map.m_len = 1;
1910
1911 /*
1912 * first, we need to know whether the block is allocated already
1913 * preallocated blocks are unmapped but should treated
1914 * the same as allocated blocks.
1915 */
1916 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1917 if (ret <= 0)
1918 return ret;
1919
1920 map_bh(bh, inode->i_sb, map.m_pblk);
1921 ext4_update_bh_state(bh, map.m_flags);
1922
1923 if (buffer_unwritten(bh)) {
1924 /* A delayed write to unwritten bh should be marked
1925 * new and mapped. Mapped ensures that we don't do
1926 * get_block multiple times when we write to the same
1927 * offset and new ensures that we do proper zero out
1928 * for partial write.
1929 */
1930 set_buffer_new(bh);
1931 set_buffer_mapped(bh);
1932 }
1933 return 0;
1934}
1935
1936static int bget_one(handle_t *handle, struct buffer_head *bh)
1937{
1938 get_bh(bh);
1939 return 0;
1940}
1941
1942static int bput_one(handle_t *handle, struct buffer_head *bh)
1943{
1944 put_bh(bh);
1945 return 0;
1946}
1947
1948static int __ext4_journalled_writepage(struct page *page,
1949 unsigned int len)
1950{
1951 struct address_space *mapping = page->mapping;
1952 struct inode *inode = mapping->host;
1953 struct buffer_head *page_bufs = NULL;
1954 handle_t *handle = NULL;
1955 int ret = 0, err = 0;
1956 int inline_data = ext4_has_inline_data(inode);
1957 struct buffer_head *inode_bh = NULL;
1958
1959 ClearPageChecked(page);
1960
1961 if (inline_data) {
1962 BUG_ON(page->index != 0);
1963 BUG_ON(len > ext4_get_max_inline_size(inode));
1964 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1965 if (inode_bh == NULL)
1966 goto out;
1967 } else {
1968 page_bufs = page_buffers(page);
1969 if (!page_bufs) {
1970 BUG();
1971 goto out;
1972 }
1973 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1974 NULL, bget_one);
1975 }
1976 /*
1977 * We need to release the page lock before we start the
1978 * journal, so grab a reference so the page won't disappear
1979 * out from under us.
1980 */
1981 get_page(page);
1982 unlock_page(page);
1983
1984 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1985 ext4_writepage_trans_blocks(inode));
1986 if (IS_ERR(handle)) {
1987 ret = PTR_ERR(handle);
1988 put_page(page);
1989 goto out_no_pagelock;
1990 }
1991 BUG_ON(!ext4_handle_valid(handle));
1992
1993 lock_page(page);
1994 put_page(page);
1995 if (page->mapping != mapping) {
1996 /* The page got truncated from under us */
1997 ext4_journal_stop(handle);
1998 ret = 0;
1999 goto out;
2000 }
2001
2002 if (inline_data) {
2003 BUFFER_TRACE(inode_bh, "get write access");
2004 ret = ext4_journal_get_write_access(handle, inode_bh);
2005
2006 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2007
2008 } else {
2009 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2010 do_journal_get_write_access);
2011
2012 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2013 write_end_fn);
2014 }
2015 if (ret == 0)
2016 ret = err;
2017 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2018 err = ext4_journal_stop(handle);
2019 if (!ret)
2020 ret = err;
2021
2022 if (!ext4_has_inline_data(inode))
2023 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2024 NULL, bput_one);
2025 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2026out:
2027 unlock_page(page);
2028out_no_pagelock:
2029 brelse(inode_bh);
2030 return ret;
2031}
2032
2033/*
2034 * Note that we don't need to start a transaction unless we're journaling data
2035 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2036 * need to file the inode to the transaction's list in ordered mode because if
2037 * we are writing back data added by write(), the inode is already there and if
2038 * we are writing back data modified via mmap(), no one guarantees in which
2039 * transaction the data will hit the disk. In case we are journaling data, we
2040 * cannot start transaction directly because transaction start ranks above page
2041 * lock so we have to do some magic.
2042 *
2043 * This function can get called via...
2044 * - ext4_writepages after taking page lock (have journal handle)
2045 * - journal_submit_inode_data_buffers (no journal handle)
2046 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2047 * - grab_page_cache when doing write_begin (have journal handle)
2048 *
2049 * We don't do any block allocation in this function. If we have page with
2050 * multiple blocks we need to write those buffer_heads that are mapped. This
2051 * is important for mmaped based write. So if we do with blocksize 1K
2052 * truncate(f, 1024);
2053 * a = mmap(f, 0, 4096);
2054 * a[0] = 'a';
2055 * truncate(f, 4096);
2056 * we have in the page first buffer_head mapped via page_mkwrite call back
2057 * but other buffer_heads would be unmapped but dirty (dirty done via the
2058 * do_wp_page). So writepage should write the first block. If we modify
2059 * the mmap area beyond 1024 we will again get a page_fault and the
2060 * page_mkwrite callback will do the block allocation and mark the
2061 * buffer_heads mapped.
2062 *
2063 * We redirty the page if we have any buffer_heads that is either delay or
2064 * unwritten in the page.
2065 *
2066 * We can get recursively called as show below.
2067 *
2068 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2069 * ext4_writepage()
2070 *
2071 * But since we don't do any block allocation we should not deadlock.
2072 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2073 */
2074static int ext4_writepage(struct page *page,
2075 struct writeback_control *wbc)
2076{
2077 int ret = 0;
2078 loff_t size;
2079 unsigned int len;
2080 struct buffer_head *page_bufs = NULL;
2081 struct inode *inode = page->mapping->host;
2082 struct ext4_io_submit io_submit;
2083 bool keep_towrite = false;
2084
2085 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2086 ext4_invalidatepage(page, 0, PAGE_SIZE);
2087 unlock_page(page);
2088 return -EIO;
2089 }
2090
2091 trace_ext4_writepage(page);
2092 size = i_size_read(inode);
2093 if (page->index == size >> PAGE_SHIFT)
2094 len = size & ~PAGE_MASK;
2095 else
2096 len = PAGE_SIZE;
2097
2098 page_bufs = page_buffers(page);
2099 /*
2100 * We cannot do block allocation or other extent handling in this
2101 * function. If there are buffers needing that, we have to redirty
2102 * the page. But we may reach here when we do a journal commit via
2103 * journal_submit_inode_data_buffers() and in that case we must write
2104 * allocated buffers to achieve data=ordered mode guarantees.
2105 *
2106 * Also, if there is only one buffer per page (the fs block
2107 * size == the page size), if one buffer needs block
2108 * allocation or needs to modify the extent tree to clear the
2109 * unwritten flag, we know that the page can't be written at
2110 * all, so we might as well refuse the write immediately.
2111 * Unfortunately if the block size != page size, we can't as
2112 * easily detect this case using ext4_walk_page_buffers(), but
2113 * for the extremely common case, this is an optimization that
2114 * skips a useless round trip through ext4_bio_write_page().
2115 */
2116 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2117 ext4_bh_delay_or_unwritten)) {
2118 redirty_page_for_writepage(wbc, page);
2119 if ((current->flags & PF_MEMALLOC) ||
2120 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2121 /*
2122 * For memory cleaning there's no point in writing only
2123 * some buffers. So just bail out. Warn if we came here
2124 * from direct reclaim.
2125 */
2126 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2127 == PF_MEMALLOC);
2128 unlock_page(page);
2129 return 0;
2130 }
2131 keep_towrite = true;
2132 }
2133
2134 if (PageChecked(page) && ext4_should_journal_data(inode))
2135 /*
2136 * It's mmapped pagecache. Add buffers and journal it. There
2137 * doesn't seem much point in redirtying the page here.
2138 */
2139 return __ext4_journalled_writepage(page, len);
2140
2141 ext4_io_submit_init(&io_submit, wbc);
2142 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2143 if (!io_submit.io_end) {
2144 redirty_page_for_writepage(wbc, page);
2145 unlock_page(page);
2146 return -ENOMEM;
2147 }
2148 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2149 ext4_io_submit(&io_submit);
2150 /* Drop io_end reference we got from init */
2151 ext4_put_io_end_defer(io_submit.io_end);
2152 return ret;
2153}
2154
2155static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2156{
2157 int len;
2158 loff_t size;
2159 int err;
2160
2161 BUG_ON(page->index != mpd->first_page);
2162 clear_page_dirty_for_io(page);
2163 /*
2164 * We have to be very careful here! Nothing protects writeback path
2165 * against i_size changes and the page can be writeably mapped into
2166 * page tables. So an application can be growing i_size and writing
2167 * data through mmap while writeback runs. clear_page_dirty_for_io()
2168 * write-protects our page in page tables and the page cannot get
2169 * written to again until we release page lock. So only after
2170 * clear_page_dirty_for_io() we are safe to sample i_size for
2171 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2172 * on the barrier provided by TestClearPageDirty in
2173 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2174 * after page tables are updated.
2175 */
2176 size = i_size_read(mpd->inode);
2177 if (page->index == size >> PAGE_SHIFT)
2178 len = size & ~PAGE_MASK;
2179 else
2180 len = PAGE_SIZE;
2181 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2182 if (!err)
2183 mpd->wbc->nr_to_write--;
2184 mpd->first_page++;
2185
2186 return err;
2187}
2188
2189#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2190
2191/*
2192 * mballoc gives us at most this number of blocks...
2193 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2194 * The rest of mballoc seems to handle chunks up to full group size.
2195 */
2196#define MAX_WRITEPAGES_EXTENT_LEN 2048
2197
2198/*
2199 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2200 *
2201 * @mpd - extent of blocks
2202 * @lblk - logical number of the block in the file
2203 * @bh - buffer head we want to add to the extent
2204 *
2205 * The function is used to collect contig. blocks in the same state. If the
2206 * buffer doesn't require mapping for writeback and we haven't started the
2207 * extent of buffers to map yet, the function returns 'true' immediately - the
2208 * caller can write the buffer right away. Otherwise the function returns true
2209 * if the block has been added to the extent, false if the block couldn't be
2210 * added.
2211 */
2212static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2213 struct buffer_head *bh)
2214{
2215 struct ext4_map_blocks *map = &mpd->map;
2216
2217 /* Buffer that doesn't need mapping for writeback? */
2218 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2219 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2220 /* So far no extent to map => we write the buffer right away */
2221 if (map->m_len == 0)
2222 return true;
2223 return false;
2224 }
2225
2226 /* First block in the extent? */
2227 if (map->m_len == 0) {
2228 /* We cannot map unless handle is started... */
2229 if (!mpd->do_map)
2230 return false;
2231 map->m_lblk = lblk;
2232 map->m_len = 1;
2233 map->m_flags = bh->b_state & BH_FLAGS;
2234 return true;
2235 }
2236
2237 /* Don't go larger than mballoc is willing to allocate */
2238 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2239 return false;
2240
2241 /* Can we merge the block to our big extent? */
2242 if (lblk == map->m_lblk + map->m_len &&
2243 (bh->b_state & BH_FLAGS) == map->m_flags) {
2244 map->m_len++;
2245 return true;
2246 }
2247 return false;
2248}
2249
2250/*
2251 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2252 *
2253 * @mpd - extent of blocks for mapping
2254 * @head - the first buffer in the page
2255 * @bh - buffer we should start processing from
2256 * @lblk - logical number of the block in the file corresponding to @bh
2257 *
2258 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2259 * the page for IO if all buffers in this page were mapped and there's no
2260 * accumulated extent of buffers to map or add buffers in the page to the
2261 * extent of buffers to map. The function returns 1 if the caller can continue
2262 * by processing the next page, 0 if it should stop adding buffers to the
2263 * extent to map because we cannot extend it anymore. It can also return value
2264 * < 0 in case of error during IO submission.
2265 */
2266static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2267 struct buffer_head *head,
2268 struct buffer_head *bh,
2269 ext4_lblk_t lblk)
2270{
2271 struct inode *inode = mpd->inode;
2272 int err;
2273 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2274 >> inode->i_blkbits;
2275
2276 do {
2277 BUG_ON(buffer_locked(bh));
2278
2279 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2280 /* Found extent to map? */
2281 if (mpd->map.m_len)
2282 return 0;
2283 /* Buffer needs mapping and handle is not started? */
2284 if (!mpd->do_map)
2285 return 0;
2286 /* Everything mapped so far and we hit EOF */
2287 break;
2288 }
2289 } while (lblk++, (bh = bh->b_this_page) != head);
2290 /* So far everything mapped? Submit the page for IO. */
2291 if (mpd->map.m_len == 0) {
2292 err = mpage_submit_page(mpd, head->b_page);
2293 if (err < 0)
2294 return err;
2295 }
2296 return lblk < blocks;
2297}
2298
2299/*
2300 * mpage_map_buffers - update buffers corresponding to changed extent and
2301 * submit fully mapped pages for IO
2302 *
2303 * @mpd - description of extent to map, on return next extent to map
2304 *
2305 * Scan buffers corresponding to changed extent (we expect corresponding pages
2306 * to be already locked) and update buffer state according to new extent state.
2307 * We map delalloc buffers to their physical location, clear unwritten bits,
2308 * and mark buffers as uninit when we perform writes to unwritten extents
2309 * and do extent conversion after IO is finished. If the last page is not fully
2310 * mapped, we update @map to the next extent in the last page that needs
2311 * mapping. Otherwise we submit the page for IO.
2312 */
2313static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2314{
2315 struct pagevec pvec;
2316 int nr_pages, i;
2317 struct inode *inode = mpd->inode;
2318 struct buffer_head *head, *bh;
2319 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2320 pgoff_t start, end;
2321 ext4_lblk_t lblk;
2322 sector_t pblock;
2323 int err;
2324
2325 start = mpd->map.m_lblk >> bpp_bits;
2326 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2327 lblk = start << bpp_bits;
2328 pblock = mpd->map.m_pblk;
2329
2330 pagevec_init(&pvec, 0);
2331 while (start <= end) {
2332 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2333 PAGEVEC_SIZE);
2334 if (nr_pages == 0)
2335 break;
2336 for (i = 0; i < nr_pages; i++) {
2337 struct page *page = pvec.pages[i];
2338
2339 if (page->index > end)
2340 break;
2341 /* Up to 'end' pages must be contiguous */
2342 BUG_ON(page->index != start);
2343 bh = head = page_buffers(page);
2344 do {
2345 if (lblk < mpd->map.m_lblk)
2346 continue;
2347 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2348 /*
2349 * Buffer after end of mapped extent.
2350 * Find next buffer in the page to map.
2351 */
2352 mpd->map.m_len = 0;
2353 mpd->map.m_flags = 0;
2354 /*
2355 * FIXME: If dioread_nolock supports
2356 * blocksize < pagesize, we need to make
2357 * sure we add size mapped so far to
2358 * io_end->size as the following call
2359 * can submit the page for IO.
2360 */
2361 err = mpage_process_page_bufs(mpd, head,
2362 bh, lblk);
2363 pagevec_release(&pvec);
2364 if (err > 0)
2365 err = 0;
2366 return err;
2367 }
2368 if (buffer_delay(bh)) {
2369 clear_buffer_delay(bh);
2370 bh->b_blocknr = pblock++;
2371 }
2372 clear_buffer_unwritten(bh);
2373 } while (lblk++, (bh = bh->b_this_page) != head);
2374
2375 /*
2376 * FIXME: This is going to break if dioread_nolock
2377 * supports blocksize < pagesize as we will try to
2378 * convert potentially unmapped parts of inode.
2379 */
2380 mpd->io_submit.io_end->size += PAGE_SIZE;
2381 /* Page fully mapped - let IO run! */
2382 err = mpage_submit_page(mpd, page);
2383 if (err < 0) {
2384 pagevec_release(&pvec);
2385 return err;
2386 }
2387 start++;
2388 }
2389 pagevec_release(&pvec);
2390 }
2391 /* Extent fully mapped and matches with page boundary. We are done. */
2392 mpd->map.m_len = 0;
2393 mpd->map.m_flags = 0;
2394 return 0;
2395}
2396
2397static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2398{
2399 struct inode *inode = mpd->inode;
2400 struct ext4_map_blocks *map = &mpd->map;
2401 int get_blocks_flags;
2402 int err, dioread_nolock;
2403
2404 trace_ext4_da_write_pages_extent(inode, map);
2405 /*
2406 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2407 * to convert an unwritten extent to be initialized (in the case
2408 * where we have written into one or more preallocated blocks). It is
2409 * possible that we're going to need more metadata blocks than
2410 * previously reserved. However we must not fail because we're in
2411 * writeback and there is nothing we can do about it so it might result
2412 * in data loss. So use reserved blocks to allocate metadata if
2413 * possible.
2414 *
2415 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2416 * the blocks in question are delalloc blocks. This indicates
2417 * that the blocks and quotas has already been checked when
2418 * the data was copied into the page cache.
2419 */
2420 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2421 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2422 EXT4_GET_BLOCKS_IO_SUBMIT;
2423 dioread_nolock = ext4_should_dioread_nolock(inode);
2424 if (dioread_nolock)
2425 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2426 if (map->m_flags & (1 << BH_Delay))
2427 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2428
2429 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2430 if (err < 0)
2431 return err;
2432 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2433 if (!mpd->io_submit.io_end->handle &&
2434 ext4_handle_valid(handle)) {
2435 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2436 handle->h_rsv_handle = NULL;
2437 }
2438 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2439 }
2440
2441 BUG_ON(map->m_len == 0);
2442 if (map->m_flags & EXT4_MAP_NEW) {
2443 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2444 map->m_len);
2445 }
2446 return 0;
2447}
2448
2449/*
2450 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2451 * mpd->len and submit pages underlying it for IO
2452 *
2453 * @handle - handle for journal operations
2454 * @mpd - extent to map
2455 * @give_up_on_write - we set this to true iff there is a fatal error and there
2456 * is no hope of writing the data. The caller should discard
2457 * dirty pages to avoid infinite loops.
2458 *
2459 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2460 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2461 * them to initialized or split the described range from larger unwritten
2462 * extent. Note that we need not map all the described range since allocation
2463 * can return less blocks or the range is covered by more unwritten extents. We
2464 * cannot map more because we are limited by reserved transaction credits. On
2465 * the other hand we always make sure that the last touched page is fully
2466 * mapped so that it can be written out (and thus forward progress is
2467 * guaranteed). After mapping we submit all mapped pages for IO.
2468 */
2469static int mpage_map_and_submit_extent(handle_t *handle,
2470 struct mpage_da_data *mpd,
2471 bool *give_up_on_write)
2472{
2473 struct inode *inode = mpd->inode;
2474 struct ext4_map_blocks *map = &mpd->map;
2475 int err;
2476 loff_t disksize;
2477 int progress = 0;
2478
2479 mpd->io_submit.io_end->offset =
2480 ((loff_t)map->m_lblk) << inode->i_blkbits;
2481 do {
2482 err = mpage_map_one_extent(handle, mpd);
2483 if (err < 0) {
2484 struct super_block *sb = inode->i_sb;
2485
2486 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2487 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2488 goto invalidate_dirty_pages;
2489 /*
2490 * Let the uper layers retry transient errors.
2491 * In the case of ENOSPC, if ext4_count_free_blocks()
2492 * is non-zero, a commit should free up blocks.
2493 */
2494 if ((err == -ENOMEM) ||
2495 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2496 if (progress)
2497 goto update_disksize;
2498 return err;
2499 }
2500 ext4_msg(sb, KERN_CRIT,
2501 "Delayed block allocation failed for "
2502 "inode %lu at logical offset %llu with"
2503 " max blocks %u with error %d",
2504 inode->i_ino,
2505 (unsigned long long)map->m_lblk,
2506 (unsigned)map->m_len, -err);
2507 ext4_msg(sb, KERN_CRIT,
2508 "This should not happen!! Data will "
2509 "be lost\n");
2510 if (err == -ENOSPC)
2511 ext4_print_free_blocks(inode);
2512 invalidate_dirty_pages:
2513 *give_up_on_write = true;
2514 return err;
2515 }
2516 progress = 1;
2517 /*
2518 * Update buffer state, submit mapped pages, and get us new
2519 * extent to map
2520 */
2521 err = mpage_map_and_submit_buffers(mpd);
2522 if (err < 0)
2523 goto update_disksize;
2524 } while (map->m_len);
2525
2526update_disksize:
2527 /*
2528 * Update on-disk size after IO is submitted. Races with
2529 * truncate are avoided by checking i_size under i_data_sem.
2530 */
2531 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2532 if (disksize > EXT4_I(inode)->i_disksize) {
2533 int err2;
2534 loff_t i_size;
2535
2536 down_write(&EXT4_I(inode)->i_data_sem);
2537 i_size = i_size_read(inode);
2538 if (disksize > i_size)
2539 disksize = i_size;
2540 if (disksize > EXT4_I(inode)->i_disksize)
2541 EXT4_I(inode)->i_disksize = disksize;
2542 up_write(&EXT4_I(inode)->i_data_sem);
2543 err2 = ext4_mark_inode_dirty(handle, inode);
2544 if (err2)
2545 ext4_error(inode->i_sb,
2546 "Failed to mark inode %lu dirty",
2547 inode->i_ino);
2548 if (!err)
2549 err = err2;
2550 }
2551 return err;
2552}
2553
2554/*
2555 * Calculate the total number of credits to reserve for one writepages
2556 * iteration. This is called from ext4_writepages(). We map an extent of
2557 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2558 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2559 * bpp - 1 blocks in bpp different extents.
2560 */
2561static int ext4_da_writepages_trans_blocks(struct inode *inode)
2562{
2563 int bpp = ext4_journal_blocks_per_page(inode);
2564
2565 return ext4_meta_trans_blocks(inode,
2566 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2567}
2568
2569/*
2570 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2571 * and underlying extent to map
2572 *
2573 * @mpd - where to look for pages
2574 *
2575 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2576 * IO immediately. When we find a page which isn't mapped we start accumulating
2577 * extent of buffers underlying these pages that needs mapping (formed by
2578 * either delayed or unwritten buffers). We also lock the pages containing
2579 * these buffers. The extent found is returned in @mpd structure (starting at
2580 * mpd->lblk with length mpd->len blocks).
2581 *
2582 * Note that this function can attach bios to one io_end structure which are
2583 * neither logically nor physically contiguous. Although it may seem as an
2584 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2585 * case as we need to track IO to all buffers underlying a page in one io_end.
2586 */
2587static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2588{
2589 struct address_space *mapping = mpd->inode->i_mapping;
2590 struct pagevec pvec;
2591 unsigned int nr_pages;
2592 long left = mpd->wbc->nr_to_write;
2593 pgoff_t index = mpd->first_page;
2594 pgoff_t end = mpd->last_page;
2595 int tag;
2596 int i, err = 0;
2597 int blkbits = mpd->inode->i_blkbits;
2598 ext4_lblk_t lblk;
2599 struct buffer_head *head;
2600
2601 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2602 tag = PAGECACHE_TAG_TOWRITE;
2603 else
2604 tag = PAGECACHE_TAG_DIRTY;
2605
2606 pagevec_init(&pvec, 0);
2607 mpd->map.m_len = 0;
2608 mpd->next_page = index;
2609 while (index <= end) {
2610 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2611 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2612 if (nr_pages == 0)
2613 goto out;
2614
2615 for (i = 0; i < nr_pages; i++) {
2616 struct page *page = pvec.pages[i];
2617
2618 /*
2619 * At this point, the page may be truncated or
2620 * invalidated (changing page->mapping to NULL), or
2621 * even swizzled back from swapper_space to tmpfs file
2622 * mapping. However, page->index will not change
2623 * because we have a reference on the page.
2624 */
2625 if (page->index > end)
2626 goto out;
2627
2628 /*
2629 * Accumulated enough dirty pages? This doesn't apply
2630 * to WB_SYNC_ALL mode. For integrity sync we have to
2631 * keep going because someone may be concurrently
2632 * dirtying pages, and we might have synced a lot of
2633 * newly appeared dirty pages, but have not synced all
2634 * of the old dirty pages.
2635 */
2636 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2637 goto out;
2638
2639 /* If we can't merge this page, we are done. */
2640 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2641 goto out;
2642
2643 lock_page(page);
2644 /*
2645 * If the page is no longer dirty, or its mapping no
2646 * longer corresponds to inode we are writing (which
2647 * means it has been truncated or invalidated), or the
2648 * page is already under writeback and we are not doing
2649 * a data integrity writeback, skip the page
2650 */
2651 if (!PageDirty(page) ||
2652 (PageWriteback(page) &&
2653 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2654 unlikely(page->mapping != mapping)) {
2655 unlock_page(page);
2656 continue;
2657 }
2658
2659 wait_on_page_writeback(page);
2660 BUG_ON(PageWriteback(page));
2661
2662 if (mpd->map.m_len == 0)
2663 mpd->first_page = page->index;
2664 mpd->next_page = page->index + 1;
2665 /* Add all dirty buffers to mpd */
2666 lblk = ((ext4_lblk_t)page->index) <<
2667 (PAGE_SHIFT - blkbits);
2668 head = page_buffers(page);
2669 err = mpage_process_page_bufs(mpd, head, head, lblk);
2670 if (err <= 0)
2671 goto out;
2672 err = 0;
2673 left--;
2674 }
2675 pagevec_release(&pvec);
2676 cond_resched();
2677 }
2678 return 0;
2679out:
2680 pagevec_release(&pvec);
2681 return err;
2682}
2683
2684static int __writepage(struct page *page, struct writeback_control *wbc,
2685 void *data)
2686{
2687 struct address_space *mapping = data;
2688 int ret = ext4_writepage(page, wbc);
2689 mapping_set_error(mapping, ret);
2690 return ret;
2691}
2692
2693static int ext4_writepages(struct address_space *mapping,
2694 struct writeback_control *wbc)
2695{
2696 pgoff_t writeback_index = 0;
2697 long nr_to_write = wbc->nr_to_write;
2698 int range_whole = 0;
2699 int cycled = 1;
2700 handle_t *handle = NULL;
2701 struct mpage_da_data mpd;
2702 struct inode *inode = mapping->host;
2703 int needed_blocks, rsv_blocks = 0, ret = 0;
2704 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2705 bool done;
2706 struct blk_plug plug;
2707 bool give_up_on_write = false;
2708
2709 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2710 return -EIO;
2711
2712 percpu_down_read(&sbi->s_journal_flag_rwsem);
2713 trace_ext4_writepages(inode, wbc);
2714
2715 if (dax_mapping(mapping)) {
2716 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2717 wbc);
2718 goto out_writepages;
2719 }
2720
2721 /*
2722 * No pages to write? This is mainly a kludge to avoid starting
2723 * a transaction for special inodes like journal inode on last iput()
2724 * because that could violate lock ordering on umount
2725 */
2726 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2727 goto out_writepages;
2728
2729 if (ext4_should_journal_data(inode)) {
2730 struct blk_plug plug;
2731
2732 blk_start_plug(&plug);
2733 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2734 blk_finish_plug(&plug);
2735 goto out_writepages;
2736 }
2737
2738 /*
2739 * If the filesystem has aborted, it is read-only, so return
2740 * right away instead of dumping stack traces later on that
2741 * will obscure the real source of the problem. We test
2742 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2743 * the latter could be true if the filesystem is mounted
2744 * read-only, and in that case, ext4_writepages should
2745 * *never* be called, so if that ever happens, we would want
2746 * the stack trace.
2747 */
2748 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2749 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2750 ret = -EROFS;
2751 goto out_writepages;
2752 }
2753
2754 if (ext4_should_dioread_nolock(inode)) {
2755 /*
2756 * We may need to convert up to one extent per block in
2757 * the page and we may dirty the inode.
2758 */
2759 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2760 }
2761
2762 /*
2763 * If we have inline data and arrive here, it means that
2764 * we will soon create the block for the 1st page, so
2765 * we'd better clear the inline data here.
2766 */
2767 if (ext4_has_inline_data(inode)) {
2768 /* Just inode will be modified... */
2769 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2770 if (IS_ERR(handle)) {
2771 ret = PTR_ERR(handle);
2772 goto out_writepages;
2773 }
2774 BUG_ON(ext4_test_inode_state(inode,
2775 EXT4_STATE_MAY_INLINE_DATA));
2776 ext4_destroy_inline_data(handle, inode);
2777 ext4_journal_stop(handle);
2778 }
2779
2780 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2781 range_whole = 1;
2782
2783 if (wbc->range_cyclic) {
2784 writeback_index = mapping->writeback_index;
2785 if (writeback_index)
2786 cycled = 0;
2787 mpd.first_page = writeback_index;
2788 mpd.last_page = -1;
2789 } else {
2790 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2791 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2792 }
2793
2794 mpd.inode = inode;
2795 mpd.wbc = wbc;
2796 ext4_io_submit_init(&mpd.io_submit, wbc);
2797retry:
2798 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2799 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2800 done = false;
2801 blk_start_plug(&plug);
2802
2803 /*
2804 * First writeback pages that don't need mapping - we can avoid
2805 * starting a transaction unnecessarily and also avoid being blocked
2806 * in the block layer on device congestion while having transaction
2807 * started.
2808 */
2809 mpd.do_map = 0;
2810 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2811 if (!mpd.io_submit.io_end) {
2812 ret = -ENOMEM;
2813 goto unplug;
2814 }
2815 ret = mpage_prepare_extent_to_map(&mpd);
2816 /* Submit prepared bio */
2817 ext4_io_submit(&mpd.io_submit);
2818 ext4_put_io_end_defer(mpd.io_submit.io_end);
2819 mpd.io_submit.io_end = NULL;
2820 /* Unlock pages we didn't use */
2821 mpage_release_unused_pages(&mpd, false);
2822 if (ret < 0)
2823 goto unplug;
2824
2825 while (!done && mpd.first_page <= mpd.last_page) {
2826 /* For each extent of pages we use new io_end */
2827 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2828 if (!mpd.io_submit.io_end) {
2829 ret = -ENOMEM;
2830 break;
2831 }
2832
2833 /*
2834 * We have two constraints: We find one extent to map and we
2835 * must always write out whole page (makes a difference when
2836 * blocksize < pagesize) so that we don't block on IO when we
2837 * try to write out the rest of the page. Journalled mode is
2838 * not supported by delalloc.
2839 */
2840 BUG_ON(ext4_should_journal_data(inode));
2841 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2842
2843 /* start a new transaction */
2844 handle = ext4_journal_start_with_reserve(inode,
2845 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2846 if (IS_ERR(handle)) {
2847 ret = PTR_ERR(handle);
2848 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2849 "%ld pages, ino %lu; err %d", __func__,
2850 wbc->nr_to_write, inode->i_ino, ret);
2851 /* Release allocated io_end */
2852 ext4_put_io_end(mpd.io_submit.io_end);
2853 mpd.io_submit.io_end = NULL;
2854 break;
2855 }
2856 mpd.do_map = 1;
2857
2858 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2859 ret = mpage_prepare_extent_to_map(&mpd);
2860 if (!ret) {
2861 if (mpd.map.m_len)
2862 ret = mpage_map_and_submit_extent(handle, &mpd,
2863 &give_up_on_write);
2864 else {
2865 /*
2866 * We scanned the whole range (or exhausted
2867 * nr_to_write), submitted what was mapped and
2868 * didn't find anything needing mapping. We are
2869 * done.
2870 */
2871 done = true;
2872 }
2873 }
2874 /*
2875 * Caution: If the handle is synchronous,
2876 * ext4_journal_stop() can wait for transaction commit
2877 * to finish which may depend on writeback of pages to
2878 * complete or on page lock to be released. In that
2879 * case, we have to wait until after after we have
2880 * submitted all the IO, released page locks we hold,
2881 * and dropped io_end reference (for extent conversion
2882 * to be able to complete) before stopping the handle.
2883 */
2884 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2885 ext4_journal_stop(handle);
2886 handle = NULL;
2887 mpd.do_map = 0;
2888 }
2889 /* Submit prepared bio */
2890 ext4_io_submit(&mpd.io_submit);
2891 /* Unlock pages we didn't use */
2892 mpage_release_unused_pages(&mpd, give_up_on_write);
2893 /*
2894 * Drop our io_end reference we got from init. We have
2895 * to be careful and use deferred io_end finishing if
2896 * we are still holding the transaction as we can
2897 * release the last reference to io_end which may end
2898 * up doing unwritten extent conversion.
2899 */
2900 if (handle) {
2901 ext4_put_io_end_defer(mpd.io_submit.io_end);
2902 ext4_journal_stop(handle);
2903 } else
2904 ext4_put_io_end(mpd.io_submit.io_end);
2905 mpd.io_submit.io_end = NULL;
2906
2907 if (ret == -ENOSPC && sbi->s_journal) {
2908 /*
2909 * Commit the transaction which would
2910 * free blocks released in the transaction
2911 * and try again
2912 */
2913 jbd2_journal_force_commit_nested(sbi->s_journal);
2914 ret = 0;
2915 continue;
2916 }
2917 /* Fatal error - ENOMEM, EIO... */
2918 if (ret)
2919 break;
2920 }
2921unplug:
2922 blk_finish_plug(&plug);
2923 if (!ret && !cycled && wbc->nr_to_write > 0) {
2924 cycled = 1;
2925 mpd.last_page = writeback_index - 1;
2926 mpd.first_page = 0;
2927 goto retry;
2928 }
2929
2930 /* Update index */
2931 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2932 /*
2933 * Set the writeback_index so that range_cyclic
2934 * mode will write it back later
2935 */
2936 mapping->writeback_index = mpd.first_page;
2937
2938out_writepages:
2939 trace_ext4_writepages_result(inode, wbc, ret,
2940 nr_to_write - wbc->nr_to_write);
2941 percpu_up_read(&sbi->s_journal_flag_rwsem);
2942 return ret;
2943}
2944
2945static int ext4_nonda_switch(struct super_block *sb)
2946{
2947 s64 free_clusters, dirty_clusters;
2948 struct ext4_sb_info *sbi = EXT4_SB(sb);
2949
2950 /*
2951 * switch to non delalloc mode if we are running low
2952 * on free block. The free block accounting via percpu
2953 * counters can get slightly wrong with percpu_counter_batch getting
2954 * accumulated on each CPU without updating global counters
2955 * Delalloc need an accurate free block accounting. So switch
2956 * to non delalloc when we are near to error range.
2957 */
2958 free_clusters =
2959 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2960 dirty_clusters =
2961 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2962 /*
2963 * Start pushing delalloc when 1/2 of free blocks are dirty.
2964 */
2965 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2966 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2967
2968 if (2 * free_clusters < 3 * dirty_clusters ||
2969 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2970 /*
2971 * free block count is less than 150% of dirty blocks
2972 * or free blocks is less than watermark
2973 */
2974 return 1;
2975 }
2976 return 0;
2977}
2978
2979/* We always reserve for an inode update; the superblock could be there too */
2980static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2981{
2982 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2983 return 1;
2984
2985 if (pos + len <= 0x7fffffffULL)
2986 return 1;
2987
2988 /* We might need to update the superblock to set LARGE_FILE */
2989 return 2;
2990}
2991
2992static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2993 loff_t pos, unsigned len, unsigned flags,
2994 struct page **pagep, void **fsdata)
2995{
2996 int ret, retries = 0;
2997 struct page *page;
2998 pgoff_t index;
2999 struct inode *inode = mapping->host;
3000 handle_t *handle;
3001
3002 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3003 return -EIO;
3004
3005 index = pos >> PAGE_SHIFT;
3006
3007 if (ext4_nonda_switch(inode->i_sb) ||
3008 S_ISLNK(inode->i_mode)) {
3009 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3010 return ext4_write_begin(file, mapping, pos,
3011 len, flags, pagep, fsdata);
3012 }
3013 *fsdata = (void *)0;
3014 trace_ext4_da_write_begin(inode, pos, len, flags);
3015
3016 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3017 ret = ext4_da_write_inline_data_begin(mapping, inode,
3018 pos, len, flags,
3019 pagep, fsdata);
3020 if (ret < 0)
3021 return ret;
3022 if (ret == 1)
3023 return 0;
3024 }
3025
3026 /*
3027 * grab_cache_page_write_begin() can take a long time if the
3028 * system is thrashing due to memory pressure, or if the page
3029 * is being written back. So grab it first before we start
3030 * the transaction handle. This also allows us to allocate
3031 * the page (if needed) without using GFP_NOFS.
3032 */
3033retry_grab:
3034 page = grab_cache_page_write_begin(mapping, index, flags);
3035 if (!page)
3036 return -ENOMEM;
3037 unlock_page(page);
3038
3039 /*
3040 * With delayed allocation, we don't log the i_disksize update
3041 * if there is delayed block allocation. But we still need
3042 * to journalling the i_disksize update if writes to the end
3043 * of file which has an already mapped buffer.
3044 */
3045retry_journal:
3046 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3047 ext4_da_write_credits(inode, pos, len));
3048 if (IS_ERR(handle)) {
3049 put_page(page);
3050 return PTR_ERR(handle);
3051 }
3052
3053 lock_page(page);
3054 if (page->mapping != mapping) {
3055 /* The page got truncated from under us */
3056 unlock_page(page);
3057 put_page(page);
3058 ext4_journal_stop(handle);
3059 goto retry_grab;
3060 }
3061 /* In case writeback began while the page was unlocked */
3062 wait_for_stable_page(page);
3063
3064#ifdef CONFIG_EXT4_FS_ENCRYPTION
3065 ret = ext4_block_write_begin(page, pos, len,
3066 ext4_da_get_block_prep);
3067#else
3068 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3069#endif
3070 if (ret < 0) {
3071 unlock_page(page);
3072 ext4_journal_stop(handle);
3073 /*
3074 * block_write_begin may have instantiated a few blocks
3075 * outside i_size. Trim these off again. Don't need
3076 * i_size_read because we hold i_mutex.
3077 */
3078 if (pos + len > inode->i_size)
3079 ext4_truncate_failed_write(inode);
3080
3081 if (ret == -ENOSPC &&
3082 ext4_should_retry_alloc(inode->i_sb, &retries))
3083 goto retry_journal;
3084
3085 put_page(page);
3086 return ret;
3087 }
3088
3089 *pagep = page;
3090 return ret;
3091}
3092
3093/*
3094 * Check if we should update i_disksize
3095 * when write to the end of file but not require block allocation
3096 */
3097static int ext4_da_should_update_i_disksize(struct page *page,
3098 unsigned long offset)
3099{
3100 struct buffer_head *bh;
3101 struct inode *inode = page->mapping->host;
3102 unsigned int idx;
3103 int i;
3104
3105 bh = page_buffers(page);
3106 idx = offset >> inode->i_blkbits;
3107
3108 for (i = 0; i < idx; i++)
3109 bh = bh->b_this_page;
3110
3111 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3112 return 0;
3113 return 1;
3114}
3115
3116static int ext4_da_write_end(struct file *file,
3117 struct address_space *mapping,
3118 loff_t pos, unsigned len, unsigned copied,
3119 struct page *page, void *fsdata)
3120{
3121 struct inode *inode = mapping->host;
3122 int ret = 0, ret2;
3123 handle_t *handle = ext4_journal_current_handle();
3124 loff_t new_i_size;
3125 unsigned long start, end;
3126 int write_mode = (int)(unsigned long)fsdata;
3127
3128 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3129 return ext4_write_end(file, mapping, pos,
3130 len, copied, page, fsdata);
3131
3132 trace_ext4_da_write_end(inode, pos, len, copied);
3133 start = pos & (PAGE_SIZE - 1);
3134 end = start + copied - 1;
3135
3136 /*
3137 * generic_write_end() will run mark_inode_dirty() if i_size
3138 * changes. So let's piggyback the i_disksize mark_inode_dirty
3139 * into that.
3140 */
3141 new_i_size = pos + copied;
3142 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3143 if (ext4_has_inline_data(inode) ||
3144 ext4_da_should_update_i_disksize(page, end)) {
3145 ext4_update_i_disksize(inode, new_i_size);
3146 /* We need to mark inode dirty even if
3147 * new_i_size is less that inode->i_size
3148 * bu greater than i_disksize.(hint delalloc)
3149 */
3150 ext4_mark_inode_dirty(handle, inode);
3151 }
3152 }
3153
3154 if (write_mode != CONVERT_INLINE_DATA &&
3155 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3156 ext4_has_inline_data(inode))
3157 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3158 page);
3159 else
3160 ret2 = generic_write_end(file, mapping, pos, len, copied,
3161 page, fsdata);
3162
3163 copied = ret2;
3164 if (ret2 < 0)
3165 ret = ret2;
3166 ret2 = ext4_journal_stop(handle);
3167 if (!ret)
3168 ret = ret2;
3169
3170 return ret ? ret : copied;
3171}
3172
3173static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3174 unsigned int length)
3175{
3176 /*
3177 * Drop reserved blocks
3178 */
3179 BUG_ON(!PageLocked(page));
3180 if (!page_has_buffers(page))
3181 goto out;
3182
3183 ext4_da_page_release_reservation(page, offset, length);
3184
3185out:
3186 ext4_invalidatepage(page, offset, length);
3187
3188 return;
3189}
3190
3191/*
3192 * Force all delayed allocation blocks to be allocated for a given inode.
3193 */
3194int ext4_alloc_da_blocks(struct inode *inode)
3195{
3196 trace_ext4_alloc_da_blocks(inode);
3197
3198 if (!EXT4_I(inode)->i_reserved_data_blocks)
3199 return 0;
3200
3201 /*
3202 * We do something simple for now. The filemap_flush() will
3203 * also start triggering a write of the data blocks, which is
3204 * not strictly speaking necessary (and for users of
3205 * laptop_mode, not even desirable). However, to do otherwise
3206 * would require replicating code paths in:
3207 *
3208 * ext4_writepages() ->
3209 * write_cache_pages() ---> (via passed in callback function)
3210 * __mpage_da_writepage() -->
3211 * mpage_add_bh_to_extent()
3212 * mpage_da_map_blocks()
3213 *
3214 * The problem is that write_cache_pages(), located in
3215 * mm/page-writeback.c, marks pages clean in preparation for
3216 * doing I/O, which is not desirable if we're not planning on
3217 * doing I/O at all.
3218 *
3219 * We could call write_cache_pages(), and then redirty all of
3220 * the pages by calling redirty_page_for_writepage() but that
3221 * would be ugly in the extreme. So instead we would need to
3222 * replicate parts of the code in the above functions,
3223 * simplifying them because we wouldn't actually intend to
3224 * write out the pages, but rather only collect contiguous
3225 * logical block extents, call the multi-block allocator, and
3226 * then update the buffer heads with the block allocations.
3227 *
3228 * For now, though, we'll cheat by calling filemap_flush(),
3229 * which will map the blocks, and start the I/O, but not
3230 * actually wait for the I/O to complete.
3231 */
3232 return filemap_flush(inode->i_mapping);
3233}
3234
3235/*
3236 * bmap() is special. It gets used by applications such as lilo and by
3237 * the swapper to find the on-disk block of a specific piece of data.
3238 *
3239 * Naturally, this is dangerous if the block concerned is still in the
3240 * journal. If somebody makes a swapfile on an ext4 data-journaling
3241 * filesystem and enables swap, then they may get a nasty shock when the
3242 * data getting swapped to that swapfile suddenly gets overwritten by
3243 * the original zero's written out previously to the journal and
3244 * awaiting writeback in the kernel's buffer cache.
3245 *
3246 * So, if we see any bmap calls here on a modified, data-journaled file,
3247 * take extra steps to flush any blocks which might be in the cache.
3248 */
3249static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3250{
3251 struct inode *inode = mapping->host;
3252 journal_t *journal;
3253 int err;
3254
3255 /*
3256 * We can get here for an inline file via the FIBMAP ioctl
3257 */
3258 if (ext4_has_inline_data(inode))
3259 return 0;
3260
3261 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3262 test_opt(inode->i_sb, DELALLOC)) {
3263 /*
3264 * With delalloc we want to sync the file
3265 * so that we can make sure we allocate
3266 * blocks for file
3267 */
3268 filemap_write_and_wait(mapping);
3269 }
3270
3271 if (EXT4_JOURNAL(inode) &&
3272 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3273 /*
3274 * This is a REALLY heavyweight approach, but the use of
3275 * bmap on dirty files is expected to be extremely rare:
3276 * only if we run lilo or swapon on a freshly made file
3277 * do we expect this to happen.
3278 *
3279 * (bmap requires CAP_SYS_RAWIO so this does not
3280 * represent an unprivileged user DOS attack --- we'd be
3281 * in trouble if mortal users could trigger this path at
3282 * will.)
3283 *
3284 * NB. EXT4_STATE_JDATA is not set on files other than
3285 * regular files. If somebody wants to bmap a directory
3286 * or symlink and gets confused because the buffer
3287 * hasn't yet been flushed to disk, they deserve
3288 * everything they get.
3289 */
3290
3291 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3292 journal = EXT4_JOURNAL(inode);
3293 jbd2_journal_lock_updates(journal);
3294 err = jbd2_journal_flush(journal);
3295 jbd2_journal_unlock_updates(journal);
3296
3297 if (err)
3298 return 0;
3299 }
3300
3301 return generic_block_bmap(mapping, block, ext4_get_block);
3302}
3303
3304static int ext4_readpage(struct file *file, struct page *page)
3305{
3306 int ret = -EAGAIN;
3307 struct inode *inode = page->mapping->host;
3308
3309 trace_ext4_readpage(page);
3310
3311 if (ext4_has_inline_data(inode))
3312 ret = ext4_readpage_inline(inode, page);
3313
3314 if (ret == -EAGAIN)
3315 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3316
3317 return ret;
3318}
3319
3320static int
3321ext4_readpages(struct file *file, struct address_space *mapping,
3322 struct list_head *pages, unsigned nr_pages)
3323{
3324 struct inode *inode = mapping->host;
3325
3326 /* If the file has inline data, no need to do readpages. */
3327 if (ext4_has_inline_data(inode))
3328 return 0;
3329
3330 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3331}
3332
3333static void ext4_invalidatepage(struct page *page, unsigned int offset,
3334 unsigned int length)
3335{
3336 trace_ext4_invalidatepage(page, offset, length);
3337
3338 /* No journalling happens on data buffers when this function is used */
3339 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3340
3341 block_invalidatepage(page, offset, length);
3342}
3343
3344static int __ext4_journalled_invalidatepage(struct page *page,
3345 unsigned int offset,
3346 unsigned int length)
3347{
3348 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3349
3350 trace_ext4_journalled_invalidatepage(page, offset, length);
3351
3352 /*
3353 * If it's a full truncate we just forget about the pending dirtying
3354 */
3355 if (offset == 0 && length == PAGE_SIZE)
3356 ClearPageChecked(page);
3357
3358 return jbd2_journal_invalidatepage(journal, page, offset, length);
3359}
3360
3361/* Wrapper for aops... */
3362static void ext4_journalled_invalidatepage(struct page *page,
3363 unsigned int offset,
3364 unsigned int length)
3365{
3366 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3367}
3368
3369static int ext4_releasepage(struct page *page, gfp_t wait)
3370{
3371 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3372
3373 trace_ext4_releasepage(page);
3374
3375 /* Page has dirty journalled data -> cannot release */
3376 if (PageChecked(page))
3377 return 0;
3378 if (journal)
3379 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3380 else
3381 return try_to_free_buffers(page);
3382}
3383
3384#ifdef CONFIG_FS_DAX
3385static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3386 unsigned flags, struct iomap *iomap)
3387{
3388 struct block_device *bdev;
3389 unsigned int blkbits = inode->i_blkbits;
3390 unsigned long first_block = offset >> blkbits;
3391 unsigned long last_block = (offset + length - 1) >> blkbits;
3392 struct ext4_map_blocks map;
3393 int ret;
3394
3395 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3396 return -ERANGE;
3397
3398 map.m_lblk = first_block;
3399 map.m_len = last_block - first_block + 1;
3400
3401 if (!(flags & IOMAP_WRITE)) {
3402 ret = ext4_map_blocks(NULL, inode, &map, 0);
3403 } else {
3404 int dio_credits;
3405 handle_t *handle;
3406 int retries = 0;
3407
3408 /* Trim mapping request to maximum we can map at once for DIO */
3409 if (map.m_len > DIO_MAX_BLOCKS)
3410 map.m_len = DIO_MAX_BLOCKS;
3411 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3412retry:
3413 /*
3414 * Either we allocate blocks and then we don't get unwritten
3415 * extent so we have reserved enough credits, or the blocks
3416 * are already allocated and unwritten and in that case
3417 * extent conversion fits in the credits as well.
3418 */
3419 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3420 dio_credits);
3421 if (IS_ERR(handle))
3422 return PTR_ERR(handle);
3423
3424 ret = ext4_map_blocks(handle, inode, &map,
3425 EXT4_GET_BLOCKS_CREATE_ZERO);
3426 if (ret < 0) {
3427 ext4_journal_stop(handle);
3428 if (ret == -ENOSPC &&
3429 ext4_should_retry_alloc(inode->i_sb, &retries))
3430 goto retry;
3431 return ret;
3432 }
3433
3434 /*
3435 * If we added blocks beyond i_size, we need to make sure they
3436 * will get truncated if we crash before updating i_size in
3437 * ext4_iomap_end(). For faults we don't need to do that (and
3438 * even cannot because for orphan list operations inode_lock is
3439 * required) - if we happen to instantiate block beyond i_size,
3440 * it is because we race with truncate which has already added
3441 * the inode to the orphan list.
3442 */
3443 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3444 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3445 int err;
3446
3447 err = ext4_orphan_add(handle, inode);
3448 if (err < 0) {
3449 ext4_journal_stop(handle);
3450 return err;
3451 }
3452 }
3453 ext4_journal_stop(handle);
3454 }
3455
3456 iomap->flags = 0;
3457 bdev = inode->i_sb->s_bdev;
3458 iomap->bdev = bdev;
3459 if (blk_queue_dax(bdev->bd_queue))
3460 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3461 else
3462 iomap->dax_dev = NULL;
3463 iomap->offset = first_block << blkbits;
3464
3465 if (ret == 0) {
3466 iomap->type = IOMAP_HOLE;
3467 iomap->blkno = IOMAP_NULL_BLOCK;
3468 iomap->length = (u64)map.m_len << blkbits;
3469 } else {
3470 if (map.m_flags & EXT4_MAP_MAPPED) {
3471 iomap->type = IOMAP_MAPPED;
3472 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3473 iomap->type = IOMAP_UNWRITTEN;
3474 } else {
3475 WARN_ON_ONCE(1);
3476 return -EIO;
3477 }
3478 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3479 iomap->length = (u64)map.m_len << blkbits;
3480 }
3481
3482 if (map.m_flags & EXT4_MAP_NEW)
3483 iomap->flags |= IOMAP_F_NEW;
3484 return 0;
3485}
3486
3487static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3488 ssize_t written, unsigned flags, struct iomap *iomap)
3489{
3490 int ret = 0;
3491 handle_t *handle;
3492 int blkbits = inode->i_blkbits;
3493 bool truncate = false;
3494
3495 fs_put_dax(iomap->dax_dev);
3496 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3497 return 0;
3498
3499 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3500 if (IS_ERR(handle)) {
3501 ret = PTR_ERR(handle);
3502 goto orphan_del;
3503 }
3504 if (ext4_update_inode_size(inode, offset + written))
3505 ext4_mark_inode_dirty(handle, inode);
3506 /*
3507 * We may need to truncate allocated but not written blocks beyond EOF.
3508 */
3509 if (iomap->offset + iomap->length >
3510 ALIGN(inode->i_size, 1 << blkbits)) {
3511 ext4_lblk_t written_blk, end_blk;
3512
3513 written_blk = (offset + written) >> blkbits;
3514 end_blk = (offset + length) >> blkbits;
3515 if (written_blk < end_blk && ext4_can_truncate(inode))
3516 truncate = true;
3517 }
3518 /*
3519 * Remove inode from orphan list if we were extending a inode and
3520 * everything went fine.
3521 */
3522 if (!truncate && inode->i_nlink &&
3523 !list_empty(&EXT4_I(inode)->i_orphan))
3524 ext4_orphan_del(handle, inode);
3525 ext4_journal_stop(handle);
3526 if (truncate) {
3527 ext4_truncate_failed_write(inode);
3528orphan_del:
3529 /*
3530 * If truncate failed early the inode might still be on the
3531 * orphan list; we need to make sure the inode is removed from
3532 * the orphan list in that case.
3533 */
3534 if (inode->i_nlink)
3535 ext4_orphan_del(NULL, inode);
3536 }
3537 return ret;
3538}
3539
3540const struct iomap_ops ext4_iomap_ops = {
3541 .iomap_begin = ext4_iomap_begin,
3542 .iomap_end = ext4_iomap_end,
3543};
3544
3545#endif
3546
3547static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3548 ssize_t size, void *private)
3549{
3550 ext4_io_end_t *io_end = private;
3551
3552 /* if not async direct IO just return */
3553 if (!io_end)
3554 return 0;
3555
3556 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3557 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3558 io_end, io_end->inode->i_ino, iocb, offset, size);
3559
3560 /*
3561 * Error during AIO DIO. We cannot convert unwritten extents as the
3562 * data was not written. Just clear the unwritten flag and drop io_end.
3563 */
3564 if (size <= 0) {
3565 ext4_clear_io_unwritten_flag(io_end);
3566 size = 0;
3567 }
3568 io_end->offset = offset;
3569 io_end->size = size;
3570 ext4_put_io_end(io_end);
3571
3572 return 0;
3573}
3574
3575/*
3576 * Handling of direct IO writes.
3577 *
3578 * For ext4 extent files, ext4 will do direct-io write even to holes,
3579 * preallocated extents, and those write extend the file, no need to
3580 * fall back to buffered IO.
3581 *
3582 * For holes, we fallocate those blocks, mark them as unwritten
3583 * If those blocks were preallocated, we mark sure they are split, but
3584 * still keep the range to write as unwritten.
3585 *
3586 * The unwritten extents will be converted to written when DIO is completed.
3587 * For async direct IO, since the IO may still pending when return, we
3588 * set up an end_io call back function, which will do the conversion
3589 * when async direct IO completed.
3590 *
3591 * If the O_DIRECT write will extend the file then add this inode to the
3592 * orphan list. So recovery will truncate it back to the original size
3593 * if the machine crashes during the write.
3594 *
3595 */
3596static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3597{
3598 struct file *file = iocb->ki_filp;
3599 struct inode *inode = file->f_mapping->host;
3600 struct ext4_inode_info *ei = EXT4_I(inode);
3601 ssize_t ret;
3602 loff_t offset = iocb->ki_pos;
3603 size_t count = iov_iter_count(iter);
3604 int overwrite = 0;
3605 get_block_t *get_block_func = NULL;
3606 int dio_flags = 0;
3607 loff_t final_size = offset + count;
3608 int orphan = 0;
3609 handle_t *handle;
3610
3611 if (final_size > inode->i_size) {
3612 /* Credits for sb + inode write */
3613 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3614 if (IS_ERR(handle)) {
3615 ret = PTR_ERR(handle);
3616 goto out;
3617 }
3618 ret = ext4_orphan_add(handle, inode);
3619 if (ret) {
3620 ext4_journal_stop(handle);
3621 goto out;
3622 }
3623 orphan = 1;
3624 ei->i_disksize = inode->i_size;
3625 ext4_journal_stop(handle);
3626 }
3627
3628 BUG_ON(iocb->private == NULL);
3629
3630 /*
3631 * Make all waiters for direct IO properly wait also for extent
3632 * conversion. This also disallows race between truncate() and
3633 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3634 */
3635 inode_dio_begin(inode);
3636
3637 /* If we do a overwrite dio, i_mutex locking can be released */
3638 overwrite = *((int *)iocb->private);
3639
3640 if (overwrite)
3641 inode_unlock(inode);
3642
3643 /*
3644 * For extent mapped files we could direct write to holes and fallocate.
3645 *
3646 * Allocated blocks to fill the hole are marked as unwritten to prevent
3647 * parallel buffered read to expose the stale data before DIO complete
3648 * the data IO.
3649 *
3650 * As to previously fallocated extents, ext4 get_block will just simply
3651 * mark the buffer mapped but still keep the extents unwritten.
3652 *
3653 * For non AIO case, we will convert those unwritten extents to written
3654 * after return back from blockdev_direct_IO. That way we save us from
3655 * allocating io_end structure and also the overhead of offloading
3656 * the extent convertion to a workqueue.
3657 *
3658 * For async DIO, the conversion needs to be deferred when the
3659 * IO is completed. The ext4 end_io callback function will be
3660 * called to take care of the conversion work. Here for async
3661 * case, we allocate an io_end structure to hook to the iocb.
3662 */
3663 iocb->private = NULL;
3664 if (overwrite)
3665 get_block_func = ext4_dio_get_block_overwrite;
3666 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3667 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3668 get_block_func = ext4_dio_get_block;
3669 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3670 } else if (is_sync_kiocb(iocb)) {
3671 get_block_func = ext4_dio_get_block_unwritten_sync;
3672 dio_flags = DIO_LOCKING;
3673 } else {
3674 get_block_func = ext4_dio_get_block_unwritten_async;
3675 dio_flags = DIO_LOCKING;
3676 }
3677 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3678 get_block_func, ext4_end_io_dio, NULL,
3679 dio_flags);
3680
3681 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3682 EXT4_STATE_DIO_UNWRITTEN)) {
3683 int err;
3684 /*
3685 * for non AIO case, since the IO is already
3686 * completed, we could do the conversion right here
3687 */
3688 err = ext4_convert_unwritten_extents(NULL, inode,
3689 offset, ret);
3690 if (err < 0)
3691 ret = err;
3692 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3693 }
3694
3695 inode_dio_end(inode);
3696 /* take i_mutex locking again if we do a ovewrite dio */
3697 if (overwrite)
3698 inode_lock(inode);
3699
3700 if (ret < 0 && final_size > inode->i_size)
3701 ext4_truncate_failed_write(inode);
3702
3703 /* Handle extending of i_size after direct IO write */
3704 if (orphan) {
3705 int err;
3706
3707 /* Credits for sb + inode write */
3708 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3709 if (IS_ERR(handle)) {
3710 /* This is really bad luck. We've written the data
3711 * but cannot extend i_size. Bail out and pretend
3712 * the write failed... */
3713 ret = PTR_ERR(handle);
3714 if (inode->i_nlink)
3715 ext4_orphan_del(NULL, inode);
3716
3717 goto out;
3718 }
3719 if (inode->i_nlink)
3720 ext4_orphan_del(handle, inode);
3721 if (ret > 0) {
3722 loff_t end = offset + ret;
3723 if (end > inode->i_size) {
3724 ei->i_disksize = end;
3725 i_size_write(inode, end);
3726 /*
3727 * We're going to return a positive `ret'
3728 * here due to non-zero-length I/O, so there's
3729 * no way of reporting error returns from
3730 * ext4_mark_inode_dirty() to userspace. So
3731 * ignore it.
3732 */
3733 ext4_mark_inode_dirty(handle, inode);
3734 }
3735 }
3736 err = ext4_journal_stop(handle);
3737 if (ret == 0)
3738 ret = err;
3739 }
3740out:
3741 return ret;
3742}
3743
3744static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3745{
3746 struct address_space *mapping = iocb->ki_filp->f_mapping;
3747 struct inode *inode = mapping->host;
3748 size_t count = iov_iter_count(iter);
3749 ssize_t ret;
3750
3751 /*
3752 * Shared inode_lock is enough for us - it protects against concurrent
3753 * writes & truncates and since we take care of writing back page cache,
3754 * we are protected against page writeback as well.
3755 */
3756 inode_lock_shared(inode);
3757 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3758 iocb->ki_pos + count - 1);
3759 if (ret)
3760 goto out_unlock;
3761 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3762 iter, ext4_dio_get_block, NULL, NULL, 0);
3763out_unlock:
3764 inode_unlock_shared(inode);
3765 return ret;
3766}
3767
3768static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3769{
3770 struct file *file = iocb->ki_filp;
3771 struct inode *inode = file->f_mapping->host;
3772 size_t count = iov_iter_count(iter);
3773 loff_t offset = iocb->ki_pos;
3774 ssize_t ret;
3775
3776#ifdef CONFIG_EXT4_FS_ENCRYPTION
3777 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3778 return 0;
3779#endif
3780
3781 /*
3782 * If we are doing data journalling we don't support O_DIRECT
3783 */
3784 if (ext4_should_journal_data(inode))
3785 return 0;
3786
3787 /* Let buffer I/O handle the inline data case. */
3788 if (ext4_has_inline_data(inode))
3789 return 0;
3790
3791 /* DAX uses iomap path now */
3792 if (WARN_ON_ONCE(IS_DAX(inode)))
3793 return 0;
3794
3795 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3796 if (iov_iter_rw(iter) == READ)
3797 ret = ext4_direct_IO_read(iocb, iter);
3798 else
3799 ret = ext4_direct_IO_write(iocb, iter);
3800 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3801 return ret;
3802}
3803
3804/*
3805 * Pages can be marked dirty completely asynchronously from ext4's journalling
3806 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3807 * much here because ->set_page_dirty is called under VFS locks. The page is
3808 * not necessarily locked.
3809 *
3810 * We cannot just dirty the page and leave attached buffers clean, because the
3811 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3812 * or jbddirty because all the journalling code will explode.
3813 *
3814 * So what we do is to mark the page "pending dirty" and next time writepage
3815 * is called, propagate that into the buffers appropriately.
3816 */
3817static int ext4_journalled_set_page_dirty(struct page *page)
3818{
3819 SetPageChecked(page);
3820 return __set_page_dirty_nobuffers(page);
3821}
3822
3823static int ext4_set_page_dirty(struct page *page)
3824{
3825 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3826 WARN_ON_ONCE(!page_has_buffers(page));
3827 return __set_page_dirty_buffers(page);
3828}
3829
3830static const struct address_space_operations ext4_aops = {
3831 .readpage = ext4_readpage,
3832 .readpages = ext4_readpages,
3833 .writepage = ext4_writepage,
3834 .writepages = ext4_writepages,
3835 .write_begin = ext4_write_begin,
3836 .write_end = ext4_write_end,
3837 .set_page_dirty = ext4_set_page_dirty,
3838 .bmap = ext4_bmap,
3839 .invalidatepage = ext4_invalidatepage,
3840 .releasepage = ext4_releasepage,
3841 .direct_IO = ext4_direct_IO,
3842 .migratepage = buffer_migrate_page,
3843 .is_partially_uptodate = block_is_partially_uptodate,
3844 .error_remove_page = generic_error_remove_page,
3845};
3846
3847static const struct address_space_operations ext4_journalled_aops = {
3848 .readpage = ext4_readpage,
3849 .readpages = ext4_readpages,
3850 .writepage = ext4_writepage,
3851 .writepages = ext4_writepages,
3852 .write_begin = ext4_write_begin,
3853 .write_end = ext4_journalled_write_end,
3854 .set_page_dirty = ext4_journalled_set_page_dirty,
3855 .bmap = ext4_bmap,
3856 .invalidatepage = ext4_journalled_invalidatepage,
3857 .releasepage = ext4_releasepage,
3858 .direct_IO = ext4_direct_IO,
3859 .is_partially_uptodate = block_is_partially_uptodate,
3860 .error_remove_page = generic_error_remove_page,
3861};
3862
3863static const struct address_space_operations ext4_da_aops = {
3864 .readpage = ext4_readpage,
3865 .readpages = ext4_readpages,
3866 .writepage = ext4_writepage,
3867 .writepages = ext4_writepages,
3868 .write_begin = ext4_da_write_begin,
3869 .write_end = ext4_da_write_end,
3870 .set_page_dirty = ext4_set_page_dirty,
3871 .bmap = ext4_bmap,
3872 .invalidatepage = ext4_da_invalidatepage,
3873 .releasepage = ext4_releasepage,
3874 .direct_IO = ext4_direct_IO,
3875 .migratepage = buffer_migrate_page,
3876 .is_partially_uptodate = block_is_partially_uptodate,
3877 .error_remove_page = generic_error_remove_page,
3878};
3879
3880void ext4_set_aops(struct inode *inode)
3881{
3882 switch (ext4_inode_journal_mode(inode)) {
3883 case EXT4_INODE_ORDERED_DATA_MODE:
3884 case EXT4_INODE_WRITEBACK_DATA_MODE:
3885 break;
3886 case EXT4_INODE_JOURNAL_DATA_MODE:
3887 inode->i_mapping->a_ops = &ext4_journalled_aops;
3888 return;
3889 default:
3890 BUG();
3891 }
3892 if (test_opt(inode->i_sb, DELALLOC))
3893 inode->i_mapping->a_ops = &ext4_da_aops;
3894 else
3895 inode->i_mapping->a_ops = &ext4_aops;
3896}
3897
3898static int __ext4_block_zero_page_range(handle_t *handle,
3899 struct address_space *mapping, loff_t from, loff_t length)
3900{
3901 ext4_fsblk_t index = from >> PAGE_SHIFT;
3902 unsigned offset = from & (PAGE_SIZE-1);
3903 unsigned blocksize, pos;
3904 ext4_lblk_t iblock;
3905 struct inode *inode = mapping->host;
3906 struct buffer_head *bh;
3907 struct page *page;
3908 int err = 0;
3909
3910 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3911 mapping_gfp_constraint(mapping, ~__GFP_FS));
3912 if (!page)
3913 return -ENOMEM;
3914
3915 blocksize = inode->i_sb->s_blocksize;
3916
3917 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3918
3919 if (!page_has_buffers(page))
3920 create_empty_buffers(page, blocksize, 0);
3921
3922 /* Find the buffer that contains "offset" */
3923 bh = page_buffers(page);
3924 pos = blocksize;
3925 while (offset >= pos) {
3926 bh = bh->b_this_page;
3927 iblock++;
3928 pos += blocksize;
3929 }
3930 if (buffer_freed(bh)) {
3931 BUFFER_TRACE(bh, "freed: skip");
3932 goto unlock;
3933 }
3934 if (!buffer_mapped(bh)) {
3935 BUFFER_TRACE(bh, "unmapped");
3936 ext4_get_block(inode, iblock, bh, 0);
3937 /* unmapped? It's a hole - nothing to do */
3938 if (!buffer_mapped(bh)) {
3939 BUFFER_TRACE(bh, "still unmapped");
3940 goto unlock;
3941 }
3942 }
3943
3944 /* Ok, it's mapped. Make sure it's up-to-date */
3945 if (PageUptodate(page))
3946 set_buffer_uptodate(bh);
3947
3948 if (!buffer_uptodate(bh)) {
3949 err = -EIO;
3950 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3951 wait_on_buffer(bh);
3952 /* Uhhuh. Read error. Complain and punt. */
3953 if (!buffer_uptodate(bh))
3954 goto unlock;
3955 if (S_ISREG(inode->i_mode) &&
3956 ext4_encrypted_inode(inode)) {
3957 /* We expect the key to be set. */
3958 BUG_ON(!fscrypt_has_encryption_key(inode));
3959 BUG_ON(blocksize != PAGE_SIZE);
3960 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3961 page, PAGE_SIZE, 0, page->index));
3962 }
3963 }
3964 if (ext4_should_journal_data(inode)) {
3965 BUFFER_TRACE(bh, "get write access");
3966 err = ext4_journal_get_write_access(handle, bh);
3967 if (err)
3968 goto unlock;
3969 }
3970 zero_user(page, offset, length);
3971 BUFFER_TRACE(bh, "zeroed end of block");
3972
3973 if (ext4_should_journal_data(inode)) {
3974 err = ext4_handle_dirty_metadata(handle, inode, bh);
3975 } else {
3976 err = 0;
3977 mark_buffer_dirty(bh);
3978 if (ext4_should_order_data(inode))
3979 err = ext4_jbd2_inode_add_write(handle, inode);
3980 }
3981
3982unlock:
3983 unlock_page(page);
3984 put_page(page);
3985 return err;
3986}
3987
3988/*
3989 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3990 * starting from file offset 'from'. The range to be zero'd must
3991 * be contained with in one block. If the specified range exceeds
3992 * the end of the block it will be shortened to end of the block
3993 * that cooresponds to 'from'
3994 */
3995static int ext4_block_zero_page_range(handle_t *handle,
3996 struct address_space *mapping, loff_t from, loff_t length)
3997{
3998 struct inode *inode = mapping->host;
3999 unsigned offset = from & (PAGE_SIZE-1);
4000 unsigned blocksize = inode->i_sb->s_blocksize;
4001 unsigned max = blocksize - (offset & (blocksize - 1));
4002
4003 /*
4004 * correct length if it does not fall between
4005 * 'from' and the end of the block
4006 */
4007 if (length > max || length < 0)
4008 length = max;
4009
4010 if (IS_DAX(inode)) {
4011 return iomap_zero_range(inode, from, length, NULL,
4012 &ext4_iomap_ops);
4013 }
4014 return __ext4_block_zero_page_range(handle, mapping, from, length);
4015}
4016
4017/*
4018 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4019 * up to the end of the block which corresponds to `from'.
4020 * This required during truncate. We need to physically zero the tail end
4021 * of that block so it doesn't yield old data if the file is later grown.
4022 */
4023static int ext4_block_truncate_page(handle_t *handle,
4024 struct address_space *mapping, loff_t from)
4025{
4026 unsigned offset = from & (PAGE_SIZE-1);
4027 unsigned length;
4028 unsigned blocksize;
4029 struct inode *inode = mapping->host;
4030
4031 /* If we are processing an encrypted inode during orphan list handling */
4032 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4033 return 0;
4034
4035 blocksize = inode->i_sb->s_blocksize;
4036 length = blocksize - (offset & (blocksize - 1));
4037
4038 return ext4_block_zero_page_range(handle, mapping, from, length);
4039}
4040
4041int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4042 loff_t lstart, loff_t length)
4043{
4044 struct super_block *sb = inode->i_sb;
4045 struct address_space *mapping = inode->i_mapping;
4046 unsigned partial_start, partial_end;
4047 ext4_fsblk_t start, end;
4048 loff_t byte_end = (lstart + length - 1);
4049 int err = 0;
4050
4051 partial_start = lstart & (sb->s_blocksize - 1);
4052 partial_end = byte_end & (sb->s_blocksize - 1);
4053
4054 start = lstart >> sb->s_blocksize_bits;
4055 end = byte_end >> sb->s_blocksize_bits;
4056
4057 /* Handle partial zero within the single block */
4058 if (start == end &&
4059 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4060 err = ext4_block_zero_page_range(handle, mapping,
4061 lstart, length);
4062 return err;
4063 }
4064 /* Handle partial zero out on the start of the range */
4065 if (partial_start) {
4066 err = ext4_block_zero_page_range(handle, mapping,
4067 lstart, sb->s_blocksize);
4068 if (err)
4069 return err;
4070 }
4071 /* Handle partial zero out on the end of the range */
4072 if (partial_end != sb->s_blocksize - 1)
4073 err = ext4_block_zero_page_range(handle, mapping,
4074 byte_end - partial_end,
4075 partial_end + 1);
4076 return err;
4077}
4078
4079int ext4_can_truncate(struct inode *inode)
4080{
4081 if (S_ISREG(inode->i_mode))
4082 return 1;
4083 if (S_ISDIR(inode->i_mode))
4084 return 1;
4085 if (S_ISLNK(inode->i_mode))
4086 return !ext4_inode_is_fast_symlink(inode);
4087 return 0;
4088}
4089
4090/*
4091 * We have to make sure i_disksize gets properly updated before we truncate
4092 * page cache due to hole punching or zero range. Otherwise i_disksize update
4093 * can get lost as it may have been postponed to submission of writeback but
4094 * that will never happen after we truncate page cache.
4095 */
4096int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4097 loff_t len)
4098{
4099 handle_t *handle;
4100 loff_t size = i_size_read(inode);
4101
4102 WARN_ON(!inode_is_locked(inode));
4103 if (offset > size || offset + len < size)
4104 return 0;
4105
4106 if (EXT4_I(inode)->i_disksize >= size)
4107 return 0;
4108
4109 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4110 if (IS_ERR(handle))
4111 return PTR_ERR(handle);
4112 ext4_update_i_disksize(inode, size);
4113 ext4_mark_inode_dirty(handle, inode);
4114 ext4_journal_stop(handle);
4115
4116 return 0;
4117}
4118
4119/*
4120 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4121 * associated with the given offset and length
4122 *
4123 * @inode: File inode
4124 * @offset: The offset where the hole will begin
4125 * @len: The length of the hole
4126 *
4127 * Returns: 0 on success or negative on failure
4128 */
4129
4130int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4131{
4132 struct super_block *sb = inode->i_sb;
4133 ext4_lblk_t first_block, stop_block;
4134 struct address_space *mapping = inode->i_mapping;
4135 loff_t first_block_offset, last_block_offset;
4136 handle_t *handle;
4137 unsigned int credits;
4138 int ret = 0;
4139
4140 if (!S_ISREG(inode->i_mode))
4141 return -EOPNOTSUPP;
4142
4143 trace_ext4_punch_hole(inode, offset, length, 0);
4144
4145 /*
4146 * Write out all dirty pages to avoid race conditions
4147 * Then release them.
4148 */
4149 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4150 ret = filemap_write_and_wait_range(mapping, offset,
4151 offset + length - 1);
4152 if (ret)
4153 return ret;
4154 }
4155
4156 inode_lock(inode);
4157
4158 /* No need to punch hole beyond i_size */
4159 if (offset >= inode->i_size)
4160 goto out_mutex;
4161
4162 /*
4163 * If the hole extends beyond i_size, set the hole
4164 * to end after the page that contains i_size
4165 */
4166 if (offset + length > inode->i_size) {
4167 length = inode->i_size +
4168 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4169 offset;
4170 }
4171
4172 if (offset & (sb->s_blocksize - 1) ||
4173 (offset + length) & (sb->s_blocksize - 1)) {
4174 /*
4175 * Attach jinode to inode for jbd2 if we do any zeroing of
4176 * partial block
4177 */
4178 ret = ext4_inode_attach_jinode(inode);
4179 if (ret < 0)
4180 goto out_mutex;
4181
4182 }
4183
4184 /* Wait all existing dio workers, newcomers will block on i_mutex */
4185 ext4_inode_block_unlocked_dio(inode);
4186 inode_dio_wait(inode);
4187
4188 /*
4189 * Prevent page faults from reinstantiating pages we have released from
4190 * page cache.
4191 */
4192 down_write(&EXT4_I(inode)->i_mmap_sem);
4193 first_block_offset = round_up(offset, sb->s_blocksize);
4194 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4195
4196 /* Now release the pages and zero block aligned part of pages*/
4197 if (last_block_offset > first_block_offset) {
4198 ret = ext4_update_disksize_before_punch(inode, offset, length);
4199 if (ret)
4200 goto out_dio;
4201 truncate_pagecache_range(inode, first_block_offset,
4202 last_block_offset);
4203 }
4204
4205 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4206 credits = ext4_writepage_trans_blocks(inode);
4207 else
4208 credits = ext4_blocks_for_truncate(inode);
4209 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4210 if (IS_ERR(handle)) {
4211 ret = PTR_ERR(handle);
4212 ext4_std_error(sb, ret);
4213 goto out_dio;
4214 }
4215
4216 ret = ext4_zero_partial_blocks(handle, inode, offset,
4217 length);
4218 if (ret)
4219 goto out_stop;
4220
4221 first_block = (offset + sb->s_blocksize - 1) >>
4222 EXT4_BLOCK_SIZE_BITS(sb);
4223 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4224
4225 /* If there are no blocks to remove, return now */
4226 if (first_block >= stop_block)
4227 goto out_stop;
4228
4229 down_write(&EXT4_I(inode)->i_data_sem);
4230 ext4_discard_preallocations(inode);
4231
4232 ret = ext4_es_remove_extent(inode, first_block,
4233 stop_block - first_block);
4234 if (ret) {
4235 up_write(&EXT4_I(inode)->i_data_sem);
4236 goto out_stop;
4237 }
4238
4239 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4240 ret = ext4_ext_remove_space(inode, first_block,
4241 stop_block - 1);
4242 else
4243 ret = ext4_ind_remove_space(handle, inode, first_block,
4244 stop_block);
4245
4246 up_write(&EXT4_I(inode)->i_data_sem);
4247 if (IS_SYNC(inode))
4248 ext4_handle_sync(handle);
4249
4250 inode->i_mtime = inode->i_ctime = current_time(inode);
4251 ext4_mark_inode_dirty(handle, inode);
4252 if (ret >= 0)
4253 ext4_update_inode_fsync_trans(handle, inode, 1);
4254out_stop:
4255 ext4_journal_stop(handle);
4256out_dio:
4257 up_write(&EXT4_I(inode)->i_mmap_sem);
4258 ext4_inode_resume_unlocked_dio(inode);
4259out_mutex:
4260 inode_unlock(inode);
4261 return ret;
4262}
4263
4264int ext4_inode_attach_jinode(struct inode *inode)
4265{
4266 struct ext4_inode_info *ei = EXT4_I(inode);
4267 struct jbd2_inode *jinode;
4268
4269 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4270 return 0;
4271
4272 jinode = jbd2_alloc_inode(GFP_KERNEL);
4273 spin_lock(&inode->i_lock);
4274 if (!ei->jinode) {
4275 if (!jinode) {
4276 spin_unlock(&inode->i_lock);
4277 return -ENOMEM;
4278 }
4279 ei->jinode = jinode;
4280 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4281 jinode = NULL;
4282 }
4283 spin_unlock(&inode->i_lock);
4284 if (unlikely(jinode != NULL))
4285 jbd2_free_inode(jinode);
4286 return 0;
4287}
4288
4289/*
4290 * ext4_truncate()
4291 *
4292 * We block out ext4_get_block() block instantiations across the entire
4293 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4294 * simultaneously on behalf of the same inode.
4295 *
4296 * As we work through the truncate and commit bits of it to the journal there
4297 * is one core, guiding principle: the file's tree must always be consistent on
4298 * disk. We must be able to restart the truncate after a crash.
4299 *
4300 * The file's tree may be transiently inconsistent in memory (although it
4301 * probably isn't), but whenever we close off and commit a journal transaction,
4302 * the contents of (the filesystem + the journal) must be consistent and
4303 * restartable. It's pretty simple, really: bottom up, right to left (although
4304 * left-to-right works OK too).
4305 *
4306 * Note that at recovery time, journal replay occurs *before* the restart of
4307 * truncate against the orphan inode list.
4308 *
4309 * The committed inode has the new, desired i_size (which is the same as
4310 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4311 * that this inode's truncate did not complete and it will again call
4312 * ext4_truncate() to have another go. So there will be instantiated blocks
4313 * to the right of the truncation point in a crashed ext4 filesystem. But
4314 * that's fine - as long as they are linked from the inode, the post-crash
4315 * ext4_truncate() run will find them and release them.
4316 */
4317int ext4_truncate(struct inode *inode)
4318{
4319 struct ext4_inode_info *ei = EXT4_I(inode);
4320 unsigned int credits;
4321 int err = 0;
4322 handle_t *handle;
4323 struct address_space *mapping = inode->i_mapping;
4324
4325 /*
4326 * There is a possibility that we're either freeing the inode
4327 * or it's a completely new inode. In those cases we might not
4328 * have i_mutex locked because it's not necessary.
4329 */
4330 if (!(inode->i_state & (I_NEW|I_FREEING)))
4331 WARN_ON(!inode_is_locked(inode));
4332 trace_ext4_truncate_enter(inode);
4333
4334 if (!ext4_can_truncate(inode))
4335 return 0;
4336
4337 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4338
4339 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4340 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4341
4342 if (ext4_has_inline_data(inode)) {
4343 int has_inline = 1;
4344
4345 err = ext4_inline_data_truncate(inode, &has_inline);
4346 if (err)
4347 return err;
4348 if (has_inline)
4349 return 0;
4350 }
4351
4352 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4353 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4354 if (ext4_inode_attach_jinode(inode) < 0)
4355 return 0;
4356 }
4357
4358 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4359 credits = ext4_writepage_trans_blocks(inode);
4360 else
4361 credits = ext4_blocks_for_truncate(inode);
4362
4363 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4364 if (IS_ERR(handle))
4365 return PTR_ERR(handle);
4366
4367 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4368 ext4_block_truncate_page(handle, mapping, inode->i_size);
4369
4370 /*
4371 * We add the inode to the orphan list, so that if this
4372 * truncate spans multiple transactions, and we crash, we will
4373 * resume the truncate when the filesystem recovers. It also
4374 * marks the inode dirty, to catch the new size.
4375 *
4376 * Implication: the file must always be in a sane, consistent
4377 * truncatable state while each transaction commits.
4378 */
4379 err = ext4_orphan_add(handle, inode);
4380 if (err)
4381 goto out_stop;
4382
4383 down_write(&EXT4_I(inode)->i_data_sem);
4384
4385 ext4_discard_preallocations(inode);
4386
4387 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4388 err = ext4_ext_truncate(handle, inode);
4389 else
4390 ext4_ind_truncate(handle, inode);
4391
4392 up_write(&ei->i_data_sem);
4393 if (err)
4394 goto out_stop;
4395
4396 if (IS_SYNC(inode))
4397 ext4_handle_sync(handle);
4398
4399out_stop:
4400 /*
4401 * If this was a simple ftruncate() and the file will remain alive,
4402 * then we need to clear up the orphan record which we created above.
4403 * However, if this was a real unlink then we were called by
4404 * ext4_evict_inode(), and we allow that function to clean up the
4405 * orphan info for us.
4406 */
4407 if (inode->i_nlink)
4408 ext4_orphan_del(handle, inode);
4409
4410 inode->i_mtime = inode->i_ctime = current_time(inode);
4411 ext4_mark_inode_dirty(handle, inode);
4412 ext4_journal_stop(handle);
4413
4414 trace_ext4_truncate_exit(inode);
4415 return err;
4416}
4417
4418/*
4419 * ext4_get_inode_loc returns with an extra refcount against the inode's
4420 * underlying buffer_head on success. If 'in_mem' is true, we have all
4421 * data in memory that is needed to recreate the on-disk version of this
4422 * inode.
4423 */
4424static int __ext4_get_inode_loc(struct inode *inode,
4425 struct ext4_iloc *iloc, int in_mem)
4426{
4427 struct ext4_group_desc *gdp;
4428 struct buffer_head *bh;
4429 struct super_block *sb = inode->i_sb;
4430 ext4_fsblk_t block;
4431 int inodes_per_block, inode_offset;
4432
4433 iloc->bh = NULL;
4434 if (!ext4_valid_inum(sb, inode->i_ino))
4435 return -EFSCORRUPTED;
4436
4437 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4438 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4439 if (!gdp)
4440 return -EIO;
4441
4442 /*
4443 * Figure out the offset within the block group inode table
4444 */
4445 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4446 inode_offset = ((inode->i_ino - 1) %
4447 EXT4_INODES_PER_GROUP(sb));
4448 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4449 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4450
4451 bh = sb_getblk(sb, block);
4452 if (unlikely(!bh))
4453 return -ENOMEM;
4454 if (!buffer_uptodate(bh)) {
4455 lock_buffer(bh);
4456
4457 /*
4458 * If the buffer has the write error flag, we have failed
4459 * to write out another inode in the same block. In this
4460 * case, we don't have to read the block because we may
4461 * read the old inode data successfully.
4462 */
4463 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4464 set_buffer_uptodate(bh);
4465
4466 if (buffer_uptodate(bh)) {
4467 /* someone brought it uptodate while we waited */
4468 unlock_buffer(bh);
4469 goto has_buffer;
4470 }
4471
4472 /*
4473 * If we have all information of the inode in memory and this
4474 * is the only valid inode in the block, we need not read the
4475 * block.
4476 */
4477 if (in_mem) {
4478 struct buffer_head *bitmap_bh;
4479 int i, start;
4480
4481 start = inode_offset & ~(inodes_per_block - 1);
4482
4483 /* Is the inode bitmap in cache? */
4484 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4485 if (unlikely(!bitmap_bh))
4486 goto make_io;
4487
4488 /*
4489 * If the inode bitmap isn't in cache then the
4490 * optimisation may end up performing two reads instead
4491 * of one, so skip it.
4492 */
4493 if (!buffer_uptodate(bitmap_bh)) {
4494 brelse(bitmap_bh);
4495 goto make_io;
4496 }
4497 for (i = start; i < start + inodes_per_block; i++) {
4498 if (i == inode_offset)
4499 continue;
4500 if (ext4_test_bit(i, bitmap_bh->b_data))
4501 break;
4502 }
4503 brelse(bitmap_bh);
4504 if (i == start + inodes_per_block) {
4505 /* all other inodes are free, so skip I/O */
4506 memset(bh->b_data, 0, bh->b_size);
4507 set_buffer_uptodate(bh);
4508 unlock_buffer(bh);
4509 goto has_buffer;
4510 }
4511 }
4512
4513make_io:
4514 /*
4515 * If we need to do any I/O, try to pre-readahead extra
4516 * blocks from the inode table.
4517 */
4518 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4519 ext4_fsblk_t b, end, table;
4520 unsigned num;
4521 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4522
4523 table = ext4_inode_table(sb, gdp);
4524 /* s_inode_readahead_blks is always a power of 2 */
4525 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4526 if (table > b)
4527 b = table;
4528 end = b + ra_blks;
4529 num = EXT4_INODES_PER_GROUP(sb);
4530 if (ext4_has_group_desc_csum(sb))
4531 num -= ext4_itable_unused_count(sb, gdp);
4532 table += num / inodes_per_block;
4533 if (end > table)
4534 end = table;
4535 while (b <= end)
4536 sb_breadahead(sb, b++);
4537 }
4538
4539 /*
4540 * There are other valid inodes in the buffer, this inode
4541 * has in-inode xattrs, or we don't have this inode in memory.
4542 * Read the block from disk.
4543 */
4544 trace_ext4_load_inode(inode);
4545 get_bh(bh);
4546 bh->b_end_io = end_buffer_read_sync;
4547 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4548 wait_on_buffer(bh);
4549 if (!buffer_uptodate(bh)) {
4550 EXT4_ERROR_INODE_BLOCK(inode, block,
4551 "unable to read itable block");
4552 brelse(bh);
4553 return -EIO;
4554 }
4555 }
4556has_buffer:
4557 iloc->bh = bh;
4558 return 0;
4559}
4560
4561int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4562{
4563 /* We have all inode data except xattrs in memory here. */
4564 return __ext4_get_inode_loc(inode, iloc,
4565 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4566}
4567
4568void ext4_set_inode_flags(struct inode *inode)
4569{
4570 unsigned int flags = EXT4_I(inode)->i_flags;
4571 unsigned int new_fl = 0;
4572
4573 if (flags & EXT4_SYNC_FL)
4574 new_fl |= S_SYNC;
4575 if (flags & EXT4_APPEND_FL)
4576 new_fl |= S_APPEND;
4577 if (flags & EXT4_IMMUTABLE_FL)
4578 new_fl |= S_IMMUTABLE;
4579 if (flags & EXT4_NOATIME_FL)
4580 new_fl |= S_NOATIME;
4581 if (flags & EXT4_DIRSYNC_FL)
4582 new_fl |= S_DIRSYNC;
4583 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4584 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4585 !ext4_encrypted_inode(inode))
4586 new_fl |= S_DAX;
4587 inode_set_flags(inode, new_fl,
4588 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4589}
4590
4591static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4592 struct ext4_inode_info *ei)
4593{
4594 blkcnt_t i_blocks ;
4595 struct inode *inode = &(ei->vfs_inode);
4596 struct super_block *sb = inode->i_sb;
4597
4598 if (ext4_has_feature_huge_file(sb)) {
4599 /* we are using combined 48 bit field */
4600 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4601 le32_to_cpu(raw_inode->i_blocks_lo);
4602 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4603 /* i_blocks represent file system block size */
4604 return i_blocks << (inode->i_blkbits - 9);
4605 } else {
4606 return i_blocks;
4607 }
4608 } else {
4609 return le32_to_cpu(raw_inode->i_blocks_lo);
4610 }
4611}
4612
4613static inline void ext4_iget_extra_inode(struct inode *inode,
4614 struct ext4_inode *raw_inode,
4615 struct ext4_inode_info *ei)
4616{
4617 __le32 *magic = (void *)raw_inode +
4618 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4619 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4620 EXT4_INODE_SIZE(inode->i_sb) &&
4621 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4622 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4623 ext4_find_inline_data_nolock(inode);
4624 } else
4625 EXT4_I(inode)->i_inline_off = 0;
4626}
4627
4628int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4629{
4630 if (!ext4_has_feature_project(inode->i_sb))
4631 return -EOPNOTSUPP;
4632 *projid = EXT4_I(inode)->i_projid;
4633 return 0;
4634}
4635
4636struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4637{
4638 struct ext4_iloc iloc;
4639 struct ext4_inode *raw_inode;
4640 struct ext4_inode_info *ei;
4641 struct inode *inode;
4642 journal_t *journal = EXT4_SB(sb)->s_journal;
4643 long ret;
4644 loff_t size;
4645 int block;
4646 uid_t i_uid;
4647 gid_t i_gid;
4648 projid_t i_projid;
4649
4650 inode = iget_locked(sb, ino);
4651 if (!inode)
4652 return ERR_PTR(-ENOMEM);
4653 if (!(inode->i_state & I_NEW))
4654 return inode;
4655
4656 ei = EXT4_I(inode);
4657 iloc.bh = NULL;
4658
4659 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4660 if (ret < 0)
4661 goto bad_inode;
4662 raw_inode = ext4_raw_inode(&iloc);
4663
4664 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4665 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4666 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4667 EXT4_INODE_SIZE(inode->i_sb) ||
4668 (ei->i_extra_isize & 3)) {
4669 EXT4_ERROR_INODE(inode,
4670 "bad extra_isize %u (inode size %u)",
4671 ei->i_extra_isize,
4672 EXT4_INODE_SIZE(inode->i_sb));
4673 ret = -EFSCORRUPTED;
4674 goto bad_inode;
4675 }
4676 } else
4677 ei->i_extra_isize = 0;
4678
4679 /* Precompute checksum seed for inode metadata */
4680 if (ext4_has_metadata_csum(sb)) {
4681 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4682 __u32 csum;
4683 __le32 inum = cpu_to_le32(inode->i_ino);
4684 __le32 gen = raw_inode->i_generation;
4685 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4686 sizeof(inum));
4687 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4688 sizeof(gen));
4689 }
4690
4691 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4692 EXT4_ERROR_INODE(inode, "checksum invalid");
4693 ret = -EFSBADCRC;
4694 goto bad_inode;
4695 }
4696
4697 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4698 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4699 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4700 if (ext4_has_feature_project(sb) &&
4701 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4702 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4703 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4704 else
4705 i_projid = EXT4_DEF_PROJID;
4706
4707 if (!(test_opt(inode->i_sb, NO_UID32))) {
4708 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4709 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4710 }
4711 i_uid_write(inode, i_uid);
4712 i_gid_write(inode, i_gid);
4713 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4714 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4715
4716 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4717 ei->i_inline_off = 0;
4718 ei->i_dir_start_lookup = 0;
4719 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4720 /* We now have enough fields to check if the inode was active or not.
4721 * This is needed because nfsd might try to access dead inodes
4722 * the test is that same one that e2fsck uses
4723 * NeilBrown 1999oct15
4724 */
4725 if (inode->i_nlink == 0) {
4726 if ((inode->i_mode == 0 ||
4727 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4728 ino != EXT4_BOOT_LOADER_INO) {
4729 /* this inode is deleted */
4730 ret = -ESTALE;
4731 goto bad_inode;
4732 }
4733 /* The only unlinked inodes we let through here have
4734 * valid i_mode and are being read by the orphan
4735 * recovery code: that's fine, we're about to complete
4736 * the process of deleting those.
4737 * OR it is the EXT4_BOOT_LOADER_INO which is
4738 * not initialized on a new filesystem. */
4739 }
4740 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4741 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4742 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4743 if (ext4_has_feature_64bit(sb))
4744 ei->i_file_acl |=
4745 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4746 inode->i_size = ext4_isize(sb, raw_inode);
4747 if ((size = i_size_read(inode)) < 0) {
4748 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4749 ret = -EFSCORRUPTED;
4750 goto bad_inode;
4751 }
4752 ei->i_disksize = inode->i_size;
4753#ifdef CONFIG_QUOTA
4754 ei->i_reserved_quota = 0;
4755#endif
4756 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4757 ei->i_block_group = iloc.block_group;
4758 ei->i_last_alloc_group = ~0;
4759 /*
4760 * NOTE! The in-memory inode i_data array is in little-endian order
4761 * even on big-endian machines: we do NOT byteswap the block numbers!
4762 */
4763 for (block = 0; block < EXT4_N_BLOCKS; block++)
4764 ei->i_data[block] = raw_inode->i_block[block];
4765 INIT_LIST_HEAD(&ei->i_orphan);
4766
4767 /*
4768 * Set transaction id's of transactions that have to be committed
4769 * to finish f[data]sync. We set them to currently running transaction
4770 * as we cannot be sure that the inode or some of its metadata isn't
4771 * part of the transaction - the inode could have been reclaimed and
4772 * now it is reread from disk.
4773 */
4774 if (journal) {
4775 transaction_t *transaction;
4776 tid_t tid;
4777
4778 read_lock(&journal->j_state_lock);
4779 if (journal->j_running_transaction)
4780 transaction = journal->j_running_transaction;
4781 else
4782 transaction = journal->j_committing_transaction;
4783 if (transaction)
4784 tid = transaction->t_tid;
4785 else
4786 tid = journal->j_commit_sequence;
4787 read_unlock(&journal->j_state_lock);
4788 ei->i_sync_tid = tid;
4789 ei->i_datasync_tid = tid;
4790 }
4791
4792 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4793 if (ei->i_extra_isize == 0) {
4794 /* The extra space is currently unused. Use it. */
4795 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4796 ei->i_extra_isize = sizeof(struct ext4_inode) -
4797 EXT4_GOOD_OLD_INODE_SIZE;
4798 } else {
4799 ext4_iget_extra_inode(inode, raw_inode, ei);
4800 }
4801 }
4802
4803 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4804 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4805 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4806 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4807
4808 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4809 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4810 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4811 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4812 inode->i_version |=
4813 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4814 }
4815 }
4816
4817 ret = 0;
4818 if (ei->i_file_acl &&
4819 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4820 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4821 ei->i_file_acl);
4822 ret = -EFSCORRUPTED;
4823 goto bad_inode;
4824 } else if (!ext4_has_inline_data(inode)) {
4825 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4826 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4827 (S_ISLNK(inode->i_mode) &&
4828 !ext4_inode_is_fast_symlink(inode))))
4829 /* Validate extent which is part of inode */
4830 ret = ext4_ext_check_inode(inode);
4831 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4832 (S_ISLNK(inode->i_mode) &&
4833 !ext4_inode_is_fast_symlink(inode))) {
4834 /* Validate block references which are part of inode */
4835 ret = ext4_ind_check_inode(inode);
4836 }
4837 }
4838 if (ret)
4839 goto bad_inode;
4840
4841 if (S_ISREG(inode->i_mode)) {
4842 inode->i_op = &ext4_file_inode_operations;
4843 inode->i_fop = &ext4_file_operations;
4844 ext4_set_aops(inode);
4845 } else if (S_ISDIR(inode->i_mode)) {
4846 inode->i_op = &ext4_dir_inode_operations;
4847 inode->i_fop = &ext4_dir_operations;
4848 } else if (S_ISLNK(inode->i_mode)) {
4849 if (ext4_encrypted_inode(inode)) {
4850 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4851 ext4_set_aops(inode);
4852 } else if (ext4_inode_is_fast_symlink(inode)) {
4853 inode->i_link = (char *)ei->i_data;
4854 inode->i_op = &ext4_fast_symlink_inode_operations;
4855 nd_terminate_link(ei->i_data, inode->i_size,
4856 sizeof(ei->i_data) - 1);
4857 } else {
4858 inode->i_op = &ext4_symlink_inode_operations;
4859 ext4_set_aops(inode);
4860 }
4861 inode_nohighmem(inode);
4862 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4863 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4864 inode->i_op = &ext4_special_inode_operations;
4865 if (raw_inode->i_block[0])
4866 init_special_inode(inode, inode->i_mode,
4867 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4868 else
4869 init_special_inode(inode, inode->i_mode,
4870 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4871 } else if (ino == EXT4_BOOT_LOADER_INO) {
4872 make_bad_inode(inode);
4873 } else {
4874 ret = -EFSCORRUPTED;
4875 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4876 goto bad_inode;
4877 }
4878 brelse(iloc.bh);
4879 ext4_set_inode_flags(inode);
4880 if (ei->i_flags & EXT4_EA_INODE_FL)
4881 ext4_xattr_inode_set_class(inode);
4882 unlock_new_inode(inode);
4883 return inode;
4884
4885bad_inode:
4886 brelse(iloc.bh);
4887 iget_failed(inode);
4888 return ERR_PTR(ret);
4889}
4890
4891struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4892{
4893 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4894 return ERR_PTR(-EFSCORRUPTED);
4895 return ext4_iget(sb, ino);
4896}
4897
4898static int ext4_inode_blocks_set(handle_t *handle,
4899 struct ext4_inode *raw_inode,
4900 struct ext4_inode_info *ei)
4901{
4902 struct inode *inode = &(ei->vfs_inode);
4903 u64 i_blocks = inode->i_blocks;
4904 struct super_block *sb = inode->i_sb;
4905
4906 if (i_blocks <= ~0U) {
4907 /*
4908 * i_blocks can be represented in a 32 bit variable
4909 * as multiple of 512 bytes
4910 */
4911 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4912 raw_inode->i_blocks_high = 0;
4913 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4914 return 0;
4915 }
4916 if (!ext4_has_feature_huge_file(sb))
4917 return -EFBIG;
4918
4919 if (i_blocks <= 0xffffffffffffULL) {
4920 /*
4921 * i_blocks can be represented in a 48 bit variable
4922 * as multiple of 512 bytes
4923 */
4924 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4925 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4926 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4927 } else {
4928 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4929 /* i_block is stored in file system block size */
4930 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4931 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4932 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4933 }
4934 return 0;
4935}
4936
4937struct other_inode {
4938 unsigned long orig_ino;
4939 struct ext4_inode *raw_inode;
4940};
4941
4942static int other_inode_match(struct inode * inode, unsigned long ino,
4943 void *data)
4944{
4945 struct other_inode *oi = (struct other_inode *) data;
4946
4947 if ((inode->i_ino != ino) ||
4948 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4949 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4950 ((inode->i_state & I_DIRTY_TIME) == 0))
4951 return 0;
4952 spin_lock(&inode->i_lock);
4953 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4954 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4955 (inode->i_state & I_DIRTY_TIME)) {
4956 struct ext4_inode_info *ei = EXT4_I(inode);
4957
4958 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4959 spin_unlock(&inode->i_lock);
4960
4961 spin_lock(&ei->i_raw_lock);
4962 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4963 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4964 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4965 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4966 spin_unlock(&ei->i_raw_lock);
4967 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4968 return -1;
4969 }
4970 spin_unlock(&inode->i_lock);
4971 return -1;
4972}
4973
4974/*
4975 * Opportunistically update the other time fields for other inodes in
4976 * the same inode table block.
4977 */
4978static void ext4_update_other_inodes_time(struct super_block *sb,
4979 unsigned long orig_ino, char *buf)
4980{
4981 struct other_inode oi;
4982 unsigned long ino;
4983 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4984 int inode_size = EXT4_INODE_SIZE(sb);
4985
4986 oi.orig_ino = orig_ino;
4987 /*
4988 * Calculate the first inode in the inode table block. Inode
4989 * numbers are one-based. That is, the first inode in a block
4990 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4991 */
4992 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4993 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4994 if (ino == orig_ino)
4995 continue;
4996 oi.raw_inode = (struct ext4_inode *) buf;
4997 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4998 }
4999}
5000
5001/*
5002 * Post the struct inode info into an on-disk inode location in the
5003 * buffer-cache. This gobbles the caller's reference to the
5004 * buffer_head in the inode location struct.
5005 *
5006 * The caller must have write access to iloc->bh.
5007 */
5008static int ext4_do_update_inode(handle_t *handle,
5009 struct inode *inode,
5010 struct ext4_iloc *iloc)
5011{
5012 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5013 struct ext4_inode_info *ei = EXT4_I(inode);
5014 struct buffer_head *bh = iloc->bh;
5015 struct super_block *sb = inode->i_sb;
5016 int err = 0, rc, block;
5017 int need_datasync = 0, set_large_file = 0;
5018 uid_t i_uid;
5019 gid_t i_gid;
5020 projid_t i_projid;
5021
5022 spin_lock(&ei->i_raw_lock);
5023
5024 /* For fields not tracked in the in-memory inode,
5025 * initialise them to zero for new inodes. */
5026 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5027 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5028
5029 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5030 i_uid = i_uid_read(inode);
5031 i_gid = i_gid_read(inode);
5032 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5033 if (!(test_opt(inode->i_sb, NO_UID32))) {
5034 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5035 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5036/*
5037 * Fix up interoperability with old kernels. Otherwise, old inodes get
5038 * re-used with the upper 16 bits of the uid/gid intact
5039 */
5040 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5041 raw_inode->i_uid_high = 0;
5042 raw_inode->i_gid_high = 0;
5043 } else {
5044 raw_inode->i_uid_high =
5045 cpu_to_le16(high_16_bits(i_uid));
5046 raw_inode->i_gid_high =
5047 cpu_to_le16(high_16_bits(i_gid));
5048 }
5049 } else {
5050 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5051 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5052 raw_inode->i_uid_high = 0;
5053 raw_inode->i_gid_high = 0;
5054 }
5055 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5056
5057 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5058 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5059 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5060 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5061
5062 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5063 if (err) {
5064 spin_unlock(&ei->i_raw_lock);
5065 goto out_brelse;
5066 }
5067 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5068 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5069 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5070 raw_inode->i_file_acl_high =
5071 cpu_to_le16(ei->i_file_acl >> 32);
5072 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5073 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5074 ext4_isize_set(raw_inode, ei->i_disksize);
5075 need_datasync = 1;
5076 }
5077 if (ei->i_disksize > 0x7fffffffULL) {
5078 if (!ext4_has_feature_large_file(sb) ||
5079 EXT4_SB(sb)->s_es->s_rev_level ==
5080 cpu_to_le32(EXT4_GOOD_OLD_REV))
5081 set_large_file = 1;
5082 }
5083 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5084 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5085 if (old_valid_dev(inode->i_rdev)) {
5086 raw_inode->i_block[0] =
5087 cpu_to_le32(old_encode_dev(inode->i_rdev));
5088 raw_inode->i_block[1] = 0;
5089 } else {
5090 raw_inode->i_block[0] = 0;
5091 raw_inode->i_block[1] =
5092 cpu_to_le32(new_encode_dev(inode->i_rdev));
5093 raw_inode->i_block[2] = 0;
5094 }
5095 } else if (!ext4_has_inline_data(inode)) {
5096 for (block = 0; block < EXT4_N_BLOCKS; block++)
5097 raw_inode->i_block[block] = ei->i_data[block];
5098 }
5099
5100 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5101 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5102 if (ei->i_extra_isize) {
5103 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5104 raw_inode->i_version_hi =
5105 cpu_to_le32(inode->i_version >> 32);
5106 raw_inode->i_extra_isize =
5107 cpu_to_le16(ei->i_extra_isize);
5108 }
5109 }
5110
5111 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5112 i_projid != EXT4_DEF_PROJID);
5113
5114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5115 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5116 raw_inode->i_projid = cpu_to_le32(i_projid);
5117
5118 ext4_inode_csum_set(inode, raw_inode, ei);
5119 spin_unlock(&ei->i_raw_lock);
5120 if (inode->i_sb->s_flags & MS_LAZYTIME)
5121 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5122 bh->b_data);
5123
5124 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5125 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5126 if (!err)
5127 err = rc;
5128 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5129 if (set_large_file) {
5130 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5131 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5132 if (err)
5133 goto out_brelse;
5134 ext4_update_dynamic_rev(sb);
5135 ext4_set_feature_large_file(sb);
5136 ext4_handle_sync(handle);
5137 err = ext4_handle_dirty_super(handle, sb);
5138 }
5139 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5140out_brelse:
5141 brelse(bh);
5142 ext4_std_error(inode->i_sb, err);
5143 return err;
5144}
5145
5146/*
5147 * ext4_write_inode()
5148 *
5149 * We are called from a few places:
5150 *
5151 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5152 * Here, there will be no transaction running. We wait for any running
5153 * transaction to commit.
5154 *
5155 * - Within flush work (sys_sync(), kupdate and such).
5156 * We wait on commit, if told to.
5157 *
5158 * - Within iput_final() -> write_inode_now()
5159 * We wait on commit, if told to.
5160 *
5161 * In all cases it is actually safe for us to return without doing anything,
5162 * because the inode has been copied into a raw inode buffer in
5163 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5164 * writeback.
5165 *
5166 * Note that we are absolutely dependent upon all inode dirtiers doing the
5167 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5168 * which we are interested.
5169 *
5170 * It would be a bug for them to not do this. The code:
5171 *
5172 * mark_inode_dirty(inode)
5173 * stuff();
5174 * inode->i_size = expr;
5175 *
5176 * is in error because write_inode() could occur while `stuff()' is running,
5177 * and the new i_size will be lost. Plus the inode will no longer be on the
5178 * superblock's dirty inode list.
5179 */
5180int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5181{
5182 int err;
5183
5184 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5185 return 0;
5186
5187 if (EXT4_SB(inode->i_sb)->s_journal) {
5188 if (ext4_journal_current_handle()) {
5189 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5190 dump_stack();
5191 return -EIO;
5192 }
5193
5194 /*
5195 * No need to force transaction in WB_SYNC_NONE mode. Also
5196 * ext4_sync_fs() will force the commit after everything is
5197 * written.
5198 */
5199 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5200 return 0;
5201
5202 err = ext4_force_commit(inode->i_sb);
5203 } else {
5204 struct ext4_iloc iloc;
5205
5206 err = __ext4_get_inode_loc(inode, &iloc, 0);
5207 if (err)
5208 return err;
5209 /*
5210 * sync(2) will flush the whole buffer cache. No need to do
5211 * it here separately for each inode.
5212 */
5213 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5214 sync_dirty_buffer(iloc.bh);
5215 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5216 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5217 "IO error syncing inode");
5218 err = -EIO;
5219 }
5220 brelse(iloc.bh);
5221 }
5222 return err;
5223}
5224
5225/*
5226 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5227 * buffers that are attached to a page stradding i_size and are undergoing
5228 * commit. In that case we have to wait for commit to finish and try again.
5229 */
5230static void ext4_wait_for_tail_page_commit(struct inode *inode)
5231{
5232 struct page *page;
5233 unsigned offset;
5234 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5235 tid_t commit_tid = 0;
5236 int ret;
5237
5238 offset = inode->i_size & (PAGE_SIZE - 1);
5239 /*
5240 * All buffers in the last page remain valid? Then there's nothing to
5241 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5242 * blocksize case
5243 */
5244 if (offset > PAGE_SIZE - i_blocksize(inode))
5245 return;
5246 while (1) {
5247 page = find_lock_page(inode->i_mapping,
5248 inode->i_size >> PAGE_SHIFT);
5249 if (!page)
5250 return;
5251 ret = __ext4_journalled_invalidatepage(page, offset,
5252 PAGE_SIZE - offset);
5253 unlock_page(page);
5254 put_page(page);
5255 if (ret != -EBUSY)
5256 return;
5257 commit_tid = 0;
5258 read_lock(&journal->j_state_lock);
5259 if (journal->j_committing_transaction)
5260 commit_tid = journal->j_committing_transaction->t_tid;
5261 read_unlock(&journal->j_state_lock);
5262 if (commit_tid)
5263 jbd2_log_wait_commit(journal, commit_tid);
5264 }
5265}
5266
5267/*
5268 * ext4_setattr()
5269 *
5270 * Called from notify_change.
5271 *
5272 * We want to trap VFS attempts to truncate the file as soon as
5273 * possible. In particular, we want to make sure that when the VFS
5274 * shrinks i_size, we put the inode on the orphan list and modify
5275 * i_disksize immediately, so that during the subsequent flushing of
5276 * dirty pages and freeing of disk blocks, we can guarantee that any
5277 * commit will leave the blocks being flushed in an unused state on
5278 * disk. (On recovery, the inode will get truncated and the blocks will
5279 * be freed, so we have a strong guarantee that no future commit will
5280 * leave these blocks visible to the user.)
5281 *
5282 * Another thing we have to assure is that if we are in ordered mode
5283 * and inode is still attached to the committing transaction, we must
5284 * we start writeout of all the dirty pages which are being truncated.
5285 * This way we are sure that all the data written in the previous
5286 * transaction are already on disk (truncate waits for pages under
5287 * writeback).
5288 *
5289 * Called with inode->i_mutex down.
5290 */
5291int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5292{
5293 struct inode *inode = d_inode(dentry);
5294 int error, rc = 0;
5295 int orphan = 0;
5296 const unsigned int ia_valid = attr->ia_valid;
5297
5298 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5299 return -EIO;
5300
5301 error = setattr_prepare(dentry, attr);
5302 if (error)
5303 return error;
5304
5305 if (is_quota_modification(inode, attr)) {
5306 error = dquot_initialize(inode);
5307 if (error)
5308 return error;
5309 }
5310 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5311 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5312 handle_t *handle;
5313
5314 /* (user+group)*(old+new) structure, inode write (sb,
5315 * inode block, ? - but truncate inode update has it) */
5316 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5317 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5318 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5319 if (IS_ERR(handle)) {
5320 error = PTR_ERR(handle);
5321 goto err_out;
5322 }
5323 error = dquot_transfer(inode, attr);
5324 if (error) {
5325 ext4_journal_stop(handle);
5326 return error;
5327 }
5328 /* Update corresponding info in inode so that everything is in
5329 * one transaction */
5330 if (attr->ia_valid & ATTR_UID)
5331 inode->i_uid = attr->ia_uid;
5332 if (attr->ia_valid & ATTR_GID)
5333 inode->i_gid = attr->ia_gid;
5334 error = ext4_mark_inode_dirty(handle, inode);
5335 ext4_journal_stop(handle);
5336 }
5337
5338 if (attr->ia_valid & ATTR_SIZE) {
5339 handle_t *handle;
5340 loff_t oldsize = inode->i_size;
5341 int shrink = (attr->ia_size <= inode->i_size);
5342
5343 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5344 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5345
5346 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5347 return -EFBIG;
5348 }
5349 if (!S_ISREG(inode->i_mode))
5350 return -EINVAL;
5351
5352 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5353 inode_inc_iversion(inode);
5354
5355 if (ext4_should_order_data(inode) &&
5356 (attr->ia_size < inode->i_size)) {
5357 error = ext4_begin_ordered_truncate(inode,
5358 attr->ia_size);
5359 if (error)
5360 goto err_out;
5361 }
5362 if (attr->ia_size != inode->i_size) {
5363 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5364 if (IS_ERR(handle)) {
5365 error = PTR_ERR(handle);
5366 goto err_out;
5367 }
5368 if (ext4_handle_valid(handle) && shrink) {
5369 error = ext4_orphan_add(handle, inode);
5370 orphan = 1;
5371 }
5372 /*
5373 * Update c/mtime on truncate up, ext4_truncate() will
5374 * update c/mtime in shrink case below
5375 */
5376 if (!shrink) {
5377 inode->i_mtime = current_time(inode);
5378 inode->i_ctime = inode->i_mtime;
5379 }
5380 down_write(&EXT4_I(inode)->i_data_sem);
5381 EXT4_I(inode)->i_disksize = attr->ia_size;
5382 rc = ext4_mark_inode_dirty(handle, inode);
5383 if (!error)
5384 error = rc;
5385 /*
5386 * We have to update i_size under i_data_sem together
5387 * with i_disksize to avoid races with writeback code
5388 * running ext4_wb_update_i_disksize().
5389 */
5390 if (!error)
5391 i_size_write(inode, attr->ia_size);
5392 up_write(&EXT4_I(inode)->i_data_sem);
5393 ext4_journal_stop(handle);
5394 if (error) {
5395 if (orphan)
5396 ext4_orphan_del(NULL, inode);
5397 goto err_out;
5398 }
5399 }
5400 if (!shrink)
5401 pagecache_isize_extended(inode, oldsize, inode->i_size);
5402
5403 /*
5404 * Blocks are going to be removed from the inode. Wait
5405 * for dio in flight. Temporarily disable
5406 * dioread_nolock to prevent livelock.
5407 */
5408 if (orphan) {
5409 if (!ext4_should_journal_data(inode)) {
5410 ext4_inode_block_unlocked_dio(inode);
5411 inode_dio_wait(inode);
5412 ext4_inode_resume_unlocked_dio(inode);
5413 } else
5414 ext4_wait_for_tail_page_commit(inode);
5415 }
5416 down_write(&EXT4_I(inode)->i_mmap_sem);
5417 /*
5418 * Truncate pagecache after we've waited for commit
5419 * in data=journal mode to make pages freeable.
5420 */
5421 truncate_pagecache(inode, inode->i_size);
5422 if (shrink) {
5423 rc = ext4_truncate(inode);
5424 if (rc)
5425 error = rc;
5426 }
5427 up_write(&EXT4_I(inode)->i_mmap_sem);
5428 }
5429
5430 if (!error) {
5431 setattr_copy(inode, attr);
5432 mark_inode_dirty(inode);
5433 }
5434
5435 /*
5436 * If the call to ext4_truncate failed to get a transaction handle at
5437 * all, we need to clean up the in-core orphan list manually.
5438 */
5439 if (orphan && inode->i_nlink)
5440 ext4_orphan_del(NULL, inode);
5441
5442 if (!error && (ia_valid & ATTR_MODE))
5443 rc = posix_acl_chmod(inode, inode->i_mode);
5444
5445err_out:
5446 ext4_std_error(inode->i_sb, error);
5447 if (!error)
5448 error = rc;
5449 return error;
5450}
5451
5452int ext4_getattr(const struct path *path, struct kstat *stat,
5453 u32 request_mask, unsigned int query_flags)
5454{
5455 struct inode *inode = d_inode(path->dentry);
5456 struct ext4_inode *raw_inode;
5457 struct ext4_inode_info *ei = EXT4_I(inode);
5458 unsigned int flags;
5459
5460 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5461 stat->result_mask |= STATX_BTIME;
5462 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5463 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5464 }
5465
5466 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5467 if (flags & EXT4_APPEND_FL)
5468 stat->attributes |= STATX_ATTR_APPEND;
5469 if (flags & EXT4_COMPR_FL)
5470 stat->attributes |= STATX_ATTR_COMPRESSED;
5471 if (flags & EXT4_ENCRYPT_FL)
5472 stat->attributes |= STATX_ATTR_ENCRYPTED;
5473 if (flags & EXT4_IMMUTABLE_FL)
5474 stat->attributes |= STATX_ATTR_IMMUTABLE;
5475 if (flags & EXT4_NODUMP_FL)
5476 stat->attributes |= STATX_ATTR_NODUMP;
5477
5478 stat->attributes_mask |= (STATX_ATTR_APPEND |
5479 STATX_ATTR_COMPRESSED |
5480 STATX_ATTR_ENCRYPTED |
5481 STATX_ATTR_IMMUTABLE |
5482 STATX_ATTR_NODUMP);
5483
5484 generic_fillattr(inode, stat);
5485 return 0;
5486}
5487
5488int ext4_file_getattr(const struct path *path, struct kstat *stat,
5489 u32 request_mask, unsigned int query_flags)
5490{
5491 struct inode *inode = d_inode(path->dentry);
5492 u64 delalloc_blocks;
5493
5494 ext4_getattr(path, stat, request_mask, query_flags);
5495
5496 /*
5497 * If there is inline data in the inode, the inode will normally not
5498 * have data blocks allocated (it may have an external xattr block).
5499 * Report at least one sector for such files, so tools like tar, rsync,
5500 * others don't incorrectly think the file is completely sparse.
5501 */
5502 if (unlikely(ext4_has_inline_data(inode)))
5503 stat->blocks += (stat->size + 511) >> 9;
5504
5505 /*
5506 * We can't update i_blocks if the block allocation is delayed
5507 * otherwise in the case of system crash before the real block
5508 * allocation is done, we will have i_blocks inconsistent with
5509 * on-disk file blocks.
5510 * We always keep i_blocks updated together with real
5511 * allocation. But to not confuse with user, stat
5512 * will return the blocks that include the delayed allocation
5513 * blocks for this file.
5514 */
5515 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5516 EXT4_I(inode)->i_reserved_data_blocks);
5517 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5518 return 0;
5519}
5520
5521static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5522 int pextents)
5523{
5524 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5525 return ext4_ind_trans_blocks(inode, lblocks);
5526 return ext4_ext_index_trans_blocks(inode, pextents);
5527}
5528
5529/*
5530 * Account for index blocks, block groups bitmaps and block group
5531 * descriptor blocks if modify datablocks and index blocks
5532 * worse case, the indexs blocks spread over different block groups
5533 *
5534 * If datablocks are discontiguous, they are possible to spread over
5535 * different block groups too. If they are contiguous, with flexbg,
5536 * they could still across block group boundary.
5537 *
5538 * Also account for superblock, inode, quota and xattr blocks
5539 */
5540int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5541 int pextents)
5542{
5543 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5544 int gdpblocks;
5545 int idxblocks;
5546 int ret = 0;
5547
5548 /*
5549 * How many index blocks need to touch to map @lblocks logical blocks
5550 * to @pextents physical extents?
5551 */
5552 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5553
5554 ret = idxblocks;
5555
5556 /*
5557 * Now let's see how many group bitmaps and group descriptors need
5558 * to account
5559 */
5560 groups = idxblocks + pextents;
5561 gdpblocks = groups;
5562 if (groups > ngroups)
5563 groups = ngroups;
5564 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5565 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5566
5567 /* bitmaps and block group descriptor blocks */
5568 ret += groups + gdpblocks;
5569
5570 /* Blocks for super block, inode, quota and xattr blocks */
5571 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5572
5573 return ret;
5574}
5575
5576/*
5577 * Calculate the total number of credits to reserve to fit
5578 * the modification of a single pages into a single transaction,
5579 * which may include multiple chunks of block allocations.
5580 *
5581 * This could be called via ext4_write_begin()
5582 *
5583 * We need to consider the worse case, when
5584 * one new block per extent.
5585 */
5586int ext4_writepage_trans_blocks(struct inode *inode)
5587{
5588 int bpp = ext4_journal_blocks_per_page(inode);
5589 int ret;
5590
5591 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5592
5593 /* Account for data blocks for journalled mode */
5594 if (ext4_should_journal_data(inode))
5595 ret += bpp;
5596 return ret;
5597}
5598
5599/*
5600 * Calculate the journal credits for a chunk of data modification.
5601 *
5602 * This is called from DIO, fallocate or whoever calling
5603 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5604 *
5605 * journal buffers for data blocks are not included here, as DIO
5606 * and fallocate do no need to journal data buffers.
5607 */
5608int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5609{
5610 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5611}
5612
5613/*
5614 * The caller must have previously called ext4_reserve_inode_write().
5615 * Give this, we know that the caller already has write access to iloc->bh.
5616 */
5617int ext4_mark_iloc_dirty(handle_t *handle,
5618 struct inode *inode, struct ext4_iloc *iloc)
5619{
5620 int err = 0;
5621
5622 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5623 return -EIO;
5624
5625 if (IS_I_VERSION(inode))
5626 inode_inc_iversion(inode);
5627
5628 /* the do_update_inode consumes one bh->b_count */
5629 get_bh(iloc->bh);
5630
5631 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5632 err = ext4_do_update_inode(handle, inode, iloc);
5633 put_bh(iloc->bh);
5634 return err;
5635}
5636
5637/*
5638 * On success, We end up with an outstanding reference count against
5639 * iloc->bh. This _must_ be cleaned up later.
5640 */
5641
5642int
5643ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5644 struct ext4_iloc *iloc)
5645{
5646 int err;
5647
5648 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5649 return -EIO;
5650
5651 err = ext4_get_inode_loc(inode, iloc);
5652 if (!err) {
5653 BUFFER_TRACE(iloc->bh, "get_write_access");
5654 err = ext4_journal_get_write_access(handle, iloc->bh);
5655 if (err) {
5656 brelse(iloc->bh);
5657 iloc->bh = NULL;
5658 }
5659 }
5660 ext4_std_error(inode->i_sb, err);
5661 return err;
5662}
5663
5664/*
5665 * Expand an inode by new_extra_isize bytes.
5666 * Returns 0 on success or negative error number on failure.
5667 */
5668static int ext4_expand_extra_isize(struct inode *inode,
5669 unsigned int new_extra_isize,
5670 struct ext4_iloc iloc,
5671 handle_t *handle)
5672{
5673 struct ext4_inode *raw_inode;
5674 struct ext4_xattr_ibody_header *header;
5675
5676 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5677 return 0;
5678
5679 raw_inode = ext4_raw_inode(&iloc);
5680
5681 header = IHDR(inode, raw_inode);
5682
5683 /* No extended attributes present */
5684 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5685 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5686 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5687 EXT4_I(inode)->i_extra_isize, 0,
5688 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5689 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5690 return 0;
5691 }
5692
5693 /* try to expand with EAs present */
5694 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5695 raw_inode, handle);
5696}
5697
5698/*
5699 * What we do here is to mark the in-core inode as clean with respect to inode
5700 * dirtiness (it may still be data-dirty).
5701 * This means that the in-core inode may be reaped by prune_icache
5702 * without having to perform any I/O. This is a very good thing,
5703 * because *any* task may call prune_icache - even ones which
5704 * have a transaction open against a different journal.
5705 *
5706 * Is this cheating? Not really. Sure, we haven't written the
5707 * inode out, but prune_icache isn't a user-visible syncing function.
5708 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5709 * we start and wait on commits.
5710 */
5711int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5712{
5713 struct ext4_iloc iloc;
5714 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5715 static unsigned int mnt_count;
5716 int err, ret;
5717
5718 might_sleep();
5719 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5720 err = ext4_reserve_inode_write(handle, inode, &iloc);
5721 if (err)
5722 return err;
5723 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5724 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5725 /*
5726 * In nojournal mode, we can immediately attempt to expand
5727 * the inode. When journaled, we first need to obtain extra
5728 * buffer credits since we may write into the EA block
5729 * with this same handle. If journal_extend fails, then it will
5730 * only result in a minor loss of functionality for that inode.
5731 * If this is felt to be critical, then e2fsck should be run to
5732 * force a large enough s_min_extra_isize.
5733 */
5734 if (!ext4_handle_valid(handle) ||
5735 jbd2_journal_extend(handle,
5736 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5737 ret = ext4_expand_extra_isize(inode,
5738 sbi->s_want_extra_isize,
5739 iloc, handle);
5740 if (ret) {
5741 if (mnt_count !=
5742 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5743 ext4_warning(inode->i_sb,
5744 "Unable to expand inode %lu. Delete"
5745 " some EAs or run e2fsck.",
5746 inode->i_ino);
5747 mnt_count =
5748 le16_to_cpu(sbi->s_es->s_mnt_count);
5749 }
5750 }
5751 }
5752 }
5753 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5754}
5755
5756/*
5757 * ext4_dirty_inode() is called from __mark_inode_dirty()
5758 *
5759 * We're really interested in the case where a file is being extended.
5760 * i_size has been changed by generic_commit_write() and we thus need
5761 * to include the updated inode in the current transaction.
5762 *
5763 * Also, dquot_alloc_block() will always dirty the inode when blocks
5764 * are allocated to the file.
5765 *
5766 * If the inode is marked synchronous, we don't honour that here - doing
5767 * so would cause a commit on atime updates, which we don't bother doing.
5768 * We handle synchronous inodes at the highest possible level.
5769 *
5770 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5771 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5772 * to copy into the on-disk inode structure are the timestamp files.
5773 */
5774void ext4_dirty_inode(struct inode *inode, int flags)
5775{
5776 handle_t *handle;
5777
5778 if (flags == I_DIRTY_TIME)
5779 return;
5780 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5781 if (IS_ERR(handle))
5782 goto out;
5783
5784 ext4_mark_inode_dirty(handle, inode);
5785
5786 ext4_journal_stop(handle);
5787out:
5788 return;
5789}
5790
5791#if 0
5792/*
5793 * Bind an inode's backing buffer_head into this transaction, to prevent
5794 * it from being flushed to disk early. Unlike
5795 * ext4_reserve_inode_write, this leaves behind no bh reference and
5796 * returns no iloc structure, so the caller needs to repeat the iloc
5797 * lookup to mark the inode dirty later.
5798 */
5799static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5800{
5801 struct ext4_iloc iloc;
5802
5803 int err = 0;
5804 if (handle) {
5805 err = ext4_get_inode_loc(inode, &iloc);
5806 if (!err) {
5807 BUFFER_TRACE(iloc.bh, "get_write_access");
5808 err = jbd2_journal_get_write_access(handle, iloc.bh);
5809 if (!err)
5810 err = ext4_handle_dirty_metadata(handle,
5811 NULL,
5812 iloc.bh);
5813 brelse(iloc.bh);
5814 }
5815 }
5816 ext4_std_error(inode->i_sb, err);
5817 return err;
5818}
5819#endif
5820
5821int ext4_change_inode_journal_flag(struct inode *inode, int val)
5822{
5823 journal_t *journal;
5824 handle_t *handle;
5825 int err;
5826 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5827
5828 /*
5829 * We have to be very careful here: changing a data block's
5830 * journaling status dynamically is dangerous. If we write a
5831 * data block to the journal, change the status and then delete
5832 * that block, we risk forgetting to revoke the old log record
5833 * from the journal and so a subsequent replay can corrupt data.
5834 * So, first we make sure that the journal is empty and that
5835 * nobody is changing anything.
5836 */
5837
5838 journal = EXT4_JOURNAL(inode);
5839 if (!journal)
5840 return 0;
5841 if (is_journal_aborted(journal))
5842 return -EROFS;
5843
5844 /* Wait for all existing dio workers */
5845 ext4_inode_block_unlocked_dio(inode);
5846 inode_dio_wait(inode);
5847
5848 /*
5849 * Before flushing the journal and switching inode's aops, we have
5850 * to flush all dirty data the inode has. There can be outstanding
5851 * delayed allocations, there can be unwritten extents created by
5852 * fallocate or buffered writes in dioread_nolock mode covered by
5853 * dirty data which can be converted only after flushing the dirty
5854 * data (and journalled aops don't know how to handle these cases).
5855 */
5856 if (val) {
5857 down_write(&EXT4_I(inode)->i_mmap_sem);
5858 err = filemap_write_and_wait(inode->i_mapping);
5859 if (err < 0) {
5860 up_write(&EXT4_I(inode)->i_mmap_sem);
5861 ext4_inode_resume_unlocked_dio(inode);
5862 return err;
5863 }
5864 }
5865
5866 percpu_down_write(&sbi->s_journal_flag_rwsem);
5867 jbd2_journal_lock_updates(journal);
5868
5869 /*
5870 * OK, there are no updates running now, and all cached data is
5871 * synced to disk. We are now in a completely consistent state
5872 * which doesn't have anything in the journal, and we know that
5873 * no filesystem updates are running, so it is safe to modify
5874 * the inode's in-core data-journaling state flag now.
5875 */
5876
5877 if (val)
5878 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5879 else {
5880 err = jbd2_journal_flush(journal);
5881 if (err < 0) {
5882 jbd2_journal_unlock_updates(journal);
5883 percpu_up_write(&sbi->s_journal_flag_rwsem);
5884 ext4_inode_resume_unlocked_dio(inode);
5885 return err;
5886 }
5887 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5888 }
5889 ext4_set_aops(inode);
5890 /*
5891 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5892 * E.g. S_DAX may get cleared / set.
5893 */
5894 ext4_set_inode_flags(inode);
5895
5896 jbd2_journal_unlock_updates(journal);
5897 percpu_up_write(&sbi->s_journal_flag_rwsem);
5898
5899 if (val)
5900 up_write(&EXT4_I(inode)->i_mmap_sem);
5901 ext4_inode_resume_unlocked_dio(inode);
5902
5903 /* Finally we can mark the inode as dirty. */
5904
5905 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5906 if (IS_ERR(handle))
5907 return PTR_ERR(handle);
5908
5909 err = ext4_mark_inode_dirty(handle, inode);
5910 ext4_handle_sync(handle);
5911 ext4_journal_stop(handle);
5912 ext4_std_error(inode->i_sb, err);
5913
5914 return err;
5915}
5916
5917static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5918{
5919 return !buffer_mapped(bh);
5920}
5921
5922int ext4_page_mkwrite(struct vm_fault *vmf)
5923{
5924 struct vm_area_struct *vma = vmf->vma;
5925 struct page *page = vmf->page;
5926 loff_t size;
5927 unsigned long len;
5928 int ret;
5929 struct file *file = vma->vm_file;
5930 struct inode *inode = file_inode(file);
5931 struct address_space *mapping = inode->i_mapping;
5932 handle_t *handle;
5933 get_block_t *get_block;
5934 int retries = 0;
5935
5936 sb_start_pagefault(inode->i_sb);
5937 file_update_time(vma->vm_file);
5938
5939 down_read(&EXT4_I(inode)->i_mmap_sem);
5940
5941 ret = ext4_convert_inline_data(inode);
5942 if (ret)
5943 goto out_ret;
5944
5945 /* Delalloc case is easy... */
5946 if (test_opt(inode->i_sb, DELALLOC) &&
5947 !ext4_should_journal_data(inode) &&
5948 !ext4_nonda_switch(inode->i_sb)) {
5949 do {
5950 ret = block_page_mkwrite(vma, vmf,
5951 ext4_da_get_block_prep);
5952 } while (ret == -ENOSPC &&
5953 ext4_should_retry_alloc(inode->i_sb, &retries));
5954 goto out_ret;
5955 }
5956
5957 lock_page(page);
5958 size = i_size_read(inode);
5959 /* Page got truncated from under us? */
5960 if (page->mapping != mapping || page_offset(page) > size) {
5961 unlock_page(page);
5962 ret = VM_FAULT_NOPAGE;
5963 goto out;
5964 }
5965
5966 if (page->index == size >> PAGE_SHIFT)
5967 len = size & ~PAGE_MASK;
5968 else
5969 len = PAGE_SIZE;
5970 /*
5971 * Return if we have all the buffers mapped. This avoids the need to do
5972 * journal_start/journal_stop which can block and take a long time
5973 */
5974 if (page_has_buffers(page)) {
5975 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5976 0, len, NULL,
5977 ext4_bh_unmapped)) {
5978 /* Wait so that we don't change page under IO */
5979 wait_for_stable_page(page);
5980 ret = VM_FAULT_LOCKED;
5981 goto out;
5982 }
5983 }
5984 unlock_page(page);
5985 /* OK, we need to fill the hole... */
5986 if (ext4_should_dioread_nolock(inode))
5987 get_block = ext4_get_block_unwritten;
5988 else
5989 get_block = ext4_get_block;
5990retry_alloc:
5991 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5992 ext4_writepage_trans_blocks(inode));
5993 if (IS_ERR(handle)) {
5994 ret = VM_FAULT_SIGBUS;
5995 goto out;
5996 }
5997 ret = block_page_mkwrite(vma, vmf, get_block);
5998 if (!ret && ext4_should_journal_data(inode)) {
5999 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6000 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6001 unlock_page(page);
6002 ret = VM_FAULT_SIGBUS;
6003 ext4_journal_stop(handle);
6004 goto out;
6005 }
6006 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6007 }
6008 ext4_journal_stop(handle);
6009 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6010 goto retry_alloc;
6011out_ret:
6012 ret = block_page_mkwrite_return(ret);
6013out:
6014 up_read(&EXT4_I(inode)->i_mmap_sem);
6015 sb_end_pagefault(inode->i_sb);
6016 return ret;
6017}
6018
6019int ext4_filemap_fault(struct vm_fault *vmf)
6020{
6021 struct inode *inode = file_inode(vmf->vma->vm_file);
6022 int err;
6023
6024 down_read(&EXT4_I(inode)->i_mmap_sem);
6025 err = filemap_fault(vmf);
6026 up_read(&EXT4_I(inode)->i_mmap_sem);
6027
6028 return err;
6029}
6030
6031/*
6032 * Find the first extent at or after @lblk in an inode that is not a hole.
6033 * Search for @map_len blocks at most. The extent is returned in @result.
6034 *
6035 * The function returns 1 if we found an extent. The function returns 0 in
6036 * case there is no extent at or after @lblk and in that case also sets
6037 * @result->es_len to 0. In case of error, the error code is returned.
6038 */
6039int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6040 unsigned int map_len, struct extent_status *result)
6041{
6042 struct ext4_map_blocks map;
6043 struct extent_status es = {};
6044 int ret;
6045
6046 map.m_lblk = lblk;
6047 map.m_len = map_len;
6048
6049 /*
6050 * For non-extent based files this loop may iterate several times since
6051 * we do not determine full hole size.
6052 */
6053 while (map.m_len > 0) {
6054 ret = ext4_map_blocks(NULL, inode, &map, 0);
6055 if (ret < 0)
6056 return ret;
6057 /* There's extent covering m_lblk? Just return it. */
6058 if (ret > 0) {
6059 int status;
6060
6061 ext4_es_store_pblock(result, map.m_pblk);
6062 result->es_lblk = map.m_lblk;
6063 result->es_len = map.m_len;
6064 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6065 status = EXTENT_STATUS_UNWRITTEN;
6066 else
6067 status = EXTENT_STATUS_WRITTEN;
6068 ext4_es_store_status(result, status);
6069 return 1;
6070 }
6071 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6072 map.m_lblk + map.m_len - 1,
6073 &es);
6074 /* Is delalloc data before next block in extent tree? */
6075 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6076 ext4_lblk_t offset = 0;
6077
6078 if (es.es_lblk < lblk)
6079 offset = lblk - es.es_lblk;
6080 result->es_lblk = es.es_lblk + offset;
6081 ext4_es_store_pblock(result,
6082 ext4_es_pblock(&es) + offset);
6083 result->es_len = es.es_len - offset;
6084 ext4_es_store_status(result, ext4_es_status(&es));
6085
6086 return 1;
6087 }
6088 /* There's a hole at m_lblk, advance us after it */
6089 map.m_lblk += map.m_len;
6090 map_len -= map.m_len;
6091 map.m_len = map_len;
6092 cond_resched();
6093 }
6094 result->es_len = 0;
6095 return 0;
6096}