| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
| 3 | /* |
| 4 | * fs/ext4/fast_commit.c |
| 5 | * |
| 6 | * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> |
| 7 | * |
| 8 | * Ext4 fast commits routines. |
| 9 | */ |
| 10 | #include "ext4.h" |
| 11 | #include "ext4_jbd2.h" |
| 12 | #include "ext4_extents.h" |
| 13 | #include "mballoc.h" |
| 14 | |
| 15 | #include <linux/lockdep.h> |
| 16 | /* |
| 17 | * Ext4 Fast Commits |
| 18 | * ----------------- |
| 19 | * |
| 20 | * Ext4 fast commits implement fine grained journalling for Ext4. |
| 21 | * |
| 22 | * Fast commits are organized as a log of tag-length-value (TLV) structs. (See |
| 23 | * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by |
| 24 | * TLV during the recovery phase. For the scenarios for which we currently |
| 25 | * don't have replay code, fast commit falls back to full commits. |
| 26 | * Fast commits record delta in one of the following three categories. |
| 27 | * |
| 28 | * (A) Directory entry updates: |
| 29 | * |
| 30 | * - EXT4_FC_TAG_UNLINK - records directory entry unlink |
| 31 | * - EXT4_FC_TAG_LINK - records directory entry link |
| 32 | * - EXT4_FC_TAG_CREAT - records inode and directory entry creation |
| 33 | * |
| 34 | * (B) File specific data range updates: |
| 35 | * |
| 36 | * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode |
| 37 | * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode |
| 38 | * |
| 39 | * (C) Inode metadata (mtime / ctime etc): |
| 40 | * |
| 41 | * - EXT4_FC_TAG_INODE - record the inode that should be replayed |
| 42 | * during recovery. Note that iblocks field is |
| 43 | * not replayed and instead derived during |
| 44 | * replay. |
| 45 | * Commit Operation |
| 46 | * ---------------- |
| 47 | * With fast commits, we maintain all the directory entry operations in the |
| 48 | * order in which they are issued in an in-memory queue. This queue is flushed |
| 49 | * to disk during the commit operation. We also maintain a list of inodes |
| 50 | * that need to be committed during a fast commit in another in memory queue of |
| 51 | * inodes. During the commit operation, we commit in the following order: |
| 52 | * |
| 53 | * [1] Prepare all the inodes to write out their data by setting |
| 54 | * "EXT4_STATE_FC_FLUSHING_DATA". This ensures that inode cannot be |
| 55 | * deleted while it is being flushed. |
| 56 | * [2] Flush data buffers to disk and clear "EXT4_STATE_FC_FLUSHING_DATA" |
| 57 | * state. |
| 58 | * [3] Lock the journal by calling jbd2_journal_lock_updates. This ensures that |
| 59 | * all the exsiting handles finish and no new handles can start. |
| 60 | * [4] Mark all the fast commit eligible inodes as undergoing fast commit |
| 61 | * by setting "EXT4_STATE_FC_COMMITTING" state. |
| 62 | * [5] Unlock the journal by calling jbd2_journal_unlock_updates. This allows |
| 63 | * starting of new handles. If new handles try to start an update on |
| 64 | * any of the inodes that are being committed, ext4_fc_track_inode() |
| 65 | * will block until those inodes have finished the fast commit. |
| 66 | * [6] Commit all the directory entry updates in the fast commit space. |
| 67 | * [7] Commit all the changed inodes in the fast commit space and clear |
| 68 | * "EXT4_STATE_FC_COMMITTING" for these inodes. |
| 69 | * [8] Write tail tag (this tag ensures the atomicity, please read the following |
| 70 | * section for more details). |
| 71 | * |
| 72 | * All the inode updates must be enclosed within jbd2_jounrnal_start() |
| 73 | * and jbd2_journal_stop() similar to JBD2 journaling. |
| 74 | * |
| 75 | * Fast Commit Ineligibility |
| 76 | * ------------------------- |
| 77 | * |
| 78 | * Not all operations are supported by fast commits today (e.g extended |
| 79 | * attributes). Fast commit ineligibility is marked by calling |
| 80 | * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back |
| 81 | * to full commit. |
| 82 | * |
| 83 | * Atomicity of commits |
| 84 | * -------------------- |
| 85 | * In order to guarantee atomicity during the commit operation, fast commit |
| 86 | * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail |
| 87 | * tag contains CRC of the contents and TID of the transaction after which |
| 88 | * this fast commit should be applied. Recovery code replays fast commit |
| 89 | * logs only if there's at least 1 valid tail present. For every fast commit |
| 90 | * operation, there is 1 tail. This means, we may end up with multiple tails |
| 91 | * in the fast commit space. Here's an example: |
| 92 | * |
| 93 | * - Create a new file A and remove existing file B |
| 94 | * - fsync() |
| 95 | * - Append contents to file A |
| 96 | * - Truncate file A |
| 97 | * - fsync() |
| 98 | * |
| 99 | * The fast commit space at the end of above operations would look like this: |
| 100 | * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] |
| 101 | * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->| |
| 102 | * |
| 103 | * Replay code should thus check for all the valid tails in the FC area. |
| 104 | * |
| 105 | * Fast Commit Replay Idempotence |
| 106 | * ------------------------------ |
| 107 | * |
| 108 | * Fast commits tags are idempotent in nature provided the recovery code follows |
| 109 | * certain rules. The guiding principle that the commit path follows while |
| 110 | * committing is that it stores the result of a particular operation instead of |
| 111 | * storing the procedure. |
| 112 | * |
| 113 | * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a' |
| 114 | * was associated with inode 10. During fast commit, instead of storing this |
| 115 | * operation as a procedure "rename a to b", we store the resulting file system |
| 116 | * state as a "series" of outcomes: |
| 117 | * |
| 118 | * - Link dirent b to inode 10 |
| 119 | * - Unlink dirent a |
| 120 | * - Inode <10> with valid refcount |
| 121 | * |
| 122 | * Now when recovery code runs, it needs "enforce" this state on the file |
| 123 | * system. This is what guarantees idempotence of fast commit replay. |
| 124 | * |
| 125 | * Let's take an example of a procedure that is not idempotent and see how fast |
| 126 | * commits make it idempotent. Consider following sequence of operations: |
| 127 | * |
| 128 | * rm A; mv B A; read A |
| 129 | * (x) (y) (z) |
| 130 | * |
| 131 | * (x), (y) and (z) are the points at which we can crash. If we store this |
| 132 | * sequence of operations as is then the replay is not idempotent. Let's say |
| 133 | * while in replay, we crash at (z). During the second replay, file A (which was |
| 134 | * actually created as a result of "mv B A" operation) would get deleted. Thus, |
| 135 | * file named A would be absent when we try to read A. So, this sequence of |
| 136 | * operations is not idempotent. However, as mentioned above, instead of storing |
| 137 | * the procedure fast commits store the outcome of each procedure. Thus the fast |
| 138 | * commit log for above procedure would be as follows: |
| 139 | * |
| 140 | * (Let's assume dirent A was linked to inode 10 and dirent B was linked to |
| 141 | * inode 11 before the replay) |
| 142 | * |
| 143 | * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11] |
| 144 | * (w) (x) (y) (z) |
| 145 | * |
| 146 | * If we crash at (z), we will have file A linked to inode 11. During the second |
| 147 | * replay, we will remove file A (inode 11). But we will create it back and make |
| 148 | * it point to inode 11. We won't find B, so we'll just skip that step. At this |
| 149 | * point, the refcount for inode 11 is not reliable, but that gets fixed by the |
| 150 | * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled |
| 151 | * similarly. Thus, by converting a non-idempotent procedure into a series of |
| 152 | * idempotent outcomes, fast commits ensured idempotence during the replay. |
| 153 | * |
| 154 | * Locking |
| 155 | * ------- |
| 156 | * sbi->s_fc_lock protects the fast commit inodes queue and the fast commit |
| 157 | * dentry queue. ei->i_fc_lock protects the fast commit related info in a given |
| 158 | * inode. Most of the code avoids acquiring both the locks, but if one must do |
| 159 | * that then sbi->s_fc_lock must be acquired before ei->i_fc_lock. |
| 160 | * |
| 161 | * TODOs |
| 162 | * ----- |
| 163 | * |
| 164 | * 0) Fast commit replay path hardening: Fast commit replay code should use |
| 165 | * journal handles to make sure all the updates it does during the replay |
| 166 | * path are atomic. With that if we crash during fast commit replay, after |
| 167 | * trying to do recovery again, we will find a file system where fast commit |
| 168 | * area is invalid (because new full commit would be found). In order to deal |
| 169 | * with that, fast commit replay code should ensure that the "FC_REPLAY" |
| 170 | * superblock state is persisted before starting the replay, so that after |
| 171 | * the crash, fast commit recovery code can look at that flag and perform |
| 172 | * fast commit recovery even if that area is invalidated by later full |
| 173 | * commits. |
| 174 | * |
| 175 | * 1) Handle more ineligible cases. |
| 176 | * |
| 177 | * 2) Change ext4_fc_commit() to lookup logical to physical mapping using extent |
| 178 | * status tree. This would get rid of the need to call ext4_fc_track_inode() |
| 179 | * before acquiring i_data_sem. To do that we would need to ensure that |
| 180 | * modified extents from the extent status tree are not evicted from memory. |
| 181 | */ |
| 182 | |
| 183 | #include <trace/events/ext4.h> |
| 184 | static struct kmem_cache *ext4_fc_dentry_cachep; |
| 185 | |
| 186 | static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) |
| 187 | { |
| 188 | BUFFER_TRACE(bh, ""); |
| 189 | if (uptodate) { |
| 190 | ext4_debug("%s: Block %lld up-to-date", |
| 191 | __func__, bh->b_blocknr); |
| 192 | set_buffer_uptodate(bh); |
| 193 | } else { |
| 194 | ext4_debug("%s: Block %lld not up-to-date", |
| 195 | __func__, bh->b_blocknr); |
| 196 | clear_buffer_uptodate(bh); |
| 197 | } |
| 198 | |
| 199 | unlock_buffer(bh); |
| 200 | } |
| 201 | |
| 202 | static inline void ext4_fc_reset_inode(struct inode *inode) |
| 203 | { |
| 204 | struct ext4_inode_info *ei = EXT4_I(inode); |
| 205 | |
| 206 | ei->i_fc_lblk_start = 0; |
| 207 | ei->i_fc_lblk_len = 0; |
| 208 | } |
| 209 | |
| 210 | void ext4_fc_init_inode(struct inode *inode) |
| 211 | { |
| 212 | struct ext4_inode_info *ei = EXT4_I(inode); |
| 213 | |
| 214 | ext4_fc_reset_inode(inode); |
| 215 | ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); |
| 216 | INIT_LIST_HEAD(&ei->i_fc_list); |
| 217 | INIT_LIST_HEAD(&ei->i_fc_dilist); |
| 218 | init_waitqueue_head(&ei->i_fc_wait); |
| 219 | } |
| 220 | |
| 221 | static bool ext4_fc_disabled(struct super_block *sb) |
| 222 | { |
| 223 | return (!test_opt2(sb, JOURNAL_FAST_COMMIT) || |
| 224 | (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)); |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * Remove inode from fast commit list. If the inode is being committed |
| 229 | * we wait until inode commit is done. |
| 230 | */ |
| 231 | void ext4_fc_del(struct inode *inode) |
| 232 | { |
| 233 | struct ext4_inode_info *ei = EXT4_I(inode); |
| 234 | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); |
| 235 | struct ext4_fc_dentry_update *fc_dentry; |
| 236 | wait_queue_head_t *wq; |
| 237 | |
| 238 | if (ext4_fc_disabled(inode->i_sb)) |
| 239 | return; |
| 240 | |
| 241 | mutex_lock(&sbi->s_fc_lock); |
| 242 | if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) { |
| 243 | mutex_unlock(&sbi->s_fc_lock); |
| 244 | return; |
| 245 | } |
| 246 | |
| 247 | /* |
| 248 | * Since ext4_fc_del is called from ext4_evict_inode while having a |
| 249 | * handle open, there is no need for us to wait here even if a fast |
| 250 | * commit is going on. That is because, if this inode is being |
| 251 | * committed, ext4_mark_inode_dirty would have waited for inode commit |
| 252 | * operation to finish before we come here. So, by the time we come |
| 253 | * here, inode's EXT4_STATE_FC_COMMITTING would have been cleared. So, |
| 254 | * we shouldn't see EXT4_STATE_FC_COMMITTING to be set on this inode |
| 255 | * here. |
| 256 | * |
| 257 | * We may come here without any handles open in the "no_delete" case of |
| 258 | * ext4_evict_inode as well. However, if that happens, we first mark the |
| 259 | * file system as fast commit ineligible anyway. So, even in that case, |
| 260 | * it is okay to remove the inode from the fc list. |
| 261 | */ |
| 262 | WARN_ON(ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING) |
| 263 | && !ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)); |
| 264 | while (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) { |
| 265 | #if (BITS_PER_LONG < 64) |
| 266 | DEFINE_WAIT_BIT(wait, &ei->i_state_flags, |
| 267 | EXT4_STATE_FC_FLUSHING_DATA); |
| 268 | wq = bit_waitqueue(&ei->i_state_flags, |
| 269 | EXT4_STATE_FC_FLUSHING_DATA); |
| 270 | #else |
| 271 | DEFINE_WAIT_BIT(wait, &ei->i_flags, |
| 272 | EXT4_STATE_FC_FLUSHING_DATA); |
| 273 | wq = bit_waitqueue(&ei->i_flags, |
| 274 | EXT4_STATE_FC_FLUSHING_DATA); |
| 275 | #endif |
| 276 | prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); |
| 277 | if (ext4_test_inode_state(inode, EXT4_STATE_FC_FLUSHING_DATA)) { |
| 278 | mutex_unlock(&sbi->s_fc_lock); |
| 279 | schedule(); |
| 280 | mutex_lock(&sbi->s_fc_lock); |
| 281 | } |
| 282 | finish_wait(wq, &wait.wq_entry); |
| 283 | } |
| 284 | list_del_init(&ei->i_fc_list); |
| 285 | |
| 286 | /* |
| 287 | * Since this inode is getting removed, let's also remove all FC |
| 288 | * dentry create references, since it is not needed to log it anyways. |
| 289 | */ |
| 290 | if (list_empty(&ei->i_fc_dilist)) { |
| 291 | mutex_unlock(&sbi->s_fc_lock); |
| 292 | return; |
| 293 | } |
| 294 | |
| 295 | fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist); |
| 296 | WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT); |
| 297 | list_del_init(&fc_dentry->fcd_list); |
| 298 | list_del_init(&fc_dentry->fcd_dilist); |
| 299 | |
| 300 | WARN_ON(!list_empty(&ei->i_fc_dilist)); |
| 301 | mutex_unlock(&sbi->s_fc_lock); |
| 302 | |
| 303 | release_dentry_name_snapshot(&fc_dentry->fcd_name); |
| 304 | kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * Mark file system as fast commit ineligible, and record latest |
| 309 | * ineligible transaction tid. This means until the recorded |
| 310 | * transaction, commit operation would result in a full jbd2 commit. |
| 311 | */ |
| 312 | void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle) |
| 313 | { |
| 314 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 315 | tid_t tid; |
| 316 | bool has_transaction = true; |
| 317 | bool is_ineligible; |
| 318 | |
| 319 | if (ext4_fc_disabled(sb)) |
| 320 | return; |
| 321 | |
| 322 | if (handle && !IS_ERR(handle)) |
| 323 | tid = handle->h_transaction->t_tid; |
| 324 | else { |
| 325 | read_lock(&sbi->s_journal->j_state_lock); |
| 326 | if (sbi->s_journal->j_running_transaction) |
| 327 | tid = sbi->s_journal->j_running_transaction->t_tid; |
| 328 | else |
| 329 | has_transaction = false; |
| 330 | read_unlock(&sbi->s_journal->j_state_lock); |
| 331 | } |
| 332 | mutex_lock(&sbi->s_fc_lock); |
| 333 | is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); |
| 334 | if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid))) |
| 335 | sbi->s_fc_ineligible_tid = tid; |
| 336 | ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); |
| 337 | mutex_unlock(&sbi->s_fc_lock); |
| 338 | WARN_ON(reason >= EXT4_FC_REASON_MAX); |
| 339 | sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; |
| 340 | } |
| 341 | |
| 342 | /* |
| 343 | * Generic fast commit tracking function. If this is the first time this we are |
| 344 | * called after a full commit, we initialize fast commit fields and then call |
| 345 | * __fc_track_fn() with update = 0. If we have already been called after a full |
| 346 | * commit, we pass update = 1. Based on that, the track function can determine |
| 347 | * if it needs to track a field for the first time or if it needs to just |
| 348 | * update the previously tracked value. |
| 349 | * |
| 350 | * If enqueue is set, this function enqueues the inode in fast commit list. |
| 351 | */ |
| 352 | static int ext4_fc_track_template( |
| 353 | handle_t *handle, struct inode *inode, |
| 354 | int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool), |
| 355 | void *args, int enqueue) |
| 356 | { |
| 357 | bool update = false; |
| 358 | struct ext4_inode_info *ei = EXT4_I(inode); |
| 359 | struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); |
| 360 | tid_t tid = 0; |
| 361 | int ret; |
| 362 | |
| 363 | tid = handle->h_transaction->t_tid; |
| 364 | spin_lock(&ei->i_fc_lock); |
| 365 | if (tid == ei->i_sync_tid) { |
| 366 | update = true; |
| 367 | } else { |
| 368 | ext4_fc_reset_inode(inode); |
| 369 | ei->i_sync_tid = tid; |
| 370 | } |
| 371 | ret = __fc_track_fn(handle, inode, args, update); |
| 372 | spin_unlock(&ei->i_fc_lock); |
| 373 | if (!enqueue) |
| 374 | return ret; |
| 375 | |
| 376 | mutex_lock(&sbi->s_fc_lock); |
| 377 | if (list_empty(&EXT4_I(inode)->i_fc_list)) |
| 378 | list_add_tail(&EXT4_I(inode)->i_fc_list, |
| 379 | (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || |
| 380 | sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ? |
| 381 | &sbi->s_fc_q[FC_Q_STAGING] : |
| 382 | &sbi->s_fc_q[FC_Q_MAIN]); |
| 383 | mutex_unlock(&sbi->s_fc_lock); |
| 384 | |
| 385 | return ret; |
| 386 | } |
| 387 | |
| 388 | struct __track_dentry_update_args { |
| 389 | struct dentry *dentry; |
| 390 | int op; |
| 391 | }; |
| 392 | |
| 393 | /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ |
| 394 | static int __track_dentry_update(handle_t *handle, struct inode *inode, |
| 395 | void *arg, bool update) |
| 396 | { |
| 397 | struct ext4_fc_dentry_update *node; |
| 398 | struct ext4_inode_info *ei = EXT4_I(inode); |
| 399 | struct __track_dentry_update_args *dentry_update = |
| 400 | (struct __track_dentry_update_args *)arg; |
| 401 | struct dentry *dentry = dentry_update->dentry; |
| 402 | struct inode *dir = dentry->d_parent->d_inode; |
| 403 | struct super_block *sb = inode->i_sb; |
| 404 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 405 | |
| 406 | spin_unlock(&ei->i_fc_lock); |
| 407 | |
| 408 | if (IS_ENCRYPTED(dir)) { |
| 409 | ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME, |
| 410 | handle); |
| 411 | spin_lock(&ei->i_fc_lock); |
| 412 | return -EOPNOTSUPP; |
| 413 | } |
| 414 | |
| 415 | node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); |
| 416 | if (!node) { |
| 417 | ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle); |
| 418 | spin_lock(&ei->i_fc_lock); |
| 419 | return -ENOMEM; |
| 420 | } |
| 421 | |
| 422 | node->fcd_op = dentry_update->op; |
| 423 | node->fcd_parent = dir->i_ino; |
| 424 | node->fcd_ino = inode->i_ino; |
| 425 | take_dentry_name_snapshot(&node->fcd_name, dentry); |
| 426 | INIT_LIST_HEAD(&node->fcd_dilist); |
| 427 | INIT_LIST_HEAD(&node->fcd_list); |
| 428 | mutex_lock(&sbi->s_fc_lock); |
| 429 | if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING || |
| 430 | sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) |
| 431 | list_add_tail(&node->fcd_list, |
| 432 | &sbi->s_fc_dentry_q[FC_Q_STAGING]); |
| 433 | else |
| 434 | list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); |
| 435 | |
| 436 | /* |
| 437 | * This helps us keep a track of all fc_dentry updates which is part of |
| 438 | * this ext4 inode. So in case the inode is getting unlinked, before |
| 439 | * even we get a chance to fsync, we could remove all fc_dentry |
| 440 | * references while evicting the inode in ext4_fc_del(). |
| 441 | * Also with this, we don't need to loop over all the inodes in |
| 442 | * sbi->s_fc_q to get the corresponding inode in |
| 443 | * ext4_fc_commit_dentry_updates(). |
| 444 | */ |
| 445 | if (dentry_update->op == EXT4_FC_TAG_CREAT) { |
| 446 | WARN_ON(!list_empty(&ei->i_fc_dilist)); |
| 447 | list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist); |
| 448 | } |
| 449 | mutex_unlock(&sbi->s_fc_lock); |
| 450 | spin_lock(&ei->i_fc_lock); |
| 451 | |
| 452 | return 0; |
| 453 | } |
| 454 | |
| 455 | void __ext4_fc_track_unlink(handle_t *handle, |
| 456 | struct inode *inode, struct dentry *dentry) |
| 457 | { |
| 458 | struct __track_dentry_update_args args; |
| 459 | int ret; |
| 460 | |
| 461 | args.dentry = dentry; |
| 462 | args.op = EXT4_FC_TAG_UNLINK; |
| 463 | |
| 464 | ret = ext4_fc_track_template(handle, inode, __track_dentry_update, |
| 465 | (void *)&args, 0); |
| 466 | trace_ext4_fc_track_unlink(handle, inode, dentry, ret); |
| 467 | } |
| 468 | |
| 469 | void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) |
| 470 | { |
| 471 | struct inode *inode = d_inode(dentry); |
| 472 | |
| 473 | if (ext4_fc_disabled(inode->i_sb)) |
| 474 | return; |
| 475 | |
| 476 | if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) |
| 477 | return; |
| 478 | |
| 479 | __ext4_fc_track_unlink(handle, inode, dentry); |
| 480 | } |
| 481 | |
| 482 | void __ext4_fc_track_link(handle_t *handle, |
| 483 | struct inode *inode, struct dentry *dentry) |
| 484 | { |
| 485 | struct __track_dentry_update_args args; |
| 486 | int ret; |
| 487 | |
| 488 | args.dentry = dentry; |
| 489 | args.op = EXT4_FC_TAG_LINK; |
| 490 | |
| 491 | ret = ext4_fc_track_template(handle, inode, __track_dentry_update, |
| 492 | (void *)&args, 0); |
| 493 | trace_ext4_fc_track_link(handle, inode, dentry, ret); |
| 494 | } |
| 495 | |
| 496 | void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) |
| 497 | { |
| 498 | struct inode *inode = d_inode(dentry); |
| 499 | |
| 500 | if (ext4_fc_disabled(inode->i_sb)) |
| 501 | return; |
| 502 | |
| 503 | if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) |
| 504 | return; |
| 505 | |
| 506 | __ext4_fc_track_link(handle, inode, dentry); |
| 507 | } |
| 508 | |
| 509 | void __ext4_fc_track_create(handle_t *handle, struct inode *inode, |
| 510 | struct dentry *dentry) |
| 511 | { |
| 512 | struct __track_dentry_update_args args; |
| 513 | int ret; |
| 514 | |
| 515 | args.dentry = dentry; |
| 516 | args.op = EXT4_FC_TAG_CREAT; |
| 517 | |
| 518 | ret = ext4_fc_track_template(handle, inode, __track_dentry_update, |
| 519 | (void *)&args, 0); |
| 520 | trace_ext4_fc_track_create(handle, inode, dentry, ret); |
| 521 | } |
| 522 | |
| 523 | void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) |
| 524 | { |
| 525 | struct inode *inode = d_inode(dentry); |
| 526 | |
| 527 | if (ext4_fc_disabled(inode->i_sb)) |
| 528 | return; |
| 529 | |
| 530 | if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) |
| 531 | return; |
| 532 | |
| 533 | __ext4_fc_track_create(handle, inode, dentry); |
| 534 | } |
| 535 | |
| 536 | /* __track_fn for inode tracking */ |
| 537 | static int __track_inode(handle_t *handle, struct inode *inode, void *arg, |
| 538 | bool update) |
| 539 | { |
| 540 | if (update) |
| 541 | return -EEXIST; |
| 542 | |
| 543 | EXT4_I(inode)->i_fc_lblk_len = 0; |
| 544 | |
| 545 | return 0; |
| 546 | } |
| 547 | |
| 548 | void ext4_fc_track_inode(handle_t *handle, struct inode *inode) |
| 549 | { |
| 550 | struct ext4_inode_info *ei = EXT4_I(inode); |
| 551 | wait_queue_head_t *wq; |
| 552 | int ret; |
| 553 | |
| 554 | if (S_ISDIR(inode->i_mode)) |
| 555 | return; |
| 556 | |
| 557 | if (ext4_fc_disabled(inode->i_sb)) |
| 558 | return; |
| 559 | |
| 560 | if (ext4_should_journal_data(inode)) { |
| 561 | ext4_fc_mark_ineligible(inode->i_sb, |
| 562 | EXT4_FC_REASON_INODE_JOURNAL_DATA, handle); |
| 563 | return; |
| 564 | } |
| 565 | |
| 566 | if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) |
| 567 | return; |
| 568 | |
| 569 | /* |
| 570 | * If we come here, we may sleep while waiting for the inode to |
| 571 | * commit. We shouldn't be holding i_data_sem when we go to sleep since |
| 572 | * the commit path needs to grab the lock while committing the inode. |
| 573 | */ |
| 574 | lockdep_assert_not_held(&ei->i_data_sem); |
| 575 | |
| 576 | while (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { |
| 577 | #if (BITS_PER_LONG < 64) |
| 578 | DEFINE_WAIT_BIT(wait, &ei->i_state_flags, |
| 579 | EXT4_STATE_FC_COMMITTING); |
| 580 | wq = bit_waitqueue(&ei->i_state_flags, |
| 581 | EXT4_STATE_FC_COMMITTING); |
| 582 | #else |
| 583 | DEFINE_WAIT_BIT(wait, &ei->i_flags, |
| 584 | EXT4_STATE_FC_COMMITTING); |
| 585 | wq = bit_waitqueue(&ei->i_flags, |
| 586 | EXT4_STATE_FC_COMMITTING); |
| 587 | #endif |
| 588 | prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); |
| 589 | if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) |
| 590 | schedule(); |
| 591 | finish_wait(wq, &wait.wq_entry); |
| 592 | } |
| 593 | |
| 594 | /* |
| 595 | * From this point on, this inode will not be committed either |
| 596 | * by fast or full commit as long as the handle is open. |
| 597 | */ |
| 598 | ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); |
| 599 | trace_ext4_fc_track_inode(handle, inode, ret); |
| 600 | } |
| 601 | |
| 602 | struct __track_range_args { |
| 603 | ext4_lblk_t start, end; |
| 604 | }; |
| 605 | |
| 606 | /* __track_fn for tracking data updates */ |
| 607 | static int __track_range(handle_t *handle, struct inode *inode, void *arg, |
| 608 | bool update) |
| 609 | { |
| 610 | struct ext4_inode_info *ei = EXT4_I(inode); |
| 611 | ext4_lblk_t oldstart; |
| 612 | struct __track_range_args *__arg = |
| 613 | (struct __track_range_args *)arg; |
| 614 | |
| 615 | if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { |
| 616 | ext4_debug("Special inode %ld being modified\n", inode->i_ino); |
| 617 | return -ECANCELED; |
| 618 | } |
| 619 | |
| 620 | oldstart = ei->i_fc_lblk_start; |
| 621 | |
| 622 | if (update && ei->i_fc_lblk_len > 0) { |
| 623 | ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); |
| 624 | ei->i_fc_lblk_len = |
| 625 | max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - |
| 626 | ei->i_fc_lblk_start + 1; |
| 627 | } else { |
| 628 | ei->i_fc_lblk_start = __arg->start; |
| 629 | ei->i_fc_lblk_len = __arg->end - __arg->start + 1; |
| 630 | } |
| 631 | |
| 632 | return 0; |
| 633 | } |
| 634 | |
| 635 | void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, |
| 636 | ext4_lblk_t end) |
| 637 | { |
| 638 | struct __track_range_args args; |
| 639 | int ret; |
| 640 | |
| 641 | if (S_ISDIR(inode->i_mode)) |
| 642 | return; |
| 643 | |
| 644 | if (ext4_fc_disabled(inode->i_sb)) |
| 645 | return; |
| 646 | |
| 647 | if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE)) |
| 648 | return; |
| 649 | |
| 650 | if (ext4_has_inline_data(inode)) { |
| 651 | ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR, |
| 652 | handle); |
| 653 | return; |
| 654 | } |
| 655 | |
| 656 | args.start = start; |
| 657 | args.end = end; |
| 658 | |
| 659 | ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1); |
| 660 | |
| 661 | trace_ext4_fc_track_range(handle, inode, start, end, ret); |
| 662 | } |
| 663 | |
| 664 | static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail) |
| 665 | { |
| 666 | blk_opf_t write_flags = REQ_SYNC; |
| 667 | struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; |
| 668 | |
| 669 | /* Add REQ_FUA | REQ_PREFLUSH only its tail */ |
| 670 | if (test_opt(sb, BARRIER) && is_tail) |
| 671 | write_flags |= REQ_FUA | REQ_PREFLUSH; |
| 672 | lock_buffer(bh); |
| 673 | set_buffer_dirty(bh); |
| 674 | set_buffer_uptodate(bh); |
| 675 | bh->b_end_io = ext4_end_buffer_io_sync; |
| 676 | submit_bh(REQ_OP_WRITE | write_flags, bh); |
| 677 | EXT4_SB(sb)->s_fc_bh = NULL; |
| 678 | } |
| 679 | |
| 680 | /* Ext4 commit path routines */ |
| 681 | |
| 682 | /* |
| 683 | * Allocate len bytes on a fast commit buffer. |
| 684 | * |
| 685 | * During the commit time this function is used to manage fast commit |
| 686 | * block space. We don't split a fast commit log onto different |
| 687 | * blocks. So this function makes sure that if there's not enough space |
| 688 | * on the current block, the remaining space in the current block is |
| 689 | * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, |
| 690 | * new block is from jbd2 and CRC is updated to reflect the padding |
| 691 | * we added. |
| 692 | */ |
| 693 | static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) |
| 694 | { |
| 695 | struct ext4_fc_tl tl; |
| 696 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 697 | struct buffer_head *bh; |
| 698 | int bsize = sbi->s_journal->j_blocksize; |
| 699 | int ret, off = sbi->s_fc_bytes % bsize; |
| 700 | int remaining; |
| 701 | u8 *dst; |
| 702 | |
| 703 | /* |
| 704 | * If 'len' is too long to fit in any block alongside a PAD tlv, then we |
| 705 | * cannot fulfill the request. |
| 706 | */ |
| 707 | if (len > bsize - EXT4_FC_TAG_BASE_LEN) |
| 708 | return NULL; |
| 709 | |
| 710 | if (!sbi->s_fc_bh) { |
| 711 | ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); |
| 712 | if (ret) |
| 713 | return NULL; |
| 714 | sbi->s_fc_bh = bh; |
| 715 | } |
| 716 | dst = sbi->s_fc_bh->b_data + off; |
| 717 | |
| 718 | /* |
| 719 | * Allocate the bytes in the current block if we can do so while still |
| 720 | * leaving enough space for a PAD tlv. |
| 721 | */ |
| 722 | remaining = bsize - EXT4_FC_TAG_BASE_LEN - off; |
| 723 | if (len <= remaining) { |
| 724 | sbi->s_fc_bytes += len; |
| 725 | return dst; |
| 726 | } |
| 727 | |
| 728 | /* |
| 729 | * Else, terminate the current block with a PAD tlv, then allocate a new |
| 730 | * block and allocate the bytes at the start of that new block. |
| 731 | */ |
| 732 | |
| 733 | tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); |
| 734 | tl.fc_len = cpu_to_le16(remaining); |
| 735 | memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); |
| 736 | memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining); |
| 737 | *crc = ext4_chksum(*crc, sbi->s_fc_bh->b_data, bsize); |
| 738 | |
| 739 | ext4_fc_submit_bh(sb, false); |
| 740 | |
| 741 | ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); |
| 742 | if (ret) |
| 743 | return NULL; |
| 744 | sbi->s_fc_bh = bh; |
| 745 | sbi->s_fc_bytes += bsize - off + len; |
| 746 | return sbi->s_fc_bh->b_data; |
| 747 | } |
| 748 | |
| 749 | /* |
| 750 | * Complete a fast commit by writing tail tag. |
| 751 | * |
| 752 | * Writing tail tag marks the end of a fast commit. In order to guarantee |
| 753 | * atomicity, after writing tail tag, even if there's space remaining |
| 754 | * in the block, next commit shouldn't use it. That's why tail tag |
| 755 | * has the length as that of the remaining space on the block. |
| 756 | */ |
| 757 | static int ext4_fc_write_tail(struct super_block *sb, u32 crc) |
| 758 | { |
| 759 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 760 | struct ext4_fc_tl tl; |
| 761 | struct ext4_fc_tail tail; |
| 762 | int off, bsize = sbi->s_journal->j_blocksize; |
| 763 | u8 *dst; |
| 764 | |
| 765 | /* |
| 766 | * ext4_fc_reserve_space takes care of allocating an extra block if |
| 767 | * there's no enough space on this block for accommodating this tail. |
| 768 | */ |
| 769 | dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc); |
| 770 | if (!dst) |
| 771 | return -ENOSPC; |
| 772 | |
| 773 | off = sbi->s_fc_bytes % bsize; |
| 774 | |
| 775 | tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); |
| 776 | tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail)); |
| 777 | sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); |
| 778 | |
| 779 | memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); |
| 780 | dst += EXT4_FC_TAG_BASE_LEN; |
| 781 | tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); |
| 782 | memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid)); |
| 783 | dst += sizeof(tail.fc_tid); |
| 784 | crc = ext4_chksum(crc, sbi->s_fc_bh->b_data, |
| 785 | dst - (u8 *)sbi->s_fc_bh->b_data); |
| 786 | tail.fc_crc = cpu_to_le32(crc); |
| 787 | memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc)); |
| 788 | dst += sizeof(tail.fc_crc); |
| 789 | memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */ |
| 790 | |
| 791 | ext4_fc_submit_bh(sb, true); |
| 792 | |
| 793 | return 0; |
| 794 | } |
| 795 | |
| 796 | /* |
| 797 | * Adds tag, length, value and updates CRC. Returns true if tlv was added. |
| 798 | * Returns false if there's not enough space. |
| 799 | */ |
| 800 | static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, |
| 801 | u32 *crc) |
| 802 | { |
| 803 | struct ext4_fc_tl tl; |
| 804 | u8 *dst; |
| 805 | |
| 806 | dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc); |
| 807 | if (!dst) |
| 808 | return false; |
| 809 | |
| 810 | tl.fc_tag = cpu_to_le16(tag); |
| 811 | tl.fc_len = cpu_to_le16(len); |
| 812 | |
| 813 | memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); |
| 814 | memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len); |
| 815 | |
| 816 | return true; |
| 817 | } |
| 818 | |
| 819 | /* Same as above, but adds dentry tlv. */ |
| 820 | static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc, |
| 821 | struct ext4_fc_dentry_update *fc_dentry) |
| 822 | { |
| 823 | struct ext4_fc_dentry_info fcd; |
| 824 | struct ext4_fc_tl tl; |
| 825 | int dlen = fc_dentry->fcd_name.name.len; |
| 826 | u8 *dst = ext4_fc_reserve_space(sb, |
| 827 | EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc); |
| 828 | |
| 829 | if (!dst) |
| 830 | return false; |
| 831 | |
| 832 | fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent); |
| 833 | fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino); |
| 834 | tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op); |
| 835 | tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); |
| 836 | memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); |
| 837 | dst += EXT4_FC_TAG_BASE_LEN; |
| 838 | memcpy(dst, &fcd, sizeof(fcd)); |
| 839 | dst += sizeof(fcd); |
| 840 | memcpy(dst, fc_dentry->fcd_name.name.name, dlen); |
| 841 | |
| 842 | return true; |
| 843 | } |
| 844 | |
| 845 | /* |
| 846 | * Writes inode in the fast commit space under TLV with tag @tag. |
| 847 | * Returns 0 on success, error on failure. |
| 848 | */ |
| 849 | static int ext4_fc_write_inode(struct inode *inode, u32 *crc) |
| 850 | { |
| 851 | struct ext4_inode_info *ei = EXT4_I(inode); |
| 852 | int inode_len = EXT4_GOOD_OLD_INODE_SIZE; |
| 853 | int ret; |
| 854 | struct ext4_iloc iloc; |
| 855 | struct ext4_fc_inode fc_inode; |
| 856 | struct ext4_fc_tl tl; |
| 857 | u8 *dst; |
| 858 | |
| 859 | ret = ext4_get_inode_loc(inode, &iloc); |
| 860 | if (ret) |
| 861 | return ret; |
| 862 | |
| 863 | if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) |
| 864 | inode_len = EXT4_INODE_SIZE(inode->i_sb); |
| 865 | else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) |
| 866 | inode_len += ei->i_extra_isize; |
| 867 | |
| 868 | fc_inode.fc_ino = cpu_to_le32(inode->i_ino); |
| 869 | tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); |
| 870 | tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); |
| 871 | |
| 872 | ret = -ECANCELED; |
| 873 | dst = ext4_fc_reserve_space(inode->i_sb, |
| 874 | EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc); |
| 875 | if (!dst) |
| 876 | goto err; |
| 877 | |
| 878 | memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN); |
| 879 | dst += EXT4_FC_TAG_BASE_LEN; |
| 880 | memcpy(dst, &fc_inode, sizeof(fc_inode)); |
| 881 | dst += sizeof(fc_inode); |
| 882 | memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len); |
| 883 | ret = 0; |
| 884 | err: |
| 885 | brelse(iloc.bh); |
| 886 | return ret; |
| 887 | } |
| 888 | |
| 889 | /* |
| 890 | * Writes updated data ranges for the inode in question. Updates CRC. |
| 891 | * Returns 0 on success, error otherwise. |
| 892 | */ |
| 893 | static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) |
| 894 | { |
| 895 | ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; |
| 896 | struct ext4_inode_info *ei = EXT4_I(inode); |
| 897 | struct ext4_map_blocks map; |
| 898 | struct ext4_fc_add_range fc_ext; |
| 899 | struct ext4_fc_del_range lrange; |
| 900 | struct ext4_extent *ex; |
| 901 | int ret; |
| 902 | |
| 903 | spin_lock(&ei->i_fc_lock); |
| 904 | if (ei->i_fc_lblk_len == 0) { |
| 905 | spin_unlock(&ei->i_fc_lock); |
| 906 | return 0; |
| 907 | } |
| 908 | old_blk_size = ei->i_fc_lblk_start; |
| 909 | new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; |
| 910 | ei->i_fc_lblk_len = 0; |
| 911 | spin_unlock(&ei->i_fc_lock); |
| 912 | |
| 913 | cur_lblk_off = old_blk_size; |
| 914 | ext4_debug("will try writing %d to %d for inode %ld\n", |
| 915 | cur_lblk_off, new_blk_size, inode->i_ino); |
| 916 | |
| 917 | while (cur_lblk_off <= new_blk_size) { |
| 918 | map.m_lblk = cur_lblk_off; |
| 919 | map.m_len = new_blk_size - cur_lblk_off + 1; |
| 920 | ret = ext4_map_blocks(NULL, inode, &map, |
| 921 | EXT4_GET_BLOCKS_IO_SUBMIT | |
| 922 | EXT4_EX_NOCACHE); |
| 923 | if (ret < 0) |
| 924 | return -ECANCELED; |
| 925 | |
| 926 | if (map.m_len == 0) { |
| 927 | cur_lblk_off++; |
| 928 | continue; |
| 929 | } |
| 930 | |
| 931 | if (ret == 0) { |
| 932 | lrange.fc_ino = cpu_to_le32(inode->i_ino); |
| 933 | lrange.fc_lblk = cpu_to_le32(map.m_lblk); |
| 934 | lrange.fc_len = cpu_to_le32(map.m_len); |
| 935 | if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, |
| 936 | sizeof(lrange), (u8 *)&lrange, crc)) |
| 937 | return -ENOSPC; |
| 938 | } else { |
| 939 | unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? |
| 940 | EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; |
| 941 | |
| 942 | /* Limit the number of blocks in one extent */ |
| 943 | map.m_len = min(max, map.m_len); |
| 944 | |
| 945 | fc_ext.fc_ino = cpu_to_le32(inode->i_ino); |
| 946 | ex = (struct ext4_extent *)&fc_ext.fc_ex; |
| 947 | ex->ee_block = cpu_to_le32(map.m_lblk); |
| 948 | ex->ee_len = cpu_to_le16(map.m_len); |
| 949 | ext4_ext_store_pblock(ex, map.m_pblk); |
| 950 | if (map.m_flags & EXT4_MAP_UNWRITTEN) |
| 951 | ext4_ext_mark_unwritten(ex); |
| 952 | else |
| 953 | ext4_ext_mark_initialized(ex); |
| 954 | if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, |
| 955 | sizeof(fc_ext), (u8 *)&fc_ext, crc)) |
| 956 | return -ENOSPC; |
| 957 | } |
| 958 | |
| 959 | cur_lblk_off += map.m_len; |
| 960 | } |
| 961 | |
| 962 | return 0; |
| 963 | } |
| 964 | |
| 965 | |
| 966 | /* Flushes data of all the inodes in the commit queue. */ |
| 967 | static int ext4_fc_flush_data(journal_t *journal) |
| 968 | { |
| 969 | struct super_block *sb = journal->j_private; |
| 970 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 971 | struct ext4_inode_info *ei; |
| 972 | int ret = 0; |
| 973 | |
| 974 | list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { |
| 975 | ret = jbd2_submit_inode_data(journal, ei->jinode); |
| 976 | if (ret) |
| 977 | return ret; |
| 978 | } |
| 979 | |
| 980 | list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { |
| 981 | ret = jbd2_wait_inode_data(journal, ei->jinode); |
| 982 | if (ret) |
| 983 | return ret; |
| 984 | } |
| 985 | |
| 986 | return 0; |
| 987 | } |
| 988 | |
| 989 | /* Commit all the directory entry updates */ |
| 990 | static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) |
| 991 | { |
| 992 | struct super_block *sb = journal->j_private; |
| 993 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 994 | struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n; |
| 995 | struct inode *inode; |
| 996 | struct ext4_inode_info *ei; |
| 997 | int ret; |
| 998 | |
| 999 | if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) |
| 1000 | return 0; |
| 1001 | list_for_each_entry_safe(fc_dentry, fc_dentry_n, |
| 1002 | &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) { |
| 1003 | if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { |
| 1004 | if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) |
| 1005 | return -ENOSPC; |
| 1006 | continue; |
| 1007 | } |
| 1008 | /* |
| 1009 | * With fcd_dilist we need not loop in sbi->s_fc_q to get the |
| 1010 | * corresponding inode. Also, the corresponding inode could have been |
| 1011 | * deleted, in which case, we don't need to do anything. |
| 1012 | */ |
| 1013 | if (list_empty(&fc_dentry->fcd_dilist)) |
| 1014 | continue; |
| 1015 | ei = list_first_entry(&fc_dentry->fcd_dilist, |
| 1016 | struct ext4_inode_info, i_fc_dilist); |
| 1017 | inode = &ei->vfs_inode; |
| 1018 | WARN_ON(inode->i_ino != fc_dentry->fcd_ino); |
| 1019 | |
| 1020 | /* |
| 1021 | * We first write the inode and then the create dirent. This |
| 1022 | * allows the recovery code to create an unnamed inode first |
| 1023 | * and then link it to a directory entry. This allows us |
| 1024 | * to use namei.c routines almost as is and simplifies |
| 1025 | * the recovery code. |
| 1026 | */ |
| 1027 | ret = ext4_fc_write_inode(inode, crc); |
| 1028 | if (ret) |
| 1029 | return ret; |
| 1030 | ret = ext4_fc_write_inode_data(inode, crc); |
| 1031 | if (ret) |
| 1032 | return ret; |
| 1033 | if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) |
| 1034 | return -ENOSPC; |
| 1035 | } |
| 1036 | return 0; |
| 1037 | } |
| 1038 | |
| 1039 | static int ext4_fc_perform_commit(journal_t *journal) |
| 1040 | { |
| 1041 | struct super_block *sb = journal->j_private; |
| 1042 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 1043 | struct ext4_inode_info *iter; |
| 1044 | struct ext4_fc_head head; |
| 1045 | struct inode *inode; |
| 1046 | struct blk_plug plug; |
| 1047 | int ret = 0; |
| 1048 | u32 crc = 0; |
| 1049 | |
| 1050 | /* |
| 1051 | * Step 1: Mark all inodes on s_fc_q[MAIN] with |
| 1052 | * EXT4_STATE_FC_FLUSHING_DATA. This prevents these inodes from being |
| 1053 | * freed until the data flush is over. |
| 1054 | */ |
| 1055 | mutex_lock(&sbi->s_fc_lock); |
| 1056 | list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { |
| 1057 | ext4_set_inode_state(&iter->vfs_inode, |
| 1058 | EXT4_STATE_FC_FLUSHING_DATA); |
| 1059 | } |
| 1060 | mutex_unlock(&sbi->s_fc_lock); |
| 1061 | |
| 1062 | /* Step 2: Flush data for all the eligible inodes. */ |
| 1063 | ret = ext4_fc_flush_data(journal); |
| 1064 | |
| 1065 | /* |
| 1066 | * Step 3: Clear EXT4_STATE_FC_FLUSHING_DATA flag, before returning |
| 1067 | * any error from step 2. This ensures that waiters waiting on |
| 1068 | * EXT4_STATE_FC_FLUSHING_DATA can resume. |
| 1069 | */ |
| 1070 | mutex_lock(&sbi->s_fc_lock); |
| 1071 | list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { |
| 1072 | ext4_clear_inode_state(&iter->vfs_inode, |
| 1073 | EXT4_STATE_FC_FLUSHING_DATA); |
| 1074 | #if (BITS_PER_LONG < 64) |
| 1075 | wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_FLUSHING_DATA); |
| 1076 | #else |
| 1077 | wake_up_bit(&iter->i_flags, EXT4_STATE_FC_FLUSHING_DATA); |
| 1078 | #endif |
| 1079 | } |
| 1080 | |
| 1081 | /* |
| 1082 | * Make sure clearing of EXT4_STATE_FC_FLUSHING_DATA is visible before |
| 1083 | * the waiter checks the bit. Pairs with implicit barrier in |
| 1084 | * prepare_to_wait() in ext4_fc_del(). |
| 1085 | */ |
| 1086 | smp_mb(); |
| 1087 | mutex_unlock(&sbi->s_fc_lock); |
| 1088 | |
| 1089 | /* |
| 1090 | * If we encountered error in Step 2, return it now after clearing |
| 1091 | * EXT4_STATE_FC_FLUSHING_DATA bit. |
| 1092 | */ |
| 1093 | if (ret) |
| 1094 | return ret; |
| 1095 | |
| 1096 | |
| 1097 | /* Step 4: Mark all inodes as being committed. */ |
| 1098 | jbd2_journal_lock_updates(journal); |
| 1099 | /* |
| 1100 | * The journal is now locked. No more handles can start and all the |
| 1101 | * previous handles are now drained. We now mark the inodes on the |
| 1102 | * commit queue as being committed. |
| 1103 | */ |
| 1104 | mutex_lock(&sbi->s_fc_lock); |
| 1105 | list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { |
| 1106 | ext4_set_inode_state(&iter->vfs_inode, |
| 1107 | EXT4_STATE_FC_COMMITTING); |
| 1108 | } |
| 1109 | mutex_unlock(&sbi->s_fc_lock); |
| 1110 | jbd2_journal_unlock_updates(journal); |
| 1111 | |
| 1112 | /* |
| 1113 | * Step 5: If file system device is different from journal device, |
| 1114 | * issue a cache flush before we start writing fast commit blocks. |
| 1115 | */ |
| 1116 | if (journal->j_fs_dev != journal->j_dev) |
| 1117 | blkdev_issue_flush(journal->j_fs_dev); |
| 1118 | |
| 1119 | blk_start_plug(&plug); |
| 1120 | /* Step 6: Write fast commit blocks to disk. */ |
| 1121 | if (sbi->s_fc_bytes == 0) { |
| 1122 | /* |
| 1123 | * Step 6.1: Add a head tag only if this is the first fast |
| 1124 | * commit in this TID. |
| 1125 | */ |
| 1126 | head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); |
| 1127 | head.fc_tid = cpu_to_le32( |
| 1128 | sbi->s_journal->j_running_transaction->t_tid); |
| 1129 | if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), |
| 1130 | (u8 *)&head, &crc)) { |
| 1131 | ret = -ENOSPC; |
| 1132 | goto out; |
| 1133 | } |
| 1134 | } |
| 1135 | |
| 1136 | /* Step 6.2: Now write all the dentry updates. */ |
| 1137 | mutex_lock(&sbi->s_fc_lock); |
| 1138 | ret = ext4_fc_commit_dentry_updates(journal, &crc); |
| 1139 | if (ret) |
| 1140 | goto out; |
| 1141 | |
| 1142 | /* Step 6.3: Now write all the changed inodes to disk. */ |
| 1143 | list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { |
| 1144 | inode = &iter->vfs_inode; |
| 1145 | if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) |
| 1146 | continue; |
| 1147 | |
| 1148 | ret = ext4_fc_write_inode_data(inode, &crc); |
| 1149 | if (ret) |
| 1150 | goto out; |
| 1151 | ret = ext4_fc_write_inode(inode, &crc); |
| 1152 | if (ret) |
| 1153 | goto out; |
| 1154 | } |
| 1155 | /* Step 6.4: Finally write tail tag to conclude this fast commit. */ |
| 1156 | ret = ext4_fc_write_tail(sb, crc); |
| 1157 | |
| 1158 | out: |
| 1159 | mutex_unlock(&sbi->s_fc_lock); |
| 1160 | blk_finish_plug(&plug); |
| 1161 | return ret; |
| 1162 | } |
| 1163 | |
| 1164 | static void ext4_fc_update_stats(struct super_block *sb, int status, |
| 1165 | u64 commit_time, int nblks, tid_t commit_tid) |
| 1166 | { |
| 1167 | struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats; |
| 1168 | |
| 1169 | ext4_debug("Fast commit ended with status = %d for tid %u", |
| 1170 | status, commit_tid); |
| 1171 | if (status == EXT4_FC_STATUS_OK) { |
| 1172 | stats->fc_num_commits++; |
| 1173 | stats->fc_numblks += nblks; |
| 1174 | if (likely(stats->s_fc_avg_commit_time)) |
| 1175 | stats->s_fc_avg_commit_time = |
| 1176 | (commit_time + |
| 1177 | stats->s_fc_avg_commit_time * 3) / 4; |
| 1178 | else |
| 1179 | stats->s_fc_avg_commit_time = commit_time; |
| 1180 | } else if (status == EXT4_FC_STATUS_FAILED || |
| 1181 | status == EXT4_FC_STATUS_INELIGIBLE) { |
| 1182 | if (status == EXT4_FC_STATUS_FAILED) |
| 1183 | stats->fc_failed_commits++; |
| 1184 | stats->fc_ineligible_commits++; |
| 1185 | } else { |
| 1186 | stats->fc_skipped_commits++; |
| 1187 | } |
| 1188 | trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid); |
| 1189 | } |
| 1190 | |
| 1191 | /* |
| 1192 | * The main commit entry point. Performs a fast commit for transaction |
| 1193 | * commit_tid if needed. If it's not possible to perform a fast commit |
| 1194 | * due to various reasons, we fall back to full commit. Returns 0 |
| 1195 | * on success, error otherwise. |
| 1196 | */ |
| 1197 | int ext4_fc_commit(journal_t *journal, tid_t commit_tid) |
| 1198 | { |
| 1199 | struct super_block *sb = journal->j_private; |
| 1200 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 1201 | int nblks = 0, ret, bsize = journal->j_blocksize; |
| 1202 | int subtid = atomic_read(&sbi->s_fc_subtid); |
| 1203 | int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0; |
| 1204 | ktime_t start_time, commit_time; |
| 1205 | int old_ioprio, journal_ioprio; |
| 1206 | |
| 1207 | if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) |
| 1208 | return jbd2_complete_transaction(journal, commit_tid); |
| 1209 | |
| 1210 | trace_ext4_fc_commit_start(sb, commit_tid); |
| 1211 | |
| 1212 | start_time = ktime_get(); |
| 1213 | old_ioprio = get_current_ioprio(); |
| 1214 | |
| 1215 | restart_fc: |
| 1216 | ret = jbd2_fc_begin_commit(journal, commit_tid); |
| 1217 | if (ret == -EALREADY) { |
| 1218 | /* There was an ongoing commit, check if we need to restart */ |
| 1219 | if (atomic_read(&sbi->s_fc_subtid) <= subtid && |
| 1220 | tid_gt(commit_tid, journal->j_commit_sequence)) |
| 1221 | goto restart_fc; |
| 1222 | ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0, |
| 1223 | commit_tid); |
| 1224 | return 0; |
| 1225 | } else if (ret) { |
| 1226 | /* |
| 1227 | * Commit couldn't start. Just update stats and perform a |
| 1228 | * full commit. |
| 1229 | */ |
| 1230 | ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0, |
| 1231 | commit_tid); |
| 1232 | return jbd2_complete_transaction(journal, commit_tid); |
| 1233 | } |
| 1234 | |
| 1235 | /* |
| 1236 | * After establishing journal barrier via jbd2_fc_begin_commit(), check |
| 1237 | * if we are fast commit ineligible. |
| 1238 | */ |
| 1239 | if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) { |
| 1240 | status = EXT4_FC_STATUS_INELIGIBLE; |
| 1241 | goto fallback; |
| 1242 | } |
| 1243 | |
| 1244 | /* |
| 1245 | * Now that we know that this thread is going to do a fast commit, |
| 1246 | * elevate the priority to match that of the journal thread. |
| 1247 | */ |
| 1248 | if (journal->j_task->io_context) |
| 1249 | journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; |
| 1250 | else |
| 1251 | journal_ioprio = EXT4_DEF_JOURNAL_IOPRIO; |
| 1252 | set_task_ioprio(current, journal_ioprio); |
| 1253 | fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; |
| 1254 | ret = ext4_fc_perform_commit(journal); |
| 1255 | if (ret < 0) { |
| 1256 | status = EXT4_FC_STATUS_FAILED; |
| 1257 | goto fallback; |
| 1258 | } |
| 1259 | nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; |
| 1260 | ret = jbd2_fc_wait_bufs(journal, nblks); |
| 1261 | if (ret < 0) { |
| 1262 | status = EXT4_FC_STATUS_FAILED; |
| 1263 | goto fallback; |
| 1264 | } |
| 1265 | atomic_inc(&sbi->s_fc_subtid); |
| 1266 | ret = jbd2_fc_end_commit(journal); |
| 1267 | set_task_ioprio(current, old_ioprio); |
| 1268 | /* |
| 1269 | * weight the commit time higher than the average time so we |
| 1270 | * don't react too strongly to vast changes in the commit time |
| 1271 | */ |
| 1272 | commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); |
| 1273 | ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid); |
| 1274 | return ret; |
| 1275 | |
| 1276 | fallback: |
| 1277 | set_task_ioprio(current, old_ioprio); |
| 1278 | ret = jbd2_fc_end_commit_fallback(journal); |
| 1279 | ext4_fc_update_stats(sb, status, 0, 0, commit_tid); |
| 1280 | return ret; |
| 1281 | } |
| 1282 | |
| 1283 | /* |
| 1284 | * Fast commit cleanup routine. This is called after every fast commit and |
| 1285 | * full commit. full is true if we are called after a full commit. |
| 1286 | */ |
| 1287 | static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid) |
| 1288 | { |
| 1289 | struct super_block *sb = journal->j_private; |
| 1290 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 1291 | struct ext4_inode_info *ei; |
| 1292 | struct ext4_fc_dentry_update *fc_dentry; |
| 1293 | |
| 1294 | if (full && sbi->s_fc_bh) |
| 1295 | sbi->s_fc_bh = NULL; |
| 1296 | |
| 1297 | trace_ext4_fc_cleanup(journal, full, tid); |
| 1298 | jbd2_fc_release_bufs(journal); |
| 1299 | |
| 1300 | mutex_lock(&sbi->s_fc_lock); |
| 1301 | while (!list_empty(&sbi->s_fc_q[FC_Q_MAIN])) { |
| 1302 | ei = list_first_entry(&sbi->s_fc_q[FC_Q_MAIN], |
| 1303 | struct ext4_inode_info, |
| 1304 | i_fc_list); |
| 1305 | list_del_init(&ei->i_fc_list); |
| 1306 | ext4_clear_inode_state(&ei->vfs_inode, |
| 1307 | EXT4_STATE_FC_COMMITTING); |
| 1308 | if (tid_geq(tid, ei->i_sync_tid)) { |
| 1309 | ext4_fc_reset_inode(&ei->vfs_inode); |
| 1310 | } else if (full) { |
| 1311 | /* |
| 1312 | * We are called after a full commit, inode has been |
| 1313 | * modified while the commit was running. Re-enqueue |
| 1314 | * the inode into STAGING, which will then be splice |
| 1315 | * back into MAIN. This cannot happen during |
| 1316 | * fastcommit because the journal is locked all the |
| 1317 | * time in that case (and tid doesn't increase so |
| 1318 | * tid check above isn't reliable). |
| 1319 | */ |
| 1320 | list_add_tail(&ei->i_fc_list, |
| 1321 | &sbi->s_fc_q[FC_Q_STAGING]); |
| 1322 | } |
| 1323 | /* |
| 1324 | * Make sure clearing of EXT4_STATE_FC_COMMITTING is |
| 1325 | * visible before we send the wakeup. Pairs with implicit |
| 1326 | * barrier in prepare_to_wait() in ext4_fc_track_inode(). |
| 1327 | */ |
| 1328 | smp_mb(); |
| 1329 | #if (BITS_PER_LONG < 64) |
| 1330 | wake_up_bit(&ei->i_state_flags, EXT4_STATE_FC_COMMITTING); |
| 1331 | #else |
| 1332 | wake_up_bit(&ei->i_flags, EXT4_STATE_FC_COMMITTING); |
| 1333 | #endif |
| 1334 | } |
| 1335 | |
| 1336 | while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { |
| 1337 | fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], |
| 1338 | struct ext4_fc_dentry_update, |
| 1339 | fcd_list); |
| 1340 | list_del_init(&fc_dentry->fcd_list); |
| 1341 | list_del_init(&fc_dentry->fcd_dilist); |
| 1342 | |
| 1343 | release_dentry_name_snapshot(&fc_dentry->fcd_name); |
| 1344 | kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); |
| 1345 | } |
| 1346 | |
| 1347 | list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], |
| 1348 | &sbi->s_fc_dentry_q[FC_Q_MAIN]); |
| 1349 | list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], |
| 1350 | &sbi->s_fc_q[FC_Q_MAIN]); |
| 1351 | |
| 1352 | if (tid_geq(tid, sbi->s_fc_ineligible_tid)) { |
| 1353 | sbi->s_fc_ineligible_tid = 0; |
| 1354 | ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); |
| 1355 | } |
| 1356 | |
| 1357 | if (full) |
| 1358 | sbi->s_fc_bytes = 0; |
| 1359 | mutex_unlock(&sbi->s_fc_lock); |
| 1360 | trace_ext4_fc_stats(sb); |
| 1361 | } |
| 1362 | |
| 1363 | /* Ext4 Replay Path Routines */ |
| 1364 | |
| 1365 | /* Helper struct for dentry replay routines */ |
| 1366 | struct dentry_info_args { |
| 1367 | int parent_ino, dname_len, ino, inode_len; |
| 1368 | char *dname; |
| 1369 | }; |
| 1370 | |
| 1371 | /* Same as struct ext4_fc_tl, but uses native endianness fields */ |
| 1372 | struct ext4_fc_tl_mem { |
| 1373 | u16 fc_tag; |
| 1374 | u16 fc_len; |
| 1375 | }; |
| 1376 | |
| 1377 | static inline void tl_to_darg(struct dentry_info_args *darg, |
| 1378 | struct ext4_fc_tl_mem *tl, u8 *val) |
| 1379 | { |
| 1380 | struct ext4_fc_dentry_info fcd; |
| 1381 | |
| 1382 | memcpy(&fcd, val, sizeof(fcd)); |
| 1383 | |
| 1384 | darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); |
| 1385 | darg->ino = le32_to_cpu(fcd.fc_ino); |
| 1386 | darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); |
| 1387 | darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info); |
| 1388 | } |
| 1389 | |
| 1390 | static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val) |
| 1391 | { |
| 1392 | struct ext4_fc_tl tl_disk; |
| 1393 | |
| 1394 | memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN); |
| 1395 | tl->fc_len = le16_to_cpu(tl_disk.fc_len); |
| 1396 | tl->fc_tag = le16_to_cpu(tl_disk.fc_tag); |
| 1397 | } |
| 1398 | |
| 1399 | /* Unlink replay function */ |
| 1400 | static int ext4_fc_replay_unlink(struct super_block *sb, |
| 1401 | struct ext4_fc_tl_mem *tl, u8 *val) |
| 1402 | { |
| 1403 | struct inode *inode, *old_parent; |
| 1404 | struct qstr entry; |
| 1405 | struct dentry_info_args darg; |
| 1406 | int ret = 0; |
| 1407 | |
| 1408 | tl_to_darg(&darg, tl, val); |
| 1409 | |
| 1410 | trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, |
| 1411 | darg.parent_ino, darg.dname_len); |
| 1412 | |
| 1413 | entry.name = darg.dname; |
| 1414 | entry.len = darg.dname_len; |
| 1415 | inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); |
| 1416 | |
| 1417 | if (IS_ERR(inode)) { |
| 1418 | ext4_debug("Inode %d not found", darg.ino); |
| 1419 | return 0; |
| 1420 | } |
| 1421 | |
| 1422 | old_parent = ext4_iget(sb, darg.parent_ino, |
| 1423 | EXT4_IGET_NORMAL); |
| 1424 | if (IS_ERR(old_parent)) { |
| 1425 | ext4_debug("Dir with inode %d not found", darg.parent_ino); |
| 1426 | iput(inode); |
| 1427 | return 0; |
| 1428 | } |
| 1429 | |
| 1430 | ret = __ext4_unlink(old_parent, &entry, inode, NULL); |
| 1431 | /* -ENOENT ok coz it might not exist anymore. */ |
| 1432 | if (ret == -ENOENT) |
| 1433 | ret = 0; |
| 1434 | iput(old_parent); |
| 1435 | iput(inode); |
| 1436 | return ret; |
| 1437 | } |
| 1438 | |
| 1439 | static int ext4_fc_replay_link_internal(struct super_block *sb, |
| 1440 | struct dentry_info_args *darg, |
| 1441 | struct inode *inode) |
| 1442 | { |
| 1443 | struct inode *dir = NULL; |
| 1444 | struct dentry *dentry_dir = NULL, *dentry_inode = NULL; |
| 1445 | struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); |
| 1446 | int ret = 0; |
| 1447 | |
| 1448 | dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); |
| 1449 | if (IS_ERR(dir)) { |
| 1450 | ext4_debug("Dir with inode %d not found.", darg->parent_ino); |
| 1451 | dir = NULL; |
| 1452 | goto out; |
| 1453 | } |
| 1454 | |
| 1455 | dentry_dir = d_obtain_alias(dir); |
| 1456 | if (IS_ERR(dentry_dir)) { |
| 1457 | ext4_debug("Failed to obtain dentry"); |
| 1458 | dentry_dir = NULL; |
| 1459 | goto out; |
| 1460 | } |
| 1461 | |
| 1462 | dentry_inode = d_alloc(dentry_dir, &qstr_dname); |
| 1463 | if (!dentry_inode) { |
| 1464 | ext4_debug("Inode dentry not created."); |
| 1465 | ret = -ENOMEM; |
| 1466 | goto out; |
| 1467 | } |
| 1468 | |
| 1469 | ret = __ext4_link(dir, inode, dentry_inode); |
| 1470 | /* |
| 1471 | * It's possible that link already existed since data blocks |
| 1472 | * for the dir in question got persisted before we crashed OR |
| 1473 | * we replayed this tag and crashed before the entire replay |
| 1474 | * could complete. |
| 1475 | */ |
| 1476 | if (ret && ret != -EEXIST) { |
| 1477 | ext4_debug("Failed to link\n"); |
| 1478 | goto out; |
| 1479 | } |
| 1480 | |
| 1481 | ret = 0; |
| 1482 | out: |
| 1483 | if (dentry_dir) { |
| 1484 | d_drop(dentry_dir); |
| 1485 | dput(dentry_dir); |
| 1486 | } else if (dir) { |
| 1487 | iput(dir); |
| 1488 | } |
| 1489 | if (dentry_inode) { |
| 1490 | d_drop(dentry_inode); |
| 1491 | dput(dentry_inode); |
| 1492 | } |
| 1493 | |
| 1494 | return ret; |
| 1495 | } |
| 1496 | |
| 1497 | /* Link replay function */ |
| 1498 | static int ext4_fc_replay_link(struct super_block *sb, |
| 1499 | struct ext4_fc_tl_mem *tl, u8 *val) |
| 1500 | { |
| 1501 | struct inode *inode; |
| 1502 | struct dentry_info_args darg; |
| 1503 | int ret = 0; |
| 1504 | |
| 1505 | tl_to_darg(&darg, tl, val); |
| 1506 | trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, |
| 1507 | darg.parent_ino, darg.dname_len); |
| 1508 | |
| 1509 | inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); |
| 1510 | if (IS_ERR(inode)) { |
| 1511 | ext4_debug("Inode not found."); |
| 1512 | return 0; |
| 1513 | } |
| 1514 | |
| 1515 | ret = ext4_fc_replay_link_internal(sb, &darg, inode); |
| 1516 | iput(inode); |
| 1517 | return ret; |
| 1518 | } |
| 1519 | |
| 1520 | /* |
| 1521 | * Record all the modified inodes during replay. We use this later to setup |
| 1522 | * block bitmaps correctly. |
| 1523 | */ |
| 1524 | static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) |
| 1525 | { |
| 1526 | struct ext4_fc_replay_state *state; |
| 1527 | int i; |
| 1528 | |
| 1529 | state = &EXT4_SB(sb)->s_fc_replay_state; |
| 1530 | for (i = 0; i < state->fc_modified_inodes_used; i++) |
| 1531 | if (state->fc_modified_inodes[i] == ino) |
| 1532 | return 0; |
| 1533 | if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { |
| 1534 | int *fc_modified_inodes; |
| 1535 | |
| 1536 | fc_modified_inodes = krealloc(state->fc_modified_inodes, |
| 1537 | sizeof(int) * (state->fc_modified_inodes_size + |
| 1538 | EXT4_FC_REPLAY_REALLOC_INCREMENT), |
| 1539 | GFP_KERNEL); |
| 1540 | if (!fc_modified_inodes) |
| 1541 | return -ENOMEM; |
| 1542 | state->fc_modified_inodes = fc_modified_inodes; |
| 1543 | state->fc_modified_inodes_size += |
| 1544 | EXT4_FC_REPLAY_REALLOC_INCREMENT; |
| 1545 | } |
| 1546 | state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; |
| 1547 | return 0; |
| 1548 | } |
| 1549 | |
| 1550 | /* |
| 1551 | * Inode replay function |
| 1552 | */ |
| 1553 | static int ext4_fc_replay_inode(struct super_block *sb, |
| 1554 | struct ext4_fc_tl_mem *tl, u8 *val) |
| 1555 | { |
| 1556 | struct ext4_fc_inode fc_inode; |
| 1557 | struct ext4_inode *raw_inode; |
| 1558 | struct ext4_inode *raw_fc_inode; |
| 1559 | struct inode *inode = NULL; |
| 1560 | struct ext4_iloc iloc; |
| 1561 | int inode_len, ino, ret, tag = tl->fc_tag; |
| 1562 | struct ext4_extent_header *eh; |
| 1563 | size_t off_gen = offsetof(struct ext4_inode, i_generation); |
| 1564 | |
| 1565 | memcpy(&fc_inode, val, sizeof(fc_inode)); |
| 1566 | |
| 1567 | ino = le32_to_cpu(fc_inode.fc_ino); |
| 1568 | trace_ext4_fc_replay(sb, tag, ino, 0, 0); |
| 1569 | |
| 1570 | inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); |
| 1571 | if (!IS_ERR(inode)) { |
| 1572 | ext4_ext_clear_bb(inode); |
| 1573 | iput(inode); |
| 1574 | } |
| 1575 | inode = NULL; |
| 1576 | |
| 1577 | ret = ext4_fc_record_modified_inode(sb, ino); |
| 1578 | if (ret) |
| 1579 | goto out; |
| 1580 | |
| 1581 | raw_fc_inode = (struct ext4_inode *) |
| 1582 | (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); |
| 1583 | ret = ext4_get_fc_inode_loc(sb, ino, &iloc); |
| 1584 | if (ret) |
| 1585 | goto out; |
| 1586 | |
| 1587 | inode_len = tl->fc_len - sizeof(struct ext4_fc_inode); |
| 1588 | raw_inode = ext4_raw_inode(&iloc); |
| 1589 | |
| 1590 | memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); |
| 1591 | memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen, |
| 1592 | inode_len - off_gen); |
| 1593 | if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { |
| 1594 | eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); |
| 1595 | if (eh->eh_magic != EXT4_EXT_MAGIC) { |
| 1596 | memset(eh, 0, sizeof(*eh)); |
| 1597 | eh->eh_magic = EXT4_EXT_MAGIC; |
| 1598 | eh->eh_max = cpu_to_le16( |
| 1599 | (sizeof(raw_inode->i_block) - |
| 1600 | sizeof(struct ext4_extent_header)) |
| 1601 | / sizeof(struct ext4_extent)); |
| 1602 | } |
| 1603 | } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { |
| 1604 | memcpy(raw_inode->i_block, raw_fc_inode->i_block, |
| 1605 | sizeof(raw_inode->i_block)); |
| 1606 | } |
| 1607 | |
| 1608 | /* Immediately update the inode on disk. */ |
| 1609 | ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); |
| 1610 | if (ret) |
| 1611 | goto out; |
| 1612 | ret = sync_dirty_buffer(iloc.bh); |
| 1613 | if (ret) |
| 1614 | goto out; |
| 1615 | ret = ext4_mark_inode_used(sb, ino); |
| 1616 | if (ret) |
| 1617 | goto out; |
| 1618 | |
| 1619 | /* Given that we just wrote the inode on disk, this SHOULD succeed. */ |
| 1620 | inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); |
| 1621 | if (IS_ERR(inode)) { |
| 1622 | ext4_debug("Inode not found."); |
| 1623 | return -EFSCORRUPTED; |
| 1624 | } |
| 1625 | |
| 1626 | /* |
| 1627 | * Our allocator could have made different decisions than before |
| 1628 | * crashing. This should be fixed but until then, we calculate |
| 1629 | * the number of blocks the inode. |
| 1630 | */ |
| 1631 | if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) |
| 1632 | ext4_ext_replay_set_iblocks(inode); |
| 1633 | |
| 1634 | inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); |
| 1635 | ext4_reset_inode_seed(inode); |
| 1636 | |
| 1637 | ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); |
| 1638 | ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); |
| 1639 | sync_dirty_buffer(iloc.bh); |
| 1640 | brelse(iloc.bh); |
| 1641 | out: |
| 1642 | iput(inode); |
| 1643 | if (!ret) |
| 1644 | blkdev_issue_flush(sb->s_bdev); |
| 1645 | |
| 1646 | return 0; |
| 1647 | } |
| 1648 | |
| 1649 | /* |
| 1650 | * Dentry create replay function. |
| 1651 | * |
| 1652 | * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the |
| 1653 | * inode for which we are trying to create a dentry here, should already have |
| 1654 | * been replayed before we start here. |
| 1655 | */ |
| 1656 | static int ext4_fc_replay_create(struct super_block *sb, |
| 1657 | struct ext4_fc_tl_mem *tl, u8 *val) |
| 1658 | { |
| 1659 | int ret = 0; |
| 1660 | struct inode *inode = NULL; |
| 1661 | struct inode *dir = NULL; |
| 1662 | struct dentry_info_args darg; |
| 1663 | |
| 1664 | tl_to_darg(&darg, tl, val); |
| 1665 | |
| 1666 | trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, |
| 1667 | darg.parent_ino, darg.dname_len); |
| 1668 | |
| 1669 | /* This takes care of update group descriptor and other metadata */ |
| 1670 | ret = ext4_mark_inode_used(sb, darg.ino); |
| 1671 | if (ret) |
| 1672 | goto out; |
| 1673 | |
| 1674 | inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); |
| 1675 | if (IS_ERR(inode)) { |
| 1676 | ext4_debug("inode %d not found.", darg.ino); |
| 1677 | inode = NULL; |
| 1678 | ret = -EINVAL; |
| 1679 | goto out; |
| 1680 | } |
| 1681 | |
| 1682 | if (S_ISDIR(inode->i_mode)) { |
| 1683 | /* |
| 1684 | * If we are creating a directory, we need to make sure that the |
| 1685 | * dot and dot dot dirents are setup properly. |
| 1686 | */ |
| 1687 | dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); |
| 1688 | if (IS_ERR(dir)) { |
| 1689 | ext4_debug("Dir %d not found.", darg.ino); |
| 1690 | goto out; |
| 1691 | } |
| 1692 | ret = ext4_init_new_dir(NULL, dir, inode); |
| 1693 | iput(dir); |
| 1694 | if (ret) { |
| 1695 | ret = 0; |
| 1696 | goto out; |
| 1697 | } |
| 1698 | } |
| 1699 | ret = ext4_fc_replay_link_internal(sb, &darg, inode); |
| 1700 | if (ret) |
| 1701 | goto out; |
| 1702 | set_nlink(inode, 1); |
| 1703 | ext4_mark_inode_dirty(NULL, inode); |
| 1704 | out: |
| 1705 | iput(inode); |
| 1706 | return ret; |
| 1707 | } |
| 1708 | |
| 1709 | /* |
| 1710 | * Record physical disk regions which are in use as per fast commit area, |
| 1711 | * and used by inodes during replay phase. Our simple replay phase |
| 1712 | * allocator excludes these regions from allocation. |
| 1713 | */ |
| 1714 | int ext4_fc_record_regions(struct super_block *sb, int ino, |
| 1715 | ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay) |
| 1716 | { |
| 1717 | struct ext4_fc_replay_state *state; |
| 1718 | struct ext4_fc_alloc_region *region; |
| 1719 | |
| 1720 | state = &EXT4_SB(sb)->s_fc_replay_state; |
| 1721 | /* |
| 1722 | * during replay phase, the fc_regions_valid may not same as |
| 1723 | * fc_regions_used, update it when do new additions. |
| 1724 | */ |
| 1725 | if (replay && state->fc_regions_used != state->fc_regions_valid) |
| 1726 | state->fc_regions_used = state->fc_regions_valid; |
| 1727 | if (state->fc_regions_used == state->fc_regions_size) { |
| 1728 | struct ext4_fc_alloc_region *fc_regions; |
| 1729 | |
| 1730 | fc_regions = krealloc(state->fc_regions, |
| 1731 | sizeof(struct ext4_fc_alloc_region) * |
| 1732 | (state->fc_regions_size + |
| 1733 | EXT4_FC_REPLAY_REALLOC_INCREMENT), |
| 1734 | GFP_KERNEL); |
| 1735 | if (!fc_regions) |
| 1736 | return -ENOMEM; |
| 1737 | state->fc_regions_size += |
| 1738 | EXT4_FC_REPLAY_REALLOC_INCREMENT; |
| 1739 | state->fc_regions = fc_regions; |
| 1740 | } |
| 1741 | region = &state->fc_regions[state->fc_regions_used++]; |
| 1742 | region->ino = ino; |
| 1743 | region->lblk = lblk; |
| 1744 | region->pblk = pblk; |
| 1745 | region->len = len; |
| 1746 | |
| 1747 | if (replay) |
| 1748 | state->fc_regions_valid++; |
| 1749 | |
| 1750 | return 0; |
| 1751 | } |
| 1752 | |
| 1753 | /* Replay add range tag */ |
| 1754 | static int ext4_fc_replay_add_range(struct super_block *sb, |
| 1755 | struct ext4_fc_tl_mem *tl, u8 *val) |
| 1756 | { |
| 1757 | struct ext4_fc_add_range fc_add_ex; |
| 1758 | struct ext4_extent newex, *ex; |
| 1759 | struct inode *inode; |
| 1760 | ext4_lblk_t start, cur; |
| 1761 | int remaining, len; |
| 1762 | ext4_fsblk_t start_pblk; |
| 1763 | struct ext4_map_blocks map; |
| 1764 | struct ext4_ext_path *path = NULL; |
| 1765 | int ret; |
| 1766 | |
| 1767 | memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); |
| 1768 | ex = (struct ext4_extent *)&fc_add_ex.fc_ex; |
| 1769 | |
| 1770 | trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, |
| 1771 | le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), |
| 1772 | ext4_ext_get_actual_len(ex)); |
| 1773 | |
| 1774 | inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); |
| 1775 | if (IS_ERR(inode)) { |
| 1776 | ext4_debug("Inode not found."); |
| 1777 | return 0; |
| 1778 | } |
| 1779 | |
| 1780 | ret = ext4_fc_record_modified_inode(sb, inode->i_ino); |
| 1781 | if (ret) |
| 1782 | goto out; |
| 1783 | |
| 1784 | start = le32_to_cpu(ex->ee_block); |
| 1785 | start_pblk = ext4_ext_pblock(ex); |
| 1786 | len = ext4_ext_get_actual_len(ex); |
| 1787 | |
| 1788 | cur = start; |
| 1789 | remaining = len; |
| 1790 | ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", |
| 1791 | start, start_pblk, len, ext4_ext_is_unwritten(ex), |
| 1792 | inode->i_ino); |
| 1793 | |
| 1794 | while (remaining > 0) { |
| 1795 | map.m_lblk = cur; |
| 1796 | map.m_len = remaining; |
| 1797 | map.m_pblk = 0; |
| 1798 | ret = ext4_map_blocks(NULL, inode, &map, 0); |
| 1799 | |
| 1800 | if (ret < 0) |
| 1801 | goto out; |
| 1802 | |
| 1803 | if (ret == 0) { |
| 1804 | /* Range is not mapped */ |
| 1805 | path = ext4_find_extent(inode, cur, path, 0); |
| 1806 | if (IS_ERR(path)) |
| 1807 | goto out; |
| 1808 | memset(&newex, 0, sizeof(newex)); |
| 1809 | newex.ee_block = cpu_to_le32(cur); |
| 1810 | ext4_ext_store_pblock( |
| 1811 | &newex, start_pblk + cur - start); |
| 1812 | newex.ee_len = cpu_to_le16(map.m_len); |
| 1813 | if (ext4_ext_is_unwritten(ex)) |
| 1814 | ext4_ext_mark_unwritten(&newex); |
| 1815 | down_write(&EXT4_I(inode)->i_data_sem); |
| 1816 | path = ext4_ext_insert_extent(NULL, inode, |
| 1817 | path, &newex, 0); |
| 1818 | up_write((&EXT4_I(inode)->i_data_sem)); |
| 1819 | if (IS_ERR(path)) |
| 1820 | goto out; |
| 1821 | goto next; |
| 1822 | } |
| 1823 | |
| 1824 | if (start_pblk + cur - start != map.m_pblk) { |
| 1825 | /* |
| 1826 | * Logical to physical mapping changed. This can happen |
| 1827 | * if this range was removed and then reallocated to |
| 1828 | * map to new physical blocks during a fast commit. |
| 1829 | */ |
| 1830 | ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, |
| 1831 | ext4_ext_is_unwritten(ex), |
| 1832 | start_pblk + cur - start); |
| 1833 | if (ret) |
| 1834 | goto out; |
| 1835 | /* |
| 1836 | * Mark the old blocks as free since they aren't used |
| 1837 | * anymore. We maintain an array of all the modified |
| 1838 | * inodes. In case these blocks are still used at either |
| 1839 | * a different logical range in the same inode or in |
| 1840 | * some different inode, we will mark them as allocated |
| 1841 | * at the end of the FC replay using our array of |
| 1842 | * modified inodes. |
| 1843 | */ |
| 1844 | ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); |
| 1845 | goto next; |
| 1846 | } |
| 1847 | |
| 1848 | /* Range is mapped and needs a state change */ |
| 1849 | ext4_debug("Converting from %ld to %d %lld", |
| 1850 | map.m_flags & EXT4_MAP_UNWRITTEN, |
| 1851 | ext4_ext_is_unwritten(ex), map.m_pblk); |
| 1852 | ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, |
| 1853 | ext4_ext_is_unwritten(ex), map.m_pblk); |
| 1854 | if (ret) |
| 1855 | goto out; |
| 1856 | /* |
| 1857 | * We may have split the extent tree while toggling the state. |
| 1858 | * Try to shrink the extent tree now. |
| 1859 | */ |
| 1860 | ext4_ext_replay_shrink_inode(inode, start + len); |
| 1861 | next: |
| 1862 | cur += map.m_len; |
| 1863 | remaining -= map.m_len; |
| 1864 | } |
| 1865 | ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> |
| 1866 | sb->s_blocksize_bits); |
| 1867 | out: |
| 1868 | ext4_free_ext_path(path); |
| 1869 | iput(inode); |
| 1870 | return 0; |
| 1871 | } |
| 1872 | |
| 1873 | /* Replay DEL_RANGE tag */ |
| 1874 | static int |
| 1875 | ext4_fc_replay_del_range(struct super_block *sb, |
| 1876 | struct ext4_fc_tl_mem *tl, u8 *val) |
| 1877 | { |
| 1878 | struct inode *inode; |
| 1879 | struct ext4_fc_del_range lrange; |
| 1880 | struct ext4_map_blocks map; |
| 1881 | ext4_lblk_t cur, remaining; |
| 1882 | int ret; |
| 1883 | |
| 1884 | memcpy(&lrange, val, sizeof(lrange)); |
| 1885 | cur = le32_to_cpu(lrange.fc_lblk); |
| 1886 | remaining = le32_to_cpu(lrange.fc_len); |
| 1887 | |
| 1888 | trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, |
| 1889 | le32_to_cpu(lrange.fc_ino), cur, remaining); |
| 1890 | |
| 1891 | inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); |
| 1892 | if (IS_ERR(inode)) { |
| 1893 | ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino)); |
| 1894 | return 0; |
| 1895 | } |
| 1896 | |
| 1897 | ret = ext4_fc_record_modified_inode(sb, inode->i_ino); |
| 1898 | if (ret) |
| 1899 | goto out; |
| 1900 | |
| 1901 | ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n", |
| 1902 | inode->i_ino, le32_to_cpu(lrange.fc_lblk), |
| 1903 | le32_to_cpu(lrange.fc_len)); |
| 1904 | while (remaining > 0) { |
| 1905 | map.m_lblk = cur; |
| 1906 | map.m_len = remaining; |
| 1907 | |
| 1908 | ret = ext4_map_blocks(NULL, inode, &map, 0); |
| 1909 | if (ret < 0) |
| 1910 | goto out; |
| 1911 | if (ret > 0) { |
| 1912 | remaining -= ret; |
| 1913 | cur += ret; |
| 1914 | ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false); |
| 1915 | } else { |
| 1916 | remaining -= map.m_len; |
| 1917 | cur += map.m_len; |
| 1918 | } |
| 1919 | } |
| 1920 | |
| 1921 | down_write(&EXT4_I(inode)->i_data_sem); |
| 1922 | ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk), |
| 1923 | le32_to_cpu(lrange.fc_lblk) + |
| 1924 | le32_to_cpu(lrange.fc_len) - 1); |
| 1925 | up_write(&EXT4_I(inode)->i_data_sem); |
| 1926 | if (ret) |
| 1927 | goto out; |
| 1928 | ext4_ext_replay_shrink_inode(inode, |
| 1929 | i_size_read(inode) >> sb->s_blocksize_bits); |
| 1930 | ext4_mark_inode_dirty(NULL, inode); |
| 1931 | out: |
| 1932 | iput(inode); |
| 1933 | return 0; |
| 1934 | } |
| 1935 | |
| 1936 | static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) |
| 1937 | { |
| 1938 | struct ext4_fc_replay_state *state; |
| 1939 | struct inode *inode; |
| 1940 | struct ext4_ext_path *path = NULL; |
| 1941 | struct ext4_map_blocks map; |
| 1942 | int i, ret, j; |
| 1943 | ext4_lblk_t cur, end; |
| 1944 | |
| 1945 | state = &EXT4_SB(sb)->s_fc_replay_state; |
| 1946 | for (i = 0; i < state->fc_modified_inodes_used; i++) { |
| 1947 | inode = ext4_iget(sb, state->fc_modified_inodes[i], |
| 1948 | EXT4_IGET_NORMAL); |
| 1949 | if (IS_ERR(inode)) { |
| 1950 | ext4_debug("Inode %d not found.", |
| 1951 | state->fc_modified_inodes[i]); |
| 1952 | continue; |
| 1953 | } |
| 1954 | cur = 0; |
| 1955 | end = EXT_MAX_BLOCKS; |
| 1956 | if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) { |
| 1957 | iput(inode); |
| 1958 | continue; |
| 1959 | } |
| 1960 | while (cur < end) { |
| 1961 | map.m_lblk = cur; |
| 1962 | map.m_len = end - cur; |
| 1963 | |
| 1964 | ret = ext4_map_blocks(NULL, inode, &map, 0); |
| 1965 | if (ret < 0) |
| 1966 | break; |
| 1967 | |
| 1968 | if (ret > 0) { |
| 1969 | path = ext4_find_extent(inode, map.m_lblk, path, 0); |
| 1970 | if (!IS_ERR(path)) { |
| 1971 | for (j = 0; j < path->p_depth; j++) |
| 1972 | ext4_mb_mark_bb(inode->i_sb, |
| 1973 | path[j].p_block, 1, true); |
| 1974 | } else { |
| 1975 | path = NULL; |
| 1976 | } |
| 1977 | cur += ret; |
| 1978 | ext4_mb_mark_bb(inode->i_sb, map.m_pblk, |
| 1979 | map.m_len, true); |
| 1980 | } else { |
| 1981 | cur = cur + (map.m_len ? map.m_len : 1); |
| 1982 | } |
| 1983 | } |
| 1984 | iput(inode); |
| 1985 | } |
| 1986 | |
| 1987 | ext4_free_ext_path(path); |
| 1988 | } |
| 1989 | |
| 1990 | /* |
| 1991 | * Check if block is in excluded regions for block allocation. The simple |
| 1992 | * allocator that runs during replay phase is calls this function to see |
| 1993 | * if it is okay to use a block. |
| 1994 | */ |
| 1995 | bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) |
| 1996 | { |
| 1997 | int i; |
| 1998 | struct ext4_fc_replay_state *state; |
| 1999 | |
| 2000 | state = &EXT4_SB(sb)->s_fc_replay_state; |
| 2001 | for (i = 0; i < state->fc_regions_valid; i++) { |
| 2002 | if (state->fc_regions[i].ino == 0 || |
| 2003 | state->fc_regions[i].len == 0) |
| 2004 | continue; |
| 2005 | if (in_range(blk, state->fc_regions[i].pblk, |
| 2006 | state->fc_regions[i].len)) |
| 2007 | return true; |
| 2008 | } |
| 2009 | return false; |
| 2010 | } |
| 2011 | |
| 2012 | /* Cleanup function called after replay */ |
| 2013 | void ext4_fc_replay_cleanup(struct super_block *sb) |
| 2014 | { |
| 2015 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 2016 | |
| 2017 | sbi->s_mount_state &= ~EXT4_FC_REPLAY; |
| 2018 | kfree(sbi->s_fc_replay_state.fc_regions); |
| 2019 | kfree(sbi->s_fc_replay_state.fc_modified_inodes); |
| 2020 | } |
| 2021 | |
| 2022 | static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi, |
| 2023 | int tag, int len) |
| 2024 | { |
| 2025 | switch (tag) { |
| 2026 | case EXT4_FC_TAG_ADD_RANGE: |
| 2027 | return len == sizeof(struct ext4_fc_add_range); |
| 2028 | case EXT4_FC_TAG_DEL_RANGE: |
| 2029 | return len == sizeof(struct ext4_fc_del_range); |
| 2030 | case EXT4_FC_TAG_CREAT: |
| 2031 | case EXT4_FC_TAG_LINK: |
| 2032 | case EXT4_FC_TAG_UNLINK: |
| 2033 | len -= sizeof(struct ext4_fc_dentry_info); |
| 2034 | return len >= 1 && len <= EXT4_NAME_LEN; |
| 2035 | case EXT4_FC_TAG_INODE: |
| 2036 | len -= sizeof(struct ext4_fc_inode); |
| 2037 | return len >= EXT4_GOOD_OLD_INODE_SIZE && |
| 2038 | len <= sbi->s_inode_size; |
| 2039 | case EXT4_FC_TAG_PAD: |
| 2040 | return true; /* padding can have any length */ |
| 2041 | case EXT4_FC_TAG_TAIL: |
| 2042 | return len >= sizeof(struct ext4_fc_tail); |
| 2043 | case EXT4_FC_TAG_HEAD: |
| 2044 | return len == sizeof(struct ext4_fc_head); |
| 2045 | } |
| 2046 | return false; |
| 2047 | } |
| 2048 | |
| 2049 | /* |
| 2050 | * Recovery Scan phase handler |
| 2051 | * |
| 2052 | * This function is called during the scan phase and is responsible |
| 2053 | * for doing following things: |
| 2054 | * - Make sure the fast commit area has valid tags for replay |
| 2055 | * - Count number of tags that need to be replayed by the replay handler |
| 2056 | * - Verify CRC |
| 2057 | * - Create a list of excluded blocks for allocation during replay phase |
| 2058 | * |
| 2059 | * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is |
| 2060 | * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP |
| 2061 | * to indicate that scan has finished and JBD2 can now start replay phase. |
| 2062 | * It returns a negative error to indicate that there was an error. At the end |
| 2063 | * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set |
| 2064 | * to indicate the number of tags that need to replayed during the replay phase. |
| 2065 | */ |
| 2066 | static int ext4_fc_replay_scan(journal_t *journal, |
| 2067 | struct buffer_head *bh, int off, |
| 2068 | tid_t expected_tid) |
| 2069 | { |
| 2070 | struct super_block *sb = journal->j_private; |
| 2071 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 2072 | struct ext4_fc_replay_state *state; |
| 2073 | int ret = JBD2_FC_REPLAY_CONTINUE; |
| 2074 | struct ext4_fc_add_range ext; |
| 2075 | struct ext4_fc_tl_mem tl; |
| 2076 | struct ext4_fc_tail tail; |
| 2077 | __u8 *start, *end, *cur, *val; |
| 2078 | struct ext4_fc_head head; |
| 2079 | struct ext4_extent *ex; |
| 2080 | |
| 2081 | state = &sbi->s_fc_replay_state; |
| 2082 | |
| 2083 | start = (u8 *)bh->b_data; |
| 2084 | end = start + journal->j_blocksize; |
| 2085 | |
| 2086 | if (state->fc_replay_expected_off == 0) { |
| 2087 | state->fc_cur_tag = 0; |
| 2088 | state->fc_replay_num_tags = 0; |
| 2089 | state->fc_crc = 0; |
| 2090 | state->fc_regions = NULL; |
| 2091 | state->fc_regions_valid = state->fc_regions_used = |
| 2092 | state->fc_regions_size = 0; |
| 2093 | /* Check if we can stop early */ |
| 2094 | if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) |
| 2095 | != EXT4_FC_TAG_HEAD) |
| 2096 | return 0; |
| 2097 | } |
| 2098 | |
| 2099 | if (off != state->fc_replay_expected_off) { |
| 2100 | ret = -EFSCORRUPTED; |
| 2101 | goto out_err; |
| 2102 | } |
| 2103 | |
| 2104 | state->fc_replay_expected_off++; |
| 2105 | for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; |
| 2106 | cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { |
| 2107 | ext4_fc_get_tl(&tl, cur); |
| 2108 | val = cur + EXT4_FC_TAG_BASE_LEN; |
| 2109 | if (tl.fc_len > end - val || |
| 2110 | !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) { |
| 2111 | ret = state->fc_replay_num_tags ? |
| 2112 | JBD2_FC_REPLAY_STOP : -ECANCELED; |
| 2113 | goto out_err; |
| 2114 | } |
| 2115 | ext4_debug("Scan phase, tag:%s, blk %lld\n", |
| 2116 | tag2str(tl.fc_tag), bh->b_blocknr); |
| 2117 | switch (tl.fc_tag) { |
| 2118 | case EXT4_FC_TAG_ADD_RANGE: |
| 2119 | memcpy(&ext, val, sizeof(ext)); |
| 2120 | ex = (struct ext4_extent *)&ext.fc_ex; |
| 2121 | ret = ext4_fc_record_regions(sb, |
| 2122 | le32_to_cpu(ext.fc_ino), |
| 2123 | le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), |
| 2124 | ext4_ext_get_actual_len(ex), 0); |
| 2125 | if (ret < 0) |
| 2126 | break; |
| 2127 | ret = JBD2_FC_REPLAY_CONTINUE; |
| 2128 | fallthrough; |
| 2129 | case EXT4_FC_TAG_DEL_RANGE: |
| 2130 | case EXT4_FC_TAG_LINK: |
| 2131 | case EXT4_FC_TAG_UNLINK: |
| 2132 | case EXT4_FC_TAG_CREAT: |
| 2133 | case EXT4_FC_TAG_INODE: |
| 2134 | case EXT4_FC_TAG_PAD: |
| 2135 | state->fc_cur_tag++; |
| 2136 | state->fc_crc = ext4_chksum(state->fc_crc, cur, |
| 2137 | EXT4_FC_TAG_BASE_LEN + tl.fc_len); |
| 2138 | break; |
| 2139 | case EXT4_FC_TAG_TAIL: |
| 2140 | state->fc_cur_tag++; |
| 2141 | memcpy(&tail, val, sizeof(tail)); |
| 2142 | state->fc_crc = ext4_chksum(state->fc_crc, cur, |
| 2143 | EXT4_FC_TAG_BASE_LEN + |
| 2144 | offsetof(struct ext4_fc_tail, |
| 2145 | fc_crc)); |
| 2146 | if (le32_to_cpu(tail.fc_tid) == expected_tid && |
| 2147 | le32_to_cpu(tail.fc_crc) == state->fc_crc) { |
| 2148 | state->fc_replay_num_tags = state->fc_cur_tag; |
| 2149 | state->fc_regions_valid = |
| 2150 | state->fc_regions_used; |
| 2151 | } else { |
| 2152 | ret = state->fc_replay_num_tags ? |
| 2153 | JBD2_FC_REPLAY_STOP : -EFSBADCRC; |
| 2154 | } |
| 2155 | state->fc_crc = 0; |
| 2156 | break; |
| 2157 | case EXT4_FC_TAG_HEAD: |
| 2158 | memcpy(&head, val, sizeof(head)); |
| 2159 | if (le32_to_cpu(head.fc_features) & |
| 2160 | ~EXT4_FC_SUPPORTED_FEATURES) { |
| 2161 | ret = -EOPNOTSUPP; |
| 2162 | break; |
| 2163 | } |
| 2164 | if (le32_to_cpu(head.fc_tid) != expected_tid) { |
| 2165 | ret = JBD2_FC_REPLAY_STOP; |
| 2166 | break; |
| 2167 | } |
| 2168 | state->fc_cur_tag++; |
| 2169 | state->fc_crc = ext4_chksum(state->fc_crc, cur, |
| 2170 | EXT4_FC_TAG_BASE_LEN + tl.fc_len); |
| 2171 | break; |
| 2172 | default: |
| 2173 | ret = state->fc_replay_num_tags ? |
| 2174 | JBD2_FC_REPLAY_STOP : -ECANCELED; |
| 2175 | } |
| 2176 | if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) |
| 2177 | break; |
| 2178 | } |
| 2179 | |
| 2180 | out_err: |
| 2181 | trace_ext4_fc_replay_scan(sb, ret, off); |
| 2182 | return ret; |
| 2183 | } |
| 2184 | |
| 2185 | /* |
| 2186 | * Main recovery path entry point. |
| 2187 | * The meaning of return codes is similar as above. |
| 2188 | */ |
| 2189 | static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, |
| 2190 | enum passtype pass, int off, tid_t expected_tid) |
| 2191 | { |
| 2192 | struct super_block *sb = journal->j_private; |
| 2193 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 2194 | struct ext4_fc_tl_mem tl; |
| 2195 | __u8 *start, *end, *cur, *val; |
| 2196 | int ret = JBD2_FC_REPLAY_CONTINUE; |
| 2197 | struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; |
| 2198 | struct ext4_fc_tail tail; |
| 2199 | |
| 2200 | if (pass == PASS_SCAN) { |
| 2201 | state->fc_current_pass = PASS_SCAN; |
| 2202 | return ext4_fc_replay_scan(journal, bh, off, expected_tid); |
| 2203 | } |
| 2204 | |
| 2205 | if (state->fc_current_pass != pass) { |
| 2206 | state->fc_current_pass = pass; |
| 2207 | sbi->s_mount_state |= EXT4_FC_REPLAY; |
| 2208 | } |
| 2209 | if (!sbi->s_fc_replay_state.fc_replay_num_tags) { |
| 2210 | ext4_debug("Replay stops\n"); |
| 2211 | ext4_fc_set_bitmaps_and_counters(sb); |
| 2212 | return 0; |
| 2213 | } |
| 2214 | |
| 2215 | #ifdef CONFIG_EXT4_DEBUG |
| 2216 | if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { |
| 2217 | pr_warn("Dropping fc block %d because max_replay set\n", off); |
| 2218 | return JBD2_FC_REPLAY_STOP; |
| 2219 | } |
| 2220 | #endif |
| 2221 | |
| 2222 | start = (u8 *)bh->b_data; |
| 2223 | end = start + journal->j_blocksize; |
| 2224 | |
| 2225 | for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN; |
| 2226 | cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) { |
| 2227 | ext4_fc_get_tl(&tl, cur); |
| 2228 | val = cur + EXT4_FC_TAG_BASE_LEN; |
| 2229 | |
| 2230 | if (state->fc_replay_num_tags == 0) { |
| 2231 | ret = JBD2_FC_REPLAY_STOP; |
| 2232 | ext4_fc_set_bitmaps_and_counters(sb); |
| 2233 | break; |
| 2234 | } |
| 2235 | |
| 2236 | ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag)); |
| 2237 | state->fc_replay_num_tags--; |
| 2238 | switch (tl.fc_tag) { |
| 2239 | case EXT4_FC_TAG_LINK: |
| 2240 | ret = ext4_fc_replay_link(sb, &tl, val); |
| 2241 | break; |
| 2242 | case EXT4_FC_TAG_UNLINK: |
| 2243 | ret = ext4_fc_replay_unlink(sb, &tl, val); |
| 2244 | break; |
| 2245 | case EXT4_FC_TAG_ADD_RANGE: |
| 2246 | ret = ext4_fc_replay_add_range(sb, &tl, val); |
| 2247 | break; |
| 2248 | case EXT4_FC_TAG_CREAT: |
| 2249 | ret = ext4_fc_replay_create(sb, &tl, val); |
| 2250 | break; |
| 2251 | case EXT4_FC_TAG_DEL_RANGE: |
| 2252 | ret = ext4_fc_replay_del_range(sb, &tl, val); |
| 2253 | break; |
| 2254 | case EXT4_FC_TAG_INODE: |
| 2255 | ret = ext4_fc_replay_inode(sb, &tl, val); |
| 2256 | break; |
| 2257 | case EXT4_FC_TAG_PAD: |
| 2258 | trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, |
| 2259 | tl.fc_len, 0); |
| 2260 | break; |
| 2261 | case EXT4_FC_TAG_TAIL: |
| 2262 | trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, |
| 2263 | 0, tl.fc_len, 0); |
| 2264 | memcpy(&tail, val, sizeof(tail)); |
| 2265 | WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); |
| 2266 | break; |
| 2267 | case EXT4_FC_TAG_HEAD: |
| 2268 | break; |
| 2269 | default: |
| 2270 | trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0); |
| 2271 | ret = -ECANCELED; |
| 2272 | break; |
| 2273 | } |
| 2274 | if (ret < 0) |
| 2275 | break; |
| 2276 | ret = JBD2_FC_REPLAY_CONTINUE; |
| 2277 | } |
| 2278 | return ret; |
| 2279 | } |
| 2280 | |
| 2281 | void ext4_fc_init(struct super_block *sb, journal_t *journal) |
| 2282 | { |
| 2283 | /* |
| 2284 | * We set replay callback even if fast commit disabled because we may |
| 2285 | * could still have fast commit blocks that need to be replayed even if |
| 2286 | * fast commit has now been turned off. |
| 2287 | */ |
| 2288 | journal->j_fc_replay_callback = ext4_fc_replay; |
| 2289 | if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) |
| 2290 | return; |
| 2291 | journal->j_fc_cleanup_callback = ext4_fc_cleanup; |
| 2292 | } |
| 2293 | |
| 2294 | static const char * const fc_ineligible_reasons[] = { |
| 2295 | [EXT4_FC_REASON_XATTR] = "Extended attributes changed", |
| 2296 | [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename", |
| 2297 | [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed", |
| 2298 | [EXT4_FC_REASON_NOMEM] = "Insufficient memory", |
| 2299 | [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot", |
| 2300 | [EXT4_FC_REASON_RESIZE] = "Resize", |
| 2301 | [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed", |
| 2302 | [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op", |
| 2303 | [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling", |
| 2304 | [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename", |
| 2305 | }; |
| 2306 | |
| 2307 | int ext4_fc_info_show(struct seq_file *seq, void *v) |
| 2308 | { |
| 2309 | struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); |
| 2310 | struct ext4_fc_stats *stats = &sbi->s_fc_stats; |
| 2311 | int i; |
| 2312 | |
| 2313 | if (v != SEQ_START_TOKEN) |
| 2314 | return 0; |
| 2315 | |
| 2316 | seq_printf(seq, |
| 2317 | "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", |
| 2318 | stats->fc_num_commits, stats->fc_ineligible_commits, |
| 2319 | stats->fc_numblks, |
| 2320 | div_u64(stats->s_fc_avg_commit_time, 1000)); |
| 2321 | seq_puts(seq, "Ineligible reasons:\n"); |
| 2322 | for (i = 0; i < EXT4_FC_REASON_MAX; i++) |
| 2323 | seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], |
| 2324 | stats->fc_ineligible_reason_count[i]); |
| 2325 | |
| 2326 | return 0; |
| 2327 | } |
| 2328 | |
| 2329 | int __init ext4_fc_init_dentry_cache(void) |
| 2330 | { |
| 2331 | ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, |
| 2332 | SLAB_RECLAIM_ACCOUNT); |
| 2333 | |
| 2334 | if (ext4_fc_dentry_cachep == NULL) |
| 2335 | return -ENOMEM; |
| 2336 | |
| 2337 | return 0; |
| 2338 | } |
| 2339 | |
| 2340 | void ext4_fc_destroy_dentry_cache(void) |
| 2341 | { |
| 2342 | kmem_cache_destroy(ext4_fc_dentry_cachep); |
| 2343 | } |