Merge tag 'locking-core-2023-05-05' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / fs / eventpoll.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9#include <linux/init.h>
10#include <linux/kernel.h>
11#include <linux/sched/signal.h>
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
29#include <linux/mutex.h>
30#include <linux/anon_inodes.h>
31#include <linux/device.h>
32#include <linux/uaccess.h>
33#include <asm/io.h>
34#include <asm/mman.h>
35#include <linux/atomic.h>
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
38#include <linux/compat.h>
39#include <linux/rculist.h>
40#include <net/busy_poll.h>
41
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epnested_mutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (rwlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * The epnested_mutex is acquired when inserting an epoll fd onto another
61 * epoll fd. We do this so that we walk the epoll tree and ensure that this
62 * insertion does not create a cycle of epoll file descriptors, which
63 * could lead to deadlock. We need a global mutex to prevent two
64 * simultaneous inserts (A into B and B into A) from racing and
65 * constructing a cycle without either insert observing that it is
66 * going to.
67 * It is necessary to acquire multiple "ep->mtx"es at once in the
68 * case when one epoll fd is added to another. In this case, we
69 * always acquire the locks in the order of nesting (i.e. after
70 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
71 * before e2->mtx). Since we disallow cycles of epoll file
72 * descriptors, this ensures that the mutexes are well-ordered. In
73 * order to communicate this nesting to lockdep, when walking a tree
74 * of epoll file descriptors, we use the current recursion depth as
75 * the lockdep subkey.
76 * It is possible to drop the "ep->mtx" and to use the global
77 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
78 * but having "ep->mtx" will make the interface more scalable.
79 * Events that require holding "epnested_mutex" are very rare, while for
80 * normal operations the epoll private "ep->mtx" will guarantee
81 * a better scalability.
82 */
83
84/* Epoll private bits inside the event mask */
85#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
86
87#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
88
89#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
90 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
91
92/* Maximum number of nesting allowed inside epoll sets */
93#define EP_MAX_NESTS 4
94
95#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
96
97#define EP_UNACTIVE_PTR ((void *) -1L)
98
99#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
100
101struct epoll_filefd {
102 struct file *file;
103 int fd;
104} __packed;
105
106/* Wait structure used by the poll hooks */
107struct eppoll_entry {
108 /* List header used to link this structure to the "struct epitem" */
109 struct eppoll_entry *next;
110
111 /* The "base" pointer is set to the container "struct epitem" */
112 struct epitem *base;
113
114 /*
115 * Wait queue item that will be linked to the target file wait
116 * queue head.
117 */
118 wait_queue_entry_t wait;
119
120 /* The wait queue head that linked the "wait" wait queue item */
121 wait_queue_head_t *whead;
122};
123
124/*
125 * Each file descriptor added to the eventpoll interface will
126 * have an entry of this type linked to the "rbr" RB tree.
127 * Avoid increasing the size of this struct, there can be many thousands
128 * of these on a server and we do not want this to take another cache line.
129 */
130struct epitem {
131 union {
132 /* RB tree node links this structure to the eventpoll RB tree */
133 struct rb_node rbn;
134 /* Used to free the struct epitem */
135 struct rcu_head rcu;
136 };
137
138 /* List header used to link this structure to the eventpoll ready list */
139 struct list_head rdllink;
140
141 /*
142 * Works together "struct eventpoll"->ovflist in keeping the
143 * single linked chain of items.
144 */
145 struct epitem *next;
146
147 /* The file descriptor information this item refers to */
148 struct epoll_filefd ffd;
149
150 /*
151 * Protected by file->f_lock, true for to-be-released epitem already
152 * removed from the "struct file" items list; together with
153 * eventpoll->refcount orchestrates "struct eventpoll" disposal
154 */
155 bool dying;
156
157 /* List containing poll wait queues */
158 struct eppoll_entry *pwqlist;
159
160 /* The "container" of this item */
161 struct eventpoll *ep;
162
163 /* List header used to link this item to the "struct file" items list */
164 struct hlist_node fllink;
165
166 /* wakeup_source used when EPOLLWAKEUP is set */
167 struct wakeup_source __rcu *ws;
168
169 /* The structure that describe the interested events and the source fd */
170 struct epoll_event event;
171};
172
173/*
174 * This structure is stored inside the "private_data" member of the file
175 * structure and represents the main data structure for the eventpoll
176 * interface.
177 */
178struct eventpoll {
179 /*
180 * This mutex is used to ensure that files are not removed
181 * while epoll is using them. This is held during the event
182 * collection loop, the file cleanup path, the epoll file exit
183 * code and the ctl operations.
184 */
185 struct mutex mtx;
186
187 /* Wait queue used by sys_epoll_wait() */
188 wait_queue_head_t wq;
189
190 /* Wait queue used by file->poll() */
191 wait_queue_head_t poll_wait;
192
193 /* List of ready file descriptors */
194 struct list_head rdllist;
195
196 /* Lock which protects rdllist and ovflist */
197 rwlock_t lock;
198
199 /* RB tree root used to store monitored fd structs */
200 struct rb_root_cached rbr;
201
202 /*
203 * This is a single linked list that chains all the "struct epitem" that
204 * happened while transferring ready events to userspace w/out
205 * holding ->lock.
206 */
207 struct epitem *ovflist;
208
209 /* wakeup_source used when ep_scan_ready_list is running */
210 struct wakeup_source *ws;
211
212 /* The user that created the eventpoll descriptor */
213 struct user_struct *user;
214
215 struct file *file;
216
217 /* used to optimize loop detection check */
218 u64 gen;
219 struct hlist_head refs;
220
221 /*
222 * usage count, used together with epitem->dying to
223 * orchestrate the disposal of this struct
224 */
225 refcount_t refcount;
226
227#ifdef CONFIG_NET_RX_BUSY_POLL
228 /* used to track busy poll napi_id */
229 unsigned int napi_id;
230#endif
231
232#ifdef CONFIG_DEBUG_LOCK_ALLOC
233 /* tracks wakeup nests for lockdep validation */
234 u8 nests;
235#endif
236};
237
238/* Wrapper struct used by poll queueing */
239struct ep_pqueue {
240 poll_table pt;
241 struct epitem *epi;
242};
243
244/*
245 * Configuration options available inside /proc/sys/fs/epoll/
246 */
247/* Maximum number of epoll watched descriptors, per user */
248static long max_user_watches __read_mostly;
249
250/* Used for cycles detection */
251static DEFINE_MUTEX(epnested_mutex);
252
253static u64 loop_check_gen = 0;
254
255/* Used to check for epoll file descriptor inclusion loops */
256static struct eventpoll *inserting_into;
257
258/* Slab cache used to allocate "struct epitem" */
259static struct kmem_cache *epi_cache __read_mostly;
260
261/* Slab cache used to allocate "struct eppoll_entry" */
262static struct kmem_cache *pwq_cache __read_mostly;
263
264/*
265 * List of files with newly added links, where we may need to limit the number
266 * of emanating paths. Protected by the epnested_mutex.
267 */
268struct epitems_head {
269 struct hlist_head epitems;
270 struct epitems_head *next;
271};
272static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
273
274static struct kmem_cache *ephead_cache __read_mostly;
275
276static inline void free_ephead(struct epitems_head *head)
277{
278 if (head)
279 kmem_cache_free(ephead_cache, head);
280}
281
282static void list_file(struct file *file)
283{
284 struct epitems_head *head;
285
286 head = container_of(file->f_ep, struct epitems_head, epitems);
287 if (!head->next) {
288 head->next = tfile_check_list;
289 tfile_check_list = head;
290 }
291}
292
293static void unlist_file(struct epitems_head *head)
294{
295 struct epitems_head *to_free = head;
296 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
297 if (p) {
298 struct epitem *epi= container_of(p, struct epitem, fllink);
299 spin_lock(&epi->ffd.file->f_lock);
300 if (!hlist_empty(&head->epitems))
301 to_free = NULL;
302 head->next = NULL;
303 spin_unlock(&epi->ffd.file->f_lock);
304 }
305 free_ephead(to_free);
306}
307
308#ifdef CONFIG_SYSCTL
309
310#include <linux/sysctl.h>
311
312static long long_zero;
313static long long_max = LONG_MAX;
314
315static struct ctl_table epoll_table[] = {
316 {
317 .procname = "max_user_watches",
318 .data = &max_user_watches,
319 .maxlen = sizeof(max_user_watches),
320 .mode = 0644,
321 .proc_handler = proc_doulongvec_minmax,
322 .extra1 = &long_zero,
323 .extra2 = &long_max,
324 },
325 { }
326};
327
328static void __init epoll_sysctls_init(void)
329{
330 register_sysctl("fs/epoll", epoll_table);
331}
332#else
333#define epoll_sysctls_init() do { } while (0)
334#endif /* CONFIG_SYSCTL */
335
336static const struct file_operations eventpoll_fops;
337
338static inline int is_file_epoll(struct file *f)
339{
340 return f->f_op == &eventpoll_fops;
341}
342
343/* Setup the structure that is used as key for the RB tree */
344static inline void ep_set_ffd(struct epoll_filefd *ffd,
345 struct file *file, int fd)
346{
347 ffd->file = file;
348 ffd->fd = fd;
349}
350
351/* Compare RB tree keys */
352static inline int ep_cmp_ffd(struct epoll_filefd *p1,
353 struct epoll_filefd *p2)
354{
355 return (p1->file > p2->file ? +1:
356 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
357}
358
359/* Tells us if the item is currently linked */
360static inline int ep_is_linked(struct epitem *epi)
361{
362 return !list_empty(&epi->rdllink);
363}
364
365static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
366{
367 return container_of(p, struct eppoll_entry, wait);
368}
369
370/* Get the "struct epitem" from a wait queue pointer */
371static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
372{
373 return container_of(p, struct eppoll_entry, wait)->base;
374}
375
376/**
377 * ep_events_available - Checks if ready events might be available.
378 *
379 * @ep: Pointer to the eventpoll context.
380 *
381 * Return: a value different than %zero if ready events are available,
382 * or %zero otherwise.
383 */
384static inline int ep_events_available(struct eventpoll *ep)
385{
386 return !list_empty_careful(&ep->rdllist) ||
387 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
388}
389
390#ifdef CONFIG_NET_RX_BUSY_POLL
391static bool ep_busy_loop_end(void *p, unsigned long start_time)
392{
393 struct eventpoll *ep = p;
394
395 return ep_events_available(ep) || busy_loop_timeout(start_time);
396}
397
398/*
399 * Busy poll if globally on and supporting sockets found && no events,
400 * busy loop will return if need_resched or ep_events_available.
401 *
402 * we must do our busy polling with irqs enabled
403 */
404static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
405{
406 unsigned int napi_id = READ_ONCE(ep->napi_id);
407
408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
410 BUSY_POLL_BUDGET);
411 if (ep_events_available(ep))
412 return true;
413 /*
414 * Busy poll timed out. Drop NAPI ID for now, we can add
415 * it back in when we have moved a socket with a valid NAPI
416 * ID onto the ready list.
417 */
418 ep->napi_id = 0;
419 return false;
420 }
421 return false;
422}
423
424/*
425 * Set epoll busy poll NAPI ID from sk.
426 */
427static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
428{
429 struct eventpoll *ep;
430 unsigned int napi_id;
431 struct socket *sock;
432 struct sock *sk;
433
434 if (!net_busy_loop_on())
435 return;
436
437 sock = sock_from_file(epi->ffd.file);
438 if (!sock)
439 return;
440
441 sk = sock->sk;
442 if (!sk)
443 return;
444
445 napi_id = READ_ONCE(sk->sk_napi_id);
446 ep = epi->ep;
447
448 /* Non-NAPI IDs can be rejected
449 * or
450 * Nothing to do if we already have this ID
451 */
452 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
453 return;
454
455 /* record NAPI ID for use in next busy poll */
456 ep->napi_id = napi_id;
457}
458
459#else
460
461static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
462{
463 return false;
464}
465
466static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
467{
468}
469
470#endif /* CONFIG_NET_RX_BUSY_POLL */
471
472/*
473 * As described in commit 0ccf831cb lockdep: annotate epoll
474 * the use of wait queues used by epoll is done in a very controlled
475 * manner. Wake ups can nest inside each other, but are never done
476 * with the same locking. For example:
477 *
478 * dfd = socket(...);
479 * efd1 = epoll_create();
480 * efd2 = epoll_create();
481 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
482 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
483 *
484 * When a packet arrives to the device underneath "dfd", the net code will
485 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
486 * callback wakeup entry on that queue, and the wake_up() performed by the
487 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
488 * (efd1) notices that it may have some event ready, so it needs to wake up
489 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
490 * that ends up in another wake_up(), after having checked about the
491 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
492 * stack blasting.
493 *
494 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
495 * this special case of epoll.
496 */
497#ifdef CONFIG_DEBUG_LOCK_ALLOC
498
499static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
500 unsigned pollflags)
501{
502 struct eventpoll *ep_src;
503 unsigned long flags;
504 u8 nests = 0;
505
506 /*
507 * To set the subclass or nesting level for spin_lock_irqsave_nested()
508 * it might be natural to create a per-cpu nest count. However, since
509 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
510 * schedule() in the -rt kernel, the per-cpu variable are no longer
511 * protected. Thus, we are introducing a per eventpoll nest field.
512 * If we are not being call from ep_poll_callback(), epi is NULL and
513 * we are at the first level of nesting, 0. Otherwise, we are being
514 * called from ep_poll_callback() and if a previous wakeup source is
515 * not an epoll file itself, we are at depth 1 since the wakeup source
516 * is depth 0. If the wakeup source is a previous epoll file in the
517 * wakeup chain then we use its nests value and record ours as
518 * nests + 1. The previous epoll file nests value is stable since its
519 * already holding its own poll_wait.lock.
520 */
521 if (epi) {
522 if ((is_file_epoll(epi->ffd.file))) {
523 ep_src = epi->ffd.file->private_data;
524 nests = ep_src->nests;
525 } else {
526 nests = 1;
527 }
528 }
529 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
530 ep->nests = nests + 1;
531 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
532 ep->nests = 0;
533 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
534}
535
536#else
537
538static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
539 unsigned pollflags)
540{
541 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
542}
543
544#endif
545
546static void ep_remove_wait_queue(struct eppoll_entry *pwq)
547{
548 wait_queue_head_t *whead;
549
550 rcu_read_lock();
551 /*
552 * If it is cleared by POLLFREE, it should be rcu-safe.
553 * If we read NULL we need a barrier paired with
554 * smp_store_release() in ep_poll_callback(), otherwise
555 * we rely on whead->lock.
556 */
557 whead = smp_load_acquire(&pwq->whead);
558 if (whead)
559 remove_wait_queue(whead, &pwq->wait);
560 rcu_read_unlock();
561}
562
563/*
564 * This function unregisters poll callbacks from the associated file
565 * descriptor. Must be called with "mtx" held.
566 */
567static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
568{
569 struct eppoll_entry **p = &epi->pwqlist;
570 struct eppoll_entry *pwq;
571
572 while ((pwq = *p) != NULL) {
573 *p = pwq->next;
574 ep_remove_wait_queue(pwq);
575 kmem_cache_free(pwq_cache, pwq);
576 }
577}
578
579/* call only when ep->mtx is held */
580static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
581{
582 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
583}
584
585/* call only when ep->mtx is held */
586static inline void ep_pm_stay_awake(struct epitem *epi)
587{
588 struct wakeup_source *ws = ep_wakeup_source(epi);
589
590 if (ws)
591 __pm_stay_awake(ws);
592}
593
594static inline bool ep_has_wakeup_source(struct epitem *epi)
595{
596 return rcu_access_pointer(epi->ws) ? true : false;
597}
598
599/* call when ep->mtx cannot be held (ep_poll_callback) */
600static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
601{
602 struct wakeup_source *ws;
603
604 rcu_read_lock();
605 ws = rcu_dereference(epi->ws);
606 if (ws)
607 __pm_stay_awake(ws);
608 rcu_read_unlock();
609}
610
611
612/*
613 * ep->mutex needs to be held because we could be hit by
614 * eventpoll_release_file() and epoll_ctl().
615 */
616static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
617{
618 /*
619 * Steal the ready list, and re-init the original one to the
620 * empty list. Also, set ep->ovflist to NULL so that events
621 * happening while looping w/out locks, are not lost. We cannot
622 * have the poll callback to queue directly on ep->rdllist,
623 * because we want the "sproc" callback to be able to do it
624 * in a lockless way.
625 */
626 lockdep_assert_irqs_enabled();
627 write_lock_irq(&ep->lock);
628 list_splice_init(&ep->rdllist, txlist);
629 WRITE_ONCE(ep->ovflist, NULL);
630 write_unlock_irq(&ep->lock);
631}
632
633static void ep_done_scan(struct eventpoll *ep,
634 struct list_head *txlist)
635{
636 struct epitem *epi, *nepi;
637
638 write_lock_irq(&ep->lock);
639 /*
640 * During the time we spent inside the "sproc" callback, some
641 * other events might have been queued by the poll callback.
642 * We re-insert them inside the main ready-list here.
643 */
644 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
645 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
646 /*
647 * We need to check if the item is already in the list.
648 * During the "sproc" callback execution time, items are
649 * queued into ->ovflist but the "txlist" might already
650 * contain them, and the list_splice() below takes care of them.
651 */
652 if (!ep_is_linked(epi)) {
653 /*
654 * ->ovflist is LIFO, so we have to reverse it in order
655 * to keep in FIFO.
656 */
657 list_add(&epi->rdllink, &ep->rdllist);
658 ep_pm_stay_awake(epi);
659 }
660 }
661 /*
662 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
663 * releasing the lock, events will be queued in the normal way inside
664 * ep->rdllist.
665 */
666 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
667
668 /*
669 * Quickly re-inject items left on "txlist".
670 */
671 list_splice(txlist, &ep->rdllist);
672 __pm_relax(ep->ws);
673
674 if (!list_empty(&ep->rdllist)) {
675 if (waitqueue_active(&ep->wq))
676 wake_up(&ep->wq);
677 }
678
679 write_unlock_irq(&ep->lock);
680}
681
682static void epi_rcu_free(struct rcu_head *head)
683{
684 struct epitem *epi = container_of(head, struct epitem, rcu);
685 kmem_cache_free(epi_cache, epi);
686}
687
688static void ep_get(struct eventpoll *ep)
689{
690 refcount_inc(&ep->refcount);
691}
692
693/*
694 * Returns true if the event poll can be disposed
695 */
696static bool ep_refcount_dec_and_test(struct eventpoll *ep)
697{
698 if (!refcount_dec_and_test(&ep->refcount))
699 return false;
700
701 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
702 return true;
703}
704
705static void ep_free(struct eventpoll *ep)
706{
707 mutex_destroy(&ep->mtx);
708 free_uid(ep->user);
709 wakeup_source_unregister(ep->ws);
710 kfree(ep);
711}
712
713/*
714 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
715 * all the associated resources. Must be called with "mtx" held.
716 * If the dying flag is set, do the removal only if force is true.
717 * This prevents ep_clear_and_put() from dropping all the ep references
718 * while running concurrently with eventpoll_release_file().
719 * Returns true if the eventpoll can be disposed.
720 */
721static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
722{
723 struct file *file = epi->ffd.file;
724 struct epitems_head *to_free;
725 struct hlist_head *head;
726
727 lockdep_assert_irqs_enabled();
728
729 /*
730 * Removes poll wait queue hooks.
731 */
732 ep_unregister_pollwait(ep, epi);
733
734 /* Remove the current item from the list of epoll hooks */
735 spin_lock(&file->f_lock);
736 if (epi->dying && !force) {
737 spin_unlock(&file->f_lock);
738 return false;
739 }
740
741 to_free = NULL;
742 head = file->f_ep;
743 if (head->first == &epi->fllink && !epi->fllink.next) {
744 file->f_ep = NULL;
745 if (!is_file_epoll(file)) {
746 struct epitems_head *v;
747 v = container_of(head, struct epitems_head, epitems);
748 if (!smp_load_acquire(&v->next))
749 to_free = v;
750 }
751 }
752 hlist_del_rcu(&epi->fllink);
753 spin_unlock(&file->f_lock);
754 free_ephead(to_free);
755
756 rb_erase_cached(&epi->rbn, &ep->rbr);
757
758 write_lock_irq(&ep->lock);
759 if (ep_is_linked(epi))
760 list_del_init(&epi->rdllink);
761 write_unlock_irq(&ep->lock);
762
763 wakeup_source_unregister(ep_wakeup_source(epi));
764 /*
765 * At this point it is safe to free the eventpoll item. Use the union
766 * field epi->rcu, since we are trying to minimize the size of
767 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
768 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
769 * use of the rbn field.
770 */
771 call_rcu(&epi->rcu, epi_rcu_free);
772
773 percpu_counter_dec(&ep->user->epoll_watches);
774 return ep_refcount_dec_and_test(ep);
775}
776
777/*
778 * ep_remove variant for callers owing an additional reference to the ep
779 */
780static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
781{
782 WARN_ON_ONCE(__ep_remove(ep, epi, false));
783}
784
785static void ep_clear_and_put(struct eventpoll *ep)
786{
787 struct rb_node *rbp, *next;
788 struct epitem *epi;
789 bool dispose;
790
791 /* We need to release all tasks waiting for these file */
792 if (waitqueue_active(&ep->poll_wait))
793 ep_poll_safewake(ep, NULL, 0);
794
795 mutex_lock(&ep->mtx);
796
797 /*
798 * Walks through the whole tree by unregistering poll callbacks.
799 */
800 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
801 epi = rb_entry(rbp, struct epitem, rbn);
802
803 ep_unregister_pollwait(ep, epi);
804 cond_resched();
805 }
806
807 /*
808 * Walks through the whole tree and try to free each "struct epitem".
809 * Note that ep_remove_safe() will not remove the epitem in case of a
810 * racing eventpoll_release_file(); the latter will do the removal.
811 * At this point we are sure no poll callbacks will be lingering around.
812 * Since we still own a reference to the eventpoll struct, the loop can't
813 * dispose it.
814 */
815 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
816 next = rb_next(rbp);
817 epi = rb_entry(rbp, struct epitem, rbn);
818 ep_remove_safe(ep, epi);
819 cond_resched();
820 }
821
822 dispose = ep_refcount_dec_and_test(ep);
823 mutex_unlock(&ep->mtx);
824
825 if (dispose)
826 ep_free(ep);
827}
828
829static int ep_eventpoll_release(struct inode *inode, struct file *file)
830{
831 struct eventpoll *ep = file->private_data;
832
833 if (ep)
834 ep_clear_and_put(ep);
835
836 return 0;
837}
838
839static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
840
841static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
842{
843 struct eventpoll *ep = file->private_data;
844 LIST_HEAD(txlist);
845 struct epitem *epi, *tmp;
846 poll_table pt;
847 __poll_t res = 0;
848
849 init_poll_funcptr(&pt, NULL);
850
851 /* Insert inside our poll wait queue */
852 poll_wait(file, &ep->poll_wait, wait);
853
854 /*
855 * Proceed to find out if wanted events are really available inside
856 * the ready list.
857 */
858 mutex_lock_nested(&ep->mtx, depth);
859 ep_start_scan(ep, &txlist);
860 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
861 if (ep_item_poll(epi, &pt, depth + 1)) {
862 res = EPOLLIN | EPOLLRDNORM;
863 break;
864 } else {
865 /*
866 * Item has been dropped into the ready list by the poll
867 * callback, but it's not actually ready, as far as
868 * caller requested events goes. We can remove it here.
869 */
870 __pm_relax(ep_wakeup_source(epi));
871 list_del_init(&epi->rdllink);
872 }
873 }
874 ep_done_scan(ep, &txlist);
875 mutex_unlock(&ep->mtx);
876 return res;
877}
878
879/*
880 * Differs from ep_eventpoll_poll() in that internal callers already have
881 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
882 * is correctly annotated.
883 */
884static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
885 int depth)
886{
887 struct file *file = epi->ffd.file;
888 __poll_t res;
889
890 pt->_key = epi->event.events;
891 if (!is_file_epoll(file))
892 res = vfs_poll(file, pt);
893 else
894 res = __ep_eventpoll_poll(file, pt, depth);
895 return res & epi->event.events;
896}
897
898static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
899{
900 return __ep_eventpoll_poll(file, wait, 0);
901}
902
903#ifdef CONFIG_PROC_FS
904static void ep_show_fdinfo(struct seq_file *m, struct file *f)
905{
906 struct eventpoll *ep = f->private_data;
907 struct rb_node *rbp;
908
909 mutex_lock(&ep->mtx);
910 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
911 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
912 struct inode *inode = file_inode(epi->ffd.file);
913
914 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
915 " pos:%lli ino:%lx sdev:%x\n",
916 epi->ffd.fd, epi->event.events,
917 (long long)epi->event.data,
918 (long long)epi->ffd.file->f_pos,
919 inode->i_ino, inode->i_sb->s_dev);
920 if (seq_has_overflowed(m))
921 break;
922 }
923 mutex_unlock(&ep->mtx);
924}
925#endif
926
927/* File callbacks that implement the eventpoll file behaviour */
928static const struct file_operations eventpoll_fops = {
929#ifdef CONFIG_PROC_FS
930 .show_fdinfo = ep_show_fdinfo,
931#endif
932 .release = ep_eventpoll_release,
933 .poll = ep_eventpoll_poll,
934 .llseek = noop_llseek,
935};
936
937/*
938 * This is called from eventpoll_release() to unlink files from the eventpoll
939 * interface. We need to have this facility to cleanup correctly files that are
940 * closed without being removed from the eventpoll interface.
941 */
942void eventpoll_release_file(struct file *file)
943{
944 struct eventpoll *ep;
945 struct epitem *epi;
946 bool dispose;
947
948 /*
949 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
950 * touching the epitems list before eventpoll_release_file() can access
951 * the ep->mtx.
952 */
953again:
954 spin_lock(&file->f_lock);
955 if (file->f_ep && file->f_ep->first) {
956 epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
957 epi->dying = true;
958 spin_unlock(&file->f_lock);
959
960 /*
961 * ep access is safe as we still own a reference to the ep
962 * struct
963 */
964 ep = epi->ep;
965 mutex_lock(&ep->mtx);
966 dispose = __ep_remove(ep, epi, true);
967 mutex_unlock(&ep->mtx);
968
969 if (dispose)
970 ep_free(ep);
971 goto again;
972 }
973 spin_unlock(&file->f_lock);
974}
975
976static int ep_alloc(struct eventpoll **pep)
977{
978 int error;
979 struct user_struct *user;
980 struct eventpoll *ep;
981
982 user = get_current_user();
983 error = -ENOMEM;
984 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
985 if (unlikely(!ep))
986 goto free_uid;
987
988 mutex_init(&ep->mtx);
989 rwlock_init(&ep->lock);
990 init_waitqueue_head(&ep->wq);
991 init_waitqueue_head(&ep->poll_wait);
992 INIT_LIST_HEAD(&ep->rdllist);
993 ep->rbr = RB_ROOT_CACHED;
994 ep->ovflist = EP_UNACTIVE_PTR;
995 ep->user = user;
996 refcount_set(&ep->refcount, 1);
997
998 *pep = ep;
999
1000 return 0;
1001
1002free_uid:
1003 free_uid(user);
1004 return error;
1005}
1006
1007/*
1008 * Search the file inside the eventpoll tree. The RB tree operations
1009 * are protected by the "mtx" mutex, and ep_find() must be called with
1010 * "mtx" held.
1011 */
1012static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1013{
1014 int kcmp;
1015 struct rb_node *rbp;
1016 struct epitem *epi, *epir = NULL;
1017 struct epoll_filefd ffd;
1018
1019 ep_set_ffd(&ffd, file, fd);
1020 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1021 epi = rb_entry(rbp, struct epitem, rbn);
1022 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1023 if (kcmp > 0)
1024 rbp = rbp->rb_right;
1025 else if (kcmp < 0)
1026 rbp = rbp->rb_left;
1027 else {
1028 epir = epi;
1029 break;
1030 }
1031 }
1032
1033 return epir;
1034}
1035
1036#ifdef CONFIG_KCMP
1037static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1038{
1039 struct rb_node *rbp;
1040 struct epitem *epi;
1041
1042 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1043 epi = rb_entry(rbp, struct epitem, rbn);
1044 if (epi->ffd.fd == tfd) {
1045 if (toff == 0)
1046 return epi;
1047 else
1048 toff--;
1049 }
1050 cond_resched();
1051 }
1052
1053 return NULL;
1054}
1055
1056struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1057 unsigned long toff)
1058{
1059 struct file *file_raw;
1060 struct eventpoll *ep;
1061 struct epitem *epi;
1062
1063 if (!is_file_epoll(file))
1064 return ERR_PTR(-EINVAL);
1065
1066 ep = file->private_data;
1067
1068 mutex_lock(&ep->mtx);
1069 epi = ep_find_tfd(ep, tfd, toff);
1070 if (epi)
1071 file_raw = epi->ffd.file;
1072 else
1073 file_raw = ERR_PTR(-ENOENT);
1074 mutex_unlock(&ep->mtx);
1075
1076 return file_raw;
1077}
1078#endif /* CONFIG_KCMP */
1079
1080/*
1081 * Adds a new entry to the tail of the list in a lockless way, i.e.
1082 * multiple CPUs are allowed to call this function concurrently.
1083 *
1084 * Beware: it is necessary to prevent any other modifications of the
1085 * existing list until all changes are completed, in other words
1086 * concurrent list_add_tail_lockless() calls should be protected
1087 * with a read lock, where write lock acts as a barrier which
1088 * makes sure all list_add_tail_lockless() calls are fully
1089 * completed.
1090 *
1091 * Also an element can be locklessly added to the list only in one
1092 * direction i.e. either to the tail or to the head, otherwise
1093 * concurrent access will corrupt the list.
1094 *
1095 * Return: %false if element has been already added to the list, %true
1096 * otherwise.
1097 */
1098static inline bool list_add_tail_lockless(struct list_head *new,
1099 struct list_head *head)
1100{
1101 struct list_head *prev;
1102
1103 /*
1104 * This is simple 'new->next = head' operation, but cmpxchg()
1105 * is used in order to detect that same element has been just
1106 * added to the list from another CPU: the winner observes
1107 * new->next == new.
1108 */
1109 if (!try_cmpxchg(&new->next, &new, head))
1110 return false;
1111
1112 /*
1113 * Initially ->next of a new element must be updated with the head
1114 * (we are inserting to the tail) and only then pointers are atomically
1115 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1116 * updated before pointers are actually swapped and pointers are
1117 * swapped before prev->next is updated.
1118 */
1119
1120 prev = xchg(&head->prev, new);
1121
1122 /*
1123 * It is safe to modify prev->next and new->prev, because a new element
1124 * is added only to the tail and new->next is updated before XCHG.
1125 */
1126
1127 prev->next = new;
1128 new->prev = prev;
1129
1130 return true;
1131}
1132
1133/*
1134 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1135 * i.e. multiple CPUs are allowed to call this function concurrently.
1136 *
1137 * Return: %false if epi element has been already chained, %true otherwise.
1138 */
1139static inline bool chain_epi_lockless(struct epitem *epi)
1140{
1141 struct eventpoll *ep = epi->ep;
1142
1143 /* Fast preliminary check */
1144 if (epi->next != EP_UNACTIVE_PTR)
1145 return false;
1146
1147 /* Check that the same epi has not been just chained from another CPU */
1148 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1149 return false;
1150
1151 /* Atomically exchange tail */
1152 epi->next = xchg(&ep->ovflist, epi);
1153
1154 return true;
1155}
1156
1157/*
1158 * This is the callback that is passed to the wait queue wakeup
1159 * mechanism. It is called by the stored file descriptors when they
1160 * have events to report.
1161 *
1162 * This callback takes a read lock in order not to contend with concurrent
1163 * events from another file descriptor, thus all modifications to ->rdllist
1164 * or ->ovflist are lockless. Read lock is paired with the write lock from
1165 * ep_scan_ready_list(), which stops all list modifications and guarantees
1166 * that lists state is seen correctly.
1167 *
1168 * Another thing worth to mention is that ep_poll_callback() can be called
1169 * concurrently for the same @epi from different CPUs if poll table was inited
1170 * with several wait queues entries. Plural wakeup from different CPUs of a
1171 * single wait queue is serialized by wq.lock, but the case when multiple wait
1172 * queues are used should be detected accordingly. This is detected using
1173 * cmpxchg() operation.
1174 */
1175static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1176{
1177 int pwake = 0;
1178 struct epitem *epi = ep_item_from_wait(wait);
1179 struct eventpoll *ep = epi->ep;
1180 __poll_t pollflags = key_to_poll(key);
1181 unsigned long flags;
1182 int ewake = 0;
1183
1184 read_lock_irqsave(&ep->lock, flags);
1185
1186 ep_set_busy_poll_napi_id(epi);
1187
1188 /*
1189 * If the event mask does not contain any poll(2) event, we consider the
1190 * descriptor to be disabled. This condition is likely the effect of the
1191 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1192 * until the next EPOLL_CTL_MOD will be issued.
1193 */
1194 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1195 goto out_unlock;
1196
1197 /*
1198 * Check the events coming with the callback. At this stage, not
1199 * every device reports the events in the "key" parameter of the
1200 * callback. We need to be able to handle both cases here, hence the
1201 * test for "key" != NULL before the event match test.
1202 */
1203 if (pollflags && !(pollflags & epi->event.events))
1204 goto out_unlock;
1205
1206 /*
1207 * If we are transferring events to userspace, we can hold no locks
1208 * (because we're accessing user memory, and because of linux f_op->poll()
1209 * semantics). All the events that happen during that period of time are
1210 * chained in ep->ovflist and requeued later on.
1211 */
1212 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1213 if (chain_epi_lockless(epi))
1214 ep_pm_stay_awake_rcu(epi);
1215 } else if (!ep_is_linked(epi)) {
1216 /* In the usual case, add event to ready list. */
1217 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1218 ep_pm_stay_awake_rcu(epi);
1219 }
1220
1221 /*
1222 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1223 * wait list.
1224 */
1225 if (waitqueue_active(&ep->wq)) {
1226 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1227 !(pollflags & POLLFREE)) {
1228 switch (pollflags & EPOLLINOUT_BITS) {
1229 case EPOLLIN:
1230 if (epi->event.events & EPOLLIN)
1231 ewake = 1;
1232 break;
1233 case EPOLLOUT:
1234 if (epi->event.events & EPOLLOUT)
1235 ewake = 1;
1236 break;
1237 case 0:
1238 ewake = 1;
1239 break;
1240 }
1241 }
1242 wake_up(&ep->wq);
1243 }
1244 if (waitqueue_active(&ep->poll_wait))
1245 pwake++;
1246
1247out_unlock:
1248 read_unlock_irqrestore(&ep->lock, flags);
1249
1250 /* We have to call this outside the lock */
1251 if (pwake)
1252 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1253
1254 if (!(epi->event.events & EPOLLEXCLUSIVE))
1255 ewake = 1;
1256
1257 if (pollflags & POLLFREE) {
1258 /*
1259 * If we race with ep_remove_wait_queue() it can miss
1260 * ->whead = NULL and do another remove_wait_queue() after
1261 * us, so we can't use __remove_wait_queue().
1262 */
1263 list_del_init(&wait->entry);
1264 /*
1265 * ->whead != NULL protects us from the race with
1266 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1267 * takes whead->lock held by the caller. Once we nullify it,
1268 * nothing protects ep/epi or even wait.
1269 */
1270 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1271 }
1272
1273 return ewake;
1274}
1275
1276/*
1277 * This is the callback that is used to add our wait queue to the
1278 * target file wakeup lists.
1279 */
1280static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1281 poll_table *pt)
1282{
1283 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1284 struct epitem *epi = epq->epi;
1285 struct eppoll_entry *pwq;
1286
1287 if (unlikely(!epi)) // an earlier allocation has failed
1288 return;
1289
1290 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1291 if (unlikely(!pwq)) {
1292 epq->epi = NULL;
1293 return;
1294 }
1295
1296 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1297 pwq->whead = whead;
1298 pwq->base = epi;
1299 if (epi->event.events & EPOLLEXCLUSIVE)
1300 add_wait_queue_exclusive(whead, &pwq->wait);
1301 else
1302 add_wait_queue(whead, &pwq->wait);
1303 pwq->next = epi->pwqlist;
1304 epi->pwqlist = pwq;
1305}
1306
1307static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1308{
1309 int kcmp;
1310 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1311 struct epitem *epic;
1312 bool leftmost = true;
1313
1314 while (*p) {
1315 parent = *p;
1316 epic = rb_entry(parent, struct epitem, rbn);
1317 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1318 if (kcmp > 0) {
1319 p = &parent->rb_right;
1320 leftmost = false;
1321 } else
1322 p = &parent->rb_left;
1323 }
1324 rb_link_node(&epi->rbn, parent, p);
1325 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1326}
1327
1328
1329
1330#define PATH_ARR_SIZE 5
1331/*
1332 * These are the number paths of length 1 to 5, that we are allowing to emanate
1333 * from a single file of interest. For example, we allow 1000 paths of length
1334 * 1, to emanate from each file of interest. This essentially represents the
1335 * potential wakeup paths, which need to be limited in order to avoid massive
1336 * uncontrolled wakeup storms. The common use case should be a single ep which
1337 * is connected to n file sources. In this case each file source has 1 path
1338 * of length 1. Thus, the numbers below should be more than sufficient. These
1339 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1340 * and delete can't add additional paths. Protected by the epnested_mutex.
1341 */
1342static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1343static int path_count[PATH_ARR_SIZE];
1344
1345static int path_count_inc(int nests)
1346{
1347 /* Allow an arbitrary number of depth 1 paths */
1348 if (nests == 0)
1349 return 0;
1350
1351 if (++path_count[nests] > path_limits[nests])
1352 return -1;
1353 return 0;
1354}
1355
1356static void path_count_init(void)
1357{
1358 int i;
1359
1360 for (i = 0; i < PATH_ARR_SIZE; i++)
1361 path_count[i] = 0;
1362}
1363
1364static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1365{
1366 int error = 0;
1367 struct epitem *epi;
1368
1369 if (depth > EP_MAX_NESTS) /* too deep nesting */
1370 return -1;
1371
1372 /* CTL_DEL can remove links here, but that can't increase our count */
1373 hlist_for_each_entry_rcu(epi, refs, fllink) {
1374 struct hlist_head *refs = &epi->ep->refs;
1375 if (hlist_empty(refs))
1376 error = path_count_inc(depth);
1377 else
1378 error = reverse_path_check_proc(refs, depth + 1);
1379 if (error != 0)
1380 break;
1381 }
1382 return error;
1383}
1384
1385/**
1386 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1387 * links that are proposed to be newly added. We need to
1388 * make sure that those added links don't add too many
1389 * paths such that we will spend all our time waking up
1390 * eventpoll objects.
1391 *
1392 * Return: %zero if the proposed links don't create too many paths,
1393 * %-1 otherwise.
1394 */
1395static int reverse_path_check(void)
1396{
1397 struct epitems_head *p;
1398
1399 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1400 int error;
1401 path_count_init();
1402 rcu_read_lock();
1403 error = reverse_path_check_proc(&p->epitems, 0);
1404 rcu_read_unlock();
1405 if (error)
1406 return error;
1407 }
1408 return 0;
1409}
1410
1411static int ep_create_wakeup_source(struct epitem *epi)
1412{
1413 struct name_snapshot n;
1414 struct wakeup_source *ws;
1415
1416 if (!epi->ep->ws) {
1417 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1418 if (!epi->ep->ws)
1419 return -ENOMEM;
1420 }
1421
1422 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1423 ws = wakeup_source_register(NULL, n.name.name);
1424 release_dentry_name_snapshot(&n);
1425
1426 if (!ws)
1427 return -ENOMEM;
1428 rcu_assign_pointer(epi->ws, ws);
1429
1430 return 0;
1431}
1432
1433/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1434static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1435{
1436 struct wakeup_source *ws = ep_wakeup_source(epi);
1437
1438 RCU_INIT_POINTER(epi->ws, NULL);
1439
1440 /*
1441 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1442 * used internally by wakeup_source_remove, too (called by
1443 * wakeup_source_unregister), so we cannot use call_rcu
1444 */
1445 synchronize_rcu();
1446 wakeup_source_unregister(ws);
1447}
1448
1449static int attach_epitem(struct file *file, struct epitem *epi)
1450{
1451 struct epitems_head *to_free = NULL;
1452 struct hlist_head *head = NULL;
1453 struct eventpoll *ep = NULL;
1454
1455 if (is_file_epoll(file))
1456 ep = file->private_data;
1457
1458 if (ep) {
1459 head = &ep->refs;
1460 } else if (!READ_ONCE(file->f_ep)) {
1461allocate:
1462 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1463 if (!to_free)
1464 return -ENOMEM;
1465 head = &to_free->epitems;
1466 }
1467 spin_lock(&file->f_lock);
1468 if (!file->f_ep) {
1469 if (unlikely(!head)) {
1470 spin_unlock(&file->f_lock);
1471 goto allocate;
1472 }
1473 file->f_ep = head;
1474 to_free = NULL;
1475 }
1476 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1477 spin_unlock(&file->f_lock);
1478 free_ephead(to_free);
1479 return 0;
1480}
1481
1482/*
1483 * Must be called with "mtx" held.
1484 */
1485static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1486 struct file *tfile, int fd, int full_check)
1487{
1488 int error, pwake = 0;
1489 __poll_t revents;
1490 struct epitem *epi;
1491 struct ep_pqueue epq;
1492 struct eventpoll *tep = NULL;
1493
1494 if (is_file_epoll(tfile))
1495 tep = tfile->private_data;
1496
1497 lockdep_assert_irqs_enabled();
1498
1499 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1500 max_user_watches) >= 0))
1501 return -ENOSPC;
1502 percpu_counter_inc(&ep->user->epoll_watches);
1503
1504 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1505 percpu_counter_dec(&ep->user->epoll_watches);
1506 return -ENOMEM;
1507 }
1508
1509 /* Item initialization follow here ... */
1510 INIT_LIST_HEAD(&epi->rdllink);
1511 epi->ep = ep;
1512 ep_set_ffd(&epi->ffd, tfile, fd);
1513 epi->event = *event;
1514 epi->next = EP_UNACTIVE_PTR;
1515
1516 if (tep)
1517 mutex_lock_nested(&tep->mtx, 1);
1518 /* Add the current item to the list of active epoll hook for this file */
1519 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1520 if (tep)
1521 mutex_unlock(&tep->mtx);
1522 kmem_cache_free(epi_cache, epi);
1523 percpu_counter_dec(&ep->user->epoll_watches);
1524 return -ENOMEM;
1525 }
1526
1527 if (full_check && !tep)
1528 list_file(tfile);
1529
1530 /*
1531 * Add the current item to the RB tree. All RB tree operations are
1532 * protected by "mtx", and ep_insert() is called with "mtx" held.
1533 */
1534 ep_rbtree_insert(ep, epi);
1535 if (tep)
1536 mutex_unlock(&tep->mtx);
1537
1538 /*
1539 * ep_remove_safe() calls in the later error paths can't lead to
1540 * ep_free() as the ep file itself still holds an ep reference.
1541 */
1542 ep_get(ep);
1543
1544 /* now check if we've created too many backpaths */
1545 if (unlikely(full_check && reverse_path_check())) {
1546 ep_remove_safe(ep, epi);
1547 return -EINVAL;
1548 }
1549
1550 if (epi->event.events & EPOLLWAKEUP) {
1551 error = ep_create_wakeup_source(epi);
1552 if (error) {
1553 ep_remove_safe(ep, epi);
1554 return error;
1555 }
1556 }
1557
1558 /* Initialize the poll table using the queue callback */
1559 epq.epi = epi;
1560 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1561
1562 /*
1563 * Attach the item to the poll hooks and get current event bits.
1564 * We can safely use the file* here because its usage count has
1565 * been increased by the caller of this function. Note that after
1566 * this operation completes, the poll callback can start hitting
1567 * the new item.
1568 */
1569 revents = ep_item_poll(epi, &epq.pt, 1);
1570
1571 /*
1572 * We have to check if something went wrong during the poll wait queue
1573 * install process. Namely an allocation for a wait queue failed due
1574 * high memory pressure.
1575 */
1576 if (unlikely(!epq.epi)) {
1577 ep_remove_safe(ep, epi);
1578 return -ENOMEM;
1579 }
1580
1581 /* We have to drop the new item inside our item list to keep track of it */
1582 write_lock_irq(&ep->lock);
1583
1584 /* record NAPI ID of new item if present */
1585 ep_set_busy_poll_napi_id(epi);
1586
1587 /* If the file is already "ready" we drop it inside the ready list */
1588 if (revents && !ep_is_linked(epi)) {
1589 list_add_tail(&epi->rdllink, &ep->rdllist);
1590 ep_pm_stay_awake(epi);
1591
1592 /* Notify waiting tasks that events are available */
1593 if (waitqueue_active(&ep->wq))
1594 wake_up(&ep->wq);
1595 if (waitqueue_active(&ep->poll_wait))
1596 pwake++;
1597 }
1598
1599 write_unlock_irq(&ep->lock);
1600
1601 /* We have to call this outside the lock */
1602 if (pwake)
1603 ep_poll_safewake(ep, NULL, 0);
1604
1605 return 0;
1606}
1607
1608/*
1609 * Modify the interest event mask by dropping an event if the new mask
1610 * has a match in the current file status. Must be called with "mtx" held.
1611 */
1612static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1613 const struct epoll_event *event)
1614{
1615 int pwake = 0;
1616 poll_table pt;
1617
1618 lockdep_assert_irqs_enabled();
1619
1620 init_poll_funcptr(&pt, NULL);
1621
1622 /*
1623 * Set the new event interest mask before calling f_op->poll();
1624 * otherwise we might miss an event that happens between the
1625 * f_op->poll() call and the new event set registering.
1626 */
1627 epi->event.events = event->events; /* need barrier below */
1628 epi->event.data = event->data; /* protected by mtx */
1629 if (epi->event.events & EPOLLWAKEUP) {
1630 if (!ep_has_wakeup_source(epi))
1631 ep_create_wakeup_source(epi);
1632 } else if (ep_has_wakeup_source(epi)) {
1633 ep_destroy_wakeup_source(epi);
1634 }
1635
1636 /*
1637 * The following barrier has two effects:
1638 *
1639 * 1) Flush epi changes above to other CPUs. This ensures
1640 * we do not miss events from ep_poll_callback if an
1641 * event occurs immediately after we call f_op->poll().
1642 * We need this because we did not take ep->lock while
1643 * changing epi above (but ep_poll_callback does take
1644 * ep->lock).
1645 *
1646 * 2) We also need to ensure we do not miss _past_ events
1647 * when calling f_op->poll(). This barrier also
1648 * pairs with the barrier in wq_has_sleeper (see
1649 * comments for wq_has_sleeper).
1650 *
1651 * This barrier will now guarantee ep_poll_callback or f_op->poll
1652 * (or both) will notice the readiness of an item.
1653 */
1654 smp_mb();
1655
1656 /*
1657 * Get current event bits. We can safely use the file* here because
1658 * its usage count has been increased by the caller of this function.
1659 * If the item is "hot" and it is not registered inside the ready
1660 * list, push it inside.
1661 */
1662 if (ep_item_poll(epi, &pt, 1)) {
1663 write_lock_irq(&ep->lock);
1664 if (!ep_is_linked(epi)) {
1665 list_add_tail(&epi->rdllink, &ep->rdllist);
1666 ep_pm_stay_awake(epi);
1667
1668 /* Notify waiting tasks that events are available */
1669 if (waitqueue_active(&ep->wq))
1670 wake_up(&ep->wq);
1671 if (waitqueue_active(&ep->poll_wait))
1672 pwake++;
1673 }
1674 write_unlock_irq(&ep->lock);
1675 }
1676
1677 /* We have to call this outside the lock */
1678 if (pwake)
1679 ep_poll_safewake(ep, NULL, 0);
1680
1681 return 0;
1682}
1683
1684static int ep_send_events(struct eventpoll *ep,
1685 struct epoll_event __user *events, int maxevents)
1686{
1687 struct epitem *epi, *tmp;
1688 LIST_HEAD(txlist);
1689 poll_table pt;
1690 int res = 0;
1691
1692 /*
1693 * Always short-circuit for fatal signals to allow threads to make a
1694 * timely exit without the chance of finding more events available and
1695 * fetching repeatedly.
1696 */
1697 if (fatal_signal_pending(current))
1698 return -EINTR;
1699
1700 init_poll_funcptr(&pt, NULL);
1701
1702 mutex_lock(&ep->mtx);
1703 ep_start_scan(ep, &txlist);
1704
1705 /*
1706 * We can loop without lock because we are passed a task private list.
1707 * Items cannot vanish during the loop we are holding ep->mtx.
1708 */
1709 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1710 struct wakeup_source *ws;
1711 __poll_t revents;
1712
1713 if (res >= maxevents)
1714 break;
1715
1716 /*
1717 * Activate ep->ws before deactivating epi->ws to prevent
1718 * triggering auto-suspend here (in case we reactive epi->ws
1719 * below).
1720 *
1721 * This could be rearranged to delay the deactivation of epi->ws
1722 * instead, but then epi->ws would temporarily be out of sync
1723 * with ep_is_linked().
1724 */
1725 ws = ep_wakeup_source(epi);
1726 if (ws) {
1727 if (ws->active)
1728 __pm_stay_awake(ep->ws);
1729 __pm_relax(ws);
1730 }
1731
1732 list_del_init(&epi->rdllink);
1733
1734 /*
1735 * If the event mask intersect the caller-requested one,
1736 * deliver the event to userspace. Again, we are holding ep->mtx,
1737 * so no operations coming from userspace can change the item.
1738 */
1739 revents = ep_item_poll(epi, &pt, 1);
1740 if (!revents)
1741 continue;
1742
1743 events = epoll_put_uevent(revents, epi->event.data, events);
1744 if (!events) {
1745 list_add(&epi->rdllink, &txlist);
1746 ep_pm_stay_awake(epi);
1747 if (!res)
1748 res = -EFAULT;
1749 break;
1750 }
1751 res++;
1752 if (epi->event.events & EPOLLONESHOT)
1753 epi->event.events &= EP_PRIVATE_BITS;
1754 else if (!(epi->event.events & EPOLLET)) {
1755 /*
1756 * If this file has been added with Level
1757 * Trigger mode, we need to insert back inside
1758 * the ready list, so that the next call to
1759 * epoll_wait() will check again the events
1760 * availability. At this point, no one can insert
1761 * into ep->rdllist besides us. The epoll_ctl()
1762 * callers are locked out by
1763 * ep_scan_ready_list() holding "mtx" and the
1764 * poll callback will queue them in ep->ovflist.
1765 */
1766 list_add_tail(&epi->rdllink, &ep->rdllist);
1767 ep_pm_stay_awake(epi);
1768 }
1769 }
1770 ep_done_scan(ep, &txlist);
1771 mutex_unlock(&ep->mtx);
1772
1773 return res;
1774}
1775
1776static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1777{
1778 struct timespec64 now;
1779
1780 if (ms < 0)
1781 return NULL;
1782
1783 if (!ms) {
1784 to->tv_sec = 0;
1785 to->tv_nsec = 0;
1786 return to;
1787 }
1788
1789 to->tv_sec = ms / MSEC_PER_SEC;
1790 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1791
1792 ktime_get_ts64(&now);
1793 *to = timespec64_add_safe(now, *to);
1794 return to;
1795}
1796
1797/*
1798 * autoremove_wake_function, but remove even on failure to wake up, because we
1799 * know that default_wake_function/ttwu will only fail if the thread is already
1800 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1801 * try to reuse it.
1802 */
1803static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1804 unsigned int mode, int sync, void *key)
1805{
1806 int ret = default_wake_function(wq_entry, mode, sync, key);
1807
1808 list_del_init(&wq_entry->entry);
1809 return ret;
1810}
1811
1812/**
1813 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1814 * event buffer.
1815 *
1816 * @ep: Pointer to the eventpoll context.
1817 * @events: Pointer to the userspace buffer where the ready events should be
1818 * stored.
1819 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1820 * @timeout: Maximum timeout for the ready events fetch operation, in
1821 * timespec. If the timeout is zero, the function will not block,
1822 * while if the @timeout ptr is NULL, the function will block
1823 * until at least one event has been retrieved (or an error
1824 * occurred).
1825 *
1826 * Return: the number of ready events which have been fetched, or an
1827 * error code, in case of error.
1828 */
1829static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1830 int maxevents, struct timespec64 *timeout)
1831{
1832 int res, eavail, timed_out = 0;
1833 u64 slack = 0;
1834 wait_queue_entry_t wait;
1835 ktime_t expires, *to = NULL;
1836
1837 lockdep_assert_irqs_enabled();
1838
1839 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1840 slack = select_estimate_accuracy(timeout);
1841 to = &expires;
1842 *to = timespec64_to_ktime(*timeout);
1843 } else if (timeout) {
1844 /*
1845 * Avoid the unnecessary trip to the wait queue loop, if the
1846 * caller specified a non blocking operation.
1847 */
1848 timed_out = 1;
1849 }
1850
1851 /*
1852 * This call is racy: We may or may not see events that are being added
1853 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1854 * with a non-zero timeout, this thread will check the ready list under
1855 * lock and will add to the wait queue. For cases with a zero
1856 * timeout, the user by definition should not care and will have to
1857 * recheck again.
1858 */
1859 eavail = ep_events_available(ep);
1860
1861 while (1) {
1862 if (eavail) {
1863 /*
1864 * Try to transfer events to user space. In case we get
1865 * 0 events and there's still timeout left over, we go
1866 * trying again in search of more luck.
1867 */
1868 res = ep_send_events(ep, events, maxevents);
1869 if (res)
1870 return res;
1871 }
1872
1873 if (timed_out)
1874 return 0;
1875
1876 eavail = ep_busy_loop(ep, timed_out);
1877 if (eavail)
1878 continue;
1879
1880 if (signal_pending(current))
1881 return -EINTR;
1882
1883 /*
1884 * Internally init_wait() uses autoremove_wake_function(),
1885 * thus wait entry is removed from the wait queue on each
1886 * wakeup. Why it is important? In case of several waiters
1887 * each new wakeup will hit the next waiter, giving it the
1888 * chance to harvest new event. Otherwise wakeup can be
1889 * lost. This is also good performance-wise, because on
1890 * normal wakeup path no need to call __remove_wait_queue()
1891 * explicitly, thus ep->lock is not taken, which halts the
1892 * event delivery.
1893 *
1894 * In fact, we now use an even more aggressive function that
1895 * unconditionally removes, because we don't reuse the wait
1896 * entry between loop iterations. This lets us also avoid the
1897 * performance issue if a process is killed, causing all of its
1898 * threads to wake up without being removed normally.
1899 */
1900 init_wait(&wait);
1901 wait.func = ep_autoremove_wake_function;
1902
1903 write_lock_irq(&ep->lock);
1904 /*
1905 * Barrierless variant, waitqueue_active() is called under
1906 * the same lock on wakeup ep_poll_callback() side, so it
1907 * is safe to avoid an explicit barrier.
1908 */
1909 __set_current_state(TASK_INTERRUPTIBLE);
1910
1911 /*
1912 * Do the final check under the lock. ep_scan_ready_list()
1913 * plays with two lists (->rdllist and ->ovflist) and there
1914 * is always a race when both lists are empty for short
1915 * period of time although events are pending, so lock is
1916 * important.
1917 */
1918 eavail = ep_events_available(ep);
1919 if (!eavail)
1920 __add_wait_queue_exclusive(&ep->wq, &wait);
1921
1922 write_unlock_irq(&ep->lock);
1923
1924 if (!eavail)
1925 timed_out = !schedule_hrtimeout_range(to, slack,
1926 HRTIMER_MODE_ABS);
1927 __set_current_state(TASK_RUNNING);
1928
1929 /*
1930 * We were woken up, thus go and try to harvest some events.
1931 * If timed out and still on the wait queue, recheck eavail
1932 * carefully under lock, below.
1933 */
1934 eavail = 1;
1935
1936 if (!list_empty_careful(&wait.entry)) {
1937 write_lock_irq(&ep->lock);
1938 /*
1939 * If the thread timed out and is not on the wait queue,
1940 * it means that the thread was woken up after its
1941 * timeout expired before it could reacquire the lock.
1942 * Thus, when wait.entry is empty, it needs to harvest
1943 * events.
1944 */
1945 if (timed_out)
1946 eavail = list_empty(&wait.entry);
1947 __remove_wait_queue(&ep->wq, &wait);
1948 write_unlock_irq(&ep->lock);
1949 }
1950 }
1951}
1952
1953/**
1954 * ep_loop_check_proc - verify that adding an epoll file inside another
1955 * epoll structure does not violate the constraints, in
1956 * terms of closed loops, or too deep chains (which can
1957 * result in excessive stack usage).
1958 *
1959 * @ep: the &struct eventpoll to be currently checked.
1960 * @depth: Current depth of the path being checked.
1961 *
1962 * Return: %zero if adding the epoll @file inside current epoll
1963 * structure @ep does not violate the constraints, or %-1 otherwise.
1964 */
1965static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1966{
1967 int error = 0;
1968 struct rb_node *rbp;
1969 struct epitem *epi;
1970
1971 mutex_lock_nested(&ep->mtx, depth + 1);
1972 ep->gen = loop_check_gen;
1973 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1974 epi = rb_entry(rbp, struct epitem, rbn);
1975 if (unlikely(is_file_epoll(epi->ffd.file))) {
1976 struct eventpoll *ep_tovisit;
1977 ep_tovisit = epi->ffd.file->private_data;
1978 if (ep_tovisit->gen == loop_check_gen)
1979 continue;
1980 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1981 error = -1;
1982 else
1983 error = ep_loop_check_proc(ep_tovisit, depth + 1);
1984 if (error != 0)
1985 break;
1986 } else {
1987 /*
1988 * If we've reached a file that is not associated with
1989 * an ep, then we need to check if the newly added
1990 * links are going to add too many wakeup paths. We do
1991 * this by adding it to the tfile_check_list, if it's
1992 * not already there, and calling reverse_path_check()
1993 * during ep_insert().
1994 */
1995 list_file(epi->ffd.file);
1996 }
1997 }
1998 mutex_unlock(&ep->mtx);
1999
2000 return error;
2001}
2002
2003/**
2004 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2005 * into another epoll file (represented by @ep) does not create
2006 * closed loops or too deep chains.
2007 *
2008 * @ep: Pointer to the epoll we are inserting into.
2009 * @to: Pointer to the epoll to be inserted.
2010 *
2011 * Return: %zero if adding the epoll @to inside the epoll @from
2012 * does not violate the constraints, or %-1 otherwise.
2013 */
2014static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2015{
2016 inserting_into = ep;
2017 return ep_loop_check_proc(to, 0);
2018}
2019
2020static void clear_tfile_check_list(void)
2021{
2022 rcu_read_lock();
2023 while (tfile_check_list != EP_UNACTIVE_PTR) {
2024 struct epitems_head *head = tfile_check_list;
2025 tfile_check_list = head->next;
2026 unlist_file(head);
2027 }
2028 rcu_read_unlock();
2029}
2030
2031/*
2032 * Open an eventpoll file descriptor.
2033 */
2034static int do_epoll_create(int flags)
2035{
2036 int error, fd;
2037 struct eventpoll *ep = NULL;
2038 struct file *file;
2039
2040 /* Check the EPOLL_* constant for consistency. */
2041 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2042
2043 if (flags & ~EPOLL_CLOEXEC)
2044 return -EINVAL;
2045 /*
2046 * Create the internal data structure ("struct eventpoll").
2047 */
2048 error = ep_alloc(&ep);
2049 if (error < 0)
2050 return error;
2051 /*
2052 * Creates all the items needed to setup an eventpoll file. That is,
2053 * a file structure and a free file descriptor.
2054 */
2055 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2056 if (fd < 0) {
2057 error = fd;
2058 goto out_free_ep;
2059 }
2060 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2061 O_RDWR | (flags & O_CLOEXEC));
2062 if (IS_ERR(file)) {
2063 error = PTR_ERR(file);
2064 goto out_free_fd;
2065 }
2066 ep->file = file;
2067 fd_install(fd, file);
2068 return fd;
2069
2070out_free_fd:
2071 put_unused_fd(fd);
2072out_free_ep:
2073 ep_clear_and_put(ep);
2074 return error;
2075}
2076
2077SYSCALL_DEFINE1(epoll_create1, int, flags)
2078{
2079 return do_epoll_create(flags);
2080}
2081
2082SYSCALL_DEFINE1(epoll_create, int, size)
2083{
2084 if (size <= 0)
2085 return -EINVAL;
2086
2087 return do_epoll_create(0);
2088}
2089
2090#ifdef CONFIG_PM_SLEEP
2091static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2092{
2093 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2094 epev->events &= ~EPOLLWAKEUP;
2095}
2096#else
2097static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2098{
2099 epev->events &= ~EPOLLWAKEUP;
2100}
2101#endif
2102
2103static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2104 bool nonblock)
2105{
2106 if (!nonblock) {
2107 mutex_lock_nested(mutex, depth);
2108 return 0;
2109 }
2110 if (mutex_trylock(mutex))
2111 return 0;
2112 return -EAGAIN;
2113}
2114
2115int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2116 bool nonblock)
2117{
2118 int error;
2119 int full_check = 0;
2120 struct fd f, tf;
2121 struct eventpoll *ep;
2122 struct epitem *epi;
2123 struct eventpoll *tep = NULL;
2124
2125 error = -EBADF;
2126 f = fdget(epfd);
2127 if (!f.file)
2128 goto error_return;
2129
2130 /* Get the "struct file *" for the target file */
2131 tf = fdget(fd);
2132 if (!tf.file)
2133 goto error_fput;
2134
2135 /* The target file descriptor must support poll */
2136 error = -EPERM;
2137 if (!file_can_poll(tf.file))
2138 goto error_tgt_fput;
2139
2140 /* Check if EPOLLWAKEUP is allowed */
2141 if (ep_op_has_event(op))
2142 ep_take_care_of_epollwakeup(epds);
2143
2144 /*
2145 * We have to check that the file structure underneath the file descriptor
2146 * the user passed to us _is_ an eventpoll file. And also we do not permit
2147 * adding an epoll file descriptor inside itself.
2148 */
2149 error = -EINVAL;
2150 if (f.file == tf.file || !is_file_epoll(f.file))
2151 goto error_tgt_fput;
2152
2153 /*
2154 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2155 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2156 * Also, we do not currently supported nested exclusive wakeups.
2157 */
2158 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2159 if (op == EPOLL_CTL_MOD)
2160 goto error_tgt_fput;
2161 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2162 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2163 goto error_tgt_fput;
2164 }
2165
2166 /*
2167 * At this point it is safe to assume that the "private_data" contains
2168 * our own data structure.
2169 */
2170 ep = f.file->private_data;
2171
2172 /*
2173 * When we insert an epoll file descriptor inside another epoll file
2174 * descriptor, there is the chance of creating closed loops, which are
2175 * better be handled here, than in more critical paths. While we are
2176 * checking for loops we also determine the list of files reachable
2177 * and hang them on the tfile_check_list, so we can check that we
2178 * haven't created too many possible wakeup paths.
2179 *
2180 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2181 * the epoll file descriptor is attaching directly to a wakeup source,
2182 * unless the epoll file descriptor is nested. The purpose of taking the
2183 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2184 * deep wakeup paths from forming in parallel through multiple
2185 * EPOLL_CTL_ADD operations.
2186 */
2187 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2188 if (error)
2189 goto error_tgt_fput;
2190 if (op == EPOLL_CTL_ADD) {
2191 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2192 is_file_epoll(tf.file)) {
2193 mutex_unlock(&ep->mtx);
2194 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2195 if (error)
2196 goto error_tgt_fput;
2197 loop_check_gen++;
2198 full_check = 1;
2199 if (is_file_epoll(tf.file)) {
2200 tep = tf.file->private_data;
2201 error = -ELOOP;
2202 if (ep_loop_check(ep, tep) != 0)
2203 goto error_tgt_fput;
2204 }
2205 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2206 if (error)
2207 goto error_tgt_fput;
2208 }
2209 }
2210
2211 /*
2212 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2213 * above, we can be sure to be able to use the item looked up by
2214 * ep_find() till we release the mutex.
2215 */
2216 epi = ep_find(ep, tf.file, fd);
2217
2218 error = -EINVAL;
2219 switch (op) {
2220 case EPOLL_CTL_ADD:
2221 if (!epi) {
2222 epds->events |= EPOLLERR | EPOLLHUP;
2223 error = ep_insert(ep, epds, tf.file, fd, full_check);
2224 } else
2225 error = -EEXIST;
2226 break;
2227 case EPOLL_CTL_DEL:
2228 if (epi) {
2229 /*
2230 * The eventpoll itself is still alive: the refcount
2231 * can't go to zero here.
2232 */
2233 ep_remove_safe(ep, epi);
2234 error = 0;
2235 } else {
2236 error = -ENOENT;
2237 }
2238 break;
2239 case EPOLL_CTL_MOD:
2240 if (epi) {
2241 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2242 epds->events |= EPOLLERR | EPOLLHUP;
2243 error = ep_modify(ep, epi, epds);
2244 }
2245 } else
2246 error = -ENOENT;
2247 break;
2248 }
2249 mutex_unlock(&ep->mtx);
2250
2251error_tgt_fput:
2252 if (full_check) {
2253 clear_tfile_check_list();
2254 loop_check_gen++;
2255 mutex_unlock(&epnested_mutex);
2256 }
2257
2258 fdput(tf);
2259error_fput:
2260 fdput(f);
2261error_return:
2262
2263 return error;
2264}
2265
2266/*
2267 * The following function implements the controller interface for
2268 * the eventpoll file that enables the insertion/removal/change of
2269 * file descriptors inside the interest set.
2270 */
2271SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2272 struct epoll_event __user *, event)
2273{
2274 struct epoll_event epds;
2275
2276 if (ep_op_has_event(op) &&
2277 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2278 return -EFAULT;
2279
2280 return do_epoll_ctl(epfd, op, fd, &epds, false);
2281}
2282
2283/*
2284 * Implement the event wait interface for the eventpoll file. It is the kernel
2285 * part of the user space epoll_wait(2).
2286 */
2287static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2288 int maxevents, struct timespec64 *to)
2289{
2290 int error;
2291 struct fd f;
2292 struct eventpoll *ep;
2293
2294 /* The maximum number of event must be greater than zero */
2295 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2296 return -EINVAL;
2297
2298 /* Verify that the area passed by the user is writeable */
2299 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2300 return -EFAULT;
2301
2302 /* Get the "struct file *" for the eventpoll file */
2303 f = fdget(epfd);
2304 if (!f.file)
2305 return -EBADF;
2306
2307 /*
2308 * We have to check that the file structure underneath the fd
2309 * the user passed to us _is_ an eventpoll file.
2310 */
2311 error = -EINVAL;
2312 if (!is_file_epoll(f.file))
2313 goto error_fput;
2314
2315 /*
2316 * At this point it is safe to assume that the "private_data" contains
2317 * our own data structure.
2318 */
2319 ep = f.file->private_data;
2320
2321 /* Time to fish for events ... */
2322 error = ep_poll(ep, events, maxevents, to);
2323
2324error_fput:
2325 fdput(f);
2326 return error;
2327}
2328
2329SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2330 int, maxevents, int, timeout)
2331{
2332 struct timespec64 to;
2333
2334 return do_epoll_wait(epfd, events, maxevents,
2335 ep_timeout_to_timespec(&to, timeout));
2336}
2337
2338/*
2339 * Implement the event wait interface for the eventpoll file. It is the kernel
2340 * part of the user space epoll_pwait(2).
2341 */
2342static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2343 int maxevents, struct timespec64 *to,
2344 const sigset_t __user *sigmask, size_t sigsetsize)
2345{
2346 int error;
2347
2348 /*
2349 * If the caller wants a certain signal mask to be set during the wait,
2350 * we apply it here.
2351 */
2352 error = set_user_sigmask(sigmask, sigsetsize);
2353 if (error)
2354 return error;
2355
2356 error = do_epoll_wait(epfd, events, maxevents, to);
2357
2358 restore_saved_sigmask_unless(error == -EINTR);
2359
2360 return error;
2361}
2362
2363SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2364 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2365 size_t, sigsetsize)
2366{
2367 struct timespec64 to;
2368
2369 return do_epoll_pwait(epfd, events, maxevents,
2370 ep_timeout_to_timespec(&to, timeout),
2371 sigmask, sigsetsize);
2372}
2373
2374SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2375 int, maxevents, const struct __kernel_timespec __user *, timeout,
2376 const sigset_t __user *, sigmask, size_t, sigsetsize)
2377{
2378 struct timespec64 ts, *to = NULL;
2379
2380 if (timeout) {
2381 if (get_timespec64(&ts, timeout))
2382 return -EFAULT;
2383 to = &ts;
2384 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2385 return -EINVAL;
2386 }
2387
2388 return do_epoll_pwait(epfd, events, maxevents, to,
2389 sigmask, sigsetsize);
2390}
2391
2392#ifdef CONFIG_COMPAT
2393static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2394 int maxevents, struct timespec64 *timeout,
2395 const compat_sigset_t __user *sigmask,
2396 compat_size_t sigsetsize)
2397{
2398 long err;
2399
2400 /*
2401 * If the caller wants a certain signal mask to be set during the wait,
2402 * we apply it here.
2403 */
2404 err = set_compat_user_sigmask(sigmask, sigsetsize);
2405 if (err)
2406 return err;
2407
2408 err = do_epoll_wait(epfd, events, maxevents, timeout);
2409
2410 restore_saved_sigmask_unless(err == -EINTR);
2411
2412 return err;
2413}
2414
2415COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2416 struct epoll_event __user *, events,
2417 int, maxevents, int, timeout,
2418 const compat_sigset_t __user *, sigmask,
2419 compat_size_t, sigsetsize)
2420{
2421 struct timespec64 to;
2422
2423 return do_compat_epoll_pwait(epfd, events, maxevents,
2424 ep_timeout_to_timespec(&to, timeout),
2425 sigmask, sigsetsize);
2426}
2427
2428COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2429 struct epoll_event __user *, events,
2430 int, maxevents,
2431 const struct __kernel_timespec __user *, timeout,
2432 const compat_sigset_t __user *, sigmask,
2433 compat_size_t, sigsetsize)
2434{
2435 struct timespec64 ts, *to = NULL;
2436
2437 if (timeout) {
2438 if (get_timespec64(&ts, timeout))
2439 return -EFAULT;
2440 to = &ts;
2441 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2442 return -EINVAL;
2443 }
2444
2445 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2446 sigmask, sigsetsize);
2447}
2448
2449#endif
2450
2451static int __init eventpoll_init(void)
2452{
2453 struct sysinfo si;
2454
2455 si_meminfo(&si);
2456 /*
2457 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2458 */
2459 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2460 EP_ITEM_COST;
2461 BUG_ON(max_user_watches < 0);
2462
2463 /*
2464 * We can have many thousands of epitems, so prevent this from
2465 * using an extra cache line on 64-bit (and smaller) CPUs
2466 */
2467 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2468
2469 /* Allocates slab cache used to allocate "struct epitem" items */
2470 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2471 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2472
2473 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2474 pwq_cache = kmem_cache_create("eventpoll_pwq",
2475 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2476 epoll_sysctls_init();
2477
2478 ephead_cache = kmem_cache_create("ep_head",
2479 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2480
2481 return 0;
2482}
2483fs_initcall(eventpoll_init);