Merge tag 'input-for-v6.8-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor...
[linux-block.git] / fs / eventpoll.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9#include <linux/init.h>
10#include <linux/kernel.h>
11#include <linux/sched/signal.h>
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
29#include <linux/mutex.h>
30#include <linux/anon_inodes.h>
31#include <linux/device.h>
32#include <linux/uaccess.h>
33#include <asm/io.h>
34#include <asm/mman.h>
35#include <linux/atomic.h>
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
38#include <linux/compat.h>
39#include <linux/rculist.h>
40#include <net/busy_poll.h>
41
42/*
43 * LOCKING:
44 * There are three level of locking required by epoll :
45 *
46 * 1) epnested_mutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (rwlock)
49 *
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * The epnested_mutex is acquired when inserting an epoll fd onto another
61 * epoll fd. We do this so that we walk the epoll tree and ensure that this
62 * insertion does not create a cycle of epoll file descriptors, which
63 * could lead to deadlock. We need a global mutex to prevent two
64 * simultaneous inserts (A into B and B into A) from racing and
65 * constructing a cycle without either insert observing that it is
66 * going to.
67 * It is necessary to acquire multiple "ep->mtx"es at once in the
68 * case when one epoll fd is added to another. In this case, we
69 * always acquire the locks in the order of nesting (i.e. after
70 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
71 * before e2->mtx). Since we disallow cycles of epoll file
72 * descriptors, this ensures that the mutexes are well-ordered. In
73 * order to communicate this nesting to lockdep, when walking a tree
74 * of epoll file descriptors, we use the current recursion depth as
75 * the lockdep subkey.
76 * It is possible to drop the "ep->mtx" and to use the global
77 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
78 * but having "ep->mtx" will make the interface more scalable.
79 * Events that require holding "epnested_mutex" are very rare, while for
80 * normal operations the epoll private "ep->mtx" will guarantee
81 * a better scalability.
82 */
83
84/* Epoll private bits inside the event mask */
85#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
86
87#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
88
89#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
90 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
91
92/* Maximum number of nesting allowed inside epoll sets */
93#define EP_MAX_NESTS 4
94
95#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
96
97#define EP_UNACTIVE_PTR ((void *) -1L)
98
99#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
100
101struct epoll_filefd {
102 struct file *file;
103 int fd;
104} __packed;
105
106/* Wait structure used by the poll hooks */
107struct eppoll_entry {
108 /* List header used to link this structure to the "struct epitem" */
109 struct eppoll_entry *next;
110
111 /* The "base" pointer is set to the container "struct epitem" */
112 struct epitem *base;
113
114 /*
115 * Wait queue item that will be linked to the target file wait
116 * queue head.
117 */
118 wait_queue_entry_t wait;
119
120 /* The wait queue head that linked the "wait" wait queue item */
121 wait_queue_head_t *whead;
122};
123
124/*
125 * Each file descriptor added to the eventpoll interface will
126 * have an entry of this type linked to the "rbr" RB tree.
127 * Avoid increasing the size of this struct, there can be many thousands
128 * of these on a server and we do not want this to take another cache line.
129 */
130struct epitem {
131 union {
132 /* RB tree node links this structure to the eventpoll RB tree */
133 struct rb_node rbn;
134 /* Used to free the struct epitem */
135 struct rcu_head rcu;
136 };
137
138 /* List header used to link this structure to the eventpoll ready list */
139 struct list_head rdllink;
140
141 /*
142 * Works together "struct eventpoll"->ovflist in keeping the
143 * single linked chain of items.
144 */
145 struct epitem *next;
146
147 /* The file descriptor information this item refers to */
148 struct epoll_filefd ffd;
149
150 /*
151 * Protected by file->f_lock, true for to-be-released epitem already
152 * removed from the "struct file" items list; together with
153 * eventpoll->refcount orchestrates "struct eventpoll" disposal
154 */
155 bool dying;
156
157 /* List containing poll wait queues */
158 struct eppoll_entry *pwqlist;
159
160 /* The "container" of this item */
161 struct eventpoll *ep;
162
163 /* List header used to link this item to the "struct file" items list */
164 struct hlist_node fllink;
165
166 /* wakeup_source used when EPOLLWAKEUP is set */
167 struct wakeup_source __rcu *ws;
168
169 /* The structure that describe the interested events and the source fd */
170 struct epoll_event event;
171};
172
173/*
174 * This structure is stored inside the "private_data" member of the file
175 * structure and represents the main data structure for the eventpoll
176 * interface.
177 */
178struct eventpoll {
179 /*
180 * This mutex is used to ensure that files are not removed
181 * while epoll is using them. This is held during the event
182 * collection loop, the file cleanup path, the epoll file exit
183 * code and the ctl operations.
184 */
185 struct mutex mtx;
186
187 /* Wait queue used by sys_epoll_wait() */
188 wait_queue_head_t wq;
189
190 /* Wait queue used by file->poll() */
191 wait_queue_head_t poll_wait;
192
193 /* List of ready file descriptors */
194 struct list_head rdllist;
195
196 /* Lock which protects rdllist and ovflist */
197 rwlock_t lock;
198
199 /* RB tree root used to store monitored fd structs */
200 struct rb_root_cached rbr;
201
202 /*
203 * This is a single linked list that chains all the "struct epitem" that
204 * happened while transferring ready events to userspace w/out
205 * holding ->lock.
206 */
207 struct epitem *ovflist;
208
209 /* wakeup_source used when ep_scan_ready_list is running */
210 struct wakeup_source *ws;
211
212 /* The user that created the eventpoll descriptor */
213 struct user_struct *user;
214
215 struct file *file;
216
217 /* used to optimize loop detection check */
218 u64 gen;
219 struct hlist_head refs;
220
221 /*
222 * usage count, used together with epitem->dying to
223 * orchestrate the disposal of this struct
224 */
225 refcount_t refcount;
226
227#ifdef CONFIG_NET_RX_BUSY_POLL
228 /* used to track busy poll napi_id */
229 unsigned int napi_id;
230#endif
231
232#ifdef CONFIG_DEBUG_LOCK_ALLOC
233 /* tracks wakeup nests for lockdep validation */
234 u8 nests;
235#endif
236};
237
238/* Wrapper struct used by poll queueing */
239struct ep_pqueue {
240 poll_table pt;
241 struct epitem *epi;
242};
243
244/*
245 * Configuration options available inside /proc/sys/fs/epoll/
246 */
247/* Maximum number of epoll watched descriptors, per user */
248static long max_user_watches __read_mostly;
249
250/* Used for cycles detection */
251static DEFINE_MUTEX(epnested_mutex);
252
253static u64 loop_check_gen = 0;
254
255/* Used to check for epoll file descriptor inclusion loops */
256static struct eventpoll *inserting_into;
257
258/* Slab cache used to allocate "struct epitem" */
259static struct kmem_cache *epi_cache __ro_after_init;
260
261/* Slab cache used to allocate "struct eppoll_entry" */
262static struct kmem_cache *pwq_cache __ro_after_init;
263
264/*
265 * List of files with newly added links, where we may need to limit the number
266 * of emanating paths. Protected by the epnested_mutex.
267 */
268struct epitems_head {
269 struct hlist_head epitems;
270 struct epitems_head *next;
271};
272static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
273
274static struct kmem_cache *ephead_cache __ro_after_init;
275
276static inline void free_ephead(struct epitems_head *head)
277{
278 if (head)
279 kmem_cache_free(ephead_cache, head);
280}
281
282static void list_file(struct file *file)
283{
284 struct epitems_head *head;
285
286 head = container_of(file->f_ep, struct epitems_head, epitems);
287 if (!head->next) {
288 head->next = tfile_check_list;
289 tfile_check_list = head;
290 }
291}
292
293static void unlist_file(struct epitems_head *head)
294{
295 struct epitems_head *to_free = head;
296 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
297 if (p) {
298 struct epitem *epi= container_of(p, struct epitem, fllink);
299 spin_lock(&epi->ffd.file->f_lock);
300 if (!hlist_empty(&head->epitems))
301 to_free = NULL;
302 head->next = NULL;
303 spin_unlock(&epi->ffd.file->f_lock);
304 }
305 free_ephead(to_free);
306}
307
308#ifdef CONFIG_SYSCTL
309
310#include <linux/sysctl.h>
311
312static long long_zero;
313static long long_max = LONG_MAX;
314
315static struct ctl_table epoll_table[] = {
316 {
317 .procname = "max_user_watches",
318 .data = &max_user_watches,
319 .maxlen = sizeof(max_user_watches),
320 .mode = 0644,
321 .proc_handler = proc_doulongvec_minmax,
322 .extra1 = &long_zero,
323 .extra2 = &long_max,
324 },
325};
326
327static void __init epoll_sysctls_init(void)
328{
329 register_sysctl("fs/epoll", epoll_table);
330}
331#else
332#define epoll_sysctls_init() do { } while (0)
333#endif /* CONFIG_SYSCTL */
334
335static const struct file_operations eventpoll_fops;
336
337static inline int is_file_epoll(struct file *f)
338{
339 return f->f_op == &eventpoll_fops;
340}
341
342/* Setup the structure that is used as key for the RB tree */
343static inline void ep_set_ffd(struct epoll_filefd *ffd,
344 struct file *file, int fd)
345{
346 ffd->file = file;
347 ffd->fd = fd;
348}
349
350/* Compare RB tree keys */
351static inline int ep_cmp_ffd(struct epoll_filefd *p1,
352 struct epoll_filefd *p2)
353{
354 return (p1->file > p2->file ? +1:
355 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
356}
357
358/* Tells us if the item is currently linked */
359static inline int ep_is_linked(struct epitem *epi)
360{
361 return !list_empty(&epi->rdllink);
362}
363
364static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
365{
366 return container_of(p, struct eppoll_entry, wait);
367}
368
369/* Get the "struct epitem" from a wait queue pointer */
370static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
371{
372 return container_of(p, struct eppoll_entry, wait)->base;
373}
374
375/**
376 * ep_events_available - Checks if ready events might be available.
377 *
378 * @ep: Pointer to the eventpoll context.
379 *
380 * Return: a value different than %zero if ready events are available,
381 * or %zero otherwise.
382 */
383static inline int ep_events_available(struct eventpoll *ep)
384{
385 return !list_empty_careful(&ep->rdllist) ||
386 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
387}
388
389#ifdef CONFIG_NET_RX_BUSY_POLL
390static bool ep_busy_loop_end(void *p, unsigned long start_time)
391{
392 struct eventpoll *ep = p;
393
394 return ep_events_available(ep) || busy_loop_timeout(start_time);
395}
396
397/*
398 * Busy poll if globally on and supporting sockets found && no events,
399 * busy loop will return if need_resched or ep_events_available.
400 *
401 * we must do our busy polling with irqs enabled
402 */
403static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
404{
405 unsigned int napi_id = READ_ONCE(ep->napi_id);
406
407 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
408 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
409 BUSY_POLL_BUDGET);
410 if (ep_events_available(ep))
411 return true;
412 /*
413 * Busy poll timed out. Drop NAPI ID for now, we can add
414 * it back in when we have moved a socket with a valid NAPI
415 * ID onto the ready list.
416 */
417 ep->napi_id = 0;
418 return false;
419 }
420 return false;
421}
422
423/*
424 * Set epoll busy poll NAPI ID from sk.
425 */
426static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
427{
428 struct eventpoll *ep;
429 unsigned int napi_id;
430 struct socket *sock;
431 struct sock *sk;
432
433 if (!net_busy_loop_on())
434 return;
435
436 sock = sock_from_file(epi->ffd.file);
437 if (!sock)
438 return;
439
440 sk = sock->sk;
441 if (!sk)
442 return;
443
444 napi_id = READ_ONCE(sk->sk_napi_id);
445 ep = epi->ep;
446
447 /* Non-NAPI IDs can be rejected
448 * or
449 * Nothing to do if we already have this ID
450 */
451 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
452 return;
453
454 /* record NAPI ID for use in next busy poll */
455 ep->napi_id = napi_id;
456}
457
458#else
459
460static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
461{
462 return false;
463}
464
465static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
466{
467}
468
469#endif /* CONFIG_NET_RX_BUSY_POLL */
470
471/*
472 * As described in commit 0ccf831cb lockdep: annotate epoll
473 * the use of wait queues used by epoll is done in a very controlled
474 * manner. Wake ups can nest inside each other, but are never done
475 * with the same locking. For example:
476 *
477 * dfd = socket(...);
478 * efd1 = epoll_create();
479 * efd2 = epoll_create();
480 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
481 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
482 *
483 * When a packet arrives to the device underneath "dfd", the net code will
484 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
485 * callback wakeup entry on that queue, and the wake_up() performed by the
486 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
487 * (efd1) notices that it may have some event ready, so it needs to wake up
488 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
489 * that ends up in another wake_up(), after having checked about the
490 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
491 * stack blasting.
492 *
493 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
494 * this special case of epoll.
495 */
496#ifdef CONFIG_DEBUG_LOCK_ALLOC
497
498static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
499 unsigned pollflags)
500{
501 struct eventpoll *ep_src;
502 unsigned long flags;
503 u8 nests = 0;
504
505 /*
506 * To set the subclass or nesting level for spin_lock_irqsave_nested()
507 * it might be natural to create a per-cpu nest count. However, since
508 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
509 * schedule() in the -rt kernel, the per-cpu variable are no longer
510 * protected. Thus, we are introducing a per eventpoll nest field.
511 * If we are not being call from ep_poll_callback(), epi is NULL and
512 * we are at the first level of nesting, 0. Otherwise, we are being
513 * called from ep_poll_callback() and if a previous wakeup source is
514 * not an epoll file itself, we are at depth 1 since the wakeup source
515 * is depth 0. If the wakeup source is a previous epoll file in the
516 * wakeup chain then we use its nests value and record ours as
517 * nests + 1. The previous epoll file nests value is stable since its
518 * already holding its own poll_wait.lock.
519 */
520 if (epi) {
521 if ((is_file_epoll(epi->ffd.file))) {
522 ep_src = epi->ffd.file->private_data;
523 nests = ep_src->nests;
524 } else {
525 nests = 1;
526 }
527 }
528 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
529 ep->nests = nests + 1;
530 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
531 ep->nests = 0;
532 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
533}
534
535#else
536
537static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
538 __poll_t pollflags)
539{
540 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
541}
542
543#endif
544
545static void ep_remove_wait_queue(struct eppoll_entry *pwq)
546{
547 wait_queue_head_t *whead;
548
549 rcu_read_lock();
550 /*
551 * If it is cleared by POLLFREE, it should be rcu-safe.
552 * If we read NULL we need a barrier paired with
553 * smp_store_release() in ep_poll_callback(), otherwise
554 * we rely on whead->lock.
555 */
556 whead = smp_load_acquire(&pwq->whead);
557 if (whead)
558 remove_wait_queue(whead, &pwq->wait);
559 rcu_read_unlock();
560}
561
562/*
563 * This function unregisters poll callbacks from the associated file
564 * descriptor. Must be called with "mtx" held.
565 */
566static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
567{
568 struct eppoll_entry **p = &epi->pwqlist;
569 struct eppoll_entry *pwq;
570
571 while ((pwq = *p) != NULL) {
572 *p = pwq->next;
573 ep_remove_wait_queue(pwq);
574 kmem_cache_free(pwq_cache, pwq);
575 }
576}
577
578/* call only when ep->mtx is held */
579static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
580{
581 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
582}
583
584/* call only when ep->mtx is held */
585static inline void ep_pm_stay_awake(struct epitem *epi)
586{
587 struct wakeup_source *ws = ep_wakeup_source(epi);
588
589 if (ws)
590 __pm_stay_awake(ws);
591}
592
593static inline bool ep_has_wakeup_source(struct epitem *epi)
594{
595 return rcu_access_pointer(epi->ws) ? true : false;
596}
597
598/* call when ep->mtx cannot be held (ep_poll_callback) */
599static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
600{
601 struct wakeup_source *ws;
602
603 rcu_read_lock();
604 ws = rcu_dereference(epi->ws);
605 if (ws)
606 __pm_stay_awake(ws);
607 rcu_read_unlock();
608}
609
610
611/*
612 * ep->mutex needs to be held because we could be hit by
613 * eventpoll_release_file() and epoll_ctl().
614 */
615static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
616{
617 /*
618 * Steal the ready list, and re-init the original one to the
619 * empty list. Also, set ep->ovflist to NULL so that events
620 * happening while looping w/out locks, are not lost. We cannot
621 * have the poll callback to queue directly on ep->rdllist,
622 * because we want the "sproc" callback to be able to do it
623 * in a lockless way.
624 */
625 lockdep_assert_irqs_enabled();
626 write_lock_irq(&ep->lock);
627 list_splice_init(&ep->rdllist, txlist);
628 WRITE_ONCE(ep->ovflist, NULL);
629 write_unlock_irq(&ep->lock);
630}
631
632static void ep_done_scan(struct eventpoll *ep,
633 struct list_head *txlist)
634{
635 struct epitem *epi, *nepi;
636
637 write_lock_irq(&ep->lock);
638 /*
639 * During the time we spent inside the "sproc" callback, some
640 * other events might have been queued by the poll callback.
641 * We re-insert them inside the main ready-list here.
642 */
643 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
644 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
645 /*
646 * We need to check if the item is already in the list.
647 * During the "sproc" callback execution time, items are
648 * queued into ->ovflist but the "txlist" might already
649 * contain them, and the list_splice() below takes care of them.
650 */
651 if (!ep_is_linked(epi)) {
652 /*
653 * ->ovflist is LIFO, so we have to reverse it in order
654 * to keep in FIFO.
655 */
656 list_add(&epi->rdllink, &ep->rdllist);
657 ep_pm_stay_awake(epi);
658 }
659 }
660 /*
661 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
662 * releasing the lock, events will be queued in the normal way inside
663 * ep->rdllist.
664 */
665 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
666
667 /*
668 * Quickly re-inject items left on "txlist".
669 */
670 list_splice(txlist, &ep->rdllist);
671 __pm_relax(ep->ws);
672
673 if (!list_empty(&ep->rdllist)) {
674 if (waitqueue_active(&ep->wq))
675 wake_up(&ep->wq);
676 }
677
678 write_unlock_irq(&ep->lock);
679}
680
681static void epi_rcu_free(struct rcu_head *head)
682{
683 struct epitem *epi = container_of(head, struct epitem, rcu);
684 kmem_cache_free(epi_cache, epi);
685}
686
687static void ep_get(struct eventpoll *ep)
688{
689 refcount_inc(&ep->refcount);
690}
691
692/*
693 * Returns true if the event poll can be disposed
694 */
695static bool ep_refcount_dec_and_test(struct eventpoll *ep)
696{
697 if (!refcount_dec_and_test(&ep->refcount))
698 return false;
699
700 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
701 return true;
702}
703
704static void ep_free(struct eventpoll *ep)
705{
706 mutex_destroy(&ep->mtx);
707 free_uid(ep->user);
708 wakeup_source_unregister(ep->ws);
709 kfree(ep);
710}
711
712/*
713 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
714 * all the associated resources. Must be called with "mtx" held.
715 * If the dying flag is set, do the removal only if force is true.
716 * This prevents ep_clear_and_put() from dropping all the ep references
717 * while running concurrently with eventpoll_release_file().
718 * Returns true if the eventpoll can be disposed.
719 */
720static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
721{
722 struct file *file = epi->ffd.file;
723 struct epitems_head *to_free;
724 struct hlist_head *head;
725
726 lockdep_assert_irqs_enabled();
727
728 /*
729 * Removes poll wait queue hooks.
730 */
731 ep_unregister_pollwait(ep, epi);
732
733 /* Remove the current item from the list of epoll hooks */
734 spin_lock(&file->f_lock);
735 if (epi->dying && !force) {
736 spin_unlock(&file->f_lock);
737 return false;
738 }
739
740 to_free = NULL;
741 head = file->f_ep;
742 if (head->first == &epi->fllink && !epi->fllink.next) {
743 file->f_ep = NULL;
744 if (!is_file_epoll(file)) {
745 struct epitems_head *v;
746 v = container_of(head, struct epitems_head, epitems);
747 if (!smp_load_acquire(&v->next))
748 to_free = v;
749 }
750 }
751 hlist_del_rcu(&epi->fllink);
752 spin_unlock(&file->f_lock);
753 free_ephead(to_free);
754
755 rb_erase_cached(&epi->rbn, &ep->rbr);
756
757 write_lock_irq(&ep->lock);
758 if (ep_is_linked(epi))
759 list_del_init(&epi->rdllink);
760 write_unlock_irq(&ep->lock);
761
762 wakeup_source_unregister(ep_wakeup_source(epi));
763 /*
764 * At this point it is safe to free the eventpoll item. Use the union
765 * field epi->rcu, since we are trying to minimize the size of
766 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
767 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
768 * use of the rbn field.
769 */
770 call_rcu(&epi->rcu, epi_rcu_free);
771
772 percpu_counter_dec(&ep->user->epoll_watches);
773 return ep_refcount_dec_and_test(ep);
774}
775
776/*
777 * ep_remove variant for callers owing an additional reference to the ep
778 */
779static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
780{
781 WARN_ON_ONCE(__ep_remove(ep, epi, false));
782}
783
784static void ep_clear_and_put(struct eventpoll *ep)
785{
786 struct rb_node *rbp, *next;
787 struct epitem *epi;
788 bool dispose;
789
790 /* We need to release all tasks waiting for these file */
791 if (waitqueue_active(&ep->poll_wait))
792 ep_poll_safewake(ep, NULL, 0);
793
794 mutex_lock(&ep->mtx);
795
796 /*
797 * Walks through the whole tree by unregistering poll callbacks.
798 */
799 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
800 epi = rb_entry(rbp, struct epitem, rbn);
801
802 ep_unregister_pollwait(ep, epi);
803 cond_resched();
804 }
805
806 /*
807 * Walks through the whole tree and try to free each "struct epitem".
808 * Note that ep_remove_safe() will not remove the epitem in case of a
809 * racing eventpoll_release_file(); the latter will do the removal.
810 * At this point we are sure no poll callbacks will be lingering around.
811 * Since we still own a reference to the eventpoll struct, the loop can't
812 * dispose it.
813 */
814 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
815 next = rb_next(rbp);
816 epi = rb_entry(rbp, struct epitem, rbn);
817 ep_remove_safe(ep, epi);
818 cond_resched();
819 }
820
821 dispose = ep_refcount_dec_and_test(ep);
822 mutex_unlock(&ep->mtx);
823
824 if (dispose)
825 ep_free(ep);
826}
827
828static int ep_eventpoll_release(struct inode *inode, struct file *file)
829{
830 struct eventpoll *ep = file->private_data;
831
832 if (ep)
833 ep_clear_and_put(ep);
834
835 return 0;
836}
837
838static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
839
840static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
841{
842 struct eventpoll *ep = file->private_data;
843 LIST_HEAD(txlist);
844 struct epitem *epi, *tmp;
845 poll_table pt;
846 __poll_t res = 0;
847
848 init_poll_funcptr(&pt, NULL);
849
850 /* Insert inside our poll wait queue */
851 poll_wait(file, &ep->poll_wait, wait);
852
853 /*
854 * Proceed to find out if wanted events are really available inside
855 * the ready list.
856 */
857 mutex_lock_nested(&ep->mtx, depth);
858 ep_start_scan(ep, &txlist);
859 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
860 if (ep_item_poll(epi, &pt, depth + 1)) {
861 res = EPOLLIN | EPOLLRDNORM;
862 break;
863 } else {
864 /*
865 * Item has been dropped into the ready list by the poll
866 * callback, but it's not actually ready, as far as
867 * caller requested events goes. We can remove it here.
868 */
869 __pm_relax(ep_wakeup_source(epi));
870 list_del_init(&epi->rdllink);
871 }
872 }
873 ep_done_scan(ep, &txlist);
874 mutex_unlock(&ep->mtx);
875 return res;
876}
877
878/*
879 * Differs from ep_eventpoll_poll() in that internal callers already have
880 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
881 * is correctly annotated.
882 */
883static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
884 int depth)
885{
886 struct file *file = epi->ffd.file;
887 __poll_t res;
888
889 pt->_key = epi->event.events;
890 if (!is_file_epoll(file))
891 res = vfs_poll(file, pt);
892 else
893 res = __ep_eventpoll_poll(file, pt, depth);
894 return res & epi->event.events;
895}
896
897static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
898{
899 return __ep_eventpoll_poll(file, wait, 0);
900}
901
902#ifdef CONFIG_PROC_FS
903static void ep_show_fdinfo(struct seq_file *m, struct file *f)
904{
905 struct eventpoll *ep = f->private_data;
906 struct rb_node *rbp;
907
908 mutex_lock(&ep->mtx);
909 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
910 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
911 struct inode *inode = file_inode(epi->ffd.file);
912
913 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
914 " pos:%lli ino:%lx sdev:%x\n",
915 epi->ffd.fd, epi->event.events,
916 (long long)epi->event.data,
917 (long long)epi->ffd.file->f_pos,
918 inode->i_ino, inode->i_sb->s_dev);
919 if (seq_has_overflowed(m))
920 break;
921 }
922 mutex_unlock(&ep->mtx);
923}
924#endif
925
926/* File callbacks that implement the eventpoll file behaviour */
927static const struct file_operations eventpoll_fops = {
928#ifdef CONFIG_PROC_FS
929 .show_fdinfo = ep_show_fdinfo,
930#endif
931 .release = ep_eventpoll_release,
932 .poll = ep_eventpoll_poll,
933 .llseek = noop_llseek,
934};
935
936/*
937 * This is called from eventpoll_release() to unlink files from the eventpoll
938 * interface. We need to have this facility to cleanup correctly files that are
939 * closed without being removed from the eventpoll interface.
940 */
941void eventpoll_release_file(struct file *file)
942{
943 struct eventpoll *ep;
944 struct epitem *epi;
945 bool dispose;
946
947 /*
948 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
949 * touching the epitems list before eventpoll_release_file() can access
950 * the ep->mtx.
951 */
952again:
953 spin_lock(&file->f_lock);
954 if (file->f_ep && file->f_ep->first) {
955 epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
956 epi->dying = true;
957 spin_unlock(&file->f_lock);
958
959 /*
960 * ep access is safe as we still own a reference to the ep
961 * struct
962 */
963 ep = epi->ep;
964 mutex_lock(&ep->mtx);
965 dispose = __ep_remove(ep, epi, true);
966 mutex_unlock(&ep->mtx);
967
968 if (dispose)
969 ep_free(ep);
970 goto again;
971 }
972 spin_unlock(&file->f_lock);
973}
974
975static int ep_alloc(struct eventpoll **pep)
976{
977 struct eventpoll *ep;
978
979 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
980 if (unlikely(!ep))
981 return -ENOMEM;
982
983 mutex_init(&ep->mtx);
984 rwlock_init(&ep->lock);
985 init_waitqueue_head(&ep->wq);
986 init_waitqueue_head(&ep->poll_wait);
987 INIT_LIST_HEAD(&ep->rdllist);
988 ep->rbr = RB_ROOT_CACHED;
989 ep->ovflist = EP_UNACTIVE_PTR;
990 ep->user = get_current_user();
991 refcount_set(&ep->refcount, 1);
992
993 *pep = ep;
994
995 return 0;
996}
997
998/*
999 * Search the file inside the eventpoll tree. The RB tree operations
1000 * are protected by the "mtx" mutex, and ep_find() must be called with
1001 * "mtx" held.
1002 */
1003static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1004{
1005 int kcmp;
1006 struct rb_node *rbp;
1007 struct epitem *epi, *epir = NULL;
1008 struct epoll_filefd ffd;
1009
1010 ep_set_ffd(&ffd, file, fd);
1011 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1012 epi = rb_entry(rbp, struct epitem, rbn);
1013 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1014 if (kcmp > 0)
1015 rbp = rbp->rb_right;
1016 else if (kcmp < 0)
1017 rbp = rbp->rb_left;
1018 else {
1019 epir = epi;
1020 break;
1021 }
1022 }
1023
1024 return epir;
1025}
1026
1027#ifdef CONFIG_KCMP
1028static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1029{
1030 struct rb_node *rbp;
1031 struct epitem *epi;
1032
1033 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1034 epi = rb_entry(rbp, struct epitem, rbn);
1035 if (epi->ffd.fd == tfd) {
1036 if (toff == 0)
1037 return epi;
1038 else
1039 toff--;
1040 }
1041 cond_resched();
1042 }
1043
1044 return NULL;
1045}
1046
1047struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1048 unsigned long toff)
1049{
1050 struct file *file_raw;
1051 struct eventpoll *ep;
1052 struct epitem *epi;
1053
1054 if (!is_file_epoll(file))
1055 return ERR_PTR(-EINVAL);
1056
1057 ep = file->private_data;
1058
1059 mutex_lock(&ep->mtx);
1060 epi = ep_find_tfd(ep, tfd, toff);
1061 if (epi)
1062 file_raw = epi->ffd.file;
1063 else
1064 file_raw = ERR_PTR(-ENOENT);
1065 mutex_unlock(&ep->mtx);
1066
1067 return file_raw;
1068}
1069#endif /* CONFIG_KCMP */
1070
1071/*
1072 * Adds a new entry to the tail of the list in a lockless way, i.e.
1073 * multiple CPUs are allowed to call this function concurrently.
1074 *
1075 * Beware: it is necessary to prevent any other modifications of the
1076 * existing list until all changes are completed, in other words
1077 * concurrent list_add_tail_lockless() calls should be protected
1078 * with a read lock, where write lock acts as a barrier which
1079 * makes sure all list_add_tail_lockless() calls are fully
1080 * completed.
1081 *
1082 * Also an element can be locklessly added to the list only in one
1083 * direction i.e. either to the tail or to the head, otherwise
1084 * concurrent access will corrupt the list.
1085 *
1086 * Return: %false if element has been already added to the list, %true
1087 * otherwise.
1088 */
1089static inline bool list_add_tail_lockless(struct list_head *new,
1090 struct list_head *head)
1091{
1092 struct list_head *prev;
1093
1094 /*
1095 * This is simple 'new->next = head' operation, but cmpxchg()
1096 * is used in order to detect that same element has been just
1097 * added to the list from another CPU: the winner observes
1098 * new->next == new.
1099 */
1100 if (!try_cmpxchg(&new->next, &new, head))
1101 return false;
1102
1103 /*
1104 * Initially ->next of a new element must be updated with the head
1105 * (we are inserting to the tail) and only then pointers are atomically
1106 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1107 * updated before pointers are actually swapped and pointers are
1108 * swapped before prev->next is updated.
1109 */
1110
1111 prev = xchg(&head->prev, new);
1112
1113 /*
1114 * It is safe to modify prev->next and new->prev, because a new element
1115 * is added only to the tail and new->next is updated before XCHG.
1116 */
1117
1118 prev->next = new;
1119 new->prev = prev;
1120
1121 return true;
1122}
1123
1124/*
1125 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1126 * i.e. multiple CPUs are allowed to call this function concurrently.
1127 *
1128 * Return: %false if epi element has been already chained, %true otherwise.
1129 */
1130static inline bool chain_epi_lockless(struct epitem *epi)
1131{
1132 struct eventpoll *ep = epi->ep;
1133
1134 /* Fast preliminary check */
1135 if (epi->next != EP_UNACTIVE_PTR)
1136 return false;
1137
1138 /* Check that the same epi has not been just chained from another CPU */
1139 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1140 return false;
1141
1142 /* Atomically exchange tail */
1143 epi->next = xchg(&ep->ovflist, epi);
1144
1145 return true;
1146}
1147
1148/*
1149 * This is the callback that is passed to the wait queue wakeup
1150 * mechanism. It is called by the stored file descriptors when they
1151 * have events to report.
1152 *
1153 * This callback takes a read lock in order not to contend with concurrent
1154 * events from another file descriptor, thus all modifications to ->rdllist
1155 * or ->ovflist are lockless. Read lock is paired with the write lock from
1156 * ep_scan_ready_list(), which stops all list modifications and guarantees
1157 * that lists state is seen correctly.
1158 *
1159 * Another thing worth to mention is that ep_poll_callback() can be called
1160 * concurrently for the same @epi from different CPUs if poll table was inited
1161 * with several wait queues entries. Plural wakeup from different CPUs of a
1162 * single wait queue is serialized by wq.lock, but the case when multiple wait
1163 * queues are used should be detected accordingly. This is detected using
1164 * cmpxchg() operation.
1165 */
1166static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1167{
1168 int pwake = 0;
1169 struct epitem *epi = ep_item_from_wait(wait);
1170 struct eventpoll *ep = epi->ep;
1171 __poll_t pollflags = key_to_poll(key);
1172 unsigned long flags;
1173 int ewake = 0;
1174
1175 read_lock_irqsave(&ep->lock, flags);
1176
1177 ep_set_busy_poll_napi_id(epi);
1178
1179 /*
1180 * If the event mask does not contain any poll(2) event, we consider the
1181 * descriptor to be disabled. This condition is likely the effect of the
1182 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1183 * until the next EPOLL_CTL_MOD will be issued.
1184 */
1185 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1186 goto out_unlock;
1187
1188 /*
1189 * Check the events coming with the callback. At this stage, not
1190 * every device reports the events in the "key" parameter of the
1191 * callback. We need to be able to handle both cases here, hence the
1192 * test for "key" != NULL before the event match test.
1193 */
1194 if (pollflags && !(pollflags & epi->event.events))
1195 goto out_unlock;
1196
1197 /*
1198 * If we are transferring events to userspace, we can hold no locks
1199 * (because we're accessing user memory, and because of linux f_op->poll()
1200 * semantics). All the events that happen during that period of time are
1201 * chained in ep->ovflist and requeued later on.
1202 */
1203 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1204 if (chain_epi_lockless(epi))
1205 ep_pm_stay_awake_rcu(epi);
1206 } else if (!ep_is_linked(epi)) {
1207 /* In the usual case, add event to ready list. */
1208 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1209 ep_pm_stay_awake_rcu(epi);
1210 }
1211
1212 /*
1213 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1214 * wait list.
1215 */
1216 if (waitqueue_active(&ep->wq)) {
1217 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1218 !(pollflags & POLLFREE)) {
1219 switch (pollflags & EPOLLINOUT_BITS) {
1220 case EPOLLIN:
1221 if (epi->event.events & EPOLLIN)
1222 ewake = 1;
1223 break;
1224 case EPOLLOUT:
1225 if (epi->event.events & EPOLLOUT)
1226 ewake = 1;
1227 break;
1228 case 0:
1229 ewake = 1;
1230 break;
1231 }
1232 }
1233 wake_up(&ep->wq);
1234 }
1235 if (waitqueue_active(&ep->poll_wait))
1236 pwake++;
1237
1238out_unlock:
1239 read_unlock_irqrestore(&ep->lock, flags);
1240
1241 /* We have to call this outside the lock */
1242 if (pwake)
1243 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1244
1245 if (!(epi->event.events & EPOLLEXCLUSIVE))
1246 ewake = 1;
1247
1248 if (pollflags & POLLFREE) {
1249 /*
1250 * If we race with ep_remove_wait_queue() it can miss
1251 * ->whead = NULL and do another remove_wait_queue() after
1252 * us, so we can't use __remove_wait_queue().
1253 */
1254 list_del_init(&wait->entry);
1255 /*
1256 * ->whead != NULL protects us from the race with
1257 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1258 * takes whead->lock held by the caller. Once we nullify it,
1259 * nothing protects ep/epi or even wait.
1260 */
1261 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1262 }
1263
1264 return ewake;
1265}
1266
1267/*
1268 * This is the callback that is used to add our wait queue to the
1269 * target file wakeup lists.
1270 */
1271static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1272 poll_table *pt)
1273{
1274 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1275 struct epitem *epi = epq->epi;
1276 struct eppoll_entry *pwq;
1277
1278 if (unlikely(!epi)) // an earlier allocation has failed
1279 return;
1280
1281 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1282 if (unlikely(!pwq)) {
1283 epq->epi = NULL;
1284 return;
1285 }
1286
1287 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1288 pwq->whead = whead;
1289 pwq->base = epi;
1290 if (epi->event.events & EPOLLEXCLUSIVE)
1291 add_wait_queue_exclusive(whead, &pwq->wait);
1292 else
1293 add_wait_queue(whead, &pwq->wait);
1294 pwq->next = epi->pwqlist;
1295 epi->pwqlist = pwq;
1296}
1297
1298static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1299{
1300 int kcmp;
1301 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1302 struct epitem *epic;
1303 bool leftmost = true;
1304
1305 while (*p) {
1306 parent = *p;
1307 epic = rb_entry(parent, struct epitem, rbn);
1308 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1309 if (kcmp > 0) {
1310 p = &parent->rb_right;
1311 leftmost = false;
1312 } else
1313 p = &parent->rb_left;
1314 }
1315 rb_link_node(&epi->rbn, parent, p);
1316 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1317}
1318
1319
1320
1321#define PATH_ARR_SIZE 5
1322/*
1323 * These are the number paths of length 1 to 5, that we are allowing to emanate
1324 * from a single file of interest. For example, we allow 1000 paths of length
1325 * 1, to emanate from each file of interest. This essentially represents the
1326 * potential wakeup paths, which need to be limited in order to avoid massive
1327 * uncontrolled wakeup storms. The common use case should be a single ep which
1328 * is connected to n file sources. In this case each file source has 1 path
1329 * of length 1. Thus, the numbers below should be more than sufficient. These
1330 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1331 * and delete can't add additional paths. Protected by the epnested_mutex.
1332 */
1333static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1334static int path_count[PATH_ARR_SIZE];
1335
1336static int path_count_inc(int nests)
1337{
1338 /* Allow an arbitrary number of depth 1 paths */
1339 if (nests == 0)
1340 return 0;
1341
1342 if (++path_count[nests] > path_limits[nests])
1343 return -1;
1344 return 0;
1345}
1346
1347static void path_count_init(void)
1348{
1349 int i;
1350
1351 for (i = 0; i < PATH_ARR_SIZE; i++)
1352 path_count[i] = 0;
1353}
1354
1355static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1356{
1357 int error = 0;
1358 struct epitem *epi;
1359
1360 if (depth > EP_MAX_NESTS) /* too deep nesting */
1361 return -1;
1362
1363 /* CTL_DEL can remove links here, but that can't increase our count */
1364 hlist_for_each_entry_rcu(epi, refs, fllink) {
1365 struct hlist_head *refs = &epi->ep->refs;
1366 if (hlist_empty(refs))
1367 error = path_count_inc(depth);
1368 else
1369 error = reverse_path_check_proc(refs, depth + 1);
1370 if (error != 0)
1371 break;
1372 }
1373 return error;
1374}
1375
1376/**
1377 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1378 * links that are proposed to be newly added. We need to
1379 * make sure that those added links don't add too many
1380 * paths such that we will spend all our time waking up
1381 * eventpoll objects.
1382 *
1383 * Return: %zero if the proposed links don't create too many paths,
1384 * %-1 otherwise.
1385 */
1386static int reverse_path_check(void)
1387{
1388 struct epitems_head *p;
1389
1390 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1391 int error;
1392 path_count_init();
1393 rcu_read_lock();
1394 error = reverse_path_check_proc(&p->epitems, 0);
1395 rcu_read_unlock();
1396 if (error)
1397 return error;
1398 }
1399 return 0;
1400}
1401
1402static int ep_create_wakeup_source(struct epitem *epi)
1403{
1404 struct name_snapshot n;
1405 struct wakeup_source *ws;
1406
1407 if (!epi->ep->ws) {
1408 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1409 if (!epi->ep->ws)
1410 return -ENOMEM;
1411 }
1412
1413 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1414 ws = wakeup_source_register(NULL, n.name.name);
1415 release_dentry_name_snapshot(&n);
1416
1417 if (!ws)
1418 return -ENOMEM;
1419 rcu_assign_pointer(epi->ws, ws);
1420
1421 return 0;
1422}
1423
1424/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1425static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1426{
1427 struct wakeup_source *ws = ep_wakeup_source(epi);
1428
1429 RCU_INIT_POINTER(epi->ws, NULL);
1430
1431 /*
1432 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1433 * used internally by wakeup_source_remove, too (called by
1434 * wakeup_source_unregister), so we cannot use call_rcu
1435 */
1436 synchronize_rcu();
1437 wakeup_source_unregister(ws);
1438}
1439
1440static int attach_epitem(struct file *file, struct epitem *epi)
1441{
1442 struct epitems_head *to_free = NULL;
1443 struct hlist_head *head = NULL;
1444 struct eventpoll *ep = NULL;
1445
1446 if (is_file_epoll(file))
1447 ep = file->private_data;
1448
1449 if (ep) {
1450 head = &ep->refs;
1451 } else if (!READ_ONCE(file->f_ep)) {
1452allocate:
1453 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1454 if (!to_free)
1455 return -ENOMEM;
1456 head = &to_free->epitems;
1457 }
1458 spin_lock(&file->f_lock);
1459 if (!file->f_ep) {
1460 if (unlikely(!head)) {
1461 spin_unlock(&file->f_lock);
1462 goto allocate;
1463 }
1464 file->f_ep = head;
1465 to_free = NULL;
1466 }
1467 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1468 spin_unlock(&file->f_lock);
1469 free_ephead(to_free);
1470 return 0;
1471}
1472
1473/*
1474 * Must be called with "mtx" held.
1475 */
1476static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1477 struct file *tfile, int fd, int full_check)
1478{
1479 int error, pwake = 0;
1480 __poll_t revents;
1481 struct epitem *epi;
1482 struct ep_pqueue epq;
1483 struct eventpoll *tep = NULL;
1484
1485 if (is_file_epoll(tfile))
1486 tep = tfile->private_data;
1487
1488 lockdep_assert_irqs_enabled();
1489
1490 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1491 max_user_watches) >= 0))
1492 return -ENOSPC;
1493 percpu_counter_inc(&ep->user->epoll_watches);
1494
1495 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1496 percpu_counter_dec(&ep->user->epoll_watches);
1497 return -ENOMEM;
1498 }
1499
1500 /* Item initialization follow here ... */
1501 INIT_LIST_HEAD(&epi->rdllink);
1502 epi->ep = ep;
1503 ep_set_ffd(&epi->ffd, tfile, fd);
1504 epi->event = *event;
1505 epi->next = EP_UNACTIVE_PTR;
1506
1507 if (tep)
1508 mutex_lock_nested(&tep->mtx, 1);
1509 /* Add the current item to the list of active epoll hook for this file */
1510 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1511 if (tep)
1512 mutex_unlock(&tep->mtx);
1513 kmem_cache_free(epi_cache, epi);
1514 percpu_counter_dec(&ep->user->epoll_watches);
1515 return -ENOMEM;
1516 }
1517
1518 if (full_check && !tep)
1519 list_file(tfile);
1520
1521 /*
1522 * Add the current item to the RB tree. All RB tree operations are
1523 * protected by "mtx", and ep_insert() is called with "mtx" held.
1524 */
1525 ep_rbtree_insert(ep, epi);
1526 if (tep)
1527 mutex_unlock(&tep->mtx);
1528
1529 /*
1530 * ep_remove_safe() calls in the later error paths can't lead to
1531 * ep_free() as the ep file itself still holds an ep reference.
1532 */
1533 ep_get(ep);
1534
1535 /* now check if we've created too many backpaths */
1536 if (unlikely(full_check && reverse_path_check())) {
1537 ep_remove_safe(ep, epi);
1538 return -EINVAL;
1539 }
1540
1541 if (epi->event.events & EPOLLWAKEUP) {
1542 error = ep_create_wakeup_source(epi);
1543 if (error) {
1544 ep_remove_safe(ep, epi);
1545 return error;
1546 }
1547 }
1548
1549 /* Initialize the poll table using the queue callback */
1550 epq.epi = epi;
1551 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1552
1553 /*
1554 * Attach the item to the poll hooks and get current event bits.
1555 * We can safely use the file* here because its usage count has
1556 * been increased by the caller of this function. Note that after
1557 * this operation completes, the poll callback can start hitting
1558 * the new item.
1559 */
1560 revents = ep_item_poll(epi, &epq.pt, 1);
1561
1562 /*
1563 * We have to check if something went wrong during the poll wait queue
1564 * install process. Namely an allocation for a wait queue failed due
1565 * high memory pressure.
1566 */
1567 if (unlikely(!epq.epi)) {
1568 ep_remove_safe(ep, epi);
1569 return -ENOMEM;
1570 }
1571
1572 /* We have to drop the new item inside our item list to keep track of it */
1573 write_lock_irq(&ep->lock);
1574
1575 /* record NAPI ID of new item if present */
1576 ep_set_busy_poll_napi_id(epi);
1577
1578 /* If the file is already "ready" we drop it inside the ready list */
1579 if (revents && !ep_is_linked(epi)) {
1580 list_add_tail(&epi->rdllink, &ep->rdllist);
1581 ep_pm_stay_awake(epi);
1582
1583 /* Notify waiting tasks that events are available */
1584 if (waitqueue_active(&ep->wq))
1585 wake_up(&ep->wq);
1586 if (waitqueue_active(&ep->poll_wait))
1587 pwake++;
1588 }
1589
1590 write_unlock_irq(&ep->lock);
1591
1592 /* We have to call this outside the lock */
1593 if (pwake)
1594 ep_poll_safewake(ep, NULL, 0);
1595
1596 return 0;
1597}
1598
1599/*
1600 * Modify the interest event mask by dropping an event if the new mask
1601 * has a match in the current file status. Must be called with "mtx" held.
1602 */
1603static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1604 const struct epoll_event *event)
1605{
1606 int pwake = 0;
1607 poll_table pt;
1608
1609 lockdep_assert_irqs_enabled();
1610
1611 init_poll_funcptr(&pt, NULL);
1612
1613 /*
1614 * Set the new event interest mask before calling f_op->poll();
1615 * otherwise we might miss an event that happens between the
1616 * f_op->poll() call and the new event set registering.
1617 */
1618 epi->event.events = event->events; /* need barrier below */
1619 epi->event.data = event->data; /* protected by mtx */
1620 if (epi->event.events & EPOLLWAKEUP) {
1621 if (!ep_has_wakeup_source(epi))
1622 ep_create_wakeup_source(epi);
1623 } else if (ep_has_wakeup_source(epi)) {
1624 ep_destroy_wakeup_source(epi);
1625 }
1626
1627 /*
1628 * The following barrier has two effects:
1629 *
1630 * 1) Flush epi changes above to other CPUs. This ensures
1631 * we do not miss events from ep_poll_callback if an
1632 * event occurs immediately after we call f_op->poll().
1633 * We need this because we did not take ep->lock while
1634 * changing epi above (but ep_poll_callback does take
1635 * ep->lock).
1636 *
1637 * 2) We also need to ensure we do not miss _past_ events
1638 * when calling f_op->poll(). This barrier also
1639 * pairs with the barrier in wq_has_sleeper (see
1640 * comments for wq_has_sleeper).
1641 *
1642 * This barrier will now guarantee ep_poll_callback or f_op->poll
1643 * (or both) will notice the readiness of an item.
1644 */
1645 smp_mb();
1646
1647 /*
1648 * Get current event bits. We can safely use the file* here because
1649 * its usage count has been increased by the caller of this function.
1650 * If the item is "hot" and it is not registered inside the ready
1651 * list, push it inside.
1652 */
1653 if (ep_item_poll(epi, &pt, 1)) {
1654 write_lock_irq(&ep->lock);
1655 if (!ep_is_linked(epi)) {
1656 list_add_tail(&epi->rdllink, &ep->rdllist);
1657 ep_pm_stay_awake(epi);
1658
1659 /* Notify waiting tasks that events are available */
1660 if (waitqueue_active(&ep->wq))
1661 wake_up(&ep->wq);
1662 if (waitqueue_active(&ep->poll_wait))
1663 pwake++;
1664 }
1665 write_unlock_irq(&ep->lock);
1666 }
1667
1668 /* We have to call this outside the lock */
1669 if (pwake)
1670 ep_poll_safewake(ep, NULL, 0);
1671
1672 return 0;
1673}
1674
1675static int ep_send_events(struct eventpoll *ep,
1676 struct epoll_event __user *events, int maxevents)
1677{
1678 struct epitem *epi, *tmp;
1679 LIST_HEAD(txlist);
1680 poll_table pt;
1681 int res = 0;
1682
1683 /*
1684 * Always short-circuit for fatal signals to allow threads to make a
1685 * timely exit without the chance of finding more events available and
1686 * fetching repeatedly.
1687 */
1688 if (fatal_signal_pending(current))
1689 return -EINTR;
1690
1691 init_poll_funcptr(&pt, NULL);
1692
1693 mutex_lock(&ep->mtx);
1694 ep_start_scan(ep, &txlist);
1695
1696 /*
1697 * We can loop without lock because we are passed a task private list.
1698 * Items cannot vanish during the loop we are holding ep->mtx.
1699 */
1700 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1701 struct wakeup_source *ws;
1702 __poll_t revents;
1703
1704 if (res >= maxevents)
1705 break;
1706
1707 /*
1708 * Activate ep->ws before deactivating epi->ws to prevent
1709 * triggering auto-suspend here (in case we reactive epi->ws
1710 * below).
1711 *
1712 * This could be rearranged to delay the deactivation of epi->ws
1713 * instead, but then epi->ws would temporarily be out of sync
1714 * with ep_is_linked().
1715 */
1716 ws = ep_wakeup_source(epi);
1717 if (ws) {
1718 if (ws->active)
1719 __pm_stay_awake(ep->ws);
1720 __pm_relax(ws);
1721 }
1722
1723 list_del_init(&epi->rdllink);
1724
1725 /*
1726 * If the event mask intersect the caller-requested one,
1727 * deliver the event to userspace. Again, we are holding ep->mtx,
1728 * so no operations coming from userspace can change the item.
1729 */
1730 revents = ep_item_poll(epi, &pt, 1);
1731 if (!revents)
1732 continue;
1733
1734 events = epoll_put_uevent(revents, epi->event.data, events);
1735 if (!events) {
1736 list_add(&epi->rdllink, &txlist);
1737 ep_pm_stay_awake(epi);
1738 if (!res)
1739 res = -EFAULT;
1740 break;
1741 }
1742 res++;
1743 if (epi->event.events & EPOLLONESHOT)
1744 epi->event.events &= EP_PRIVATE_BITS;
1745 else if (!(epi->event.events & EPOLLET)) {
1746 /*
1747 * If this file has been added with Level
1748 * Trigger mode, we need to insert back inside
1749 * the ready list, so that the next call to
1750 * epoll_wait() will check again the events
1751 * availability. At this point, no one can insert
1752 * into ep->rdllist besides us. The epoll_ctl()
1753 * callers are locked out by
1754 * ep_scan_ready_list() holding "mtx" and the
1755 * poll callback will queue them in ep->ovflist.
1756 */
1757 list_add_tail(&epi->rdllink, &ep->rdllist);
1758 ep_pm_stay_awake(epi);
1759 }
1760 }
1761 ep_done_scan(ep, &txlist);
1762 mutex_unlock(&ep->mtx);
1763
1764 return res;
1765}
1766
1767static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1768{
1769 struct timespec64 now;
1770
1771 if (ms < 0)
1772 return NULL;
1773
1774 if (!ms) {
1775 to->tv_sec = 0;
1776 to->tv_nsec = 0;
1777 return to;
1778 }
1779
1780 to->tv_sec = ms / MSEC_PER_SEC;
1781 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1782
1783 ktime_get_ts64(&now);
1784 *to = timespec64_add_safe(now, *to);
1785 return to;
1786}
1787
1788/*
1789 * autoremove_wake_function, but remove even on failure to wake up, because we
1790 * know that default_wake_function/ttwu will only fail if the thread is already
1791 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1792 * try to reuse it.
1793 */
1794static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1795 unsigned int mode, int sync, void *key)
1796{
1797 int ret = default_wake_function(wq_entry, mode, sync, key);
1798
1799 /*
1800 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1801 * iterations see the cause of this wakeup.
1802 */
1803 list_del_init_careful(&wq_entry->entry);
1804 return ret;
1805}
1806
1807/**
1808 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1809 * event buffer.
1810 *
1811 * @ep: Pointer to the eventpoll context.
1812 * @events: Pointer to the userspace buffer where the ready events should be
1813 * stored.
1814 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1815 * @timeout: Maximum timeout for the ready events fetch operation, in
1816 * timespec. If the timeout is zero, the function will not block,
1817 * while if the @timeout ptr is NULL, the function will block
1818 * until at least one event has been retrieved (or an error
1819 * occurred).
1820 *
1821 * Return: the number of ready events which have been fetched, or an
1822 * error code, in case of error.
1823 */
1824static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1825 int maxevents, struct timespec64 *timeout)
1826{
1827 int res, eavail, timed_out = 0;
1828 u64 slack = 0;
1829 wait_queue_entry_t wait;
1830 ktime_t expires, *to = NULL;
1831
1832 lockdep_assert_irqs_enabled();
1833
1834 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1835 slack = select_estimate_accuracy(timeout);
1836 to = &expires;
1837 *to = timespec64_to_ktime(*timeout);
1838 } else if (timeout) {
1839 /*
1840 * Avoid the unnecessary trip to the wait queue loop, if the
1841 * caller specified a non blocking operation.
1842 */
1843 timed_out = 1;
1844 }
1845
1846 /*
1847 * This call is racy: We may or may not see events that are being added
1848 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1849 * with a non-zero timeout, this thread will check the ready list under
1850 * lock and will add to the wait queue. For cases with a zero
1851 * timeout, the user by definition should not care and will have to
1852 * recheck again.
1853 */
1854 eavail = ep_events_available(ep);
1855
1856 while (1) {
1857 if (eavail) {
1858 /*
1859 * Try to transfer events to user space. In case we get
1860 * 0 events and there's still timeout left over, we go
1861 * trying again in search of more luck.
1862 */
1863 res = ep_send_events(ep, events, maxevents);
1864 if (res)
1865 return res;
1866 }
1867
1868 if (timed_out)
1869 return 0;
1870
1871 eavail = ep_busy_loop(ep, timed_out);
1872 if (eavail)
1873 continue;
1874
1875 if (signal_pending(current))
1876 return -EINTR;
1877
1878 /*
1879 * Internally init_wait() uses autoremove_wake_function(),
1880 * thus wait entry is removed from the wait queue on each
1881 * wakeup. Why it is important? In case of several waiters
1882 * each new wakeup will hit the next waiter, giving it the
1883 * chance to harvest new event. Otherwise wakeup can be
1884 * lost. This is also good performance-wise, because on
1885 * normal wakeup path no need to call __remove_wait_queue()
1886 * explicitly, thus ep->lock is not taken, which halts the
1887 * event delivery.
1888 *
1889 * In fact, we now use an even more aggressive function that
1890 * unconditionally removes, because we don't reuse the wait
1891 * entry between loop iterations. This lets us also avoid the
1892 * performance issue if a process is killed, causing all of its
1893 * threads to wake up without being removed normally.
1894 */
1895 init_wait(&wait);
1896 wait.func = ep_autoremove_wake_function;
1897
1898 write_lock_irq(&ep->lock);
1899 /*
1900 * Barrierless variant, waitqueue_active() is called under
1901 * the same lock on wakeup ep_poll_callback() side, so it
1902 * is safe to avoid an explicit barrier.
1903 */
1904 __set_current_state(TASK_INTERRUPTIBLE);
1905
1906 /*
1907 * Do the final check under the lock. ep_scan_ready_list()
1908 * plays with two lists (->rdllist and ->ovflist) and there
1909 * is always a race when both lists are empty for short
1910 * period of time although events are pending, so lock is
1911 * important.
1912 */
1913 eavail = ep_events_available(ep);
1914 if (!eavail)
1915 __add_wait_queue_exclusive(&ep->wq, &wait);
1916
1917 write_unlock_irq(&ep->lock);
1918
1919 if (!eavail)
1920 timed_out = !schedule_hrtimeout_range(to, slack,
1921 HRTIMER_MODE_ABS);
1922 __set_current_state(TASK_RUNNING);
1923
1924 /*
1925 * We were woken up, thus go and try to harvest some events.
1926 * If timed out and still on the wait queue, recheck eavail
1927 * carefully under lock, below.
1928 */
1929 eavail = 1;
1930
1931 if (!list_empty_careful(&wait.entry)) {
1932 write_lock_irq(&ep->lock);
1933 /*
1934 * If the thread timed out and is not on the wait queue,
1935 * it means that the thread was woken up after its
1936 * timeout expired before it could reacquire the lock.
1937 * Thus, when wait.entry is empty, it needs to harvest
1938 * events.
1939 */
1940 if (timed_out)
1941 eavail = list_empty(&wait.entry);
1942 __remove_wait_queue(&ep->wq, &wait);
1943 write_unlock_irq(&ep->lock);
1944 }
1945 }
1946}
1947
1948/**
1949 * ep_loop_check_proc - verify that adding an epoll file inside another
1950 * epoll structure does not violate the constraints, in
1951 * terms of closed loops, or too deep chains (which can
1952 * result in excessive stack usage).
1953 *
1954 * @ep: the &struct eventpoll to be currently checked.
1955 * @depth: Current depth of the path being checked.
1956 *
1957 * Return: %zero if adding the epoll @file inside current epoll
1958 * structure @ep does not violate the constraints, or %-1 otherwise.
1959 */
1960static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1961{
1962 int error = 0;
1963 struct rb_node *rbp;
1964 struct epitem *epi;
1965
1966 mutex_lock_nested(&ep->mtx, depth + 1);
1967 ep->gen = loop_check_gen;
1968 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1969 epi = rb_entry(rbp, struct epitem, rbn);
1970 if (unlikely(is_file_epoll(epi->ffd.file))) {
1971 struct eventpoll *ep_tovisit;
1972 ep_tovisit = epi->ffd.file->private_data;
1973 if (ep_tovisit->gen == loop_check_gen)
1974 continue;
1975 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1976 error = -1;
1977 else
1978 error = ep_loop_check_proc(ep_tovisit, depth + 1);
1979 if (error != 0)
1980 break;
1981 } else {
1982 /*
1983 * If we've reached a file that is not associated with
1984 * an ep, then we need to check if the newly added
1985 * links are going to add too many wakeup paths. We do
1986 * this by adding it to the tfile_check_list, if it's
1987 * not already there, and calling reverse_path_check()
1988 * during ep_insert().
1989 */
1990 list_file(epi->ffd.file);
1991 }
1992 }
1993 mutex_unlock(&ep->mtx);
1994
1995 return error;
1996}
1997
1998/**
1999 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2000 * into another epoll file (represented by @ep) does not create
2001 * closed loops or too deep chains.
2002 *
2003 * @ep: Pointer to the epoll we are inserting into.
2004 * @to: Pointer to the epoll to be inserted.
2005 *
2006 * Return: %zero if adding the epoll @to inside the epoll @from
2007 * does not violate the constraints, or %-1 otherwise.
2008 */
2009static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2010{
2011 inserting_into = ep;
2012 return ep_loop_check_proc(to, 0);
2013}
2014
2015static void clear_tfile_check_list(void)
2016{
2017 rcu_read_lock();
2018 while (tfile_check_list != EP_UNACTIVE_PTR) {
2019 struct epitems_head *head = tfile_check_list;
2020 tfile_check_list = head->next;
2021 unlist_file(head);
2022 }
2023 rcu_read_unlock();
2024}
2025
2026/*
2027 * Open an eventpoll file descriptor.
2028 */
2029static int do_epoll_create(int flags)
2030{
2031 int error, fd;
2032 struct eventpoll *ep = NULL;
2033 struct file *file;
2034
2035 /* Check the EPOLL_* constant for consistency. */
2036 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2037
2038 if (flags & ~EPOLL_CLOEXEC)
2039 return -EINVAL;
2040 /*
2041 * Create the internal data structure ("struct eventpoll").
2042 */
2043 error = ep_alloc(&ep);
2044 if (error < 0)
2045 return error;
2046 /*
2047 * Creates all the items needed to setup an eventpoll file. That is,
2048 * a file structure and a free file descriptor.
2049 */
2050 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2051 if (fd < 0) {
2052 error = fd;
2053 goto out_free_ep;
2054 }
2055 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2056 O_RDWR | (flags & O_CLOEXEC));
2057 if (IS_ERR(file)) {
2058 error = PTR_ERR(file);
2059 goto out_free_fd;
2060 }
2061 ep->file = file;
2062 fd_install(fd, file);
2063 return fd;
2064
2065out_free_fd:
2066 put_unused_fd(fd);
2067out_free_ep:
2068 ep_clear_and_put(ep);
2069 return error;
2070}
2071
2072SYSCALL_DEFINE1(epoll_create1, int, flags)
2073{
2074 return do_epoll_create(flags);
2075}
2076
2077SYSCALL_DEFINE1(epoll_create, int, size)
2078{
2079 if (size <= 0)
2080 return -EINVAL;
2081
2082 return do_epoll_create(0);
2083}
2084
2085#ifdef CONFIG_PM_SLEEP
2086static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2087{
2088 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2089 epev->events &= ~EPOLLWAKEUP;
2090}
2091#else
2092static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2093{
2094 epev->events &= ~EPOLLWAKEUP;
2095}
2096#endif
2097
2098static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2099 bool nonblock)
2100{
2101 if (!nonblock) {
2102 mutex_lock_nested(mutex, depth);
2103 return 0;
2104 }
2105 if (mutex_trylock(mutex))
2106 return 0;
2107 return -EAGAIN;
2108}
2109
2110int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2111 bool nonblock)
2112{
2113 int error;
2114 int full_check = 0;
2115 struct fd f, tf;
2116 struct eventpoll *ep;
2117 struct epitem *epi;
2118 struct eventpoll *tep = NULL;
2119
2120 error = -EBADF;
2121 f = fdget(epfd);
2122 if (!f.file)
2123 goto error_return;
2124
2125 /* Get the "struct file *" for the target file */
2126 tf = fdget(fd);
2127 if (!tf.file)
2128 goto error_fput;
2129
2130 /* The target file descriptor must support poll */
2131 error = -EPERM;
2132 if (!file_can_poll(tf.file))
2133 goto error_tgt_fput;
2134
2135 /* Check if EPOLLWAKEUP is allowed */
2136 if (ep_op_has_event(op))
2137 ep_take_care_of_epollwakeup(epds);
2138
2139 /*
2140 * We have to check that the file structure underneath the file descriptor
2141 * the user passed to us _is_ an eventpoll file. And also we do not permit
2142 * adding an epoll file descriptor inside itself.
2143 */
2144 error = -EINVAL;
2145 if (f.file == tf.file || !is_file_epoll(f.file))
2146 goto error_tgt_fput;
2147
2148 /*
2149 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2150 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2151 * Also, we do not currently supported nested exclusive wakeups.
2152 */
2153 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2154 if (op == EPOLL_CTL_MOD)
2155 goto error_tgt_fput;
2156 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2157 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2158 goto error_tgt_fput;
2159 }
2160
2161 /*
2162 * At this point it is safe to assume that the "private_data" contains
2163 * our own data structure.
2164 */
2165 ep = f.file->private_data;
2166
2167 /*
2168 * When we insert an epoll file descriptor inside another epoll file
2169 * descriptor, there is the chance of creating closed loops, which are
2170 * better be handled here, than in more critical paths. While we are
2171 * checking for loops we also determine the list of files reachable
2172 * and hang them on the tfile_check_list, so we can check that we
2173 * haven't created too many possible wakeup paths.
2174 *
2175 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2176 * the epoll file descriptor is attaching directly to a wakeup source,
2177 * unless the epoll file descriptor is nested. The purpose of taking the
2178 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2179 * deep wakeup paths from forming in parallel through multiple
2180 * EPOLL_CTL_ADD operations.
2181 */
2182 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2183 if (error)
2184 goto error_tgt_fput;
2185 if (op == EPOLL_CTL_ADD) {
2186 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2187 is_file_epoll(tf.file)) {
2188 mutex_unlock(&ep->mtx);
2189 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2190 if (error)
2191 goto error_tgt_fput;
2192 loop_check_gen++;
2193 full_check = 1;
2194 if (is_file_epoll(tf.file)) {
2195 tep = tf.file->private_data;
2196 error = -ELOOP;
2197 if (ep_loop_check(ep, tep) != 0)
2198 goto error_tgt_fput;
2199 }
2200 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2201 if (error)
2202 goto error_tgt_fput;
2203 }
2204 }
2205
2206 /*
2207 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2208 * above, we can be sure to be able to use the item looked up by
2209 * ep_find() till we release the mutex.
2210 */
2211 epi = ep_find(ep, tf.file, fd);
2212
2213 error = -EINVAL;
2214 switch (op) {
2215 case EPOLL_CTL_ADD:
2216 if (!epi) {
2217 epds->events |= EPOLLERR | EPOLLHUP;
2218 error = ep_insert(ep, epds, tf.file, fd, full_check);
2219 } else
2220 error = -EEXIST;
2221 break;
2222 case EPOLL_CTL_DEL:
2223 if (epi) {
2224 /*
2225 * The eventpoll itself is still alive: the refcount
2226 * can't go to zero here.
2227 */
2228 ep_remove_safe(ep, epi);
2229 error = 0;
2230 } else {
2231 error = -ENOENT;
2232 }
2233 break;
2234 case EPOLL_CTL_MOD:
2235 if (epi) {
2236 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2237 epds->events |= EPOLLERR | EPOLLHUP;
2238 error = ep_modify(ep, epi, epds);
2239 }
2240 } else
2241 error = -ENOENT;
2242 break;
2243 }
2244 mutex_unlock(&ep->mtx);
2245
2246error_tgt_fput:
2247 if (full_check) {
2248 clear_tfile_check_list();
2249 loop_check_gen++;
2250 mutex_unlock(&epnested_mutex);
2251 }
2252
2253 fdput(tf);
2254error_fput:
2255 fdput(f);
2256error_return:
2257
2258 return error;
2259}
2260
2261/*
2262 * The following function implements the controller interface for
2263 * the eventpoll file that enables the insertion/removal/change of
2264 * file descriptors inside the interest set.
2265 */
2266SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2267 struct epoll_event __user *, event)
2268{
2269 struct epoll_event epds;
2270
2271 if (ep_op_has_event(op) &&
2272 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2273 return -EFAULT;
2274
2275 return do_epoll_ctl(epfd, op, fd, &epds, false);
2276}
2277
2278/*
2279 * Implement the event wait interface for the eventpoll file. It is the kernel
2280 * part of the user space epoll_wait(2).
2281 */
2282static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2283 int maxevents, struct timespec64 *to)
2284{
2285 int error;
2286 struct fd f;
2287 struct eventpoll *ep;
2288
2289 /* The maximum number of event must be greater than zero */
2290 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2291 return -EINVAL;
2292
2293 /* Verify that the area passed by the user is writeable */
2294 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2295 return -EFAULT;
2296
2297 /* Get the "struct file *" for the eventpoll file */
2298 f = fdget(epfd);
2299 if (!f.file)
2300 return -EBADF;
2301
2302 /*
2303 * We have to check that the file structure underneath the fd
2304 * the user passed to us _is_ an eventpoll file.
2305 */
2306 error = -EINVAL;
2307 if (!is_file_epoll(f.file))
2308 goto error_fput;
2309
2310 /*
2311 * At this point it is safe to assume that the "private_data" contains
2312 * our own data structure.
2313 */
2314 ep = f.file->private_data;
2315
2316 /* Time to fish for events ... */
2317 error = ep_poll(ep, events, maxevents, to);
2318
2319error_fput:
2320 fdput(f);
2321 return error;
2322}
2323
2324SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2325 int, maxevents, int, timeout)
2326{
2327 struct timespec64 to;
2328
2329 return do_epoll_wait(epfd, events, maxevents,
2330 ep_timeout_to_timespec(&to, timeout));
2331}
2332
2333/*
2334 * Implement the event wait interface for the eventpoll file. It is the kernel
2335 * part of the user space epoll_pwait(2).
2336 */
2337static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2338 int maxevents, struct timespec64 *to,
2339 const sigset_t __user *sigmask, size_t sigsetsize)
2340{
2341 int error;
2342
2343 /*
2344 * If the caller wants a certain signal mask to be set during the wait,
2345 * we apply it here.
2346 */
2347 error = set_user_sigmask(sigmask, sigsetsize);
2348 if (error)
2349 return error;
2350
2351 error = do_epoll_wait(epfd, events, maxevents, to);
2352
2353 restore_saved_sigmask_unless(error == -EINTR);
2354
2355 return error;
2356}
2357
2358SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2359 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2360 size_t, sigsetsize)
2361{
2362 struct timespec64 to;
2363
2364 return do_epoll_pwait(epfd, events, maxevents,
2365 ep_timeout_to_timespec(&to, timeout),
2366 sigmask, sigsetsize);
2367}
2368
2369SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2370 int, maxevents, const struct __kernel_timespec __user *, timeout,
2371 const sigset_t __user *, sigmask, size_t, sigsetsize)
2372{
2373 struct timespec64 ts, *to = NULL;
2374
2375 if (timeout) {
2376 if (get_timespec64(&ts, timeout))
2377 return -EFAULT;
2378 to = &ts;
2379 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2380 return -EINVAL;
2381 }
2382
2383 return do_epoll_pwait(epfd, events, maxevents, to,
2384 sigmask, sigsetsize);
2385}
2386
2387#ifdef CONFIG_COMPAT
2388static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2389 int maxevents, struct timespec64 *timeout,
2390 const compat_sigset_t __user *sigmask,
2391 compat_size_t sigsetsize)
2392{
2393 long err;
2394
2395 /*
2396 * If the caller wants a certain signal mask to be set during the wait,
2397 * we apply it here.
2398 */
2399 err = set_compat_user_sigmask(sigmask, sigsetsize);
2400 if (err)
2401 return err;
2402
2403 err = do_epoll_wait(epfd, events, maxevents, timeout);
2404
2405 restore_saved_sigmask_unless(err == -EINTR);
2406
2407 return err;
2408}
2409
2410COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2411 struct epoll_event __user *, events,
2412 int, maxevents, int, timeout,
2413 const compat_sigset_t __user *, sigmask,
2414 compat_size_t, sigsetsize)
2415{
2416 struct timespec64 to;
2417
2418 return do_compat_epoll_pwait(epfd, events, maxevents,
2419 ep_timeout_to_timespec(&to, timeout),
2420 sigmask, sigsetsize);
2421}
2422
2423COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2424 struct epoll_event __user *, events,
2425 int, maxevents,
2426 const struct __kernel_timespec __user *, timeout,
2427 const compat_sigset_t __user *, sigmask,
2428 compat_size_t, sigsetsize)
2429{
2430 struct timespec64 ts, *to = NULL;
2431
2432 if (timeout) {
2433 if (get_timespec64(&ts, timeout))
2434 return -EFAULT;
2435 to = &ts;
2436 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2437 return -EINVAL;
2438 }
2439
2440 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2441 sigmask, sigsetsize);
2442}
2443
2444#endif
2445
2446static int __init eventpoll_init(void)
2447{
2448 struct sysinfo si;
2449
2450 si_meminfo(&si);
2451 /*
2452 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2453 */
2454 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2455 EP_ITEM_COST;
2456 BUG_ON(max_user_watches < 0);
2457
2458 /*
2459 * We can have many thousands of epitems, so prevent this from
2460 * using an extra cache line on 64-bit (and smaller) CPUs
2461 */
2462 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2463
2464 /* Allocates slab cache used to allocate "struct epitem" items */
2465 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2466 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2467
2468 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2469 pwq_cache = kmem_cache_create("eventpoll_pwq",
2470 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2471 epoll_sysctls_init();
2472
2473 ephead_cache = kmem_cache_create("ep_head",
2474 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2475
2476 return 0;
2477}
2478fs_initcall(eventpoll_init);