Merge tag 'probes-fixes-v6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / dax.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 */
8
9#include <linux/atomic.h>
10#include <linux/blkdev.h>
11#include <linux/buffer_head.h>
12#include <linux/dax.h>
13#include <linux/fs.h>
14#include <linux/highmem.h>
15#include <linux/memcontrol.h>
16#include <linux/mm.h>
17#include <linux/mutex.h>
18#include <linux/pagevec.h>
19#include <linux/sched.h>
20#include <linux/sched/signal.h>
21#include <linux/uio.h>
22#include <linux/vmstat.h>
23#include <linux/pfn_t.h>
24#include <linux/sizes.h>
25#include <linux/mmu_notifier.h>
26#include <linux/iomap.h>
27#include <linux/rmap.h>
28#include <asm/pgalloc.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/fs_dax.h>
32
33static inline unsigned int pe_order(enum page_entry_size pe_size)
34{
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42}
43
44/* We choose 4096 entries - same as per-zone page wait tables */
45#define DAX_WAIT_TABLE_BITS 12
46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48/* The 'colour' (ie low bits) within a PMD of a page offset. */
49#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
50#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
51
52/* The order of a PMD entry */
53#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54
55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57static int __init init_dax_wait_table(void)
58{
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64}
65fs_initcall(init_dax_wait_table);
66
67/*
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
72 *
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
76 */
77#define DAX_SHIFT (4)
78#define DAX_LOCKED (1UL << 0)
79#define DAX_PMD (1UL << 1)
80#define DAX_ZERO_PAGE (1UL << 2)
81#define DAX_EMPTY (1UL << 3)
82
83static unsigned long dax_to_pfn(void *entry)
84{
85 return xa_to_value(entry) >> DAX_SHIFT;
86}
87
88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89{
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91}
92
93static bool dax_is_locked(void *entry)
94{
95 return xa_to_value(entry) & DAX_LOCKED;
96}
97
98static unsigned int dax_entry_order(void *entry)
99{
100 if (xa_to_value(entry) & DAX_PMD)
101 return PMD_ORDER;
102 return 0;
103}
104
105static unsigned long dax_is_pmd_entry(void *entry)
106{
107 return xa_to_value(entry) & DAX_PMD;
108}
109
110static bool dax_is_pte_entry(void *entry)
111{
112 return !(xa_to_value(entry) & DAX_PMD);
113}
114
115static int dax_is_zero_entry(void *entry)
116{
117 return xa_to_value(entry) & DAX_ZERO_PAGE;
118}
119
120static int dax_is_empty_entry(void *entry)
121{
122 return xa_to_value(entry) & DAX_EMPTY;
123}
124
125/*
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
128 */
129static bool dax_is_conflict(void *entry)
130{
131 return entry == XA_RETRY_ENTRY;
132}
133
134/*
135 * DAX page cache entry locking
136 */
137struct exceptional_entry_key {
138 struct xarray *xa;
139 pgoff_t entry_start;
140};
141
142struct wait_exceptional_entry_queue {
143 wait_queue_entry_t wait;
144 struct exceptional_entry_key key;
145};
146
147/**
148 * enum dax_wake_mode: waitqueue wakeup behaviour
149 * @WAKE_ALL: wake all waiters in the waitqueue
150 * @WAKE_NEXT: wake only the first waiter in the waitqueue
151 */
152enum dax_wake_mode {
153 WAKE_ALL,
154 WAKE_NEXT,
155};
156
157static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 void *entry, struct exceptional_entry_key *key)
159{
160 unsigned long hash;
161 unsigned long index = xas->xa_index;
162
163 /*
164 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 * queue to the start of that PMD. This ensures that all offsets in
166 * the range covered by the PMD map to the same bit lock.
167 */
168 if (dax_is_pmd_entry(entry))
169 index &= ~PG_PMD_COLOUR;
170 key->xa = xas->xa;
171 key->entry_start = index;
172
173 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174 return wait_table + hash;
175}
176
177static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 unsigned int mode, int sync, void *keyp)
179{
180 struct exceptional_entry_key *key = keyp;
181 struct wait_exceptional_entry_queue *ewait =
182 container_of(wait, struct wait_exceptional_entry_queue, wait);
183
184 if (key->xa != ewait->key.xa ||
185 key->entry_start != ewait->key.entry_start)
186 return 0;
187 return autoremove_wake_function(wait, mode, sync, NULL);
188}
189
190/*
191 * @entry may no longer be the entry at the index in the mapping.
192 * The important information it's conveying is whether the entry at
193 * this index used to be a PMD entry.
194 */
195static void dax_wake_entry(struct xa_state *xas, void *entry,
196 enum dax_wake_mode mode)
197{
198 struct exceptional_entry_key key;
199 wait_queue_head_t *wq;
200
201 wq = dax_entry_waitqueue(xas, entry, &key);
202
203 /*
204 * Checking for locked entry and prepare_to_wait_exclusive() happens
205 * under the i_pages lock, ditto for entry handling in our callers.
206 * So at this point all tasks that could have seen our entry locked
207 * must be in the waitqueue and the following check will see them.
208 */
209 if (waitqueue_active(wq))
210 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211}
212
213/*
214 * Look up entry in page cache, wait for it to become unlocked if it
215 * is a DAX entry and return it. The caller must subsequently call
216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217 * if it did. The entry returned may have a larger order than @order.
218 * If @order is larger than the order of the entry found in i_pages, this
219 * function returns a dax_is_conflict entry.
220 *
221 * Must be called with the i_pages lock held.
222 */
223static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224{
225 void *entry;
226 struct wait_exceptional_entry_queue ewait;
227 wait_queue_head_t *wq;
228
229 init_wait(&ewait.wait);
230 ewait.wait.func = wake_exceptional_entry_func;
231
232 for (;;) {
233 entry = xas_find_conflict(xas);
234 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 return entry;
236 if (dax_entry_order(entry) < order)
237 return XA_RETRY_ENTRY;
238 if (!dax_is_locked(entry))
239 return entry;
240
241 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 prepare_to_wait_exclusive(wq, &ewait.wait,
243 TASK_UNINTERRUPTIBLE);
244 xas_unlock_irq(xas);
245 xas_reset(xas);
246 schedule();
247 finish_wait(wq, &ewait.wait);
248 xas_lock_irq(xas);
249 }
250}
251
252/*
253 * The only thing keeping the address space around is the i_pages lock
254 * (it's cycled in clear_inode() after removing the entries from i_pages)
255 * After we call xas_unlock_irq(), we cannot touch xas->xa.
256 */
257static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258{
259 struct wait_exceptional_entry_queue ewait;
260 wait_queue_head_t *wq;
261
262 init_wait(&ewait.wait);
263 ewait.wait.func = wake_exceptional_entry_func;
264
265 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266 /*
267 * Unlike get_unlocked_entry() there is no guarantee that this
268 * path ever successfully retrieves an unlocked entry before an
269 * inode dies. Perform a non-exclusive wait in case this path
270 * never successfully performs its own wake up.
271 */
272 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273 xas_unlock_irq(xas);
274 schedule();
275 finish_wait(wq, &ewait.wait);
276}
277
278static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 enum dax_wake_mode mode)
280{
281 if (entry && !dax_is_conflict(entry))
282 dax_wake_entry(xas, entry, mode);
283}
284
285/*
286 * We used the xa_state to get the entry, but then we locked the entry and
287 * dropped the xa_lock, so we know the xa_state is stale and must be reset
288 * before use.
289 */
290static void dax_unlock_entry(struct xa_state *xas, void *entry)
291{
292 void *old;
293
294 BUG_ON(dax_is_locked(entry));
295 xas_reset(xas);
296 xas_lock_irq(xas);
297 old = xas_store(xas, entry);
298 xas_unlock_irq(xas);
299 BUG_ON(!dax_is_locked(old));
300 dax_wake_entry(xas, entry, WAKE_NEXT);
301}
302
303/*
304 * Return: The entry stored at this location before it was locked.
305 */
306static void *dax_lock_entry(struct xa_state *xas, void *entry)
307{
308 unsigned long v = xa_to_value(entry);
309 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310}
311
312static unsigned long dax_entry_size(void *entry)
313{
314 if (dax_is_zero_entry(entry))
315 return 0;
316 else if (dax_is_empty_entry(entry))
317 return 0;
318 else if (dax_is_pmd_entry(entry))
319 return PMD_SIZE;
320 else
321 return PAGE_SIZE;
322}
323
324static unsigned long dax_end_pfn(void *entry)
325{
326 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327}
328
329/*
330 * Iterate through all mapped pfns represented by an entry, i.e. skip
331 * 'empty' and 'zero' entries.
332 */
333#define for_each_mapped_pfn(entry, pfn) \
334 for (pfn = dax_to_pfn(entry); \
335 pfn < dax_end_pfn(entry); pfn++)
336
337static inline bool dax_page_is_shared(struct page *page)
338{
339 return page->mapping == PAGE_MAPPING_DAX_SHARED;
340}
341
342/*
343 * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the
344 * refcount.
345 */
346static inline void dax_page_share_get(struct page *page)
347{
348 if (page->mapping != PAGE_MAPPING_DAX_SHARED) {
349 /*
350 * Reset the index if the page was already mapped
351 * regularly before.
352 */
353 if (page->mapping)
354 page->share = 1;
355 page->mapping = PAGE_MAPPING_DAX_SHARED;
356 }
357 page->share++;
358}
359
360static inline unsigned long dax_page_share_put(struct page *page)
361{
362 return --page->share;
363}
364
365/*
366 * When it is called in dax_insert_entry(), the shared flag will indicate that
367 * whether this entry is shared by multiple files. If so, set the page->mapping
368 * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount.
369 */
370static void dax_associate_entry(void *entry, struct address_space *mapping,
371 struct vm_area_struct *vma, unsigned long address, bool shared)
372{
373 unsigned long size = dax_entry_size(entry), pfn, index;
374 int i = 0;
375
376 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
377 return;
378
379 index = linear_page_index(vma, address & ~(size - 1));
380 for_each_mapped_pfn(entry, pfn) {
381 struct page *page = pfn_to_page(pfn);
382
383 if (shared) {
384 dax_page_share_get(page);
385 } else {
386 WARN_ON_ONCE(page->mapping);
387 page->mapping = mapping;
388 page->index = index + i++;
389 }
390 }
391}
392
393static void dax_disassociate_entry(void *entry, struct address_space *mapping,
394 bool trunc)
395{
396 unsigned long pfn;
397
398 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
399 return;
400
401 for_each_mapped_pfn(entry, pfn) {
402 struct page *page = pfn_to_page(pfn);
403
404 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
405 if (dax_page_is_shared(page)) {
406 /* keep the shared flag if this page is still shared */
407 if (dax_page_share_put(page) > 0)
408 continue;
409 } else
410 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
411 page->mapping = NULL;
412 page->index = 0;
413 }
414}
415
416static struct page *dax_busy_page(void *entry)
417{
418 unsigned long pfn;
419
420 for_each_mapped_pfn(entry, pfn) {
421 struct page *page = pfn_to_page(pfn);
422
423 if (page_ref_count(page) > 1)
424 return page;
425 }
426 return NULL;
427}
428
429/*
430 * dax_lock_page - Lock the DAX entry corresponding to a page
431 * @page: The page whose entry we want to lock
432 *
433 * Context: Process context.
434 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
435 * not be locked.
436 */
437dax_entry_t dax_lock_page(struct page *page)
438{
439 XA_STATE(xas, NULL, 0);
440 void *entry;
441
442 /* Ensure page->mapping isn't freed while we look at it */
443 rcu_read_lock();
444 for (;;) {
445 struct address_space *mapping = READ_ONCE(page->mapping);
446
447 entry = NULL;
448 if (!mapping || !dax_mapping(mapping))
449 break;
450
451 /*
452 * In the device-dax case there's no need to lock, a
453 * struct dev_pagemap pin is sufficient to keep the
454 * inode alive, and we assume we have dev_pagemap pin
455 * otherwise we would not have a valid pfn_to_page()
456 * translation.
457 */
458 entry = (void *)~0UL;
459 if (S_ISCHR(mapping->host->i_mode))
460 break;
461
462 xas.xa = &mapping->i_pages;
463 xas_lock_irq(&xas);
464 if (mapping != page->mapping) {
465 xas_unlock_irq(&xas);
466 continue;
467 }
468 xas_set(&xas, page->index);
469 entry = xas_load(&xas);
470 if (dax_is_locked(entry)) {
471 rcu_read_unlock();
472 wait_entry_unlocked(&xas, entry);
473 rcu_read_lock();
474 continue;
475 }
476 dax_lock_entry(&xas, entry);
477 xas_unlock_irq(&xas);
478 break;
479 }
480 rcu_read_unlock();
481 return (dax_entry_t)entry;
482}
483
484void dax_unlock_page(struct page *page, dax_entry_t cookie)
485{
486 struct address_space *mapping = page->mapping;
487 XA_STATE(xas, &mapping->i_pages, page->index);
488
489 if (S_ISCHR(mapping->host->i_mode))
490 return;
491
492 dax_unlock_entry(&xas, (void *)cookie);
493}
494
495/*
496 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
497 * @mapping: the file's mapping whose entry we want to lock
498 * @index: the offset within this file
499 * @page: output the dax page corresponding to this dax entry
500 *
501 * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
502 * could not be locked.
503 */
504dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
505 struct page **page)
506{
507 XA_STATE(xas, NULL, 0);
508 void *entry;
509
510 rcu_read_lock();
511 for (;;) {
512 entry = NULL;
513 if (!dax_mapping(mapping))
514 break;
515
516 xas.xa = &mapping->i_pages;
517 xas_lock_irq(&xas);
518 xas_set(&xas, index);
519 entry = xas_load(&xas);
520 if (dax_is_locked(entry)) {
521 rcu_read_unlock();
522 wait_entry_unlocked(&xas, entry);
523 rcu_read_lock();
524 continue;
525 }
526 if (!entry ||
527 dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
528 /*
529 * Because we are looking for entry from file's mapping
530 * and index, so the entry may not be inserted for now,
531 * or even a zero/empty entry. We don't think this is
532 * an error case. So, return a special value and do
533 * not output @page.
534 */
535 entry = (void *)~0UL;
536 } else {
537 *page = pfn_to_page(dax_to_pfn(entry));
538 dax_lock_entry(&xas, entry);
539 }
540 xas_unlock_irq(&xas);
541 break;
542 }
543 rcu_read_unlock();
544 return (dax_entry_t)entry;
545}
546
547void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
548 dax_entry_t cookie)
549{
550 XA_STATE(xas, &mapping->i_pages, index);
551
552 if (cookie == ~0UL)
553 return;
554
555 dax_unlock_entry(&xas, (void *)cookie);
556}
557
558/*
559 * Find page cache entry at given index. If it is a DAX entry, return it
560 * with the entry locked. If the page cache doesn't contain an entry at
561 * that index, add a locked empty entry.
562 *
563 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
564 * either return that locked entry or will return VM_FAULT_FALLBACK.
565 * This will happen if there are any PTE entries within the PMD range
566 * that we are requesting.
567 *
568 * We always favor PTE entries over PMD entries. There isn't a flow where we
569 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
570 * insertion will fail if it finds any PTE entries already in the tree, and a
571 * PTE insertion will cause an existing PMD entry to be unmapped and
572 * downgraded to PTE entries. This happens for both PMD zero pages as
573 * well as PMD empty entries.
574 *
575 * The exception to this downgrade path is for PMD entries that have
576 * real storage backing them. We will leave these real PMD entries in
577 * the tree, and PTE writes will simply dirty the entire PMD entry.
578 *
579 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
580 * persistent memory the benefit is doubtful. We can add that later if we can
581 * show it helps.
582 *
583 * On error, this function does not return an ERR_PTR. Instead it returns
584 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
585 * overlap with xarray value entries.
586 */
587static void *grab_mapping_entry(struct xa_state *xas,
588 struct address_space *mapping, unsigned int order)
589{
590 unsigned long index = xas->xa_index;
591 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
592 void *entry;
593
594retry:
595 pmd_downgrade = false;
596 xas_lock_irq(xas);
597 entry = get_unlocked_entry(xas, order);
598
599 if (entry) {
600 if (dax_is_conflict(entry))
601 goto fallback;
602 if (!xa_is_value(entry)) {
603 xas_set_err(xas, -EIO);
604 goto out_unlock;
605 }
606
607 if (order == 0) {
608 if (dax_is_pmd_entry(entry) &&
609 (dax_is_zero_entry(entry) ||
610 dax_is_empty_entry(entry))) {
611 pmd_downgrade = true;
612 }
613 }
614 }
615
616 if (pmd_downgrade) {
617 /*
618 * Make sure 'entry' remains valid while we drop
619 * the i_pages lock.
620 */
621 dax_lock_entry(xas, entry);
622
623 /*
624 * Besides huge zero pages the only other thing that gets
625 * downgraded are empty entries which don't need to be
626 * unmapped.
627 */
628 if (dax_is_zero_entry(entry)) {
629 xas_unlock_irq(xas);
630 unmap_mapping_pages(mapping,
631 xas->xa_index & ~PG_PMD_COLOUR,
632 PG_PMD_NR, false);
633 xas_reset(xas);
634 xas_lock_irq(xas);
635 }
636
637 dax_disassociate_entry(entry, mapping, false);
638 xas_store(xas, NULL); /* undo the PMD join */
639 dax_wake_entry(xas, entry, WAKE_ALL);
640 mapping->nrpages -= PG_PMD_NR;
641 entry = NULL;
642 xas_set(xas, index);
643 }
644
645 if (entry) {
646 dax_lock_entry(xas, entry);
647 } else {
648 unsigned long flags = DAX_EMPTY;
649
650 if (order > 0)
651 flags |= DAX_PMD;
652 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
653 dax_lock_entry(xas, entry);
654 if (xas_error(xas))
655 goto out_unlock;
656 mapping->nrpages += 1UL << order;
657 }
658
659out_unlock:
660 xas_unlock_irq(xas);
661 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
662 goto retry;
663 if (xas->xa_node == XA_ERROR(-ENOMEM))
664 return xa_mk_internal(VM_FAULT_OOM);
665 if (xas_error(xas))
666 return xa_mk_internal(VM_FAULT_SIGBUS);
667 return entry;
668fallback:
669 xas_unlock_irq(xas);
670 return xa_mk_internal(VM_FAULT_FALLBACK);
671}
672
673/**
674 * dax_layout_busy_page_range - find first pinned page in @mapping
675 * @mapping: address space to scan for a page with ref count > 1
676 * @start: Starting offset. Page containing 'start' is included.
677 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
678 * pages from 'start' till the end of file are included.
679 *
680 * DAX requires ZONE_DEVICE mapped pages. These pages are never
681 * 'onlined' to the page allocator so they are considered idle when
682 * page->count == 1. A filesystem uses this interface to determine if
683 * any page in the mapping is busy, i.e. for DMA, or other
684 * get_user_pages() usages.
685 *
686 * It is expected that the filesystem is holding locks to block the
687 * establishment of new mappings in this address_space. I.e. it expects
688 * to be able to run unmap_mapping_range() and subsequently not race
689 * mapping_mapped() becoming true.
690 */
691struct page *dax_layout_busy_page_range(struct address_space *mapping,
692 loff_t start, loff_t end)
693{
694 void *entry;
695 unsigned int scanned = 0;
696 struct page *page = NULL;
697 pgoff_t start_idx = start >> PAGE_SHIFT;
698 pgoff_t end_idx;
699 XA_STATE(xas, &mapping->i_pages, start_idx);
700
701 /*
702 * In the 'limited' case get_user_pages() for dax is disabled.
703 */
704 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
705 return NULL;
706
707 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
708 return NULL;
709
710 /* If end == LLONG_MAX, all pages from start to till end of file */
711 if (end == LLONG_MAX)
712 end_idx = ULONG_MAX;
713 else
714 end_idx = end >> PAGE_SHIFT;
715 /*
716 * If we race get_user_pages_fast() here either we'll see the
717 * elevated page count in the iteration and wait, or
718 * get_user_pages_fast() will see that the page it took a reference
719 * against is no longer mapped in the page tables and bail to the
720 * get_user_pages() slow path. The slow path is protected by
721 * pte_lock() and pmd_lock(). New references are not taken without
722 * holding those locks, and unmap_mapping_pages() will not zero the
723 * pte or pmd without holding the respective lock, so we are
724 * guaranteed to either see new references or prevent new
725 * references from being established.
726 */
727 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
728
729 xas_lock_irq(&xas);
730 xas_for_each(&xas, entry, end_idx) {
731 if (WARN_ON_ONCE(!xa_is_value(entry)))
732 continue;
733 if (unlikely(dax_is_locked(entry)))
734 entry = get_unlocked_entry(&xas, 0);
735 if (entry)
736 page = dax_busy_page(entry);
737 put_unlocked_entry(&xas, entry, WAKE_NEXT);
738 if (page)
739 break;
740 if (++scanned % XA_CHECK_SCHED)
741 continue;
742
743 xas_pause(&xas);
744 xas_unlock_irq(&xas);
745 cond_resched();
746 xas_lock_irq(&xas);
747 }
748 xas_unlock_irq(&xas);
749 return page;
750}
751EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
752
753struct page *dax_layout_busy_page(struct address_space *mapping)
754{
755 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
756}
757EXPORT_SYMBOL_GPL(dax_layout_busy_page);
758
759static int __dax_invalidate_entry(struct address_space *mapping,
760 pgoff_t index, bool trunc)
761{
762 XA_STATE(xas, &mapping->i_pages, index);
763 int ret = 0;
764 void *entry;
765
766 xas_lock_irq(&xas);
767 entry = get_unlocked_entry(&xas, 0);
768 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
769 goto out;
770 if (!trunc &&
771 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
772 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
773 goto out;
774 dax_disassociate_entry(entry, mapping, trunc);
775 xas_store(&xas, NULL);
776 mapping->nrpages -= 1UL << dax_entry_order(entry);
777 ret = 1;
778out:
779 put_unlocked_entry(&xas, entry, WAKE_ALL);
780 xas_unlock_irq(&xas);
781 return ret;
782}
783
784static int __dax_clear_dirty_range(struct address_space *mapping,
785 pgoff_t start, pgoff_t end)
786{
787 XA_STATE(xas, &mapping->i_pages, start);
788 unsigned int scanned = 0;
789 void *entry;
790
791 xas_lock_irq(&xas);
792 xas_for_each(&xas, entry, end) {
793 entry = get_unlocked_entry(&xas, 0);
794 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
795 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
796 put_unlocked_entry(&xas, entry, WAKE_NEXT);
797
798 if (++scanned % XA_CHECK_SCHED)
799 continue;
800
801 xas_pause(&xas);
802 xas_unlock_irq(&xas);
803 cond_resched();
804 xas_lock_irq(&xas);
805 }
806 xas_unlock_irq(&xas);
807
808 return 0;
809}
810
811/*
812 * Delete DAX entry at @index from @mapping. Wait for it
813 * to be unlocked before deleting it.
814 */
815int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
816{
817 int ret = __dax_invalidate_entry(mapping, index, true);
818
819 /*
820 * This gets called from truncate / punch_hole path. As such, the caller
821 * must hold locks protecting against concurrent modifications of the
822 * page cache (usually fs-private i_mmap_sem for writing). Since the
823 * caller has seen a DAX entry for this index, we better find it
824 * at that index as well...
825 */
826 WARN_ON_ONCE(!ret);
827 return ret;
828}
829
830/*
831 * Invalidate DAX entry if it is clean.
832 */
833int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
834 pgoff_t index)
835{
836 return __dax_invalidate_entry(mapping, index, false);
837}
838
839static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
840{
841 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
842}
843
844static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
845{
846 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
847 void *vto, *kaddr;
848 long rc;
849 int id;
850
851 id = dax_read_lock();
852 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
853 &kaddr, NULL);
854 if (rc < 0) {
855 dax_read_unlock(id);
856 return rc;
857 }
858 vto = kmap_atomic(vmf->cow_page);
859 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
860 kunmap_atomic(vto);
861 dax_read_unlock(id);
862 return 0;
863}
864
865/*
866 * MAP_SYNC on a dax mapping guarantees dirty metadata is
867 * flushed on write-faults (non-cow), but not read-faults.
868 */
869static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
870 struct vm_area_struct *vma)
871{
872 return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
873 (iter->iomap.flags & IOMAP_F_DIRTY);
874}
875
876/*
877 * By this point grab_mapping_entry() has ensured that we have a locked entry
878 * of the appropriate size so we don't have to worry about downgrading PMDs to
879 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
880 * already in the tree, we will skip the insertion and just dirty the PMD as
881 * appropriate.
882 */
883static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
884 const struct iomap_iter *iter, void *entry, pfn_t pfn,
885 unsigned long flags)
886{
887 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
888 void *new_entry = dax_make_entry(pfn, flags);
889 bool write = iter->flags & IOMAP_WRITE;
890 bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
891 bool shared = iter->iomap.flags & IOMAP_F_SHARED;
892
893 if (dirty)
894 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
895
896 if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
897 unsigned long index = xas->xa_index;
898 /* we are replacing a zero page with block mapping */
899 if (dax_is_pmd_entry(entry))
900 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
901 PG_PMD_NR, false);
902 else /* pte entry */
903 unmap_mapping_pages(mapping, index, 1, false);
904 }
905
906 xas_reset(xas);
907 xas_lock_irq(xas);
908 if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
909 void *old;
910
911 dax_disassociate_entry(entry, mapping, false);
912 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
913 shared);
914 /*
915 * Only swap our new entry into the page cache if the current
916 * entry is a zero page or an empty entry. If a normal PTE or
917 * PMD entry is already in the cache, we leave it alone. This
918 * means that if we are trying to insert a PTE and the
919 * existing entry is a PMD, we will just leave the PMD in the
920 * tree and dirty it if necessary.
921 */
922 old = dax_lock_entry(xas, new_entry);
923 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
924 DAX_LOCKED));
925 entry = new_entry;
926 } else {
927 xas_load(xas); /* Walk the xa_state */
928 }
929
930 if (dirty)
931 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
932
933 if (write && shared)
934 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
935
936 xas_unlock_irq(xas);
937 return entry;
938}
939
940static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
941 struct address_space *mapping, void *entry)
942{
943 unsigned long pfn, index, count, end;
944 long ret = 0;
945 struct vm_area_struct *vma;
946
947 /*
948 * A page got tagged dirty in DAX mapping? Something is seriously
949 * wrong.
950 */
951 if (WARN_ON(!xa_is_value(entry)))
952 return -EIO;
953
954 if (unlikely(dax_is_locked(entry))) {
955 void *old_entry = entry;
956
957 entry = get_unlocked_entry(xas, 0);
958
959 /* Entry got punched out / reallocated? */
960 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
961 goto put_unlocked;
962 /*
963 * Entry got reallocated elsewhere? No need to writeback.
964 * We have to compare pfns as we must not bail out due to
965 * difference in lockbit or entry type.
966 */
967 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
968 goto put_unlocked;
969 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
970 dax_is_zero_entry(entry))) {
971 ret = -EIO;
972 goto put_unlocked;
973 }
974
975 /* Another fsync thread may have already done this entry */
976 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
977 goto put_unlocked;
978 }
979
980 /* Lock the entry to serialize with page faults */
981 dax_lock_entry(xas, entry);
982
983 /*
984 * We can clear the tag now but we have to be careful so that concurrent
985 * dax_writeback_one() calls for the same index cannot finish before we
986 * actually flush the caches. This is achieved as the calls will look
987 * at the entry only under the i_pages lock and once they do that
988 * they will see the entry locked and wait for it to unlock.
989 */
990 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
991 xas_unlock_irq(xas);
992
993 /*
994 * If dax_writeback_mapping_range() was given a wbc->range_start
995 * in the middle of a PMD, the 'index' we use needs to be
996 * aligned to the start of the PMD.
997 * This allows us to flush for PMD_SIZE and not have to worry about
998 * partial PMD writebacks.
999 */
1000 pfn = dax_to_pfn(entry);
1001 count = 1UL << dax_entry_order(entry);
1002 index = xas->xa_index & ~(count - 1);
1003 end = index + count - 1;
1004
1005 /* Walk all mappings of a given index of a file and writeprotect them */
1006 i_mmap_lock_read(mapping);
1007 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
1008 pfn_mkclean_range(pfn, count, index, vma);
1009 cond_resched();
1010 }
1011 i_mmap_unlock_read(mapping);
1012
1013 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
1014 /*
1015 * After we have flushed the cache, we can clear the dirty tag. There
1016 * cannot be new dirty data in the pfn after the flush has completed as
1017 * the pfn mappings are writeprotected and fault waits for mapping
1018 * entry lock.
1019 */
1020 xas_reset(xas);
1021 xas_lock_irq(xas);
1022 xas_store(xas, entry);
1023 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
1024 dax_wake_entry(xas, entry, WAKE_NEXT);
1025
1026 trace_dax_writeback_one(mapping->host, index, count);
1027 return ret;
1028
1029 put_unlocked:
1030 put_unlocked_entry(xas, entry, WAKE_NEXT);
1031 return ret;
1032}
1033
1034/*
1035 * Flush the mapping to the persistent domain within the byte range of [start,
1036 * end]. This is required by data integrity operations to ensure file data is
1037 * on persistent storage prior to completion of the operation.
1038 */
1039int dax_writeback_mapping_range(struct address_space *mapping,
1040 struct dax_device *dax_dev, struct writeback_control *wbc)
1041{
1042 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1043 struct inode *inode = mapping->host;
1044 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1045 void *entry;
1046 int ret = 0;
1047 unsigned int scanned = 0;
1048
1049 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1050 return -EIO;
1051
1052 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1053 return 0;
1054
1055 trace_dax_writeback_range(inode, xas.xa_index, end_index);
1056
1057 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1058
1059 xas_lock_irq(&xas);
1060 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1061 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1062 if (ret < 0) {
1063 mapping_set_error(mapping, ret);
1064 break;
1065 }
1066 if (++scanned % XA_CHECK_SCHED)
1067 continue;
1068
1069 xas_pause(&xas);
1070 xas_unlock_irq(&xas);
1071 cond_resched();
1072 xas_lock_irq(&xas);
1073 }
1074 xas_unlock_irq(&xas);
1075 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1076 return ret;
1077}
1078EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1079
1080static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1081 size_t size, void **kaddr, pfn_t *pfnp)
1082{
1083 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1084 int id, rc = 0;
1085 long length;
1086
1087 id = dax_read_lock();
1088 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1089 DAX_ACCESS, kaddr, pfnp);
1090 if (length < 0) {
1091 rc = length;
1092 goto out;
1093 }
1094 if (!pfnp)
1095 goto out_check_addr;
1096 rc = -EINVAL;
1097 if (PFN_PHYS(length) < size)
1098 goto out;
1099 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1100 goto out;
1101 /* For larger pages we need devmap */
1102 if (length > 1 && !pfn_t_devmap(*pfnp))
1103 goto out;
1104 rc = 0;
1105
1106out_check_addr:
1107 if (!kaddr)
1108 goto out;
1109 if (!*kaddr)
1110 rc = -EFAULT;
1111out:
1112 dax_read_unlock(id);
1113 return rc;
1114}
1115
1116/**
1117 * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1118 * by copying the data before and after the range to be written.
1119 * @pos: address to do copy from.
1120 * @length: size of copy operation.
1121 * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1122 * @srcmap: iomap srcmap
1123 * @daddr: destination address to copy to.
1124 *
1125 * This can be called from two places. Either during DAX write fault (page
1126 * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1127 * write operation, dax_iomap_iter() might call this to do the copy of either
1128 * start or end unaligned address. In the latter case the rest of the copy of
1129 * aligned ranges is taken care by dax_iomap_iter() itself.
1130 * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1131 * area to make sure no old data remains.
1132 */
1133static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
1134 const struct iomap *srcmap, void *daddr)
1135{
1136 loff_t head_off = pos & (align_size - 1);
1137 size_t size = ALIGN(head_off + length, align_size);
1138 loff_t end = pos + length;
1139 loff_t pg_end = round_up(end, align_size);
1140 /* copy_all is usually in page fault case */
1141 bool copy_all = head_off == 0 && end == pg_end;
1142 /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1143 bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1144 srcmap->type == IOMAP_UNWRITTEN;
1145 void *saddr = 0;
1146 int ret = 0;
1147
1148 if (!zero_edge) {
1149 ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1150 if (ret)
1151 return ret;
1152 }
1153
1154 if (copy_all) {
1155 if (zero_edge)
1156 memset(daddr, 0, size);
1157 else
1158 ret = copy_mc_to_kernel(daddr, saddr, length);
1159 goto out;
1160 }
1161
1162 /* Copy the head part of the range */
1163 if (head_off) {
1164 if (zero_edge)
1165 memset(daddr, 0, head_off);
1166 else {
1167 ret = copy_mc_to_kernel(daddr, saddr, head_off);
1168 if (ret)
1169 return -EIO;
1170 }
1171 }
1172
1173 /* Copy the tail part of the range */
1174 if (end < pg_end) {
1175 loff_t tail_off = head_off + length;
1176 loff_t tail_len = pg_end - end;
1177
1178 if (zero_edge)
1179 memset(daddr + tail_off, 0, tail_len);
1180 else {
1181 ret = copy_mc_to_kernel(daddr + tail_off,
1182 saddr + tail_off, tail_len);
1183 if (ret)
1184 return -EIO;
1185 }
1186 }
1187out:
1188 if (zero_edge)
1189 dax_flush(srcmap->dax_dev, daddr, size);
1190 return ret ? -EIO : 0;
1191}
1192
1193/*
1194 * The user has performed a load from a hole in the file. Allocating a new
1195 * page in the file would cause excessive storage usage for workloads with
1196 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1197 * If this page is ever written to we will re-fault and change the mapping to
1198 * point to real DAX storage instead.
1199 */
1200static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1201 const struct iomap_iter *iter, void **entry)
1202{
1203 struct inode *inode = iter->inode;
1204 unsigned long vaddr = vmf->address;
1205 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1206 vm_fault_t ret;
1207
1208 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1209
1210 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1211 trace_dax_load_hole(inode, vmf, ret);
1212 return ret;
1213}
1214
1215#ifdef CONFIG_FS_DAX_PMD
1216static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1217 const struct iomap_iter *iter, void **entry)
1218{
1219 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1220 unsigned long pmd_addr = vmf->address & PMD_MASK;
1221 struct vm_area_struct *vma = vmf->vma;
1222 struct inode *inode = mapping->host;
1223 pgtable_t pgtable = NULL;
1224 struct page *zero_page;
1225 spinlock_t *ptl;
1226 pmd_t pmd_entry;
1227 pfn_t pfn;
1228
1229 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1230
1231 if (unlikely(!zero_page))
1232 goto fallback;
1233
1234 pfn = page_to_pfn_t(zero_page);
1235 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1236 DAX_PMD | DAX_ZERO_PAGE);
1237
1238 if (arch_needs_pgtable_deposit()) {
1239 pgtable = pte_alloc_one(vma->vm_mm);
1240 if (!pgtable)
1241 return VM_FAULT_OOM;
1242 }
1243
1244 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1245 if (!pmd_none(*(vmf->pmd))) {
1246 spin_unlock(ptl);
1247 goto fallback;
1248 }
1249
1250 if (pgtable) {
1251 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1252 mm_inc_nr_ptes(vma->vm_mm);
1253 }
1254 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1255 pmd_entry = pmd_mkhuge(pmd_entry);
1256 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1257 spin_unlock(ptl);
1258 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1259 return VM_FAULT_NOPAGE;
1260
1261fallback:
1262 if (pgtable)
1263 pte_free(vma->vm_mm, pgtable);
1264 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1265 return VM_FAULT_FALLBACK;
1266}
1267#else
1268static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1269 const struct iomap_iter *iter, void **entry)
1270{
1271 return VM_FAULT_FALLBACK;
1272}
1273#endif /* CONFIG_FS_DAX_PMD */
1274
1275static s64 dax_unshare_iter(struct iomap_iter *iter)
1276{
1277 struct iomap *iomap = &iter->iomap;
1278 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1279 loff_t pos = iter->pos;
1280 loff_t length = iomap_length(iter);
1281 int id = 0;
1282 s64 ret = 0;
1283 void *daddr = NULL, *saddr = NULL;
1284
1285 /* don't bother with blocks that are not shared to start with */
1286 if (!(iomap->flags & IOMAP_F_SHARED))
1287 return length;
1288
1289 id = dax_read_lock();
1290 ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL);
1291 if (ret < 0)
1292 goto out_unlock;
1293
1294 /* zero the distance if srcmap is HOLE or UNWRITTEN */
1295 if (srcmap->flags & IOMAP_F_SHARED || srcmap->type == IOMAP_UNWRITTEN) {
1296 memset(daddr, 0, length);
1297 dax_flush(iomap->dax_dev, daddr, length);
1298 ret = length;
1299 goto out_unlock;
1300 }
1301
1302 ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL);
1303 if (ret < 0)
1304 goto out_unlock;
1305
1306 if (copy_mc_to_kernel(daddr, saddr, length) == 0)
1307 ret = length;
1308 else
1309 ret = -EIO;
1310
1311out_unlock:
1312 dax_read_unlock(id);
1313 return ret;
1314}
1315
1316int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1317 const struct iomap_ops *ops)
1318{
1319 struct iomap_iter iter = {
1320 .inode = inode,
1321 .pos = pos,
1322 .len = len,
1323 .flags = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1324 };
1325 int ret;
1326
1327 while ((ret = iomap_iter(&iter, ops)) > 0)
1328 iter.processed = dax_unshare_iter(&iter);
1329 return ret;
1330}
1331EXPORT_SYMBOL_GPL(dax_file_unshare);
1332
1333static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1334{
1335 const struct iomap *iomap = &iter->iomap;
1336 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1337 unsigned offset = offset_in_page(pos);
1338 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1339 void *kaddr;
1340 long ret;
1341
1342 ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1343 NULL);
1344 if (ret < 0)
1345 return ret;
1346 memset(kaddr + offset, 0, size);
1347 if (iomap->flags & IOMAP_F_SHARED)
1348 ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1349 kaddr);
1350 else
1351 dax_flush(iomap->dax_dev, kaddr + offset, size);
1352 return ret;
1353}
1354
1355static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1356{
1357 const struct iomap *iomap = &iter->iomap;
1358 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1359 loff_t pos = iter->pos;
1360 u64 length = iomap_length(iter);
1361 s64 written = 0;
1362
1363 /* already zeroed? we're done. */
1364 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1365 return length;
1366
1367 /*
1368 * invalidate the pages whose sharing state is to be changed
1369 * because of CoW.
1370 */
1371 if (iomap->flags & IOMAP_F_SHARED)
1372 invalidate_inode_pages2_range(iter->inode->i_mapping,
1373 pos >> PAGE_SHIFT,
1374 (pos + length - 1) >> PAGE_SHIFT);
1375
1376 do {
1377 unsigned offset = offset_in_page(pos);
1378 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1379 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1380 long rc;
1381 int id;
1382
1383 id = dax_read_lock();
1384 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1385 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1386 else
1387 rc = dax_memzero(iter, pos, size);
1388 dax_read_unlock(id);
1389
1390 if (rc < 0)
1391 return rc;
1392 pos += size;
1393 length -= size;
1394 written += size;
1395 } while (length > 0);
1396
1397 if (did_zero)
1398 *did_zero = true;
1399 return written;
1400}
1401
1402int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1403 const struct iomap_ops *ops)
1404{
1405 struct iomap_iter iter = {
1406 .inode = inode,
1407 .pos = pos,
1408 .len = len,
1409 .flags = IOMAP_DAX | IOMAP_ZERO,
1410 };
1411 int ret;
1412
1413 while ((ret = iomap_iter(&iter, ops)) > 0)
1414 iter.processed = dax_zero_iter(&iter, did_zero);
1415 return ret;
1416}
1417EXPORT_SYMBOL_GPL(dax_zero_range);
1418
1419int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1420 const struct iomap_ops *ops)
1421{
1422 unsigned int blocksize = i_blocksize(inode);
1423 unsigned int off = pos & (blocksize - 1);
1424
1425 /* Block boundary? Nothing to do */
1426 if (!off)
1427 return 0;
1428 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1429}
1430EXPORT_SYMBOL_GPL(dax_truncate_page);
1431
1432static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1433 struct iov_iter *iter)
1434{
1435 const struct iomap *iomap = &iomi->iomap;
1436 const struct iomap *srcmap = iomap_iter_srcmap(iomi);
1437 loff_t length = iomap_length(iomi);
1438 loff_t pos = iomi->pos;
1439 struct dax_device *dax_dev = iomap->dax_dev;
1440 loff_t end = pos + length, done = 0;
1441 bool write = iov_iter_rw(iter) == WRITE;
1442 bool cow = write && iomap->flags & IOMAP_F_SHARED;
1443 ssize_t ret = 0;
1444 size_t xfer;
1445 int id;
1446
1447 if (!write) {
1448 end = min(end, i_size_read(iomi->inode));
1449 if (pos >= end)
1450 return 0;
1451
1452 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1453 return iov_iter_zero(min(length, end - pos), iter);
1454 }
1455
1456 /*
1457 * In DAX mode, enforce either pure overwrites of written extents, or
1458 * writes to unwritten extents as part of a copy-on-write operation.
1459 */
1460 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1461 !(iomap->flags & IOMAP_F_SHARED)))
1462 return -EIO;
1463
1464 /*
1465 * Write can allocate block for an area which has a hole page mapped
1466 * into page tables. We have to tear down these mappings so that data
1467 * written by write(2) is visible in mmap.
1468 */
1469 if (iomap->flags & IOMAP_F_NEW || cow) {
1470 /*
1471 * Filesystem allows CoW on non-shared extents. The src extents
1472 * may have been mmapped with dirty mark before. To be able to
1473 * invalidate its dax entries, we need to clear the dirty mark
1474 * in advance.
1475 */
1476 if (cow)
1477 __dax_clear_dirty_range(iomi->inode->i_mapping,
1478 pos >> PAGE_SHIFT,
1479 (end - 1) >> PAGE_SHIFT);
1480 invalidate_inode_pages2_range(iomi->inode->i_mapping,
1481 pos >> PAGE_SHIFT,
1482 (end - 1) >> PAGE_SHIFT);
1483 }
1484
1485 id = dax_read_lock();
1486 while (pos < end) {
1487 unsigned offset = pos & (PAGE_SIZE - 1);
1488 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1489 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1490 ssize_t map_len;
1491 bool recovery = false;
1492 void *kaddr;
1493
1494 if (fatal_signal_pending(current)) {
1495 ret = -EINTR;
1496 break;
1497 }
1498
1499 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1500 DAX_ACCESS, &kaddr, NULL);
1501 if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1502 map_len = dax_direct_access(dax_dev, pgoff,
1503 PHYS_PFN(size), DAX_RECOVERY_WRITE,
1504 &kaddr, NULL);
1505 if (map_len > 0)
1506 recovery = true;
1507 }
1508 if (map_len < 0) {
1509 ret = map_len;
1510 break;
1511 }
1512
1513 if (cow) {
1514 ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1515 srcmap, kaddr);
1516 if (ret)
1517 break;
1518 }
1519
1520 map_len = PFN_PHYS(map_len);
1521 kaddr += offset;
1522 map_len -= offset;
1523 if (map_len > end - pos)
1524 map_len = end - pos;
1525
1526 if (recovery)
1527 xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1528 map_len, iter);
1529 else if (write)
1530 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1531 map_len, iter);
1532 else
1533 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1534 map_len, iter);
1535
1536 pos += xfer;
1537 length -= xfer;
1538 done += xfer;
1539
1540 if (xfer == 0)
1541 ret = -EFAULT;
1542 if (xfer < map_len)
1543 break;
1544 }
1545 dax_read_unlock(id);
1546
1547 return done ? done : ret;
1548}
1549
1550/**
1551 * dax_iomap_rw - Perform I/O to a DAX file
1552 * @iocb: The control block for this I/O
1553 * @iter: The addresses to do I/O from or to
1554 * @ops: iomap ops passed from the file system
1555 *
1556 * This function performs read and write operations to directly mapped
1557 * persistent memory. The callers needs to take care of read/write exclusion
1558 * and evicting any page cache pages in the region under I/O.
1559 */
1560ssize_t
1561dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1562 const struct iomap_ops *ops)
1563{
1564 struct iomap_iter iomi = {
1565 .inode = iocb->ki_filp->f_mapping->host,
1566 .pos = iocb->ki_pos,
1567 .len = iov_iter_count(iter),
1568 .flags = IOMAP_DAX,
1569 };
1570 loff_t done = 0;
1571 int ret;
1572
1573 if (!iomi.len)
1574 return 0;
1575
1576 if (iov_iter_rw(iter) == WRITE) {
1577 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1578 iomi.flags |= IOMAP_WRITE;
1579 } else {
1580 lockdep_assert_held(&iomi.inode->i_rwsem);
1581 }
1582
1583 if (iocb->ki_flags & IOCB_NOWAIT)
1584 iomi.flags |= IOMAP_NOWAIT;
1585
1586 while ((ret = iomap_iter(&iomi, ops)) > 0)
1587 iomi.processed = dax_iomap_iter(&iomi, iter);
1588
1589 done = iomi.pos - iocb->ki_pos;
1590 iocb->ki_pos = iomi.pos;
1591 return done ? done : ret;
1592}
1593EXPORT_SYMBOL_GPL(dax_iomap_rw);
1594
1595static vm_fault_t dax_fault_return(int error)
1596{
1597 if (error == 0)
1598 return VM_FAULT_NOPAGE;
1599 return vmf_error(error);
1600}
1601
1602/*
1603 * When handling a synchronous page fault and the inode need a fsync, we can
1604 * insert the PTE/PMD into page tables only after that fsync happened. Skip
1605 * insertion for now and return the pfn so that caller can insert it after the
1606 * fsync is done.
1607 */
1608static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1609{
1610 if (WARN_ON_ONCE(!pfnp))
1611 return VM_FAULT_SIGBUS;
1612 *pfnp = pfn;
1613 return VM_FAULT_NEEDDSYNC;
1614}
1615
1616static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1617 const struct iomap_iter *iter)
1618{
1619 vm_fault_t ret;
1620 int error = 0;
1621
1622 switch (iter->iomap.type) {
1623 case IOMAP_HOLE:
1624 case IOMAP_UNWRITTEN:
1625 clear_user_highpage(vmf->cow_page, vmf->address);
1626 break;
1627 case IOMAP_MAPPED:
1628 error = copy_cow_page_dax(vmf, iter);
1629 break;
1630 default:
1631 WARN_ON_ONCE(1);
1632 error = -EIO;
1633 break;
1634 }
1635
1636 if (error)
1637 return dax_fault_return(error);
1638
1639 __SetPageUptodate(vmf->cow_page);
1640 ret = finish_fault(vmf);
1641 if (!ret)
1642 return VM_FAULT_DONE_COW;
1643 return ret;
1644}
1645
1646/**
1647 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1648 * @vmf: vm fault instance
1649 * @iter: iomap iter
1650 * @pfnp: pfn to be returned
1651 * @xas: the dax mapping tree of a file
1652 * @entry: an unlocked dax entry to be inserted
1653 * @pmd: distinguish whether it is a pmd fault
1654 */
1655static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1656 const struct iomap_iter *iter, pfn_t *pfnp,
1657 struct xa_state *xas, void **entry, bool pmd)
1658{
1659 const struct iomap *iomap = &iter->iomap;
1660 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1661 size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1662 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1663 bool write = iter->flags & IOMAP_WRITE;
1664 unsigned long entry_flags = pmd ? DAX_PMD : 0;
1665 int err = 0;
1666 pfn_t pfn;
1667 void *kaddr;
1668
1669 if (!pmd && vmf->cow_page)
1670 return dax_fault_cow_page(vmf, iter);
1671
1672 /* if we are reading UNWRITTEN and HOLE, return a hole. */
1673 if (!write &&
1674 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1675 if (!pmd)
1676 return dax_load_hole(xas, vmf, iter, entry);
1677 return dax_pmd_load_hole(xas, vmf, iter, entry);
1678 }
1679
1680 if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1681 WARN_ON_ONCE(1);
1682 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1683 }
1684
1685 err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1686 if (err)
1687 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1688
1689 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1690
1691 if (write && iomap->flags & IOMAP_F_SHARED) {
1692 err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
1693 if (err)
1694 return dax_fault_return(err);
1695 }
1696
1697 if (dax_fault_is_synchronous(iter, vmf->vma))
1698 return dax_fault_synchronous_pfnp(pfnp, pfn);
1699
1700 /* insert PMD pfn */
1701 if (pmd)
1702 return vmf_insert_pfn_pmd(vmf, pfn, write);
1703
1704 /* insert PTE pfn */
1705 if (write)
1706 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1707 return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1708}
1709
1710static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1711 int *iomap_errp, const struct iomap_ops *ops)
1712{
1713 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1714 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1715 struct iomap_iter iter = {
1716 .inode = mapping->host,
1717 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
1718 .len = PAGE_SIZE,
1719 .flags = IOMAP_DAX | IOMAP_FAULT,
1720 };
1721 vm_fault_t ret = 0;
1722 void *entry;
1723 int error;
1724
1725 trace_dax_pte_fault(iter.inode, vmf, ret);
1726 /*
1727 * Check whether offset isn't beyond end of file now. Caller is supposed
1728 * to hold locks serializing us with truncate / punch hole so this is
1729 * a reliable test.
1730 */
1731 if (iter.pos >= i_size_read(iter.inode)) {
1732 ret = VM_FAULT_SIGBUS;
1733 goto out;
1734 }
1735
1736 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1737 iter.flags |= IOMAP_WRITE;
1738
1739 entry = grab_mapping_entry(&xas, mapping, 0);
1740 if (xa_is_internal(entry)) {
1741 ret = xa_to_internal(entry);
1742 goto out;
1743 }
1744
1745 /*
1746 * It is possible, particularly with mixed reads & writes to private
1747 * mappings, that we have raced with a PMD fault that overlaps with
1748 * the PTE we need to set up. If so just return and the fault will be
1749 * retried.
1750 */
1751 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1752 ret = VM_FAULT_NOPAGE;
1753 goto unlock_entry;
1754 }
1755
1756 while ((error = iomap_iter(&iter, ops)) > 0) {
1757 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1758 iter.processed = -EIO; /* fs corruption? */
1759 continue;
1760 }
1761
1762 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1763 if (ret != VM_FAULT_SIGBUS &&
1764 (iter.iomap.flags & IOMAP_F_NEW)) {
1765 count_vm_event(PGMAJFAULT);
1766 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1767 ret |= VM_FAULT_MAJOR;
1768 }
1769
1770 if (!(ret & VM_FAULT_ERROR))
1771 iter.processed = PAGE_SIZE;
1772 }
1773
1774 if (iomap_errp)
1775 *iomap_errp = error;
1776 if (!ret && error)
1777 ret = dax_fault_return(error);
1778
1779unlock_entry:
1780 dax_unlock_entry(&xas, entry);
1781out:
1782 trace_dax_pte_fault_done(iter.inode, vmf, ret);
1783 return ret;
1784}
1785
1786#ifdef CONFIG_FS_DAX_PMD
1787static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1788 pgoff_t max_pgoff)
1789{
1790 unsigned long pmd_addr = vmf->address & PMD_MASK;
1791 bool write = vmf->flags & FAULT_FLAG_WRITE;
1792
1793 /*
1794 * Make sure that the faulting address's PMD offset (color) matches
1795 * the PMD offset from the start of the file. This is necessary so
1796 * that a PMD range in the page table overlaps exactly with a PMD
1797 * range in the page cache.
1798 */
1799 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1800 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1801 return true;
1802
1803 /* Fall back to PTEs if we're going to COW */
1804 if (write && !(vmf->vma->vm_flags & VM_SHARED))
1805 return true;
1806
1807 /* If the PMD would extend outside the VMA */
1808 if (pmd_addr < vmf->vma->vm_start)
1809 return true;
1810 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1811 return true;
1812
1813 /* If the PMD would extend beyond the file size */
1814 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1815 return true;
1816
1817 return false;
1818}
1819
1820static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1821 const struct iomap_ops *ops)
1822{
1823 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1824 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1825 struct iomap_iter iter = {
1826 .inode = mapping->host,
1827 .len = PMD_SIZE,
1828 .flags = IOMAP_DAX | IOMAP_FAULT,
1829 };
1830 vm_fault_t ret = VM_FAULT_FALLBACK;
1831 pgoff_t max_pgoff;
1832 void *entry;
1833 int error;
1834
1835 if (vmf->flags & FAULT_FLAG_WRITE)
1836 iter.flags |= IOMAP_WRITE;
1837
1838 /*
1839 * Check whether offset isn't beyond end of file now. Caller is
1840 * supposed to hold locks serializing us with truncate / punch hole so
1841 * this is a reliable test.
1842 */
1843 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1844
1845 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1846
1847 if (xas.xa_index >= max_pgoff) {
1848 ret = VM_FAULT_SIGBUS;
1849 goto out;
1850 }
1851
1852 if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1853 goto fallback;
1854
1855 /*
1856 * grab_mapping_entry() will make sure we get an empty PMD entry,
1857 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1858 * entry is already in the array, for instance), it will return
1859 * VM_FAULT_FALLBACK.
1860 */
1861 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1862 if (xa_is_internal(entry)) {
1863 ret = xa_to_internal(entry);
1864 goto fallback;
1865 }
1866
1867 /*
1868 * It is possible, particularly with mixed reads & writes to private
1869 * mappings, that we have raced with a PTE fault that overlaps with
1870 * the PMD we need to set up. If so just return and the fault will be
1871 * retried.
1872 */
1873 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1874 !pmd_devmap(*vmf->pmd)) {
1875 ret = 0;
1876 goto unlock_entry;
1877 }
1878
1879 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1880 while ((error = iomap_iter(&iter, ops)) > 0) {
1881 if (iomap_length(&iter) < PMD_SIZE)
1882 continue; /* actually breaks out of the loop */
1883
1884 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1885 if (ret != VM_FAULT_FALLBACK)
1886 iter.processed = PMD_SIZE;
1887 }
1888
1889unlock_entry:
1890 dax_unlock_entry(&xas, entry);
1891fallback:
1892 if (ret == VM_FAULT_FALLBACK) {
1893 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1894 count_vm_event(THP_FAULT_FALLBACK);
1895 }
1896out:
1897 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1898 return ret;
1899}
1900#else
1901static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1902 const struct iomap_ops *ops)
1903{
1904 return VM_FAULT_FALLBACK;
1905}
1906#endif /* CONFIG_FS_DAX_PMD */
1907
1908/**
1909 * dax_iomap_fault - handle a page fault on a DAX file
1910 * @vmf: The description of the fault
1911 * @pe_size: Size of the page to fault in
1912 * @pfnp: PFN to insert for synchronous faults if fsync is required
1913 * @iomap_errp: Storage for detailed error code in case of error
1914 * @ops: Iomap ops passed from the file system
1915 *
1916 * When a page fault occurs, filesystems may call this helper in
1917 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1918 * has done all the necessary locking for page fault to proceed
1919 * successfully.
1920 */
1921vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1922 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1923{
1924 switch (pe_size) {
1925 case PE_SIZE_PTE:
1926 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1927 case PE_SIZE_PMD:
1928 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1929 default:
1930 return VM_FAULT_FALLBACK;
1931 }
1932}
1933EXPORT_SYMBOL_GPL(dax_iomap_fault);
1934
1935/*
1936 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1937 * @vmf: The description of the fault
1938 * @pfn: PFN to insert
1939 * @order: Order of entry to insert.
1940 *
1941 * This function inserts a writeable PTE or PMD entry into the page tables
1942 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1943 */
1944static vm_fault_t
1945dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1946{
1947 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1948 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1949 void *entry;
1950 vm_fault_t ret;
1951
1952 xas_lock_irq(&xas);
1953 entry = get_unlocked_entry(&xas, order);
1954 /* Did we race with someone splitting entry or so? */
1955 if (!entry || dax_is_conflict(entry) ||
1956 (order == 0 && !dax_is_pte_entry(entry))) {
1957 put_unlocked_entry(&xas, entry, WAKE_NEXT);
1958 xas_unlock_irq(&xas);
1959 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1960 VM_FAULT_NOPAGE);
1961 return VM_FAULT_NOPAGE;
1962 }
1963 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1964 dax_lock_entry(&xas, entry);
1965 xas_unlock_irq(&xas);
1966 if (order == 0)
1967 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1968#ifdef CONFIG_FS_DAX_PMD
1969 else if (order == PMD_ORDER)
1970 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1971#endif
1972 else
1973 ret = VM_FAULT_FALLBACK;
1974 dax_unlock_entry(&xas, entry);
1975 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1976 return ret;
1977}
1978
1979/**
1980 * dax_finish_sync_fault - finish synchronous page fault
1981 * @vmf: The description of the fault
1982 * @pe_size: Size of entry to be inserted
1983 * @pfn: PFN to insert
1984 *
1985 * This function ensures that the file range touched by the page fault is
1986 * stored persistently on the media and handles inserting of appropriate page
1987 * table entry.
1988 */
1989vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1990 enum page_entry_size pe_size, pfn_t pfn)
1991{
1992 int err;
1993 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1994 unsigned int order = pe_order(pe_size);
1995 size_t len = PAGE_SIZE << order;
1996
1997 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1998 if (err)
1999 return VM_FAULT_SIGBUS;
2000 return dax_insert_pfn_mkwrite(vmf, pfn, order);
2001}
2002EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
2003
2004static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
2005 struct iomap_iter *it_dest, u64 len, bool *same)
2006{
2007 const struct iomap *smap = &it_src->iomap;
2008 const struct iomap *dmap = &it_dest->iomap;
2009 loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
2010 void *saddr, *daddr;
2011 int id, ret;
2012
2013 len = min(len, min(smap->length, dmap->length));
2014
2015 if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
2016 *same = true;
2017 return len;
2018 }
2019
2020 if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
2021 *same = false;
2022 return 0;
2023 }
2024
2025 id = dax_read_lock();
2026 ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
2027 &saddr, NULL);
2028 if (ret < 0)
2029 goto out_unlock;
2030
2031 ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
2032 &daddr, NULL);
2033 if (ret < 0)
2034 goto out_unlock;
2035
2036 *same = !memcmp(saddr, daddr, len);
2037 if (!*same)
2038 len = 0;
2039 dax_read_unlock(id);
2040 return len;
2041
2042out_unlock:
2043 dax_read_unlock(id);
2044 return -EIO;
2045}
2046
2047int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2048 struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2049 const struct iomap_ops *ops)
2050{
2051 struct iomap_iter src_iter = {
2052 .inode = src,
2053 .pos = srcoff,
2054 .len = len,
2055 .flags = IOMAP_DAX,
2056 };
2057 struct iomap_iter dst_iter = {
2058 .inode = dst,
2059 .pos = dstoff,
2060 .len = len,
2061 .flags = IOMAP_DAX,
2062 };
2063 int ret, compared = 0;
2064
2065 while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2066 (ret = iomap_iter(&dst_iter, ops)) > 0) {
2067 compared = dax_range_compare_iter(&src_iter, &dst_iter,
2068 min(src_iter.len, dst_iter.len), same);
2069 if (compared < 0)
2070 return ret;
2071 src_iter.processed = dst_iter.processed = compared;
2072 }
2073 return ret;
2074}
2075
2076int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2077 struct file *file_out, loff_t pos_out,
2078 loff_t *len, unsigned int remap_flags,
2079 const struct iomap_ops *ops)
2080{
2081 return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2082 pos_out, len, remap_flags, ops);
2083}
2084EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);