| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2008 Oracle. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/sched.h> |
| 7 | #include <linux/slab.h> |
| 8 | #include <linux/blkdev.h> |
| 9 | #include <linux/list_sort.h> |
| 10 | #include <linux/iversion.h> |
| 11 | #include "misc.h" |
| 12 | #include "ctree.h" |
| 13 | #include "tree-log.h" |
| 14 | #include "disk-io.h" |
| 15 | #include "locking.h" |
| 16 | #include "backref.h" |
| 17 | #include "compression.h" |
| 18 | #include "qgroup.h" |
| 19 | #include "block-group.h" |
| 20 | #include "space-info.h" |
| 21 | #include "inode-item.h" |
| 22 | #include "fs.h" |
| 23 | #include "accessors.h" |
| 24 | #include "extent-tree.h" |
| 25 | #include "root-tree.h" |
| 26 | #include "dir-item.h" |
| 27 | #include "file-item.h" |
| 28 | #include "file.h" |
| 29 | #include "orphan.h" |
| 30 | #include "tree-checker.h" |
| 31 | |
| 32 | #define MAX_CONFLICT_INODES 10 |
| 33 | |
| 34 | /* magic values for the inode_only field in btrfs_log_inode: |
| 35 | * |
| 36 | * LOG_INODE_ALL means to log everything |
| 37 | * LOG_INODE_EXISTS means to log just enough to recreate the inode |
| 38 | * during log replay |
| 39 | */ |
| 40 | enum { |
| 41 | LOG_INODE_ALL, |
| 42 | LOG_INODE_EXISTS, |
| 43 | }; |
| 44 | |
| 45 | /* |
| 46 | * directory trouble cases |
| 47 | * |
| 48 | * 1) on rename or unlink, if the inode being unlinked isn't in the fsync |
| 49 | * log, we must force a full commit before doing an fsync of the directory |
| 50 | * where the unlink was done. |
| 51 | * ---> record transid of last unlink/rename per directory |
| 52 | * |
| 53 | * mkdir foo/some_dir |
| 54 | * normal commit |
| 55 | * rename foo/some_dir foo2/some_dir |
| 56 | * mkdir foo/some_dir |
| 57 | * fsync foo/some_dir/some_file |
| 58 | * |
| 59 | * The fsync above will unlink the original some_dir without recording |
| 60 | * it in its new location (foo2). After a crash, some_dir will be gone |
| 61 | * unless the fsync of some_file forces a full commit |
| 62 | * |
| 63 | * 2) we must log any new names for any file or dir that is in the fsync |
| 64 | * log. ---> check inode while renaming/linking. |
| 65 | * |
| 66 | * 2a) we must log any new names for any file or dir during rename |
| 67 | * when the directory they are being removed from was logged. |
| 68 | * ---> check inode and old parent dir during rename |
| 69 | * |
| 70 | * 2a is actually the more important variant. With the extra logging |
| 71 | * a crash might unlink the old name without recreating the new one |
| 72 | * |
| 73 | * 3) after a crash, we must go through any directories with a link count |
| 74 | * of zero and redo the rm -rf |
| 75 | * |
| 76 | * mkdir f1/foo |
| 77 | * normal commit |
| 78 | * rm -rf f1/foo |
| 79 | * fsync(f1) |
| 80 | * |
| 81 | * The directory f1 was fully removed from the FS, but fsync was never |
| 82 | * called on f1, only its parent dir. After a crash the rm -rf must |
| 83 | * be replayed. This must be able to recurse down the entire |
| 84 | * directory tree. The inode link count fixup code takes care of the |
| 85 | * ugly details. |
| 86 | */ |
| 87 | |
| 88 | /* |
| 89 | * stages for the tree walking. The first |
| 90 | * stage (0) is to only pin down the blocks we find |
| 91 | * the second stage (1) is to make sure that all the inodes |
| 92 | * we find in the log are created in the subvolume. |
| 93 | * |
| 94 | * The last stage is to deal with directories and links and extents |
| 95 | * and all the other fun semantics |
| 96 | */ |
| 97 | enum { |
| 98 | LOG_WALK_PIN_ONLY, |
| 99 | LOG_WALK_REPLAY_INODES, |
| 100 | LOG_WALK_REPLAY_DIR_INDEX, |
| 101 | LOG_WALK_REPLAY_ALL, |
| 102 | }; |
| 103 | |
| 104 | static int btrfs_log_inode(struct btrfs_trans_handle *trans, |
| 105 | struct btrfs_inode *inode, |
| 106 | int inode_only, |
| 107 | struct btrfs_log_ctx *ctx); |
| 108 | static int link_to_fixup_dir(struct btrfs_trans_handle *trans, |
| 109 | struct btrfs_root *root, |
| 110 | struct btrfs_path *path, u64 objectid); |
| 111 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, |
| 112 | struct btrfs_root *root, |
| 113 | struct btrfs_root *log, |
| 114 | struct btrfs_path *path, |
| 115 | u64 dirid, int del_all); |
| 116 | static void wait_log_commit(struct btrfs_root *root, int transid); |
| 117 | |
| 118 | /* |
| 119 | * tree logging is a special write ahead log used to make sure that |
| 120 | * fsyncs and O_SYNCs can happen without doing full tree commits. |
| 121 | * |
| 122 | * Full tree commits are expensive because they require commonly |
| 123 | * modified blocks to be recowed, creating many dirty pages in the |
| 124 | * extent tree an 4x-6x higher write load than ext3. |
| 125 | * |
| 126 | * Instead of doing a tree commit on every fsync, we use the |
| 127 | * key ranges and transaction ids to find items for a given file or directory |
| 128 | * that have changed in this transaction. Those items are copied into |
| 129 | * a special tree (one per subvolume root), that tree is written to disk |
| 130 | * and then the fsync is considered complete. |
| 131 | * |
| 132 | * After a crash, items are copied out of the log-tree back into the |
| 133 | * subvolume tree. Any file data extents found are recorded in the extent |
| 134 | * allocation tree, and the log-tree freed. |
| 135 | * |
| 136 | * The log tree is read three times, once to pin down all the extents it is |
| 137 | * using in ram and once, once to create all the inodes logged in the tree |
| 138 | * and once to do all the other items. |
| 139 | */ |
| 140 | |
| 141 | static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root) |
| 142 | { |
| 143 | unsigned int nofs_flag; |
| 144 | struct btrfs_inode *inode; |
| 145 | |
| 146 | /* Only meant to be called for subvolume roots and not for log roots. */ |
| 147 | ASSERT(is_fstree(btrfs_root_id(root))); |
| 148 | |
| 149 | /* |
| 150 | * We're holding a transaction handle whether we are logging or |
| 151 | * replaying a log tree, so we must make sure NOFS semantics apply |
| 152 | * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL |
| 153 | * to allocate an inode, which can recurse back into the filesystem and |
| 154 | * attempt a transaction commit, resulting in a deadlock. |
| 155 | */ |
| 156 | nofs_flag = memalloc_nofs_save(); |
| 157 | inode = btrfs_iget(objectid, root); |
| 158 | memalloc_nofs_restore(nofs_flag); |
| 159 | |
| 160 | return inode; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * start a sub transaction and setup the log tree |
| 165 | * this increments the log tree writer count to make the people |
| 166 | * syncing the tree wait for us to finish |
| 167 | */ |
| 168 | static int start_log_trans(struct btrfs_trans_handle *trans, |
| 169 | struct btrfs_root *root, |
| 170 | struct btrfs_log_ctx *ctx) |
| 171 | { |
| 172 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 173 | struct btrfs_root *tree_root = fs_info->tree_root; |
| 174 | const bool zoned = btrfs_is_zoned(fs_info); |
| 175 | int ret = 0; |
| 176 | bool created = false; |
| 177 | |
| 178 | /* |
| 179 | * First check if the log root tree was already created. If not, create |
| 180 | * it before locking the root's log_mutex, just to keep lockdep happy. |
| 181 | */ |
| 182 | if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { |
| 183 | mutex_lock(&tree_root->log_mutex); |
| 184 | if (!fs_info->log_root_tree) { |
| 185 | ret = btrfs_init_log_root_tree(trans, fs_info); |
| 186 | if (!ret) { |
| 187 | set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); |
| 188 | created = true; |
| 189 | } |
| 190 | } |
| 191 | mutex_unlock(&tree_root->log_mutex); |
| 192 | if (ret) |
| 193 | return ret; |
| 194 | } |
| 195 | |
| 196 | mutex_lock(&root->log_mutex); |
| 197 | |
| 198 | again: |
| 199 | if (root->log_root) { |
| 200 | int index = (root->log_transid + 1) % 2; |
| 201 | |
| 202 | if (btrfs_need_log_full_commit(trans)) { |
| 203 | ret = BTRFS_LOG_FORCE_COMMIT; |
| 204 | goto out; |
| 205 | } |
| 206 | |
| 207 | if (zoned && atomic_read(&root->log_commit[index])) { |
| 208 | wait_log_commit(root, root->log_transid - 1); |
| 209 | goto again; |
| 210 | } |
| 211 | |
| 212 | if (!root->log_start_pid) { |
| 213 | clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); |
| 214 | root->log_start_pid = current->pid; |
| 215 | } else if (root->log_start_pid != current->pid) { |
| 216 | set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); |
| 217 | } |
| 218 | } else { |
| 219 | /* |
| 220 | * This means fs_info->log_root_tree was already created |
| 221 | * for some other FS trees. Do the full commit not to mix |
| 222 | * nodes from multiple log transactions to do sequential |
| 223 | * writing. |
| 224 | */ |
| 225 | if (zoned && !created) { |
| 226 | ret = BTRFS_LOG_FORCE_COMMIT; |
| 227 | goto out; |
| 228 | } |
| 229 | |
| 230 | ret = btrfs_add_log_tree(trans, root); |
| 231 | if (ret) |
| 232 | goto out; |
| 233 | |
| 234 | set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); |
| 235 | clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); |
| 236 | root->log_start_pid = current->pid; |
| 237 | } |
| 238 | |
| 239 | atomic_inc(&root->log_writers); |
| 240 | if (!ctx->logging_new_name) { |
| 241 | int index = root->log_transid % 2; |
| 242 | list_add_tail(&ctx->list, &root->log_ctxs[index]); |
| 243 | ctx->log_transid = root->log_transid; |
| 244 | } |
| 245 | |
| 246 | out: |
| 247 | mutex_unlock(&root->log_mutex); |
| 248 | return ret; |
| 249 | } |
| 250 | |
| 251 | /* |
| 252 | * returns 0 if there was a log transaction running and we were able |
| 253 | * to join, or returns -ENOENT if there were not transactions |
| 254 | * in progress |
| 255 | */ |
| 256 | static int join_running_log_trans(struct btrfs_root *root) |
| 257 | { |
| 258 | const bool zoned = btrfs_is_zoned(root->fs_info); |
| 259 | int ret = -ENOENT; |
| 260 | |
| 261 | if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) |
| 262 | return ret; |
| 263 | |
| 264 | mutex_lock(&root->log_mutex); |
| 265 | again: |
| 266 | if (root->log_root) { |
| 267 | int index = (root->log_transid + 1) % 2; |
| 268 | |
| 269 | ret = 0; |
| 270 | if (zoned && atomic_read(&root->log_commit[index])) { |
| 271 | wait_log_commit(root, root->log_transid - 1); |
| 272 | goto again; |
| 273 | } |
| 274 | atomic_inc(&root->log_writers); |
| 275 | } |
| 276 | mutex_unlock(&root->log_mutex); |
| 277 | return ret; |
| 278 | } |
| 279 | |
| 280 | /* |
| 281 | * This either makes the current running log transaction wait |
| 282 | * until you call btrfs_end_log_trans() or it makes any future |
| 283 | * log transactions wait until you call btrfs_end_log_trans() |
| 284 | */ |
| 285 | void btrfs_pin_log_trans(struct btrfs_root *root) |
| 286 | { |
| 287 | atomic_inc(&root->log_writers); |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * indicate we're done making changes to the log tree |
| 292 | * and wake up anyone waiting to do a sync |
| 293 | */ |
| 294 | void btrfs_end_log_trans(struct btrfs_root *root) |
| 295 | { |
| 296 | if (atomic_dec_and_test(&root->log_writers)) { |
| 297 | /* atomic_dec_and_test implies a barrier */ |
| 298 | cond_wake_up_nomb(&root->log_writer_wait); |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | /* |
| 303 | * the walk control struct is used to pass state down the chain when |
| 304 | * processing the log tree. The stage field tells us which part |
| 305 | * of the log tree processing we are currently doing. The others |
| 306 | * are state fields used for that specific part |
| 307 | */ |
| 308 | struct walk_control { |
| 309 | /* should we free the extent on disk when done? This is used |
| 310 | * at transaction commit time while freeing a log tree |
| 311 | */ |
| 312 | int free; |
| 313 | |
| 314 | /* pin only walk, we record which extents on disk belong to the |
| 315 | * log trees |
| 316 | */ |
| 317 | int pin; |
| 318 | |
| 319 | /* what stage of the replay code we're currently in */ |
| 320 | int stage; |
| 321 | |
| 322 | /* |
| 323 | * Ignore any items from the inode currently being processed. Needs |
| 324 | * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in |
| 325 | * the LOG_WALK_REPLAY_INODES stage. |
| 326 | */ |
| 327 | bool ignore_cur_inode; |
| 328 | |
| 329 | /* the root we are currently replaying */ |
| 330 | struct btrfs_root *replay_dest; |
| 331 | |
| 332 | /* the trans handle for the current replay */ |
| 333 | struct btrfs_trans_handle *trans; |
| 334 | |
| 335 | /* the function that gets used to process blocks we find in the |
| 336 | * tree. Note the extent_buffer might not be up to date when it is |
| 337 | * passed in, and it must be checked or read if you need the data |
| 338 | * inside it |
| 339 | */ |
| 340 | int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, |
| 341 | struct walk_control *wc, u64 gen, int level); |
| 342 | }; |
| 343 | |
| 344 | /* |
| 345 | * process_func used to pin down extents, write them or wait on them |
| 346 | */ |
| 347 | static int process_one_buffer(struct btrfs_root *log, |
| 348 | struct extent_buffer *eb, |
| 349 | struct walk_control *wc, u64 gen, int level) |
| 350 | { |
| 351 | struct btrfs_fs_info *fs_info = log->fs_info; |
| 352 | int ret = 0; |
| 353 | |
| 354 | /* |
| 355 | * If this fs is mixed then we need to be able to process the leaves to |
| 356 | * pin down any logged extents, so we have to read the block. |
| 357 | */ |
| 358 | if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { |
| 359 | struct btrfs_tree_parent_check check = { |
| 360 | .level = level, |
| 361 | .transid = gen |
| 362 | }; |
| 363 | |
| 364 | ret = btrfs_read_extent_buffer(eb, &check); |
| 365 | if (ret) |
| 366 | return ret; |
| 367 | } |
| 368 | |
| 369 | if (wc->pin) { |
| 370 | ret = btrfs_pin_extent_for_log_replay(wc->trans, eb); |
| 371 | if (ret) |
| 372 | return ret; |
| 373 | |
| 374 | if (btrfs_buffer_uptodate(eb, gen, 0) && |
| 375 | btrfs_header_level(eb) == 0) |
| 376 | ret = btrfs_exclude_logged_extents(eb); |
| 377 | } |
| 378 | return ret; |
| 379 | } |
| 380 | |
| 381 | /* |
| 382 | * Item overwrite used by log replay. The given eb, slot and key all refer to |
| 383 | * the source data we are copying out. |
| 384 | * |
| 385 | * The given root is for the tree we are copying into, and path is a scratch |
| 386 | * path for use in this function (it should be released on entry and will be |
| 387 | * released on exit). |
| 388 | * |
| 389 | * If the key is already in the destination tree the existing item is |
| 390 | * overwritten. If the existing item isn't big enough, it is extended. |
| 391 | * If it is too large, it is truncated. |
| 392 | * |
| 393 | * If the key isn't in the destination yet, a new item is inserted. |
| 394 | */ |
| 395 | static int overwrite_item(struct btrfs_trans_handle *trans, |
| 396 | struct btrfs_root *root, |
| 397 | struct btrfs_path *path, |
| 398 | struct extent_buffer *eb, int slot, |
| 399 | struct btrfs_key *key) |
| 400 | { |
| 401 | int ret; |
| 402 | u32 item_size; |
| 403 | u64 saved_i_size = 0; |
| 404 | int save_old_i_size = 0; |
| 405 | unsigned long src_ptr; |
| 406 | unsigned long dst_ptr; |
| 407 | struct extent_buffer *dst_eb; |
| 408 | int dst_slot; |
| 409 | bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; |
| 410 | |
| 411 | /* |
| 412 | * This is only used during log replay, so the root is always from a |
| 413 | * fs/subvolume tree. In case we ever need to support a log root, then |
| 414 | * we'll have to clone the leaf in the path, release the path and use |
| 415 | * the leaf before writing into the log tree. See the comments at |
| 416 | * copy_items() for more details. |
| 417 | */ |
| 418 | ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); |
| 419 | |
| 420 | item_size = btrfs_item_size(eb, slot); |
| 421 | src_ptr = btrfs_item_ptr_offset(eb, slot); |
| 422 | |
| 423 | /* Look for the key in the destination tree. */ |
| 424 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
| 425 | if (ret < 0) |
| 426 | return ret; |
| 427 | |
| 428 | dst_eb = path->nodes[0]; |
| 429 | dst_slot = path->slots[0]; |
| 430 | |
| 431 | if (ret == 0) { |
| 432 | char *src_copy; |
| 433 | const u32 dst_size = btrfs_item_size(dst_eb, dst_slot); |
| 434 | |
| 435 | if (dst_size != item_size) |
| 436 | goto insert; |
| 437 | |
| 438 | if (item_size == 0) { |
| 439 | btrfs_release_path(path); |
| 440 | return 0; |
| 441 | } |
| 442 | src_copy = kmalloc(item_size, GFP_NOFS); |
| 443 | if (!src_copy) { |
| 444 | btrfs_release_path(path); |
| 445 | return -ENOMEM; |
| 446 | } |
| 447 | |
| 448 | read_extent_buffer(eb, src_copy, src_ptr, item_size); |
| 449 | dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot); |
| 450 | ret = memcmp_extent_buffer(dst_eb, src_copy, dst_ptr, item_size); |
| 451 | |
| 452 | kfree(src_copy); |
| 453 | /* |
| 454 | * they have the same contents, just return, this saves |
| 455 | * us from cowing blocks in the destination tree and doing |
| 456 | * extra writes that may not have been done by a previous |
| 457 | * sync |
| 458 | */ |
| 459 | if (ret == 0) { |
| 460 | btrfs_release_path(path); |
| 461 | return 0; |
| 462 | } |
| 463 | |
| 464 | /* |
| 465 | * We need to load the old nbytes into the inode so when we |
| 466 | * replay the extents we've logged we get the right nbytes. |
| 467 | */ |
| 468 | if (inode_item) { |
| 469 | struct btrfs_inode_item *item; |
| 470 | u64 nbytes; |
| 471 | u32 mode; |
| 472 | |
| 473 | item = btrfs_item_ptr(dst_eb, dst_slot, |
| 474 | struct btrfs_inode_item); |
| 475 | nbytes = btrfs_inode_nbytes(dst_eb, item); |
| 476 | item = btrfs_item_ptr(eb, slot, |
| 477 | struct btrfs_inode_item); |
| 478 | btrfs_set_inode_nbytes(eb, item, nbytes); |
| 479 | |
| 480 | /* |
| 481 | * If this is a directory we need to reset the i_size to |
| 482 | * 0 so that we can set it up properly when replaying |
| 483 | * the rest of the items in this log. |
| 484 | */ |
| 485 | mode = btrfs_inode_mode(eb, item); |
| 486 | if (S_ISDIR(mode)) |
| 487 | btrfs_set_inode_size(eb, item, 0); |
| 488 | } |
| 489 | } else if (inode_item) { |
| 490 | struct btrfs_inode_item *item; |
| 491 | u32 mode; |
| 492 | |
| 493 | /* |
| 494 | * New inode, set nbytes to 0 so that the nbytes comes out |
| 495 | * properly when we replay the extents. |
| 496 | */ |
| 497 | item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); |
| 498 | btrfs_set_inode_nbytes(eb, item, 0); |
| 499 | |
| 500 | /* |
| 501 | * If this is a directory we need to reset the i_size to 0 so |
| 502 | * that we can set it up properly when replaying the rest of |
| 503 | * the items in this log. |
| 504 | */ |
| 505 | mode = btrfs_inode_mode(eb, item); |
| 506 | if (S_ISDIR(mode)) |
| 507 | btrfs_set_inode_size(eb, item, 0); |
| 508 | } |
| 509 | insert: |
| 510 | btrfs_release_path(path); |
| 511 | /* try to insert the key into the destination tree */ |
| 512 | path->skip_release_on_error = 1; |
| 513 | ret = btrfs_insert_empty_item(trans, root, path, |
| 514 | key, item_size); |
| 515 | path->skip_release_on_error = 0; |
| 516 | |
| 517 | dst_eb = path->nodes[0]; |
| 518 | dst_slot = path->slots[0]; |
| 519 | |
| 520 | /* make sure any existing item is the correct size */ |
| 521 | if (ret == -EEXIST || ret == -EOVERFLOW) { |
| 522 | const u32 found_size = btrfs_item_size(dst_eb, dst_slot); |
| 523 | |
| 524 | if (found_size > item_size) |
| 525 | btrfs_truncate_item(trans, path, item_size, 1); |
| 526 | else if (found_size < item_size) |
| 527 | btrfs_extend_item(trans, path, item_size - found_size); |
| 528 | } else if (ret) { |
| 529 | return ret; |
| 530 | } |
| 531 | dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot); |
| 532 | |
| 533 | /* don't overwrite an existing inode if the generation number |
| 534 | * was logged as zero. This is done when the tree logging code |
| 535 | * is just logging an inode to make sure it exists after recovery. |
| 536 | * |
| 537 | * Also, don't overwrite i_size on directories during replay. |
| 538 | * log replay inserts and removes directory items based on the |
| 539 | * state of the tree found in the subvolume, and i_size is modified |
| 540 | * as it goes |
| 541 | */ |
| 542 | if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { |
| 543 | struct btrfs_inode_item *src_item; |
| 544 | struct btrfs_inode_item *dst_item; |
| 545 | |
| 546 | src_item = (struct btrfs_inode_item *)src_ptr; |
| 547 | dst_item = (struct btrfs_inode_item *)dst_ptr; |
| 548 | |
| 549 | if (btrfs_inode_generation(eb, src_item) == 0) { |
| 550 | const u64 ino_size = btrfs_inode_size(eb, src_item); |
| 551 | |
| 552 | /* |
| 553 | * For regular files an ino_size == 0 is used only when |
| 554 | * logging that an inode exists, as part of a directory |
| 555 | * fsync, and the inode wasn't fsynced before. In this |
| 556 | * case don't set the size of the inode in the fs/subvol |
| 557 | * tree, otherwise we would be throwing valid data away. |
| 558 | */ |
| 559 | if (S_ISREG(btrfs_inode_mode(eb, src_item)) && |
| 560 | S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && |
| 561 | ino_size != 0) |
| 562 | btrfs_set_inode_size(dst_eb, dst_item, ino_size); |
| 563 | goto no_copy; |
| 564 | } |
| 565 | |
| 566 | if (S_ISDIR(btrfs_inode_mode(eb, src_item)) && |
| 567 | S_ISDIR(btrfs_inode_mode(dst_eb, dst_item))) { |
| 568 | save_old_i_size = 1; |
| 569 | saved_i_size = btrfs_inode_size(dst_eb, dst_item); |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | copy_extent_buffer(dst_eb, eb, dst_ptr, src_ptr, item_size); |
| 574 | |
| 575 | if (save_old_i_size) { |
| 576 | struct btrfs_inode_item *dst_item; |
| 577 | |
| 578 | dst_item = (struct btrfs_inode_item *)dst_ptr; |
| 579 | btrfs_set_inode_size(dst_eb, dst_item, saved_i_size); |
| 580 | } |
| 581 | |
| 582 | /* make sure the generation is filled in */ |
| 583 | if (key->type == BTRFS_INODE_ITEM_KEY) { |
| 584 | struct btrfs_inode_item *dst_item; |
| 585 | |
| 586 | dst_item = (struct btrfs_inode_item *)dst_ptr; |
| 587 | if (btrfs_inode_generation(dst_eb, dst_item) == 0) |
| 588 | btrfs_set_inode_generation(dst_eb, dst_item, trans->transid); |
| 589 | } |
| 590 | no_copy: |
| 591 | btrfs_release_path(path); |
| 592 | return 0; |
| 593 | } |
| 594 | |
| 595 | static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len, |
| 596 | struct fscrypt_str *name) |
| 597 | { |
| 598 | char *buf; |
| 599 | |
| 600 | buf = kmalloc(len, GFP_NOFS); |
| 601 | if (!buf) |
| 602 | return -ENOMEM; |
| 603 | |
| 604 | read_extent_buffer(eb, buf, (unsigned long)start, len); |
| 605 | name->name = buf; |
| 606 | name->len = len; |
| 607 | return 0; |
| 608 | } |
| 609 | |
| 610 | /* replays a single extent in 'eb' at 'slot' with 'key' into the |
| 611 | * subvolume 'root'. path is released on entry and should be released |
| 612 | * on exit. |
| 613 | * |
| 614 | * extents in the log tree have not been allocated out of the extent |
| 615 | * tree yet. So, this completes the allocation, taking a reference |
| 616 | * as required if the extent already exists or creating a new extent |
| 617 | * if it isn't in the extent allocation tree yet. |
| 618 | * |
| 619 | * The extent is inserted into the file, dropping any existing extents |
| 620 | * from the file that overlap the new one. |
| 621 | */ |
| 622 | static noinline int replay_one_extent(struct btrfs_trans_handle *trans, |
| 623 | struct btrfs_root *root, |
| 624 | struct btrfs_path *path, |
| 625 | struct extent_buffer *eb, int slot, |
| 626 | struct btrfs_key *key) |
| 627 | { |
| 628 | struct btrfs_drop_extents_args drop_args = { 0 }; |
| 629 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 630 | int found_type; |
| 631 | u64 extent_end; |
| 632 | u64 start = key->offset; |
| 633 | u64 nbytes = 0; |
| 634 | struct btrfs_file_extent_item *item; |
| 635 | struct btrfs_inode *inode = NULL; |
| 636 | unsigned long size; |
| 637 | int ret = 0; |
| 638 | |
| 639 | item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); |
| 640 | found_type = btrfs_file_extent_type(eb, item); |
| 641 | |
| 642 | if (found_type == BTRFS_FILE_EXTENT_REG || |
| 643 | found_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| 644 | nbytes = btrfs_file_extent_num_bytes(eb, item); |
| 645 | extent_end = start + nbytes; |
| 646 | |
| 647 | /* |
| 648 | * We don't add to the inodes nbytes if we are prealloc or a |
| 649 | * hole. |
| 650 | */ |
| 651 | if (btrfs_file_extent_disk_bytenr(eb, item) == 0) |
| 652 | nbytes = 0; |
| 653 | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { |
| 654 | size = btrfs_file_extent_ram_bytes(eb, item); |
| 655 | nbytes = btrfs_file_extent_ram_bytes(eb, item); |
| 656 | extent_end = ALIGN(start + size, |
| 657 | fs_info->sectorsize); |
| 658 | } else { |
| 659 | btrfs_err(fs_info, |
| 660 | "unexpected extent type=%d root=%llu inode=%llu offset=%llu", |
| 661 | found_type, btrfs_root_id(root), key->objectid, key->offset); |
| 662 | return -EUCLEAN; |
| 663 | } |
| 664 | |
| 665 | inode = btrfs_iget_logging(key->objectid, root); |
| 666 | if (IS_ERR(inode)) |
| 667 | return PTR_ERR(inode); |
| 668 | |
| 669 | /* |
| 670 | * first check to see if we already have this extent in the |
| 671 | * file. This must be done before the btrfs_drop_extents run |
| 672 | * so we don't try to drop this extent. |
| 673 | */ |
| 674 | ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), start, 0); |
| 675 | |
| 676 | if (ret == 0 && |
| 677 | (found_type == BTRFS_FILE_EXTENT_REG || |
| 678 | found_type == BTRFS_FILE_EXTENT_PREALLOC)) { |
| 679 | struct btrfs_file_extent_item existing; |
| 680 | unsigned long ptr; |
| 681 | |
| 682 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); |
| 683 | read_extent_buffer(path->nodes[0], &existing, ptr, sizeof(existing)); |
| 684 | |
| 685 | /* |
| 686 | * we already have a pointer to this exact extent, |
| 687 | * we don't have to do anything |
| 688 | */ |
| 689 | if (memcmp_extent_buffer(eb, &existing, (unsigned long)item, |
| 690 | sizeof(existing)) == 0) { |
| 691 | btrfs_release_path(path); |
| 692 | goto out; |
| 693 | } |
| 694 | } |
| 695 | btrfs_release_path(path); |
| 696 | |
| 697 | /* drop any overlapping extents */ |
| 698 | drop_args.start = start; |
| 699 | drop_args.end = extent_end; |
| 700 | drop_args.drop_cache = true; |
| 701 | ret = btrfs_drop_extents(trans, root, inode, &drop_args); |
| 702 | if (ret) |
| 703 | goto out; |
| 704 | |
| 705 | if (found_type == BTRFS_FILE_EXTENT_REG || |
| 706 | found_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| 707 | u64 offset; |
| 708 | unsigned long dest_offset; |
| 709 | struct btrfs_key ins; |
| 710 | |
| 711 | if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && |
| 712 | btrfs_fs_incompat(fs_info, NO_HOLES)) |
| 713 | goto update_inode; |
| 714 | |
| 715 | ret = btrfs_insert_empty_item(trans, root, path, key, |
| 716 | sizeof(*item)); |
| 717 | if (ret) |
| 718 | goto out; |
| 719 | dest_offset = btrfs_item_ptr_offset(path->nodes[0], |
| 720 | path->slots[0]); |
| 721 | copy_extent_buffer(path->nodes[0], eb, dest_offset, |
| 722 | (unsigned long)item, sizeof(*item)); |
| 723 | |
| 724 | ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); |
| 725 | ins.type = BTRFS_EXTENT_ITEM_KEY; |
| 726 | ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); |
| 727 | offset = key->offset - btrfs_file_extent_offset(eb, item); |
| 728 | |
| 729 | /* |
| 730 | * Manually record dirty extent, as here we did a shallow |
| 731 | * file extent item copy and skip normal backref update, |
| 732 | * but modifying extent tree all by ourselves. |
| 733 | * So need to manually record dirty extent for qgroup, |
| 734 | * as the owner of the file extent changed from log tree |
| 735 | * (doesn't affect qgroup) to fs/file tree(affects qgroup) |
| 736 | */ |
| 737 | ret = btrfs_qgroup_trace_extent(trans, |
| 738 | btrfs_file_extent_disk_bytenr(eb, item), |
| 739 | btrfs_file_extent_disk_num_bytes(eb, item)); |
| 740 | if (ret < 0) |
| 741 | goto out; |
| 742 | |
| 743 | if (ins.objectid > 0) { |
| 744 | u64 csum_start; |
| 745 | u64 csum_end; |
| 746 | LIST_HEAD(ordered_sums); |
| 747 | |
| 748 | /* |
| 749 | * is this extent already allocated in the extent |
| 750 | * allocation tree? If so, just add a reference |
| 751 | */ |
| 752 | ret = btrfs_lookup_data_extent(fs_info, ins.objectid, |
| 753 | ins.offset); |
| 754 | if (ret < 0) { |
| 755 | goto out; |
| 756 | } else if (ret == 0) { |
| 757 | struct btrfs_ref ref = { |
| 758 | .action = BTRFS_ADD_DELAYED_REF, |
| 759 | .bytenr = ins.objectid, |
| 760 | .num_bytes = ins.offset, |
| 761 | .owning_root = btrfs_root_id(root), |
| 762 | .ref_root = btrfs_root_id(root), |
| 763 | }; |
| 764 | btrfs_init_data_ref(&ref, key->objectid, offset, |
| 765 | 0, false); |
| 766 | ret = btrfs_inc_extent_ref(trans, &ref); |
| 767 | if (ret) |
| 768 | goto out; |
| 769 | } else { |
| 770 | /* |
| 771 | * insert the extent pointer in the extent |
| 772 | * allocation tree |
| 773 | */ |
| 774 | ret = btrfs_alloc_logged_file_extent(trans, |
| 775 | btrfs_root_id(root), |
| 776 | key->objectid, offset, &ins); |
| 777 | if (ret) |
| 778 | goto out; |
| 779 | } |
| 780 | btrfs_release_path(path); |
| 781 | |
| 782 | if (btrfs_file_extent_compression(eb, item)) { |
| 783 | csum_start = ins.objectid; |
| 784 | csum_end = csum_start + ins.offset; |
| 785 | } else { |
| 786 | csum_start = ins.objectid + |
| 787 | btrfs_file_extent_offset(eb, item); |
| 788 | csum_end = csum_start + |
| 789 | btrfs_file_extent_num_bytes(eb, item); |
| 790 | } |
| 791 | |
| 792 | ret = btrfs_lookup_csums_list(root->log_root, |
| 793 | csum_start, csum_end - 1, |
| 794 | &ordered_sums, false); |
| 795 | if (ret < 0) |
| 796 | goto out; |
| 797 | ret = 0; |
| 798 | /* |
| 799 | * Now delete all existing cums in the csum root that |
| 800 | * cover our range. We do this because we can have an |
| 801 | * extent that is completely referenced by one file |
| 802 | * extent item and partially referenced by another |
| 803 | * file extent item (like after using the clone or |
| 804 | * extent_same ioctls). In this case if we end up doing |
| 805 | * the replay of the one that partially references the |
| 806 | * extent first, and we do not do the csum deletion |
| 807 | * below, we can get 2 csum items in the csum tree that |
| 808 | * overlap each other. For example, imagine our log has |
| 809 | * the two following file extent items: |
| 810 | * |
| 811 | * key (257 EXTENT_DATA 409600) |
| 812 | * extent data disk byte 12845056 nr 102400 |
| 813 | * extent data offset 20480 nr 20480 ram 102400 |
| 814 | * |
| 815 | * key (257 EXTENT_DATA 819200) |
| 816 | * extent data disk byte 12845056 nr 102400 |
| 817 | * extent data offset 0 nr 102400 ram 102400 |
| 818 | * |
| 819 | * Where the second one fully references the 100K extent |
| 820 | * that starts at disk byte 12845056, and the log tree |
| 821 | * has a single csum item that covers the entire range |
| 822 | * of the extent: |
| 823 | * |
| 824 | * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 |
| 825 | * |
| 826 | * After the first file extent item is replayed, the |
| 827 | * csum tree gets the following csum item: |
| 828 | * |
| 829 | * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 |
| 830 | * |
| 831 | * Which covers the 20K sub-range starting at offset 20K |
| 832 | * of our extent. Now when we replay the second file |
| 833 | * extent item, if we do not delete existing csum items |
| 834 | * that cover any of its blocks, we end up getting two |
| 835 | * csum items in our csum tree that overlap each other: |
| 836 | * |
| 837 | * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 |
| 838 | * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 |
| 839 | * |
| 840 | * Which is a problem, because after this anyone trying |
| 841 | * to lookup up for the checksum of any block of our |
| 842 | * extent starting at an offset of 40K or higher, will |
| 843 | * end up looking at the second csum item only, which |
| 844 | * does not contain the checksum for any block starting |
| 845 | * at offset 40K or higher of our extent. |
| 846 | */ |
| 847 | while (!list_empty(&ordered_sums)) { |
| 848 | struct btrfs_ordered_sum *sums; |
| 849 | struct btrfs_root *csum_root; |
| 850 | |
| 851 | sums = list_first_entry(&ordered_sums, |
| 852 | struct btrfs_ordered_sum, |
| 853 | list); |
| 854 | csum_root = btrfs_csum_root(fs_info, |
| 855 | sums->logical); |
| 856 | if (!ret) |
| 857 | ret = btrfs_del_csums(trans, csum_root, |
| 858 | sums->logical, |
| 859 | sums->len); |
| 860 | if (!ret) |
| 861 | ret = btrfs_csum_file_blocks(trans, |
| 862 | csum_root, |
| 863 | sums); |
| 864 | list_del(&sums->list); |
| 865 | kfree(sums); |
| 866 | } |
| 867 | if (ret) |
| 868 | goto out; |
| 869 | } else { |
| 870 | btrfs_release_path(path); |
| 871 | } |
| 872 | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { |
| 873 | /* inline extents are easy, we just overwrite them */ |
| 874 | ret = overwrite_item(trans, root, path, eb, slot, key); |
| 875 | if (ret) |
| 876 | goto out; |
| 877 | } |
| 878 | |
| 879 | ret = btrfs_inode_set_file_extent_range(inode, start, extent_end - start); |
| 880 | if (ret) |
| 881 | goto out; |
| 882 | |
| 883 | update_inode: |
| 884 | btrfs_update_inode_bytes(inode, nbytes, drop_args.bytes_found); |
| 885 | ret = btrfs_update_inode(trans, inode); |
| 886 | out: |
| 887 | iput(&inode->vfs_inode); |
| 888 | return ret; |
| 889 | } |
| 890 | |
| 891 | static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans, |
| 892 | struct btrfs_inode *dir, |
| 893 | struct btrfs_inode *inode, |
| 894 | const struct fscrypt_str *name) |
| 895 | { |
| 896 | int ret; |
| 897 | |
| 898 | ret = btrfs_unlink_inode(trans, dir, inode, name); |
| 899 | if (ret) |
| 900 | return ret; |
| 901 | /* |
| 902 | * Whenever we need to check if a name exists or not, we check the |
| 903 | * fs/subvolume tree. So after an unlink we must run delayed items, so |
| 904 | * that future checks for a name during log replay see that the name |
| 905 | * does not exists anymore. |
| 906 | */ |
| 907 | return btrfs_run_delayed_items(trans); |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | * when cleaning up conflicts between the directory names in the |
| 912 | * subvolume, directory names in the log and directory names in the |
| 913 | * inode back references, we may have to unlink inodes from directories. |
| 914 | * |
| 915 | * This is a helper function to do the unlink of a specific directory |
| 916 | * item |
| 917 | */ |
| 918 | static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, |
| 919 | struct btrfs_path *path, |
| 920 | struct btrfs_inode *dir, |
| 921 | struct btrfs_dir_item *di) |
| 922 | { |
| 923 | struct btrfs_root *root = dir->root; |
| 924 | struct btrfs_inode *inode; |
| 925 | struct fscrypt_str name; |
| 926 | struct extent_buffer *leaf; |
| 927 | struct btrfs_key location; |
| 928 | int ret; |
| 929 | |
| 930 | leaf = path->nodes[0]; |
| 931 | |
| 932 | btrfs_dir_item_key_to_cpu(leaf, di, &location); |
| 933 | ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name); |
| 934 | if (ret) |
| 935 | return -ENOMEM; |
| 936 | |
| 937 | btrfs_release_path(path); |
| 938 | |
| 939 | inode = btrfs_iget_logging(location.objectid, root); |
| 940 | if (IS_ERR(inode)) { |
| 941 | ret = PTR_ERR(inode); |
| 942 | inode = NULL; |
| 943 | goto out; |
| 944 | } |
| 945 | |
| 946 | ret = link_to_fixup_dir(trans, root, path, location.objectid); |
| 947 | if (ret) |
| 948 | goto out; |
| 949 | |
| 950 | ret = unlink_inode_for_log_replay(trans, dir, inode, &name); |
| 951 | out: |
| 952 | kfree(name.name); |
| 953 | if (inode) |
| 954 | iput(&inode->vfs_inode); |
| 955 | return ret; |
| 956 | } |
| 957 | |
| 958 | /* |
| 959 | * See if a given name and sequence number found in an inode back reference are |
| 960 | * already in a directory and correctly point to this inode. |
| 961 | * |
| 962 | * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it |
| 963 | * exists. |
| 964 | */ |
| 965 | static noinline int inode_in_dir(struct btrfs_root *root, |
| 966 | struct btrfs_path *path, |
| 967 | u64 dirid, u64 objectid, u64 index, |
| 968 | struct fscrypt_str *name) |
| 969 | { |
| 970 | struct btrfs_dir_item *di; |
| 971 | struct btrfs_key location; |
| 972 | int ret = 0; |
| 973 | |
| 974 | di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, |
| 975 | index, name, 0); |
| 976 | if (IS_ERR(di)) { |
| 977 | ret = PTR_ERR(di); |
| 978 | goto out; |
| 979 | } else if (di) { |
| 980 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); |
| 981 | if (location.objectid != objectid) |
| 982 | goto out; |
| 983 | } else { |
| 984 | goto out; |
| 985 | } |
| 986 | |
| 987 | btrfs_release_path(path); |
| 988 | di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0); |
| 989 | if (IS_ERR(di)) { |
| 990 | ret = PTR_ERR(di); |
| 991 | goto out; |
| 992 | } else if (di) { |
| 993 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); |
| 994 | if (location.objectid == objectid) |
| 995 | ret = 1; |
| 996 | } |
| 997 | out: |
| 998 | btrfs_release_path(path); |
| 999 | return ret; |
| 1000 | } |
| 1001 | |
| 1002 | /* |
| 1003 | * helper function to check a log tree for a named back reference in |
| 1004 | * an inode. This is used to decide if a back reference that is |
| 1005 | * found in the subvolume conflicts with what we find in the log. |
| 1006 | * |
| 1007 | * inode backreferences may have multiple refs in a single item, |
| 1008 | * during replay we process one reference at a time, and we don't |
| 1009 | * want to delete valid links to a file from the subvolume if that |
| 1010 | * link is also in the log. |
| 1011 | */ |
| 1012 | static noinline int backref_in_log(struct btrfs_root *log, |
| 1013 | struct btrfs_key *key, |
| 1014 | u64 ref_objectid, |
| 1015 | const struct fscrypt_str *name) |
| 1016 | { |
| 1017 | struct btrfs_path *path; |
| 1018 | int ret; |
| 1019 | |
| 1020 | path = btrfs_alloc_path(); |
| 1021 | if (!path) |
| 1022 | return -ENOMEM; |
| 1023 | |
| 1024 | ret = btrfs_search_slot(NULL, log, key, path, 0, 0); |
| 1025 | if (ret < 0) { |
| 1026 | goto out; |
| 1027 | } else if (ret == 1) { |
| 1028 | ret = 0; |
| 1029 | goto out; |
| 1030 | } |
| 1031 | |
| 1032 | if (key->type == BTRFS_INODE_EXTREF_KEY) |
| 1033 | ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], |
| 1034 | path->slots[0], |
| 1035 | ref_objectid, name); |
| 1036 | else |
| 1037 | ret = !!btrfs_find_name_in_backref(path->nodes[0], |
| 1038 | path->slots[0], name); |
| 1039 | out: |
| 1040 | btrfs_free_path(path); |
| 1041 | return ret; |
| 1042 | } |
| 1043 | |
| 1044 | static inline int __add_inode_ref(struct btrfs_trans_handle *trans, |
| 1045 | struct btrfs_root *root, |
| 1046 | struct btrfs_path *path, |
| 1047 | struct btrfs_root *log_root, |
| 1048 | struct btrfs_inode *dir, |
| 1049 | struct btrfs_inode *inode, |
| 1050 | u64 inode_objectid, u64 parent_objectid, |
| 1051 | u64 ref_index, struct fscrypt_str *name) |
| 1052 | { |
| 1053 | int ret; |
| 1054 | struct extent_buffer *leaf; |
| 1055 | struct btrfs_dir_item *di; |
| 1056 | struct btrfs_key search_key; |
| 1057 | struct btrfs_inode_extref *extref; |
| 1058 | |
| 1059 | again: |
| 1060 | /* Search old style refs */ |
| 1061 | search_key.objectid = inode_objectid; |
| 1062 | search_key.type = BTRFS_INODE_REF_KEY; |
| 1063 | search_key.offset = parent_objectid; |
| 1064 | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| 1065 | if (ret < 0) { |
| 1066 | return ret; |
| 1067 | } else if (ret == 0) { |
| 1068 | struct btrfs_inode_ref *victim_ref; |
| 1069 | unsigned long ptr; |
| 1070 | unsigned long ptr_end; |
| 1071 | |
| 1072 | leaf = path->nodes[0]; |
| 1073 | |
| 1074 | /* are we trying to overwrite a back ref for the root directory |
| 1075 | * if so, just jump out, we're done |
| 1076 | */ |
| 1077 | if (search_key.objectid == search_key.offset) |
| 1078 | return 1; |
| 1079 | |
| 1080 | /* check all the names in this back reference to see |
| 1081 | * if they are in the log. if so, we allow them to stay |
| 1082 | * otherwise they must be unlinked as a conflict |
| 1083 | */ |
| 1084 | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| 1085 | ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]); |
| 1086 | while (ptr < ptr_end) { |
| 1087 | struct fscrypt_str victim_name; |
| 1088 | |
| 1089 | victim_ref = (struct btrfs_inode_ref *)ptr; |
| 1090 | ret = read_alloc_one_name(leaf, (victim_ref + 1), |
| 1091 | btrfs_inode_ref_name_len(leaf, victim_ref), |
| 1092 | &victim_name); |
| 1093 | if (ret) |
| 1094 | return ret; |
| 1095 | |
| 1096 | ret = backref_in_log(log_root, &search_key, |
| 1097 | parent_objectid, &victim_name); |
| 1098 | if (ret < 0) { |
| 1099 | kfree(victim_name.name); |
| 1100 | return ret; |
| 1101 | } else if (!ret) { |
| 1102 | inc_nlink(&inode->vfs_inode); |
| 1103 | btrfs_release_path(path); |
| 1104 | |
| 1105 | ret = unlink_inode_for_log_replay(trans, dir, inode, |
| 1106 | &victim_name); |
| 1107 | kfree(victim_name.name); |
| 1108 | if (ret) |
| 1109 | return ret; |
| 1110 | goto again; |
| 1111 | } |
| 1112 | kfree(victim_name.name); |
| 1113 | |
| 1114 | ptr = (unsigned long)(victim_ref + 1) + victim_name.len; |
| 1115 | } |
| 1116 | } |
| 1117 | btrfs_release_path(path); |
| 1118 | |
| 1119 | /* Same search but for extended refs */ |
| 1120 | extref = btrfs_lookup_inode_extref(NULL, root, path, name, |
| 1121 | inode_objectid, parent_objectid, 0, |
| 1122 | 0); |
| 1123 | if (IS_ERR(extref)) { |
| 1124 | return PTR_ERR(extref); |
| 1125 | } else if (extref) { |
| 1126 | u32 item_size; |
| 1127 | u32 cur_offset = 0; |
| 1128 | unsigned long base; |
| 1129 | struct btrfs_inode *victim_parent; |
| 1130 | |
| 1131 | leaf = path->nodes[0]; |
| 1132 | |
| 1133 | item_size = btrfs_item_size(leaf, path->slots[0]); |
| 1134 | base = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| 1135 | |
| 1136 | while (cur_offset < item_size) { |
| 1137 | struct fscrypt_str victim_name; |
| 1138 | |
| 1139 | extref = (struct btrfs_inode_extref *)(base + cur_offset); |
| 1140 | victim_name.len = btrfs_inode_extref_name_len(leaf, extref); |
| 1141 | |
| 1142 | if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) |
| 1143 | goto next; |
| 1144 | |
| 1145 | ret = read_alloc_one_name(leaf, &extref->name, |
| 1146 | victim_name.len, &victim_name); |
| 1147 | if (ret) |
| 1148 | return ret; |
| 1149 | |
| 1150 | search_key.objectid = inode_objectid; |
| 1151 | search_key.type = BTRFS_INODE_EXTREF_KEY; |
| 1152 | search_key.offset = btrfs_extref_hash(parent_objectid, |
| 1153 | victim_name.name, |
| 1154 | victim_name.len); |
| 1155 | ret = backref_in_log(log_root, &search_key, |
| 1156 | parent_objectid, &victim_name); |
| 1157 | if (ret < 0) { |
| 1158 | kfree(victim_name.name); |
| 1159 | return ret; |
| 1160 | } else if (!ret) { |
| 1161 | victim_parent = btrfs_iget_logging(parent_objectid, root); |
| 1162 | if (IS_ERR(victim_parent)) { |
| 1163 | ret = PTR_ERR(victim_parent); |
| 1164 | } else { |
| 1165 | inc_nlink(&inode->vfs_inode); |
| 1166 | btrfs_release_path(path); |
| 1167 | |
| 1168 | ret = unlink_inode_for_log_replay(trans, |
| 1169 | victim_parent, |
| 1170 | inode, &victim_name); |
| 1171 | iput(&victim_parent->vfs_inode); |
| 1172 | } |
| 1173 | kfree(victim_name.name); |
| 1174 | if (ret) |
| 1175 | return ret; |
| 1176 | goto again; |
| 1177 | } |
| 1178 | kfree(victim_name.name); |
| 1179 | next: |
| 1180 | cur_offset += victim_name.len + sizeof(*extref); |
| 1181 | } |
| 1182 | } |
| 1183 | btrfs_release_path(path); |
| 1184 | |
| 1185 | /* look for a conflicting sequence number */ |
| 1186 | di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), |
| 1187 | ref_index, name, 0); |
| 1188 | if (IS_ERR(di)) { |
| 1189 | return PTR_ERR(di); |
| 1190 | } else if (di) { |
| 1191 | ret = drop_one_dir_item(trans, path, dir, di); |
| 1192 | if (ret) |
| 1193 | return ret; |
| 1194 | } |
| 1195 | btrfs_release_path(path); |
| 1196 | |
| 1197 | /* look for a conflicting name */ |
| 1198 | di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0); |
| 1199 | if (IS_ERR(di)) { |
| 1200 | return PTR_ERR(di); |
| 1201 | } else if (di) { |
| 1202 | ret = drop_one_dir_item(trans, path, dir, di); |
| 1203 | if (ret) |
| 1204 | return ret; |
| 1205 | } |
| 1206 | btrfs_release_path(path); |
| 1207 | |
| 1208 | return 0; |
| 1209 | } |
| 1210 | |
| 1211 | static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, |
| 1212 | struct fscrypt_str *name, u64 *index, |
| 1213 | u64 *parent_objectid) |
| 1214 | { |
| 1215 | struct btrfs_inode_extref *extref; |
| 1216 | int ret; |
| 1217 | |
| 1218 | extref = (struct btrfs_inode_extref *)ref_ptr; |
| 1219 | |
| 1220 | ret = read_alloc_one_name(eb, &extref->name, |
| 1221 | btrfs_inode_extref_name_len(eb, extref), name); |
| 1222 | if (ret) |
| 1223 | return ret; |
| 1224 | |
| 1225 | if (index) |
| 1226 | *index = btrfs_inode_extref_index(eb, extref); |
| 1227 | if (parent_objectid) |
| 1228 | *parent_objectid = btrfs_inode_extref_parent(eb, extref); |
| 1229 | |
| 1230 | return 0; |
| 1231 | } |
| 1232 | |
| 1233 | static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, |
| 1234 | struct fscrypt_str *name, u64 *index) |
| 1235 | { |
| 1236 | struct btrfs_inode_ref *ref; |
| 1237 | int ret; |
| 1238 | |
| 1239 | ref = (struct btrfs_inode_ref *)ref_ptr; |
| 1240 | |
| 1241 | ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref), |
| 1242 | name); |
| 1243 | if (ret) |
| 1244 | return ret; |
| 1245 | |
| 1246 | if (index) |
| 1247 | *index = btrfs_inode_ref_index(eb, ref); |
| 1248 | |
| 1249 | return 0; |
| 1250 | } |
| 1251 | |
| 1252 | /* |
| 1253 | * Take an inode reference item from the log tree and iterate all names from the |
| 1254 | * inode reference item in the subvolume tree with the same key (if it exists). |
| 1255 | * For any name that is not in the inode reference item from the log tree, do a |
| 1256 | * proper unlink of that name (that is, remove its entry from the inode |
| 1257 | * reference item and both dir index keys). |
| 1258 | */ |
| 1259 | static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, |
| 1260 | struct btrfs_root *root, |
| 1261 | struct btrfs_path *path, |
| 1262 | struct btrfs_inode *inode, |
| 1263 | struct extent_buffer *log_eb, |
| 1264 | int log_slot, |
| 1265 | struct btrfs_key *key) |
| 1266 | { |
| 1267 | int ret; |
| 1268 | unsigned long ref_ptr; |
| 1269 | unsigned long ref_end; |
| 1270 | struct extent_buffer *eb; |
| 1271 | |
| 1272 | again: |
| 1273 | btrfs_release_path(path); |
| 1274 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
| 1275 | if (ret > 0) { |
| 1276 | ret = 0; |
| 1277 | goto out; |
| 1278 | } |
| 1279 | if (ret < 0) |
| 1280 | goto out; |
| 1281 | |
| 1282 | eb = path->nodes[0]; |
| 1283 | ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); |
| 1284 | ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]); |
| 1285 | while (ref_ptr < ref_end) { |
| 1286 | struct fscrypt_str name; |
| 1287 | u64 parent_id; |
| 1288 | |
| 1289 | if (key->type == BTRFS_INODE_EXTREF_KEY) { |
| 1290 | ret = extref_get_fields(eb, ref_ptr, &name, |
| 1291 | NULL, &parent_id); |
| 1292 | } else { |
| 1293 | parent_id = key->offset; |
| 1294 | ret = ref_get_fields(eb, ref_ptr, &name, NULL); |
| 1295 | } |
| 1296 | if (ret) |
| 1297 | goto out; |
| 1298 | |
| 1299 | if (key->type == BTRFS_INODE_EXTREF_KEY) |
| 1300 | ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, |
| 1301 | parent_id, &name); |
| 1302 | else |
| 1303 | ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name); |
| 1304 | |
| 1305 | if (!ret) { |
| 1306 | struct btrfs_inode *dir; |
| 1307 | |
| 1308 | btrfs_release_path(path); |
| 1309 | dir = btrfs_iget_logging(parent_id, root); |
| 1310 | if (IS_ERR(dir)) { |
| 1311 | ret = PTR_ERR(dir); |
| 1312 | kfree(name.name); |
| 1313 | goto out; |
| 1314 | } |
| 1315 | ret = unlink_inode_for_log_replay(trans, dir, inode, &name); |
| 1316 | kfree(name.name); |
| 1317 | iput(&dir->vfs_inode); |
| 1318 | if (ret) |
| 1319 | goto out; |
| 1320 | goto again; |
| 1321 | } |
| 1322 | |
| 1323 | kfree(name.name); |
| 1324 | ref_ptr += name.len; |
| 1325 | if (key->type == BTRFS_INODE_EXTREF_KEY) |
| 1326 | ref_ptr += sizeof(struct btrfs_inode_extref); |
| 1327 | else |
| 1328 | ref_ptr += sizeof(struct btrfs_inode_ref); |
| 1329 | } |
| 1330 | ret = 0; |
| 1331 | out: |
| 1332 | btrfs_release_path(path); |
| 1333 | return ret; |
| 1334 | } |
| 1335 | |
| 1336 | /* |
| 1337 | * replay one inode back reference item found in the log tree. |
| 1338 | * eb, slot and key refer to the buffer and key found in the log tree. |
| 1339 | * root is the destination we are replaying into, and path is for temp |
| 1340 | * use by this function. (it should be released on return). |
| 1341 | */ |
| 1342 | static noinline int add_inode_ref(struct btrfs_trans_handle *trans, |
| 1343 | struct btrfs_root *root, |
| 1344 | struct btrfs_root *log, |
| 1345 | struct btrfs_path *path, |
| 1346 | struct extent_buffer *eb, int slot, |
| 1347 | struct btrfs_key *key) |
| 1348 | { |
| 1349 | struct btrfs_inode *dir = NULL; |
| 1350 | struct btrfs_inode *inode = NULL; |
| 1351 | unsigned long ref_ptr; |
| 1352 | unsigned long ref_end; |
| 1353 | struct fscrypt_str name = { 0 }; |
| 1354 | int ret; |
| 1355 | int log_ref_ver = 0; |
| 1356 | u64 parent_objectid; |
| 1357 | u64 inode_objectid; |
| 1358 | u64 ref_index = 0; |
| 1359 | int ref_struct_size; |
| 1360 | |
| 1361 | ref_ptr = btrfs_item_ptr_offset(eb, slot); |
| 1362 | ref_end = ref_ptr + btrfs_item_size(eb, slot); |
| 1363 | |
| 1364 | if (key->type == BTRFS_INODE_EXTREF_KEY) { |
| 1365 | struct btrfs_inode_extref *r; |
| 1366 | |
| 1367 | ref_struct_size = sizeof(struct btrfs_inode_extref); |
| 1368 | log_ref_ver = 1; |
| 1369 | r = (struct btrfs_inode_extref *)ref_ptr; |
| 1370 | parent_objectid = btrfs_inode_extref_parent(eb, r); |
| 1371 | } else { |
| 1372 | ref_struct_size = sizeof(struct btrfs_inode_ref); |
| 1373 | parent_objectid = key->offset; |
| 1374 | } |
| 1375 | inode_objectid = key->objectid; |
| 1376 | |
| 1377 | /* |
| 1378 | * it is possible that we didn't log all the parent directories |
| 1379 | * for a given inode. If we don't find the dir, just don't |
| 1380 | * copy the back ref in. The link count fixup code will take |
| 1381 | * care of the rest |
| 1382 | */ |
| 1383 | dir = btrfs_iget_logging(parent_objectid, root); |
| 1384 | if (IS_ERR(dir)) { |
| 1385 | ret = PTR_ERR(dir); |
| 1386 | dir = NULL; |
| 1387 | goto out; |
| 1388 | } |
| 1389 | |
| 1390 | inode = btrfs_iget_logging(inode_objectid, root); |
| 1391 | if (IS_ERR(inode)) { |
| 1392 | ret = PTR_ERR(inode); |
| 1393 | inode = NULL; |
| 1394 | goto out; |
| 1395 | } |
| 1396 | |
| 1397 | while (ref_ptr < ref_end) { |
| 1398 | if (log_ref_ver) { |
| 1399 | ret = extref_get_fields(eb, ref_ptr, &name, |
| 1400 | &ref_index, &parent_objectid); |
| 1401 | /* |
| 1402 | * parent object can change from one array |
| 1403 | * item to another. |
| 1404 | */ |
| 1405 | if (!dir) { |
| 1406 | dir = btrfs_iget_logging(parent_objectid, root); |
| 1407 | if (IS_ERR(dir)) { |
| 1408 | ret = PTR_ERR(dir); |
| 1409 | dir = NULL; |
| 1410 | goto out; |
| 1411 | } |
| 1412 | } |
| 1413 | } else { |
| 1414 | ret = ref_get_fields(eb, ref_ptr, &name, &ref_index); |
| 1415 | } |
| 1416 | if (ret) |
| 1417 | goto out; |
| 1418 | |
| 1419 | ret = inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), |
| 1420 | ref_index, &name); |
| 1421 | if (ret < 0) { |
| 1422 | goto out; |
| 1423 | } else if (ret == 0) { |
| 1424 | /* |
| 1425 | * look for a conflicting back reference in the |
| 1426 | * metadata. if we find one we have to unlink that name |
| 1427 | * of the file before we add our new link. Later on, we |
| 1428 | * overwrite any existing back reference, and we don't |
| 1429 | * want to create dangling pointers in the directory. |
| 1430 | */ |
| 1431 | ret = __add_inode_ref(trans, root, path, log, dir, inode, |
| 1432 | inode_objectid, parent_objectid, |
| 1433 | ref_index, &name); |
| 1434 | if (ret) { |
| 1435 | if (ret == 1) |
| 1436 | ret = 0; |
| 1437 | goto out; |
| 1438 | } |
| 1439 | |
| 1440 | /* insert our name */ |
| 1441 | ret = btrfs_add_link(trans, dir, inode, &name, 0, ref_index); |
| 1442 | if (ret) |
| 1443 | goto out; |
| 1444 | |
| 1445 | ret = btrfs_update_inode(trans, inode); |
| 1446 | if (ret) |
| 1447 | goto out; |
| 1448 | } |
| 1449 | /* Else, ret == 1, we already have a perfect match, we're done. */ |
| 1450 | |
| 1451 | ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len; |
| 1452 | kfree(name.name); |
| 1453 | name.name = NULL; |
| 1454 | if (log_ref_ver) { |
| 1455 | iput(&dir->vfs_inode); |
| 1456 | dir = NULL; |
| 1457 | } |
| 1458 | } |
| 1459 | |
| 1460 | /* |
| 1461 | * Before we overwrite the inode reference item in the subvolume tree |
| 1462 | * with the item from the log tree, we must unlink all names from the |
| 1463 | * parent directory that are in the subvolume's tree inode reference |
| 1464 | * item, otherwise we end up with an inconsistent subvolume tree where |
| 1465 | * dir index entries exist for a name but there is no inode reference |
| 1466 | * item with the same name. |
| 1467 | */ |
| 1468 | ret = unlink_old_inode_refs(trans, root, path, inode, eb, slot, key); |
| 1469 | if (ret) |
| 1470 | goto out; |
| 1471 | |
| 1472 | /* finally write the back reference in the inode */ |
| 1473 | ret = overwrite_item(trans, root, path, eb, slot, key); |
| 1474 | out: |
| 1475 | btrfs_release_path(path); |
| 1476 | kfree(name.name); |
| 1477 | if (dir) |
| 1478 | iput(&dir->vfs_inode); |
| 1479 | if (inode) |
| 1480 | iput(&inode->vfs_inode); |
| 1481 | return ret; |
| 1482 | } |
| 1483 | |
| 1484 | static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path) |
| 1485 | { |
| 1486 | int ret = 0; |
| 1487 | int name_len; |
| 1488 | unsigned int nlink = 0; |
| 1489 | u32 item_size; |
| 1490 | u32 cur_offset = 0; |
| 1491 | u64 inode_objectid = btrfs_ino(inode); |
| 1492 | u64 offset = 0; |
| 1493 | unsigned long ptr; |
| 1494 | struct btrfs_inode_extref *extref; |
| 1495 | struct extent_buffer *leaf; |
| 1496 | |
| 1497 | while (1) { |
| 1498 | ret = btrfs_find_one_extref(inode->root, inode_objectid, offset, |
| 1499 | path, &extref, &offset); |
| 1500 | if (ret) |
| 1501 | break; |
| 1502 | |
| 1503 | leaf = path->nodes[0]; |
| 1504 | item_size = btrfs_item_size(leaf, path->slots[0]); |
| 1505 | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| 1506 | cur_offset = 0; |
| 1507 | |
| 1508 | while (cur_offset < item_size) { |
| 1509 | extref = (struct btrfs_inode_extref *) (ptr + cur_offset); |
| 1510 | name_len = btrfs_inode_extref_name_len(leaf, extref); |
| 1511 | |
| 1512 | nlink++; |
| 1513 | |
| 1514 | cur_offset += name_len + sizeof(*extref); |
| 1515 | } |
| 1516 | |
| 1517 | offset++; |
| 1518 | btrfs_release_path(path); |
| 1519 | } |
| 1520 | btrfs_release_path(path); |
| 1521 | |
| 1522 | if (ret < 0 && ret != -ENOENT) |
| 1523 | return ret; |
| 1524 | return nlink; |
| 1525 | } |
| 1526 | |
| 1527 | static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path) |
| 1528 | { |
| 1529 | int ret; |
| 1530 | struct btrfs_key key; |
| 1531 | unsigned int nlink = 0; |
| 1532 | unsigned long ptr; |
| 1533 | unsigned long ptr_end; |
| 1534 | int name_len; |
| 1535 | u64 ino = btrfs_ino(inode); |
| 1536 | |
| 1537 | key.objectid = ino; |
| 1538 | key.type = BTRFS_INODE_REF_KEY; |
| 1539 | key.offset = (u64)-1; |
| 1540 | |
| 1541 | while (1) { |
| 1542 | ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0); |
| 1543 | if (ret < 0) |
| 1544 | break; |
| 1545 | if (ret > 0) { |
| 1546 | if (path->slots[0] == 0) |
| 1547 | break; |
| 1548 | path->slots[0]--; |
| 1549 | } |
| 1550 | process_slot: |
| 1551 | btrfs_item_key_to_cpu(path->nodes[0], &key, |
| 1552 | path->slots[0]); |
| 1553 | if (key.objectid != ino || |
| 1554 | key.type != BTRFS_INODE_REF_KEY) |
| 1555 | break; |
| 1556 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); |
| 1557 | ptr_end = ptr + btrfs_item_size(path->nodes[0], |
| 1558 | path->slots[0]); |
| 1559 | while (ptr < ptr_end) { |
| 1560 | struct btrfs_inode_ref *ref; |
| 1561 | |
| 1562 | ref = (struct btrfs_inode_ref *)ptr; |
| 1563 | name_len = btrfs_inode_ref_name_len(path->nodes[0], |
| 1564 | ref); |
| 1565 | ptr = (unsigned long)(ref + 1) + name_len; |
| 1566 | nlink++; |
| 1567 | } |
| 1568 | |
| 1569 | if (key.offset == 0) |
| 1570 | break; |
| 1571 | if (path->slots[0] > 0) { |
| 1572 | path->slots[0]--; |
| 1573 | goto process_slot; |
| 1574 | } |
| 1575 | key.offset--; |
| 1576 | btrfs_release_path(path); |
| 1577 | } |
| 1578 | btrfs_release_path(path); |
| 1579 | |
| 1580 | return nlink; |
| 1581 | } |
| 1582 | |
| 1583 | /* |
| 1584 | * There are a few corners where the link count of the file can't |
| 1585 | * be properly maintained during replay. So, instead of adding |
| 1586 | * lots of complexity to the log code, we just scan the backrefs |
| 1587 | * for any file that has been through replay. |
| 1588 | * |
| 1589 | * The scan will update the link count on the inode to reflect the |
| 1590 | * number of back refs found. If it goes down to zero, the iput |
| 1591 | * will free the inode. |
| 1592 | */ |
| 1593 | static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, |
| 1594 | struct btrfs_inode *inode) |
| 1595 | { |
| 1596 | struct btrfs_root *root = inode->root; |
| 1597 | struct btrfs_path *path; |
| 1598 | int ret; |
| 1599 | u64 nlink = 0; |
| 1600 | const u64 ino = btrfs_ino(inode); |
| 1601 | |
| 1602 | path = btrfs_alloc_path(); |
| 1603 | if (!path) |
| 1604 | return -ENOMEM; |
| 1605 | |
| 1606 | ret = count_inode_refs(inode, path); |
| 1607 | if (ret < 0) |
| 1608 | goto out; |
| 1609 | |
| 1610 | nlink = ret; |
| 1611 | |
| 1612 | ret = count_inode_extrefs(inode, path); |
| 1613 | if (ret < 0) |
| 1614 | goto out; |
| 1615 | |
| 1616 | nlink += ret; |
| 1617 | |
| 1618 | ret = 0; |
| 1619 | |
| 1620 | if (nlink != inode->vfs_inode.i_nlink) { |
| 1621 | set_nlink(&inode->vfs_inode, nlink); |
| 1622 | ret = btrfs_update_inode(trans, inode); |
| 1623 | if (ret) |
| 1624 | goto out; |
| 1625 | } |
| 1626 | if (S_ISDIR(inode->vfs_inode.i_mode)) |
| 1627 | inode->index_cnt = (u64)-1; |
| 1628 | |
| 1629 | if (inode->vfs_inode.i_nlink == 0) { |
| 1630 | if (S_ISDIR(inode->vfs_inode.i_mode)) { |
| 1631 | ret = replay_dir_deletes(trans, root, NULL, path, |
| 1632 | ino, 1); |
| 1633 | if (ret) |
| 1634 | goto out; |
| 1635 | } |
| 1636 | ret = btrfs_insert_orphan_item(trans, root, ino); |
| 1637 | if (ret == -EEXIST) |
| 1638 | ret = 0; |
| 1639 | } |
| 1640 | |
| 1641 | out: |
| 1642 | btrfs_free_path(path); |
| 1643 | return ret; |
| 1644 | } |
| 1645 | |
| 1646 | static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, |
| 1647 | struct btrfs_root *root, |
| 1648 | struct btrfs_path *path) |
| 1649 | { |
| 1650 | int ret; |
| 1651 | struct btrfs_key key; |
| 1652 | |
| 1653 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; |
| 1654 | key.type = BTRFS_ORPHAN_ITEM_KEY; |
| 1655 | key.offset = (u64)-1; |
| 1656 | while (1) { |
| 1657 | struct btrfs_inode *inode; |
| 1658 | |
| 1659 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| 1660 | if (ret < 0) |
| 1661 | break; |
| 1662 | |
| 1663 | if (ret == 1) { |
| 1664 | ret = 0; |
| 1665 | if (path->slots[0] == 0) |
| 1666 | break; |
| 1667 | path->slots[0]--; |
| 1668 | } |
| 1669 | |
| 1670 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| 1671 | if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || |
| 1672 | key.type != BTRFS_ORPHAN_ITEM_KEY) |
| 1673 | break; |
| 1674 | |
| 1675 | ret = btrfs_del_item(trans, root, path); |
| 1676 | if (ret) |
| 1677 | break; |
| 1678 | |
| 1679 | btrfs_release_path(path); |
| 1680 | inode = btrfs_iget_logging(key.offset, root); |
| 1681 | if (IS_ERR(inode)) { |
| 1682 | ret = PTR_ERR(inode); |
| 1683 | break; |
| 1684 | } |
| 1685 | |
| 1686 | ret = fixup_inode_link_count(trans, inode); |
| 1687 | iput(&inode->vfs_inode); |
| 1688 | if (ret) |
| 1689 | break; |
| 1690 | |
| 1691 | /* |
| 1692 | * fixup on a directory may create new entries, |
| 1693 | * make sure we always look for the highset possible |
| 1694 | * offset |
| 1695 | */ |
| 1696 | key.offset = (u64)-1; |
| 1697 | } |
| 1698 | btrfs_release_path(path); |
| 1699 | return ret; |
| 1700 | } |
| 1701 | |
| 1702 | |
| 1703 | /* |
| 1704 | * record a given inode in the fixup dir so we can check its link |
| 1705 | * count when replay is done. The link count is incremented here |
| 1706 | * so the inode won't go away until we check it |
| 1707 | */ |
| 1708 | static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, |
| 1709 | struct btrfs_root *root, |
| 1710 | struct btrfs_path *path, |
| 1711 | u64 objectid) |
| 1712 | { |
| 1713 | struct btrfs_key key; |
| 1714 | int ret = 0; |
| 1715 | struct btrfs_inode *inode; |
| 1716 | struct inode *vfs_inode; |
| 1717 | |
| 1718 | inode = btrfs_iget_logging(objectid, root); |
| 1719 | if (IS_ERR(inode)) |
| 1720 | return PTR_ERR(inode); |
| 1721 | |
| 1722 | vfs_inode = &inode->vfs_inode; |
| 1723 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; |
| 1724 | key.type = BTRFS_ORPHAN_ITEM_KEY; |
| 1725 | key.offset = objectid; |
| 1726 | |
| 1727 | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); |
| 1728 | |
| 1729 | btrfs_release_path(path); |
| 1730 | if (ret == 0) { |
| 1731 | if (!vfs_inode->i_nlink) |
| 1732 | set_nlink(vfs_inode, 1); |
| 1733 | else |
| 1734 | inc_nlink(vfs_inode); |
| 1735 | ret = btrfs_update_inode(trans, inode); |
| 1736 | } else if (ret == -EEXIST) { |
| 1737 | ret = 0; |
| 1738 | } |
| 1739 | iput(vfs_inode); |
| 1740 | |
| 1741 | return ret; |
| 1742 | } |
| 1743 | |
| 1744 | /* |
| 1745 | * when replaying the log for a directory, we only insert names |
| 1746 | * for inodes that actually exist. This means an fsync on a directory |
| 1747 | * does not implicitly fsync all the new files in it |
| 1748 | */ |
| 1749 | static noinline int insert_one_name(struct btrfs_trans_handle *trans, |
| 1750 | struct btrfs_root *root, |
| 1751 | u64 dirid, u64 index, |
| 1752 | const struct fscrypt_str *name, |
| 1753 | struct btrfs_key *location) |
| 1754 | { |
| 1755 | struct btrfs_inode *inode; |
| 1756 | struct btrfs_inode *dir; |
| 1757 | int ret; |
| 1758 | |
| 1759 | inode = btrfs_iget_logging(location->objectid, root); |
| 1760 | if (IS_ERR(inode)) |
| 1761 | return PTR_ERR(inode); |
| 1762 | |
| 1763 | dir = btrfs_iget_logging(dirid, root); |
| 1764 | if (IS_ERR(dir)) { |
| 1765 | iput(&inode->vfs_inode); |
| 1766 | return PTR_ERR(dir); |
| 1767 | } |
| 1768 | |
| 1769 | ret = btrfs_add_link(trans, dir, inode, name, 1, index); |
| 1770 | |
| 1771 | /* FIXME, put inode into FIXUP list */ |
| 1772 | |
| 1773 | iput(&inode->vfs_inode); |
| 1774 | iput(&dir->vfs_inode); |
| 1775 | return ret; |
| 1776 | } |
| 1777 | |
| 1778 | static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans, |
| 1779 | struct btrfs_inode *dir, |
| 1780 | struct btrfs_path *path, |
| 1781 | struct btrfs_dir_item *dst_di, |
| 1782 | const struct btrfs_key *log_key, |
| 1783 | u8 log_flags, |
| 1784 | bool exists) |
| 1785 | { |
| 1786 | struct btrfs_key found_key; |
| 1787 | |
| 1788 | btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); |
| 1789 | /* The existing dentry points to the same inode, don't delete it. */ |
| 1790 | if (found_key.objectid == log_key->objectid && |
| 1791 | found_key.type == log_key->type && |
| 1792 | found_key.offset == log_key->offset && |
| 1793 | btrfs_dir_flags(path->nodes[0], dst_di) == log_flags) |
| 1794 | return 1; |
| 1795 | |
| 1796 | /* |
| 1797 | * Don't drop the conflicting directory entry if the inode for the new |
| 1798 | * entry doesn't exist. |
| 1799 | */ |
| 1800 | if (!exists) |
| 1801 | return 0; |
| 1802 | |
| 1803 | return drop_one_dir_item(trans, path, dir, dst_di); |
| 1804 | } |
| 1805 | |
| 1806 | /* |
| 1807 | * take a single entry in a log directory item and replay it into |
| 1808 | * the subvolume. |
| 1809 | * |
| 1810 | * if a conflicting item exists in the subdirectory already, |
| 1811 | * the inode it points to is unlinked and put into the link count |
| 1812 | * fix up tree. |
| 1813 | * |
| 1814 | * If a name from the log points to a file or directory that does |
| 1815 | * not exist in the FS, it is skipped. fsyncs on directories |
| 1816 | * do not force down inodes inside that directory, just changes to the |
| 1817 | * names or unlinks in a directory. |
| 1818 | * |
| 1819 | * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a |
| 1820 | * non-existing inode) and 1 if the name was replayed. |
| 1821 | */ |
| 1822 | static noinline int replay_one_name(struct btrfs_trans_handle *trans, |
| 1823 | struct btrfs_root *root, |
| 1824 | struct btrfs_path *path, |
| 1825 | struct extent_buffer *eb, |
| 1826 | struct btrfs_dir_item *di, |
| 1827 | struct btrfs_key *key) |
| 1828 | { |
| 1829 | struct fscrypt_str name = { 0 }; |
| 1830 | struct btrfs_dir_item *dir_dst_di; |
| 1831 | struct btrfs_dir_item *index_dst_di; |
| 1832 | bool dir_dst_matches = false; |
| 1833 | bool index_dst_matches = false; |
| 1834 | struct btrfs_key log_key; |
| 1835 | struct btrfs_key search_key; |
| 1836 | struct btrfs_inode *dir; |
| 1837 | u8 log_flags; |
| 1838 | bool exists; |
| 1839 | int ret; |
| 1840 | bool update_size = true; |
| 1841 | bool name_added = false; |
| 1842 | |
| 1843 | dir = btrfs_iget_logging(key->objectid, root); |
| 1844 | if (IS_ERR(dir)) |
| 1845 | return PTR_ERR(dir); |
| 1846 | |
| 1847 | ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); |
| 1848 | if (ret) |
| 1849 | goto out; |
| 1850 | |
| 1851 | log_flags = btrfs_dir_flags(eb, di); |
| 1852 | btrfs_dir_item_key_to_cpu(eb, di, &log_key); |
| 1853 | ret = btrfs_lookup_inode(trans, root, path, &log_key, 0); |
| 1854 | btrfs_release_path(path); |
| 1855 | if (ret < 0) |
| 1856 | goto out; |
| 1857 | exists = (ret == 0); |
| 1858 | ret = 0; |
| 1859 | |
| 1860 | dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, |
| 1861 | &name, 1); |
| 1862 | if (IS_ERR(dir_dst_di)) { |
| 1863 | ret = PTR_ERR(dir_dst_di); |
| 1864 | goto out; |
| 1865 | } else if (dir_dst_di) { |
| 1866 | ret = delete_conflicting_dir_entry(trans, dir, path, dir_dst_di, |
| 1867 | &log_key, log_flags, exists); |
| 1868 | if (ret < 0) |
| 1869 | goto out; |
| 1870 | dir_dst_matches = (ret == 1); |
| 1871 | } |
| 1872 | |
| 1873 | btrfs_release_path(path); |
| 1874 | |
| 1875 | index_dst_di = btrfs_lookup_dir_index_item(trans, root, path, |
| 1876 | key->objectid, key->offset, |
| 1877 | &name, 1); |
| 1878 | if (IS_ERR(index_dst_di)) { |
| 1879 | ret = PTR_ERR(index_dst_di); |
| 1880 | goto out; |
| 1881 | } else if (index_dst_di) { |
| 1882 | ret = delete_conflicting_dir_entry(trans, dir, path, index_dst_di, |
| 1883 | &log_key, log_flags, exists); |
| 1884 | if (ret < 0) |
| 1885 | goto out; |
| 1886 | index_dst_matches = (ret == 1); |
| 1887 | } |
| 1888 | |
| 1889 | btrfs_release_path(path); |
| 1890 | |
| 1891 | if (dir_dst_matches && index_dst_matches) { |
| 1892 | ret = 0; |
| 1893 | update_size = false; |
| 1894 | goto out; |
| 1895 | } |
| 1896 | |
| 1897 | /* |
| 1898 | * Check if the inode reference exists in the log for the given name, |
| 1899 | * inode and parent inode |
| 1900 | */ |
| 1901 | search_key.objectid = log_key.objectid; |
| 1902 | search_key.type = BTRFS_INODE_REF_KEY; |
| 1903 | search_key.offset = key->objectid; |
| 1904 | ret = backref_in_log(root->log_root, &search_key, 0, &name); |
| 1905 | if (ret < 0) { |
| 1906 | goto out; |
| 1907 | } else if (ret) { |
| 1908 | /* The dentry will be added later. */ |
| 1909 | ret = 0; |
| 1910 | update_size = false; |
| 1911 | goto out; |
| 1912 | } |
| 1913 | |
| 1914 | search_key.objectid = log_key.objectid; |
| 1915 | search_key.type = BTRFS_INODE_EXTREF_KEY; |
| 1916 | search_key.offset = key->objectid; |
| 1917 | ret = backref_in_log(root->log_root, &search_key, key->objectid, &name); |
| 1918 | if (ret < 0) { |
| 1919 | goto out; |
| 1920 | } else if (ret) { |
| 1921 | /* The dentry will be added later. */ |
| 1922 | ret = 0; |
| 1923 | update_size = false; |
| 1924 | goto out; |
| 1925 | } |
| 1926 | btrfs_release_path(path); |
| 1927 | ret = insert_one_name(trans, root, key->objectid, key->offset, |
| 1928 | &name, &log_key); |
| 1929 | if (ret && ret != -ENOENT && ret != -EEXIST) |
| 1930 | goto out; |
| 1931 | if (!ret) |
| 1932 | name_added = true; |
| 1933 | update_size = false; |
| 1934 | ret = 0; |
| 1935 | |
| 1936 | out: |
| 1937 | if (!ret && update_size) { |
| 1938 | btrfs_i_size_write(dir, dir->vfs_inode.i_size + name.len * 2); |
| 1939 | ret = btrfs_update_inode(trans, dir); |
| 1940 | } |
| 1941 | kfree(name.name); |
| 1942 | iput(&dir->vfs_inode); |
| 1943 | if (!ret && name_added) |
| 1944 | ret = 1; |
| 1945 | return ret; |
| 1946 | } |
| 1947 | |
| 1948 | /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */ |
| 1949 | static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, |
| 1950 | struct btrfs_root *root, |
| 1951 | struct btrfs_path *path, |
| 1952 | struct extent_buffer *eb, int slot, |
| 1953 | struct btrfs_key *key) |
| 1954 | { |
| 1955 | int ret; |
| 1956 | struct btrfs_dir_item *di; |
| 1957 | |
| 1958 | /* We only log dir index keys, which only contain a single dir item. */ |
| 1959 | ASSERT(key->type == BTRFS_DIR_INDEX_KEY); |
| 1960 | |
| 1961 | di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); |
| 1962 | ret = replay_one_name(trans, root, path, eb, di, key); |
| 1963 | if (ret < 0) |
| 1964 | return ret; |
| 1965 | |
| 1966 | /* |
| 1967 | * If this entry refers to a non-directory (directories can not have a |
| 1968 | * link count > 1) and it was added in the transaction that was not |
| 1969 | * committed, make sure we fixup the link count of the inode the entry |
| 1970 | * points to. Otherwise something like the following would result in a |
| 1971 | * directory pointing to an inode with a wrong link that does not account |
| 1972 | * for this dir entry: |
| 1973 | * |
| 1974 | * mkdir testdir |
| 1975 | * touch testdir/foo |
| 1976 | * touch testdir/bar |
| 1977 | * sync |
| 1978 | * |
| 1979 | * ln testdir/bar testdir/bar_link |
| 1980 | * ln testdir/foo testdir/foo_link |
| 1981 | * xfs_io -c "fsync" testdir/bar |
| 1982 | * |
| 1983 | * <power failure> |
| 1984 | * |
| 1985 | * mount fs, log replay happens |
| 1986 | * |
| 1987 | * File foo would remain with a link count of 1 when it has two entries |
| 1988 | * pointing to it in the directory testdir. This would make it impossible |
| 1989 | * to ever delete the parent directory has it would result in stale |
| 1990 | * dentries that can never be deleted. |
| 1991 | */ |
| 1992 | if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) { |
| 1993 | struct btrfs_path *fixup_path; |
| 1994 | struct btrfs_key di_key; |
| 1995 | |
| 1996 | fixup_path = btrfs_alloc_path(); |
| 1997 | if (!fixup_path) |
| 1998 | return -ENOMEM; |
| 1999 | |
| 2000 | btrfs_dir_item_key_to_cpu(eb, di, &di_key); |
| 2001 | ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid); |
| 2002 | btrfs_free_path(fixup_path); |
| 2003 | } |
| 2004 | |
| 2005 | return ret; |
| 2006 | } |
| 2007 | |
| 2008 | /* |
| 2009 | * directory replay has two parts. There are the standard directory |
| 2010 | * items in the log copied from the subvolume, and range items |
| 2011 | * created in the log while the subvolume was logged. |
| 2012 | * |
| 2013 | * The range items tell us which parts of the key space the log |
| 2014 | * is authoritative for. During replay, if a key in the subvolume |
| 2015 | * directory is in a logged range item, but not actually in the log |
| 2016 | * that means it was deleted from the directory before the fsync |
| 2017 | * and should be removed. |
| 2018 | */ |
| 2019 | static noinline int find_dir_range(struct btrfs_root *root, |
| 2020 | struct btrfs_path *path, |
| 2021 | u64 dirid, |
| 2022 | u64 *start_ret, u64 *end_ret) |
| 2023 | { |
| 2024 | struct btrfs_key key; |
| 2025 | u64 found_end; |
| 2026 | struct btrfs_dir_log_item *item; |
| 2027 | int ret; |
| 2028 | int nritems; |
| 2029 | |
| 2030 | if (*start_ret == (u64)-1) |
| 2031 | return 1; |
| 2032 | |
| 2033 | key.objectid = dirid; |
| 2034 | key.type = BTRFS_DIR_LOG_INDEX_KEY; |
| 2035 | key.offset = *start_ret; |
| 2036 | |
| 2037 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 2038 | if (ret < 0) |
| 2039 | goto out; |
| 2040 | if (ret > 0) { |
| 2041 | if (path->slots[0] == 0) |
| 2042 | goto out; |
| 2043 | path->slots[0]--; |
| 2044 | } |
| 2045 | if (ret != 0) |
| 2046 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| 2047 | |
| 2048 | if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { |
| 2049 | ret = 1; |
| 2050 | goto next; |
| 2051 | } |
| 2052 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| 2053 | struct btrfs_dir_log_item); |
| 2054 | found_end = btrfs_dir_log_end(path->nodes[0], item); |
| 2055 | |
| 2056 | if (*start_ret >= key.offset && *start_ret <= found_end) { |
| 2057 | ret = 0; |
| 2058 | *start_ret = key.offset; |
| 2059 | *end_ret = found_end; |
| 2060 | goto out; |
| 2061 | } |
| 2062 | ret = 1; |
| 2063 | next: |
| 2064 | /* check the next slot in the tree to see if it is a valid item */ |
| 2065 | nritems = btrfs_header_nritems(path->nodes[0]); |
| 2066 | path->slots[0]++; |
| 2067 | if (path->slots[0] >= nritems) { |
| 2068 | ret = btrfs_next_leaf(root, path); |
| 2069 | if (ret) |
| 2070 | goto out; |
| 2071 | } |
| 2072 | |
| 2073 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| 2074 | |
| 2075 | if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { |
| 2076 | ret = 1; |
| 2077 | goto out; |
| 2078 | } |
| 2079 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| 2080 | struct btrfs_dir_log_item); |
| 2081 | found_end = btrfs_dir_log_end(path->nodes[0], item); |
| 2082 | *start_ret = key.offset; |
| 2083 | *end_ret = found_end; |
| 2084 | ret = 0; |
| 2085 | out: |
| 2086 | btrfs_release_path(path); |
| 2087 | return ret; |
| 2088 | } |
| 2089 | |
| 2090 | /* |
| 2091 | * this looks for a given directory item in the log. If the directory |
| 2092 | * item is not in the log, the item is removed and the inode it points |
| 2093 | * to is unlinked |
| 2094 | */ |
| 2095 | static noinline int check_item_in_log(struct btrfs_trans_handle *trans, |
| 2096 | struct btrfs_root *log, |
| 2097 | struct btrfs_path *path, |
| 2098 | struct btrfs_path *log_path, |
| 2099 | struct btrfs_inode *dir, |
| 2100 | struct btrfs_key *dir_key) |
| 2101 | { |
| 2102 | struct btrfs_root *root = dir->root; |
| 2103 | int ret; |
| 2104 | struct extent_buffer *eb; |
| 2105 | int slot; |
| 2106 | struct btrfs_dir_item *di; |
| 2107 | struct fscrypt_str name = { 0 }; |
| 2108 | struct btrfs_inode *inode = NULL; |
| 2109 | struct btrfs_key location; |
| 2110 | |
| 2111 | /* |
| 2112 | * Currently we only log dir index keys. Even if we replay a log created |
| 2113 | * by an older kernel that logged both dir index and dir item keys, all |
| 2114 | * we need to do is process the dir index keys, we (and our caller) can |
| 2115 | * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY). |
| 2116 | */ |
| 2117 | ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY); |
| 2118 | |
| 2119 | eb = path->nodes[0]; |
| 2120 | slot = path->slots[0]; |
| 2121 | di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); |
| 2122 | ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); |
| 2123 | if (ret) |
| 2124 | goto out; |
| 2125 | |
| 2126 | if (log) { |
| 2127 | struct btrfs_dir_item *log_di; |
| 2128 | |
| 2129 | log_di = btrfs_lookup_dir_index_item(trans, log, log_path, |
| 2130 | dir_key->objectid, |
| 2131 | dir_key->offset, &name, 0); |
| 2132 | if (IS_ERR(log_di)) { |
| 2133 | ret = PTR_ERR(log_di); |
| 2134 | goto out; |
| 2135 | } else if (log_di) { |
| 2136 | /* The dentry exists in the log, we have nothing to do. */ |
| 2137 | ret = 0; |
| 2138 | goto out; |
| 2139 | } |
| 2140 | } |
| 2141 | |
| 2142 | btrfs_dir_item_key_to_cpu(eb, di, &location); |
| 2143 | btrfs_release_path(path); |
| 2144 | btrfs_release_path(log_path); |
| 2145 | inode = btrfs_iget_logging(location.objectid, root); |
| 2146 | if (IS_ERR(inode)) { |
| 2147 | ret = PTR_ERR(inode); |
| 2148 | inode = NULL; |
| 2149 | goto out; |
| 2150 | } |
| 2151 | |
| 2152 | ret = link_to_fixup_dir(trans, root, path, location.objectid); |
| 2153 | if (ret) |
| 2154 | goto out; |
| 2155 | |
| 2156 | inc_nlink(&inode->vfs_inode); |
| 2157 | ret = unlink_inode_for_log_replay(trans, dir, inode, &name); |
| 2158 | /* |
| 2159 | * Unlike dir item keys, dir index keys can only have one name (entry) in |
| 2160 | * them, as there are no key collisions since each key has a unique offset |
| 2161 | * (an index number), so we're done. |
| 2162 | */ |
| 2163 | out: |
| 2164 | btrfs_release_path(path); |
| 2165 | btrfs_release_path(log_path); |
| 2166 | kfree(name.name); |
| 2167 | if (inode) |
| 2168 | iput(&inode->vfs_inode); |
| 2169 | return ret; |
| 2170 | } |
| 2171 | |
| 2172 | static int replay_xattr_deletes(struct btrfs_trans_handle *trans, |
| 2173 | struct btrfs_root *root, |
| 2174 | struct btrfs_root *log, |
| 2175 | struct btrfs_path *path, |
| 2176 | const u64 ino) |
| 2177 | { |
| 2178 | struct btrfs_key search_key; |
| 2179 | struct btrfs_path *log_path; |
| 2180 | int i; |
| 2181 | int nritems; |
| 2182 | int ret; |
| 2183 | |
| 2184 | log_path = btrfs_alloc_path(); |
| 2185 | if (!log_path) |
| 2186 | return -ENOMEM; |
| 2187 | |
| 2188 | search_key.objectid = ino; |
| 2189 | search_key.type = BTRFS_XATTR_ITEM_KEY; |
| 2190 | search_key.offset = 0; |
| 2191 | again: |
| 2192 | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| 2193 | if (ret < 0) |
| 2194 | goto out; |
| 2195 | process_leaf: |
| 2196 | nritems = btrfs_header_nritems(path->nodes[0]); |
| 2197 | for (i = path->slots[0]; i < nritems; i++) { |
| 2198 | struct btrfs_key key; |
| 2199 | struct btrfs_dir_item *di; |
| 2200 | struct btrfs_dir_item *log_di; |
| 2201 | u32 total_size; |
| 2202 | u32 cur; |
| 2203 | |
| 2204 | btrfs_item_key_to_cpu(path->nodes[0], &key, i); |
| 2205 | if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { |
| 2206 | ret = 0; |
| 2207 | goto out; |
| 2208 | } |
| 2209 | |
| 2210 | di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); |
| 2211 | total_size = btrfs_item_size(path->nodes[0], i); |
| 2212 | cur = 0; |
| 2213 | while (cur < total_size) { |
| 2214 | u16 name_len = btrfs_dir_name_len(path->nodes[0], di); |
| 2215 | u16 data_len = btrfs_dir_data_len(path->nodes[0], di); |
| 2216 | u32 this_len = sizeof(*di) + name_len + data_len; |
| 2217 | char *name; |
| 2218 | |
| 2219 | name = kmalloc(name_len, GFP_NOFS); |
| 2220 | if (!name) { |
| 2221 | ret = -ENOMEM; |
| 2222 | goto out; |
| 2223 | } |
| 2224 | read_extent_buffer(path->nodes[0], name, |
| 2225 | (unsigned long)(di + 1), name_len); |
| 2226 | |
| 2227 | log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, |
| 2228 | name, name_len, 0); |
| 2229 | btrfs_release_path(log_path); |
| 2230 | if (!log_di) { |
| 2231 | /* Doesn't exist in log tree, so delete it. */ |
| 2232 | btrfs_release_path(path); |
| 2233 | di = btrfs_lookup_xattr(trans, root, path, ino, |
| 2234 | name, name_len, -1); |
| 2235 | kfree(name); |
| 2236 | if (IS_ERR(di)) { |
| 2237 | ret = PTR_ERR(di); |
| 2238 | goto out; |
| 2239 | } |
| 2240 | ASSERT(di); |
| 2241 | ret = btrfs_delete_one_dir_name(trans, root, |
| 2242 | path, di); |
| 2243 | if (ret) |
| 2244 | goto out; |
| 2245 | btrfs_release_path(path); |
| 2246 | search_key = key; |
| 2247 | goto again; |
| 2248 | } |
| 2249 | kfree(name); |
| 2250 | if (IS_ERR(log_di)) { |
| 2251 | ret = PTR_ERR(log_di); |
| 2252 | goto out; |
| 2253 | } |
| 2254 | cur += this_len; |
| 2255 | di = (struct btrfs_dir_item *)((char *)di + this_len); |
| 2256 | } |
| 2257 | } |
| 2258 | ret = btrfs_next_leaf(root, path); |
| 2259 | if (ret > 0) |
| 2260 | ret = 0; |
| 2261 | else if (ret == 0) |
| 2262 | goto process_leaf; |
| 2263 | out: |
| 2264 | btrfs_free_path(log_path); |
| 2265 | btrfs_release_path(path); |
| 2266 | return ret; |
| 2267 | } |
| 2268 | |
| 2269 | |
| 2270 | /* |
| 2271 | * deletion replay happens before we copy any new directory items |
| 2272 | * out of the log or out of backreferences from inodes. It |
| 2273 | * scans the log to find ranges of keys that log is authoritative for, |
| 2274 | * and then scans the directory to find items in those ranges that are |
| 2275 | * not present in the log. |
| 2276 | * |
| 2277 | * Anything we don't find in the log is unlinked and removed from the |
| 2278 | * directory. |
| 2279 | */ |
| 2280 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, |
| 2281 | struct btrfs_root *root, |
| 2282 | struct btrfs_root *log, |
| 2283 | struct btrfs_path *path, |
| 2284 | u64 dirid, int del_all) |
| 2285 | { |
| 2286 | u64 range_start; |
| 2287 | u64 range_end; |
| 2288 | int ret = 0; |
| 2289 | struct btrfs_key dir_key; |
| 2290 | struct btrfs_key found_key; |
| 2291 | struct btrfs_path *log_path; |
| 2292 | struct btrfs_inode *dir; |
| 2293 | |
| 2294 | dir_key.objectid = dirid; |
| 2295 | dir_key.type = BTRFS_DIR_INDEX_KEY; |
| 2296 | log_path = btrfs_alloc_path(); |
| 2297 | if (!log_path) |
| 2298 | return -ENOMEM; |
| 2299 | |
| 2300 | dir = btrfs_iget_logging(dirid, root); |
| 2301 | /* |
| 2302 | * It isn't an error if the inode isn't there, that can happen because |
| 2303 | * we replay the deletes before we copy in the inode item from the log. |
| 2304 | */ |
| 2305 | if (IS_ERR(dir)) { |
| 2306 | btrfs_free_path(log_path); |
| 2307 | ret = PTR_ERR(dir); |
| 2308 | if (ret == -ENOENT) |
| 2309 | ret = 0; |
| 2310 | return ret; |
| 2311 | } |
| 2312 | |
| 2313 | range_start = 0; |
| 2314 | range_end = 0; |
| 2315 | while (1) { |
| 2316 | if (del_all) |
| 2317 | range_end = (u64)-1; |
| 2318 | else { |
| 2319 | ret = find_dir_range(log, path, dirid, |
| 2320 | &range_start, &range_end); |
| 2321 | if (ret < 0) |
| 2322 | goto out; |
| 2323 | else if (ret > 0) |
| 2324 | break; |
| 2325 | } |
| 2326 | |
| 2327 | dir_key.offset = range_start; |
| 2328 | while (1) { |
| 2329 | int nritems; |
| 2330 | ret = btrfs_search_slot(NULL, root, &dir_key, path, |
| 2331 | 0, 0); |
| 2332 | if (ret < 0) |
| 2333 | goto out; |
| 2334 | |
| 2335 | nritems = btrfs_header_nritems(path->nodes[0]); |
| 2336 | if (path->slots[0] >= nritems) { |
| 2337 | ret = btrfs_next_leaf(root, path); |
| 2338 | if (ret == 1) |
| 2339 | break; |
| 2340 | else if (ret < 0) |
| 2341 | goto out; |
| 2342 | } |
| 2343 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| 2344 | path->slots[0]); |
| 2345 | if (found_key.objectid != dirid || |
| 2346 | found_key.type != dir_key.type) { |
| 2347 | ret = 0; |
| 2348 | goto out; |
| 2349 | } |
| 2350 | |
| 2351 | if (found_key.offset > range_end) |
| 2352 | break; |
| 2353 | |
| 2354 | ret = check_item_in_log(trans, log, path, |
| 2355 | log_path, dir, |
| 2356 | &found_key); |
| 2357 | if (ret) |
| 2358 | goto out; |
| 2359 | if (found_key.offset == (u64)-1) |
| 2360 | break; |
| 2361 | dir_key.offset = found_key.offset + 1; |
| 2362 | } |
| 2363 | btrfs_release_path(path); |
| 2364 | if (range_end == (u64)-1) |
| 2365 | break; |
| 2366 | range_start = range_end + 1; |
| 2367 | } |
| 2368 | ret = 0; |
| 2369 | out: |
| 2370 | btrfs_release_path(path); |
| 2371 | btrfs_free_path(log_path); |
| 2372 | iput(&dir->vfs_inode); |
| 2373 | return ret; |
| 2374 | } |
| 2375 | |
| 2376 | /* |
| 2377 | * the process_func used to replay items from the log tree. This |
| 2378 | * gets called in two different stages. The first stage just looks |
| 2379 | * for inodes and makes sure they are all copied into the subvolume. |
| 2380 | * |
| 2381 | * The second stage copies all the other item types from the log into |
| 2382 | * the subvolume. The two stage approach is slower, but gets rid of |
| 2383 | * lots of complexity around inodes referencing other inodes that exist |
| 2384 | * only in the log (references come from either directory items or inode |
| 2385 | * back refs). |
| 2386 | */ |
| 2387 | static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, |
| 2388 | struct walk_control *wc, u64 gen, int level) |
| 2389 | { |
| 2390 | int nritems; |
| 2391 | struct btrfs_tree_parent_check check = { |
| 2392 | .transid = gen, |
| 2393 | .level = level |
| 2394 | }; |
| 2395 | struct btrfs_path *path; |
| 2396 | struct btrfs_root *root = wc->replay_dest; |
| 2397 | struct btrfs_key key; |
| 2398 | int i; |
| 2399 | int ret; |
| 2400 | |
| 2401 | ret = btrfs_read_extent_buffer(eb, &check); |
| 2402 | if (ret) |
| 2403 | return ret; |
| 2404 | |
| 2405 | level = btrfs_header_level(eb); |
| 2406 | |
| 2407 | if (level != 0) |
| 2408 | return 0; |
| 2409 | |
| 2410 | path = btrfs_alloc_path(); |
| 2411 | if (!path) |
| 2412 | return -ENOMEM; |
| 2413 | |
| 2414 | nritems = btrfs_header_nritems(eb); |
| 2415 | for (i = 0; i < nritems; i++) { |
| 2416 | btrfs_item_key_to_cpu(eb, &key, i); |
| 2417 | |
| 2418 | /* inode keys are done during the first stage */ |
| 2419 | if (key.type == BTRFS_INODE_ITEM_KEY && |
| 2420 | wc->stage == LOG_WALK_REPLAY_INODES) { |
| 2421 | struct btrfs_inode_item *inode_item; |
| 2422 | u32 mode; |
| 2423 | |
| 2424 | inode_item = btrfs_item_ptr(eb, i, |
| 2425 | struct btrfs_inode_item); |
| 2426 | /* |
| 2427 | * If we have a tmpfile (O_TMPFILE) that got fsync'ed |
| 2428 | * and never got linked before the fsync, skip it, as |
| 2429 | * replaying it is pointless since it would be deleted |
| 2430 | * later. We skip logging tmpfiles, but it's always |
| 2431 | * possible we are replaying a log created with a kernel |
| 2432 | * that used to log tmpfiles. |
| 2433 | */ |
| 2434 | if (btrfs_inode_nlink(eb, inode_item) == 0) { |
| 2435 | wc->ignore_cur_inode = true; |
| 2436 | continue; |
| 2437 | } else { |
| 2438 | wc->ignore_cur_inode = false; |
| 2439 | } |
| 2440 | ret = replay_xattr_deletes(wc->trans, root, log, |
| 2441 | path, key.objectid); |
| 2442 | if (ret) |
| 2443 | break; |
| 2444 | mode = btrfs_inode_mode(eb, inode_item); |
| 2445 | if (S_ISDIR(mode)) { |
| 2446 | ret = replay_dir_deletes(wc->trans, |
| 2447 | root, log, path, key.objectid, 0); |
| 2448 | if (ret) |
| 2449 | break; |
| 2450 | } |
| 2451 | ret = overwrite_item(wc->trans, root, path, |
| 2452 | eb, i, &key); |
| 2453 | if (ret) |
| 2454 | break; |
| 2455 | |
| 2456 | /* |
| 2457 | * Before replaying extents, truncate the inode to its |
| 2458 | * size. We need to do it now and not after log replay |
| 2459 | * because before an fsync we can have prealloc extents |
| 2460 | * added beyond the inode's i_size. If we did it after, |
| 2461 | * through orphan cleanup for example, we would drop |
| 2462 | * those prealloc extents just after replaying them. |
| 2463 | */ |
| 2464 | if (S_ISREG(mode)) { |
| 2465 | struct btrfs_drop_extents_args drop_args = { 0 }; |
| 2466 | struct btrfs_inode *inode; |
| 2467 | u64 from; |
| 2468 | |
| 2469 | inode = btrfs_iget_logging(key.objectid, root); |
| 2470 | if (IS_ERR(inode)) { |
| 2471 | ret = PTR_ERR(inode); |
| 2472 | break; |
| 2473 | } |
| 2474 | from = ALIGN(i_size_read(&inode->vfs_inode), |
| 2475 | root->fs_info->sectorsize); |
| 2476 | drop_args.start = from; |
| 2477 | drop_args.end = (u64)-1; |
| 2478 | drop_args.drop_cache = true; |
| 2479 | ret = btrfs_drop_extents(wc->trans, root, inode, |
| 2480 | &drop_args); |
| 2481 | if (!ret) { |
| 2482 | inode_sub_bytes(&inode->vfs_inode, |
| 2483 | drop_args.bytes_found); |
| 2484 | /* Update the inode's nbytes. */ |
| 2485 | ret = btrfs_update_inode(wc->trans, inode); |
| 2486 | } |
| 2487 | iput(&inode->vfs_inode); |
| 2488 | if (ret) |
| 2489 | break; |
| 2490 | } |
| 2491 | |
| 2492 | ret = link_to_fixup_dir(wc->trans, root, |
| 2493 | path, key.objectid); |
| 2494 | if (ret) |
| 2495 | break; |
| 2496 | } |
| 2497 | |
| 2498 | if (wc->ignore_cur_inode) |
| 2499 | continue; |
| 2500 | |
| 2501 | if (key.type == BTRFS_DIR_INDEX_KEY && |
| 2502 | wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { |
| 2503 | ret = replay_one_dir_item(wc->trans, root, path, |
| 2504 | eb, i, &key); |
| 2505 | if (ret) |
| 2506 | break; |
| 2507 | } |
| 2508 | |
| 2509 | if (wc->stage < LOG_WALK_REPLAY_ALL) |
| 2510 | continue; |
| 2511 | |
| 2512 | /* these keys are simply copied */ |
| 2513 | if (key.type == BTRFS_XATTR_ITEM_KEY) { |
| 2514 | ret = overwrite_item(wc->trans, root, path, |
| 2515 | eb, i, &key); |
| 2516 | if (ret) |
| 2517 | break; |
| 2518 | } else if (key.type == BTRFS_INODE_REF_KEY || |
| 2519 | key.type == BTRFS_INODE_EXTREF_KEY) { |
| 2520 | ret = add_inode_ref(wc->trans, root, log, path, |
| 2521 | eb, i, &key); |
| 2522 | if (ret && ret != -ENOENT) |
| 2523 | break; |
| 2524 | ret = 0; |
| 2525 | } else if (key.type == BTRFS_EXTENT_DATA_KEY) { |
| 2526 | ret = replay_one_extent(wc->trans, root, path, |
| 2527 | eb, i, &key); |
| 2528 | if (ret) |
| 2529 | break; |
| 2530 | } |
| 2531 | /* |
| 2532 | * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the |
| 2533 | * BTRFS_DIR_INDEX_KEY items which we use to derive the |
| 2534 | * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an |
| 2535 | * older kernel with such keys, ignore them. |
| 2536 | */ |
| 2537 | } |
| 2538 | btrfs_free_path(path); |
| 2539 | return ret; |
| 2540 | } |
| 2541 | |
| 2542 | /* |
| 2543 | * Correctly adjust the reserved bytes occupied by a log tree extent buffer |
| 2544 | */ |
| 2545 | static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) |
| 2546 | { |
| 2547 | struct btrfs_block_group *cache; |
| 2548 | |
| 2549 | cache = btrfs_lookup_block_group(fs_info, start); |
| 2550 | if (!cache) { |
| 2551 | btrfs_err(fs_info, "unable to find block group for %llu", start); |
| 2552 | return; |
| 2553 | } |
| 2554 | |
| 2555 | spin_lock(&cache->space_info->lock); |
| 2556 | spin_lock(&cache->lock); |
| 2557 | cache->reserved -= fs_info->nodesize; |
| 2558 | cache->space_info->bytes_reserved -= fs_info->nodesize; |
| 2559 | spin_unlock(&cache->lock); |
| 2560 | spin_unlock(&cache->space_info->lock); |
| 2561 | |
| 2562 | btrfs_put_block_group(cache); |
| 2563 | } |
| 2564 | |
| 2565 | static int clean_log_buffer(struct btrfs_trans_handle *trans, |
| 2566 | struct extent_buffer *eb) |
| 2567 | { |
| 2568 | int ret; |
| 2569 | |
| 2570 | btrfs_tree_lock(eb); |
| 2571 | btrfs_clear_buffer_dirty(trans, eb); |
| 2572 | wait_on_extent_buffer_writeback(eb); |
| 2573 | btrfs_tree_unlock(eb); |
| 2574 | |
| 2575 | if (trans) { |
| 2576 | ret = btrfs_pin_reserved_extent(trans, eb); |
| 2577 | if (ret) |
| 2578 | return ret; |
| 2579 | } else { |
| 2580 | unaccount_log_buffer(eb->fs_info, eb->start); |
| 2581 | } |
| 2582 | |
| 2583 | return 0; |
| 2584 | } |
| 2585 | |
| 2586 | static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, |
| 2587 | struct btrfs_root *root, |
| 2588 | struct btrfs_path *path, int *level, |
| 2589 | struct walk_control *wc) |
| 2590 | { |
| 2591 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 2592 | u64 bytenr; |
| 2593 | u64 ptr_gen; |
| 2594 | struct extent_buffer *next; |
| 2595 | struct extent_buffer *cur; |
| 2596 | int ret = 0; |
| 2597 | |
| 2598 | while (*level > 0) { |
| 2599 | struct btrfs_tree_parent_check check = { 0 }; |
| 2600 | |
| 2601 | cur = path->nodes[*level]; |
| 2602 | |
| 2603 | WARN_ON(btrfs_header_level(cur) != *level); |
| 2604 | |
| 2605 | if (path->slots[*level] >= |
| 2606 | btrfs_header_nritems(cur)) |
| 2607 | break; |
| 2608 | |
| 2609 | bytenr = btrfs_node_blockptr(cur, path->slots[*level]); |
| 2610 | ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); |
| 2611 | check.transid = ptr_gen; |
| 2612 | check.level = *level - 1; |
| 2613 | check.has_first_key = true; |
| 2614 | btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]); |
| 2615 | |
| 2616 | next = btrfs_find_create_tree_block(fs_info, bytenr, |
| 2617 | btrfs_header_owner(cur), |
| 2618 | *level - 1); |
| 2619 | if (IS_ERR(next)) |
| 2620 | return PTR_ERR(next); |
| 2621 | |
| 2622 | if (*level == 1) { |
| 2623 | ret = wc->process_func(root, next, wc, ptr_gen, |
| 2624 | *level - 1); |
| 2625 | if (ret) { |
| 2626 | free_extent_buffer(next); |
| 2627 | return ret; |
| 2628 | } |
| 2629 | |
| 2630 | path->slots[*level]++; |
| 2631 | if (wc->free) { |
| 2632 | ret = btrfs_read_extent_buffer(next, &check); |
| 2633 | if (ret) { |
| 2634 | free_extent_buffer(next); |
| 2635 | return ret; |
| 2636 | } |
| 2637 | |
| 2638 | ret = clean_log_buffer(trans, next); |
| 2639 | if (ret) { |
| 2640 | free_extent_buffer(next); |
| 2641 | return ret; |
| 2642 | } |
| 2643 | } |
| 2644 | free_extent_buffer(next); |
| 2645 | continue; |
| 2646 | } |
| 2647 | ret = btrfs_read_extent_buffer(next, &check); |
| 2648 | if (ret) { |
| 2649 | free_extent_buffer(next); |
| 2650 | return ret; |
| 2651 | } |
| 2652 | |
| 2653 | if (path->nodes[*level-1]) |
| 2654 | free_extent_buffer(path->nodes[*level-1]); |
| 2655 | path->nodes[*level-1] = next; |
| 2656 | *level = btrfs_header_level(next); |
| 2657 | path->slots[*level] = 0; |
| 2658 | cond_resched(); |
| 2659 | } |
| 2660 | path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); |
| 2661 | |
| 2662 | cond_resched(); |
| 2663 | return 0; |
| 2664 | } |
| 2665 | |
| 2666 | static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, |
| 2667 | struct btrfs_root *root, |
| 2668 | struct btrfs_path *path, int *level, |
| 2669 | struct walk_control *wc) |
| 2670 | { |
| 2671 | int i; |
| 2672 | int slot; |
| 2673 | int ret; |
| 2674 | |
| 2675 | for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { |
| 2676 | slot = path->slots[i]; |
| 2677 | if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { |
| 2678 | path->slots[i]++; |
| 2679 | *level = i; |
| 2680 | WARN_ON(*level == 0); |
| 2681 | return 0; |
| 2682 | } else { |
| 2683 | ret = wc->process_func(root, path->nodes[*level], wc, |
| 2684 | btrfs_header_generation(path->nodes[*level]), |
| 2685 | *level); |
| 2686 | if (ret) |
| 2687 | return ret; |
| 2688 | |
| 2689 | if (wc->free) { |
| 2690 | ret = clean_log_buffer(trans, path->nodes[*level]); |
| 2691 | if (ret) |
| 2692 | return ret; |
| 2693 | } |
| 2694 | free_extent_buffer(path->nodes[*level]); |
| 2695 | path->nodes[*level] = NULL; |
| 2696 | *level = i + 1; |
| 2697 | } |
| 2698 | } |
| 2699 | return 1; |
| 2700 | } |
| 2701 | |
| 2702 | /* |
| 2703 | * drop the reference count on the tree rooted at 'snap'. This traverses |
| 2704 | * the tree freeing any blocks that have a ref count of zero after being |
| 2705 | * decremented. |
| 2706 | */ |
| 2707 | static int walk_log_tree(struct btrfs_trans_handle *trans, |
| 2708 | struct btrfs_root *log, struct walk_control *wc) |
| 2709 | { |
| 2710 | int ret = 0; |
| 2711 | int wret; |
| 2712 | int level; |
| 2713 | struct btrfs_path *path; |
| 2714 | int orig_level; |
| 2715 | |
| 2716 | path = btrfs_alloc_path(); |
| 2717 | if (!path) |
| 2718 | return -ENOMEM; |
| 2719 | |
| 2720 | level = btrfs_header_level(log->node); |
| 2721 | orig_level = level; |
| 2722 | path->nodes[level] = log->node; |
| 2723 | atomic_inc(&log->node->refs); |
| 2724 | path->slots[level] = 0; |
| 2725 | |
| 2726 | while (1) { |
| 2727 | wret = walk_down_log_tree(trans, log, path, &level, wc); |
| 2728 | if (wret > 0) |
| 2729 | break; |
| 2730 | if (wret < 0) { |
| 2731 | ret = wret; |
| 2732 | goto out; |
| 2733 | } |
| 2734 | |
| 2735 | wret = walk_up_log_tree(trans, log, path, &level, wc); |
| 2736 | if (wret > 0) |
| 2737 | break; |
| 2738 | if (wret < 0) { |
| 2739 | ret = wret; |
| 2740 | goto out; |
| 2741 | } |
| 2742 | } |
| 2743 | |
| 2744 | /* was the root node processed? if not, catch it here */ |
| 2745 | if (path->nodes[orig_level]) { |
| 2746 | ret = wc->process_func(log, path->nodes[orig_level], wc, |
| 2747 | btrfs_header_generation(path->nodes[orig_level]), |
| 2748 | orig_level); |
| 2749 | if (ret) |
| 2750 | goto out; |
| 2751 | if (wc->free) |
| 2752 | ret = clean_log_buffer(trans, path->nodes[orig_level]); |
| 2753 | } |
| 2754 | |
| 2755 | out: |
| 2756 | btrfs_free_path(path); |
| 2757 | return ret; |
| 2758 | } |
| 2759 | |
| 2760 | /* |
| 2761 | * helper function to update the item for a given subvolumes log root |
| 2762 | * in the tree of log roots |
| 2763 | */ |
| 2764 | static int update_log_root(struct btrfs_trans_handle *trans, |
| 2765 | struct btrfs_root *log, |
| 2766 | struct btrfs_root_item *root_item) |
| 2767 | { |
| 2768 | struct btrfs_fs_info *fs_info = log->fs_info; |
| 2769 | int ret; |
| 2770 | |
| 2771 | if (log->log_transid == 1) { |
| 2772 | /* insert root item on the first sync */ |
| 2773 | ret = btrfs_insert_root(trans, fs_info->log_root_tree, |
| 2774 | &log->root_key, root_item); |
| 2775 | } else { |
| 2776 | ret = btrfs_update_root(trans, fs_info->log_root_tree, |
| 2777 | &log->root_key, root_item); |
| 2778 | } |
| 2779 | return ret; |
| 2780 | } |
| 2781 | |
| 2782 | static void wait_log_commit(struct btrfs_root *root, int transid) |
| 2783 | { |
| 2784 | DEFINE_WAIT(wait); |
| 2785 | int index = transid % 2; |
| 2786 | |
| 2787 | /* |
| 2788 | * we only allow two pending log transactions at a time, |
| 2789 | * so we know that if ours is more than 2 older than the |
| 2790 | * current transaction, we're done |
| 2791 | */ |
| 2792 | for (;;) { |
| 2793 | prepare_to_wait(&root->log_commit_wait[index], |
| 2794 | &wait, TASK_UNINTERRUPTIBLE); |
| 2795 | |
| 2796 | if (!(root->log_transid_committed < transid && |
| 2797 | atomic_read(&root->log_commit[index]))) |
| 2798 | break; |
| 2799 | |
| 2800 | mutex_unlock(&root->log_mutex); |
| 2801 | schedule(); |
| 2802 | mutex_lock(&root->log_mutex); |
| 2803 | } |
| 2804 | finish_wait(&root->log_commit_wait[index], &wait); |
| 2805 | } |
| 2806 | |
| 2807 | static void wait_for_writer(struct btrfs_root *root) |
| 2808 | { |
| 2809 | DEFINE_WAIT(wait); |
| 2810 | |
| 2811 | for (;;) { |
| 2812 | prepare_to_wait(&root->log_writer_wait, &wait, |
| 2813 | TASK_UNINTERRUPTIBLE); |
| 2814 | if (!atomic_read(&root->log_writers)) |
| 2815 | break; |
| 2816 | |
| 2817 | mutex_unlock(&root->log_mutex); |
| 2818 | schedule(); |
| 2819 | mutex_lock(&root->log_mutex); |
| 2820 | } |
| 2821 | finish_wait(&root->log_writer_wait, &wait); |
| 2822 | } |
| 2823 | |
| 2824 | void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode) |
| 2825 | { |
| 2826 | ctx->log_ret = 0; |
| 2827 | ctx->log_transid = 0; |
| 2828 | ctx->log_new_dentries = false; |
| 2829 | ctx->logging_new_name = false; |
| 2830 | ctx->logging_new_delayed_dentries = false; |
| 2831 | ctx->logged_before = false; |
| 2832 | ctx->inode = inode; |
| 2833 | INIT_LIST_HEAD(&ctx->list); |
| 2834 | INIT_LIST_HEAD(&ctx->ordered_extents); |
| 2835 | INIT_LIST_HEAD(&ctx->conflict_inodes); |
| 2836 | ctx->num_conflict_inodes = 0; |
| 2837 | ctx->logging_conflict_inodes = false; |
| 2838 | ctx->scratch_eb = NULL; |
| 2839 | } |
| 2840 | |
| 2841 | void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx) |
| 2842 | { |
| 2843 | struct btrfs_inode *inode = ctx->inode; |
| 2844 | |
| 2845 | if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && |
| 2846 | !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) |
| 2847 | return; |
| 2848 | |
| 2849 | /* |
| 2850 | * Don't care about allocation failure. This is just for optimization, |
| 2851 | * if we fail to allocate here, we will try again later if needed. |
| 2852 | */ |
| 2853 | ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0); |
| 2854 | } |
| 2855 | |
| 2856 | void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx) |
| 2857 | { |
| 2858 | struct btrfs_ordered_extent *ordered; |
| 2859 | struct btrfs_ordered_extent *tmp; |
| 2860 | |
| 2861 | btrfs_assert_inode_locked(ctx->inode); |
| 2862 | |
| 2863 | list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { |
| 2864 | list_del_init(&ordered->log_list); |
| 2865 | btrfs_put_ordered_extent(ordered); |
| 2866 | } |
| 2867 | } |
| 2868 | |
| 2869 | |
| 2870 | static inline void btrfs_remove_log_ctx(struct btrfs_root *root, |
| 2871 | struct btrfs_log_ctx *ctx) |
| 2872 | { |
| 2873 | mutex_lock(&root->log_mutex); |
| 2874 | list_del_init(&ctx->list); |
| 2875 | mutex_unlock(&root->log_mutex); |
| 2876 | } |
| 2877 | |
| 2878 | /* |
| 2879 | * Invoked in log mutex context, or be sure there is no other task which |
| 2880 | * can access the list. |
| 2881 | */ |
| 2882 | static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, |
| 2883 | int index, int error) |
| 2884 | { |
| 2885 | struct btrfs_log_ctx *ctx; |
| 2886 | struct btrfs_log_ctx *safe; |
| 2887 | |
| 2888 | list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { |
| 2889 | list_del_init(&ctx->list); |
| 2890 | ctx->log_ret = error; |
| 2891 | } |
| 2892 | } |
| 2893 | |
| 2894 | /* |
| 2895 | * Sends a given tree log down to the disk and updates the super blocks to |
| 2896 | * record it. When this call is done, you know that any inodes previously |
| 2897 | * logged are safely on disk only if it returns 0. |
| 2898 | * |
| 2899 | * Any other return value means you need to call btrfs_commit_transaction. |
| 2900 | * Some of the edge cases for fsyncing directories that have had unlinks |
| 2901 | * or renames done in the past mean that sometimes the only safe |
| 2902 | * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, |
| 2903 | * that has happened. |
| 2904 | */ |
| 2905 | int btrfs_sync_log(struct btrfs_trans_handle *trans, |
| 2906 | struct btrfs_root *root, struct btrfs_log_ctx *ctx) |
| 2907 | { |
| 2908 | int index1; |
| 2909 | int index2; |
| 2910 | int mark; |
| 2911 | int ret; |
| 2912 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 2913 | struct btrfs_root *log = root->log_root; |
| 2914 | struct btrfs_root *log_root_tree = fs_info->log_root_tree; |
| 2915 | struct btrfs_root_item new_root_item; |
| 2916 | int log_transid = 0; |
| 2917 | struct btrfs_log_ctx root_log_ctx; |
| 2918 | struct blk_plug plug; |
| 2919 | u64 log_root_start; |
| 2920 | u64 log_root_level; |
| 2921 | |
| 2922 | mutex_lock(&root->log_mutex); |
| 2923 | log_transid = ctx->log_transid; |
| 2924 | if (root->log_transid_committed >= log_transid) { |
| 2925 | mutex_unlock(&root->log_mutex); |
| 2926 | return ctx->log_ret; |
| 2927 | } |
| 2928 | |
| 2929 | index1 = log_transid % 2; |
| 2930 | if (atomic_read(&root->log_commit[index1])) { |
| 2931 | wait_log_commit(root, log_transid); |
| 2932 | mutex_unlock(&root->log_mutex); |
| 2933 | return ctx->log_ret; |
| 2934 | } |
| 2935 | ASSERT(log_transid == root->log_transid); |
| 2936 | atomic_set(&root->log_commit[index1], 1); |
| 2937 | |
| 2938 | /* wait for previous tree log sync to complete */ |
| 2939 | if (atomic_read(&root->log_commit[(index1 + 1) % 2])) |
| 2940 | wait_log_commit(root, log_transid - 1); |
| 2941 | |
| 2942 | while (1) { |
| 2943 | int batch = atomic_read(&root->log_batch); |
| 2944 | /* when we're on an ssd, just kick the log commit out */ |
| 2945 | if (!btrfs_test_opt(fs_info, SSD) && |
| 2946 | test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { |
| 2947 | mutex_unlock(&root->log_mutex); |
| 2948 | schedule_timeout_uninterruptible(1); |
| 2949 | mutex_lock(&root->log_mutex); |
| 2950 | } |
| 2951 | wait_for_writer(root); |
| 2952 | if (batch == atomic_read(&root->log_batch)) |
| 2953 | break; |
| 2954 | } |
| 2955 | |
| 2956 | /* bail out if we need to do a full commit */ |
| 2957 | if (btrfs_need_log_full_commit(trans)) { |
| 2958 | ret = BTRFS_LOG_FORCE_COMMIT; |
| 2959 | mutex_unlock(&root->log_mutex); |
| 2960 | goto out; |
| 2961 | } |
| 2962 | |
| 2963 | if (log_transid % 2 == 0) |
| 2964 | mark = EXTENT_DIRTY; |
| 2965 | else |
| 2966 | mark = EXTENT_NEW; |
| 2967 | |
| 2968 | /* we start IO on all the marked extents here, but we don't actually |
| 2969 | * wait for them until later. |
| 2970 | */ |
| 2971 | blk_start_plug(&plug); |
| 2972 | ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); |
| 2973 | /* |
| 2974 | * -EAGAIN happens when someone, e.g., a concurrent transaction |
| 2975 | * commit, writes a dirty extent in this tree-log commit. This |
| 2976 | * concurrent write will create a hole writing out the extents, |
| 2977 | * and we cannot proceed on a zoned filesystem, requiring |
| 2978 | * sequential writing. While we can bail out to a full commit |
| 2979 | * here, but we can continue hoping the concurrent writing fills |
| 2980 | * the hole. |
| 2981 | */ |
| 2982 | if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) |
| 2983 | ret = 0; |
| 2984 | if (ret) { |
| 2985 | blk_finish_plug(&plug); |
| 2986 | btrfs_set_log_full_commit(trans); |
| 2987 | mutex_unlock(&root->log_mutex); |
| 2988 | goto out; |
| 2989 | } |
| 2990 | |
| 2991 | /* |
| 2992 | * We _must_ update under the root->log_mutex in order to make sure we |
| 2993 | * have a consistent view of the log root we are trying to commit at |
| 2994 | * this moment. |
| 2995 | * |
| 2996 | * We _must_ copy this into a local copy, because we are not holding the |
| 2997 | * log_root_tree->log_mutex yet. This is important because when we |
| 2998 | * commit the log_root_tree we must have a consistent view of the |
| 2999 | * log_root_tree when we update the super block to point at the |
| 3000 | * log_root_tree bytenr. If we update the log_root_tree here we'll race |
| 3001 | * with the commit and possibly point at the new block which we may not |
| 3002 | * have written out. |
| 3003 | */ |
| 3004 | btrfs_set_root_node(&log->root_item, log->node); |
| 3005 | memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); |
| 3006 | |
| 3007 | btrfs_set_root_log_transid(root, root->log_transid + 1); |
| 3008 | log->log_transid = root->log_transid; |
| 3009 | root->log_start_pid = 0; |
| 3010 | /* |
| 3011 | * IO has been started, blocks of the log tree have WRITTEN flag set |
| 3012 | * in their headers. new modifications of the log will be written to |
| 3013 | * new positions. so it's safe to allow log writers to go in. |
| 3014 | */ |
| 3015 | mutex_unlock(&root->log_mutex); |
| 3016 | |
| 3017 | if (btrfs_is_zoned(fs_info)) { |
| 3018 | mutex_lock(&fs_info->tree_root->log_mutex); |
| 3019 | if (!log_root_tree->node) { |
| 3020 | ret = btrfs_alloc_log_tree_node(trans, log_root_tree); |
| 3021 | if (ret) { |
| 3022 | mutex_unlock(&fs_info->tree_root->log_mutex); |
| 3023 | blk_finish_plug(&plug); |
| 3024 | goto out; |
| 3025 | } |
| 3026 | } |
| 3027 | mutex_unlock(&fs_info->tree_root->log_mutex); |
| 3028 | } |
| 3029 | |
| 3030 | btrfs_init_log_ctx(&root_log_ctx, NULL); |
| 3031 | |
| 3032 | mutex_lock(&log_root_tree->log_mutex); |
| 3033 | |
| 3034 | index2 = log_root_tree->log_transid % 2; |
| 3035 | list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); |
| 3036 | root_log_ctx.log_transid = log_root_tree->log_transid; |
| 3037 | |
| 3038 | /* |
| 3039 | * Now we are safe to update the log_root_tree because we're under the |
| 3040 | * log_mutex, and we're a current writer so we're holding the commit |
| 3041 | * open until we drop the log_mutex. |
| 3042 | */ |
| 3043 | ret = update_log_root(trans, log, &new_root_item); |
| 3044 | if (ret) { |
| 3045 | list_del_init(&root_log_ctx.list); |
| 3046 | blk_finish_plug(&plug); |
| 3047 | btrfs_set_log_full_commit(trans); |
| 3048 | if (ret != -ENOSPC) |
| 3049 | btrfs_err(fs_info, |
| 3050 | "failed to update log for root %llu ret %d", |
| 3051 | btrfs_root_id(root), ret); |
| 3052 | btrfs_wait_tree_log_extents(log, mark); |
| 3053 | mutex_unlock(&log_root_tree->log_mutex); |
| 3054 | goto out; |
| 3055 | } |
| 3056 | |
| 3057 | if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { |
| 3058 | blk_finish_plug(&plug); |
| 3059 | list_del_init(&root_log_ctx.list); |
| 3060 | mutex_unlock(&log_root_tree->log_mutex); |
| 3061 | ret = root_log_ctx.log_ret; |
| 3062 | goto out; |
| 3063 | } |
| 3064 | |
| 3065 | if (atomic_read(&log_root_tree->log_commit[index2])) { |
| 3066 | blk_finish_plug(&plug); |
| 3067 | ret = btrfs_wait_tree_log_extents(log, mark); |
| 3068 | wait_log_commit(log_root_tree, |
| 3069 | root_log_ctx.log_transid); |
| 3070 | mutex_unlock(&log_root_tree->log_mutex); |
| 3071 | if (!ret) |
| 3072 | ret = root_log_ctx.log_ret; |
| 3073 | goto out; |
| 3074 | } |
| 3075 | ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); |
| 3076 | atomic_set(&log_root_tree->log_commit[index2], 1); |
| 3077 | |
| 3078 | if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { |
| 3079 | wait_log_commit(log_root_tree, |
| 3080 | root_log_ctx.log_transid - 1); |
| 3081 | } |
| 3082 | |
| 3083 | /* |
| 3084 | * now that we've moved on to the tree of log tree roots, |
| 3085 | * check the full commit flag again |
| 3086 | */ |
| 3087 | if (btrfs_need_log_full_commit(trans)) { |
| 3088 | blk_finish_plug(&plug); |
| 3089 | btrfs_wait_tree_log_extents(log, mark); |
| 3090 | mutex_unlock(&log_root_tree->log_mutex); |
| 3091 | ret = BTRFS_LOG_FORCE_COMMIT; |
| 3092 | goto out_wake_log_root; |
| 3093 | } |
| 3094 | |
| 3095 | ret = btrfs_write_marked_extents(fs_info, |
| 3096 | &log_root_tree->dirty_log_pages, |
| 3097 | EXTENT_DIRTY | EXTENT_NEW); |
| 3098 | blk_finish_plug(&plug); |
| 3099 | /* |
| 3100 | * As described above, -EAGAIN indicates a hole in the extents. We |
| 3101 | * cannot wait for these write outs since the waiting cause a |
| 3102 | * deadlock. Bail out to the full commit instead. |
| 3103 | */ |
| 3104 | if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { |
| 3105 | btrfs_set_log_full_commit(trans); |
| 3106 | btrfs_wait_tree_log_extents(log, mark); |
| 3107 | mutex_unlock(&log_root_tree->log_mutex); |
| 3108 | goto out_wake_log_root; |
| 3109 | } else if (ret) { |
| 3110 | btrfs_set_log_full_commit(trans); |
| 3111 | mutex_unlock(&log_root_tree->log_mutex); |
| 3112 | goto out_wake_log_root; |
| 3113 | } |
| 3114 | ret = btrfs_wait_tree_log_extents(log, mark); |
| 3115 | if (!ret) |
| 3116 | ret = btrfs_wait_tree_log_extents(log_root_tree, |
| 3117 | EXTENT_NEW | EXTENT_DIRTY); |
| 3118 | if (ret) { |
| 3119 | btrfs_set_log_full_commit(trans); |
| 3120 | mutex_unlock(&log_root_tree->log_mutex); |
| 3121 | goto out_wake_log_root; |
| 3122 | } |
| 3123 | |
| 3124 | log_root_start = log_root_tree->node->start; |
| 3125 | log_root_level = btrfs_header_level(log_root_tree->node); |
| 3126 | log_root_tree->log_transid++; |
| 3127 | mutex_unlock(&log_root_tree->log_mutex); |
| 3128 | |
| 3129 | /* |
| 3130 | * Here we are guaranteed that nobody is going to write the superblock |
| 3131 | * for the current transaction before us and that neither we do write |
| 3132 | * our superblock before the previous transaction finishes its commit |
| 3133 | * and writes its superblock, because: |
| 3134 | * |
| 3135 | * 1) We are holding a handle on the current transaction, so no body |
| 3136 | * can commit it until we release the handle; |
| 3137 | * |
| 3138 | * 2) Before writing our superblock we acquire the tree_log_mutex, so |
| 3139 | * if the previous transaction is still committing, and hasn't yet |
| 3140 | * written its superblock, we wait for it to do it, because a |
| 3141 | * transaction commit acquires the tree_log_mutex when the commit |
| 3142 | * begins and releases it only after writing its superblock. |
| 3143 | */ |
| 3144 | mutex_lock(&fs_info->tree_log_mutex); |
| 3145 | |
| 3146 | /* |
| 3147 | * The previous transaction writeout phase could have failed, and thus |
| 3148 | * marked the fs in an error state. We must not commit here, as we |
| 3149 | * could have updated our generation in the super_for_commit and |
| 3150 | * writing the super here would result in transid mismatches. If there |
| 3151 | * is an error here just bail. |
| 3152 | */ |
| 3153 | if (BTRFS_FS_ERROR(fs_info)) { |
| 3154 | ret = -EIO; |
| 3155 | btrfs_set_log_full_commit(trans); |
| 3156 | btrfs_abort_transaction(trans, ret); |
| 3157 | mutex_unlock(&fs_info->tree_log_mutex); |
| 3158 | goto out_wake_log_root; |
| 3159 | } |
| 3160 | |
| 3161 | btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); |
| 3162 | btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); |
| 3163 | ret = write_all_supers(fs_info, 1); |
| 3164 | mutex_unlock(&fs_info->tree_log_mutex); |
| 3165 | if (ret) { |
| 3166 | btrfs_set_log_full_commit(trans); |
| 3167 | btrfs_abort_transaction(trans, ret); |
| 3168 | goto out_wake_log_root; |
| 3169 | } |
| 3170 | |
| 3171 | /* |
| 3172 | * We know there can only be one task here, since we have not yet set |
| 3173 | * root->log_commit[index1] to 0 and any task attempting to sync the |
| 3174 | * log must wait for the previous log transaction to commit if it's |
| 3175 | * still in progress or wait for the current log transaction commit if |
| 3176 | * someone else already started it. We use <= and not < because the |
| 3177 | * first log transaction has an ID of 0. |
| 3178 | */ |
| 3179 | ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid); |
| 3180 | btrfs_set_root_last_log_commit(root, log_transid); |
| 3181 | |
| 3182 | out_wake_log_root: |
| 3183 | mutex_lock(&log_root_tree->log_mutex); |
| 3184 | btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); |
| 3185 | |
| 3186 | log_root_tree->log_transid_committed++; |
| 3187 | atomic_set(&log_root_tree->log_commit[index2], 0); |
| 3188 | mutex_unlock(&log_root_tree->log_mutex); |
| 3189 | |
| 3190 | /* |
| 3191 | * The barrier before waitqueue_active (in cond_wake_up) is needed so |
| 3192 | * all the updates above are seen by the woken threads. It might not be |
| 3193 | * necessary, but proving that seems to be hard. |
| 3194 | */ |
| 3195 | cond_wake_up(&log_root_tree->log_commit_wait[index2]); |
| 3196 | out: |
| 3197 | mutex_lock(&root->log_mutex); |
| 3198 | btrfs_remove_all_log_ctxs(root, index1, ret); |
| 3199 | root->log_transid_committed++; |
| 3200 | atomic_set(&root->log_commit[index1], 0); |
| 3201 | mutex_unlock(&root->log_mutex); |
| 3202 | |
| 3203 | /* |
| 3204 | * The barrier before waitqueue_active (in cond_wake_up) is needed so |
| 3205 | * all the updates above are seen by the woken threads. It might not be |
| 3206 | * necessary, but proving that seems to be hard. |
| 3207 | */ |
| 3208 | cond_wake_up(&root->log_commit_wait[index1]); |
| 3209 | return ret; |
| 3210 | } |
| 3211 | |
| 3212 | static void free_log_tree(struct btrfs_trans_handle *trans, |
| 3213 | struct btrfs_root *log) |
| 3214 | { |
| 3215 | int ret; |
| 3216 | struct walk_control wc = { |
| 3217 | .free = 1, |
| 3218 | .process_func = process_one_buffer |
| 3219 | }; |
| 3220 | |
| 3221 | if (log->node) { |
| 3222 | ret = walk_log_tree(trans, log, &wc); |
| 3223 | if (ret) { |
| 3224 | /* |
| 3225 | * We weren't able to traverse the entire log tree, the |
| 3226 | * typical scenario is getting an -EIO when reading an |
| 3227 | * extent buffer of the tree, due to a previous writeback |
| 3228 | * failure of it. |
| 3229 | */ |
| 3230 | set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, |
| 3231 | &log->fs_info->fs_state); |
| 3232 | |
| 3233 | /* |
| 3234 | * Some extent buffers of the log tree may still be dirty |
| 3235 | * and not yet written back to storage, because we may |
| 3236 | * have updates to a log tree without syncing a log tree, |
| 3237 | * such as during rename and link operations. So flush |
| 3238 | * them out and wait for their writeback to complete, so |
| 3239 | * that we properly cleanup their state and pages. |
| 3240 | */ |
| 3241 | btrfs_write_marked_extents(log->fs_info, |
| 3242 | &log->dirty_log_pages, |
| 3243 | EXTENT_DIRTY | EXTENT_NEW); |
| 3244 | btrfs_wait_tree_log_extents(log, |
| 3245 | EXTENT_DIRTY | EXTENT_NEW); |
| 3246 | |
| 3247 | if (trans) |
| 3248 | btrfs_abort_transaction(trans, ret); |
| 3249 | else |
| 3250 | btrfs_handle_fs_error(log->fs_info, ret, NULL); |
| 3251 | } |
| 3252 | } |
| 3253 | |
| 3254 | btrfs_extent_io_tree_release(&log->dirty_log_pages); |
| 3255 | btrfs_extent_io_tree_release(&log->log_csum_range); |
| 3256 | |
| 3257 | btrfs_put_root(log); |
| 3258 | } |
| 3259 | |
| 3260 | /* |
| 3261 | * free all the extents used by the tree log. This should be called |
| 3262 | * at commit time of the full transaction |
| 3263 | */ |
| 3264 | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) |
| 3265 | { |
| 3266 | if (root->log_root) { |
| 3267 | free_log_tree(trans, root->log_root); |
| 3268 | root->log_root = NULL; |
| 3269 | clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); |
| 3270 | } |
| 3271 | return 0; |
| 3272 | } |
| 3273 | |
| 3274 | int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, |
| 3275 | struct btrfs_fs_info *fs_info) |
| 3276 | { |
| 3277 | if (fs_info->log_root_tree) { |
| 3278 | free_log_tree(trans, fs_info->log_root_tree); |
| 3279 | fs_info->log_root_tree = NULL; |
| 3280 | clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); |
| 3281 | } |
| 3282 | return 0; |
| 3283 | } |
| 3284 | |
| 3285 | /* |
| 3286 | * Check if an inode was logged in the current transaction. This correctly deals |
| 3287 | * with the case where the inode was logged but has a logged_trans of 0, which |
| 3288 | * happens if the inode is evicted and loaded again, as logged_trans is an in |
| 3289 | * memory only field (not persisted). |
| 3290 | * |
| 3291 | * Returns 1 if the inode was logged before in the transaction, 0 if it was not, |
| 3292 | * and < 0 on error. |
| 3293 | */ |
| 3294 | static int inode_logged(const struct btrfs_trans_handle *trans, |
| 3295 | struct btrfs_inode *inode, |
| 3296 | struct btrfs_path *path_in) |
| 3297 | { |
| 3298 | struct btrfs_path *path = path_in; |
| 3299 | struct btrfs_key key; |
| 3300 | int ret; |
| 3301 | |
| 3302 | if (inode->logged_trans == trans->transid) |
| 3303 | return 1; |
| 3304 | |
| 3305 | /* |
| 3306 | * If logged_trans is not 0, then we know the inode logged was not logged |
| 3307 | * in this transaction, so we can return false right away. |
| 3308 | */ |
| 3309 | if (inode->logged_trans > 0) |
| 3310 | return 0; |
| 3311 | |
| 3312 | /* |
| 3313 | * If no log tree was created for this root in this transaction, then |
| 3314 | * the inode can not have been logged in this transaction. In that case |
| 3315 | * set logged_trans to anything greater than 0 and less than the current |
| 3316 | * transaction's ID, to avoid the search below in a future call in case |
| 3317 | * a log tree gets created after this. |
| 3318 | */ |
| 3319 | if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) { |
| 3320 | inode->logged_trans = trans->transid - 1; |
| 3321 | return 0; |
| 3322 | } |
| 3323 | |
| 3324 | /* |
| 3325 | * We have a log tree and the inode's logged_trans is 0. We can't tell |
| 3326 | * for sure if the inode was logged before in this transaction by looking |
| 3327 | * only at logged_trans. We could be pessimistic and assume it was, but |
| 3328 | * that can lead to unnecessarily logging an inode during rename and link |
| 3329 | * operations, and then further updating the log in followup rename and |
| 3330 | * link operations, specially if it's a directory, which adds latency |
| 3331 | * visible to applications doing a series of rename or link operations. |
| 3332 | * |
| 3333 | * A logged_trans of 0 here can mean several things: |
| 3334 | * |
| 3335 | * 1) The inode was never logged since the filesystem was mounted, and may |
| 3336 | * or may have not been evicted and loaded again; |
| 3337 | * |
| 3338 | * 2) The inode was logged in a previous transaction, then evicted and |
| 3339 | * then loaded again; |
| 3340 | * |
| 3341 | * 3) The inode was logged in the current transaction, then evicted and |
| 3342 | * then loaded again. |
| 3343 | * |
| 3344 | * For cases 1) and 2) we don't want to return true, but we need to detect |
| 3345 | * case 3) and return true. So we do a search in the log root for the inode |
| 3346 | * item. |
| 3347 | */ |
| 3348 | key.objectid = btrfs_ino(inode); |
| 3349 | key.type = BTRFS_INODE_ITEM_KEY; |
| 3350 | key.offset = 0; |
| 3351 | |
| 3352 | if (!path) { |
| 3353 | path = btrfs_alloc_path(); |
| 3354 | if (!path) |
| 3355 | return -ENOMEM; |
| 3356 | } |
| 3357 | |
| 3358 | ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); |
| 3359 | |
| 3360 | if (path_in) |
| 3361 | btrfs_release_path(path); |
| 3362 | else |
| 3363 | btrfs_free_path(path); |
| 3364 | |
| 3365 | /* |
| 3366 | * Logging an inode always results in logging its inode item. So if we |
| 3367 | * did not find the item we know the inode was not logged for sure. |
| 3368 | */ |
| 3369 | if (ret < 0) { |
| 3370 | return ret; |
| 3371 | } else if (ret > 0) { |
| 3372 | /* |
| 3373 | * Set logged_trans to a value greater than 0 and less then the |
| 3374 | * current transaction to avoid doing the search in future calls. |
| 3375 | */ |
| 3376 | inode->logged_trans = trans->transid - 1; |
| 3377 | return 0; |
| 3378 | } |
| 3379 | |
| 3380 | /* |
| 3381 | * The inode was previously logged and then evicted, set logged_trans to |
| 3382 | * the current transacion's ID, to avoid future tree searches as long as |
| 3383 | * the inode is not evicted again. |
| 3384 | */ |
| 3385 | inode->logged_trans = trans->transid; |
| 3386 | |
| 3387 | /* |
| 3388 | * If it's a directory, then we must set last_dir_index_offset to the |
| 3389 | * maximum possible value, so that the next attempt to log the inode does |
| 3390 | * not skip checking if dir index keys found in modified subvolume tree |
| 3391 | * leaves have been logged before, otherwise it would result in attempts |
| 3392 | * to insert duplicate dir index keys in the log tree. This must be done |
| 3393 | * because last_dir_index_offset is an in-memory only field, not persisted |
| 3394 | * in the inode item or any other on-disk structure, so its value is lost |
| 3395 | * once the inode is evicted. |
| 3396 | */ |
| 3397 | if (S_ISDIR(inode->vfs_inode.i_mode)) |
| 3398 | inode->last_dir_index_offset = (u64)-1; |
| 3399 | |
| 3400 | return 1; |
| 3401 | } |
| 3402 | |
| 3403 | /* |
| 3404 | * Delete a directory entry from the log if it exists. |
| 3405 | * |
| 3406 | * Returns < 0 on error |
| 3407 | * 1 if the entry does not exists |
| 3408 | * 0 if the entry existed and was successfully deleted |
| 3409 | */ |
| 3410 | static int del_logged_dentry(struct btrfs_trans_handle *trans, |
| 3411 | struct btrfs_root *log, |
| 3412 | struct btrfs_path *path, |
| 3413 | u64 dir_ino, |
| 3414 | const struct fscrypt_str *name, |
| 3415 | u64 index) |
| 3416 | { |
| 3417 | struct btrfs_dir_item *di; |
| 3418 | |
| 3419 | /* |
| 3420 | * We only log dir index items of a directory, so we don't need to look |
| 3421 | * for dir item keys. |
| 3422 | */ |
| 3423 | di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, |
| 3424 | index, name, -1); |
| 3425 | if (IS_ERR(di)) |
| 3426 | return PTR_ERR(di); |
| 3427 | else if (!di) |
| 3428 | return 1; |
| 3429 | |
| 3430 | /* |
| 3431 | * We do not need to update the size field of the directory's |
| 3432 | * inode item because on log replay we update the field to reflect |
| 3433 | * all existing entries in the directory (see overwrite_item()). |
| 3434 | */ |
| 3435 | return btrfs_delete_one_dir_name(trans, log, path, di); |
| 3436 | } |
| 3437 | |
| 3438 | /* |
| 3439 | * If both a file and directory are logged, and unlinks or renames are |
| 3440 | * mixed in, we have a few interesting corners: |
| 3441 | * |
| 3442 | * create file X in dir Y |
| 3443 | * link file X to X.link in dir Y |
| 3444 | * fsync file X |
| 3445 | * unlink file X but leave X.link |
| 3446 | * fsync dir Y |
| 3447 | * |
| 3448 | * After a crash we would expect only X.link to exist. But file X |
| 3449 | * didn't get fsync'd again so the log has back refs for X and X.link. |
| 3450 | * |
| 3451 | * We solve this by removing directory entries and inode backrefs from the |
| 3452 | * log when a file that was logged in the current transaction is |
| 3453 | * unlinked. Any later fsync will include the updated log entries, and |
| 3454 | * we'll be able to reconstruct the proper directory items from backrefs. |
| 3455 | * |
| 3456 | * This optimizations allows us to avoid relogging the entire inode |
| 3457 | * or the entire directory. |
| 3458 | */ |
| 3459 | void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, |
| 3460 | struct btrfs_root *root, |
| 3461 | const struct fscrypt_str *name, |
| 3462 | struct btrfs_inode *dir, u64 index) |
| 3463 | { |
| 3464 | struct btrfs_path *path; |
| 3465 | int ret; |
| 3466 | |
| 3467 | ret = inode_logged(trans, dir, NULL); |
| 3468 | if (ret == 0) |
| 3469 | return; |
| 3470 | else if (ret < 0) { |
| 3471 | btrfs_set_log_full_commit(trans); |
| 3472 | return; |
| 3473 | } |
| 3474 | |
| 3475 | ret = join_running_log_trans(root); |
| 3476 | if (ret) |
| 3477 | return; |
| 3478 | |
| 3479 | mutex_lock(&dir->log_mutex); |
| 3480 | |
| 3481 | path = btrfs_alloc_path(); |
| 3482 | if (!path) { |
| 3483 | ret = -ENOMEM; |
| 3484 | goto out_unlock; |
| 3485 | } |
| 3486 | |
| 3487 | ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir), |
| 3488 | name, index); |
| 3489 | btrfs_free_path(path); |
| 3490 | out_unlock: |
| 3491 | mutex_unlock(&dir->log_mutex); |
| 3492 | if (ret < 0) |
| 3493 | btrfs_set_log_full_commit(trans); |
| 3494 | btrfs_end_log_trans(root); |
| 3495 | } |
| 3496 | |
| 3497 | /* see comments for btrfs_del_dir_entries_in_log */ |
| 3498 | void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, |
| 3499 | struct btrfs_root *root, |
| 3500 | const struct fscrypt_str *name, |
| 3501 | struct btrfs_inode *inode, u64 dirid) |
| 3502 | { |
| 3503 | struct btrfs_root *log; |
| 3504 | u64 index; |
| 3505 | int ret; |
| 3506 | |
| 3507 | ret = inode_logged(trans, inode, NULL); |
| 3508 | if (ret == 0) |
| 3509 | return; |
| 3510 | else if (ret < 0) { |
| 3511 | btrfs_set_log_full_commit(trans); |
| 3512 | return; |
| 3513 | } |
| 3514 | |
| 3515 | ret = join_running_log_trans(root); |
| 3516 | if (ret) |
| 3517 | return; |
| 3518 | log = root->log_root; |
| 3519 | mutex_lock(&inode->log_mutex); |
| 3520 | |
| 3521 | ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), |
| 3522 | dirid, &index); |
| 3523 | mutex_unlock(&inode->log_mutex); |
| 3524 | if (ret < 0 && ret != -ENOENT) |
| 3525 | btrfs_set_log_full_commit(trans); |
| 3526 | btrfs_end_log_trans(root); |
| 3527 | } |
| 3528 | |
| 3529 | /* |
| 3530 | * creates a range item in the log for 'dirid'. first_offset and |
| 3531 | * last_offset tell us which parts of the key space the log should |
| 3532 | * be considered authoritative for. |
| 3533 | */ |
| 3534 | static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, |
| 3535 | struct btrfs_root *log, |
| 3536 | struct btrfs_path *path, |
| 3537 | u64 dirid, |
| 3538 | u64 first_offset, u64 last_offset) |
| 3539 | { |
| 3540 | int ret; |
| 3541 | struct btrfs_key key; |
| 3542 | struct btrfs_dir_log_item *item; |
| 3543 | |
| 3544 | key.objectid = dirid; |
| 3545 | key.type = BTRFS_DIR_LOG_INDEX_KEY; |
| 3546 | key.offset = first_offset; |
| 3547 | ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); |
| 3548 | /* |
| 3549 | * -EEXIST is fine and can happen sporadically when we are logging a |
| 3550 | * directory and have concurrent insertions in the subvolume's tree for |
| 3551 | * items from other inodes and that result in pushing off some dir items |
| 3552 | * from one leaf to another in order to accommodate for the new items. |
| 3553 | * This results in logging the same dir index range key. |
| 3554 | */ |
| 3555 | if (ret && ret != -EEXIST) |
| 3556 | return ret; |
| 3557 | |
| 3558 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| 3559 | struct btrfs_dir_log_item); |
| 3560 | if (ret == -EEXIST) { |
| 3561 | const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item); |
| 3562 | |
| 3563 | /* |
| 3564 | * btrfs_del_dir_entries_in_log() might have been called during |
| 3565 | * an unlink between the initial insertion of this key and the |
| 3566 | * current update, or we might be logging a single entry deletion |
| 3567 | * during a rename, so set the new last_offset to the max value. |
| 3568 | */ |
| 3569 | last_offset = max(last_offset, curr_end); |
| 3570 | } |
| 3571 | btrfs_set_dir_log_end(path->nodes[0], item, last_offset); |
| 3572 | btrfs_release_path(path); |
| 3573 | return 0; |
| 3574 | } |
| 3575 | |
| 3576 | static int flush_dir_items_batch(struct btrfs_trans_handle *trans, |
| 3577 | struct btrfs_inode *inode, |
| 3578 | struct extent_buffer *src, |
| 3579 | struct btrfs_path *dst_path, |
| 3580 | int start_slot, |
| 3581 | int count) |
| 3582 | { |
| 3583 | struct btrfs_root *log = inode->root->log_root; |
| 3584 | char *ins_data = NULL; |
| 3585 | struct btrfs_item_batch batch; |
| 3586 | struct extent_buffer *dst; |
| 3587 | unsigned long src_offset; |
| 3588 | unsigned long dst_offset; |
| 3589 | u64 last_index; |
| 3590 | struct btrfs_key key; |
| 3591 | u32 item_size; |
| 3592 | int ret; |
| 3593 | int i; |
| 3594 | |
| 3595 | ASSERT(count > 0); |
| 3596 | batch.nr = count; |
| 3597 | |
| 3598 | if (count == 1) { |
| 3599 | btrfs_item_key_to_cpu(src, &key, start_slot); |
| 3600 | item_size = btrfs_item_size(src, start_slot); |
| 3601 | batch.keys = &key; |
| 3602 | batch.data_sizes = &item_size; |
| 3603 | batch.total_data_size = item_size; |
| 3604 | } else { |
| 3605 | struct btrfs_key *ins_keys; |
| 3606 | u32 *ins_sizes; |
| 3607 | |
| 3608 | ins_data = kmalloc(count * sizeof(u32) + |
| 3609 | count * sizeof(struct btrfs_key), GFP_NOFS); |
| 3610 | if (!ins_data) |
| 3611 | return -ENOMEM; |
| 3612 | |
| 3613 | ins_sizes = (u32 *)ins_data; |
| 3614 | ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); |
| 3615 | batch.keys = ins_keys; |
| 3616 | batch.data_sizes = ins_sizes; |
| 3617 | batch.total_data_size = 0; |
| 3618 | |
| 3619 | for (i = 0; i < count; i++) { |
| 3620 | const int slot = start_slot + i; |
| 3621 | |
| 3622 | btrfs_item_key_to_cpu(src, &ins_keys[i], slot); |
| 3623 | ins_sizes[i] = btrfs_item_size(src, slot); |
| 3624 | batch.total_data_size += ins_sizes[i]; |
| 3625 | } |
| 3626 | } |
| 3627 | |
| 3628 | ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); |
| 3629 | if (ret) |
| 3630 | goto out; |
| 3631 | |
| 3632 | dst = dst_path->nodes[0]; |
| 3633 | /* |
| 3634 | * Copy all the items in bulk, in a single copy operation. Item data is |
| 3635 | * organized such that it's placed at the end of a leaf and from right |
| 3636 | * to left. For example, the data for the second item ends at an offset |
| 3637 | * that matches the offset where the data for the first item starts, the |
| 3638 | * data for the third item ends at an offset that matches the offset |
| 3639 | * where the data of the second items starts, and so on. |
| 3640 | * Therefore our source and destination start offsets for copy match the |
| 3641 | * offsets of the last items (highest slots). |
| 3642 | */ |
| 3643 | dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); |
| 3644 | src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); |
| 3645 | copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); |
| 3646 | btrfs_release_path(dst_path); |
| 3647 | |
| 3648 | last_index = batch.keys[count - 1].offset; |
| 3649 | ASSERT(last_index > inode->last_dir_index_offset); |
| 3650 | |
| 3651 | /* |
| 3652 | * If for some unexpected reason the last item's index is not greater |
| 3653 | * than the last index we logged, warn and force a transaction commit. |
| 3654 | */ |
| 3655 | if (WARN_ON(last_index <= inode->last_dir_index_offset)) |
| 3656 | ret = BTRFS_LOG_FORCE_COMMIT; |
| 3657 | else |
| 3658 | inode->last_dir_index_offset = last_index; |
| 3659 | |
| 3660 | if (btrfs_get_first_dir_index_to_log(inode) == 0) |
| 3661 | btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset); |
| 3662 | out: |
| 3663 | kfree(ins_data); |
| 3664 | |
| 3665 | return ret; |
| 3666 | } |
| 3667 | |
| 3668 | static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx) |
| 3669 | { |
| 3670 | const int slot = path->slots[0]; |
| 3671 | |
| 3672 | if (ctx->scratch_eb) { |
| 3673 | copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]); |
| 3674 | } else { |
| 3675 | ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]); |
| 3676 | if (!ctx->scratch_eb) |
| 3677 | return -ENOMEM; |
| 3678 | } |
| 3679 | |
| 3680 | btrfs_release_path(path); |
| 3681 | path->nodes[0] = ctx->scratch_eb; |
| 3682 | path->slots[0] = slot; |
| 3683 | /* |
| 3684 | * Add extra ref to scratch eb so that it is not freed when callers |
| 3685 | * release the path, so we can reuse it later if needed. |
| 3686 | */ |
| 3687 | atomic_inc(&ctx->scratch_eb->refs); |
| 3688 | |
| 3689 | return 0; |
| 3690 | } |
| 3691 | |
| 3692 | static int process_dir_items_leaf(struct btrfs_trans_handle *trans, |
| 3693 | struct btrfs_inode *inode, |
| 3694 | struct btrfs_path *path, |
| 3695 | struct btrfs_path *dst_path, |
| 3696 | struct btrfs_log_ctx *ctx, |
| 3697 | u64 *last_old_dentry_offset) |
| 3698 | { |
| 3699 | struct btrfs_root *log = inode->root->log_root; |
| 3700 | struct extent_buffer *src; |
| 3701 | const int nritems = btrfs_header_nritems(path->nodes[0]); |
| 3702 | const u64 ino = btrfs_ino(inode); |
| 3703 | bool last_found = false; |
| 3704 | int batch_start = 0; |
| 3705 | int batch_size = 0; |
| 3706 | int ret; |
| 3707 | |
| 3708 | /* |
| 3709 | * We need to clone the leaf, release the read lock on it, and use the |
| 3710 | * clone before modifying the log tree. See the comment at copy_items() |
| 3711 | * about why we need to do this. |
| 3712 | */ |
| 3713 | ret = clone_leaf(path, ctx); |
| 3714 | if (ret < 0) |
| 3715 | return ret; |
| 3716 | |
| 3717 | src = path->nodes[0]; |
| 3718 | |
| 3719 | for (int i = path->slots[0]; i < nritems; i++) { |
| 3720 | struct btrfs_dir_item *di; |
| 3721 | struct btrfs_key key; |
| 3722 | int ret; |
| 3723 | |
| 3724 | btrfs_item_key_to_cpu(src, &key, i); |
| 3725 | |
| 3726 | if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) { |
| 3727 | last_found = true; |
| 3728 | break; |
| 3729 | } |
| 3730 | |
| 3731 | di = btrfs_item_ptr(src, i, struct btrfs_dir_item); |
| 3732 | |
| 3733 | /* |
| 3734 | * Skip ranges of items that consist only of dir item keys created |
| 3735 | * in past transactions. However if we find a gap, we must log a |
| 3736 | * dir index range item for that gap, so that index keys in that |
| 3737 | * gap are deleted during log replay. |
| 3738 | */ |
| 3739 | if (btrfs_dir_transid(src, di) < trans->transid) { |
| 3740 | if (key.offset > *last_old_dentry_offset + 1) { |
| 3741 | ret = insert_dir_log_key(trans, log, dst_path, |
| 3742 | ino, *last_old_dentry_offset + 1, |
| 3743 | key.offset - 1); |
| 3744 | if (ret < 0) |
| 3745 | return ret; |
| 3746 | } |
| 3747 | |
| 3748 | *last_old_dentry_offset = key.offset; |
| 3749 | continue; |
| 3750 | } |
| 3751 | |
| 3752 | /* If we logged this dir index item before, we can skip it. */ |
| 3753 | if (key.offset <= inode->last_dir_index_offset) |
| 3754 | continue; |
| 3755 | |
| 3756 | /* |
| 3757 | * We must make sure that when we log a directory entry, the |
| 3758 | * corresponding inode, after log replay, has a matching link |
| 3759 | * count. For example: |
| 3760 | * |
| 3761 | * touch foo |
| 3762 | * mkdir mydir |
| 3763 | * sync |
| 3764 | * ln foo mydir/bar |
| 3765 | * xfs_io -c "fsync" mydir |
| 3766 | * <crash> |
| 3767 | * <mount fs and log replay> |
| 3768 | * |
| 3769 | * Would result in a fsync log that when replayed, our file inode |
| 3770 | * would have a link count of 1, but we get two directory entries |
| 3771 | * pointing to the same inode. After removing one of the names, |
| 3772 | * it would not be possible to remove the other name, which |
| 3773 | * resulted always in stale file handle errors, and would not be |
| 3774 | * possible to rmdir the parent directory, since its i_size could |
| 3775 | * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, |
| 3776 | * resulting in -ENOTEMPTY errors. |
| 3777 | */ |
| 3778 | if (!ctx->log_new_dentries) { |
| 3779 | struct btrfs_key di_key; |
| 3780 | |
| 3781 | btrfs_dir_item_key_to_cpu(src, di, &di_key); |
| 3782 | if (di_key.type != BTRFS_ROOT_ITEM_KEY) |
| 3783 | ctx->log_new_dentries = true; |
| 3784 | } |
| 3785 | |
| 3786 | if (batch_size == 0) |
| 3787 | batch_start = i; |
| 3788 | batch_size++; |
| 3789 | } |
| 3790 | |
| 3791 | if (batch_size > 0) { |
| 3792 | int ret; |
| 3793 | |
| 3794 | ret = flush_dir_items_batch(trans, inode, src, dst_path, |
| 3795 | batch_start, batch_size); |
| 3796 | if (ret < 0) |
| 3797 | return ret; |
| 3798 | } |
| 3799 | |
| 3800 | return last_found ? 1 : 0; |
| 3801 | } |
| 3802 | |
| 3803 | /* |
| 3804 | * log all the items included in the current transaction for a given |
| 3805 | * directory. This also creates the range items in the log tree required |
| 3806 | * to replay anything deleted before the fsync |
| 3807 | */ |
| 3808 | static noinline int log_dir_items(struct btrfs_trans_handle *trans, |
| 3809 | struct btrfs_inode *inode, |
| 3810 | struct btrfs_path *path, |
| 3811 | struct btrfs_path *dst_path, |
| 3812 | struct btrfs_log_ctx *ctx, |
| 3813 | u64 min_offset, u64 *last_offset_ret) |
| 3814 | { |
| 3815 | struct btrfs_key min_key; |
| 3816 | struct btrfs_root *root = inode->root; |
| 3817 | struct btrfs_root *log = root->log_root; |
| 3818 | int ret; |
| 3819 | u64 last_old_dentry_offset = min_offset - 1; |
| 3820 | u64 last_offset = (u64)-1; |
| 3821 | u64 ino = btrfs_ino(inode); |
| 3822 | |
| 3823 | min_key.objectid = ino; |
| 3824 | min_key.type = BTRFS_DIR_INDEX_KEY; |
| 3825 | min_key.offset = min_offset; |
| 3826 | |
| 3827 | ret = btrfs_search_forward(root, &min_key, path, trans->transid); |
| 3828 | |
| 3829 | /* |
| 3830 | * we didn't find anything from this transaction, see if there |
| 3831 | * is anything at all |
| 3832 | */ |
| 3833 | if (ret != 0 || min_key.objectid != ino || |
| 3834 | min_key.type != BTRFS_DIR_INDEX_KEY) { |
| 3835 | min_key.objectid = ino; |
| 3836 | min_key.type = BTRFS_DIR_INDEX_KEY; |
| 3837 | min_key.offset = (u64)-1; |
| 3838 | btrfs_release_path(path); |
| 3839 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); |
| 3840 | if (ret < 0) { |
| 3841 | btrfs_release_path(path); |
| 3842 | return ret; |
| 3843 | } |
| 3844 | ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); |
| 3845 | |
| 3846 | /* if ret == 0 there are items for this type, |
| 3847 | * create a range to tell us the last key of this type. |
| 3848 | * otherwise, there are no items in this directory after |
| 3849 | * *min_offset, and we create a range to indicate that. |
| 3850 | */ |
| 3851 | if (ret == 0) { |
| 3852 | struct btrfs_key tmp; |
| 3853 | |
| 3854 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, |
| 3855 | path->slots[0]); |
| 3856 | if (tmp.type == BTRFS_DIR_INDEX_KEY) |
| 3857 | last_old_dentry_offset = tmp.offset; |
| 3858 | } else if (ret > 0) { |
| 3859 | ret = 0; |
| 3860 | } |
| 3861 | |
| 3862 | goto done; |
| 3863 | } |
| 3864 | |
| 3865 | /* go backward to find any previous key */ |
| 3866 | ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); |
| 3867 | if (ret == 0) { |
| 3868 | struct btrfs_key tmp; |
| 3869 | |
| 3870 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); |
| 3871 | /* |
| 3872 | * The dir index key before the first one we found that needs to |
| 3873 | * be logged might be in a previous leaf, and there might be a |
| 3874 | * gap between these keys, meaning that we had deletions that |
| 3875 | * happened. So the key range item we log (key type |
| 3876 | * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the |
| 3877 | * previous key's offset plus 1, so that those deletes are replayed. |
| 3878 | */ |
| 3879 | if (tmp.type == BTRFS_DIR_INDEX_KEY) |
| 3880 | last_old_dentry_offset = tmp.offset; |
| 3881 | } else if (ret < 0) { |
| 3882 | goto done; |
| 3883 | } |
| 3884 | |
| 3885 | btrfs_release_path(path); |
| 3886 | |
| 3887 | /* |
| 3888 | * Find the first key from this transaction again or the one we were at |
| 3889 | * in the loop below in case we had to reschedule. We may be logging the |
| 3890 | * directory without holding its VFS lock, which happen when logging new |
| 3891 | * dentries (through log_new_dir_dentries()) or in some cases when we |
| 3892 | * need to log the parent directory of an inode. This means a dir index |
| 3893 | * key might be deleted from the inode's root, and therefore we may not |
| 3894 | * find it anymore. If we can't find it, just move to the next key. We |
| 3895 | * can not bail out and ignore, because if we do that we will simply |
| 3896 | * not log dir index keys that come after the one that was just deleted |
| 3897 | * and we can end up logging a dir index range that ends at (u64)-1 |
| 3898 | * (@last_offset is initialized to that), resulting in removing dir |
| 3899 | * entries we should not remove at log replay time. |
| 3900 | */ |
| 3901 | search: |
| 3902 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); |
| 3903 | if (ret > 0) { |
| 3904 | ret = btrfs_next_item(root, path); |
| 3905 | if (ret > 0) { |
| 3906 | /* There are no more keys in the inode's root. */ |
| 3907 | ret = 0; |
| 3908 | goto done; |
| 3909 | } |
| 3910 | } |
| 3911 | if (ret < 0) |
| 3912 | goto done; |
| 3913 | |
| 3914 | /* |
| 3915 | * we have a block from this transaction, log every item in it |
| 3916 | * from our directory |
| 3917 | */ |
| 3918 | while (1) { |
| 3919 | ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx, |
| 3920 | &last_old_dentry_offset); |
| 3921 | if (ret != 0) { |
| 3922 | if (ret > 0) |
| 3923 | ret = 0; |
| 3924 | goto done; |
| 3925 | } |
| 3926 | path->slots[0] = btrfs_header_nritems(path->nodes[0]); |
| 3927 | |
| 3928 | /* |
| 3929 | * look ahead to the next item and see if it is also |
| 3930 | * from this directory and from this transaction |
| 3931 | */ |
| 3932 | ret = btrfs_next_leaf(root, path); |
| 3933 | if (ret) { |
| 3934 | if (ret == 1) { |
| 3935 | last_offset = (u64)-1; |
| 3936 | ret = 0; |
| 3937 | } |
| 3938 | goto done; |
| 3939 | } |
| 3940 | btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); |
| 3941 | if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) { |
| 3942 | last_offset = (u64)-1; |
| 3943 | goto done; |
| 3944 | } |
| 3945 | if (btrfs_header_generation(path->nodes[0]) != trans->transid) { |
| 3946 | /* |
| 3947 | * The next leaf was not changed in the current transaction |
| 3948 | * and has at least one dir index key. |
| 3949 | * We check for the next key because there might have been |
| 3950 | * one or more deletions between the last key we logged and |
| 3951 | * that next key. So the key range item we log (key type |
| 3952 | * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's |
| 3953 | * offset minus 1, so that those deletes are replayed. |
| 3954 | */ |
| 3955 | last_offset = min_key.offset - 1; |
| 3956 | goto done; |
| 3957 | } |
| 3958 | if (need_resched()) { |
| 3959 | btrfs_release_path(path); |
| 3960 | cond_resched(); |
| 3961 | goto search; |
| 3962 | } |
| 3963 | } |
| 3964 | done: |
| 3965 | btrfs_release_path(path); |
| 3966 | btrfs_release_path(dst_path); |
| 3967 | |
| 3968 | if (ret == 0) { |
| 3969 | *last_offset_ret = last_offset; |
| 3970 | /* |
| 3971 | * In case the leaf was changed in the current transaction but |
| 3972 | * all its dir items are from a past transaction, the last item |
| 3973 | * in the leaf is a dir item and there's no gap between that last |
| 3974 | * dir item and the first one on the next leaf (which did not |
| 3975 | * change in the current transaction), then we don't need to log |
| 3976 | * a range, last_old_dentry_offset is == to last_offset. |
| 3977 | */ |
| 3978 | ASSERT(last_old_dentry_offset <= last_offset); |
| 3979 | if (last_old_dentry_offset < last_offset) |
| 3980 | ret = insert_dir_log_key(trans, log, path, ino, |
| 3981 | last_old_dentry_offset + 1, |
| 3982 | last_offset); |
| 3983 | } |
| 3984 | |
| 3985 | return ret; |
| 3986 | } |
| 3987 | |
| 3988 | /* |
| 3989 | * If the inode was logged before and it was evicted, then its |
| 3990 | * last_dir_index_offset is (u64)-1, so we don't the value of the last index |
| 3991 | * key offset. If that's the case, search for it and update the inode. This |
| 3992 | * is to avoid lookups in the log tree every time we try to insert a dir index |
| 3993 | * key from a leaf changed in the current transaction, and to allow us to always |
| 3994 | * do batch insertions of dir index keys. |
| 3995 | */ |
| 3996 | static int update_last_dir_index_offset(struct btrfs_inode *inode, |
| 3997 | struct btrfs_path *path, |
| 3998 | const struct btrfs_log_ctx *ctx) |
| 3999 | { |
| 4000 | const u64 ino = btrfs_ino(inode); |
| 4001 | struct btrfs_key key; |
| 4002 | int ret; |
| 4003 | |
| 4004 | lockdep_assert_held(&inode->log_mutex); |
| 4005 | |
| 4006 | if (inode->last_dir_index_offset != (u64)-1) |
| 4007 | return 0; |
| 4008 | |
| 4009 | if (!ctx->logged_before) { |
| 4010 | inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; |
| 4011 | return 0; |
| 4012 | } |
| 4013 | |
| 4014 | key.objectid = ino; |
| 4015 | key.type = BTRFS_DIR_INDEX_KEY; |
| 4016 | key.offset = (u64)-1; |
| 4017 | |
| 4018 | ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); |
| 4019 | /* |
| 4020 | * An error happened or we actually have an index key with an offset |
| 4021 | * value of (u64)-1. Bail out, we're done. |
| 4022 | */ |
| 4023 | if (ret <= 0) |
| 4024 | goto out; |
| 4025 | |
| 4026 | ret = 0; |
| 4027 | inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; |
| 4028 | |
| 4029 | /* |
| 4030 | * No dir index items, bail out and leave last_dir_index_offset with |
| 4031 | * the value right before the first valid index value. |
| 4032 | */ |
| 4033 | if (path->slots[0] == 0) |
| 4034 | goto out; |
| 4035 | |
| 4036 | /* |
| 4037 | * btrfs_search_slot() left us at one slot beyond the slot with the last |
| 4038 | * index key, or beyond the last key of the directory that is not an |
| 4039 | * index key. If we have an index key before, set last_dir_index_offset |
| 4040 | * to its offset value, otherwise leave it with a value right before the |
| 4041 | * first valid index value, as it means we have an empty directory. |
| 4042 | */ |
| 4043 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); |
| 4044 | if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY) |
| 4045 | inode->last_dir_index_offset = key.offset; |
| 4046 | |
| 4047 | out: |
| 4048 | btrfs_release_path(path); |
| 4049 | |
| 4050 | return ret; |
| 4051 | } |
| 4052 | |
| 4053 | /* |
| 4054 | * logging directories is very similar to logging inodes, We find all the items |
| 4055 | * from the current transaction and write them to the log. |
| 4056 | * |
| 4057 | * The recovery code scans the directory in the subvolume, and if it finds a |
| 4058 | * key in the range logged that is not present in the log tree, then it means |
| 4059 | * that dir entry was unlinked during the transaction. |
| 4060 | * |
| 4061 | * In order for that scan to work, we must include one key smaller than |
| 4062 | * the smallest logged by this transaction and one key larger than the largest |
| 4063 | * key logged by this transaction. |
| 4064 | */ |
| 4065 | static noinline int log_directory_changes(struct btrfs_trans_handle *trans, |
| 4066 | struct btrfs_inode *inode, |
| 4067 | struct btrfs_path *path, |
| 4068 | struct btrfs_path *dst_path, |
| 4069 | struct btrfs_log_ctx *ctx) |
| 4070 | { |
| 4071 | u64 min_key; |
| 4072 | u64 max_key; |
| 4073 | int ret; |
| 4074 | |
| 4075 | ret = update_last_dir_index_offset(inode, path, ctx); |
| 4076 | if (ret) |
| 4077 | return ret; |
| 4078 | |
| 4079 | min_key = BTRFS_DIR_START_INDEX; |
| 4080 | max_key = 0; |
| 4081 | |
| 4082 | while (1) { |
| 4083 | ret = log_dir_items(trans, inode, path, dst_path, |
| 4084 | ctx, min_key, &max_key); |
| 4085 | if (ret) |
| 4086 | return ret; |
| 4087 | if (max_key == (u64)-1) |
| 4088 | break; |
| 4089 | min_key = max_key + 1; |
| 4090 | } |
| 4091 | |
| 4092 | return 0; |
| 4093 | } |
| 4094 | |
| 4095 | /* |
| 4096 | * a helper function to drop items from the log before we relog an |
| 4097 | * inode. max_key_type indicates the highest item type to remove. |
| 4098 | * This cannot be run for file data extents because it does not |
| 4099 | * free the extents they point to. |
| 4100 | */ |
| 4101 | static int drop_inode_items(struct btrfs_trans_handle *trans, |
| 4102 | struct btrfs_root *log, |
| 4103 | struct btrfs_path *path, |
| 4104 | struct btrfs_inode *inode, |
| 4105 | int max_key_type) |
| 4106 | { |
| 4107 | int ret; |
| 4108 | struct btrfs_key key; |
| 4109 | struct btrfs_key found_key; |
| 4110 | int start_slot; |
| 4111 | |
| 4112 | key.objectid = btrfs_ino(inode); |
| 4113 | key.type = max_key_type; |
| 4114 | key.offset = (u64)-1; |
| 4115 | |
| 4116 | while (1) { |
| 4117 | ret = btrfs_search_slot(trans, log, &key, path, -1, 1); |
| 4118 | if (ret < 0) { |
| 4119 | break; |
| 4120 | } else if (ret > 0) { |
| 4121 | if (path->slots[0] == 0) |
| 4122 | break; |
| 4123 | path->slots[0]--; |
| 4124 | } |
| 4125 | |
| 4126 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| 4127 | path->slots[0]); |
| 4128 | |
| 4129 | if (found_key.objectid != key.objectid) |
| 4130 | break; |
| 4131 | |
| 4132 | found_key.offset = 0; |
| 4133 | found_key.type = 0; |
| 4134 | ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot); |
| 4135 | if (ret < 0) |
| 4136 | break; |
| 4137 | |
| 4138 | ret = btrfs_del_items(trans, log, path, start_slot, |
| 4139 | path->slots[0] - start_slot + 1); |
| 4140 | /* |
| 4141 | * If start slot isn't 0 then we don't need to re-search, we've |
| 4142 | * found the last guy with the objectid in this tree. |
| 4143 | */ |
| 4144 | if (ret || start_slot != 0) |
| 4145 | break; |
| 4146 | btrfs_release_path(path); |
| 4147 | } |
| 4148 | btrfs_release_path(path); |
| 4149 | if (ret > 0) |
| 4150 | ret = 0; |
| 4151 | return ret; |
| 4152 | } |
| 4153 | |
| 4154 | static int truncate_inode_items(struct btrfs_trans_handle *trans, |
| 4155 | struct btrfs_root *log_root, |
| 4156 | struct btrfs_inode *inode, |
| 4157 | u64 new_size, u32 min_type) |
| 4158 | { |
| 4159 | struct btrfs_truncate_control control = { |
| 4160 | .new_size = new_size, |
| 4161 | .ino = btrfs_ino(inode), |
| 4162 | .min_type = min_type, |
| 4163 | .skip_ref_updates = true, |
| 4164 | }; |
| 4165 | |
| 4166 | return btrfs_truncate_inode_items(trans, log_root, &control); |
| 4167 | } |
| 4168 | |
| 4169 | static void fill_inode_item(struct btrfs_trans_handle *trans, |
| 4170 | struct extent_buffer *leaf, |
| 4171 | struct btrfs_inode_item *item, |
| 4172 | struct inode *inode, int log_inode_only, |
| 4173 | u64 logged_isize) |
| 4174 | { |
| 4175 | struct btrfs_map_token token; |
| 4176 | u64 flags; |
| 4177 | |
| 4178 | btrfs_init_map_token(&token, leaf); |
| 4179 | |
| 4180 | if (log_inode_only) { |
| 4181 | /* set the generation to zero so the recover code |
| 4182 | * can tell the difference between an logging |
| 4183 | * just to say 'this inode exists' and a logging |
| 4184 | * to say 'update this inode with these values' |
| 4185 | */ |
| 4186 | btrfs_set_token_inode_generation(&token, item, 0); |
| 4187 | btrfs_set_token_inode_size(&token, item, logged_isize); |
| 4188 | } else { |
| 4189 | btrfs_set_token_inode_generation(&token, item, |
| 4190 | BTRFS_I(inode)->generation); |
| 4191 | btrfs_set_token_inode_size(&token, item, inode->i_size); |
| 4192 | } |
| 4193 | |
| 4194 | btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); |
| 4195 | btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); |
| 4196 | btrfs_set_token_inode_mode(&token, item, inode->i_mode); |
| 4197 | btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); |
| 4198 | |
| 4199 | btrfs_set_token_timespec_sec(&token, &item->atime, |
| 4200 | inode_get_atime_sec(inode)); |
| 4201 | btrfs_set_token_timespec_nsec(&token, &item->atime, |
| 4202 | inode_get_atime_nsec(inode)); |
| 4203 | |
| 4204 | btrfs_set_token_timespec_sec(&token, &item->mtime, |
| 4205 | inode_get_mtime_sec(inode)); |
| 4206 | btrfs_set_token_timespec_nsec(&token, &item->mtime, |
| 4207 | inode_get_mtime_nsec(inode)); |
| 4208 | |
| 4209 | btrfs_set_token_timespec_sec(&token, &item->ctime, |
| 4210 | inode_get_ctime_sec(inode)); |
| 4211 | btrfs_set_token_timespec_nsec(&token, &item->ctime, |
| 4212 | inode_get_ctime_nsec(inode)); |
| 4213 | |
| 4214 | /* |
| 4215 | * We do not need to set the nbytes field, in fact during a fast fsync |
| 4216 | * its value may not even be correct, since a fast fsync does not wait |
| 4217 | * for ordered extent completion, which is where we update nbytes, it |
| 4218 | * only waits for writeback to complete. During log replay as we find |
| 4219 | * file extent items and replay them, we adjust the nbytes field of the |
| 4220 | * inode item in subvolume tree as needed (see overwrite_item()). |
| 4221 | */ |
| 4222 | |
| 4223 | btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); |
| 4224 | btrfs_set_token_inode_transid(&token, item, trans->transid); |
| 4225 | btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); |
| 4226 | flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, |
| 4227 | BTRFS_I(inode)->ro_flags); |
| 4228 | btrfs_set_token_inode_flags(&token, item, flags); |
| 4229 | btrfs_set_token_inode_block_group(&token, item, 0); |
| 4230 | } |
| 4231 | |
| 4232 | static int log_inode_item(struct btrfs_trans_handle *trans, |
| 4233 | struct btrfs_root *log, struct btrfs_path *path, |
| 4234 | struct btrfs_inode *inode, bool inode_item_dropped) |
| 4235 | { |
| 4236 | struct btrfs_inode_item *inode_item; |
| 4237 | struct btrfs_key key; |
| 4238 | int ret; |
| 4239 | |
| 4240 | btrfs_get_inode_key(inode, &key); |
| 4241 | /* |
| 4242 | * If we are doing a fast fsync and the inode was logged before in the |
| 4243 | * current transaction, then we know the inode was previously logged and |
| 4244 | * it exists in the log tree. For performance reasons, in this case use |
| 4245 | * btrfs_search_slot() directly with ins_len set to 0 so that we never |
| 4246 | * attempt a write lock on the leaf's parent, which adds unnecessary lock |
| 4247 | * contention in case there are concurrent fsyncs for other inodes of the |
| 4248 | * same subvolume. Using btrfs_insert_empty_item() when the inode item |
| 4249 | * already exists can also result in unnecessarily splitting a leaf. |
| 4250 | */ |
| 4251 | if (!inode_item_dropped && inode->logged_trans == trans->transid) { |
| 4252 | ret = btrfs_search_slot(trans, log, &key, path, 0, 1); |
| 4253 | ASSERT(ret <= 0); |
| 4254 | if (ret > 0) |
| 4255 | ret = -ENOENT; |
| 4256 | } else { |
| 4257 | /* |
| 4258 | * This means it is the first fsync in the current transaction, |
| 4259 | * so the inode item is not in the log and we need to insert it. |
| 4260 | * We can never get -EEXIST because we are only called for a fast |
| 4261 | * fsync and in case an inode eviction happens after the inode was |
| 4262 | * logged before in the current transaction, when we load again |
| 4263 | * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime |
| 4264 | * flags and set ->logged_trans to 0. |
| 4265 | */ |
| 4266 | ret = btrfs_insert_empty_item(trans, log, path, &key, |
| 4267 | sizeof(*inode_item)); |
| 4268 | ASSERT(ret != -EEXIST); |
| 4269 | } |
| 4270 | if (ret) |
| 4271 | return ret; |
| 4272 | inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| 4273 | struct btrfs_inode_item); |
| 4274 | fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, |
| 4275 | 0, 0); |
| 4276 | btrfs_release_path(path); |
| 4277 | return 0; |
| 4278 | } |
| 4279 | |
| 4280 | static int log_csums(struct btrfs_trans_handle *trans, |
| 4281 | struct btrfs_inode *inode, |
| 4282 | struct btrfs_root *log_root, |
| 4283 | struct btrfs_ordered_sum *sums) |
| 4284 | { |
| 4285 | const u64 lock_end = sums->logical + sums->len - 1; |
| 4286 | struct extent_state *cached_state = NULL; |
| 4287 | int ret; |
| 4288 | |
| 4289 | /* |
| 4290 | * If this inode was not used for reflink operations in the current |
| 4291 | * transaction with new extents, then do the fast path, no need to |
| 4292 | * worry about logging checksum items with overlapping ranges. |
| 4293 | */ |
| 4294 | if (inode->last_reflink_trans < trans->transid) |
| 4295 | return btrfs_csum_file_blocks(trans, log_root, sums); |
| 4296 | |
| 4297 | /* |
| 4298 | * Serialize logging for checksums. This is to avoid racing with the |
| 4299 | * same checksum being logged by another task that is logging another |
| 4300 | * file which happens to refer to the same extent as well. Such races |
| 4301 | * can leave checksum items in the log with overlapping ranges. |
| 4302 | */ |
| 4303 | ret = btrfs_lock_extent(&log_root->log_csum_range, sums->logical, lock_end, |
| 4304 | &cached_state); |
| 4305 | if (ret) |
| 4306 | return ret; |
| 4307 | /* |
| 4308 | * Due to extent cloning, we might have logged a csum item that covers a |
| 4309 | * subrange of a cloned extent, and later we can end up logging a csum |
| 4310 | * item for a larger subrange of the same extent or the entire range. |
| 4311 | * This would leave csum items in the log tree that cover the same range |
| 4312 | * and break the searches for checksums in the log tree, resulting in |
| 4313 | * some checksums missing in the fs/subvolume tree. So just delete (or |
| 4314 | * trim and adjust) any existing csum items in the log for this range. |
| 4315 | */ |
| 4316 | ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len); |
| 4317 | if (!ret) |
| 4318 | ret = btrfs_csum_file_blocks(trans, log_root, sums); |
| 4319 | |
| 4320 | btrfs_unlock_extent(&log_root->log_csum_range, sums->logical, lock_end, |
| 4321 | &cached_state); |
| 4322 | |
| 4323 | return ret; |
| 4324 | } |
| 4325 | |
| 4326 | static noinline int copy_items(struct btrfs_trans_handle *trans, |
| 4327 | struct btrfs_inode *inode, |
| 4328 | struct btrfs_path *dst_path, |
| 4329 | struct btrfs_path *src_path, |
| 4330 | int start_slot, int nr, int inode_only, |
| 4331 | u64 logged_isize, struct btrfs_log_ctx *ctx) |
| 4332 | { |
| 4333 | struct btrfs_root *log = inode->root->log_root; |
| 4334 | struct btrfs_file_extent_item *extent; |
| 4335 | struct extent_buffer *src; |
| 4336 | int ret; |
| 4337 | struct btrfs_key *ins_keys; |
| 4338 | u32 *ins_sizes; |
| 4339 | struct btrfs_item_batch batch; |
| 4340 | char *ins_data; |
| 4341 | int dst_index; |
| 4342 | const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM); |
| 4343 | const u64 i_size = i_size_read(&inode->vfs_inode); |
| 4344 | |
| 4345 | /* |
| 4346 | * To keep lockdep happy and avoid deadlocks, clone the source leaf and |
| 4347 | * use the clone. This is because otherwise we would be changing the log |
| 4348 | * tree, to insert items from the subvolume tree or insert csum items, |
| 4349 | * while holding a read lock on a leaf from the subvolume tree, which |
| 4350 | * creates a nasty lock dependency when COWing log tree nodes/leaves: |
| 4351 | * |
| 4352 | * 1) Modifying the log tree triggers an extent buffer allocation while |
| 4353 | * holding a write lock on a parent extent buffer from the log tree. |
| 4354 | * Allocating the pages for an extent buffer, or the extent buffer |
| 4355 | * struct, can trigger inode eviction and finally the inode eviction |
| 4356 | * will trigger a release/remove of a delayed node, which requires |
| 4357 | * taking the delayed node's mutex; |
| 4358 | * |
| 4359 | * 2) Allocating a metadata extent for a log tree can trigger the async |
| 4360 | * reclaim thread and make us wait for it to release enough space and |
| 4361 | * unblock our reservation ticket. The reclaim thread can start |
| 4362 | * flushing delayed items, and that in turn results in the need to |
| 4363 | * lock delayed node mutexes and in the need to write lock extent |
| 4364 | * buffers of a subvolume tree - all this while holding a write lock |
| 4365 | * on the parent extent buffer in the log tree. |
| 4366 | * |
| 4367 | * So one task in scenario 1) running in parallel with another task in |
| 4368 | * scenario 2) could lead to a deadlock, one wanting to lock a delayed |
| 4369 | * node mutex while having a read lock on a leaf from the subvolume, |
| 4370 | * while the other is holding the delayed node's mutex and wants to |
| 4371 | * write lock the same subvolume leaf for flushing delayed items. |
| 4372 | */ |
| 4373 | ret = clone_leaf(src_path, ctx); |
| 4374 | if (ret < 0) |
| 4375 | return ret; |
| 4376 | |
| 4377 | src = src_path->nodes[0]; |
| 4378 | |
| 4379 | ins_data = kmalloc(nr * sizeof(struct btrfs_key) + |
| 4380 | nr * sizeof(u32), GFP_NOFS); |
| 4381 | if (!ins_data) |
| 4382 | return -ENOMEM; |
| 4383 | |
| 4384 | ins_sizes = (u32 *)ins_data; |
| 4385 | ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); |
| 4386 | batch.keys = ins_keys; |
| 4387 | batch.data_sizes = ins_sizes; |
| 4388 | batch.total_data_size = 0; |
| 4389 | batch.nr = 0; |
| 4390 | |
| 4391 | dst_index = 0; |
| 4392 | for (int i = 0; i < nr; i++) { |
| 4393 | const int src_slot = start_slot + i; |
| 4394 | struct btrfs_root *csum_root; |
| 4395 | struct btrfs_ordered_sum *sums; |
| 4396 | struct btrfs_ordered_sum *sums_next; |
| 4397 | LIST_HEAD(ordered_sums); |
| 4398 | u64 disk_bytenr; |
| 4399 | u64 disk_num_bytes; |
| 4400 | u64 extent_offset; |
| 4401 | u64 extent_num_bytes; |
| 4402 | bool is_old_extent; |
| 4403 | |
| 4404 | btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot); |
| 4405 | |
| 4406 | if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY) |
| 4407 | goto add_to_batch; |
| 4408 | |
| 4409 | extent = btrfs_item_ptr(src, src_slot, |
| 4410 | struct btrfs_file_extent_item); |
| 4411 | |
| 4412 | is_old_extent = (btrfs_file_extent_generation(src, extent) < |
| 4413 | trans->transid); |
| 4414 | |
| 4415 | /* |
| 4416 | * Don't copy extents from past generations. That would make us |
| 4417 | * log a lot more metadata for common cases like doing only a |
| 4418 | * few random writes into a file and then fsync it for the first |
| 4419 | * time or after the full sync flag is set on the inode. We can |
| 4420 | * get leaves full of extent items, most of which are from past |
| 4421 | * generations, so we can skip them - as long as the inode has |
| 4422 | * not been the target of a reflink operation in this transaction, |
| 4423 | * as in that case it might have had file extent items with old |
| 4424 | * generations copied into it. We also must always log prealloc |
| 4425 | * extents that start at or beyond eof, otherwise we would lose |
| 4426 | * them on log replay. |
| 4427 | */ |
| 4428 | if (is_old_extent && |
| 4429 | ins_keys[dst_index].offset < i_size && |
| 4430 | inode->last_reflink_trans < trans->transid) |
| 4431 | continue; |
| 4432 | |
| 4433 | if (skip_csum) |
| 4434 | goto add_to_batch; |
| 4435 | |
| 4436 | /* Only regular extents have checksums. */ |
| 4437 | if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG) |
| 4438 | goto add_to_batch; |
| 4439 | |
| 4440 | /* |
| 4441 | * If it's an extent created in a past transaction, then its |
| 4442 | * checksums are already accessible from the committed csum tree, |
| 4443 | * no need to log them. |
| 4444 | */ |
| 4445 | if (is_old_extent) |
| 4446 | goto add_to_batch; |
| 4447 | |
| 4448 | disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent); |
| 4449 | /* If it's an explicit hole, there are no checksums. */ |
| 4450 | if (disk_bytenr == 0) |
| 4451 | goto add_to_batch; |
| 4452 | |
| 4453 | disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent); |
| 4454 | |
| 4455 | if (btrfs_file_extent_compression(src, extent)) { |
| 4456 | extent_offset = 0; |
| 4457 | extent_num_bytes = disk_num_bytes; |
| 4458 | } else { |
| 4459 | extent_offset = btrfs_file_extent_offset(src, extent); |
| 4460 | extent_num_bytes = btrfs_file_extent_num_bytes(src, extent); |
| 4461 | } |
| 4462 | |
| 4463 | csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr); |
| 4464 | disk_bytenr += extent_offset; |
| 4465 | ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, |
| 4466 | disk_bytenr + extent_num_bytes - 1, |
| 4467 | &ordered_sums, false); |
| 4468 | if (ret < 0) |
| 4469 | goto out; |
| 4470 | ret = 0; |
| 4471 | |
| 4472 | list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) { |
| 4473 | if (!ret) |
| 4474 | ret = log_csums(trans, inode, log, sums); |
| 4475 | list_del(&sums->list); |
| 4476 | kfree(sums); |
| 4477 | } |
| 4478 | if (ret) |
| 4479 | goto out; |
| 4480 | |
| 4481 | add_to_batch: |
| 4482 | ins_sizes[dst_index] = btrfs_item_size(src, src_slot); |
| 4483 | batch.total_data_size += ins_sizes[dst_index]; |
| 4484 | batch.nr++; |
| 4485 | dst_index++; |
| 4486 | } |
| 4487 | |
| 4488 | /* |
| 4489 | * We have a leaf full of old extent items that don't need to be logged, |
| 4490 | * so we don't need to do anything. |
| 4491 | */ |
| 4492 | if (batch.nr == 0) |
| 4493 | goto out; |
| 4494 | |
| 4495 | ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); |
| 4496 | if (ret) |
| 4497 | goto out; |
| 4498 | |
| 4499 | dst_index = 0; |
| 4500 | for (int i = 0; i < nr; i++) { |
| 4501 | const int src_slot = start_slot + i; |
| 4502 | const int dst_slot = dst_path->slots[0] + dst_index; |
| 4503 | struct btrfs_key key; |
| 4504 | unsigned long src_offset; |
| 4505 | unsigned long dst_offset; |
| 4506 | |
| 4507 | /* |
| 4508 | * We're done, all the remaining items in the source leaf |
| 4509 | * correspond to old file extent items. |
| 4510 | */ |
| 4511 | if (dst_index >= batch.nr) |
| 4512 | break; |
| 4513 | |
| 4514 | btrfs_item_key_to_cpu(src, &key, src_slot); |
| 4515 | |
| 4516 | if (key.type != BTRFS_EXTENT_DATA_KEY) |
| 4517 | goto copy_item; |
| 4518 | |
| 4519 | extent = btrfs_item_ptr(src, src_slot, |
| 4520 | struct btrfs_file_extent_item); |
| 4521 | |
| 4522 | /* See the comment in the previous loop, same logic. */ |
| 4523 | if (btrfs_file_extent_generation(src, extent) < trans->transid && |
| 4524 | key.offset < i_size && |
| 4525 | inode->last_reflink_trans < trans->transid) |
| 4526 | continue; |
| 4527 | |
| 4528 | copy_item: |
| 4529 | dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot); |
| 4530 | src_offset = btrfs_item_ptr_offset(src, src_slot); |
| 4531 | |
| 4532 | if (key.type == BTRFS_INODE_ITEM_KEY) { |
| 4533 | struct btrfs_inode_item *inode_item; |
| 4534 | |
| 4535 | inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot, |
| 4536 | struct btrfs_inode_item); |
| 4537 | fill_inode_item(trans, dst_path->nodes[0], inode_item, |
| 4538 | &inode->vfs_inode, |
| 4539 | inode_only == LOG_INODE_EXISTS, |
| 4540 | logged_isize); |
| 4541 | } else { |
| 4542 | copy_extent_buffer(dst_path->nodes[0], src, dst_offset, |
| 4543 | src_offset, ins_sizes[dst_index]); |
| 4544 | } |
| 4545 | |
| 4546 | dst_index++; |
| 4547 | } |
| 4548 | |
| 4549 | btrfs_release_path(dst_path); |
| 4550 | out: |
| 4551 | kfree(ins_data); |
| 4552 | |
| 4553 | return ret; |
| 4554 | } |
| 4555 | |
| 4556 | static int extent_cmp(void *priv, const struct list_head *a, |
| 4557 | const struct list_head *b) |
| 4558 | { |
| 4559 | const struct extent_map *em1, *em2; |
| 4560 | |
| 4561 | em1 = list_entry(a, struct extent_map, list); |
| 4562 | em2 = list_entry(b, struct extent_map, list); |
| 4563 | |
| 4564 | if (em1->start < em2->start) |
| 4565 | return -1; |
| 4566 | else if (em1->start > em2->start) |
| 4567 | return 1; |
| 4568 | return 0; |
| 4569 | } |
| 4570 | |
| 4571 | static int log_extent_csums(struct btrfs_trans_handle *trans, |
| 4572 | struct btrfs_inode *inode, |
| 4573 | struct btrfs_root *log_root, |
| 4574 | const struct extent_map *em, |
| 4575 | struct btrfs_log_ctx *ctx) |
| 4576 | { |
| 4577 | struct btrfs_ordered_extent *ordered; |
| 4578 | struct btrfs_root *csum_root; |
| 4579 | u64 block_start; |
| 4580 | u64 csum_offset; |
| 4581 | u64 csum_len; |
| 4582 | u64 mod_start = em->start; |
| 4583 | u64 mod_len = em->len; |
| 4584 | LIST_HEAD(ordered_sums); |
| 4585 | int ret = 0; |
| 4586 | |
| 4587 | if (inode->flags & BTRFS_INODE_NODATASUM || |
| 4588 | (em->flags & EXTENT_FLAG_PREALLOC) || |
| 4589 | em->disk_bytenr == EXTENT_MAP_HOLE) |
| 4590 | return 0; |
| 4591 | |
| 4592 | list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { |
| 4593 | const u64 ordered_end = ordered->file_offset + ordered->num_bytes; |
| 4594 | const u64 mod_end = mod_start + mod_len; |
| 4595 | struct btrfs_ordered_sum *sums; |
| 4596 | |
| 4597 | if (mod_len == 0) |
| 4598 | break; |
| 4599 | |
| 4600 | if (ordered_end <= mod_start) |
| 4601 | continue; |
| 4602 | if (mod_end <= ordered->file_offset) |
| 4603 | break; |
| 4604 | |
| 4605 | /* |
| 4606 | * We are going to copy all the csums on this ordered extent, so |
| 4607 | * go ahead and adjust mod_start and mod_len in case this ordered |
| 4608 | * extent has already been logged. |
| 4609 | */ |
| 4610 | if (ordered->file_offset > mod_start) { |
| 4611 | if (ordered_end >= mod_end) |
| 4612 | mod_len = ordered->file_offset - mod_start; |
| 4613 | /* |
| 4614 | * If we have this case |
| 4615 | * |
| 4616 | * |--------- logged extent ---------| |
| 4617 | * |----- ordered extent ----| |
| 4618 | * |
| 4619 | * Just don't mess with mod_start and mod_len, we'll |
| 4620 | * just end up logging more csums than we need and it |
| 4621 | * will be ok. |
| 4622 | */ |
| 4623 | } else { |
| 4624 | if (ordered_end < mod_end) { |
| 4625 | mod_len = mod_end - ordered_end; |
| 4626 | mod_start = ordered_end; |
| 4627 | } else { |
| 4628 | mod_len = 0; |
| 4629 | } |
| 4630 | } |
| 4631 | |
| 4632 | /* |
| 4633 | * To keep us from looping for the above case of an ordered |
| 4634 | * extent that falls inside of the logged extent. |
| 4635 | */ |
| 4636 | if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) |
| 4637 | continue; |
| 4638 | |
| 4639 | list_for_each_entry(sums, &ordered->list, list) { |
| 4640 | ret = log_csums(trans, inode, log_root, sums); |
| 4641 | if (ret) |
| 4642 | return ret; |
| 4643 | } |
| 4644 | } |
| 4645 | |
| 4646 | /* We're done, found all csums in the ordered extents. */ |
| 4647 | if (mod_len == 0) |
| 4648 | return 0; |
| 4649 | |
| 4650 | /* If we're compressed we have to save the entire range of csums. */ |
| 4651 | if (btrfs_extent_map_is_compressed(em)) { |
| 4652 | csum_offset = 0; |
| 4653 | csum_len = em->disk_num_bytes; |
| 4654 | } else { |
| 4655 | csum_offset = mod_start - em->start; |
| 4656 | csum_len = mod_len; |
| 4657 | } |
| 4658 | |
| 4659 | /* block start is already adjusted for the file extent offset. */ |
| 4660 | block_start = btrfs_extent_map_block_start(em); |
| 4661 | csum_root = btrfs_csum_root(trans->fs_info, block_start); |
| 4662 | ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset, |
| 4663 | block_start + csum_offset + csum_len - 1, |
| 4664 | &ordered_sums, false); |
| 4665 | if (ret < 0) |
| 4666 | return ret; |
| 4667 | ret = 0; |
| 4668 | |
| 4669 | while (!list_empty(&ordered_sums)) { |
| 4670 | struct btrfs_ordered_sum *sums = list_first_entry(&ordered_sums, |
| 4671 | struct btrfs_ordered_sum, |
| 4672 | list); |
| 4673 | if (!ret) |
| 4674 | ret = log_csums(trans, inode, log_root, sums); |
| 4675 | list_del(&sums->list); |
| 4676 | kfree(sums); |
| 4677 | } |
| 4678 | |
| 4679 | return ret; |
| 4680 | } |
| 4681 | |
| 4682 | static int log_one_extent(struct btrfs_trans_handle *trans, |
| 4683 | struct btrfs_inode *inode, |
| 4684 | const struct extent_map *em, |
| 4685 | struct btrfs_path *path, |
| 4686 | struct btrfs_log_ctx *ctx) |
| 4687 | { |
| 4688 | struct btrfs_drop_extents_args drop_args = { 0 }; |
| 4689 | struct btrfs_root *log = inode->root->log_root; |
| 4690 | struct btrfs_file_extent_item fi = { 0 }; |
| 4691 | struct extent_buffer *leaf; |
| 4692 | struct btrfs_key key; |
| 4693 | enum btrfs_compression_type compress_type; |
| 4694 | u64 extent_offset = em->offset; |
| 4695 | u64 block_start = btrfs_extent_map_block_start(em); |
| 4696 | u64 block_len; |
| 4697 | int ret; |
| 4698 | |
| 4699 | btrfs_set_stack_file_extent_generation(&fi, trans->transid); |
| 4700 | if (em->flags & EXTENT_FLAG_PREALLOC) |
| 4701 | btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC); |
| 4702 | else |
| 4703 | btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG); |
| 4704 | |
| 4705 | block_len = em->disk_num_bytes; |
| 4706 | compress_type = btrfs_extent_map_compression(em); |
| 4707 | if (compress_type != BTRFS_COMPRESS_NONE) { |
| 4708 | btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start); |
| 4709 | btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); |
| 4710 | } else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { |
| 4711 | btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset); |
| 4712 | btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); |
| 4713 | } |
| 4714 | |
| 4715 | btrfs_set_stack_file_extent_offset(&fi, extent_offset); |
| 4716 | btrfs_set_stack_file_extent_num_bytes(&fi, em->len); |
| 4717 | btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes); |
| 4718 | btrfs_set_stack_file_extent_compression(&fi, compress_type); |
| 4719 | |
| 4720 | ret = log_extent_csums(trans, inode, log, em, ctx); |
| 4721 | if (ret) |
| 4722 | return ret; |
| 4723 | |
| 4724 | /* |
| 4725 | * If this is the first time we are logging the inode in the current |
| 4726 | * transaction, we can avoid btrfs_drop_extents(), which is expensive |
| 4727 | * because it does a deletion search, which always acquires write locks |
| 4728 | * for extent buffers at levels 2, 1 and 0. This not only wastes time |
| 4729 | * but also adds significant contention in a log tree, since log trees |
| 4730 | * are small, with a root at level 2 or 3 at most, due to their short |
| 4731 | * life span. |
| 4732 | */ |
| 4733 | if (ctx->logged_before) { |
| 4734 | drop_args.path = path; |
| 4735 | drop_args.start = em->start; |
| 4736 | drop_args.end = em->start + em->len; |
| 4737 | drop_args.replace_extent = true; |
| 4738 | drop_args.extent_item_size = sizeof(fi); |
| 4739 | ret = btrfs_drop_extents(trans, log, inode, &drop_args); |
| 4740 | if (ret) |
| 4741 | return ret; |
| 4742 | } |
| 4743 | |
| 4744 | if (!drop_args.extent_inserted) { |
| 4745 | key.objectid = btrfs_ino(inode); |
| 4746 | key.type = BTRFS_EXTENT_DATA_KEY; |
| 4747 | key.offset = em->start; |
| 4748 | |
| 4749 | ret = btrfs_insert_empty_item(trans, log, path, &key, |
| 4750 | sizeof(fi)); |
| 4751 | if (ret) |
| 4752 | return ret; |
| 4753 | } |
| 4754 | leaf = path->nodes[0]; |
| 4755 | write_extent_buffer(leaf, &fi, |
| 4756 | btrfs_item_ptr_offset(leaf, path->slots[0]), |
| 4757 | sizeof(fi)); |
| 4758 | |
| 4759 | btrfs_release_path(path); |
| 4760 | |
| 4761 | return ret; |
| 4762 | } |
| 4763 | |
| 4764 | /* |
| 4765 | * Log all prealloc extents beyond the inode's i_size to make sure we do not |
| 4766 | * lose them after doing a full/fast fsync and replaying the log. We scan the |
| 4767 | * subvolume's root instead of iterating the inode's extent map tree because |
| 4768 | * otherwise we can log incorrect extent items based on extent map conversion. |
| 4769 | * That can happen due to the fact that extent maps are merged when they |
| 4770 | * are not in the extent map tree's list of modified extents. |
| 4771 | */ |
| 4772 | static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, |
| 4773 | struct btrfs_inode *inode, |
| 4774 | struct btrfs_path *path, |
| 4775 | struct btrfs_log_ctx *ctx) |
| 4776 | { |
| 4777 | struct btrfs_root *root = inode->root; |
| 4778 | struct btrfs_key key; |
| 4779 | const u64 i_size = i_size_read(&inode->vfs_inode); |
| 4780 | const u64 ino = btrfs_ino(inode); |
| 4781 | struct btrfs_path *dst_path = NULL; |
| 4782 | bool dropped_extents = false; |
| 4783 | u64 truncate_offset = i_size; |
| 4784 | struct extent_buffer *leaf; |
| 4785 | int slot; |
| 4786 | int ins_nr = 0; |
| 4787 | int start_slot = 0; |
| 4788 | int ret; |
| 4789 | |
| 4790 | if (!(inode->flags & BTRFS_INODE_PREALLOC)) |
| 4791 | return 0; |
| 4792 | |
| 4793 | key.objectid = ino; |
| 4794 | key.type = BTRFS_EXTENT_DATA_KEY; |
| 4795 | key.offset = i_size; |
| 4796 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 4797 | if (ret < 0) |
| 4798 | goto out; |
| 4799 | |
| 4800 | /* |
| 4801 | * We must check if there is a prealloc extent that starts before the |
| 4802 | * i_size and crosses the i_size boundary. This is to ensure later we |
| 4803 | * truncate down to the end of that extent and not to the i_size, as |
| 4804 | * otherwise we end up losing part of the prealloc extent after a log |
| 4805 | * replay and with an implicit hole if there is another prealloc extent |
| 4806 | * that starts at an offset beyond i_size. |
| 4807 | */ |
| 4808 | ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); |
| 4809 | if (ret < 0) |
| 4810 | goto out; |
| 4811 | |
| 4812 | if (ret == 0) { |
| 4813 | struct btrfs_file_extent_item *ei; |
| 4814 | |
| 4815 | leaf = path->nodes[0]; |
| 4816 | slot = path->slots[0]; |
| 4817 | ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); |
| 4818 | |
| 4819 | if (btrfs_file_extent_type(leaf, ei) == |
| 4820 | BTRFS_FILE_EXTENT_PREALLOC) { |
| 4821 | u64 extent_end; |
| 4822 | |
| 4823 | btrfs_item_key_to_cpu(leaf, &key, slot); |
| 4824 | extent_end = key.offset + |
| 4825 | btrfs_file_extent_num_bytes(leaf, ei); |
| 4826 | |
| 4827 | if (extent_end > i_size) |
| 4828 | truncate_offset = extent_end; |
| 4829 | } |
| 4830 | } else { |
| 4831 | ret = 0; |
| 4832 | } |
| 4833 | |
| 4834 | while (true) { |
| 4835 | leaf = path->nodes[0]; |
| 4836 | slot = path->slots[0]; |
| 4837 | |
| 4838 | if (slot >= btrfs_header_nritems(leaf)) { |
| 4839 | if (ins_nr > 0) { |
| 4840 | ret = copy_items(trans, inode, dst_path, path, |
| 4841 | start_slot, ins_nr, 1, 0, ctx); |
| 4842 | if (ret < 0) |
| 4843 | goto out; |
| 4844 | ins_nr = 0; |
| 4845 | } |
| 4846 | ret = btrfs_next_leaf(root, path); |
| 4847 | if (ret < 0) |
| 4848 | goto out; |
| 4849 | if (ret > 0) { |
| 4850 | ret = 0; |
| 4851 | break; |
| 4852 | } |
| 4853 | continue; |
| 4854 | } |
| 4855 | |
| 4856 | btrfs_item_key_to_cpu(leaf, &key, slot); |
| 4857 | if (key.objectid > ino) |
| 4858 | break; |
| 4859 | if (WARN_ON_ONCE(key.objectid < ino) || |
| 4860 | key.type < BTRFS_EXTENT_DATA_KEY || |
| 4861 | key.offset < i_size) { |
| 4862 | path->slots[0]++; |
| 4863 | continue; |
| 4864 | } |
| 4865 | /* |
| 4866 | * Avoid overlapping items in the log tree. The first time we |
| 4867 | * get here, get rid of everything from a past fsync. After |
| 4868 | * that, if the current extent starts before the end of the last |
| 4869 | * extent we copied, truncate the last one. This can happen if |
| 4870 | * an ordered extent completion modifies the subvolume tree |
| 4871 | * while btrfs_next_leaf() has the tree unlocked. |
| 4872 | */ |
| 4873 | if (!dropped_extents || key.offset < truncate_offset) { |
| 4874 | ret = truncate_inode_items(trans, root->log_root, inode, |
| 4875 | min(key.offset, truncate_offset), |
| 4876 | BTRFS_EXTENT_DATA_KEY); |
| 4877 | if (ret) |
| 4878 | goto out; |
| 4879 | dropped_extents = true; |
| 4880 | } |
| 4881 | truncate_offset = btrfs_file_extent_end(path); |
| 4882 | if (ins_nr == 0) |
| 4883 | start_slot = slot; |
| 4884 | ins_nr++; |
| 4885 | path->slots[0]++; |
| 4886 | if (!dst_path) { |
| 4887 | dst_path = btrfs_alloc_path(); |
| 4888 | if (!dst_path) { |
| 4889 | ret = -ENOMEM; |
| 4890 | goto out; |
| 4891 | } |
| 4892 | } |
| 4893 | } |
| 4894 | if (ins_nr > 0) |
| 4895 | ret = copy_items(trans, inode, dst_path, path, |
| 4896 | start_slot, ins_nr, 1, 0, ctx); |
| 4897 | out: |
| 4898 | btrfs_release_path(path); |
| 4899 | btrfs_free_path(dst_path); |
| 4900 | return ret; |
| 4901 | } |
| 4902 | |
| 4903 | static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, |
| 4904 | struct btrfs_inode *inode, |
| 4905 | struct btrfs_path *path, |
| 4906 | struct btrfs_log_ctx *ctx) |
| 4907 | { |
| 4908 | struct btrfs_ordered_extent *ordered; |
| 4909 | struct btrfs_ordered_extent *tmp; |
| 4910 | struct extent_map *em, *n; |
| 4911 | LIST_HEAD(extents); |
| 4912 | struct extent_map_tree *tree = &inode->extent_tree; |
| 4913 | int ret = 0; |
| 4914 | int num = 0; |
| 4915 | |
| 4916 | write_lock(&tree->lock); |
| 4917 | |
| 4918 | list_for_each_entry_safe(em, n, &tree->modified_extents, list) { |
| 4919 | list_del_init(&em->list); |
| 4920 | /* |
| 4921 | * Just an arbitrary number, this can be really CPU intensive |
| 4922 | * once we start getting a lot of extents, and really once we |
| 4923 | * have a bunch of extents we just want to commit since it will |
| 4924 | * be faster. |
| 4925 | */ |
| 4926 | if (++num > 32768) { |
| 4927 | list_del_init(&tree->modified_extents); |
| 4928 | ret = -EFBIG; |
| 4929 | goto process; |
| 4930 | } |
| 4931 | |
| 4932 | if (em->generation < trans->transid) |
| 4933 | continue; |
| 4934 | |
| 4935 | /* We log prealloc extents beyond eof later. */ |
| 4936 | if ((em->flags & EXTENT_FLAG_PREALLOC) && |
| 4937 | em->start >= i_size_read(&inode->vfs_inode)) |
| 4938 | continue; |
| 4939 | |
| 4940 | /* Need a ref to keep it from getting evicted from cache */ |
| 4941 | refcount_inc(&em->refs); |
| 4942 | em->flags |= EXTENT_FLAG_LOGGING; |
| 4943 | list_add_tail(&em->list, &extents); |
| 4944 | num++; |
| 4945 | } |
| 4946 | |
| 4947 | list_sort(NULL, &extents, extent_cmp); |
| 4948 | process: |
| 4949 | while (!list_empty(&extents)) { |
| 4950 | em = list_first_entry(&extents, struct extent_map, list); |
| 4951 | |
| 4952 | list_del_init(&em->list); |
| 4953 | |
| 4954 | /* |
| 4955 | * If we had an error we just need to delete everybody from our |
| 4956 | * private list. |
| 4957 | */ |
| 4958 | if (ret) { |
| 4959 | btrfs_clear_em_logging(inode, em); |
| 4960 | btrfs_free_extent_map(em); |
| 4961 | continue; |
| 4962 | } |
| 4963 | |
| 4964 | write_unlock(&tree->lock); |
| 4965 | |
| 4966 | ret = log_one_extent(trans, inode, em, path, ctx); |
| 4967 | write_lock(&tree->lock); |
| 4968 | btrfs_clear_em_logging(inode, em); |
| 4969 | btrfs_free_extent_map(em); |
| 4970 | } |
| 4971 | WARN_ON(!list_empty(&extents)); |
| 4972 | write_unlock(&tree->lock); |
| 4973 | |
| 4974 | if (!ret) |
| 4975 | ret = btrfs_log_prealloc_extents(trans, inode, path, ctx); |
| 4976 | if (ret) |
| 4977 | return ret; |
| 4978 | |
| 4979 | /* |
| 4980 | * We have logged all extents successfully, now make sure the commit of |
| 4981 | * the current transaction waits for the ordered extents to complete |
| 4982 | * before it commits and wipes out the log trees, otherwise we would |
| 4983 | * lose data if an ordered extents completes after the transaction |
| 4984 | * commits and a power failure happens after the transaction commit. |
| 4985 | */ |
| 4986 | list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { |
| 4987 | list_del_init(&ordered->log_list); |
| 4988 | set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); |
| 4989 | |
| 4990 | if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { |
| 4991 | spin_lock_irq(&inode->ordered_tree_lock); |
| 4992 | if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { |
| 4993 | set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); |
| 4994 | atomic_inc(&trans->transaction->pending_ordered); |
| 4995 | } |
| 4996 | spin_unlock_irq(&inode->ordered_tree_lock); |
| 4997 | } |
| 4998 | btrfs_put_ordered_extent(ordered); |
| 4999 | } |
| 5000 | |
| 5001 | return 0; |
| 5002 | } |
| 5003 | |
| 5004 | static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, |
| 5005 | struct btrfs_path *path, u64 *size_ret) |
| 5006 | { |
| 5007 | struct btrfs_key key; |
| 5008 | int ret; |
| 5009 | |
| 5010 | key.objectid = btrfs_ino(inode); |
| 5011 | key.type = BTRFS_INODE_ITEM_KEY; |
| 5012 | key.offset = 0; |
| 5013 | |
| 5014 | ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); |
| 5015 | if (ret < 0) { |
| 5016 | return ret; |
| 5017 | } else if (ret > 0) { |
| 5018 | *size_ret = 0; |
| 5019 | } else { |
| 5020 | struct btrfs_inode_item *item; |
| 5021 | |
| 5022 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| 5023 | struct btrfs_inode_item); |
| 5024 | *size_ret = btrfs_inode_size(path->nodes[0], item); |
| 5025 | /* |
| 5026 | * If the in-memory inode's i_size is smaller then the inode |
| 5027 | * size stored in the btree, return the inode's i_size, so |
| 5028 | * that we get a correct inode size after replaying the log |
| 5029 | * when before a power failure we had a shrinking truncate |
| 5030 | * followed by addition of a new name (rename / new hard link). |
| 5031 | * Otherwise return the inode size from the btree, to avoid |
| 5032 | * data loss when replaying a log due to previously doing a |
| 5033 | * write that expands the inode's size and logging a new name |
| 5034 | * immediately after. |
| 5035 | */ |
| 5036 | if (*size_ret > inode->vfs_inode.i_size) |
| 5037 | *size_ret = inode->vfs_inode.i_size; |
| 5038 | } |
| 5039 | |
| 5040 | btrfs_release_path(path); |
| 5041 | return 0; |
| 5042 | } |
| 5043 | |
| 5044 | /* |
| 5045 | * At the moment we always log all xattrs. This is to figure out at log replay |
| 5046 | * time which xattrs must have their deletion replayed. If a xattr is missing |
| 5047 | * in the log tree and exists in the fs/subvol tree, we delete it. This is |
| 5048 | * because if a xattr is deleted, the inode is fsynced and a power failure |
| 5049 | * happens, causing the log to be replayed the next time the fs is mounted, |
| 5050 | * we want the xattr to not exist anymore (same behaviour as other filesystems |
| 5051 | * with a journal, ext3/4, xfs, f2fs, etc). |
| 5052 | */ |
| 5053 | static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, |
| 5054 | struct btrfs_inode *inode, |
| 5055 | struct btrfs_path *path, |
| 5056 | struct btrfs_path *dst_path, |
| 5057 | struct btrfs_log_ctx *ctx) |
| 5058 | { |
| 5059 | struct btrfs_root *root = inode->root; |
| 5060 | int ret; |
| 5061 | struct btrfs_key key; |
| 5062 | const u64 ino = btrfs_ino(inode); |
| 5063 | int ins_nr = 0; |
| 5064 | int start_slot = 0; |
| 5065 | bool found_xattrs = false; |
| 5066 | |
| 5067 | if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) |
| 5068 | return 0; |
| 5069 | |
| 5070 | key.objectid = ino; |
| 5071 | key.type = BTRFS_XATTR_ITEM_KEY; |
| 5072 | key.offset = 0; |
| 5073 | |
| 5074 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 5075 | if (ret < 0) |
| 5076 | return ret; |
| 5077 | |
| 5078 | while (true) { |
| 5079 | int slot = path->slots[0]; |
| 5080 | struct extent_buffer *leaf = path->nodes[0]; |
| 5081 | int nritems = btrfs_header_nritems(leaf); |
| 5082 | |
| 5083 | if (slot >= nritems) { |
| 5084 | if (ins_nr > 0) { |
| 5085 | ret = copy_items(trans, inode, dst_path, path, |
| 5086 | start_slot, ins_nr, 1, 0, ctx); |
| 5087 | if (ret < 0) |
| 5088 | return ret; |
| 5089 | ins_nr = 0; |
| 5090 | } |
| 5091 | ret = btrfs_next_leaf(root, path); |
| 5092 | if (ret < 0) |
| 5093 | return ret; |
| 5094 | else if (ret > 0) |
| 5095 | break; |
| 5096 | continue; |
| 5097 | } |
| 5098 | |
| 5099 | btrfs_item_key_to_cpu(leaf, &key, slot); |
| 5100 | if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) |
| 5101 | break; |
| 5102 | |
| 5103 | if (ins_nr == 0) |
| 5104 | start_slot = slot; |
| 5105 | ins_nr++; |
| 5106 | path->slots[0]++; |
| 5107 | found_xattrs = true; |
| 5108 | cond_resched(); |
| 5109 | } |
| 5110 | if (ins_nr > 0) { |
| 5111 | ret = copy_items(trans, inode, dst_path, path, |
| 5112 | start_slot, ins_nr, 1, 0, ctx); |
| 5113 | if (ret < 0) |
| 5114 | return ret; |
| 5115 | } |
| 5116 | |
| 5117 | if (!found_xattrs) |
| 5118 | set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); |
| 5119 | |
| 5120 | return 0; |
| 5121 | } |
| 5122 | |
| 5123 | /* |
| 5124 | * When using the NO_HOLES feature if we punched a hole that causes the |
| 5125 | * deletion of entire leafs or all the extent items of the first leaf (the one |
| 5126 | * that contains the inode item and references) we may end up not processing |
| 5127 | * any extents, because there are no leafs with a generation matching the |
| 5128 | * current transaction that have extent items for our inode. So we need to find |
| 5129 | * if any holes exist and then log them. We also need to log holes after any |
| 5130 | * truncate operation that changes the inode's size. |
| 5131 | */ |
| 5132 | static int btrfs_log_holes(struct btrfs_trans_handle *trans, |
| 5133 | struct btrfs_inode *inode, |
| 5134 | struct btrfs_path *path) |
| 5135 | { |
| 5136 | struct btrfs_root *root = inode->root; |
| 5137 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 5138 | struct btrfs_key key; |
| 5139 | const u64 ino = btrfs_ino(inode); |
| 5140 | const u64 i_size = i_size_read(&inode->vfs_inode); |
| 5141 | u64 prev_extent_end = 0; |
| 5142 | int ret; |
| 5143 | |
| 5144 | if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) |
| 5145 | return 0; |
| 5146 | |
| 5147 | key.objectid = ino; |
| 5148 | key.type = BTRFS_EXTENT_DATA_KEY; |
| 5149 | key.offset = 0; |
| 5150 | |
| 5151 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 5152 | if (ret < 0) |
| 5153 | return ret; |
| 5154 | |
| 5155 | while (true) { |
| 5156 | struct extent_buffer *leaf = path->nodes[0]; |
| 5157 | |
| 5158 | if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { |
| 5159 | ret = btrfs_next_leaf(root, path); |
| 5160 | if (ret < 0) |
| 5161 | return ret; |
| 5162 | if (ret > 0) { |
| 5163 | ret = 0; |
| 5164 | break; |
| 5165 | } |
| 5166 | leaf = path->nodes[0]; |
| 5167 | } |
| 5168 | |
| 5169 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 5170 | if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) |
| 5171 | break; |
| 5172 | |
| 5173 | /* We have a hole, log it. */ |
| 5174 | if (prev_extent_end < key.offset) { |
| 5175 | const u64 hole_len = key.offset - prev_extent_end; |
| 5176 | |
| 5177 | /* |
| 5178 | * Release the path to avoid deadlocks with other code |
| 5179 | * paths that search the root while holding locks on |
| 5180 | * leafs from the log root. |
| 5181 | */ |
| 5182 | btrfs_release_path(path); |
| 5183 | ret = btrfs_insert_hole_extent(trans, root->log_root, |
| 5184 | ino, prev_extent_end, |
| 5185 | hole_len); |
| 5186 | if (ret < 0) |
| 5187 | return ret; |
| 5188 | |
| 5189 | /* |
| 5190 | * Search for the same key again in the root. Since it's |
| 5191 | * an extent item and we are holding the inode lock, the |
| 5192 | * key must still exist. If it doesn't just emit warning |
| 5193 | * and return an error to fall back to a transaction |
| 5194 | * commit. |
| 5195 | */ |
| 5196 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 5197 | if (ret < 0) |
| 5198 | return ret; |
| 5199 | if (WARN_ON(ret > 0)) |
| 5200 | return -ENOENT; |
| 5201 | leaf = path->nodes[0]; |
| 5202 | } |
| 5203 | |
| 5204 | prev_extent_end = btrfs_file_extent_end(path); |
| 5205 | path->slots[0]++; |
| 5206 | cond_resched(); |
| 5207 | } |
| 5208 | |
| 5209 | if (prev_extent_end < i_size) { |
| 5210 | u64 hole_len; |
| 5211 | |
| 5212 | btrfs_release_path(path); |
| 5213 | hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); |
| 5214 | ret = btrfs_insert_hole_extent(trans, root->log_root, ino, |
| 5215 | prev_extent_end, hole_len); |
| 5216 | if (ret < 0) |
| 5217 | return ret; |
| 5218 | } |
| 5219 | |
| 5220 | return 0; |
| 5221 | } |
| 5222 | |
| 5223 | /* |
| 5224 | * When we are logging a new inode X, check if it doesn't have a reference that |
| 5225 | * matches the reference from some other inode Y created in a past transaction |
| 5226 | * and that was renamed in the current transaction. If we don't do this, then at |
| 5227 | * log replay time we can lose inode Y (and all its files if it's a directory): |
| 5228 | * |
| 5229 | * mkdir /mnt/x |
| 5230 | * echo "hello world" > /mnt/x/foobar |
| 5231 | * sync |
| 5232 | * mv /mnt/x /mnt/y |
| 5233 | * mkdir /mnt/x # or touch /mnt/x |
| 5234 | * xfs_io -c fsync /mnt/x |
| 5235 | * <power fail> |
| 5236 | * mount fs, trigger log replay |
| 5237 | * |
| 5238 | * After the log replay procedure, we would lose the first directory and all its |
| 5239 | * files (file foobar). |
| 5240 | * For the case where inode Y is not a directory we simply end up losing it: |
| 5241 | * |
| 5242 | * echo "123" > /mnt/foo |
| 5243 | * sync |
| 5244 | * mv /mnt/foo /mnt/bar |
| 5245 | * echo "abc" > /mnt/foo |
| 5246 | * xfs_io -c fsync /mnt/foo |
| 5247 | * <power fail> |
| 5248 | * |
| 5249 | * We also need this for cases where a snapshot entry is replaced by some other |
| 5250 | * entry (file or directory) otherwise we end up with an unreplayable log due to |
| 5251 | * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as |
| 5252 | * if it were a regular entry: |
| 5253 | * |
| 5254 | * mkdir /mnt/x |
| 5255 | * btrfs subvolume snapshot /mnt /mnt/x/snap |
| 5256 | * btrfs subvolume delete /mnt/x/snap |
| 5257 | * rmdir /mnt/x |
| 5258 | * mkdir /mnt/x |
| 5259 | * fsync /mnt/x or fsync some new file inside it |
| 5260 | * <power fail> |
| 5261 | * |
| 5262 | * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in |
| 5263 | * the same transaction. |
| 5264 | */ |
| 5265 | static int btrfs_check_ref_name_override(struct extent_buffer *eb, |
| 5266 | const int slot, |
| 5267 | const struct btrfs_key *key, |
| 5268 | struct btrfs_inode *inode, |
| 5269 | u64 *other_ino, u64 *other_parent) |
| 5270 | { |
| 5271 | int ret; |
| 5272 | struct btrfs_path *search_path; |
| 5273 | char *name = NULL; |
| 5274 | u32 name_len = 0; |
| 5275 | u32 item_size = btrfs_item_size(eb, slot); |
| 5276 | u32 cur_offset = 0; |
| 5277 | unsigned long ptr = btrfs_item_ptr_offset(eb, slot); |
| 5278 | |
| 5279 | search_path = btrfs_alloc_path(); |
| 5280 | if (!search_path) |
| 5281 | return -ENOMEM; |
| 5282 | search_path->search_commit_root = 1; |
| 5283 | search_path->skip_locking = 1; |
| 5284 | |
| 5285 | while (cur_offset < item_size) { |
| 5286 | u64 parent; |
| 5287 | u32 this_name_len; |
| 5288 | u32 this_len; |
| 5289 | unsigned long name_ptr; |
| 5290 | struct btrfs_dir_item *di; |
| 5291 | struct fscrypt_str name_str; |
| 5292 | |
| 5293 | if (key->type == BTRFS_INODE_REF_KEY) { |
| 5294 | struct btrfs_inode_ref *iref; |
| 5295 | |
| 5296 | iref = (struct btrfs_inode_ref *)(ptr + cur_offset); |
| 5297 | parent = key->offset; |
| 5298 | this_name_len = btrfs_inode_ref_name_len(eb, iref); |
| 5299 | name_ptr = (unsigned long)(iref + 1); |
| 5300 | this_len = sizeof(*iref) + this_name_len; |
| 5301 | } else { |
| 5302 | struct btrfs_inode_extref *extref; |
| 5303 | |
| 5304 | extref = (struct btrfs_inode_extref *)(ptr + |
| 5305 | cur_offset); |
| 5306 | parent = btrfs_inode_extref_parent(eb, extref); |
| 5307 | this_name_len = btrfs_inode_extref_name_len(eb, extref); |
| 5308 | name_ptr = (unsigned long)&extref->name; |
| 5309 | this_len = sizeof(*extref) + this_name_len; |
| 5310 | } |
| 5311 | |
| 5312 | if (this_name_len > name_len) { |
| 5313 | char *new_name; |
| 5314 | |
| 5315 | new_name = krealloc(name, this_name_len, GFP_NOFS); |
| 5316 | if (!new_name) { |
| 5317 | ret = -ENOMEM; |
| 5318 | goto out; |
| 5319 | } |
| 5320 | name_len = this_name_len; |
| 5321 | name = new_name; |
| 5322 | } |
| 5323 | |
| 5324 | read_extent_buffer(eb, name, name_ptr, this_name_len); |
| 5325 | |
| 5326 | name_str.name = name; |
| 5327 | name_str.len = this_name_len; |
| 5328 | di = btrfs_lookup_dir_item(NULL, inode->root, search_path, |
| 5329 | parent, &name_str, 0); |
| 5330 | if (di && !IS_ERR(di)) { |
| 5331 | struct btrfs_key di_key; |
| 5332 | |
| 5333 | btrfs_dir_item_key_to_cpu(search_path->nodes[0], |
| 5334 | di, &di_key); |
| 5335 | if (di_key.type == BTRFS_INODE_ITEM_KEY) { |
| 5336 | if (di_key.objectid != key->objectid) { |
| 5337 | ret = 1; |
| 5338 | *other_ino = di_key.objectid; |
| 5339 | *other_parent = parent; |
| 5340 | } else { |
| 5341 | ret = 0; |
| 5342 | } |
| 5343 | } else { |
| 5344 | ret = -EAGAIN; |
| 5345 | } |
| 5346 | goto out; |
| 5347 | } else if (IS_ERR(di)) { |
| 5348 | ret = PTR_ERR(di); |
| 5349 | goto out; |
| 5350 | } |
| 5351 | btrfs_release_path(search_path); |
| 5352 | |
| 5353 | cur_offset += this_len; |
| 5354 | } |
| 5355 | ret = 0; |
| 5356 | out: |
| 5357 | btrfs_free_path(search_path); |
| 5358 | kfree(name); |
| 5359 | return ret; |
| 5360 | } |
| 5361 | |
| 5362 | /* |
| 5363 | * Check if we need to log an inode. This is used in contexts where while |
| 5364 | * logging an inode we need to log another inode (either that it exists or in |
| 5365 | * full mode). This is used instead of btrfs_inode_in_log() because the later |
| 5366 | * requires the inode to be in the log and have the log transaction committed, |
| 5367 | * while here we do not care if the log transaction was already committed - our |
| 5368 | * caller will commit the log later - and we want to avoid logging an inode |
| 5369 | * multiple times when multiple tasks have joined the same log transaction. |
| 5370 | */ |
| 5371 | static bool need_log_inode(const struct btrfs_trans_handle *trans, |
| 5372 | struct btrfs_inode *inode) |
| 5373 | { |
| 5374 | /* |
| 5375 | * If a directory was not modified, no dentries added or removed, we can |
| 5376 | * and should avoid logging it. |
| 5377 | */ |
| 5378 | if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) |
| 5379 | return false; |
| 5380 | |
| 5381 | /* |
| 5382 | * If this inode does not have new/updated/deleted xattrs since the last |
| 5383 | * time it was logged and is flagged as logged in the current transaction, |
| 5384 | * we can skip logging it. As for new/deleted names, those are updated in |
| 5385 | * the log by link/unlink/rename operations. |
| 5386 | * In case the inode was logged and then evicted and reloaded, its |
| 5387 | * logged_trans will be 0, in which case we have to fully log it since |
| 5388 | * logged_trans is a transient field, not persisted. |
| 5389 | */ |
| 5390 | if (inode_logged(trans, inode, NULL) == 1 && |
| 5391 | !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) |
| 5392 | return false; |
| 5393 | |
| 5394 | return true; |
| 5395 | } |
| 5396 | |
| 5397 | struct btrfs_dir_list { |
| 5398 | u64 ino; |
| 5399 | struct list_head list; |
| 5400 | }; |
| 5401 | |
| 5402 | /* |
| 5403 | * Log the inodes of the new dentries of a directory. |
| 5404 | * See process_dir_items_leaf() for details about why it is needed. |
| 5405 | * This is a recursive operation - if an existing dentry corresponds to a |
| 5406 | * directory, that directory's new entries are logged too (same behaviour as |
| 5407 | * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes |
| 5408 | * the dentries point to we do not acquire their VFS lock, otherwise lockdep |
| 5409 | * complains about the following circular lock dependency / possible deadlock: |
| 5410 | * |
| 5411 | * CPU0 CPU1 |
| 5412 | * ---- ---- |
| 5413 | * lock(&type->i_mutex_dir_key#3/2); |
| 5414 | * lock(sb_internal#2); |
| 5415 | * lock(&type->i_mutex_dir_key#3/2); |
| 5416 | * lock(&sb->s_type->i_mutex_key#14); |
| 5417 | * |
| 5418 | * Where sb_internal is the lock (a counter that works as a lock) acquired by |
| 5419 | * sb_start_intwrite() in btrfs_start_transaction(). |
| 5420 | * Not acquiring the VFS lock of the inodes is still safe because: |
| 5421 | * |
| 5422 | * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible |
| 5423 | * that while logging the inode new references (names) are added or removed |
| 5424 | * from the inode, leaving the logged inode item with a link count that does |
| 5425 | * not match the number of logged inode reference items. This is fine because |
| 5426 | * at log replay time we compute the real number of links and correct the |
| 5427 | * link count in the inode item (see replay_one_buffer() and |
| 5428 | * link_to_fixup_dir()); |
| 5429 | * |
| 5430 | * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that |
| 5431 | * while logging the inode's items new index items (key type |
| 5432 | * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item |
| 5433 | * has a size that doesn't match the sum of the lengths of all the logged |
| 5434 | * names - this is ok, not a problem, because at log replay time we set the |
| 5435 | * directory's i_size to the correct value (see replay_one_name() and |
| 5436 | * overwrite_item()). |
| 5437 | */ |
| 5438 | static int log_new_dir_dentries(struct btrfs_trans_handle *trans, |
| 5439 | struct btrfs_inode *start_inode, |
| 5440 | struct btrfs_log_ctx *ctx) |
| 5441 | { |
| 5442 | struct btrfs_root *root = start_inode->root; |
| 5443 | struct btrfs_path *path; |
| 5444 | LIST_HEAD(dir_list); |
| 5445 | struct btrfs_dir_list *dir_elem; |
| 5446 | u64 ino = btrfs_ino(start_inode); |
| 5447 | struct btrfs_inode *curr_inode = start_inode; |
| 5448 | int ret = 0; |
| 5449 | |
| 5450 | /* |
| 5451 | * If we are logging a new name, as part of a link or rename operation, |
| 5452 | * don't bother logging new dentries, as we just want to log the names |
| 5453 | * of an inode and that any new parents exist. |
| 5454 | */ |
| 5455 | if (ctx->logging_new_name) |
| 5456 | return 0; |
| 5457 | |
| 5458 | path = btrfs_alloc_path(); |
| 5459 | if (!path) |
| 5460 | return -ENOMEM; |
| 5461 | |
| 5462 | /* Pairs with btrfs_add_delayed_iput below. */ |
| 5463 | ihold(&curr_inode->vfs_inode); |
| 5464 | |
| 5465 | while (true) { |
| 5466 | struct btrfs_key key; |
| 5467 | struct btrfs_key found_key; |
| 5468 | u64 next_index; |
| 5469 | bool continue_curr_inode = true; |
| 5470 | int iter_ret; |
| 5471 | |
| 5472 | key.objectid = ino; |
| 5473 | key.type = BTRFS_DIR_INDEX_KEY; |
| 5474 | key.offset = btrfs_get_first_dir_index_to_log(curr_inode); |
| 5475 | next_index = key.offset; |
| 5476 | again: |
| 5477 | btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) { |
| 5478 | struct extent_buffer *leaf = path->nodes[0]; |
| 5479 | struct btrfs_dir_item *di; |
| 5480 | struct btrfs_key di_key; |
| 5481 | struct btrfs_inode *di_inode; |
| 5482 | int log_mode = LOG_INODE_EXISTS; |
| 5483 | int type; |
| 5484 | |
| 5485 | if (found_key.objectid != ino || |
| 5486 | found_key.type != BTRFS_DIR_INDEX_KEY) { |
| 5487 | continue_curr_inode = false; |
| 5488 | break; |
| 5489 | } |
| 5490 | |
| 5491 | next_index = found_key.offset + 1; |
| 5492 | |
| 5493 | di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); |
| 5494 | type = btrfs_dir_ftype(leaf, di); |
| 5495 | if (btrfs_dir_transid(leaf, di) < trans->transid) |
| 5496 | continue; |
| 5497 | btrfs_dir_item_key_to_cpu(leaf, di, &di_key); |
| 5498 | if (di_key.type == BTRFS_ROOT_ITEM_KEY) |
| 5499 | continue; |
| 5500 | |
| 5501 | btrfs_release_path(path); |
| 5502 | di_inode = btrfs_iget_logging(di_key.objectid, root); |
| 5503 | if (IS_ERR(di_inode)) { |
| 5504 | ret = PTR_ERR(di_inode); |
| 5505 | goto out; |
| 5506 | } |
| 5507 | |
| 5508 | if (!need_log_inode(trans, di_inode)) { |
| 5509 | btrfs_add_delayed_iput(di_inode); |
| 5510 | break; |
| 5511 | } |
| 5512 | |
| 5513 | ctx->log_new_dentries = false; |
| 5514 | if (type == BTRFS_FT_DIR) |
| 5515 | log_mode = LOG_INODE_ALL; |
| 5516 | ret = btrfs_log_inode(trans, di_inode, log_mode, ctx); |
| 5517 | btrfs_add_delayed_iput(di_inode); |
| 5518 | if (ret) |
| 5519 | goto out; |
| 5520 | if (ctx->log_new_dentries) { |
| 5521 | dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); |
| 5522 | if (!dir_elem) { |
| 5523 | ret = -ENOMEM; |
| 5524 | goto out; |
| 5525 | } |
| 5526 | dir_elem->ino = di_key.objectid; |
| 5527 | list_add_tail(&dir_elem->list, &dir_list); |
| 5528 | } |
| 5529 | break; |
| 5530 | } |
| 5531 | |
| 5532 | btrfs_release_path(path); |
| 5533 | |
| 5534 | if (iter_ret < 0) { |
| 5535 | ret = iter_ret; |
| 5536 | goto out; |
| 5537 | } else if (iter_ret > 0) { |
| 5538 | continue_curr_inode = false; |
| 5539 | } else { |
| 5540 | key = found_key; |
| 5541 | } |
| 5542 | |
| 5543 | if (continue_curr_inode && key.offset < (u64)-1) { |
| 5544 | key.offset++; |
| 5545 | goto again; |
| 5546 | } |
| 5547 | |
| 5548 | btrfs_set_first_dir_index_to_log(curr_inode, next_index); |
| 5549 | |
| 5550 | if (list_empty(&dir_list)) |
| 5551 | break; |
| 5552 | |
| 5553 | dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list); |
| 5554 | ino = dir_elem->ino; |
| 5555 | list_del(&dir_elem->list); |
| 5556 | kfree(dir_elem); |
| 5557 | |
| 5558 | btrfs_add_delayed_iput(curr_inode); |
| 5559 | |
| 5560 | curr_inode = btrfs_iget_logging(ino, root); |
| 5561 | if (IS_ERR(curr_inode)) { |
| 5562 | ret = PTR_ERR(curr_inode); |
| 5563 | curr_inode = NULL; |
| 5564 | break; |
| 5565 | } |
| 5566 | } |
| 5567 | out: |
| 5568 | btrfs_free_path(path); |
| 5569 | if (curr_inode) |
| 5570 | btrfs_add_delayed_iput(curr_inode); |
| 5571 | |
| 5572 | if (ret) { |
| 5573 | struct btrfs_dir_list *next; |
| 5574 | |
| 5575 | list_for_each_entry_safe(dir_elem, next, &dir_list, list) |
| 5576 | kfree(dir_elem); |
| 5577 | } |
| 5578 | |
| 5579 | return ret; |
| 5580 | } |
| 5581 | |
| 5582 | struct btrfs_ino_list { |
| 5583 | u64 ino; |
| 5584 | u64 parent; |
| 5585 | struct list_head list; |
| 5586 | }; |
| 5587 | |
| 5588 | static void free_conflicting_inodes(struct btrfs_log_ctx *ctx) |
| 5589 | { |
| 5590 | struct btrfs_ino_list *curr; |
| 5591 | struct btrfs_ino_list *next; |
| 5592 | |
| 5593 | list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) { |
| 5594 | list_del(&curr->list); |
| 5595 | kfree(curr); |
| 5596 | } |
| 5597 | } |
| 5598 | |
| 5599 | static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino, |
| 5600 | struct btrfs_path *path) |
| 5601 | { |
| 5602 | struct btrfs_key key; |
| 5603 | int ret; |
| 5604 | |
| 5605 | key.objectid = ino; |
| 5606 | key.type = BTRFS_INODE_ITEM_KEY; |
| 5607 | key.offset = 0; |
| 5608 | |
| 5609 | path->search_commit_root = 1; |
| 5610 | path->skip_locking = 1; |
| 5611 | |
| 5612 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 5613 | if (WARN_ON_ONCE(ret > 0)) { |
| 5614 | /* |
| 5615 | * We have previously found the inode through the commit root |
| 5616 | * so this should not happen. If it does, just error out and |
| 5617 | * fallback to a transaction commit. |
| 5618 | */ |
| 5619 | ret = -ENOENT; |
| 5620 | } else if (ret == 0) { |
| 5621 | struct btrfs_inode_item *item; |
| 5622 | |
| 5623 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| 5624 | struct btrfs_inode_item); |
| 5625 | if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item))) |
| 5626 | ret = 1; |
| 5627 | } |
| 5628 | |
| 5629 | btrfs_release_path(path); |
| 5630 | path->search_commit_root = 0; |
| 5631 | path->skip_locking = 0; |
| 5632 | |
| 5633 | return ret; |
| 5634 | } |
| 5635 | |
| 5636 | static int add_conflicting_inode(struct btrfs_trans_handle *trans, |
| 5637 | struct btrfs_root *root, |
| 5638 | struct btrfs_path *path, |
| 5639 | u64 ino, u64 parent, |
| 5640 | struct btrfs_log_ctx *ctx) |
| 5641 | { |
| 5642 | struct btrfs_ino_list *ino_elem; |
| 5643 | struct btrfs_inode *inode; |
| 5644 | |
| 5645 | /* |
| 5646 | * It's rare to have a lot of conflicting inodes, in practice it is not |
| 5647 | * common to have more than 1 or 2. We don't want to collect too many, |
| 5648 | * as we could end up logging too many inodes (even if only in |
| 5649 | * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction |
| 5650 | * commits. |
| 5651 | */ |
| 5652 | if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) |
| 5653 | return BTRFS_LOG_FORCE_COMMIT; |
| 5654 | |
| 5655 | inode = btrfs_iget_logging(ino, root); |
| 5656 | /* |
| 5657 | * If the other inode that had a conflicting dir entry was deleted in |
| 5658 | * the current transaction then we either: |
| 5659 | * |
| 5660 | * 1) Log the parent directory (later after adding it to the list) if |
| 5661 | * the inode is a directory. This is because it may be a deleted |
| 5662 | * subvolume/snapshot or it may be a regular directory that had |
| 5663 | * deleted subvolumes/snapshots (or subdirectories that had them), |
| 5664 | * and at the moment we can't deal with dropping subvolumes/snapshots |
| 5665 | * during log replay. So we just log the parent, which will result in |
| 5666 | * a fallback to a transaction commit if we are dealing with those |
| 5667 | * cases (last_unlink_trans will match the current transaction); |
| 5668 | * |
| 5669 | * 2) Do nothing if it's not a directory. During log replay we simply |
| 5670 | * unlink the conflicting dentry from the parent directory and then |
| 5671 | * add the dentry for our inode. Like this we can avoid logging the |
| 5672 | * parent directory (and maybe fallback to a transaction commit in |
| 5673 | * case it has a last_unlink_trans == trans->transid, due to moving |
| 5674 | * some inode from it to some other directory). |
| 5675 | */ |
| 5676 | if (IS_ERR(inode)) { |
| 5677 | int ret = PTR_ERR(inode); |
| 5678 | |
| 5679 | if (ret != -ENOENT) |
| 5680 | return ret; |
| 5681 | |
| 5682 | ret = conflicting_inode_is_dir(root, ino, path); |
| 5683 | /* Not a directory or we got an error. */ |
| 5684 | if (ret <= 0) |
| 5685 | return ret; |
| 5686 | |
| 5687 | /* Conflicting inode is a directory, so we'll log its parent. */ |
| 5688 | ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); |
| 5689 | if (!ino_elem) |
| 5690 | return -ENOMEM; |
| 5691 | ino_elem->ino = ino; |
| 5692 | ino_elem->parent = parent; |
| 5693 | list_add_tail(&ino_elem->list, &ctx->conflict_inodes); |
| 5694 | ctx->num_conflict_inodes++; |
| 5695 | |
| 5696 | return 0; |
| 5697 | } |
| 5698 | |
| 5699 | /* |
| 5700 | * If the inode was already logged skip it - otherwise we can hit an |
| 5701 | * infinite loop. Example: |
| 5702 | * |
| 5703 | * From the commit root (previous transaction) we have the following |
| 5704 | * inodes: |
| 5705 | * |
| 5706 | * inode 257 a directory |
| 5707 | * inode 258 with references "zz" and "zz_link" on inode 257 |
| 5708 | * inode 259 with reference "a" on inode 257 |
| 5709 | * |
| 5710 | * And in the current (uncommitted) transaction we have: |
| 5711 | * |
| 5712 | * inode 257 a directory, unchanged |
| 5713 | * inode 258 with references "a" and "a2" on inode 257 |
| 5714 | * inode 259 with reference "zz_link" on inode 257 |
| 5715 | * inode 261 with reference "zz" on inode 257 |
| 5716 | * |
| 5717 | * When logging inode 261 the following infinite loop could |
| 5718 | * happen if we don't skip already logged inodes: |
| 5719 | * |
| 5720 | * - we detect inode 258 as a conflicting inode, with inode 261 |
| 5721 | * on reference "zz", and log it; |
| 5722 | * |
| 5723 | * - we detect inode 259 as a conflicting inode, with inode 258 |
| 5724 | * on reference "a", and log it; |
| 5725 | * |
| 5726 | * - we detect inode 258 as a conflicting inode, with inode 259 |
| 5727 | * on reference "zz_link", and log it - again! After this we |
| 5728 | * repeat the above steps forever. |
| 5729 | * |
| 5730 | * Here we can use need_log_inode() because we only need to log the |
| 5731 | * inode in LOG_INODE_EXISTS mode and rename operations update the log, |
| 5732 | * so that the log ends up with the new name and without the old name. |
| 5733 | */ |
| 5734 | if (!need_log_inode(trans, inode)) { |
| 5735 | btrfs_add_delayed_iput(inode); |
| 5736 | return 0; |
| 5737 | } |
| 5738 | |
| 5739 | btrfs_add_delayed_iput(inode); |
| 5740 | |
| 5741 | ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); |
| 5742 | if (!ino_elem) |
| 5743 | return -ENOMEM; |
| 5744 | ino_elem->ino = ino; |
| 5745 | ino_elem->parent = parent; |
| 5746 | list_add_tail(&ino_elem->list, &ctx->conflict_inodes); |
| 5747 | ctx->num_conflict_inodes++; |
| 5748 | |
| 5749 | return 0; |
| 5750 | } |
| 5751 | |
| 5752 | static int log_conflicting_inodes(struct btrfs_trans_handle *trans, |
| 5753 | struct btrfs_root *root, |
| 5754 | struct btrfs_log_ctx *ctx) |
| 5755 | { |
| 5756 | int ret = 0; |
| 5757 | |
| 5758 | /* |
| 5759 | * Conflicting inodes are logged by the first call to btrfs_log_inode(), |
| 5760 | * otherwise we could have unbounded recursion of btrfs_log_inode() |
| 5761 | * calls. This check guarantees we can have only 1 level of recursion. |
| 5762 | */ |
| 5763 | if (ctx->logging_conflict_inodes) |
| 5764 | return 0; |
| 5765 | |
| 5766 | ctx->logging_conflict_inodes = true; |
| 5767 | |
| 5768 | /* |
| 5769 | * New conflicting inodes may be found and added to the list while we |
| 5770 | * are logging a conflicting inode, so keep iterating while the list is |
| 5771 | * not empty. |
| 5772 | */ |
| 5773 | while (!list_empty(&ctx->conflict_inodes)) { |
| 5774 | struct btrfs_ino_list *curr; |
| 5775 | struct btrfs_inode *inode; |
| 5776 | u64 ino; |
| 5777 | u64 parent; |
| 5778 | |
| 5779 | curr = list_first_entry(&ctx->conflict_inodes, |
| 5780 | struct btrfs_ino_list, list); |
| 5781 | ino = curr->ino; |
| 5782 | parent = curr->parent; |
| 5783 | list_del(&curr->list); |
| 5784 | kfree(curr); |
| 5785 | |
| 5786 | inode = btrfs_iget_logging(ino, root); |
| 5787 | /* |
| 5788 | * If the other inode that had a conflicting dir entry was |
| 5789 | * deleted in the current transaction, we need to log its parent |
| 5790 | * directory. See the comment at add_conflicting_inode(). |
| 5791 | */ |
| 5792 | if (IS_ERR(inode)) { |
| 5793 | ret = PTR_ERR(inode); |
| 5794 | if (ret != -ENOENT) |
| 5795 | break; |
| 5796 | |
| 5797 | inode = btrfs_iget_logging(parent, root); |
| 5798 | if (IS_ERR(inode)) { |
| 5799 | ret = PTR_ERR(inode); |
| 5800 | break; |
| 5801 | } |
| 5802 | |
| 5803 | /* |
| 5804 | * Always log the directory, we cannot make this |
| 5805 | * conditional on need_log_inode() because the directory |
| 5806 | * might have been logged in LOG_INODE_EXISTS mode or |
| 5807 | * the dir index of the conflicting inode is not in a |
| 5808 | * dir index key range logged for the directory. So we |
| 5809 | * must make sure the deletion is recorded. |
| 5810 | */ |
| 5811 | ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx); |
| 5812 | btrfs_add_delayed_iput(inode); |
| 5813 | if (ret) |
| 5814 | break; |
| 5815 | continue; |
| 5816 | } |
| 5817 | |
| 5818 | /* |
| 5819 | * Here we can use need_log_inode() because we only need to log |
| 5820 | * the inode in LOG_INODE_EXISTS mode and rename operations |
| 5821 | * update the log, so that the log ends up with the new name and |
| 5822 | * without the old name. |
| 5823 | * |
| 5824 | * We did this check at add_conflicting_inode(), but here we do |
| 5825 | * it again because if some other task logged the inode after |
| 5826 | * that, we can avoid doing it again. |
| 5827 | */ |
| 5828 | if (!need_log_inode(trans, inode)) { |
| 5829 | btrfs_add_delayed_iput(inode); |
| 5830 | continue; |
| 5831 | } |
| 5832 | |
| 5833 | /* |
| 5834 | * We are safe logging the other inode without acquiring its |
| 5835 | * lock as long as we log with the LOG_INODE_EXISTS mode. We |
| 5836 | * are safe against concurrent renames of the other inode as |
| 5837 | * well because during a rename we pin the log and update the |
| 5838 | * log with the new name before we unpin it. |
| 5839 | */ |
| 5840 | ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx); |
| 5841 | btrfs_add_delayed_iput(inode); |
| 5842 | if (ret) |
| 5843 | break; |
| 5844 | } |
| 5845 | |
| 5846 | ctx->logging_conflict_inodes = false; |
| 5847 | if (ret) |
| 5848 | free_conflicting_inodes(ctx); |
| 5849 | |
| 5850 | return ret; |
| 5851 | } |
| 5852 | |
| 5853 | static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, |
| 5854 | struct btrfs_inode *inode, |
| 5855 | struct btrfs_key *min_key, |
| 5856 | const struct btrfs_key *max_key, |
| 5857 | struct btrfs_path *path, |
| 5858 | struct btrfs_path *dst_path, |
| 5859 | const u64 logged_isize, |
| 5860 | const int inode_only, |
| 5861 | struct btrfs_log_ctx *ctx, |
| 5862 | bool *need_log_inode_item) |
| 5863 | { |
| 5864 | const u64 i_size = i_size_read(&inode->vfs_inode); |
| 5865 | struct btrfs_root *root = inode->root; |
| 5866 | int ins_start_slot = 0; |
| 5867 | int ins_nr = 0; |
| 5868 | int ret; |
| 5869 | |
| 5870 | while (1) { |
| 5871 | ret = btrfs_search_forward(root, min_key, path, trans->transid); |
| 5872 | if (ret < 0) |
| 5873 | return ret; |
| 5874 | if (ret > 0) { |
| 5875 | ret = 0; |
| 5876 | break; |
| 5877 | } |
| 5878 | again: |
| 5879 | /* Note, ins_nr might be > 0 here, cleanup outside the loop */ |
| 5880 | if (min_key->objectid != max_key->objectid) |
| 5881 | break; |
| 5882 | if (min_key->type > max_key->type) |
| 5883 | break; |
| 5884 | |
| 5885 | if (min_key->type == BTRFS_INODE_ITEM_KEY) { |
| 5886 | *need_log_inode_item = false; |
| 5887 | } else if (min_key->type == BTRFS_EXTENT_DATA_KEY && |
| 5888 | min_key->offset >= i_size) { |
| 5889 | /* |
| 5890 | * Extents at and beyond eof are logged with |
| 5891 | * btrfs_log_prealloc_extents(). |
| 5892 | * Only regular files have BTRFS_EXTENT_DATA_KEY keys, |
| 5893 | * and no keys greater than that, so bail out. |
| 5894 | */ |
| 5895 | break; |
| 5896 | } else if ((min_key->type == BTRFS_INODE_REF_KEY || |
| 5897 | min_key->type == BTRFS_INODE_EXTREF_KEY) && |
| 5898 | (inode->generation == trans->transid || |
| 5899 | ctx->logging_conflict_inodes)) { |
| 5900 | u64 other_ino = 0; |
| 5901 | u64 other_parent = 0; |
| 5902 | |
| 5903 | ret = btrfs_check_ref_name_override(path->nodes[0], |
| 5904 | path->slots[0], min_key, inode, |
| 5905 | &other_ino, &other_parent); |
| 5906 | if (ret < 0) { |
| 5907 | return ret; |
| 5908 | } else if (ret > 0 && |
| 5909 | other_ino != btrfs_ino(ctx->inode)) { |
| 5910 | if (ins_nr > 0) { |
| 5911 | ins_nr++; |
| 5912 | } else { |
| 5913 | ins_nr = 1; |
| 5914 | ins_start_slot = path->slots[0]; |
| 5915 | } |
| 5916 | ret = copy_items(trans, inode, dst_path, path, |
| 5917 | ins_start_slot, ins_nr, |
| 5918 | inode_only, logged_isize, ctx); |
| 5919 | if (ret < 0) |
| 5920 | return ret; |
| 5921 | ins_nr = 0; |
| 5922 | |
| 5923 | btrfs_release_path(path); |
| 5924 | ret = add_conflicting_inode(trans, root, path, |
| 5925 | other_ino, |
| 5926 | other_parent, ctx); |
| 5927 | if (ret) |
| 5928 | return ret; |
| 5929 | goto next_key; |
| 5930 | } |
| 5931 | } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) { |
| 5932 | /* Skip xattrs, logged later with btrfs_log_all_xattrs() */ |
| 5933 | if (ins_nr == 0) |
| 5934 | goto next_slot; |
| 5935 | ret = copy_items(trans, inode, dst_path, path, |
| 5936 | ins_start_slot, |
| 5937 | ins_nr, inode_only, logged_isize, ctx); |
| 5938 | if (ret < 0) |
| 5939 | return ret; |
| 5940 | ins_nr = 0; |
| 5941 | goto next_slot; |
| 5942 | } |
| 5943 | |
| 5944 | if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { |
| 5945 | ins_nr++; |
| 5946 | goto next_slot; |
| 5947 | } else if (!ins_nr) { |
| 5948 | ins_start_slot = path->slots[0]; |
| 5949 | ins_nr = 1; |
| 5950 | goto next_slot; |
| 5951 | } |
| 5952 | |
| 5953 | ret = copy_items(trans, inode, dst_path, path, ins_start_slot, |
| 5954 | ins_nr, inode_only, logged_isize, ctx); |
| 5955 | if (ret < 0) |
| 5956 | return ret; |
| 5957 | ins_nr = 1; |
| 5958 | ins_start_slot = path->slots[0]; |
| 5959 | next_slot: |
| 5960 | path->slots[0]++; |
| 5961 | if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { |
| 5962 | btrfs_item_key_to_cpu(path->nodes[0], min_key, |
| 5963 | path->slots[0]); |
| 5964 | goto again; |
| 5965 | } |
| 5966 | if (ins_nr) { |
| 5967 | ret = copy_items(trans, inode, dst_path, path, |
| 5968 | ins_start_slot, ins_nr, inode_only, |
| 5969 | logged_isize, ctx); |
| 5970 | if (ret < 0) |
| 5971 | return ret; |
| 5972 | ins_nr = 0; |
| 5973 | } |
| 5974 | btrfs_release_path(path); |
| 5975 | next_key: |
| 5976 | if (min_key->offset < (u64)-1) { |
| 5977 | min_key->offset++; |
| 5978 | } else if (min_key->type < max_key->type) { |
| 5979 | min_key->type++; |
| 5980 | min_key->offset = 0; |
| 5981 | } else { |
| 5982 | break; |
| 5983 | } |
| 5984 | |
| 5985 | /* |
| 5986 | * We may process many leaves full of items for our inode, so |
| 5987 | * avoid monopolizing a cpu for too long by rescheduling while |
| 5988 | * not holding locks on any tree. |
| 5989 | */ |
| 5990 | cond_resched(); |
| 5991 | } |
| 5992 | if (ins_nr) { |
| 5993 | ret = copy_items(trans, inode, dst_path, path, ins_start_slot, |
| 5994 | ins_nr, inode_only, logged_isize, ctx); |
| 5995 | if (ret) |
| 5996 | return ret; |
| 5997 | } |
| 5998 | |
| 5999 | if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) { |
| 6000 | /* |
| 6001 | * Release the path because otherwise we might attempt to double |
| 6002 | * lock the same leaf with btrfs_log_prealloc_extents() below. |
| 6003 | */ |
| 6004 | btrfs_release_path(path); |
| 6005 | ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx); |
| 6006 | } |
| 6007 | |
| 6008 | return ret; |
| 6009 | } |
| 6010 | |
| 6011 | static int insert_delayed_items_batch(struct btrfs_trans_handle *trans, |
| 6012 | struct btrfs_root *log, |
| 6013 | struct btrfs_path *path, |
| 6014 | const struct btrfs_item_batch *batch, |
| 6015 | const struct btrfs_delayed_item *first_item) |
| 6016 | { |
| 6017 | const struct btrfs_delayed_item *curr = first_item; |
| 6018 | int ret; |
| 6019 | |
| 6020 | ret = btrfs_insert_empty_items(trans, log, path, batch); |
| 6021 | if (ret) |
| 6022 | return ret; |
| 6023 | |
| 6024 | for (int i = 0; i < batch->nr; i++) { |
| 6025 | char *data_ptr; |
| 6026 | |
| 6027 | data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); |
| 6028 | write_extent_buffer(path->nodes[0], &curr->data, |
| 6029 | (unsigned long)data_ptr, curr->data_len); |
| 6030 | curr = list_next_entry(curr, log_list); |
| 6031 | path->slots[0]++; |
| 6032 | } |
| 6033 | |
| 6034 | btrfs_release_path(path); |
| 6035 | |
| 6036 | return 0; |
| 6037 | } |
| 6038 | |
| 6039 | static int log_delayed_insertion_items(struct btrfs_trans_handle *trans, |
| 6040 | struct btrfs_inode *inode, |
| 6041 | struct btrfs_path *path, |
| 6042 | const struct list_head *delayed_ins_list, |
| 6043 | struct btrfs_log_ctx *ctx) |
| 6044 | { |
| 6045 | /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */ |
| 6046 | const int max_batch_size = 195; |
| 6047 | const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info); |
| 6048 | const u64 ino = btrfs_ino(inode); |
| 6049 | struct btrfs_root *log = inode->root->log_root; |
| 6050 | struct btrfs_item_batch batch = { |
| 6051 | .nr = 0, |
| 6052 | .total_data_size = 0, |
| 6053 | }; |
| 6054 | const struct btrfs_delayed_item *first = NULL; |
| 6055 | const struct btrfs_delayed_item *curr; |
| 6056 | char *ins_data; |
| 6057 | struct btrfs_key *ins_keys; |
| 6058 | u32 *ins_sizes; |
| 6059 | u64 curr_batch_size = 0; |
| 6060 | int batch_idx = 0; |
| 6061 | int ret; |
| 6062 | |
| 6063 | /* We are adding dir index items to the log tree. */ |
| 6064 | lockdep_assert_held(&inode->log_mutex); |
| 6065 | |
| 6066 | /* |
| 6067 | * We collect delayed items before copying index keys from the subvolume |
| 6068 | * to the log tree. However just after we collected them, they may have |
| 6069 | * been flushed (all of them or just some of them), and therefore we |
| 6070 | * could have copied them from the subvolume tree to the log tree. |
| 6071 | * So find the first delayed item that was not yet logged (they are |
| 6072 | * sorted by index number). |
| 6073 | */ |
| 6074 | list_for_each_entry(curr, delayed_ins_list, log_list) { |
| 6075 | if (curr->index > inode->last_dir_index_offset) { |
| 6076 | first = curr; |
| 6077 | break; |
| 6078 | } |
| 6079 | } |
| 6080 | |
| 6081 | /* Empty list or all delayed items were already logged. */ |
| 6082 | if (!first) |
| 6083 | return 0; |
| 6084 | |
| 6085 | ins_data = kmalloc(max_batch_size * sizeof(u32) + |
| 6086 | max_batch_size * sizeof(struct btrfs_key), GFP_NOFS); |
| 6087 | if (!ins_data) |
| 6088 | return -ENOMEM; |
| 6089 | ins_sizes = (u32 *)ins_data; |
| 6090 | batch.data_sizes = ins_sizes; |
| 6091 | ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32)); |
| 6092 | batch.keys = ins_keys; |
| 6093 | |
| 6094 | curr = first; |
| 6095 | while (!list_entry_is_head(curr, delayed_ins_list, log_list)) { |
| 6096 | const u32 curr_size = curr->data_len + sizeof(struct btrfs_item); |
| 6097 | |
| 6098 | if (curr_batch_size + curr_size > leaf_data_size || |
| 6099 | batch.nr == max_batch_size) { |
| 6100 | ret = insert_delayed_items_batch(trans, log, path, |
| 6101 | &batch, first); |
| 6102 | if (ret) |
| 6103 | goto out; |
| 6104 | batch_idx = 0; |
| 6105 | batch.nr = 0; |
| 6106 | batch.total_data_size = 0; |
| 6107 | curr_batch_size = 0; |
| 6108 | first = curr; |
| 6109 | } |
| 6110 | |
| 6111 | ins_sizes[batch_idx] = curr->data_len; |
| 6112 | ins_keys[batch_idx].objectid = ino; |
| 6113 | ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY; |
| 6114 | ins_keys[batch_idx].offset = curr->index; |
| 6115 | curr_batch_size += curr_size; |
| 6116 | batch.total_data_size += curr->data_len; |
| 6117 | batch.nr++; |
| 6118 | batch_idx++; |
| 6119 | curr = list_next_entry(curr, log_list); |
| 6120 | } |
| 6121 | |
| 6122 | ASSERT(batch.nr >= 1); |
| 6123 | ret = insert_delayed_items_batch(trans, log, path, &batch, first); |
| 6124 | |
| 6125 | curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item, |
| 6126 | log_list); |
| 6127 | inode->last_dir_index_offset = curr->index; |
| 6128 | out: |
| 6129 | kfree(ins_data); |
| 6130 | |
| 6131 | return ret; |
| 6132 | } |
| 6133 | |
| 6134 | static int log_delayed_deletions_full(struct btrfs_trans_handle *trans, |
| 6135 | struct btrfs_inode *inode, |
| 6136 | struct btrfs_path *path, |
| 6137 | const struct list_head *delayed_del_list, |
| 6138 | struct btrfs_log_ctx *ctx) |
| 6139 | { |
| 6140 | const u64 ino = btrfs_ino(inode); |
| 6141 | const struct btrfs_delayed_item *curr; |
| 6142 | |
| 6143 | curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, |
| 6144 | log_list); |
| 6145 | |
| 6146 | while (!list_entry_is_head(curr, delayed_del_list, log_list)) { |
| 6147 | u64 first_dir_index = curr->index; |
| 6148 | u64 last_dir_index; |
| 6149 | const struct btrfs_delayed_item *next; |
| 6150 | int ret; |
| 6151 | |
| 6152 | /* |
| 6153 | * Find a range of consecutive dir index items to delete. Like |
| 6154 | * this we log a single dir range item spanning several contiguous |
| 6155 | * dir items instead of logging one range item per dir index item. |
| 6156 | */ |
| 6157 | next = list_next_entry(curr, log_list); |
| 6158 | while (!list_entry_is_head(next, delayed_del_list, log_list)) { |
| 6159 | if (next->index != curr->index + 1) |
| 6160 | break; |
| 6161 | curr = next; |
| 6162 | next = list_next_entry(next, log_list); |
| 6163 | } |
| 6164 | |
| 6165 | last_dir_index = curr->index; |
| 6166 | ASSERT(last_dir_index >= first_dir_index); |
| 6167 | |
| 6168 | ret = insert_dir_log_key(trans, inode->root->log_root, path, |
| 6169 | ino, first_dir_index, last_dir_index); |
| 6170 | if (ret) |
| 6171 | return ret; |
| 6172 | curr = list_next_entry(curr, log_list); |
| 6173 | } |
| 6174 | |
| 6175 | return 0; |
| 6176 | } |
| 6177 | |
| 6178 | static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans, |
| 6179 | struct btrfs_inode *inode, |
| 6180 | struct btrfs_path *path, |
| 6181 | const struct list_head *delayed_del_list, |
| 6182 | const struct btrfs_delayed_item *first, |
| 6183 | const struct btrfs_delayed_item **last_ret) |
| 6184 | { |
| 6185 | const struct btrfs_delayed_item *next; |
| 6186 | struct extent_buffer *leaf = path->nodes[0]; |
| 6187 | const int last_slot = btrfs_header_nritems(leaf) - 1; |
| 6188 | int slot = path->slots[0] + 1; |
| 6189 | const u64 ino = btrfs_ino(inode); |
| 6190 | |
| 6191 | next = list_next_entry(first, log_list); |
| 6192 | |
| 6193 | while (slot < last_slot && |
| 6194 | !list_entry_is_head(next, delayed_del_list, log_list)) { |
| 6195 | struct btrfs_key key; |
| 6196 | |
| 6197 | btrfs_item_key_to_cpu(leaf, &key, slot); |
| 6198 | if (key.objectid != ino || |
| 6199 | key.type != BTRFS_DIR_INDEX_KEY || |
| 6200 | key.offset != next->index) |
| 6201 | break; |
| 6202 | |
| 6203 | slot++; |
| 6204 | *last_ret = next; |
| 6205 | next = list_next_entry(next, log_list); |
| 6206 | } |
| 6207 | |
| 6208 | return btrfs_del_items(trans, inode->root->log_root, path, |
| 6209 | path->slots[0], slot - path->slots[0]); |
| 6210 | } |
| 6211 | |
| 6212 | static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans, |
| 6213 | struct btrfs_inode *inode, |
| 6214 | struct btrfs_path *path, |
| 6215 | const struct list_head *delayed_del_list, |
| 6216 | struct btrfs_log_ctx *ctx) |
| 6217 | { |
| 6218 | struct btrfs_root *log = inode->root->log_root; |
| 6219 | const struct btrfs_delayed_item *curr; |
| 6220 | u64 last_range_start = 0; |
| 6221 | u64 last_range_end = 0; |
| 6222 | struct btrfs_key key; |
| 6223 | |
| 6224 | key.objectid = btrfs_ino(inode); |
| 6225 | key.type = BTRFS_DIR_INDEX_KEY; |
| 6226 | curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, |
| 6227 | log_list); |
| 6228 | |
| 6229 | while (!list_entry_is_head(curr, delayed_del_list, log_list)) { |
| 6230 | const struct btrfs_delayed_item *last = curr; |
| 6231 | u64 first_dir_index = curr->index; |
| 6232 | u64 last_dir_index; |
| 6233 | bool deleted_items = false; |
| 6234 | int ret; |
| 6235 | |
| 6236 | key.offset = curr->index; |
| 6237 | ret = btrfs_search_slot(trans, log, &key, path, -1, 1); |
| 6238 | if (ret < 0) { |
| 6239 | return ret; |
| 6240 | } else if (ret == 0) { |
| 6241 | ret = batch_delete_dir_index_items(trans, inode, path, |
| 6242 | delayed_del_list, curr, |
| 6243 | &last); |
| 6244 | if (ret) |
| 6245 | return ret; |
| 6246 | deleted_items = true; |
| 6247 | } |
| 6248 | |
| 6249 | btrfs_release_path(path); |
| 6250 | |
| 6251 | /* |
| 6252 | * If we deleted items from the leaf, it means we have a range |
| 6253 | * item logging their range, so no need to add one or update an |
| 6254 | * existing one. Otherwise we have to log a dir range item. |
| 6255 | */ |
| 6256 | if (deleted_items) |
| 6257 | goto next_batch; |
| 6258 | |
| 6259 | last_dir_index = last->index; |
| 6260 | ASSERT(last_dir_index >= first_dir_index); |
| 6261 | /* |
| 6262 | * If this range starts right after where the previous one ends, |
| 6263 | * then we want to reuse the previous range item and change its |
| 6264 | * end offset to the end of this range. This is just to minimize |
| 6265 | * leaf space usage, by avoiding adding a new range item. |
| 6266 | */ |
| 6267 | if (last_range_end != 0 && first_dir_index == last_range_end + 1) |
| 6268 | first_dir_index = last_range_start; |
| 6269 | |
| 6270 | ret = insert_dir_log_key(trans, log, path, key.objectid, |
| 6271 | first_dir_index, last_dir_index); |
| 6272 | if (ret) |
| 6273 | return ret; |
| 6274 | |
| 6275 | last_range_start = first_dir_index; |
| 6276 | last_range_end = last_dir_index; |
| 6277 | next_batch: |
| 6278 | curr = list_next_entry(last, log_list); |
| 6279 | } |
| 6280 | |
| 6281 | return 0; |
| 6282 | } |
| 6283 | |
| 6284 | static int log_delayed_deletion_items(struct btrfs_trans_handle *trans, |
| 6285 | struct btrfs_inode *inode, |
| 6286 | struct btrfs_path *path, |
| 6287 | const struct list_head *delayed_del_list, |
| 6288 | struct btrfs_log_ctx *ctx) |
| 6289 | { |
| 6290 | /* |
| 6291 | * We are deleting dir index items from the log tree or adding range |
| 6292 | * items to it. |
| 6293 | */ |
| 6294 | lockdep_assert_held(&inode->log_mutex); |
| 6295 | |
| 6296 | if (list_empty(delayed_del_list)) |
| 6297 | return 0; |
| 6298 | |
| 6299 | if (ctx->logged_before) |
| 6300 | return log_delayed_deletions_incremental(trans, inode, path, |
| 6301 | delayed_del_list, ctx); |
| 6302 | |
| 6303 | return log_delayed_deletions_full(trans, inode, path, delayed_del_list, |
| 6304 | ctx); |
| 6305 | } |
| 6306 | |
| 6307 | /* |
| 6308 | * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed |
| 6309 | * items instead of the subvolume tree. |
| 6310 | */ |
| 6311 | static int log_new_delayed_dentries(struct btrfs_trans_handle *trans, |
| 6312 | struct btrfs_inode *inode, |
| 6313 | const struct list_head *delayed_ins_list, |
| 6314 | struct btrfs_log_ctx *ctx) |
| 6315 | { |
| 6316 | const bool orig_log_new_dentries = ctx->log_new_dentries; |
| 6317 | struct btrfs_delayed_item *item; |
| 6318 | int ret = 0; |
| 6319 | |
| 6320 | /* |
| 6321 | * No need for the log mutex, plus to avoid potential deadlocks or |
| 6322 | * lockdep annotations due to nesting of delayed inode mutexes and log |
| 6323 | * mutexes. |
| 6324 | */ |
| 6325 | lockdep_assert_not_held(&inode->log_mutex); |
| 6326 | |
| 6327 | ASSERT(!ctx->logging_new_delayed_dentries); |
| 6328 | ctx->logging_new_delayed_dentries = true; |
| 6329 | |
| 6330 | list_for_each_entry(item, delayed_ins_list, log_list) { |
| 6331 | struct btrfs_dir_item *dir_item; |
| 6332 | struct btrfs_inode *di_inode; |
| 6333 | struct btrfs_key key; |
| 6334 | int log_mode = LOG_INODE_EXISTS; |
| 6335 | |
| 6336 | dir_item = (struct btrfs_dir_item *)item->data; |
| 6337 | btrfs_disk_key_to_cpu(&key, &dir_item->location); |
| 6338 | |
| 6339 | if (key.type == BTRFS_ROOT_ITEM_KEY) |
| 6340 | continue; |
| 6341 | |
| 6342 | di_inode = btrfs_iget_logging(key.objectid, inode->root); |
| 6343 | if (IS_ERR(di_inode)) { |
| 6344 | ret = PTR_ERR(di_inode); |
| 6345 | break; |
| 6346 | } |
| 6347 | |
| 6348 | if (!need_log_inode(trans, di_inode)) { |
| 6349 | btrfs_add_delayed_iput(di_inode); |
| 6350 | continue; |
| 6351 | } |
| 6352 | |
| 6353 | if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR) |
| 6354 | log_mode = LOG_INODE_ALL; |
| 6355 | |
| 6356 | ctx->log_new_dentries = false; |
| 6357 | ret = btrfs_log_inode(trans, di_inode, log_mode, ctx); |
| 6358 | |
| 6359 | if (!ret && ctx->log_new_dentries) |
| 6360 | ret = log_new_dir_dentries(trans, di_inode, ctx); |
| 6361 | |
| 6362 | btrfs_add_delayed_iput(di_inode); |
| 6363 | |
| 6364 | if (ret) |
| 6365 | break; |
| 6366 | } |
| 6367 | |
| 6368 | ctx->log_new_dentries = orig_log_new_dentries; |
| 6369 | ctx->logging_new_delayed_dentries = false; |
| 6370 | |
| 6371 | return ret; |
| 6372 | } |
| 6373 | |
| 6374 | /* log a single inode in the tree log. |
| 6375 | * At least one parent directory for this inode must exist in the tree |
| 6376 | * or be logged already. |
| 6377 | * |
| 6378 | * Any items from this inode changed by the current transaction are copied |
| 6379 | * to the log tree. An extra reference is taken on any extents in this |
| 6380 | * file, allowing us to avoid a whole pile of corner cases around logging |
| 6381 | * blocks that have been removed from the tree. |
| 6382 | * |
| 6383 | * See LOG_INODE_ALL and related defines for a description of what inode_only |
| 6384 | * does. |
| 6385 | * |
| 6386 | * This handles both files and directories. |
| 6387 | */ |
| 6388 | static int btrfs_log_inode(struct btrfs_trans_handle *trans, |
| 6389 | struct btrfs_inode *inode, |
| 6390 | int inode_only, |
| 6391 | struct btrfs_log_ctx *ctx) |
| 6392 | { |
| 6393 | struct btrfs_path *path; |
| 6394 | struct btrfs_path *dst_path; |
| 6395 | struct btrfs_key min_key; |
| 6396 | struct btrfs_key max_key; |
| 6397 | struct btrfs_root *log = inode->root->log_root; |
| 6398 | int ret; |
| 6399 | bool fast_search = false; |
| 6400 | u64 ino = btrfs_ino(inode); |
| 6401 | struct extent_map_tree *em_tree = &inode->extent_tree; |
| 6402 | u64 logged_isize = 0; |
| 6403 | bool need_log_inode_item = true; |
| 6404 | bool xattrs_logged = false; |
| 6405 | bool inode_item_dropped = true; |
| 6406 | bool full_dir_logging = false; |
| 6407 | LIST_HEAD(delayed_ins_list); |
| 6408 | LIST_HEAD(delayed_del_list); |
| 6409 | |
| 6410 | path = btrfs_alloc_path(); |
| 6411 | if (!path) |
| 6412 | return -ENOMEM; |
| 6413 | dst_path = btrfs_alloc_path(); |
| 6414 | if (!dst_path) { |
| 6415 | btrfs_free_path(path); |
| 6416 | return -ENOMEM; |
| 6417 | } |
| 6418 | |
| 6419 | min_key.objectid = ino; |
| 6420 | min_key.type = BTRFS_INODE_ITEM_KEY; |
| 6421 | min_key.offset = 0; |
| 6422 | |
| 6423 | max_key.objectid = ino; |
| 6424 | |
| 6425 | |
| 6426 | /* today the code can only do partial logging of directories */ |
| 6427 | if (S_ISDIR(inode->vfs_inode.i_mode) || |
| 6428 | (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| 6429 | &inode->runtime_flags) && |
| 6430 | inode_only >= LOG_INODE_EXISTS)) |
| 6431 | max_key.type = BTRFS_XATTR_ITEM_KEY; |
| 6432 | else |
| 6433 | max_key.type = (u8)-1; |
| 6434 | max_key.offset = (u64)-1; |
| 6435 | |
| 6436 | if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL) |
| 6437 | full_dir_logging = true; |
| 6438 | |
| 6439 | /* |
| 6440 | * If we are logging a directory while we are logging dentries of the |
| 6441 | * delayed items of some other inode, then we need to flush the delayed |
| 6442 | * items of this directory and not log the delayed items directly. This |
| 6443 | * is to prevent more than one level of recursion into btrfs_log_inode() |
| 6444 | * by having something like this: |
| 6445 | * |
| 6446 | * $ mkdir -p a/b/c/d/e/f/g/h/... |
| 6447 | * $ xfs_io -c "fsync" a |
| 6448 | * |
| 6449 | * Where all directories in the path did not exist before and are |
| 6450 | * created in the current transaction. |
| 6451 | * So in such a case we directly log the delayed items of the main |
| 6452 | * directory ("a") without flushing them first, while for each of its |
| 6453 | * subdirectories we flush their delayed items before logging them. |
| 6454 | * This prevents a potential unbounded recursion like this: |
| 6455 | * |
| 6456 | * btrfs_log_inode() |
| 6457 | * log_new_delayed_dentries() |
| 6458 | * btrfs_log_inode() |
| 6459 | * log_new_delayed_dentries() |
| 6460 | * btrfs_log_inode() |
| 6461 | * log_new_delayed_dentries() |
| 6462 | * (...) |
| 6463 | * |
| 6464 | * We have thresholds for the maximum number of delayed items to have in |
| 6465 | * memory, and once they are hit, the items are flushed asynchronously. |
| 6466 | * However the limit is quite high, so lets prevent deep levels of |
| 6467 | * recursion to happen by limiting the maximum depth to be 1. |
| 6468 | */ |
| 6469 | if (full_dir_logging && ctx->logging_new_delayed_dentries) { |
| 6470 | ret = btrfs_commit_inode_delayed_items(trans, inode); |
| 6471 | if (ret) |
| 6472 | goto out; |
| 6473 | } |
| 6474 | |
| 6475 | mutex_lock(&inode->log_mutex); |
| 6476 | |
| 6477 | /* |
| 6478 | * For symlinks, we must always log their content, which is stored in an |
| 6479 | * inline extent, otherwise we could end up with an empty symlink after |
| 6480 | * log replay, which is invalid on linux (symlink(2) returns -ENOENT if |
| 6481 | * one attempts to create an empty symlink). |
| 6482 | * We don't need to worry about flushing delalloc, because when we create |
| 6483 | * the inline extent when the symlink is created (we never have delalloc |
| 6484 | * for symlinks). |
| 6485 | */ |
| 6486 | if (S_ISLNK(inode->vfs_inode.i_mode)) |
| 6487 | inode_only = LOG_INODE_ALL; |
| 6488 | |
| 6489 | /* |
| 6490 | * Before logging the inode item, cache the value returned by |
| 6491 | * inode_logged(), because after that we have the need to figure out if |
| 6492 | * the inode was previously logged in this transaction. |
| 6493 | */ |
| 6494 | ret = inode_logged(trans, inode, path); |
| 6495 | if (ret < 0) |
| 6496 | goto out_unlock; |
| 6497 | ctx->logged_before = (ret == 1); |
| 6498 | ret = 0; |
| 6499 | |
| 6500 | /* |
| 6501 | * This is for cases where logging a directory could result in losing a |
| 6502 | * a file after replaying the log. For example, if we move a file from a |
| 6503 | * directory A to a directory B, then fsync directory A, we have no way |
| 6504 | * to known the file was moved from A to B, so logging just A would |
| 6505 | * result in losing the file after a log replay. |
| 6506 | */ |
| 6507 | if (full_dir_logging && inode->last_unlink_trans >= trans->transid) { |
| 6508 | ret = BTRFS_LOG_FORCE_COMMIT; |
| 6509 | goto out_unlock; |
| 6510 | } |
| 6511 | |
| 6512 | /* |
| 6513 | * a brute force approach to making sure we get the most uptodate |
| 6514 | * copies of everything. |
| 6515 | */ |
| 6516 | if (S_ISDIR(inode->vfs_inode.i_mode)) { |
| 6517 | clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); |
| 6518 | if (ctx->logged_before) |
| 6519 | ret = drop_inode_items(trans, log, path, inode, |
| 6520 | BTRFS_XATTR_ITEM_KEY); |
| 6521 | } else { |
| 6522 | if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) { |
| 6523 | /* |
| 6524 | * Make sure the new inode item we write to the log has |
| 6525 | * the same isize as the current one (if it exists). |
| 6526 | * This is necessary to prevent data loss after log |
| 6527 | * replay, and also to prevent doing a wrong expanding |
| 6528 | * truncate - for e.g. create file, write 4K into offset |
| 6529 | * 0, fsync, write 4K into offset 4096, add hard link, |
| 6530 | * fsync some other file (to sync log), power fail - if |
| 6531 | * we use the inode's current i_size, after log replay |
| 6532 | * we get a 8Kb file, with the last 4Kb extent as a hole |
| 6533 | * (zeroes), as if an expanding truncate happened, |
| 6534 | * instead of getting a file of 4Kb only. |
| 6535 | */ |
| 6536 | ret = logged_inode_size(log, inode, path, &logged_isize); |
| 6537 | if (ret) |
| 6538 | goto out_unlock; |
| 6539 | } |
| 6540 | if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| 6541 | &inode->runtime_flags)) { |
| 6542 | if (inode_only == LOG_INODE_EXISTS) { |
| 6543 | max_key.type = BTRFS_XATTR_ITEM_KEY; |
| 6544 | if (ctx->logged_before) |
| 6545 | ret = drop_inode_items(trans, log, path, |
| 6546 | inode, max_key.type); |
| 6547 | } else { |
| 6548 | clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| 6549 | &inode->runtime_flags); |
| 6550 | clear_bit(BTRFS_INODE_COPY_EVERYTHING, |
| 6551 | &inode->runtime_flags); |
| 6552 | if (ctx->logged_before) |
| 6553 | ret = truncate_inode_items(trans, log, |
| 6554 | inode, 0, 0); |
| 6555 | } |
| 6556 | } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, |
| 6557 | &inode->runtime_flags) || |
| 6558 | inode_only == LOG_INODE_EXISTS) { |
| 6559 | if (inode_only == LOG_INODE_ALL) |
| 6560 | fast_search = true; |
| 6561 | max_key.type = BTRFS_XATTR_ITEM_KEY; |
| 6562 | if (ctx->logged_before) |
| 6563 | ret = drop_inode_items(trans, log, path, inode, |
| 6564 | max_key.type); |
| 6565 | } else { |
| 6566 | if (inode_only == LOG_INODE_ALL) |
| 6567 | fast_search = true; |
| 6568 | inode_item_dropped = false; |
| 6569 | goto log_extents; |
| 6570 | } |
| 6571 | |
| 6572 | } |
| 6573 | if (ret) |
| 6574 | goto out_unlock; |
| 6575 | |
| 6576 | /* |
| 6577 | * If we are logging a directory in full mode, collect the delayed items |
| 6578 | * before iterating the subvolume tree, so that we don't miss any new |
| 6579 | * dir index items in case they get flushed while or right after we are |
| 6580 | * iterating the subvolume tree. |
| 6581 | */ |
| 6582 | if (full_dir_logging && !ctx->logging_new_delayed_dentries) |
| 6583 | btrfs_log_get_delayed_items(inode, &delayed_ins_list, |
| 6584 | &delayed_del_list); |
| 6585 | |
| 6586 | /* |
| 6587 | * If we are fsyncing a file with 0 hard links, then commit the delayed |
| 6588 | * inode because the last inode ref (or extref) item may still be in the |
| 6589 | * subvolume tree and if we log it the file will still exist after a log |
| 6590 | * replay. So commit the delayed inode to delete that last ref and we |
| 6591 | * skip logging it. |
| 6592 | */ |
| 6593 | if (inode->vfs_inode.i_nlink == 0) { |
| 6594 | ret = btrfs_commit_inode_delayed_inode(inode); |
| 6595 | if (ret) |
| 6596 | goto out_unlock; |
| 6597 | } |
| 6598 | |
| 6599 | ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key, |
| 6600 | path, dst_path, logged_isize, |
| 6601 | inode_only, ctx, |
| 6602 | &need_log_inode_item); |
| 6603 | if (ret) |
| 6604 | goto out_unlock; |
| 6605 | |
| 6606 | btrfs_release_path(path); |
| 6607 | btrfs_release_path(dst_path); |
| 6608 | ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); |
| 6609 | if (ret) |
| 6610 | goto out_unlock; |
| 6611 | xattrs_logged = true; |
| 6612 | if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { |
| 6613 | btrfs_release_path(path); |
| 6614 | btrfs_release_path(dst_path); |
| 6615 | ret = btrfs_log_holes(trans, inode, path); |
| 6616 | if (ret) |
| 6617 | goto out_unlock; |
| 6618 | } |
| 6619 | log_extents: |
| 6620 | btrfs_release_path(path); |
| 6621 | btrfs_release_path(dst_path); |
| 6622 | if (need_log_inode_item) { |
| 6623 | ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); |
| 6624 | if (ret) |
| 6625 | goto out_unlock; |
| 6626 | /* |
| 6627 | * If we are doing a fast fsync and the inode was logged before |
| 6628 | * in this transaction, we don't need to log the xattrs because |
| 6629 | * they were logged before. If xattrs were added, changed or |
| 6630 | * deleted since the last time we logged the inode, then we have |
| 6631 | * already logged them because the inode had the runtime flag |
| 6632 | * BTRFS_INODE_COPY_EVERYTHING set. |
| 6633 | */ |
| 6634 | if (!xattrs_logged && inode->logged_trans < trans->transid) { |
| 6635 | ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); |
| 6636 | if (ret) |
| 6637 | goto out_unlock; |
| 6638 | btrfs_release_path(path); |
| 6639 | } |
| 6640 | } |
| 6641 | if (fast_search) { |
| 6642 | ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); |
| 6643 | if (ret) |
| 6644 | goto out_unlock; |
| 6645 | } else if (inode_only == LOG_INODE_ALL) { |
| 6646 | struct extent_map *em, *n; |
| 6647 | |
| 6648 | write_lock(&em_tree->lock); |
| 6649 | list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) |
| 6650 | list_del_init(&em->list); |
| 6651 | write_unlock(&em_tree->lock); |
| 6652 | } |
| 6653 | |
| 6654 | if (full_dir_logging) { |
| 6655 | ret = log_directory_changes(trans, inode, path, dst_path, ctx); |
| 6656 | if (ret) |
| 6657 | goto out_unlock; |
| 6658 | ret = log_delayed_insertion_items(trans, inode, path, |
| 6659 | &delayed_ins_list, ctx); |
| 6660 | if (ret) |
| 6661 | goto out_unlock; |
| 6662 | ret = log_delayed_deletion_items(trans, inode, path, |
| 6663 | &delayed_del_list, ctx); |
| 6664 | if (ret) |
| 6665 | goto out_unlock; |
| 6666 | } |
| 6667 | |
| 6668 | spin_lock(&inode->lock); |
| 6669 | inode->logged_trans = trans->transid; |
| 6670 | /* |
| 6671 | * Don't update last_log_commit if we logged that an inode exists. |
| 6672 | * We do this for three reasons: |
| 6673 | * |
| 6674 | * 1) We might have had buffered writes to this inode that were |
| 6675 | * flushed and had their ordered extents completed in this |
| 6676 | * transaction, but we did not previously log the inode with |
| 6677 | * LOG_INODE_ALL. Later the inode was evicted and after that |
| 6678 | * it was loaded again and this LOG_INODE_EXISTS log operation |
| 6679 | * happened. We must make sure that if an explicit fsync against |
| 6680 | * the inode is performed later, it logs the new extents, an |
| 6681 | * updated inode item, etc, and syncs the log. The same logic |
| 6682 | * applies to direct IO writes instead of buffered writes. |
| 6683 | * |
| 6684 | * 2) When we log the inode with LOG_INODE_EXISTS, its inode item |
| 6685 | * is logged with an i_size of 0 or whatever value was logged |
| 6686 | * before. If later the i_size of the inode is increased by a |
| 6687 | * truncate operation, the log is synced through an fsync of |
| 6688 | * some other inode and then finally an explicit fsync against |
| 6689 | * this inode is made, we must make sure this fsync logs the |
| 6690 | * inode with the new i_size, the hole between old i_size and |
| 6691 | * the new i_size, and syncs the log. |
| 6692 | * |
| 6693 | * 3) If we are logging that an ancestor inode exists as part of |
| 6694 | * logging a new name from a link or rename operation, don't update |
| 6695 | * its last_log_commit - otherwise if an explicit fsync is made |
| 6696 | * against an ancestor, the fsync considers the inode in the log |
| 6697 | * and doesn't sync the log, resulting in the ancestor missing after |
| 6698 | * a power failure unless the log was synced as part of an fsync |
| 6699 | * against any other unrelated inode. |
| 6700 | */ |
| 6701 | if (inode_only != LOG_INODE_EXISTS) |
| 6702 | inode->last_log_commit = inode->last_sub_trans; |
| 6703 | spin_unlock(&inode->lock); |
| 6704 | |
| 6705 | /* |
| 6706 | * Reset the last_reflink_trans so that the next fsync does not need to |
| 6707 | * go through the slower path when logging extents and their checksums. |
| 6708 | */ |
| 6709 | if (inode_only == LOG_INODE_ALL) |
| 6710 | inode->last_reflink_trans = 0; |
| 6711 | |
| 6712 | out_unlock: |
| 6713 | mutex_unlock(&inode->log_mutex); |
| 6714 | out: |
| 6715 | btrfs_free_path(path); |
| 6716 | btrfs_free_path(dst_path); |
| 6717 | |
| 6718 | if (ret) |
| 6719 | free_conflicting_inodes(ctx); |
| 6720 | else |
| 6721 | ret = log_conflicting_inodes(trans, inode->root, ctx); |
| 6722 | |
| 6723 | if (full_dir_logging && !ctx->logging_new_delayed_dentries) { |
| 6724 | if (!ret) |
| 6725 | ret = log_new_delayed_dentries(trans, inode, |
| 6726 | &delayed_ins_list, ctx); |
| 6727 | |
| 6728 | btrfs_log_put_delayed_items(inode, &delayed_ins_list, |
| 6729 | &delayed_del_list); |
| 6730 | } |
| 6731 | |
| 6732 | return ret; |
| 6733 | } |
| 6734 | |
| 6735 | static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, |
| 6736 | struct btrfs_inode *inode, |
| 6737 | struct btrfs_log_ctx *ctx) |
| 6738 | { |
| 6739 | int ret; |
| 6740 | struct btrfs_path *path; |
| 6741 | struct btrfs_key key; |
| 6742 | struct btrfs_root *root = inode->root; |
| 6743 | const u64 ino = btrfs_ino(inode); |
| 6744 | |
| 6745 | path = btrfs_alloc_path(); |
| 6746 | if (!path) |
| 6747 | return -ENOMEM; |
| 6748 | path->skip_locking = 1; |
| 6749 | path->search_commit_root = 1; |
| 6750 | |
| 6751 | key.objectid = ino; |
| 6752 | key.type = BTRFS_INODE_REF_KEY; |
| 6753 | key.offset = 0; |
| 6754 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 6755 | if (ret < 0) |
| 6756 | goto out; |
| 6757 | |
| 6758 | while (true) { |
| 6759 | struct extent_buffer *leaf = path->nodes[0]; |
| 6760 | int slot = path->slots[0]; |
| 6761 | u32 cur_offset = 0; |
| 6762 | u32 item_size; |
| 6763 | unsigned long ptr; |
| 6764 | |
| 6765 | if (slot >= btrfs_header_nritems(leaf)) { |
| 6766 | ret = btrfs_next_leaf(root, path); |
| 6767 | if (ret < 0) |
| 6768 | goto out; |
| 6769 | else if (ret > 0) |
| 6770 | break; |
| 6771 | continue; |
| 6772 | } |
| 6773 | |
| 6774 | btrfs_item_key_to_cpu(leaf, &key, slot); |
| 6775 | /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ |
| 6776 | if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) |
| 6777 | break; |
| 6778 | |
| 6779 | item_size = btrfs_item_size(leaf, slot); |
| 6780 | ptr = btrfs_item_ptr_offset(leaf, slot); |
| 6781 | while (cur_offset < item_size) { |
| 6782 | struct btrfs_key inode_key; |
| 6783 | struct btrfs_inode *dir_inode; |
| 6784 | |
| 6785 | inode_key.type = BTRFS_INODE_ITEM_KEY; |
| 6786 | inode_key.offset = 0; |
| 6787 | |
| 6788 | if (key.type == BTRFS_INODE_EXTREF_KEY) { |
| 6789 | struct btrfs_inode_extref *extref; |
| 6790 | |
| 6791 | extref = (struct btrfs_inode_extref *) |
| 6792 | (ptr + cur_offset); |
| 6793 | inode_key.objectid = btrfs_inode_extref_parent( |
| 6794 | leaf, extref); |
| 6795 | cur_offset += sizeof(*extref); |
| 6796 | cur_offset += btrfs_inode_extref_name_len(leaf, |
| 6797 | extref); |
| 6798 | } else { |
| 6799 | inode_key.objectid = key.offset; |
| 6800 | cur_offset = item_size; |
| 6801 | } |
| 6802 | |
| 6803 | dir_inode = btrfs_iget_logging(inode_key.objectid, root); |
| 6804 | /* |
| 6805 | * If the parent inode was deleted, return an error to |
| 6806 | * fallback to a transaction commit. This is to prevent |
| 6807 | * getting an inode that was moved from one parent A to |
| 6808 | * a parent B, got its former parent A deleted and then |
| 6809 | * it got fsync'ed, from existing at both parents after |
| 6810 | * a log replay (and the old parent still existing). |
| 6811 | * Example: |
| 6812 | * |
| 6813 | * mkdir /mnt/A |
| 6814 | * mkdir /mnt/B |
| 6815 | * touch /mnt/B/bar |
| 6816 | * sync |
| 6817 | * mv /mnt/B/bar /mnt/A/bar |
| 6818 | * mv -T /mnt/A /mnt/B |
| 6819 | * fsync /mnt/B/bar |
| 6820 | * <power fail> |
| 6821 | * |
| 6822 | * If we ignore the old parent B which got deleted, |
| 6823 | * after a log replay we would have file bar linked |
| 6824 | * at both parents and the old parent B would still |
| 6825 | * exist. |
| 6826 | */ |
| 6827 | if (IS_ERR(dir_inode)) { |
| 6828 | ret = PTR_ERR(dir_inode); |
| 6829 | goto out; |
| 6830 | } |
| 6831 | |
| 6832 | if (!need_log_inode(trans, dir_inode)) { |
| 6833 | btrfs_add_delayed_iput(dir_inode); |
| 6834 | continue; |
| 6835 | } |
| 6836 | |
| 6837 | ctx->log_new_dentries = false; |
| 6838 | ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx); |
| 6839 | if (!ret && ctx->log_new_dentries) |
| 6840 | ret = log_new_dir_dentries(trans, dir_inode, ctx); |
| 6841 | btrfs_add_delayed_iput(dir_inode); |
| 6842 | if (ret) |
| 6843 | goto out; |
| 6844 | } |
| 6845 | path->slots[0]++; |
| 6846 | } |
| 6847 | ret = 0; |
| 6848 | out: |
| 6849 | btrfs_free_path(path); |
| 6850 | return ret; |
| 6851 | } |
| 6852 | |
| 6853 | static int log_new_ancestors(struct btrfs_trans_handle *trans, |
| 6854 | struct btrfs_root *root, |
| 6855 | struct btrfs_path *path, |
| 6856 | struct btrfs_log_ctx *ctx) |
| 6857 | { |
| 6858 | struct btrfs_key found_key; |
| 6859 | |
| 6860 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); |
| 6861 | |
| 6862 | while (true) { |
| 6863 | struct extent_buffer *leaf; |
| 6864 | int slot; |
| 6865 | struct btrfs_key search_key; |
| 6866 | struct btrfs_inode *inode; |
| 6867 | u64 ino; |
| 6868 | int ret = 0; |
| 6869 | |
| 6870 | btrfs_release_path(path); |
| 6871 | |
| 6872 | ino = found_key.offset; |
| 6873 | |
| 6874 | search_key.objectid = found_key.offset; |
| 6875 | search_key.type = BTRFS_INODE_ITEM_KEY; |
| 6876 | search_key.offset = 0; |
| 6877 | inode = btrfs_iget_logging(ino, root); |
| 6878 | if (IS_ERR(inode)) |
| 6879 | return PTR_ERR(inode); |
| 6880 | |
| 6881 | if (inode->generation >= trans->transid && |
| 6882 | need_log_inode(trans, inode)) |
| 6883 | ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx); |
| 6884 | btrfs_add_delayed_iput(inode); |
| 6885 | if (ret) |
| 6886 | return ret; |
| 6887 | |
| 6888 | if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) |
| 6889 | break; |
| 6890 | |
| 6891 | search_key.type = BTRFS_INODE_REF_KEY; |
| 6892 | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| 6893 | if (ret < 0) |
| 6894 | return ret; |
| 6895 | |
| 6896 | leaf = path->nodes[0]; |
| 6897 | slot = path->slots[0]; |
| 6898 | if (slot >= btrfs_header_nritems(leaf)) { |
| 6899 | ret = btrfs_next_leaf(root, path); |
| 6900 | if (ret < 0) |
| 6901 | return ret; |
| 6902 | else if (ret > 0) |
| 6903 | return -ENOENT; |
| 6904 | leaf = path->nodes[0]; |
| 6905 | slot = path->slots[0]; |
| 6906 | } |
| 6907 | |
| 6908 | btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| 6909 | if (found_key.objectid != search_key.objectid || |
| 6910 | found_key.type != BTRFS_INODE_REF_KEY) |
| 6911 | return -ENOENT; |
| 6912 | } |
| 6913 | return 0; |
| 6914 | } |
| 6915 | |
| 6916 | static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, |
| 6917 | struct btrfs_inode *inode, |
| 6918 | struct dentry *parent, |
| 6919 | struct btrfs_log_ctx *ctx) |
| 6920 | { |
| 6921 | struct btrfs_root *root = inode->root; |
| 6922 | struct dentry *old_parent = NULL; |
| 6923 | struct super_block *sb = inode->vfs_inode.i_sb; |
| 6924 | int ret = 0; |
| 6925 | |
| 6926 | while (true) { |
| 6927 | if (!parent || d_really_is_negative(parent) || |
| 6928 | sb != parent->d_sb) |
| 6929 | break; |
| 6930 | |
| 6931 | inode = BTRFS_I(d_inode(parent)); |
| 6932 | if (root != inode->root) |
| 6933 | break; |
| 6934 | |
| 6935 | if (inode->generation >= trans->transid && |
| 6936 | need_log_inode(trans, inode)) { |
| 6937 | ret = btrfs_log_inode(trans, inode, |
| 6938 | LOG_INODE_EXISTS, ctx); |
| 6939 | if (ret) |
| 6940 | break; |
| 6941 | } |
| 6942 | if (IS_ROOT(parent)) |
| 6943 | break; |
| 6944 | |
| 6945 | parent = dget_parent(parent); |
| 6946 | dput(old_parent); |
| 6947 | old_parent = parent; |
| 6948 | } |
| 6949 | dput(old_parent); |
| 6950 | |
| 6951 | return ret; |
| 6952 | } |
| 6953 | |
| 6954 | static int log_all_new_ancestors(struct btrfs_trans_handle *trans, |
| 6955 | struct btrfs_inode *inode, |
| 6956 | struct dentry *parent, |
| 6957 | struct btrfs_log_ctx *ctx) |
| 6958 | { |
| 6959 | struct btrfs_root *root = inode->root; |
| 6960 | const u64 ino = btrfs_ino(inode); |
| 6961 | struct btrfs_path *path; |
| 6962 | struct btrfs_key search_key; |
| 6963 | int ret; |
| 6964 | |
| 6965 | /* |
| 6966 | * For a single hard link case, go through a fast path that does not |
| 6967 | * need to iterate the fs/subvolume tree. |
| 6968 | */ |
| 6969 | if (inode->vfs_inode.i_nlink < 2) |
| 6970 | return log_new_ancestors_fast(trans, inode, parent, ctx); |
| 6971 | |
| 6972 | path = btrfs_alloc_path(); |
| 6973 | if (!path) |
| 6974 | return -ENOMEM; |
| 6975 | |
| 6976 | search_key.objectid = ino; |
| 6977 | search_key.type = BTRFS_INODE_REF_KEY; |
| 6978 | search_key.offset = 0; |
| 6979 | again: |
| 6980 | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| 6981 | if (ret < 0) |
| 6982 | goto out; |
| 6983 | if (ret == 0) |
| 6984 | path->slots[0]++; |
| 6985 | |
| 6986 | while (true) { |
| 6987 | struct extent_buffer *leaf = path->nodes[0]; |
| 6988 | int slot = path->slots[0]; |
| 6989 | struct btrfs_key found_key; |
| 6990 | |
| 6991 | if (slot >= btrfs_header_nritems(leaf)) { |
| 6992 | ret = btrfs_next_leaf(root, path); |
| 6993 | if (ret < 0) |
| 6994 | goto out; |
| 6995 | else if (ret > 0) |
| 6996 | break; |
| 6997 | continue; |
| 6998 | } |
| 6999 | |
| 7000 | btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| 7001 | if (found_key.objectid != ino || |
| 7002 | found_key.type > BTRFS_INODE_EXTREF_KEY) |
| 7003 | break; |
| 7004 | |
| 7005 | /* |
| 7006 | * Don't deal with extended references because they are rare |
| 7007 | * cases and too complex to deal with (we would need to keep |
| 7008 | * track of which subitem we are processing for each item in |
| 7009 | * this loop, etc). So just return some error to fallback to |
| 7010 | * a transaction commit. |
| 7011 | */ |
| 7012 | if (found_key.type == BTRFS_INODE_EXTREF_KEY) { |
| 7013 | ret = -EMLINK; |
| 7014 | goto out; |
| 7015 | } |
| 7016 | |
| 7017 | /* |
| 7018 | * Logging ancestors needs to do more searches on the fs/subvol |
| 7019 | * tree, so it releases the path as needed to avoid deadlocks. |
| 7020 | * Keep track of the last inode ref key and resume from that key |
| 7021 | * after logging all new ancestors for the current hard link. |
| 7022 | */ |
| 7023 | memcpy(&search_key, &found_key, sizeof(search_key)); |
| 7024 | |
| 7025 | ret = log_new_ancestors(trans, root, path, ctx); |
| 7026 | if (ret) |
| 7027 | goto out; |
| 7028 | btrfs_release_path(path); |
| 7029 | goto again; |
| 7030 | } |
| 7031 | ret = 0; |
| 7032 | out: |
| 7033 | btrfs_free_path(path); |
| 7034 | return ret; |
| 7035 | } |
| 7036 | |
| 7037 | /* |
| 7038 | * helper function around btrfs_log_inode to make sure newly created |
| 7039 | * parent directories also end up in the log. A minimal inode and backref |
| 7040 | * only logging is done of any parent directories that are older than |
| 7041 | * the last committed transaction |
| 7042 | */ |
| 7043 | static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, |
| 7044 | struct btrfs_inode *inode, |
| 7045 | struct dentry *parent, |
| 7046 | int inode_only, |
| 7047 | struct btrfs_log_ctx *ctx) |
| 7048 | { |
| 7049 | struct btrfs_root *root = inode->root; |
| 7050 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 7051 | int ret = 0; |
| 7052 | bool log_dentries; |
| 7053 | |
| 7054 | if (btrfs_test_opt(fs_info, NOTREELOG)) |
| 7055 | return BTRFS_LOG_FORCE_COMMIT; |
| 7056 | |
| 7057 | if (btrfs_root_refs(&root->root_item) == 0) |
| 7058 | return BTRFS_LOG_FORCE_COMMIT; |
| 7059 | |
| 7060 | /* |
| 7061 | * If we're logging an inode from a subvolume created in the current |
| 7062 | * transaction we must force a commit since the root is not persisted. |
| 7063 | */ |
| 7064 | if (btrfs_root_generation(&root->root_item) == trans->transid) |
| 7065 | return BTRFS_LOG_FORCE_COMMIT; |
| 7066 | |
| 7067 | /* Skip already logged inodes and without new extents. */ |
| 7068 | if (btrfs_inode_in_log(inode, trans->transid) && |
| 7069 | list_empty(&ctx->ordered_extents)) |
| 7070 | return BTRFS_NO_LOG_SYNC; |
| 7071 | |
| 7072 | ret = start_log_trans(trans, root, ctx); |
| 7073 | if (ret) |
| 7074 | return ret; |
| 7075 | |
| 7076 | ret = btrfs_log_inode(trans, inode, inode_only, ctx); |
| 7077 | if (ret) |
| 7078 | goto end_trans; |
| 7079 | |
| 7080 | /* |
| 7081 | * for regular files, if its inode is already on disk, we don't |
| 7082 | * have to worry about the parents at all. This is because |
| 7083 | * we can use the last_unlink_trans field to record renames |
| 7084 | * and other fun in this file. |
| 7085 | */ |
| 7086 | if (S_ISREG(inode->vfs_inode.i_mode) && |
| 7087 | inode->generation < trans->transid && |
| 7088 | inode->last_unlink_trans < trans->transid) { |
| 7089 | ret = 0; |
| 7090 | goto end_trans; |
| 7091 | } |
| 7092 | |
| 7093 | /* |
| 7094 | * Track if we need to log dentries because ctx->log_new_dentries can |
| 7095 | * be modified in the call chains below. |
| 7096 | */ |
| 7097 | log_dentries = ctx->log_new_dentries; |
| 7098 | |
| 7099 | /* |
| 7100 | * On unlink we must make sure all our current and old parent directory |
| 7101 | * inodes are fully logged. This is to prevent leaving dangling |
| 7102 | * directory index entries in directories that were our parents but are |
| 7103 | * not anymore. Not doing this results in old parent directory being |
| 7104 | * impossible to delete after log replay (rmdir will always fail with |
| 7105 | * error -ENOTEMPTY). |
| 7106 | * |
| 7107 | * Example 1: |
| 7108 | * |
| 7109 | * mkdir testdir |
| 7110 | * touch testdir/foo |
| 7111 | * ln testdir/foo testdir/bar |
| 7112 | * sync |
| 7113 | * unlink testdir/bar |
| 7114 | * xfs_io -c fsync testdir/foo |
| 7115 | * <power failure> |
| 7116 | * mount fs, triggers log replay |
| 7117 | * |
| 7118 | * If we don't log the parent directory (testdir), after log replay the |
| 7119 | * directory still has an entry pointing to the file inode using the bar |
| 7120 | * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and |
| 7121 | * the file inode has a link count of 1. |
| 7122 | * |
| 7123 | * Example 2: |
| 7124 | * |
| 7125 | * mkdir testdir |
| 7126 | * touch foo |
| 7127 | * ln foo testdir/foo2 |
| 7128 | * ln foo testdir/foo3 |
| 7129 | * sync |
| 7130 | * unlink testdir/foo3 |
| 7131 | * xfs_io -c fsync foo |
| 7132 | * <power failure> |
| 7133 | * mount fs, triggers log replay |
| 7134 | * |
| 7135 | * Similar as the first example, after log replay the parent directory |
| 7136 | * testdir still has an entry pointing to the inode file with name foo3 |
| 7137 | * but the file inode does not have a matching BTRFS_INODE_REF_KEY item |
| 7138 | * and has a link count of 2. |
| 7139 | */ |
| 7140 | if (inode->last_unlink_trans >= trans->transid) { |
| 7141 | ret = btrfs_log_all_parents(trans, inode, ctx); |
| 7142 | if (ret) |
| 7143 | goto end_trans; |
| 7144 | } |
| 7145 | |
| 7146 | ret = log_all_new_ancestors(trans, inode, parent, ctx); |
| 7147 | if (ret) |
| 7148 | goto end_trans; |
| 7149 | |
| 7150 | if (log_dentries) |
| 7151 | ret = log_new_dir_dentries(trans, inode, ctx); |
| 7152 | end_trans: |
| 7153 | if (ret < 0) { |
| 7154 | btrfs_set_log_full_commit(trans); |
| 7155 | ret = BTRFS_LOG_FORCE_COMMIT; |
| 7156 | } |
| 7157 | |
| 7158 | if (ret) |
| 7159 | btrfs_remove_log_ctx(root, ctx); |
| 7160 | btrfs_end_log_trans(root); |
| 7161 | |
| 7162 | return ret; |
| 7163 | } |
| 7164 | |
| 7165 | /* |
| 7166 | * it is not safe to log dentry if the chunk root has added new |
| 7167 | * chunks. This returns 0 if the dentry was logged, and 1 otherwise. |
| 7168 | * If this returns 1, you must commit the transaction to safely get your |
| 7169 | * data on disk. |
| 7170 | */ |
| 7171 | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, |
| 7172 | struct dentry *dentry, |
| 7173 | struct btrfs_log_ctx *ctx) |
| 7174 | { |
| 7175 | struct dentry *parent = dget_parent(dentry); |
| 7176 | int ret; |
| 7177 | |
| 7178 | ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, |
| 7179 | LOG_INODE_ALL, ctx); |
| 7180 | dput(parent); |
| 7181 | |
| 7182 | return ret; |
| 7183 | } |
| 7184 | |
| 7185 | /* |
| 7186 | * should be called during mount to recover any replay any log trees |
| 7187 | * from the FS |
| 7188 | */ |
| 7189 | int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) |
| 7190 | { |
| 7191 | int ret; |
| 7192 | struct btrfs_path *path; |
| 7193 | struct btrfs_trans_handle *trans; |
| 7194 | struct btrfs_key key; |
| 7195 | struct btrfs_key found_key; |
| 7196 | struct btrfs_root *log; |
| 7197 | struct btrfs_fs_info *fs_info = log_root_tree->fs_info; |
| 7198 | struct walk_control wc = { |
| 7199 | .process_func = process_one_buffer, |
| 7200 | .stage = LOG_WALK_PIN_ONLY, |
| 7201 | }; |
| 7202 | |
| 7203 | path = btrfs_alloc_path(); |
| 7204 | if (!path) |
| 7205 | return -ENOMEM; |
| 7206 | |
| 7207 | set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); |
| 7208 | |
| 7209 | trans = btrfs_start_transaction(fs_info->tree_root, 0); |
| 7210 | if (IS_ERR(trans)) { |
| 7211 | ret = PTR_ERR(trans); |
| 7212 | goto error; |
| 7213 | } |
| 7214 | |
| 7215 | wc.trans = trans; |
| 7216 | wc.pin = 1; |
| 7217 | |
| 7218 | ret = walk_log_tree(trans, log_root_tree, &wc); |
| 7219 | if (ret) { |
| 7220 | btrfs_abort_transaction(trans, ret); |
| 7221 | goto error; |
| 7222 | } |
| 7223 | |
| 7224 | again: |
| 7225 | key.objectid = BTRFS_TREE_LOG_OBJECTID; |
| 7226 | key.type = BTRFS_ROOT_ITEM_KEY; |
| 7227 | key.offset = (u64)-1; |
| 7228 | |
| 7229 | while (1) { |
| 7230 | ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); |
| 7231 | |
| 7232 | if (ret < 0) { |
| 7233 | btrfs_abort_transaction(trans, ret); |
| 7234 | goto error; |
| 7235 | } |
| 7236 | if (ret > 0) { |
| 7237 | if (path->slots[0] == 0) |
| 7238 | break; |
| 7239 | path->slots[0]--; |
| 7240 | } |
| 7241 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| 7242 | path->slots[0]); |
| 7243 | btrfs_release_path(path); |
| 7244 | if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) |
| 7245 | break; |
| 7246 | |
| 7247 | log = btrfs_read_tree_root(log_root_tree, &found_key); |
| 7248 | if (IS_ERR(log)) { |
| 7249 | ret = PTR_ERR(log); |
| 7250 | btrfs_abort_transaction(trans, ret); |
| 7251 | goto error; |
| 7252 | } |
| 7253 | |
| 7254 | wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, |
| 7255 | true); |
| 7256 | if (IS_ERR(wc.replay_dest)) { |
| 7257 | ret = PTR_ERR(wc.replay_dest); |
| 7258 | |
| 7259 | /* |
| 7260 | * We didn't find the subvol, likely because it was |
| 7261 | * deleted. This is ok, simply skip this log and go to |
| 7262 | * the next one. |
| 7263 | * |
| 7264 | * We need to exclude the root because we can't have |
| 7265 | * other log replays overwriting this log as we'll read |
| 7266 | * it back in a few more times. This will keep our |
| 7267 | * block from being modified, and we'll just bail for |
| 7268 | * each subsequent pass. |
| 7269 | */ |
| 7270 | if (ret == -ENOENT) |
| 7271 | ret = btrfs_pin_extent_for_log_replay(trans, log->node); |
| 7272 | btrfs_put_root(log); |
| 7273 | |
| 7274 | if (!ret) |
| 7275 | goto next; |
| 7276 | btrfs_abort_transaction(trans, ret); |
| 7277 | goto error; |
| 7278 | } |
| 7279 | |
| 7280 | wc.replay_dest->log_root = log; |
| 7281 | ret = btrfs_record_root_in_trans(trans, wc.replay_dest); |
| 7282 | if (ret) |
| 7283 | /* The loop needs to continue due to the root refs */ |
| 7284 | btrfs_abort_transaction(trans, ret); |
| 7285 | else |
| 7286 | ret = walk_log_tree(trans, log, &wc); |
| 7287 | |
| 7288 | if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { |
| 7289 | ret = fixup_inode_link_counts(trans, wc.replay_dest, |
| 7290 | path); |
| 7291 | if (ret) |
| 7292 | btrfs_abort_transaction(trans, ret); |
| 7293 | } |
| 7294 | |
| 7295 | if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { |
| 7296 | struct btrfs_root *root = wc.replay_dest; |
| 7297 | |
| 7298 | btrfs_release_path(path); |
| 7299 | |
| 7300 | /* |
| 7301 | * We have just replayed everything, and the highest |
| 7302 | * objectid of fs roots probably has changed in case |
| 7303 | * some inode_item's got replayed. |
| 7304 | * |
| 7305 | * root->objectid_mutex is not acquired as log replay |
| 7306 | * could only happen during mount. |
| 7307 | */ |
| 7308 | ret = btrfs_init_root_free_objectid(root); |
| 7309 | if (ret) |
| 7310 | btrfs_abort_transaction(trans, ret); |
| 7311 | } |
| 7312 | |
| 7313 | wc.replay_dest->log_root = NULL; |
| 7314 | btrfs_put_root(wc.replay_dest); |
| 7315 | btrfs_put_root(log); |
| 7316 | |
| 7317 | if (ret) |
| 7318 | goto error; |
| 7319 | next: |
| 7320 | if (found_key.offset == 0) |
| 7321 | break; |
| 7322 | key.offset = found_key.offset - 1; |
| 7323 | } |
| 7324 | btrfs_release_path(path); |
| 7325 | |
| 7326 | /* step one is to pin it all, step two is to replay just inodes */ |
| 7327 | if (wc.pin) { |
| 7328 | wc.pin = 0; |
| 7329 | wc.process_func = replay_one_buffer; |
| 7330 | wc.stage = LOG_WALK_REPLAY_INODES; |
| 7331 | goto again; |
| 7332 | } |
| 7333 | /* step three is to replay everything */ |
| 7334 | if (wc.stage < LOG_WALK_REPLAY_ALL) { |
| 7335 | wc.stage++; |
| 7336 | goto again; |
| 7337 | } |
| 7338 | |
| 7339 | btrfs_free_path(path); |
| 7340 | |
| 7341 | /* step 4: commit the transaction, which also unpins the blocks */ |
| 7342 | ret = btrfs_commit_transaction(trans); |
| 7343 | if (ret) |
| 7344 | return ret; |
| 7345 | |
| 7346 | log_root_tree->log_root = NULL; |
| 7347 | clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); |
| 7348 | btrfs_put_root(log_root_tree); |
| 7349 | |
| 7350 | return 0; |
| 7351 | error: |
| 7352 | if (wc.trans) |
| 7353 | btrfs_end_transaction(wc.trans); |
| 7354 | clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); |
| 7355 | btrfs_free_path(path); |
| 7356 | return ret; |
| 7357 | } |
| 7358 | |
| 7359 | /* |
| 7360 | * there are some corner cases where we want to force a full |
| 7361 | * commit instead of allowing a directory to be logged. |
| 7362 | * |
| 7363 | * They revolve around files there were unlinked from the directory, and |
| 7364 | * this function updates the parent directory so that a full commit is |
| 7365 | * properly done if it is fsync'd later after the unlinks are done. |
| 7366 | * |
| 7367 | * Must be called before the unlink operations (updates to the subvolume tree, |
| 7368 | * inodes, etc) are done. |
| 7369 | */ |
| 7370 | void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, |
| 7371 | struct btrfs_inode *dir, struct btrfs_inode *inode, |
| 7372 | bool for_rename) |
| 7373 | { |
| 7374 | /* |
| 7375 | * when we're logging a file, if it hasn't been renamed |
| 7376 | * or unlinked, and its inode is fully committed on disk, |
| 7377 | * we don't have to worry about walking up the directory chain |
| 7378 | * to log its parents. |
| 7379 | * |
| 7380 | * So, we use the last_unlink_trans field to put this transid |
| 7381 | * into the file. When the file is logged we check it and |
| 7382 | * don't log the parents if the file is fully on disk. |
| 7383 | */ |
| 7384 | mutex_lock(&inode->log_mutex); |
| 7385 | inode->last_unlink_trans = trans->transid; |
| 7386 | mutex_unlock(&inode->log_mutex); |
| 7387 | |
| 7388 | if (!for_rename) |
| 7389 | return; |
| 7390 | |
| 7391 | /* |
| 7392 | * If this directory was already logged, any new names will be logged |
| 7393 | * with btrfs_log_new_name() and old names will be deleted from the log |
| 7394 | * tree with btrfs_del_dir_entries_in_log() or with |
| 7395 | * btrfs_del_inode_ref_in_log(). |
| 7396 | */ |
| 7397 | if (inode_logged(trans, dir, NULL) == 1) |
| 7398 | return; |
| 7399 | |
| 7400 | /* |
| 7401 | * If the inode we're about to unlink was logged before, the log will be |
| 7402 | * properly updated with the new name with btrfs_log_new_name() and the |
| 7403 | * old name removed with btrfs_del_dir_entries_in_log() or with |
| 7404 | * btrfs_del_inode_ref_in_log(). |
| 7405 | */ |
| 7406 | if (inode_logged(trans, inode, NULL) == 1) |
| 7407 | return; |
| 7408 | |
| 7409 | /* |
| 7410 | * when renaming files across directories, if the directory |
| 7411 | * there we're unlinking from gets fsync'd later on, there's |
| 7412 | * no way to find the destination directory later and fsync it |
| 7413 | * properly. So, we have to be conservative and force commits |
| 7414 | * so the new name gets discovered. |
| 7415 | */ |
| 7416 | mutex_lock(&dir->log_mutex); |
| 7417 | dir->last_unlink_trans = trans->transid; |
| 7418 | mutex_unlock(&dir->log_mutex); |
| 7419 | } |
| 7420 | |
| 7421 | /* |
| 7422 | * Make sure that if someone attempts to fsync the parent directory of a deleted |
| 7423 | * snapshot, it ends up triggering a transaction commit. This is to guarantee |
| 7424 | * that after replaying the log tree of the parent directory's root we will not |
| 7425 | * see the snapshot anymore and at log replay time we will not see any log tree |
| 7426 | * corresponding to the deleted snapshot's root, which could lead to replaying |
| 7427 | * it after replaying the log tree of the parent directory (which would replay |
| 7428 | * the snapshot delete operation). |
| 7429 | * |
| 7430 | * Must be called before the actual snapshot destroy operation (updates to the |
| 7431 | * parent root and tree of tree roots trees, etc) are done. |
| 7432 | */ |
| 7433 | void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, |
| 7434 | struct btrfs_inode *dir) |
| 7435 | { |
| 7436 | mutex_lock(&dir->log_mutex); |
| 7437 | dir->last_unlink_trans = trans->transid; |
| 7438 | mutex_unlock(&dir->log_mutex); |
| 7439 | } |
| 7440 | |
| 7441 | /* |
| 7442 | * Call this when creating a subvolume in a directory. |
| 7443 | * Because we don't commit a transaction when creating a subvolume, we can't |
| 7444 | * allow the directory pointing to the subvolume to be logged with an entry that |
| 7445 | * points to an unpersisted root if we are still in the transaction used to |
| 7446 | * create the subvolume, so make any attempt to log the directory to result in a |
| 7447 | * full log sync. |
| 7448 | * Also we don't need to worry with renames, since btrfs_rename() marks the log |
| 7449 | * for full commit when renaming a subvolume. |
| 7450 | * |
| 7451 | * Must be called before creating the subvolume entry in its parent directory. |
| 7452 | */ |
| 7453 | void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans, |
| 7454 | struct btrfs_inode *dir) |
| 7455 | { |
| 7456 | mutex_lock(&dir->log_mutex); |
| 7457 | dir->last_unlink_trans = trans->transid; |
| 7458 | mutex_unlock(&dir->log_mutex); |
| 7459 | } |
| 7460 | |
| 7461 | /* |
| 7462 | * Update the log after adding a new name for an inode. |
| 7463 | * |
| 7464 | * @trans: Transaction handle. |
| 7465 | * @old_dentry: The dentry associated with the old name and the old |
| 7466 | * parent directory. |
| 7467 | * @old_dir: The inode of the previous parent directory for the case |
| 7468 | * of a rename. For a link operation, it must be NULL. |
| 7469 | * @old_dir_index: The index number associated with the old name, meaningful |
| 7470 | * only for rename operations (when @old_dir is not NULL). |
| 7471 | * Ignored for link operations. |
| 7472 | * @parent: The dentry associated with the directory under which the |
| 7473 | * new name is located. |
| 7474 | * |
| 7475 | * Call this after adding a new name for an inode, as a result of a link or |
| 7476 | * rename operation, and it will properly update the log to reflect the new name. |
| 7477 | */ |
| 7478 | void btrfs_log_new_name(struct btrfs_trans_handle *trans, |
| 7479 | struct dentry *old_dentry, struct btrfs_inode *old_dir, |
| 7480 | u64 old_dir_index, struct dentry *parent) |
| 7481 | { |
| 7482 | struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry)); |
| 7483 | struct btrfs_root *root = inode->root; |
| 7484 | struct btrfs_log_ctx ctx; |
| 7485 | bool log_pinned = false; |
| 7486 | int ret; |
| 7487 | |
| 7488 | /* |
| 7489 | * this will force the logging code to walk the dentry chain |
| 7490 | * up for the file |
| 7491 | */ |
| 7492 | if (!S_ISDIR(inode->vfs_inode.i_mode)) |
| 7493 | inode->last_unlink_trans = trans->transid; |
| 7494 | |
| 7495 | /* |
| 7496 | * if this inode hasn't been logged and directory we're renaming it |
| 7497 | * from hasn't been logged, we don't need to log it |
| 7498 | */ |
| 7499 | ret = inode_logged(trans, inode, NULL); |
| 7500 | if (ret < 0) { |
| 7501 | goto out; |
| 7502 | } else if (ret == 0) { |
| 7503 | if (!old_dir) |
| 7504 | return; |
| 7505 | /* |
| 7506 | * If the inode was not logged and we are doing a rename (old_dir is not |
| 7507 | * NULL), check if old_dir was logged - if it was not we can return and |
| 7508 | * do nothing. |
| 7509 | */ |
| 7510 | ret = inode_logged(trans, old_dir, NULL); |
| 7511 | if (ret < 0) |
| 7512 | goto out; |
| 7513 | else if (ret == 0) |
| 7514 | return; |
| 7515 | } |
| 7516 | ret = 0; |
| 7517 | |
| 7518 | /* |
| 7519 | * If we are doing a rename (old_dir is not NULL) from a directory that |
| 7520 | * was previously logged, make sure that on log replay we get the old |
| 7521 | * dir entry deleted. This is needed because we will also log the new |
| 7522 | * name of the renamed inode, so we need to make sure that after log |
| 7523 | * replay we don't end up with both the new and old dir entries existing. |
| 7524 | */ |
| 7525 | if (old_dir && old_dir->logged_trans == trans->transid) { |
| 7526 | struct btrfs_root *log = old_dir->root->log_root; |
| 7527 | struct btrfs_path *path; |
| 7528 | struct fscrypt_name fname; |
| 7529 | |
| 7530 | ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX); |
| 7531 | |
| 7532 | ret = fscrypt_setup_filename(&old_dir->vfs_inode, |
| 7533 | &old_dentry->d_name, 0, &fname); |
| 7534 | if (ret) |
| 7535 | goto out; |
| 7536 | /* |
| 7537 | * We have two inodes to update in the log, the old directory and |
| 7538 | * the inode that got renamed, so we must pin the log to prevent |
| 7539 | * anyone from syncing the log until we have updated both inodes |
| 7540 | * in the log. |
| 7541 | */ |
| 7542 | ret = join_running_log_trans(root); |
| 7543 | /* |
| 7544 | * At least one of the inodes was logged before, so this should |
| 7545 | * not fail, but if it does, it's not serious, just bail out and |
| 7546 | * mark the log for a full commit. |
| 7547 | */ |
| 7548 | if (WARN_ON_ONCE(ret < 0)) { |
| 7549 | fscrypt_free_filename(&fname); |
| 7550 | goto out; |
| 7551 | } |
| 7552 | |
| 7553 | log_pinned = true; |
| 7554 | |
| 7555 | path = btrfs_alloc_path(); |
| 7556 | if (!path) { |
| 7557 | ret = -ENOMEM; |
| 7558 | fscrypt_free_filename(&fname); |
| 7559 | goto out; |
| 7560 | } |
| 7561 | |
| 7562 | /* |
| 7563 | * Other concurrent task might be logging the old directory, |
| 7564 | * as it can be triggered when logging other inode that had or |
| 7565 | * still has a dentry in the old directory. We lock the old |
| 7566 | * directory's log_mutex to ensure the deletion of the old |
| 7567 | * name is persisted, because during directory logging we |
| 7568 | * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of |
| 7569 | * the old name's dir index item is in the delayed items, so |
| 7570 | * it could be missed by an in progress directory logging. |
| 7571 | */ |
| 7572 | mutex_lock(&old_dir->log_mutex); |
| 7573 | ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir), |
| 7574 | &fname.disk_name, old_dir_index); |
| 7575 | if (ret > 0) { |
| 7576 | /* |
| 7577 | * The dentry does not exist in the log, so record its |
| 7578 | * deletion. |
| 7579 | */ |
| 7580 | btrfs_release_path(path); |
| 7581 | ret = insert_dir_log_key(trans, log, path, |
| 7582 | btrfs_ino(old_dir), |
| 7583 | old_dir_index, old_dir_index); |
| 7584 | } |
| 7585 | mutex_unlock(&old_dir->log_mutex); |
| 7586 | |
| 7587 | btrfs_free_path(path); |
| 7588 | fscrypt_free_filename(&fname); |
| 7589 | if (ret < 0) |
| 7590 | goto out; |
| 7591 | } |
| 7592 | |
| 7593 | btrfs_init_log_ctx(&ctx, inode); |
| 7594 | ctx.logging_new_name = true; |
| 7595 | btrfs_init_log_ctx_scratch_eb(&ctx); |
| 7596 | /* |
| 7597 | * We don't care about the return value. If we fail to log the new name |
| 7598 | * then we know the next attempt to sync the log will fallback to a full |
| 7599 | * transaction commit (due to a call to btrfs_set_log_full_commit()), so |
| 7600 | * we don't need to worry about getting a log committed that has an |
| 7601 | * inconsistent state after a rename operation. |
| 7602 | */ |
| 7603 | btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); |
| 7604 | free_extent_buffer(ctx.scratch_eb); |
| 7605 | ASSERT(list_empty(&ctx.conflict_inodes)); |
| 7606 | out: |
| 7607 | /* |
| 7608 | * If an error happened mark the log for a full commit because it's not |
| 7609 | * consistent and up to date or we couldn't find out if one of the |
| 7610 | * inodes was logged before in this transaction. Do it before unpinning |
| 7611 | * the log, to avoid any races with someone else trying to commit it. |
| 7612 | */ |
| 7613 | if (ret < 0) |
| 7614 | btrfs_set_log_full_commit(trans); |
| 7615 | if (log_pinned) |
| 7616 | btrfs_end_log_trans(root); |
| 7617 | } |
| 7618 | |