btrfs: Remove fs_info argument from btrfs_trans_release_metadata
[linux-2.6-block.git] / fs / btrfs / transaction.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include "ctree.h"
27#include "disk-io.h"
28#include "transaction.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "inode-map.h"
32#include "volumes.h"
33#include "dev-replace.h"
34#include "qgroup.h"
35
36#define BTRFS_ROOT_TRANS_TAG 0
37
38static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59};
60
61void btrfs_put_transaction(struct btrfs_transaction *transaction)
62{
63 WARN_ON(refcount_read(&transaction->use_count) == 0);
64 if (refcount_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 btrfs_err(transaction->fs_info,
69 "pending csums is %llu",
70 transaction->delayed_refs.pending_csums);
71 while (!list_empty(&transaction->pending_chunks)) {
72 struct extent_map *em;
73
74 em = list_first_entry(&transaction->pending_chunks,
75 struct extent_map, list);
76 list_del_init(&em->list);
77 free_extent_map(em);
78 }
79 /*
80 * If any block groups are found in ->deleted_bgs then it's
81 * because the transaction was aborted and a commit did not
82 * happen (things failed before writing the new superblock
83 * and calling btrfs_finish_extent_commit()), so we can not
84 * discard the physical locations of the block groups.
85 */
86 while (!list_empty(&transaction->deleted_bgs)) {
87 struct btrfs_block_group_cache *cache;
88
89 cache = list_first_entry(&transaction->deleted_bgs,
90 struct btrfs_block_group_cache,
91 bg_list);
92 list_del_init(&cache->bg_list);
93 btrfs_put_block_group_trimming(cache);
94 btrfs_put_block_group(cache);
95 }
96 kfree(transaction);
97 }
98}
99
100static void clear_btree_io_tree(struct extent_io_tree *tree)
101{
102 spin_lock(&tree->lock);
103 /*
104 * Do a single barrier for the waitqueue_active check here, the state
105 * of the waitqueue should not change once clear_btree_io_tree is
106 * called.
107 */
108 smp_mb();
109 while (!RB_EMPTY_ROOT(&tree->state)) {
110 struct rb_node *node;
111 struct extent_state *state;
112
113 node = rb_first(&tree->state);
114 state = rb_entry(node, struct extent_state, rb_node);
115 rb_erase(&state->rb_node, &tree->state);
116 RB_CLEAR_NODE(&state->rb_node);
117 /*
118 * btree io trees aren't supposed to have tasks waiting for
119 * changes in the flags of extent states ever.
120 */
121 ASSERT(!waitqueue_active(&state->wq));
122 free_extent_state(state);
123
124 cond_resched_lock(&tree->lock);
125 }
126 spin_unlock(&tree->lock);
127}
128
129static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 struct btrfs_fs_info *fs_info)
131{
132 struct btrfs_root *root, *tmp;
133
134 down_write(&fs_info->commit_root_sem);
135 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136 dirty_list) {
137 list_del_init(&root->dirty_list);
138 free_extent_buffer(root->commit_root);
139 root->commit_root = btrfs_root_node(root);
140 if (is_fstree(root->objectid))
141 btrfs_unpin_free_ino(root);
142 clear_btree_io_tree(&root->dirty_log_pages);
143 }
144
145 /* We can free old roots now. */
146 spin_lock(&trans->dropped_roots_lock);
147 while (!list_empty(&trans->dropped_roots)) {
148 root = list_first_entry(&trans->dropped_roots,
149 struct btrfs_root, root_list);
150 list_del_init(&root->root_list);
151 spin_unlock(&trans->dropped_roots_lock);
152 btrfs_drop_and_free_fs_root(fs_info, root);
153 spin_lock(&trans->dropped_roots_lock);
154 }
155 spin_unlock(&trans->dropped_roots_lock);
156 up_write(&fs_info->commit_root_sem);
157}
158
159static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160 unsigned int type)
161{
162 if (type & TRANS_EXTWRITERS)
163 atomic_inc(&trans->num_extwriters);
164}
165
166static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167 unsigned int type)
168{
169 if (type & TRANS_EXTWRITERS)
170 atomic_dec(&trans->num_extwriters);
171}
172
173static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174 unsigned int type)
175{
176 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
177}
178
179static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180{
181 return atomic_read(&trans->num_extwriters);
182}
183
184/*
185 * either allocate a new transaction or hop into the existing one
186 */
187static noinline int join_transaction(struct btrfs_fs_info *fs_info,
188 unsigned int type)
189{
190 struct btrfs_transaction *cur_trans;
191
192 spin_lock(&fs_info->trans_lock);
193loop:
194 /* The file system has been taken offline. No new transactions. */
195 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 spin_unlock(&fs_info->trans_lock);
197 return -EROFS;
198 }
199
200 cur_trans = fs_info->running_transaction;
201 if (cur_trans) {
202 if (cur_trans->aborted) {
203 spin_unlock(&fs_info->trans_lock);
204 return cur_trans->aborted;
205 }
206 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 spin_unlock(&fs_info->trans_lock);
208 return -EBUSY;
209 }
210 refcount_inc(&cur_trans->use_count);
211 atomic_inc(&cur_trans->num_writers);
212 extwriter_counter_inc(cur_trans, type);
213 spin_unlock(&fs_info->trans_lock);
214 return 0;
215 }
216 spin_unlock(&fs_info->trans_lock);
217
218 /*
219 * If we are ATTACH, we just want to catch the current transaction,
220 * and commit it. If there is no transaction, just return ENOENT.
221 */
222 if (type == TRANS_ATTACH)
223 return -ENOENT;
224
225 /*
226 * JOIN_NOLOCK only happens during the transaction commit, so
227 * it is impossible that ->running_transaction is NULL
228 */
229 BUG_ON(type == TRANS_JOIN_NOLOCK);
230
231 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
232 if (!cur_trans)
233 return -ENOMEM;
234
235 spin_lock(&fs_info->trans_lock);
236 if (fs_info->running_transaction) {
237 /*
238 * someone started a transaction after we unlocked. Make sure
239 * to redo the checks above
240 */
241 kfree(cur_trans);
242 goto loop;
243 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 spin_unlock(&fs_info->trans_lock);
245 kfree(cur_trans);
246 return -EROFS;
247 }
248
249 cur_trans->fs_info = fs_info;
250 atomic_set(&cur_trans->num_writers, 1);
251 extwriter_counter_init(cur_trans, type);
252 init_waitqueue_head(&cur_trans->writer_wait);
253 init_waitqueue_head(&cur_trans->commit_wait);
254 init_waitqueue_head(&cur_trans->pending_wait);
255 cur_trans->state = TRANS_STATE_RUNNING;
256 /*
257 * One for this trans handle, one so it will live on until we
258 * commit the transaction.
259 */
260 refcount_set(&cur_trans->use_count, 2);
261 atomic_set(&cur_trans->pending_ordered, 0);
262 cur_trans->flags = 0;
263 cur_trans->start_time = get_seconds();
264
265 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
266
267 cur_trans->delayed_refs.href_root = RB_ROOT;
268 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270
271 /*
272 * although the tree mod log is per file system and not per transaction,
273 * the log must never go across transaction boundaries.
274 */
275 smp_mb();
276 if (!list_empty(&fs_info->tree_mod_seq_list))
277 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
281
282 spin_lock_init(&cur_trans->delayed_refs.lock);
283
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
303
304 return 0;
305}
306
307/*
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
312 */
313static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
315 int force)
316{
317 struct btrfs_fs_info *fs_info = root->fs_info;
318
319 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
320 root->last_trans < trans->transid) || force) {
321 WARN_ON(root == fs_info->extent_root);
322 WARN_ON(root->commit_root != root->node);
323
324 /*
325 * see below for IN_TRANS_SETUP usage rules
326 * we have the reloc mutex held now, so there
327 * is only one writer in this function
328 */
329 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330
331 /* make sure readers find IN_TRANS_SETUP before
332 * they find our root->last_trans update
333 */
334 smp_wmb();
335
336 spin_lock(&fs_info->fs_roots_radix_lock);
337 if (root->last_trans == trans->transid && !force) {
338 spin_unlock(&fs_info->fs_roots_radix_lock);
339 return 0;
340 }
341 radix_tree_tag_set(&fs_info->fs_roots_radix,
342 (unsigned long)root->root_key.objectid,
343 BTRFS_ROOT_TRANS_TAG);
344 spin_unlock(&fs_info->fs_roots_radix_lock);
345 root->last_trans = trans->transid;
346
347 /* this is pretty tricky. We don't want to
348 * take the relocation lock in btrfs_record_root_in_trans
349 * unless we're really doing the first setup for this root in
350 * this transaction.
351 *
352 * Normally we'd use root->last_trans as a flag to decide
353 * if we want to take the expensive mutex.
354 *
355 * But, we have to set root->last_trans before we
356 * init the relocation root, otherwise, we trip over warnings
357 * in ctree.c. The solution used here is to flag ourselves
358 * with root IN_TRANS_SETUP. When this is 1, we're still
359 * fixing up the reloc trees and everyone must wait.
360 *
361 * When this is zero, they can trust root->last_trans and fly
362 * through btrfs_record_root_in_trans without having to take the
363 * lock. smp_wmb() makes sure that all the writes above are
364 * done before we pop in the zero below
365 */
366 btrfs_init_reloc_root(trans, root);
367 smp_mb__before_atomic();
368 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
369 }
370 return 0;
371}
372
373
374void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
375 struct btrfs_root *root)
376{
377 struct btrfs_fs_info *fs_info = root->fs_info;
378 struct btrfs_transaction *cur_trans = trans->transaction;
379
380 /* Add ourselves to the transaction dropped list */
381 spin_lock(&cur_trans->dropped_roots_lock);
382 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
383 spin_unlock(&cur_trans->dropped_roots_lock);
384
385 /* Make sure we don't try to update the root at commit time */
386 spin_lock(&fs_info->fs_roots_radix_lock);
387 radix_tree_tag_clear(&fs_info->fs_roots_radix,
388 (unsigned long)root->root_key.objectid,
389 BTRFS_ROOT_TRANS_TAG);
390 spin_unlock(&fs_info->fs_roots_radix_lock);
391}
392
393int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
394 struct btrfs_root *root)
395{
396 struct btrfs_fs_info *fs_info = root->fs_info;
397
398 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
399 return 0;
400
401 /*
402 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
403 * and barriers
404 */
405 smp_rmb();
406 if (root->last_trans == trans->transid &&
407 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
408 return 0;
409
410 mutex_lock(&fs_info->reloc_mutex);
411 record_root_in_trans(trans, root, 0);
412 mutex_unlock(&fs_info->reloc_mutex);
413
414 return 0;
415}
416
417static inline int is_transaction_blocked(struct btrfs_transaction *trans)
418{
419 return (trans->state >= TRANS_STATE_BLOCKED &&
420 trans->state < TRANS_STATE_UNBLOCKED &&
421 !trans->aborted);
422}
423
424/* wait for commit against the current transaction to become unblocked
425 * when this is done, it is safe to start a new transaction, but the current
426 * transaction might not be fully on disk.
427 */
428static void wait_current_trans(struct btrfs_fs_info *fs_info)
429{
430 struct btrfs_transaction *cur_trans;
431
432 spin_lock(&fs_info->trans_lock);
433 cur_trans = fs_info->running_transaction;
434 if (cur_trans && is_transaction_blocked(cur_trans)) {
435 refcount_inc(&cur_trans->use_count);
436 spin_unlock(&fs_info->trans_lock);
437
438 wait_event(fs_info->transaction_wait,
439 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
440 cur_trans->aborted);
441 btrfs_put_transaction(cur_trans);
442 } else {
443 spin_unlock(&fs_info->trans_lock);
444 }
445}
446
447static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
448{
449 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
450 return 0;
451
452 if (type == TRANS_USERSPACE)
453 return 1;
454
455 if (type == TRANS_START &&
456 !atomic_read(&fs_info->open_ioctl_trans))
457 return 1;
458
459 return 0;
460}
461
462static inline bool need_reserve_reloc_root(struct btrfs_root *root)
463{
464 struct btrfs_fs_info *fs_info = root->fs_info;
465
466 if (!fs_info->reloc_ctl ||
467 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
468 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
469 root->reloc_root)
470 return false;
471
472 return true;
473}
474
475static struct btrfs_trans_handle *
476start_transaction(struct btrfs_root *root, unsigned int num_items,
477 unsigned int type, enum btrfs_reserve_flush_enum flush,
478 bool enforce_qgroups)
479{
480 struct btrfs_fs_info *fs_info = root->fs_info;
481
482 struct btrfs_trans_handle *h;
483 struct btrfs_transaction *cur_trans;
484 u64 num_bytes = 0;
485 u64 qgroup_reserved = 0;
486 bool reloc_reserved = false;
487 int ret;
488
489 /* Send isn't supposed to start transactions. */
490 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
491
492 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
493 return ERR_PTR(-EROFS);
494
495 if (current->journal_info) {
496 WARN_ON(type & TRANS_EXTWRITERS);
497 h = current->journal_info;
498 refcount_inc(&h->use_count);
499 WARN_ON(refcount_read(&h->use_count) > 2);
500 h->orig_rsv = h->block_rsv;
501 h->block_rsv = NULL;
502 goto got_it;
503 }
504
505 /*
506 * Do the reservation before we join the transaction so we can do all
507 * the appropriate flushing if need be.
508 */
509 if (num_items && root != fs_info->chunk_root) {
510 qgroup_reserved = num_items * fs_info->nodesize;
511 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved,
512 enforce_qgroups);
513 if (ret)
514 return ERR_PTR(ret);
515
516 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
517 /*
518 * Do the reservation for the relocation root creation
519 */
520 if (need_reserve_reloc_root(root)) {
521 num_bytes += fs_info->nodesize;
522 reloc_reserved = true;
523 }
524
525 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
526 num_bytes, flush);
527 if (ret)
528 goto reserve_fail;
529 }
530again:
531 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
532 if (!h) {
533 ret = -ENOMEM;
534 goto alloc_fail;
535 }
536
537 /*
538 * If we are JOIN_NOLOCK we're already committing a transaction and
539 * waiting on this guy, so we don't need to do the sb_start_intwrite
540 * because we're already holding a ref. We need this because we could
541 * have raced in and did an fsync() on a file which can kick a commit
542 * and then we deadlock with somebody doing a freeze.
543 *
544 * If we are ATTACH, it means we just want to catch the current
545 * transaction and commit it, so we needn't do sb_start_intwrite().
546 */
547 if (type & __TRANS_FREEZABLE)
548 sb_start_intwrite(fs_info->sb);
549
550 if (may_wait_transaction(fs_info, type))
551 wait_current_trans(fs_info);
552
553 do {
554 ret = join_transaction(fs_info, type);
555 if (ret == -EBUSY) {
556 wait_current_trans(fs_info);
557 if (unlikely(type == TRANS_ATTACH))
558 ret = -ENOENT;
559 }
560 } while (ret == -EBUSY);
561
562 if (ret < 0)
563 goto join_fail;
564
565 cur_trans = fs_info->running_transaction;
566
567 h->transid = cur_trans->transid;
568 h->transaction = cur_trans;
569 h->root = root;
570 refcount_set(&h->use_count, 1);
571 h->fs_info = root->fs_info;
572
573 h->type = type;
574 h->can_flush_pending_bgs = true;
575 INIT_LIST_HEAD(&h->new_bgs);
576
577 smp_mb();
578 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
579 may_wait_transaction(fs_info, type)) {
580 current->journal_info = h;
581 btrfs_commit_transaction(h);
582 goto again;
583 }
584
585 if (num_bytes) {
586 trace_btrfs_space_reservation(fs_info, "transaction",
587 h->transid, num_bytes, 1);
588 h->block_rsv = &fs_info->trans_block_rsv;
589 h->bytes_reserved = num_bytes;
590 h->reloc_reserved = reloc_reserved;
591 }
592
593got_it:
594 btrfs_record_root_in_trans(h, root);
595
596 if (!current->journal_info && type != TRANS_USERSPACE)
597 current->journal_info = h;
598 return h;
599
600join_fail:
601 if (type & __TRANS_FREEZABLE)
602 sb_end_intwrite(fs_info->sb);
603 kmem_cache_free(btrfs_trans_handle_cachep, h);
604alloc_fail:
605 if (num_bytes)
606 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
607 num_bytes);
608reserve_fail:
609 btrfs_qgroup_free_meta(root, qgroup_reserved);
610 return ERR_PTR(ret);
611}
612
613struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
614 unsigned int num_items)
615{
616 return start_transaction(root, num_items, TRANS_START,
617 BTRFS_RESERVE_FLUSH_ALL, true);
618}
619
620struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
621 struct btrfs_root *root,
622 unsigned int num_items,
623 int min_factor)
624{
625 struct btrfs_fs_info *fs_info = root->fs_info;
626 struct btrfs_trans_handle *trans;
627 u64 num_bytes;
628 int ret;
629
630 /*
631 * We have two callers: unlink and block group removal. The
632 * former should succeed even if we will temporarily exceed
633 * quota and the latter operates on the extent root so
634 * qgroup enforcement is ignored anyway.
635 */
636 trans = start_transaction(root, num_items, TRANS_START,
637 BTRFS_RESERVE_FLUSH_ALL, false);
638 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
639 return trans;
640
641 trans = btrfs_start_transaction(root, 0);
642 if (IS_ERR(trans))
643 return trans;
644
645 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
646 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
647 num_bytes, min_factor);
648 if (ret) {
649 btrfs_end_transaction(trans);
650 return ERR_PTR(ret);
651 }
652
653 trans->block_rsv = &fs_info->trans_block_rsv;
654 trans->bytes_reserved = num_bytes;
655 trace_btrfs_space_reservation(fs_info, "transaction",
656 trans->transid, num_bytes, 1);
657
658 return trans;
659}
660
661struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
662{
663 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
664 true);
665}
666
667struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
668{
669 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
670 BTRFS_RESERVE_NO_FLUSH, true);
671}
672
673struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
674{
675 return start_transaction(root, 0, TRANS_USERSPACE,
676 BTRFS_RESERVE_NO_FLUSH, true);
677}
678
679/*
680 * btrfs_attach_transaction() - catch the running transaction
681 *
682 * It is used when we want to commit the current the transaction, but
683 * don't want to start a new one.
684 *
685 * Note: If this function return -ENOENT, it just means there is no
686 * running transaction. But it is possible that the inactive transaction
687 * is still in the memory, not fully on disk. If you hope there is no
688 * inactive transaction in the fs when -ENOENT is returned, you should
689 * invoke
690 * btrfs_attach_transaction_barrier()
691 */
692struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
693{
694 return start_transaction(root, 0, TRANS_ATTACH,
695 BTRFS_RESERVE_NO_FLUSH, true);
696}
697
698/*
699 * btrfs_attach_transaction_barrier() - catch the running transaction
700 *
701 * It is similar to the above function, the differentia is this one
702 * will wait for all the inactive transactions until they fully
703 * complete.
704 */
705struct btrfs_trans_handle *
706btrfs_attach_transaction_barrier(struct btrfs_root *root)
707{
708 struct btrfs_trans_handle *trans;
709
710 trans = start_transaction(root, 0, TRANS_ATTACH,
711 BTRFS_RESERVE_NO_FLUSH, true);
712 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
713 btrfs_wait_for_commit(root->fs_info, 0);
714
715 return trans;
716}
717
718/* wait for a transaction commit to be fully complete */
719static noinline void wait_for_commit(struct btrfs_transaction *commit)
720{
721 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
722}
723
724int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
725{
726 struct btrfs_transaction *cur_trans = NULL, *t;
727 int ret = 0;
728
729 if (transid) {
730 if (transid <= fs_info->last_trans_committed)
731 goto out;
732
733 /* find specified transaction */
734 spin_lock(&fs_info->trans_lock);
735 list_for_each_entry(t, &fs_info->trans_list, list) {
736 if (t->transid == transid) {
737 cur_trans = t;
738 refcount_inc(&cur_trans->use_count);
739 ret = 0;
740 break;
741 }
742 if (t->transid > transid) {
743 ret = 0;
744 break;
745 }
746 }
747 spin_unlock(&fs_info->trans_lock);
748
749 /*
750 * The specified transaction doesn't exist, or we
751 * raced with btrfs_commit_transaction
752 */
753 if (!cur_trans) {
754 if (transid > fs_info->last_trans_committed)
755 ret = -EINVAL;
756 goto out;
757 }
758 } else {
759 /* find newest transaction that is committing | committed */
760 spin_lock(&fs_info->trans_lock);
761 list_for_each_entry_reverse(t, &fs_info->trans_list,
762 list) {
763 if (t->state >= TRANS_STATE_COMMIT_START) {
764 if (t->state == TRANS_STATE_COMPLETED)
765 break;
766 cur_trans = t;
767 refcount_inc(&cur_trans->use_count);
768 break;
769 }
770 }
771 spin_unlock(&fs_info->trans_lock);
772 if (!cur_trans)
773 goto out; /* nothing committing|committed */
774 }
775
776 wait_for_commit(cur_trans);
777 btrfs_put_transaction(cur_trans);
778out:
779 return ret;
780}
781
782void btrfs_throttle(struct btrfs_fs_info *fs_info)
783{
784 if (!atomic_read(&fs_info->open_ioctl_trans))
785 wait_current_trans(fs_info);
786}
787
788static int should_end_transaction(struct btrfs_trans_handle *trans)
789{
790 struct btrfs_fs_info *fs_info = trans->fs_info;
791
792 if (btrfs_check_space_for_delayed_refs(trans, fs_info))
793 return 1;
794
795 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
796}
797
798int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
799{
800 struct btrfs_transaction *cur_trans = trans->transaction;
801 struct btrfs_fs_info *fs_info = trans->fs_info;
802 int updates;
803 int err;
804
805 smp_mb();
806 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
807 cur_trans->delayed_refs.flushing)
808 return 1;
809
810 updates = trans->delayed_ref_updates;
811 trans->delayed_ref_updates = 0;
812 if (updates) {
813 err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
814 if (err) /* Error code will also eval true */
815 return err;
816 }
817
818 return should_end_transaction(trans);
819}
820
821static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
822
823{
824 struct btrfs_fs_info *fs_info = trans->fs_info;
825
826 if (!trans->block_rsv) {
827 ASSERT(!trans->bytes_reserved);
828 return;
829 }
830
831 if (!trans->bytes_reserved)
832 return;
833
834 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
835 trace_btrfs_space_reservation(fs_info, "transaction",
836 trans->transid, trans->bytes_reserved, 0);
837 btrfs_block_rsv_release(fs_info, trans->block_rsv,
838 trans->bytes_reserved);
839 trans->bytes_reserved = 0;
840}
841
842static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
843 int throttle)
844{
845 struct btrfs_fs_info *info = trans->fs_info;
846 struct btrfs_transaction *cur_trans = trans->transaction;
847 u64 transid = trans->transid;
848 unsigned long cur = trans->delayed_ref_updates;
849 int lock = (trans->type != TRANS_JOIN_NOLOCK);
850 int err = 0;
851 int must_run_delayed_refs = 0;
852
853 if (refcount_read(&trans->use_count) > 1) {
854 refcount_dec(&trans->use_count);
855 trans->block_rsv = trans->orig_rsv;
856 return 0;
857 }
858
859 btrfs_trans_release_metadata(trans);
860 trans->block_rsv = NULL;
861
862 if (!list_empty(&trans->new_bgs))
863 btrfs_create_pending_block_groups(trans, info);
864
865 trans->delayed_ref_updates = 0;
866 if (!trans->sync) {
867 must_run_delayed_refs =
868 btrfs_should_throttle_delayed_refs(trans, info);
869 cur = max_t(unsigned long, cur, 32);
870
871 /*
872 * don't make the caller wait if they are from a NOLOCK
873 * or ATTACH transaction, it will deadlock with commit
874 */
875 if (must_run_delayed_refs == 1 &&
876 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
877 must_run_delayed_refs = 2;
878 }
879
880 btrfs_trans_release_metadata(trans);
881 trans->block_rsv = NULL;
882
883 if (!list_empty(&trans->new_bgs))
884 btrfs_create_pending_block_groups(trans, info);
885
886 btrfs_trans_release_chunk_metadata(trans);
887
888 if (lock && !atomic_read(&info->open_ioctl_trans) &&
889 should_end_transaction(trans) &&
890 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
891 spin_lock(&info->trans_lock);
892 if (cur_trans->state == TRANS_STATE_RUNNING)
893 cur_trans->state = TRANS_STATE_BLOCKED;
894 spin_unlock(&info->trans_lock);
895 }
896
897 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
898 if (throttle)
899 return btrfs_commit_transaction(trans);
900 else
901 wake_up_process(info->transaction_kthread);
902 }
903
904 if (trans->type & __TRANS_FREEZABLE)
905 sb_end_intwrite(info->sb);
906
907 WARN_ON(cur_trans != info->running_transaction);
908 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
909 atomic_dec(&cur_trans->num_writers);
910 extwriter_counter_dec(cur_trans, trans->type);
911
912 /*
913 * Make sure counter is updated before we wake up waiters.
914 */
915 smp_mb();
916 if (waitqueue_active(&cur_trans->writer_wait))
917 wake_up(&cur_trans->writer_wait);
918 btrfs_put_transaction(cur_trans);
919
920 if (current->journal_info == trans)
921 current->journal_info = NULL;
922
923 if (throttle)
924 btrfs_run_delayed_iputs(info);
925
926 if (trans->aborted ||
927 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
928 wake_up_process(info->transaction_kthread);
929 err = -EIO;
930 }
931
932 kmem_cache_free(btrfs_trans_handle_cachep, trans);
933 if (must_run_delayed_refs) {
934 btrfs_async_run_delayed_refs(info, cur, transid,
935 must_run_delayed_refs == 1);
936 }
937 return err;
938}
939
940int btrfs_end_transaction(struct btrfs_trans_handle *trans)
941{
942 return __btrfs_end_transaction(trans, 0);
943}
944
945int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
946{
947 return __btrfs_end_transaction(trans, 1);
948}
949
950/*
951 * when btree blocks are allocated, they have some corresponding bits set for
952 * them in one of two extent_io trees. This is used to make sure all of
953 * those extents are sent to disk but does not wait on them
954 */
955int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
956 struct extent_io_tree *dirty_pages, int mark)
957{
958 int err = 0;
959 int werr = 0;
960 struct address_space *mapping = fs_info->btree_inode->i_mapping;
961 struct extent_state *cached_state = NULL;
962 u64 start = 0;
963 u64 end;
964
965 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
966 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
967 mark, &cached_state)) {
968 bool wait_writeback = false;
969
970 err = convert_extent_bit(dirty_pages, start, end,
971 EXTENT_NEED_WAIT,
972 mark, &cached_state);
973 /*
974 * convert_extent_bit can return -ENOMEM, which is most of the
975 * time a temporary error. So when it happens, ignore the error
976 * and wait for writeback of this range to finish - because we
977 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
978 * to __btrfs_wait_marked_extents() would not know that
979 * writeback for this range started and therefore wouldn't
980 * wait for it to finish - we don't want to commit a
981 * superblock that points to btree nodes/leafs for which
982 * writeback hasn't finished yet (and without errors).
983 * We cleanup any entries left in the io tree when committing
984 * the transaction (through clear_btree_io_tree()).
985 */
986 if (err == -ENOMEM) {
987 err = 0;
988 wait_writeback = true;
989 }
990 if (!err)
991 err = filemap_fdatawrite_range(mapping, start, end);
992 if (err)
993 werr = err;
994 else if (wait_writeback)
995 werr = filemap_fdatawait_range(mapping, start, end);
996 free_extent_state(cached_state);
997 cached_state = NULL;
998 cond_resched();
999 start = end + 1;
1000 }
1001 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1002 return werr;
1003}
1004
1005/*
1006 * when btree blocks are allocated, they have some corresponding bits set for
1007 * them in one of two extent_io trees. This is used to make sure all of
1008 * those extents are on disk for transaction or log commit. We wait
1009 * on all the pages and clear them from the dirty pages state tree
1010 */
1011static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1012 struct extent_io_tree *dirty_pages)
1013{
1014 int err = 0;
1015 int werr = 0;
1016 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1017 struct extent_state *cached_state = NULL;
1018 u64 start = 0;
1019 u64 end;
1020
1021 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1022 EXTENT_NEED_WAIT, &cached_state)) {
1023 /*
1024 * Ignore -ENOMEM errors returned by clear_extent_bit().
1025 * When committing the transaction, we'll remove any entries
1026 * left in the io tree. For a log commit, we don't remove them
1027 * after committing the log because the tree can be accessed
1028 * concurrently - we do it only at transaction commit time when
1029 * it's safe to do it (through clear_btree_io_tree()).
1030 */
1031 err = clear_extent_bit(dirty_pages, start, end,
1032 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1033 if (err == -ENOMEM)
1034 err = 0;
1035 if (!err)
1036 err = filemap_fdatawait_range(mapping, start, end);
1037 if (err)
1038 werr = err;
1039 free_extent_state(cached_state);
1040 cached_state = NULL;
1041 cond_resched();
1042 start = end + 1;
1043 }
1044 if (err)
1045 werr = err;
1046 return werr;
1047}
1048
1049int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1050 struct extent_io_tree *dirty_pages)
1051{
1052 bool errors = false;
1053 int err;
1054
1055 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1056 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1057 errors = true;
1058
1059 if (errors && !err)
1060 err = -EIO;
1061 return err;
1062}
1063
1064int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1065{
1066 struct btrfs_fs_info *fs_info = log_root->fs_info;
1067 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1068 bool errors = false;
1069 int err;
1070
1071 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1072
1073 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1074 if ((mark & EXTENT_DIRTY) &&
1075 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1076 errors = true;
1077
1078 if ((mark & EXTENT_NEW) &&
1079 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1080 errors = true;
1081
1082 if (errors && !err)
1083 err = -EIO;
1084 return err;
1085}
1086
1087/*
1088 * When btree blocks are allocated the corresponding extents are marked dirty.
1089 * This function ensures such extents are persisted on disk for transaction or
1090 * log commit.
1091 *
1092 * @trans: transaction whose dirty pages we'd like to write
1093 */
1094static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1095 struct btrfs_fs_info *fs_info)
1096{
1097 int ret;
1098 int ret2;
1099 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1100 struct blk_plug plug;
1101
1102 blk_start_plug(&plug);
1103 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1104 blk_finish_plug(&plug);
1105 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1106
1107 clear_btree_io_tree(&trans->transaction->dirty_pages);
1108
1109 if (ret)
1110 return ret;
1111 else if (ret2)
1112 return ret2;
1113 else
1114 return 0;
1115}
1116
1117/*
1118 * this is used to update the root pointer in the tree of tree roots.
1119 *
1120 * But, in the case of the extent allocation tree, updating the root
1121 * pointer may allocate blocks which may change the root of the extent
1122 * allocation tree.
1123 *
1124 * So, this loops and repeats and makes sure the cowonly root didn't
1125 * change while the root pointer was being updated in the metadata.
1126 */
1127static int update_cowonly_root(struct btrfs_trans_handle *trans,
1128 struct btrfs_root *root)
1129{
1130 int ret;
1131 u64 old_root_bytenr;
1132 u64 old_root_used;
1133 struct btrfs_fs_info *fs_info = root->fs_info;
1134 struct btrfs_root *tree_root = fs_info->tree_root;
1135
1136 old_root_used = btrfs_root_used(&root->root_item);
1137
1138 while (1) {
1139 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1140 if (old_root_bytenr == root->node->start &&
1141 old_root_used == btrfs_root_used(&root->root_item))
1142 break;
1143
1144 btrfs_set_root_node(&root->root_item, root->node);
1145 ret = btrfs_update_root(trans, tree_root,
1146 &root->root_key,
1147 &root->root_item);
1148 if (ret)
1149 return ret;
1150
1151 old_root_used = btrfs_root_used(&root->root_item);
1152 }
1153
1154 return 0;
1155}
1156
1157/*
1158 * update all the cowonly tree roots on disk
1159 *
1160 * The error handling in this function may not be obvious. Any of the
1161 * failures will cause the file system to go offline. We still need
1162 * to clean up the delayed refs.
1163 */
1164static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1165 struct btrfs_fs_info *fs_info)
1166{
1167 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1168 struct list_head *io_bgs = &trans->transaction->io_bgs;
1169 struct list_head *next;
1170 struct extent_buffer *eb;
1171 int ret;
1172
1173 eb = btrfs_lock_root_node(fs_info->tree_root);
1174 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1175 0, &eb);
1176 btrfs_tree_unlock(eb);
1177 free_extent_buffer(eb);
1178
1179 if (ret)
1180 return ret;
1181
1182 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1183 if (ret)
1184 return ret;
1185
1186 ret = btrfs_run_dev_stats(trans, fs_info);
1187 if (ret)
1188 return ret;
1189 ret = btrfs_run_dev_replace(trans, fs_info);
1190 if (ret)
1191 return ret;
1192 ret = btrfs_run_qgroups(trans, fs_info);
1193 if (ret)
1194 return ret;
1195
1196 ret = btrfs_setup_space_cache(trans, fs_info);
1197 if (ret)
1198 return ret;
1199
1200 /* run_qgroups might have added some more refs */
1201 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1202 if (ret)
1203 return ret;
1204again:
1205 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1206 struct btrfs_root *root;
1207 next = fs_info->dirty_cowonly_roots.next;
1208 list_del_init(next);
1209 root = list_entry(next, struct btrfs_root, dirty_list);
1210 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1211
1212 if (root != fs_info->extent_root)
1213 list_add_tail(&root->dirty_list,
1214 &trans->transaction->switch_commits);
1215 ret = update_cowonly_root(trans, root);
1216 if (ret)
1217 return ret;
1218 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1219 if (ret)
1220 return ret;
1221 }
1222
1223 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1224 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1225 if (ret)
1226 return ret;
1227 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1228 if (ret)
1229 return ret;
1230 }
1231
1232 if (!list_empty(&fs_info->dirty_cowonly_roots))
1233 goto again;
1234
1235 list_add_tail(&fs_info->extent_root->dirty_list,
1236 &trans->transaction->switch_commits);
1237 btrfs_after_dev_replace_commit(fs_info);
1238
1239 return 0;
1240}
1241
1242/*
1243 * dead roots are old snapshots that need to be deleted. This allocates
1244 * a dirty root struct and adds it into the list of dead roots that need to
1245 * be deleted
1246 */
1247void btrfs_add_dead_root(struct btrfs_root *root)
1248{
1249 struct btrfs_fs_info *fs_info = root->fs_info;
1250
1251 spin_lock(&fs_info->trans_lock);
1252 if (list_empty(&root->root_list))
1253 list_add_tail(&root->root_list, &fs_info->dead_roots);
1254 spin_unlock(&fs_info->trans_lock);
1255}
1256
1257/*
1258 * update all the cowonly tree roots on disk
1259 */
1260static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1261 struct btrfs_fs_info *fs_info)
1262{
1263 struct btrfs_root *gang[8];
1264 int i;
1265 int ret;
1266 int err = 0;
1267
1268 spin_lock(&fs_info->fs_roots_radix_lock);
1269 while (1) {
1270 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1271 (void **)gang, 0,
1272 ARRAY_SIZE(gang),
1273 BTRFS_ROOT_TRANS_TAG);
1274 if (ret == 0)
1275 break;
1276 for (i = 0; i < ret; i++) {
1277 struct btrfs_root *root = gang[i];
1278 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1279 (unsigned long)root->root_key.objectid,
1280 BTRFS_ROOT_TRANS_TAG);
1281 spin_unlock(&fs_info->fs_roots_radix_lock);
1282
1283 btrfs_free_log(trans, root);
1284 btrfs_update_reloc_root(trans, root);
1285 btrfs_orphan_commit_root(trans, root);
1286
1287 btrfs_save_ino_cache(root, trans);
1288
1289 /* see comments in should_cow_block() */
1290 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1291 smp_mb__after_atomic();
1292
1293 if (root->commit_root != root->node) {
1294 list_add_tail(&root->dirty_list,
1295 &trans->transaction->switch_commits);
1296 btrfs_set_root_node(&root->root_item,
1297 root->node);
1298 }
1299
1300 err = btrfs_update_root(trans, fs_info->tree_root,
1301 &root->root_key,
1302 &root->root_item);
1303 spin_lock(&fs_info->fs_roots_radix_lock);
1304 if (err)
1305 break;
1306 btrfs_qgroup_free_meta_all(root);
1307 }
1308 }
1309 spin_unlock(&fs_info->fs_roots_radix_lock);
1310 return err;
1311}
1312
1313/*
1314 * defrag a given btree.
1315 * Every leaf in the btree is read and defragged.
1316 */
1317int btrfs_defrag_root(struct btrfs_root *root)
1318{
1319 struct btrfs_fs_info *info = root->fs_info;
1320 struct btrfs_trans_handle *trans;
1321 int ret;
1322
1323 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1324 return 0;
1325
1326 while (1) {
1327 trans = btrfs_start_transaction(root, 0);
1328 if (IS_ERR(trans))
1329 return PTR_ERR(trans);
1330
1331 ret = btrfs_defrag_leaves(trans, root);
1332
1333 btrfs_end_transaction(trans);
1334 btrfs_btree_balance_dirty(info);
1335 cond_resched();
1336
1337 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1338 break;
1339
1340 if (btrfs_defrag_cancelled(info)) {
1341 btrfs_debug(info, "defrag_root cancelled");
1342 ret = -EAGAIN;
1343 break;
1344 }
1345 }
1346 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1347 return ret;
1348}
1349
1350/*
1351 * Do all special snapshot related qgroup dirty hack.
1352 *
1353 * Will do all needed qgroup inherit and dirty hack like switch commit
1354 * roots inside one transaction and write all btree into disk, to make
1355 * qgroup works.
1356 */
1357static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1358 struct btrfs_root *src,
1359 struct btrfs_root *parent,
1360 struct btrfs_qgroup_inherit *inherit,
1361 u64 dst_objectid)
1362{
1363 struct btrfs_fs_info *fs_info = src->fs_info;
1364 int ret;
1365
1366 /*
1367 * Save some performance in the case that qgroups are not
1368 * enabled. If this check races with the ioctl, rescan will
1369 * kick in anyway.
1370 */
1371 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1372 return 0;
1373
1374 /*
1375 * We are going to commit transaction, see btrfs_commit_transaction()
1376 * comment for reason locking tree_log_mutex
1377 */
1378 mutex_lock(&fs_info->tree_log_mutex);
1379
1380 ret = commit_fs_roots(trans, fs_info);
1381 if (ret)
1382 goto out;
1383 ret = btrfs_qgroup_account_extents(trans, fs_info);
1384 if (ret < 0)
1385 goto out;
1386
1387 /* Now qgroup are all updated, we can inherit it to new qgroups */
1388 ret = btrfs_qgroup_inherit(trans, fs_info,
1389 src->root_key.objectid, dst_objectid,
1390 inherit);
1391 if (ret < 0)
1392 goto out;
1393
1394 /*
1395 * Now we do a simplified commit transaction, which will:
1396 * 1) commit all subvolume and extent tree
1397 * To ensure all subvolume and extent tree have a valid
1398 * commit_root to accounting later insert_dir_item()
1399 * 2) write all btree blocks onto disk
1400 * This is to make sure later btree modification will be cowed
1401 * Or commit_root can be populated and cause wrong qgroup numbers
1402 * In this simplified commit, we don't really care about other trees
1403 * like chunk and root tree, as they won't affect qgroup.
1404 * And we don't write super to avoid half committed status.
1405 */
1406 ret = commit_cowonly_roots(trans, fs_info);
1407 if (ret)
1408 goto out;
1409 switch_commit_roots(trans->transaction, fs_info);
1410 ret = btrfs_write_and_wait_transaction(trans, fs_info);
1411 if (ret)
1412 btrfs_handle_fs_error(fs_info, ret,
1413 "Error while writing out transaction for qgroup");
1414
1415out:
1416 mutex_unlock(&fs_info->tree_log_mutex);
1417
1418 /*
1419 * Force parent root to be updated, as we recorded it before so its
1420 * last_trans == cur_transid.
1421 * Or it won't be committed again onto disk after later
1422 * insert_dir_item()
1423 */
1424 if (!ret)
1425 record_root_in_trans(trans, parent, 1);
1426 return ret;
1427}
1428
1429/*
1430 * new snapshots need to be created at a very specific time in the
1431 * transaction commit. This does the actual creation.
1432 *
1433 * Note:
1434 * If the error which may affect the commitment of the current transaction
1435 * happens, we should return the error number. If the error which just affect
1436 * the creation of the pending snapshots, just return 0.
1437 */
1438static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1439 struct btrfs_fs_info *fs_info,
1440 struct btrfs_pending_snapshot *pending)
1441{
1442 struct btrfs_key key;
1443 struct btrfs_root_item *new_root_item;
1444 struct btrfs_root *tree_root = fs_info->tree_root;
1445 struct btrfs_root *root = pending->root;
1446 struct btrfs_root *parent_root;
1447 struct btrfs_block_rsv *rsv;
1448 struct inode *parent_inode;
1449 struct btrfs_path *path;
1450 struct btrfs_dir_item *dir_item;
1451 struct dentry *dentry;
1452 struct extent_buffer *tmp;
1453 struct extent_buffer *old;
1454 struct timespec cur_time;
1455 int ret = 0;
1456 u64 to_reserve = 0;
1457 u64 index = 0;
1458 u64 objectid;
1459 u64 root_flags;
1460 uuid_le new_uuid;
1461
1462 ASSERT(pending->path);
1463 path = pending->path;
1464
1465 ASSERT(pending->root_item);
1466 new_root_item = pending->root_item;
1467
1468 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1469 if (pending->error)
1470 goto no_free_objectid;
1471
1472 /*
1473 * Make qgroup to skip current new snapshot's qgroupid, as it is
1474 * accounted by later btrfs_qgroup_inherit().
1475 */
1476 btrfs_set_skip_qgroup(trans, objectid);
1477
1478 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1479
1480 if (to_reserve > 0) {
1481 pending->error = btrfs_block_rsv_add(root,
1482 &pending->block_rsv,
1483 to_reserve,
1484 BTRFS_RESERVE_NO_FLUSH);
1485 if (pending->error)
1486 goto clear_skip_qgroup;
1487 }
1488
1489 key.objectid = objectid;
1490 key.offset = (u64)-1;
1491 key.type = BTRFS_ROOT_ITEM_KEY;
1492
1493 rsv = trans->block_rsv;
1494 trans->block_rsv = &pending->block_rsv;
1495 trans->bytes_reserved = trans->block_rsv->reserved;
1496 trace_btrfs_space_reservation(fs_info, "transaction",
1497 trans->transid,
1498 trans->bytes_reserved, 1);
1499 dentry = pending->dentry;
1500 parent_inode = pending->dir;
1501 parent_root = BTRFS_I(parent_inode)->root;
1502 record_root_in_trans(trans, parent_root, 0);
1503
1504 cur_time = current_time(parent_inode);
1505
1506 /*
1507 * insert the directory item
1508 */
1509 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1510 BUG_ON(ret); /* -ENOMEM */
1511
1512 /* check if there is a file/dir which has the same name. */
1513 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1514 btrfs_ino(BTRFS_I(parent_inode)),
1515 dentry->d_name.name,
1516 dentry->d_name.len, 0);
1517 if (dir_item != NULL && !IS_ERR(dir_item)) {
1518 pending->error = -EEXIST;
1519 goto dir_item_existed;
1520 } else if (IS_ERR(dir_item)) {
1521 ret = PTR_ERR(dir_item);
1522 btrfs_abort_transaction(trans, ret);
1523 goto fail;
1524 }
1525 btrfs_release_path(path);
1526
1527 /*
1528 * pull in the delayed directory update
1529 * and the delayed inode item
1530 * otherwise we corrupt the FS during
1531 * snapshot
1532 */
1533 ret = btrfs_run_delayed_items(trans, fs_info);
1534 if (ret) { /* Transaction aborted */
1535 btrfs_abort_transaction(trans, ret);
1536 goto fail;
1537 }
1538
1539 record_root_in_trans(trans, root, 0);
1540 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1541 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1542 btrfs_check_and_init_root_item(new_root_item);
1543
1544 root_flags = btrfs_root_flags(new_root_item);
1545 if (pending->readonly)
1546 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1547 else
1548 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1549 btrfs_set_root_flags(new_root_item, root_flags);
1550
1551 btrfs_set_root_generation_v2(new_root_item,
1552 trans->transid);
1553 uuid_le_gen(&new_uuid);
1554 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1555 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1556 BTRFS_UUID_SIZE);
1557 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1558 memset(new_root_item->received_uuid, 0,
1559 sizeof(new_root_item->received_uuid));
1560 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1561 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1562 btrfs_set_root_stransid(new_root_item, 0);
1563 btrfs_set_root_rtransid(new_root_item, 0);
1564 }
1565 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1566 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1567 btrfs_set_root_otransid(new_root_item, trans->transid);
1568
1569 old = btrfs_lock_root_node(root);
1570 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1571 if (ret) {
1572 btrfs_tree_unlock(old);
1573 free_extent_buffer(old);
1574 btrfs_abort_transaction(trans, ret);
1575 goto fail;
1576 }
1577
1578 btrfs_set_lock_blocking(old);
1579
1580 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1581 /* clean up in any case */
1582 btrfs_tree_unlock(old);
1583 free_extent_buffer(old);
1584 if (ret) {
1585 btrfs_abort_transaction(trans, ret);
1586 goto fail;
1587 }
1588 /* see comments in should_cow_block() */
1589 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1590 smp_wmb();
1591
1592 btrfs_set_root_node(new_root_item, tmp);
1593 /* record when the snapshot was created in key.offset */
1594 key.offset = trans->transid;
1595 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1596 btrfs_tree_unlock(tmp);
1597 free_extent_buffer(tmp);
1598 if (ret) {
1599 btrfs_abort_transaction(trans, ret);
1600 goto fail;
1601 }
1602
1603 /*
1604 * insert root back/forward references
1605 */
1606 ret = btrfs_add_root_ref(trans, fs_info, objectid,
1607 parent_root->root_key.objectid,
1608 btrfs_ino(BTRFS_I(parent_inode)), index,
1609 dentry->d_name.name, dentry->d_name.len);
1610 if (ret) {
1611 btrfs_abort_transaction(trans, ret);
1612 goto fail;
1613 }
1614
1615 key.offset = (u64)-1;
1616 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1617 if (IS_ERR(pending->snap)) {
1618 ret = PTR_ERR(pending->snap);
1619 btrfs_abort_transaction(trans, ret);
1620 goto fail;
1621 }
1622
1623 ret = btrfs_reloc_post_snapshot(trans, pending);
1624 if (ret) {
1625 btrfs_abort_transaction(trans, ret);
1626 goto fail;
1627 }
1628
1629 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1630 if (ret) {
1631 btrfs_abort_transaction(trans, ret);
1632 goto fail;
1633 }
1634
1635 /*
1636 * Do special qgroup accounting for snapshot, as we do some qgroup
1637 * snapshot hack to do fast snapshot.
1638 * To co-operate with that hack, we do hack again.
1639 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1640 */
1641 ret = qgroup_account_snapshot(trans, root, parent_root,
1642 pending->inherit, objectid);
1643 if (ret < 0)
1644 goto fail;
1645
1646 ret = btrfs_insert_dir_item(trans, parent_root,
1647 dentry->d_name.name, dentry->d_name.len,
1648 BTRFS_I(parent_inode), &key,
1649 BTRFS_FT_DIR, index);
1650 /* We have check then name at the beginning, so it is impossible. */
1651 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1652 if (ret) {
1653 btrfs_abort_transaction(trans, ret);
1654 goto fail;
1655 }
1656
1657 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1658 dentry->d_name.len * 2);
1659 parent_inode->i_mtime = parent_inode->i_ctime =
1660 current_time(parent_inode);
1661 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1662 if (ret) {
1663 btrfs_abort_transaction(trans, ret);
1664 goto fail;
1665 }
1666 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1667 BTRFS_UUID_KEY_SUBVOL, objectid);
1668 if (ret) {
1669 btrfs_abort_transaction(trans, ret);
1670 goto fail;
1671 }
1672 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1673 ret = btrfs_uuid_tree_add(trans, fs_info,
1674 new_root_item->received_uuid,
1675 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1676 objectid);
1677 if (ret && ret != -EEXIST) {
1678 btrfs_abort_transaction(trans, ret);
1679 goto fail;
1680 }
1681 }
1682
1683 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1684 if (ret) {
1685 btrfs_abort_transaction(trans, ret);
1686 goto fail;
1687 }
1688
1689fail:
1690 pending->error = ret;
1691dir_item_existed:
1692 trans->block_rsv = rsv;
1693 trans->bytes_reserved = 0;
1694clear_skip_qgroup:
1695 btrfs_clear_skip_qgroup(trans);
1696no_free_objectid:
1697 kfree(new_root_item);
1698 pending->root_item = NULL;
1699 btrfs_free_path(path);
1700 pending->path = NULL;
1701
1702 return ret;
1703}
1704
1705/*
1706 * create all the snapshots we've scheduled for creation
1707 */
1708static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1709 struct btrfs_fs_info *fs_info)
1710{
1711 struct btrfs_pending_snapshot *pending, *next;
1712 struct list_head *head = &trans->transaction->pending_snapshots;
1713 int ret = 0;
1714
1715 list_for_each_entry_safe(pending, next, head, list) {
1716 list_del(&pending->list);
1717 ret = create_pending_snapshot(trans, fs_info, pending);
1718 if (ret)
1719 break;
1720 }
1721 return ret;
1722}
1723
1724static void update_super_roots(struct btrfs_fs_info *fs_info)
1725{
1726 struct btrfs_root_item *root_item;
1727 struct btrfs_super_block *super;
1728
1729 super = fs_info->super_copy;
1730
1731 root_item = &fs_info->chunk_root->root_item;
1732 super->chunk_root = root_item->bytenr;
1733 super->chunk_root_generation = root_item->generation;
1734 super->chunk_root_level = root_item->level;
1735
1736 root_item = &fs_info->tree_root->root_item;
1737 super->root = root_item->bytenr;
1738 super->generation = root_item->generation;
1739 super->root_level = root_item->level;
1740 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1741 super->cache_generation = root_item->generation;
1742 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1743 super->uuid_tree_generation = root_item->generation;
1744}
1745
1746int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1747{
1748 struct btrfs_transaction *trans;
1749 int ret = 0;
1750
1751 spin_lock(&info->trans_lock);
1752 trans = info->running_transaction;
1753 if (trans)
1754 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1755 spin_unlock(&info->trans_lock);
1756 return ret;
1757}
1758
1759int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1760{
1761 struct btrfs_transaction *trans;
1762 int ret = 0;
1763
1764 spin_lock(&info->trans_lock);
1765 trans = info->running_transaction;
1766 if (trans)
1767 ret = is_transaction_blocked(trans);
1768 spin_unlock(&info->trans_lock);
1769 return ret;
1770}
1771
1772/*
1773 * wait for the current transaction commit to start and block subsequent
1774 * transaction joins
1775 */
1776static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1777 struct btrfs_transaction *trans)
1778{
1779 wait_event(fs_info->transaction_blocked_wait,
1780 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1781}
1782
1783/*
1784 * wait for the current transaction to start and then become unblocked.
1785 * caller holds ref.
1786 */
1787static void wait_current_trans_commit_start_and_unblock(
1788 struct btrfs_fs_info *fs_info,
1789 struct btrfs_transaction *trans)
1790{
1791 wait_event(fs_info->transaction_wait,
1792 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1793}
1794
1795/*
1796 * commit transactions asynchronously. once btrfs_commit_transaction_async
1797 * returns, any subsequent transaction will not be allowed to join.
1798 */
1799struct btrfs_async_commit {
1800 struct btrfs_trans_handle *newtrans;
1801 struct work_struct work;
1802};
1803
1804static void do_async_commit(struct work_struct *work)
1805{
1806 struct btrfs_async_commit *ac =
1807 container_of(work, struct btrfs_async_commit, work);
1808
1809 /*
1810 * We've got freeze protection passed with the transaction.
1811 * Tell lockdep about it.
1812 */
1813 if (ac->newtrans->type & __TRANS_FREEZABLE)
1814 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1815
1816 current->journal_info = ac->newtrans;
1817
1818 btrfs_commit_transaction(ac->newtrans);
1819 kfree(ac);
1820}
1821
1822int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1823 int wait_for_unblock)
1824{
1825 struct btrfs_fs_info *fs_info = trans->fs_info;
1826 struct btrfs_async_commit *ac;
1827 struct btrfs_transaction *cur_trans;
1828
1829 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1830 if (!ac)
1831 return -ENOMEM;
1832
1833 INIT_WORK(&ac->work, do_async_commit);
1834 ac->newtrans = btrfs_join_transaction(trans->root);
1835 if (IS_ERR(ac->newtrans)) {
1836 int err = PTR_ERR(ac->newtrans);
1837 kfree(ac);
1838 return err;
1839 }
1840
1841 /* take transaction reference */
1842 cur_trans = trans->transaction;
1843 refcount_inc(&cur_trans->use_count);
1844
1845 btrfs_end_transaction(trans);
1846
1847 /*
1848 * Tell lockdep we've released the freeze rwsem, since the
1849 * async commit thread will be the one to unlock it.
1850 */
1851 if (ac->newtrans->type & __TRANS_FREEZABLE)
1852 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1853
1854 schedule_work(&ac->work);
1855
1856 /* wait for transaction to start and unblock */
1857 if (wait_for_unblock)
1858 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1859 else
1860 wait_current_trans_commit_start(fs_info, cur_trans);
1861
1862 if (current->journal_info == trans)
1863 current->journal_info = NULL;
1864
1865 btrfs_put_transaction(cur_trans);
1866 return 0;
1867}
1868
1869
1870static void cleanup_transaction(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root, int err)
1872{
1873 struct btrfs_fs_info *fs_info = root->fs_info;
1874 struct btrfs_transaction *cur_trans = trans->transaction;
1875 DEFINE_WAIT(wait);
1876
1877 WARN_ON(refcount_read(&trans->use_count) > 1);
1878
1879 btrfs_abort_transaction(trans, err);
1880
1881 spin_lock(&fs_info->trans_lock);
1882
1883 /*
1884 * If the transaction is removed from the list, it means this
1885 * transaction has been committed successfully, so it is impossible
1886 * to call the cleanup function.
1887 */
1888 BUG_ON(list_empty(&cur_trans->list));
1889
1890 list_del_init(&cur_trans->list);
1891 if (cur_trans == fs_info->running_transaction) {
1892 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1893 spin_unlock(&fs_info->trans_lock);
1894 wait_event(cur_trans->writer_wait,
1895 atomic_read(&cur_trans->num_writers) == 1);
1896
1897 spin_lock(&fs_info->trans_lock);
1898 }
1899 spin_unlock(&fs_info->trans_lock);
1900
1901 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1902
1903 spin_lock(&fs_info->trans_lock);
1904 if (cur_trans == fs_info->running_transaction)
1905 fs_info->running_transaction = NULL;
1906 spin_unlock(&fs_info->trans_lock);
1907
1908 if (trans->type & __TRANS_FREEZABLE)
1909 sb_end_intwrite(fs_info->sb);
1910 btrfs_put_transaction(cur_trans);
1911 btrfs_put_transaction(cur_trans);
1912
1913 trace_btrfs_transaction_commit(root);
1914
1915 if (current->journal_info == trans)
1916 current->journal_info = NULL;
1917 btrfs_scrub_cancel(fs_info);
1918
1919 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1920}
1921
1922static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1923{
1924 /*
1925 * We use writeback_inodes_sb here because if we used
1926 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1927 * Currently are holding the fs freeze lock, if we do an async flush
1928 * we'll do btrfs_join_transaction() and deadlock because we need to
1929 * wait for the fs freeze lock. Using the direct flushing we benefit
1930 * from already being in a transaction and our join_transaction doesn't
1931 * have to re-take the fs freeze lock.
1932 */
1933 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1934 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1935 return 0;
1936}
1937
1938static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1939{
1940 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1941 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1942}
1943
1944static inline void
1945btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1946{
1947 wait_event(cur_trans->pending_wait,
1948 atomic_read(&cur_trans->pending_ordered) == 0);
1949}
1950
1951int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1952{
1953 struct btrfs_fs_info *fs_info = trans->fs_info;
1954 struct btrfs_transaction *cur_trans = trans->transaction;
1955 struct btrfs_transaction *prev_trans = NULL;
1956 int ret;
1957
1958 /* Stop the commit early if ->aborted is set */
1959 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1960 ret = cur_trans->aborted;
1961 btrfs_end_transaction(trans);
1962 return ret;
1963 }
1964
1965 /* make a pass through all the delayed refs we have so far
1966 * any runnings procs may add more while we are here
1967 */
1968 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1969 if (ret) {
1970 btrfs_end_transaction(trans);
1971 return ret;
1972 }
1973
1974 btrfs_trans_release_metadata(trans);
1975 trans->block_rsv = NULL;
1976
1977 cur_trans = trans->transaction;
1978
1979 /*
1980 * set the flushing flag so procs in this transaction have to
1981 * start sending their work down.
1982 */
1983 cur_trans->delayed_refs.flushing = 1;
1984 smp_wmb();
1985
1986 if (!list_empty(&trans->new_bgs))
1987 btrfs_create_pending_block_groups(trans, fs_info);
1988
1989 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1990 if (ret) {
1991 btrfs_end_transaction(trans);
1992 return ret;
1993 }
1994
1995 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1996 int run_it = 0;
1997
1998 /* this mutex is also taken before trying to set
1999 * block groups readonly. We need to make sure
2000 * that nobody has set a block group readonly
2001 * after a extents from that block group have been
2002 * allocated for cache files. btrfs_set_block_group_ro
2003 * will wait for the transaction to commit if it
2004 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2005 *
2006 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2007 * only one process starts all the block group IO. It wouldn't
2008 * hurt to have more than one go through, but there's no
2009 * real advantage to it either.
2010 */
2011 mutex_lock(&fs_info->ro_block_group_mutex);
2012 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2013 &cur_trans->flags))
2014 run_it = 1;
2015 mutex_unlock(&fs_info->ro_block_group_mutex);
2016
2017 if (run_it)
2018 ret = btrfs_start_dirty_block_groups(trans, fs_info);
2019 }
2020 if (ret) {
2021 btrfs_end_transaction(trans);
2022 return ret;
2023 }
2024
2025 spin_lock(&fs_info->trans_lock);
2026 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2027 spin_unlock(&fs_info->trans_lock);
2028 refcount_inc(&cur_trans->use_count);
2029 ret = btrfs_end_transaction(trans);
2030
2031 wait_for_commit(cur_trans);
2032
2033 if (unlikely(cur_trans->aborted))
2034 ret = cur_trans->aborted;
2035
2036 btrfs_put_transaction(cur_trans);
2037
2038 return ret;
2039 }
2040
2041 cur_trans->state = TRANS_STATE_COMMIT_START;
2042 wake_up(&fs_info->transaction_blocked_wait);
2043
2044 if (cur_trans->list.prev != &fs_info->trans_list) {
2045 prev_trans = list_entry(cur_trans->list.prev,
2046 struct btrfs_transaction, list);
2047 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2048 refcount_inc(&prev_trans->use_count);
2049 spin_unlock(&fs_info->trans_lock);
2050
2051 wait_for_commit(prev_trans);
2052 ret = prev_trans->aborted;
2053
2054 btrfs_put_transaction(prev_trans);
2055 if (ret)
2056 goto cleanup_transaction;
2057 } else {
2058 spin_unlock(&fs_info->trans_lock);
2059 }
2060 } else {
2061 spin_unlock(&fs_info->trans_lock);
2062 }
2063
2064 extwriter_counter_dec(cur_trans, trans->type);
2065
2066 ret = btrfs_start_delalloc_flush(fs_info);
2067 if (ret)
2068 goto cleanup_transaction;
2069
2070 ret = btrfs_run_delayed_items(trans, fs_info);
2071 if (ret)
2072 goto cleanup_transaction;
2073
2074 wait_event(cur_trans->writer_wait,
2075 extwriter_counter_read(cur_trans) == 0);
2076
2077 /* some pending stuffs might be added after the previous flush. */
2078 ret = btrfs_run_delayed_items(trans, fs_info);
2079 if (ret)
2080 goto cleanup_transaction;
2081
2082 btrfs_wait_delalloc_flush(fs_info);
2083
2084 btrfs_wait_pending_ordered(cur_trans);
2085
2086 btrfs_scrub_pause(fs_info);
2087 /*
2088 * Ok now we need to make sure to block out any other joins while we
2089 * commit the transaction. We could have started a join before setting
2090 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2091 */
2092 spin_lock(&fs_info->trans_lock);
2093 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2094 spin_unlock(&fs_info->trans_lock);
2095 wait_event(cur_trans->writer_wait,
2096 atomic_read(&cur_trans->num_writers) == 1);
2097
2098 /* ->aborted might be set after the previous check, so check it */
2099 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2100 ret = cur_trans->aborted;
2101 goto scrub_continue;
2102 }
2103 /*
2104 * the reloc mutex makes sure that we stop
2105 * the balancing code from coming in and moving
2106 * extents around in the middle of the commit
2107 */
2108 mutex_lock(&fs_info->reloc_mutex);
2109
2110 /*
2111 * We needn't worry about the delayed items because we will
2112 * deal with them in create_pending_snapshot(), which is the
2113 * core function of the snapshot creation.
2114 */
2115 ret = create_pending_snapshots(trans, fs_info);
2116 if (ret) {
2117 mutex_unlock(&fs_info->reloc_mutex);
2118 goto scrub_continue;
2119 }
2120
2121 /*
2122 * We insert the dir indexes of the snapshots and update the inode
2123 * of the snapshots' parents after the snapshot creation, so there
2124 * are some delayed items which are not dealt with. Now deal with
2125 * them.
2126 *
2127 * We needn't worry that this operation will corrupt the snapshots,
2128 * because all the tree which are snapshoted will be forced to COW
2129 * the nodes and leaves.
2130 */
2131 ret = btrfs_run_delayed_items(trans, fs_info);
2132 if (ret) {
2133 mutex_unlock(&fs_info->reloc_mutex);
2134 goto scrub_continue;
2135 }
2136
2137 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2138 if (ret) {
2139 mutex_unlock(&fs_info->reloc_mutex);
2140 goto scrub_continue;
2141 }
2142
2143 /*
2144 * make sure none of the code above managed to slip in a
2145 * delayed item
2146 */
2147 btrfs_assert_delayed_root_empty(fs_info);
2148
2149 WARN_ON(cur_trans != trans->transaction);
2150
2151 /* btrfs_commit_tree_roots is responsible for getting the
2152 * various roots consistent with each other. Every pointer
2153 * in the tree of tree roots has to point to the most up to date
2154 * root for every subvolume and other tree. So, we have to keep
2155 * the tree logging code from jumping in and changing any
2156 * of the trees.
2157 *
2158 * At this point in the commit, there can't be any tree-log
2159 * writers, but a little lower down we drop the trans mutex
2160 * and let new people in. By holding the tree_log_mutex
2161 * from now until after the super is written, we avoid races
2162 * with the tree-log code.
2163 */
2164 mutex_lock(&fs_info->tree_log_mutex);
2165
2166 ret = commit_fs_roots(trans, fs_info);
2167 if (ret) {
2168 mutex_unlock(&fs_info->tree_log_mutex);
2169 mutex_unlock(&fs_info->reloc_mutex);
2170 goto scrub_continue;
2171 }
2172
2173 /*
2174 * Since the transaction is done, we can apply the pending changes
2175 * before the next transaction.
2176 */
2177 btrfs_apply_pending_changes(fs_info);
2178
2179 /* commit_fs_roots gets rid of all the tree log roots, it is now
2180 * safe to free the root of tree log roots
2181 */
2182 btrfs_free_log_root_tree(trans, fs_info);
2183
2184 /*
2185 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2186 * new delayed refs. Must handle them or qgroup can be wrong.
2187 */
2188 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2189 if (ret) {
2190 mutex_unlock(&fs_info->tree_log_mutex);
2191 mutex_unlock(&fs_info->reloc_mutex);
2192 goto scrub_continue;
2193 }
2194
2195 /*
2196 * Since fs roots are all committed, we can get a quite accurate
2197 * new_roots. So let's do quota accounting.
2198 */
2199 ret = btrfs_qgroup_account_extents(trans, fs_info);
2200 if (ret < 0) {
2201 mutex_unlock(&fs_info->tree_log_mutex);
2202 mutex_unlock(&fs_info->reloc_mutex);
2203 goto scrub_continue;
2204 }
2205
2206 ret = commit_cowonly_roots(trans, fs_info);
2207 if (ret) {
2208 mutex_unlock(&fs_info->tree_log_mutex);
2209 mutex_unlock(&fs_info->reloc_mutex);
2210 goto scrub_continue;
2211 }
2212
2213 /*
2214 * The tasks which save the space cache and inode cache may also
2215 * update ->aborted, check it.
2216 */
2217 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2218 ret = cur_trans->aborted;
2219 mutex_unlock(&fs_info->tree_log_mutex);
2220 mutex_unlock(&fs_info->reloc_mutex);
2221 goto scrub_continue;
2222 }
2223
2224 btrfs_prepare_extent_commit(fs_info);
2225
2226 cur_trans = fs_info->running_transaction;
2227
2228 btrfs_set_root_node(&fs_info->tree_root->root_item,
2229 fs_info->tree_root->node);
2230 list_add_tail(&fs_info->tree_root->dirty_list,
2231 &cur_trans->switch_commits);
2232
2233 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2234 fs_info->chunk_root->node);
2235 list_add_tail(&fs_info->chunk_root->dirty_list,
2236 &cur_trans->switch_commits);
2237
2238 switch_commit_roots(cur_trans, fs_info);
2239
2240 ASSERT(list_empty(&cur_trans->dirty_bgs));
2241 ASSERT(list_empty(&cur_trans->io_bgs));
2242 update_super_roots(fs_info);
2243
2244 btrfs_set_super_log_root(fs_info->super_copy, 0);
2245 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2246 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2247 sizeof(*fs_info->super_copy));
2248
2249 btrfs_update_commit_device_size(fs_info);
2250 btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2251
2252 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2253 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2254
2255 btrfs_trans_release_chunk_metadata(trans);
2256
2257 spin_lock(&fs_info->trans_lock);
2258 cur_trans->state = TRANS_STATE_UNBLOCKED;
2259 fs_info->running_transaction = NULL;
2260 spin_unlock(&fs_info->trans_lock);
2261 mutex_unlock(&fs_info->reloc_mutex);
2262
2263 wake_up(&fs_info->transaction_wait);
2264
2265 ret = btrfs_write_and_wait_transaction(trans, fs_info);
2266 if (ret) {
2267 btrfs_handle_fs_error(fs_info, ret,
2268 "Error while writing out transaction");
2269 mutex_unlock(&fs_info->tree_log_mutex);
2270 goto scrub_continue;
2271 }
2272
2273 ret = write_all_supers(fs_info, 0);
2274 /*
2275 * the super is written, we can safely allow the tree-loggers
2276 * to go about their business
2277 */
2278 mutex_unlock(&fs_info->tree_log_mutex);
2279 if (ret)
2280 goto scrub_continue;
2281
2282 btrfs_finish_extent_commit(trans, fs_info);
2283
2284 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2285 btrfs_clear_space_info_full(fs_info);
2286
2287 fs_info->last_trans_committed = cur_trans->transid;
2288 /*
2289 * We needn't acquire the lock here because there is no other task
2290 * which can change it.
2291 */
2292 cur_trans->state = TRANS_STATE_COMPLETED;
2293 wake_up(&cur_trans->commit_wait);
2294
2295 spin_lock(&fs_info->trans_lock);
2296 list_del_init(&cur_trans->list);
2297 spin_unlock(&fs_info->trans_lock);
2298
2299 btrfs_put_transaction(cur_trans);
2300 btrfs_put_transaction(cur_trans);
2301
2302 if (trans->type & __TRANS_FREEZABLE)
2303 sb_end_intwrite(fs_info->sb);
2304
2305 trace_btrfs_transaction_commit(trans->root);
2306
2307 btrfs_scrub_continue(fs_info);
2308
2309 if (current->journal_info == trans)
2310 current->journal_info = NULL;
2311
2312 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2313
2314 /*
2315 * If fs has been frozen, we can not handle delayed iputs, otherwise
2316 * it'll result in deadlock about SB_FREEZE_FS.
2317 */
2318 if (current != fs_info->transaction_kthread &&
2319 current != fs_info->cleaner_kthread &&
2320 !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2321 btrfs_run_delayed_iputs(fs_info);
2322
2323 return ret;
2324
2325scrub_continue:
2326 btrfs_scrub_continue(fs_info);
2327cleanup_transaction:
2328 btrfs_trans_release_metadata(trans);
2329 btrfs_trans_release_chunk_metadata(trans);
2330 trans->block_rsv = NULL;
2331 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2332 if (current->journal_info == trans)
2333 current->journal_info = NULL;
2334 cleanup_transaction(trans, trans->root, ret);
2335
2336 return ret;
2337}
2338
2339/*
2340 * return < 0 if error
2341 * 0 if there are no more dead_roots at the time of call
2342 * 1 there are more to be processed, call me again
2343 *
2344 * The return value indicates there are certainly more snapshots to delete, but
2345 * if there comes a new one during processing, it may return 0. We don't mind,
2346 * because btrfs_commit_super will poke cleaner thread and it will process it a
2347 * few seconds later.
2348 */
2349int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2350{
2351 int ret;
2352 struct btrfs_fs_info *fs_info = root->fs_info;
2353
2354 spin_lock(&fs_info->trans_lock);
2355 if (list_empty(&fs_info->dead_roots)) {
2356 spin_unlock(&fs_info->trans_lock);
2357 return 0;
2358 }
2359 root = list_first_entry(&fs_info->dead_roots,
2360 struct btrfs_root, root_list);
2361 list_del_init(&root->root_list);
2362 spin_unlock(&fs_info->trans_lock);
2363
2364 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2365
2366 btrfs_kill_all_delayed_nodes(root);
2367
2368 if (btrfs_header_backref_rev(root->node) <
2369 BTRFS_MIXED_BACKREF_REV)
2370 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2371 else
2372 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2373
2374 return (ret < 0) ? 0 : 1;
2375}
2376
2377void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2378{
2379 unsigned long prev;
2380 unsigned long bit;
2381
2382 prev = xchg(&fs_info->pending_changes, 0);
2383 if (!prev)
2384 return;
2385
2386 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2387 if (prev & bit)
2388 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2389 prev &= ~bit;
2390
2391 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2392 if (prev & bit)
2393 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2394 prev &= ~bit;
2395
2396 bit = 1 << BTRFS_PENDING_COMMIT;
2397 if (prev & bit)
2398 btrfs_debug(fs_info, "pending commit done");
2399 prev &= ~bit;
2400
2401 if (prev)
2402 btrfs_warn(fs_info,
2403 "unknown pending changes left 0x%lx, ignoring", prev);
2404}