Btrfs: Fix async thread shutdown race
[linux-2.6-block.git] / fs / btrfs / transaction.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/sched.h>
21#include <linux/writeback.h>
22#include <linux/pagemap.h>
23#include <linux/blkdev.h>
24#include "ctree.h"
25#include "disk-io.h"
26#include "transaction.h"
27#include "locking.h"
28#include "tree-log.h"
29
30#define BTRFS_ROOT_TRANS_TAG 0
31
32static noinline void put_transaction(struct btrfs_transaction *transaction)
33{
34 WARN_ON(transaction->use_count == 0);
35 transaction->use_count--;
36 if (transaction->use_count == 0) {
37 list_del_init(&transaction->list);
38 memset(transaction, 0, sizeof(*transaction));
39 kmem_cache_free(btrfs_transaction_cachep, transaction);
40 }
41}
42
43static noinline void switch_commit_root(struct btrfs_root *root)
44{
45 free_extent_buffer(root->commit_root);
46 root->commit_root = btrfs_root_node(root);
47}
48
49/*
50 * either allocate a new transaction or hop into the existing one
51 */
52static noinline int join_transaction(struct btrfs_root *root)
53{
54 struct btrfs_transaction *cur_trans;
55 cur_trans = root->fs_info->running_transaction;
56 if (!cur_trans) {
57 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58 GFP_NOFS);
59 BUG_ON(!cur_trans);
60 root->fs_info->generation++;
61 cur_trans->num_writers = 1;
62 cur_trans->num_joined = 0;
63 cur_trans->transid = root->fs_info->generation;
64 init_waitqueue_head(&cur_trans->writer_wait);
65 init_waitqueue_head(&cur_trans->commit_wait);
66 cur_trans->in_commit = 0;
67 cur_trans->blocked = 0;
68 cur_trans->use_count = 1;
69 cur_trans->commit_done = 0;
70 cur_trans->start_time = get_seconds();
71
72 cur_trans->delayed_refs.root.rb_node = NULL;
73 cur_trans->delayed_refs.num_entries = 0;
74 cur_trans->delayed_refs.num_heads_ready = 0;
75 cur_trans->delayed_refs.num_heads = 0;
76 cur_trans->delayed_refs.flushing = 0;
77 cur_trans->delayed_refs.run_delayed_start = 0;
78 spin_lock_init(&cur_trans->delayed_refs.lock);
79
80 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82 extent_io_tree_init(&cur_trans->dirty_pages,
83 root->fs_info->btree_inode->i_mapping,
84 GFP_NOFS);
85 spin_lock(&root->fs_info->new_trans_lock);
86 root->fs_info->running_transaction = cur_trans;
87 spin_unlock(&root->fs_info->new_trans_lock);
88 } else {
89 cur_trans->num_writers++;
90 cur_trans->num_joined++;
91 }
92
93 return 0;
94}
95
96/*
97 * this does all the record keeping required to make sure that a reference
98 * counted root is properly recorded in a given transaction. This is required
99 * to make sure the old root from before we joined the transaction is deleted
100 * when the transaction commits
101 */
102static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root)
104{
105 if (root->ref_cows && root->last_trans < trans->transid) {
106 WARN_ON(root == root->fs_info->extent_root);
107 WARN_ON(root->root_item.refs == 0);
108 WARN_ON(root->commit_root != root->node);
109
110 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 (unsigned long)root->root_key.objectid,
112 BTRFS_ROOT_TRANS_TAG);
113 root->last_trans = trans->transid;
114 btrfs_init_reloc_root(trans, root);
115 }
116 return 0;
117}
118
119int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 struct btrfs_root *root)
121{
122 if (!root->ref_cows)
123 return 0;
124
125 mutex_lock(&root->fs_info->trans_mutex);
126 if (root->last_trans == trans->transid) {
127 mutex_unlock(&root->fs_info->trans_mutex);
128 return 0;
129 }
130
131 record_root_in_trans(trans, root);
132 mutex_unlock(&root->fs_info->trans_mutex);
133 return 0;
134}
135
136/* wait for commit against the current transaction to become unblocked
137 * when this is done, it is safe to start a new transaction, but the current
138 * transaction might not be fully on disk.
139 */
140static void wait_current_trans(struct btrfs_root *root)
141{
142 struct btrfs_transaction *cur_trans;
143
144 cur_trans = root->fs_info->running_transaction;
145 if (cur_trans && cur_trans->blocked) {
146 DEFINE_WAIT(wait);
147 cur_trans->use_count++;
148 while (1) {
149 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 TASK_UNINTERRUPTIBLE);
151 if (cur_trans->blocked) {
152 mutex_unlock(&root->fs_info->trans_mutex);
153 schedule();
154 mutex_lock(&root->fs_info->trans_mutex);
155 finish_wait(&root->fs_info->transaction_wait,
156 &wait);
157 } else {
158 finish_wait(&root->fs_info->transaction_wait,
159 &wait);
160 break;
161 }
162 }
163 put_transaction(cur_trans);
164 }
165}
166
167static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
168 int num_blocks, int wait)
169{
170 struct btrfs_trans_handle *h =
171 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
172 int ret;
173
174 mutex_lock(&root->fs_info->trans_mutex);
175 if (!root->fs_info->log_root_recovering &&
176 ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
177 wait_current_trans(root);
178 ret = join_transaction(root);
179 BUG_ON(ret);
180
181 h->transid = root->fs_info->running_transaction->transid;
182 h->transaction = root->fs_info->running_transaction;
183 h->blocks_reserved = num_blocks;
184 h->blocks_used = 0;
185 h->block_group = 0;
186 h->alloc_exclude_nr = 0;
187 h->alloc_exclude_start = 0;
188 h->delayed_ref_updates = 0;
189
190 root->fs_info->running_transaction->use_count++;
191 record_root_in_trans(h, root);
192 mutex_unlock(&root->fs_info->trans_mutex);
193 return h;
194}
195
196struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
197 int num_blocks)
198{
199 return start_transaction(root, num_blocks, 1);
200}
201struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
202 int num_blocks)
203{
204 return start_transaction(root, num_blocks, 0);
205}
206
207struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
208 int num_blocks)
209{
210 return start_transaction(r, num_blocks, 2);
211}
212
213/* wait for a transaction commit to be fully complete */
214static noinline int wait_for_commit(struct btrfs_root *root,
215 struct btrfs_transaction *commit)
216{
217 DEFINE_WAIT(wait);
218 mutex_lock(&root->fs_info->trans_mutex);
219 while (!commit->commit_done) {
220 prepare_to_wait(&commit->commit_wait, &wait,
221 TASK_UNINTERRUPTIBLE);
222 if (commit->commit_done)
223 break;
224 mutex_unlock(&root->fs_info->trans_mutex);
225 schedule();
226 mutex_lock(&root->fs_info->trans_mutex);
227 }
228 mutex_unlock(&root->fs_info->trans_mutex);
229 finish_wait(&commit->commit_wait, &wait);
230 return 0;
231}
232
233#if 0
234/*
235 * rate limit against the drop_snapshot code. This helps to slow down new
236 * operations if the drop_snapshot code isn't able to keep up.
237 */
238static void throttle_on_drops(struct btrfs_root *root)
239{
240 struct btrfs_fs_info *info = root->fs_info;
241 int harder_count = 0;
242
243harder:
244 if (atomic_read(&info->throttles)) {
245 DEFINE_WAIT(wait);
246 int thr;
247 thr = atomic_read(&info->throttle_gen);
248
249 do {
250 prepare_to_wait(&info->transaction_throttle,
251 &wait, TASK_UNINTERRUPTIBLE);
252 if (!atomic_read(&info->throttles)) {
253 finish_wait(&info->transaction_throttle, &wait);
254 break;
255 }
256 schedule();
257 finish_wait(&info->transaction_throttle, &wait);
258 } while (thr == atomic_read(&info->throttle_gen));
259 harder_count++;
260
261 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
262 harder_count < 2)
263 goto harder;
264
265 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
266 harder_count < 10)
267 goto harder;
268
269 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
270 harder_count < 20)
271 goto harder;
272 }
273}
274#endif
275
276void btrfs_throttle(struct btrfs_root *root)
277{
278 mutex_lock(&root->fs_info->trans_mutex);
279 if (!root->fs_info->open_ioctl_trans)
280 wait_current_trans(root);
281 mutex_unlock(&root->fs_info->trans_mutex);
282}
283
284static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
285 struct btrfs_root *root, int throttle)
286{
287 struct btrfs_transaction *cur_trans;
288 struct btrfs_fs_info *info = root->fs_info;
289 int count = 0;
290
291 while (count < 4) {
292 unsigned long cur = trans->delayed_ref_updates;
293 trans->delayed_ref_updates = 0;
294 if (cur &&
295 trans->transaction->delayed_refs.num_heads_ready > 64) {
296 trans->delayed_ref_updates = 0;
297
298 /*
299 * do a full flush if the transaction is trying
300 * to close
301 */
302 if (trans->transaction->delayed_refs.flushing)
303 cur = 0;
304 btrfs_run_delayed_refs(trans, root, cur);
305 } else {
306 break;
307 }
308 count++;
309 }
310
311 mutex_lock(&info->trans_mutex);
312 cur_trans = info->running_transaction;
313 WARN_ON(cur_trans != trans->transaction);
314 WARN_ON(cur_trans->num_writers < 1);
315 cur_trans->num_writers--;
316
317 if (waitqueue_active(&cur_trans->writer_wait))
318 wake_up(&cur_trans->writer_wait);
319 put_transaction(cur_trans);
320 mutex_unlock(&info->trans_mutex);
321 memset(trans, 0, sizeof(*trans));
322 kmem_cache_free(btrfs_trans_handle_cachep, trans);
323
324 return 0;
325}
326
327int btrfs_end_transaction(struct btrfs_trans_handle *trans,
328 struct btrfs_root *root)
329{
330 return __btrfs_end_transaction(trans, root, 0);
331}
332
333int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
334 struct btrfs_root *root)
335{
336 return __btrfs_end_transaction(trans, root, 1);
337}
338
339/*
340 * when btree blocks are allocated, they have some corresponding bits set for
341 * them in one of two extent_io trees. This is used to make sure all of
342 * those extents are on disk for transaction or log commit
343 */
344int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
345 struct extent_io_tree *dirty_pages)
346{
347 int ret;
348 int err = 0;
349 int werr = 0;
350 struct page *page;
351 struct inode *btree_inode = root->fs_info->btree_inode;
352 u64 start = 0;
353 u64 end;
354 unsigned long index;
355
356 while (1) {
357 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
358 EXTENT_DIRTY);
359 if (ret)
360 break;
361 while (start <= end) {
362 cond_resched();
363
364 index = start >> PAGE_CACHE_SHIFT;
365 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
366 page = find_get_page(btree_inode->i_mapping, index);
367 if (!page)
368 continue;
369
370 btree_lock_page_hook(page);
371 if (!page->mapping) {
372 unlock_page(page);
373 page_cache_release(page);
374 continue;
375 }
376
377 if (PageWriteback(page)) {
378 if (PageDirty(page))
379 wait_on_page_writeback(page);
380 else {
381 unlock_page(page);
382 page_cache_release(page);
383 continue;
384 }
385 }
386 err = write_one_page(page, 0);
387 if (err)
388 werr = err;
389 page_cache_release(page);
390 }
391 }
392 while (1) {
393 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
394 EXTENT_DIRTY);
395 if (ret)
396 break;
397
398 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
399 while (start <= end) {
400 index = start >> PAGE_CACHE_SHIFT;
401 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
402 page = find_get_page(btree_inode->i_mapping, index);
403 if (!page)
404 continue;
405 if (PageDirty(page)) {
406 btree_lock_page_hook(page);
407 wait_on_page_writeback(page);
408 err = write_one_page(page, 0);
409 if (err)
410 werr = err;
411 }
412 wait_on_page_writeback(page);
413 page_cache_release(page);
414 cond_resched();
415 }
416 }
417 if (err)
418 werr = err;
419 return werr;
420}
421
422int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
423 struct btrfs_root *root)
424{
425 if (!trans || !trans->transaction) {
426 struct inode *btree_inode;
427 btree_inode = root->fs_info->btree_inode;
428 return filemap_write_and_wait(btree_inode->i_mapping);
429 }
430 return btrfs_write_and_wait_marked_extents(root,
431 &trans->transaction->dirty_pages);
432}
433
434/*
435 * this is used to update the root pointer in the tree of tree roots.
436 *
437 * But, in the case of the extent allocation tree, updating the root
438 * pointer may allocate blocks which may change the root of the extent
439 * allocation tree.
440 *
441 * So, this loops and repeats and makes sure the cowonly root didn't
442 * change while the root pointer was being updated in the metadata.
443 */
444static int update_cowonly_root(struct btrfs_trans_handle *trans,
445 struct btrfs_root *root)
446{
447 int ret;
448 u64 old_root_bytenr;
449 struct btrfs_root *tree_root = root->fs_info->tree_root;
450
451 btrfs_write_dirty_block_groups(trans, root);
452
453 while (1) {
454 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
455 if (old_root_bytenr == root->node->start)
456 break;
457
458 btrfs_set_root_node(&root->root_item, root->node);
459 ret = btrfs_update_root(trans, tree_root,
460 &root->root_key,
461 &root->root_item);
462 BUG_ON(ret);
463
464 ret = btrfs_write_dirty_block_groups(trans, root);
465 BUG_ON(ret);
466 }
467
468 if (root != root->fs_info->extent_root)
469 switch_commit_root(root);
470
471 return 0;
472}
473
474/*
475 * update all the cowonly tree roots on disk
476 */
477static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
478 struct btrfs_root *root)
479{
480 struct btrfs_fs_info *fs_info = root->fs_info;
481 struct list_head *next;
482 struct extent_buffer *eb;
483 int ret;
484
485 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
486 BUG_ON(ret);
487
488 eb = btrfs_lock_root_node(fs_info->tree_root);
489 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
490 btrfs_tree_unlock(eb);
491 free_extent_buffer(eb);
492
493 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
494 BUG_ON(ret);
495
496 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
497 next = fs_info->dirty_cowonly_roots.next;
498 list_del_init(next);
499 root = list_entry(next, struct btrfs_root, dirty_list);
500
501 update_cowonly_root(trans, root);
502 }
503
504 down_write(&fs_info->extent_commit_sem);
505 switch_commit_root(fs_info->extent_root);
506 up_write(&fs_info->extent_commit_sem);
507
508 return 0;
509}
510
511/*
512 * dead roots are old snapshots that need to be deleted. This allocates
513 * a dirty root struct and adds it into the list of dead roots that need to
514 * be deleted
515 */
516int btrfs_add_dead_root(struct btrfs_root *root)
517{
518 mutex_lock(&root->fs_info->trans_mutex);
519 list_add(&root->root_list, &root->fs_info->dead_roots);
520 mutex_unlock(&root->fs_info->trans_mutex);
521 return 0;
522}
523
524/*
525 * update all the cowonly tree roots on disk
526 */
527static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
528 struct btrfs_root *root)
529{
530 struct btrfs_root *gang[8];
531 struct btrfs_fs_info *fs_info = root->fs_info;
532 int i;
533 int ret;
534 int err = 0;
535
536 while (1) {
537 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
538 (void **)gang, 0,
539 ARRAY_SIZE(gang),
540 BTRFS_ROOT_TRANS_TAG);
541 if (ret == 0)
542 break;
543 for (i = 0; i < ret; i++) {
544 root = gang[i];
545 radix_tree_tag_clear(&fs_info->fs_roots_radix,
546 (unsigned long)root->root_key.objectid,
547 BTRFS_ROOT_TRANS_TAG);
548
549 btrfs_free_log(trans, root);
550 btrfs_update_reloc_root(trans, root);
551
552 if (root->commit_root != root->node) {
553 switch_commit_root(root);
554 btrfs_set_root_node(&root->root_item,
555 root->node);
556 }
557
558 err = btrfs_update_root(trans, fs_info->tree_root,
559 &root->root_key,
560 &root->root_item);
561 if (err)
562 break;
563 }
564 }
565 return err;
566}
567
568/*
569 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
570 * otherwise every leaf in the btree is read and defragged.
571 */
572int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
573{
574 struct btrfs_fs_info *info = root->fs_info;
575 int ret;
576 struct btrfs_trans_handle *trans;
577 unsigned long nr;
578
579 smp_mb();
580 if (root->defrag_running)
581 return 0;
582 trans = btrfs_start_transaction(root, 1);
583 while (1) {
584 root->defrag_running = 1;
585 ret = btrfs_defrag_leaves(trans, root, cacheonly);
586 nr = trans->blocks_used;
587 btrfs_end_transaction(trans, root);
588 btrfs_btree_balance_dirty(info->tree_root, nr);
589 cond_resched();
590
591 trans = btrfs_start_transaction(root, 1);
592 if (root->fs_info->closing || ret != -EAGAIN)
593 break;
594 }
595 root->defrag_running = 0;
596 smp_mb();
597 btrfs_end_transaction(trans, root);
598 return 0;
599}
600
601#if 0
602/*
603 * when dropping snapshots, we generate a ton of delayed refs, and it makes
604 * sense not to join the transaction while it is trying to flush the current
605 * queue of delayed refs out.
606 *
607 * This is used by the drop snapshot code only
608 */
609static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
610{
611 DEFINE_WAIT(wait);
612
613 mutex_lock(&info->trans_mutex);
614 while (info->running_transaction &&
615 info->running_transaction->delayed_refs.flushing) {
616 prepare_to_wait(&info->transaction_wait, &wait,
617 TASK_UNINTERRUPTIBLE);
618 mutex_unlock(&info->trans_mutex);
619
620 schedule();
621
622 mutex_lock(&info->trans_mutex);
623 finish_wait(&info->transaction_wait, &wait);
624 }
625 mutex_unlock(&info->trans_mutex);
626 return 0;
627}
628
629/*
630 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
631 * all of them
632 */
633int btrfs_drop_dead_root(struct btrfs_root *root)
634{
635 struct btrfs_trans_handle *trans;
636 struct btrfs_root *tree_root = root->fs_info->tree_root;
637 unsigned long nr;
638 int ret;
639
640 while (1) {
641 /*
642 * we don't want to jump in and create a bunch of
643 * delayed refs if the transaction is starting to close
644 */
645 wait_transaction_pre_flush(tree_root->fs_info);
646 trans = btrfs_start_transaction(tree_root, 1);
647
648 /*
649 * we've joined a transaction, make sure it isn't
650 * closing right now
651 */
652 if (trans->transaction->delayed_refs.flushing) {
653 btrfs_end_transaction(trans, tree_root);
654 continue;
655 }
656
657 ret = btrfs_drop_snapshot(trans, root);
658 if (ret != -EAGAIN)
659 break;
660
661 ret = btrfs_update_root(trans, tree_root,
662 &root->root_key,
663 &root->root_item);
664 if (ret)
665 break;
666
667 nr = trans->blocks_used;
668 ret = btrfs_end_transaction(trans, tree_root);
669 BUG_ON(ret);
670
671 btrfs_btree_balance_dirty(tree_root, nr);
672 cond_resched();
673 }
674 BUG_ON(ret);
675
676 ret = btrfs_del_root(trans, tree_root, &root->root_key);
677 BUG_ON(ret);
678
679 nr = trans->blocks_used;
680 ret = btrfs_end_transaction(trans, tree_root);
681 BUG_ON(ret);
682
683 free_extent_buffer(root->node);
684 free_extent_buffer(root->commit_root);
685 kfree(root);
686
687 btrfs_btree_balance_dirty(tree_root, nr);
688 return ret;
689}
690#endif
691
692/*
693 * new snapshots need to be created at a very specific time in the
694 * transaction commit. This does the actual creation
695 */
696static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
697 struct btrfs_fs_info *fs_info,
698 struct btrfs_pending_snapshot *pending)
699{
700 struct btrfs_key key;
701 struct btrfs_root_item *new_root_item;
702 struct btrfs_root *tree_root = fs_info->tree_root;
703 struct btrfs_root *root = pending->root;
704 struct extent_buffer *tmp;
705 struct extent_buffer *old;
706 int ret;
707 u64 objectid;
708
709 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
710 if (!new_root_item) {
711 ret = -ENOMEM;
712 goto fail;
713 }
714 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
715 if (ret)
716 goto fail;
717
718 record_root_in_trans(trans, root);
719 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
720 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
721
722 key.objectid = objectid;
723 key.offset = 0;
724 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
725
726 old = btrfs_lock_root_node(root);
727 btrfs_cow_block(trans, root, old, NULL, 0, &old);
728 btrfs_set_lock_blocking(old);
729
730 btrfs_copy_root(trans, root, old, &tmp, objectid);
731 btrfs_tree_unlock(old);
732 free_extent_buffer(old);
733
734 btrfs_set_root_node(new_root_item, tmp);
735 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
736 new_root_item);
737 btrfs_tree_unlock(tmp);
738 free_extent_buffer(tmp);
739 if (ret)
740 goto fail;
741
742 key.offset = (u64)-1;
743 memcpy(&pending->root_key, &key, sizeof(key));
744fail:
745 kfree(new_root_item);
746 return ret;
747}
748
749static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
750 struct btrfs_pending_snapshot *pending)
751{
752 int ret;
753 int namelen;
754 u64 index = 0;
755 struct btrfs_trans_handle *trans;
756 struct inode *parent_inode;
757 struct inode *inode;
758 struct btrfs_root *parent_root;
759
760 parent_inode = pending->dentry->d_parent->d_inode;
761 parent_root = BTRFS_I(parent_inode)->root;
762 trans = btrfs_join_transaction(parent_root, 1);
763
764 /*
765 * insert the directory item
766 */
767 namelen = strlen(pending->name);
768 ret = btrfs_set_inode_index(parent_inode, &index);
769 ret = btrfs_insert_dir_item(trans, parent_root,
770 pending->name, namelen,
771 parent_inode->i_ino,
772 &pending->root_key, BTRFS_FT_DIR, index);
773
774 if (ret)
775 goto fail;
776
777 btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
778 ret = btrfs_update_inode(trans, parent_root, parent_inode);
779 BUG_ON(ret);
780
781 /* add the backref first */
782 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
783 pending->root_key.objectid,
784 BTRFS_ROOT_BACKREF_KEY,
785 parent_root->root_key.objectid,
786 parent_inode->i_ino, index, pending->name,
787 namelen);
788
789 BUG_ON(ret);
790
791 /* now add the forward ref */
792 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
793 parent_root->root_key.objectid,
794 BTRFS_ROOT_REF_KEY,
795 pending->root_key.objectid,
796 parent_inode->i_ino, index, pending->name,
797 namelen);
798
799 inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
800 d_instantiate(pending->dentry, inode);
801fail:
802 btrfs_end_transaction(trans, fs_info->fs_root);
803 return ret;
804}
805
806/*
807 * create all the snapshots we've scheduled for creation
808 */
809static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
810 struct btrfs_fs_info *fs_info)
811{
812 struct btrfs_pending_snapshot *pending;
813 struct list_head *head = &trans->transaction->pending_snapshots;
814 int ret;
815
816 list_for_each_entry(pending, head, list) {
817 ret = create_pending_snapshot(trans, fs_info, pending);
818 BUG_ON(ret);
819 }
820 return 0;
821}
822
823static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
824 struct btrfs_fs_info *fs_info)
825{
826 struct btrfs_pending_snapshot *pending;
827 struct list_head *head = &trans->transaction->pending_snapshots;
828 int ret;
829
830 while (!list_empty(head)) {
831 pending = list_entry(head->next,
832 struct btrfs_pending_snapshot, list);
833 ret = finish_pending_snapshot(fs_info, pending);
834 BUG_ON(ret);
835 list_del(&pending->list);
836 kfree(pending->name);
837 kfree(pending);
838 }
839 return 0;
840}
841
842static void update_super_roots(struct btrfs_root *root)
843{
844 struct btrfs_root_item *root_item;
845 struct btrfs_super_block *super;
846
847 super = &root->fs_info->super_copy;
848
849 root_item = &root->fs_info->chunk_root->root_item;
850 super->chunk_root = root_item->bytenr;
851 super->chunk_root_generation = root_item->generation;
852 super->chunk_root_level = root_item->level;
853
854 root_item = &root->fs_info->tree_root->root_item;
855 super->root = root_item->bytenr;
856 super->generation = root_item->generation;
857 super->root_level = root_item->level;
858}
859
860int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
861{
862 int ret = 0;
863 spin_lock(&info->new_trans_lock);
864 if (info->running_transaction)
865 ret = info->running_transaction->in_commit;
866 spin_unlock(&info->new_trans_lock);
867 return ret;
868}
869
870int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
871 struct btrfs_root *root)
872{
873 unsigned long joined = 0;
874 unsigned long timeout = 1;
875 struct btrfs_transaction *cur_trans;
876 struct btrfs_transaction *prev_trans = NULL;
877 struct extent_io_tree *pinned_copy;
878 DEFINE_WAIT(wait);
879 int ret;
880 int should_grow = 0;
881 unsigned long now = get_seconds();
882 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
883
884 btrfs_run_ordered_operations(root, 0);
885
886 /* make a pass through all the delayed refs we have so far
887 * any runnings procs may add more while we are here
888 */
889 ret = btrfs_run_delayed_refs(trans, root, 0);
890 BUG_ON(ret);
891
892 cur_trans = trans->transaction;
893 /*
894 * set the flushing flag so procs in this transaction have to
895 * start sending their work down.
896 */
897 cur_trans->delayed_refs.flushing = 1;
898
899 ret = btrfs_run_delayed_refs(trans, root, 0);
900 BUG_ON(ret);
901
902 mutex_lock(&root->fs_info->trans_mutex);
903 if (cur_trans->in_commit) {
904 cur_trans->use_count++;
905 mutex_unlock(&root->fs_info->trans_mutex);
906 btrfs_end_transaction(trans, root);
907
908 ret = wait_for_commit(root, cur_trans);
909 BUG_ON(ret);
910
911 mutex_lock(&root->fs_info->trans_mutex);
912 put_transaction(cur_trans);
913 mutex_unlock(&root->fs_info->trans_mutex);
914
915 return 0;
916 }
917
918 pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
919 if (!pinned_copy)
920 return -ENOMEM;
921
922 extent_io_tree_init(pinned_copy,
923 root->fs_info->btree_inode->i_mapping, GFP_NOFS);
924
925 trans->transaction->in_commit = 1;
926 trans->transaction->blocked = 1;
927 if (cur_trans->list.prev != &root->fs_info->trans_list) {
928 prev_trans = list_entry(cur_trans->list.prev,
929 struct btrfs_transaction, list);
930 if (!prev_trans->commit_done) {
931 prev_trans->use_count++;
932 mutex_unlock(&root->fs_info->trans_mutex);
933
934 wait_for_commit(root, prev_trans);
935
936 mutex_lock(&root->fs_info->trans_mutex);
937 put_transaction(prev_trans);
938 }
939 }
940
941 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
942 should_grow = 1;
943
944 do {
945 int snap_pending = 0;
946 joined = cur_trans->num_joined;
947 if (!list_empty(&trans->transaction->pending_snapshots))
948 snap_pending = 1;
949
950 WARN_ON(cur_trans != trans->transaction);
951 prepare_to_wait(&cur_trans->writer_wait, &wait,
952 TASK_UNINTERRUPTIBLE);
953
954 if (cur_trans->num_writers > 1)
955 timeout = MAX_SCHEDULE_TIMEOUT;
956 else if (should_grow)
957 timeout = 1;
958
959 mutex_unlock(&root->fs_info->trans_mutex);
960
961 if (flush_on_commit) {
962 btrfs_start_delalloc_inodes(root);
963 ret = btrfs_wait_ordered_extents(root, 0);
964 BUG_ON(ret);
965 } else if (snap_pending) {
966 ret = btrfs_wait_ordered_extents(root, 1);
967 BUG_ON(ret);
968 }
969
970 /*
971 * rename don't use btrfs_join_transaction, so, once we
972 * set the transaction to blocked above, we aren't going
973 * to get any new ordered operations. We can safely run
974 * it here and no for sure that nothing new will be added
975 * to the list
976 */
977 btrfs_run_ordered_operations(root, 1);
978
979 smp_mb();
980 if (cur_trans->num_writers > 1 || should_grow)
981 schedule_timeout(timeout);
982
983 mutex_lock(&root->fs_info->trans_mutex);
984 finish_wait(&cur_trans->writer_wait, &wait);
985 } while (cur_trans->num_writers > 1 ||
986 (should_grow && cur_trans->num_joined != joined));
987
988 ret = create_pending_snapshots(trans, root->fs_info);
989 BUG_ON(ret);
990
991 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
992 BUG_ON(ret);
993
994 WARN_ON(cur_trans != trans->transaction);
995
996 /* btrfs_commit_tree_roots is responsible for getting the
997 * various roots consistent with each other. Every pointer
998 * in the tree of tree roots has to point to the most up to date
999 * root for every subvolume and other tree. So, we have to keep
1000 * the tree logging code from jumping in and changing any
1001 * of the trees.
1002 *
1003 * At this point in the commit, there can't be any tree-log
1004 * writers, but a little lower down we drop the trans mutex
1005 * and let new people in. By holding the tree_log_mutex
1006 * from now until after the super is written, we avoid races
1007 * with the tree-log code.
1008 */
1009 mutex_lock(&root->fs_info->tree_log_mutex);
1010
1011 ret = commit_fs_roots(trans, root);
1012 BUG_ON(ret);
1013
1014 /* commit_fs_roots gets rid of all the tree log roots, it is now
1015 * safe to free the root of tree log roots
1016 */
1017 btrfs_free_log_root_tree(trans, root->fs_info);
1018
1019 ret = commit_cowonly_roots(trans, root);
1020 BUG_ON(ret);
1021
1022 cur_trans = root->fs_info->running_transaction;
1023 spin_lock(&root->fs_info->new_trans_lock);
1024 root->fs_info->running_transaction = NULL;
1025 spin_unlock(&root->fs_info->new_trans_lock);
1026
1027 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1028 root->fs_info->tree_root->node);
1029 switch_commit_root(root->fs_info->tree_root);
1030
1031 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1032 root->fs_info->chunk_root->node);
1033 switch_commit_root(root->fs_info->chunk_root);
1034
1035 update_super_roots(root);
1036
1037 if (!root->fs_info->log_root_recovering) {
1038 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1039 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1040 }
1041
1042 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1043 sizeof(root->fs_info->super_copy));
1044
1045 btrfs_copy_pinned(root, pinned_copy);
1046
1047 trans->transaction->blocked = 0;
1048
1049 wake_up(&root->fs_info->transaction_wait);
1050
1051 mutex_unlock(&root->fs_info->trans_mutex);
1052 ret = btrfs_write_and_wait_transaction(trans, root);
1053 BUG_ON(ret);
1054 write_ctree_super(trans, root, 0);
1055
1056 /*
1057 * the super is written, we can safely allow the tree-loggers
1058 * to go about their business
1059 */
1060 mutex_unlock(&root->fs_info->tree_log_mutex);
1061
1062 btrfs_finish_extent_commit(trans, root, pinned_copy);
1063 kfree(pinned_copy);
1064
1065 /* do the directory inserts of any pending snapshot creations */
1066 finish_pending_snapshots(trans, root->fs_info);
1067
1068 mutex_lock(&root->fs_info->trans_mutex);
1069
1070 cur_trans->commit_done = 1;
1071
1072 root->fs_info->last_trans_committed = cur_trans->transid;
1073
1074 wake_up(&cur_trans->commit_wait);
1075
1076 put_transaction(cur_trans);
1077 put_transaction(cur_trans);
1078
1079 mutex_unlock(&root->fs_info->trans_mutex);
1080
1081 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1082 return ret;
1083}
1084
1085/*
1086 * interface function to delete all the snapshots we have scheduled for deletion
1087 */
1088int btrfs_clean_old_snapshots(struct btrfs_root *root)
1089{
1090 LIST_HEAD(list);
1091 struct btrfs_fs_info *fs_info = root->fs_info;
1092
1093 mutex_lock(&fs_info->trans_mutex);
1094 list_splice_init(&fs_info->dead_roots, &list);
1095 mutex_unlock(&fs_info->trans_mutex);
1096
1097 while (!list_empty(&list)) {
1098 root = list_entry(list.next, struct btrfs_root, root_list);
1099 list_del_init(&root->root_list);
1100 btrfs_drop_snapshot(root, 0);
1101 }
1102 return 0;
1103}