Btrfs: Give each subvol and snapshot their own anonymous devid
[linux-2.6-block.git] / fs / btrfs / transaction.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/sched.h>
21#include <linux/writeback.h>
22#include <linux/pagemap.h>
23#include <linux/blkdev.h>
24#include "ctree.h"
25#include "disk-io.h"
26#include "transaction.h"
27#include "locking.h"
28#include "ref-cache.h"
29#include "tree-log.h"
30
31static int total_trans = 0;
32extern struct kmem_cache *btrfs_trans_handle_cachep;
33extern struct kmem_cache *btrfs_transaction_cachep;
34
35#define BTRFS_ROOT_TRANS_TAG 0
36
37static noinline void put_transaction(struct btrfs_transaction *transaction)
38{
39 WARN_ON(transaction->use_count == 0);
40 transaction->use_count--;
41 if (transaction->use_count == 0) {
42 WARN_ON(total_trans == 0);
43 total_trans--;
44 list_del_init(&transaction->list);
45 memset(transaction, 0, sizeof(*transaction));
46 kmem_cache_free(btrfs_transaction_cachep, transaction);
47 }
48}
49
50/*
51 * either allocate a new transaction or hop into the existing one
52 */
53static noinline int join_transaction(struct btrfs_root *root)
54{
55 struct btrfs_transaction *cur_trans;
56 cur_trans = root->fs_info->running_transaction;
57 if (!cur_trans) {
58 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 GFP_NOFS);
60 total_trans++;
61 BUG_ON(!cur_trans);
62 root->fs_info->generation++;
63 root->fs_info->last_alloc = 0;
64 root->fs_info->last_data_alloc = 0;
65 cur_trans->num_writers = 1;
66 cur_trans->num_joined = 0;
67 cur_trans->transid = root->fs_info->generation;
68 init_waitqueue_head(&cur_trans->writer_wait);
69 init_waitqueue_head(&cur_trans->commit_wait);
70 cur_trans->in_commit = 0;
71 cur_trans->blocked = 0;
72 cur_trans->use_count = 1;
73 cur_trans->commit_done = 0;
74 cur_trans->start_time = get_seconds();
75 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
76 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
77 extent_io_tree_init(&cur_trans->dirty_pages,
78 root->fs_info->btree_inode->i_mapping,
79 GFP_NOFS);
80 spin_lock(&root->fs_info->new_trans_lock);
81 root->fs_info->running_transaction = cur_trans;
82 spin_unlock(&root->fs_info->new_trans_lock);
83 } else {
84 cur_trans->num_writers++;
85 cur_trans->num_joined++;
86 }
87
88 return 0;
89}
90
91/*
92 * this does all the record keeping required to make sure that a
93 * reference counted root is properly recorded in a given transaction.
94 * This is required to make sure the old root from before we joined the transaction
95 * is deleted when the transaction commits
96 */
97noinline int btrfs_record_root_in_trans(struct btrfs_root *root)
98{
99 struct btrfs_dirty_root *dirty;
100 u64 running_trans_id = root->fs_info->running_transaction->transid;
101 if (root->ref_cows && root->last_trans < running_trans_id) {
102 WARN_ON(root == root->fs_info->extent_root);
103 if (root->root_item.refs != 0) {
104 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
105 (unsigned long)root->root_key.objectid,
106 BTRFS_ROOT_TRANS_TAG);
107
108 dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
109 BUG_ON(!dirty);
110 dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
111 BUG_ON(!dirty->root);
112 dirty->latest_root = root;
113 INIT_LIST_HEAD(&dirty->list);
114
115 root->commit_root = btrfs_root_node(root);
116
117 memcpy(dirty->root, root, sizeof(*root));
118 spin_lock_init(&dirty->root->node_lock);
119 spin_lock_init(&dirty->root->list_lock);
120 mutex_init(&dirty->root->objectid_mutex);
121 mutex_init(&dirty->root->log_mutex);
122 INIT_LIST_HEAD(&dirty->root->dead_list);
123 dirty->root->node = root->commit_root;
124 dirty->root->commit_root = NULL;
125
126 spin_lock(&root->list_lock);
127 list_add(&dirty->root->dead_list, &root->dead_list);
128 spin_unlock(&root->list_lock);
129
130 root->dirty_root = dirty;
131 } else {
132 WARN_ON(1);
133 }
134 root->last_trans = running_trans_id;
135 }
136 return 0;
137}
138
139/* wait for commit against the current transaction to become unblocked
140 * when this is done, it is safe to start a new transaction, but the current
141 * transaction might not be fully on disk.
142 */
143static void wait_current_trans(struct btrfs_root *root)
144{
145 struct btrfs_transaction *cur_trans;
146
147 cur_trans = root->fs_info->running_transaction;
148 if (cur_trans && cur_trans->blocked) {
149 DEFINE_WAIT(wait);
150 cur_trans->use_count++;
151 while(1) {
152 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
153 TASK_UNINTERRUPTIBLE);
154 if (cur_trans->blocked) {
155 mutex_unlock(&root->fs_info->trans_mutex);
156 schedule();
157 mutex_lock(&root->fs_info->trans_mutex);
158 finish_wait(&root->fs_info->transaction_wait,
159 &wait);
160 } else {
161 finish_wait(&root->fs_info->transaction_wait,
162 &wait);
163 break;
164 }
165 }
166 put_transaction(cur_trans);
167 }
168}
169
170static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
171 int num_blocks, int wait)
172{
173 struct btrfs_trans_handle *h =
174 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
175 int ret;
176
177 mutex_lock(&root->fs_info->trans_mutex);
178 if (!root->fs_info->log_root_recovering &&
179 ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
180 wait_current_trans(root);
181 ret = join_transaction(root);
182 BUG_ON(ret);
183
184 btrfs_record_root_in_trans(root);
185 h->transid = root->fs_info->running_transaction->transid;
186 h->transaction = root->fs_info->running_transaction;
187 h->blocks_reserved = num_blocks;
188 h->blocks_used = 0;
189 h->block_group = NULL;
190 h->alloc_exclude_nr = 0;
191 h->alloc_exclude_start = 0;
192 root->fs_info->running_transaction->use_count++;
193 mutex_unlock(&root->fs_info->trans_mutex);
194 return h;
195}
196
197struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
198 int num_blocks)
199{
200 return start_transaction(root, num_blocks, 1);
201}
202struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
203 int num_blocks)
204{
205 return start_transaction(root, num_blocks, 0);
206}
207
208struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
209 int num_blocks)
210{
211 return start_transaction(r, num_blocks, 2);
212}
213
214/* wait for a transaction commit to be fully complete */
215static noinline int wait_for_commit(struct btrfs_root *root,
216 struct btrfs_transaction *commit)
217{
218 DEFINE_WAIT(wait);
219 mutex_lock(&root->fs_info->trans_mutex);
220 while(!commit->commit_done) {
221 prepare_to_wait(&commit->commit_wait, &wait,
222 TASK_UNINTERRUPTIBLE);
223 if (commit->commit_done)
224 break;
225 mutex_unlock(&root->fs_info->trans_mutex);
226 schedule();
227 mutex_lock(&root->fs_info->trans_mutex);
228 }
229 mutex_unlock(&root->fs_info->trans_mutex);
230 finish_wait(&commit->commit_wait, &wait);
231 return 0;
232}
233
234/*
235 * rate limit against the drop_snapshot code. This helps to slow down new operations
236 * if the drop_snapshot code isn't able to keep up.
237 */
238static void throttle_on_drops(struct btrfs_root *root)
239{
240 struct btrfs_fs_info *info = root->fs_info;
241 int harder_count = 0;
242
243harder:
244 if (atomic_read(&info->throttles)) {
245 DEFINE_WAIT(wait);
246 int thr;
247 thr = atomic_read(&info->throttle_gen);
248
249 do {
250 prepare_to_wait(&info->transaction_throttle,
251 &wait, TASK_UNINTERRUPTIBLE);
252 if (!atomic_read(&info->throttles)) {
253 finish_wait(&info->transaction_throttle, &wait);
254 break;
255 }
256 schedule();
257 finish_wait(&info->transaction_throttle, &wait);
258 } while (thr == atomic_read(&info->throttle_gen));
259 harder_count++;
260
261 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
262 harder_count < 2)
263 goto harder;
264
265 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
266 harder_count < 10)
267 goto harder;
268
269 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
270 harder_count < 20)
271 goto harder;
272 }
273}
274
275void btrfs_throttle(struct btrfs_root *root)
276{
277 mutex_lock(&root->fs_info->trans_mutex);
278 if (!root->fs_info->open_ioctl_trans)
279 wait_current_trans(root);
280 mutex_unlock(&root->fs_info->trans_mutex);
281
282 throttle_on_drops(root);
283}
284
285static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
286 struct btrfs_root *root, int throttle)
287{
288 struct btrfs_transaction *cur_trans;
289 struct btrfs_fs_info *info = root->fs_info;
290
291 mutex_lock(&info->trans_mutex);
292 cur_trans = info->running_transaction;
293 WARN_ON(cur_trans != trans->transaction);
294 WARN_ON(cur_trans->num_writers < 1);
295 cur_trans->num_writers--;
296
297 if (waitqueue_active(&cur_trans->writer_wait))
298 wake_up(&cur_trans->writer_wait);
299 put_transaction(cur_trans);
300 mutex_unlock(&info->trans_mutex);
301 memset(trans, 0, sizeof(*trans));
302 kmem_cache_free(btrfs_trans_handle_cachep, trans);
303
304 if (throttle)
305 throttle_on_drops(root);
306
307 return 0;
308}
309
310int btrfs_end_transaction(struct btrfs_trans_handle *trans,
311 struct btrfs_root *root)
312{
313 return __btrfs_end_transaction(trans, root, 0);
314}
315
316int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
317 struct btrfs_root *root)
318{
319 return __btrfs_end_transaction(trans, root, 1);
320}
321
322/*
323 * when btree blocks are allocated, they have some corresponding bits set for
324 * them in one of two extent_io trees. This is used to make sure all of
325 * those extents are on disk for transaction or log commit
326 */
327int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
328 struct extent_io_tree *dirty_pages)
329{
330 int ret;
331 int err = 0;
332 int werr = 0;
333 struct page *page;
334 struct inode *btree_inode = root->fs_info->btree_inode;
335 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
336 u64 start = 0;
337 u64 end;
338 unsigned long index;
339
340 while(1) {
341 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
342 EXTENT_DIRTY);
343 if (ret)
344 break;
345 while(start <= end) {
346 cond_resched();
347
348 index = start >> PAGE_CACHE_SHIFT;
349 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
350 page = find_get_page(btree_inode->i_mapping, index);
351 if (!page)
352 continue;
353
354 btree_lock_page_hook(page);
355 if (!page->mapping) {
356 unlock_page(page);
357 page_cache_release(page);
358 continue;
359 }
360
361 if (PageWriteback(page)) {
362 if (PageDirty(page))
363 wait_on_page_writeback(page);
364 else {
365 unlock_page(page);
366 page_cache_release(page);
367 continue;
368 }
369 }
370 err = write_one_page(page, 0);
371 if (err)
372 werr = err;
373 page_cache_release(page);
374 }
375 }
376 /*
377 * we unplug once and then use the wait_on_extent_bit for
378 * everything else
379 */
380 blk_run_address_space(btree_inode->i_mapping);
381 while(1) {
382 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
383 EXTENT_DIRTY);
384 if (ret)
385 break;
386
387 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
388 while(start <= end) {
389 index = start >> PAGE_CACHE_SHIFT;
390 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
391 page = find_get_page(btree_inode->i_mapping, index);
392 if (!page)
393 continue;
394 if (PageDirty(page)) {
395 btree_lock_page_hook(page);
396 wait_on_page_writeback(page);
397 err = write_one_page(page, 0);
398 if (err)
399 werr = err;
400 }
401 if (PageWriteback(page)) {
402 /*
403 * we don't wait on the page writeback bit
404 * because that triggers a lot of unplugs.
405 * The extent bits are much nicer to
406 * the disks, but come with a slightly
407 * higher latency because we aren't forcing
408 * unplugs.
409 */
410 wait_on_extent_writeback(io_tree,
411 page_offset(page),
412 page_offset(page) +
413 PAGE_CACHE_SIZE - 1);
414 }
415 if (PageWriteback(page)) {
416 /*
417 * the state bits get cleared before the
418 * page bits, lets add some extra
419 * paranoia here
420 */
421 wait_on_page_writeback(page);
422 }
423 page_cache_release(page);
424 cond_resched();
425 }
426 }
427 if (err)
428 werr = err;
429 return werr;
430}
431
432int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
433 struct btrfs_root *root)
434{
435 if (!trans || !trans->transaction) {
436 struct inode *btree_inode;
437 btree_inode = root->fs_info->btree_inode;
438 return filemap_write_and_wait(btree_inode->i_mapping);
439 }
440 return btrfs_write_and_wait_marked_extents(root,
441 &trans->transaction->dirty_pages);
442}
443
444/*
445 * this is used to update the root pointer in the tree of tree roots.
446 *
447 * But, in the case of the extent allocation tree, updating the root
448 * pointer may allocate blocks which may change the root of the extent
449 * allocation tree.
450 *
451 * So, this loops and repeats and makes sure the cowonly root didn't
452 * change while the root pointer was being updated in the metadata.
453 */
454static int update_cowonly_root(struct btrfs_trans_handle *trans,
455 struct btrfs_root *root)
456{
457 int ret;
458 u64 old_root_bytenr;
459 struct btrfs_root *tree_root = root->fs_info->tree_root;
460
461 btrfs_extent_post_op(trans, root);
462 btrfs_write_dirty_block_groups(trans, root);
463 btrfs_extent_post_op(trans, root);
464
465 while(1) {
466 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
467 if (old_root_bytenr == root->node->start)
468 break;
469 btrfs_set_root_bytenr(&root->root_item,
470 root->node->start);
471 btrfs_set_root_level(&root->root_item,
472 btrfs_header_level(root->node));
473 btrfs_set_root_generation(&root->root_item, trans->transid);
474
475 btrfs_extent_post_op(trans, root);
476
477 ret = btrfs_update_root(trans, tree_root,
478 &root->root_key,
479 &root->root_item);
480 BUG_ON(ret);
481 btrfs_write_dirty_block_groups(trans, root);
482 btrfs_extent_post_op(trans, root);
483 }
484 return 0;
485}
486
487/*
488 * update all the cowonly tree roots on disk
489 */
490int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
491 struct btrfs_root *root)
492{
493 struct btrfs_fs_info *fs_info = root->fs_info;
494 struct list_head *next;
495 struct extent_buffer *eb;
496
497 btrfs_extent_post_op(trans, fs_info->tree_root);
498
499 eb = btrfs_lock_root_node(fs_info->tree_root);
500 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb, 0);
501 btrfs_tree_unlock(eb);
502 free_extent_buffer(eb);
503
504 btrfs_extent_post_op(trans, fs_info->tree_root);
505
506 while(!list_empty(&fs_info->dirty_cowonly_roots)) {
507 next = fs_info->dirty_cowonly_roots.next;
508 list_del_init(next);
509 root = list_entry(next, struct btrfs_root, dirty_list);
510
511 update_cowonly_root(trans, root);
512 }
513 return 0;
514}
515
516/*
517 * dead roots are old snapshots that need to be deleted. This allocates
518 * a dirty root struct and adds it into the list of dead roots that need to
519 * be deleted
520 */
521int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest)
522{
523 struct btrfs_dirty_root *dirty;
524
525 dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
526 if (!dirty)
527 return -ENOMEM;
528 dirty->root = root;
529 dirty->latest_root = latest;
530
531 mutex_lock(&root->fs_info->trans_mutex);
532 list_add(&dirty->list, &latest->fs_info->dead_roots);
533 mutex_unlock(&root->fs_info->trans_mutex);
534 return 0;
535}
536
537/*
538 * at transaction commit time we need to schedule the old roots for
539 * deletion via btrfs_drop_snapshot. This runs through all the
540 * reference counted roots that were modified in the current
541 * transaction and puts them into the drop list
542 */
543static noinline int add_dirty_roots(struct btrfs_trans_handle *trans,
544 struct radix_tree_root *radix,
545 struct list_head *list)
546{
547 struct btrfs_dirty_root *dirty;
548 struct btrfs_root *gang[8];
549 struct btrfs_root *root;
550 int i;
551 int ret;
552 int err = 0;
553 u32 refs;
554
555 while(1) {
556 ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
557 ARRAY_SIZE(gang),
558 BTRFS_ROOT_TRANS_TAG);
559 if (ret == 0)
560 break;
561 for (i = 0; i < ret; i++) {
562 root = gang[i];
563 radix_tree_tag_clear(radix,
564 (unsigned long)root->root_key.objectid,
565 BTRFS_ROOT_TRANS_TAG);
566
567 BUG_ON(!root->ref_tree);
568 dirty = root->dirty_root;
569
570 btrfs_free_log(trans, root);
571 btrfs_free_reloc_root(trans, root);
572
573 if (root->commit_root == root->node) {
574 WARN_ON(root->node->start !=
575 btrfs_root_bytenr(&root->root_item));
576
577 free_extent_buffer(root->commit_root);
578 root->commit_root = NULL;
579 root->dirty_root = NULL;
580
581 spin_lock(&root->list_lock);
582 list_del_init(&dirty->root->dead_list);
583 spin_unlock(&root->list_lock);
584
585 kfree(dirty->root);
586 kfree(dirty);
587
588 /* make sure to update the root on disk
589 * so we get any updates to the block used
590 * counts
591 */
592 err = btrfs_update_root(trans,
593 root->fs_info->tree_root,
594 &root->root_key,
595 &root->root_item);
596 continue;
597 }
598
599 memset(&root->root_item.drop_progress, 0,
600 sizeof(struct btrfs_disk_key));
601 root->root_item.drop_level = 0;
602 root->commit_root = NULL;
603 root->dirty_root = NULL;
604 root->root_key.offset = root->fs_info->generation;
605 btrfs_set_root_bytenr(&root->root_item,
606 root->node->start);
607 btrfs_set_root_level(&root->root_item,
608 btrfs_header_level(root->node));
609 btrfs_set_root_generation(&root->root_item,
610 root->root_key.offset);
611
612 err = btrfs_insert_root(trans, root->fs_info->tree_root,
613 &root->root_key,
614 &root->root_item);
615 if (err)
616 break;
617
618 refs = btrfs_root_refs(&dirty->root->root_item);
619 btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
620 err = btrfs_update_root(trans, root->fs_info->tree_root,
621 &dirty->root->root_key,
622 &dirty->root->root_item);
623
624 BUG_ON(err);
625 if (refs == 1) {
626 list_add(&dirty->list, list);
627 } else {
628 WARN_ON(1);
629 free_extent_buffer(dirty->root->node);
630 kfree(dirty->root);
631 kfree(dirty);
632 }
633 }
634 }
635 return err;
636}
637
638/*
639 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
640 * otherwise every leaf in the btree is read and defragged.
641 */
642int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
643{
644 struct btrfs_fs_info *info = root->fs_info;
645 int ret;
646 struct btrfs_trans_handle *trans;
647 unsigned long nr;
648
649 smp_mb();
650 if (root->defrag_running)
651 return 0;
652 trans = btrfs_start_transaction(root, 1);
653 while (1) {
654 root->defrag_running = 1;
655 ret = btrfs_defrag_leaves(trans, root, cacheonly);
656 nr = trans->blocks_used;
657 btrfs_end_transaction(trans, root);
658 btrfs_btree_balance_dirty(info->tree_root, nr);
659 cond_resched();
660
661 trans = btrfs_start_transaction(root, 1);
662 if (root->fs_info->closing || ret != -EAGAIN)
663 break;
664 }
665 root->defrag_running = 0;
666 smp_mb();
667 btrfs_end_transaction(trans, root);
668 return 0;
669}
670
671/*
672 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
673 * all of them
674 */
675static noinline int drop_dirty_roots(struct btrfs_root *tree_root,
676 struct list_head *list)
677{
678 struct btrfs_dirty_root *dirty;
679 struct btrfs_trans_handle *trans;
680 unsigned long nr;
681 u64 num_bytes;
682 u64 bytes_used;
683 u64 max_useless;
684 int ret = 0;
685 int err;
686
687 while(!list_empty(list)) {
688 struct btrfs_root *root;
689
690 dirty = list_entry(list->prev, struct btrfs_dirty_root, list);
691 list_del_init(&dirty->list);
692
693 num_bytes = btrfs_root_used(&dirty->root->root_item);
694 root = dirty->latest_root;
695 atomic_inc(&root->fs_info->throttles);
696
697 while(1) {
698 trans = btrfs_start_transaction(tree_root, 1);
699 mutex_lock(&root->fs_info->drop_mutex);
700 ret = btrfs_drop_snapshot(trans, dirty->root);
701 if (ret != -EAGAIN) {
702 break;
703 }
704 mutex_unlock(&root->fs_info->drop_mutex);
705
706 err = btrfs_update_root(trans,
707 tree_root,
708 &dirty->root->root_key,
709 &dirty->root->root_item);
710 if (err)
711 ret = err;
712 nr = trans->blocks_used;
713 ret = btrfs_end_transaction(trans, tree_root);
714 BUG_ON(ret);
715
716 btrfs_btree_balance_dirty(tree_root, nr);
717 cond_resched();
718 }
719 BUG_ON(ret);
720 atomic_dec(&root->fs_info->throttles);
721 wake_up(&root->fs_info->transaction_throttle);
722
723 num_bytes -= btrfs_root_used(&dirty->root->root_item);
724 bytes_used = btrfs_root_used(&root->root_item);
725 if (num_bytes) {
726 btrfs_record_root_in_trans(root);
727 btrfs_set_root_used(&root->root_item,
728 bytes_used - num_bytes);
729 }
730
731 ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
732 if (ret) {
733 BUG();
734 break;
735 }
736 mutex_unlock(&root->fs_info->drop_mutex);
737
738 spin_lock(&root->list_lock);
739 list_del_init(&dirty->root->dead_list);
740 if (!list_empty(&root->dead_list)) {
741 struct btrfs_root *oldest;
742 oldest = list_entry(root->dead_list.prev,
743 struct btrfs_root, dead_list);
744 max_useless = oldest->root_key.offset - 1;
745 } else {
746 max_useless = root->root_key.offset - 1;
747 }
748 spin_unlock(&root->list_lock);
749
750 nr = trans->blocks_used;
751 ret = btrfs_end_transaction(trans, tree_root);
752 BUG_ON(ret);
753
754 ret = btrfs_remove_leaf_refs(root, max_useless, 0);
755 BUG_ON(ret);
756
757 free_extent_buffer(dirty->root->node);
758 kfree(dirty->root);
759 kfree(dirty);
760
761 btrfs_btree_balance_dirty(tree_root, nr);
762 cond_resched();
763 }
764 return ret;
765}
766
767/*
768 * new snapshots need to be created at a very specific time in the
769 * transaction commit. This does the actual creation
770 */
771static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
772 struct btrfs_fs_info *fs_info,
773 struct btrfs_pending_snapshot *pending)
774{
775 struct btrfs_key key;
776 struct btrfs_root_item *new_root_item;
777 struct btrfs_root *tree_root = fs_info->tree_root;
778 struct btrfs_root *root = pending->root;
779 struct extent_buffer *tmp;
780 struct extent_buffer *old;
781 int ret;
782 u64 objectid;
783
784 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
785 if (!new_root_item) {
786 ret = -ENOMEM;
787 goto fail;
788 }
789 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
790 if (ret)
791 goto fail;
792
793 btrfs_record_root_in_trans(root);
794 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
795 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
796
797 key.objectid = objectid;
798 key.offset = trans->transid;
799 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
800
801 old = btrfs_lock_root_node(root);
802 btrfs_cow_block(trans, root, old, NULL, 0, &old, 0);
803
804 btrfs_copy_root(trans, root, old, &tmp, objectid);
805 btrfs_tree_unlock(old);
806 free_extent_buffer(old);
807
808 btrfs_set_root_bytenr(new_root_item, tmp->start);
809 btrfs_set_root_level(new_root_item, btrfs_header_level(tmp));
810 btrfs_set_root_generation(new_root_item, trans->transid);
811 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
812 new_root_item);
813 btrfs_tree_unlock(tmp);
814 free_extent_buffer(tmp);
815 if (ret)
816 goto fail;
817
818 key.offset = (u64)-1;
819 memcpy(&pending->root_key, &key, sizeof(key));
820fail:
821 kfree(new_root_item);
822 return ret;
823}
824
825static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
826 struct btrfs_pending_snapshot *pending)
827{
828 int ret;
829 int namelen;
830 u64 index = 0;
831 struct btrfs_trans_handle *trans;
832 struct inode *parent_inode;
833 struct inode *inode;
834
835 parent_inode = pending->dentry->d_parent->d_inode;
836 trans = btrfs_start_transaction(BTRFS_I(parent_inode)->root, 1);
837
838 /*
839 * insert the directory item
840 */
841 namelen = strlen(pending->name);
842 ret = btrfs_set_inode_index(parent_inode, &index);
843 ret = btrfs_insert_dir_item(trans,
844 BTRFS_I(parent_inode)->root,
845 pending->name, namelen,
846 parent_inode->i_ino,
847 &pending->root_key, BTRFS_FT_DIR, index);
848
849 if (ret)
850 goto fail;
851#if 0
852 ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
853 pending->name, strlen(pending->name), objectid,
854 root->fs_info->sb->s_root->d_inode->i_ino, 0);
855#endif
856 inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
857 d_instantiate(pending->dentry, inode);
858fail:
859 btrfs_end_transaction(trans, fs_info->fs_root);
860 return ret;
861}
862
863/*
864 * create all the snapshots we've scheduled for creation
865 */
866static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
867 struct btrfs_fs_info *fs_info)
868{
869 struct btrfs_pending_snapshot *pending;
870 struct list_head *head = &trans->transaction->pending_snapshots;
871 struct list_head *cur;
872 int ret;
873
874 list_for_each(cur, head) {
875 pending = list_entry(cur, struct btrfs_pending_snapshot, list);
876 ret = create_pending_snapshot(trans, fs_info, pending);
877 BUG_ON(ret);
878 }
879 return 0;
880}
881
882static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
883 struct btrfs_fs_info *fs_info)
884{
885 struct btrfs_pending_snapshot *pending;
886 struct list_head *head = &trans->transaction->pending_snapshots;
887 int ret;
888
889 while(!list_empty(head)) {
890 pending = list_entry(head->next,
891 struct btrfs_pending_snapshot, list);
892 ret = finish_pending_snapshot(fs_info, pending);
893 BUG_ON(ret);
894 list_del(&pending->list);
895 kfree(pending->name);
896 kfree(pending);
897 }
898 return 0;
899}
900
901int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
902 struct btrfs_root *root)
903{
904 unsigned long joined = 0;
905 unsigned long timeout = 1;
906 struct btrfs_transaction *cur_trans;
907 struct btrfs_transaction *prev_trans = NULL;
908 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
909 struct list_head dirty_fs_roots;
910 struct extent_io_tree *pinned_copy;
911 DEFINE_WAIT(wait);
912 int ret;
913
914 INIT_LIST_HEAD(&dirty_fs_roots);
915 mutex_lock(&root->fs_info->trans_mutex);
916 if (trans->transaction->in_commit) {
917 cur_trans = trans->transaction;
918 trans->transaction->use_count++;
919 mutex_unlock(&root->fs_info->trans_mutex);
920 btrfs_end_transaction(trans, root);
921
922 ret = wait_for_commit(root, cur_trans);
923 BUG_ON(ret);
924
925 mutex_lock(&root->fs_info->trans_mutex);
926 put_transaction(cur_trans);
927 mutex_unlock(&root->fs_info->trans_mutex);
928
929 return 0;
930 }
931
932 pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
933 if (!pinned_copy)
934 return -ENOMEM;
935
936 extent_io_tree_init(pinned_copy,
937 root->fs_info->btree_inode->i_mapping, GFP_NOFS);
938
939 trans->transaction->in_commit = 1;
940 trans->transaction->blocked = 1;
941 cur_trans = trans->transaction;
942 if (cur_trans->list.prev != &root->fs_info->trans_list) {
943 prev_trans = list_entry(cur_trans->list.prev,
944 struct btrfs_transaction, list);
945 if (!prev_trans->commit_done) {
946 prev_trans->use_count++;
947 mutex_unlock(&root->fs_info->trans_mutex);
948
949 wait_for_commit(root, prev_trans);
950
951 mutex_lock(&root->fs_info->trans_mutex);
952 put_transaction(prev_trans);
953 }
954 }
955
956 do {
957 int snap_pending = 0;
958 joined = cur_trans->num_joined;
959 if (!list_empty(&trans->transaction->pending_snapshots))
960 snap_pending = 1;
961
962 WARN_ON(cur_trans != trans->transaction);
963 prepare_to_wait(&cur_trans->writer_wait, &wait,
964 TASK_UNINTERRUPTIBLE);
965
966 if (cur_trans->num_writers > 1)
967 timeout = MAX_SCHEDULE_TIMEOUT;
968 else
969 timeout = 1;
970
971 mutex_unlock(&root->fs_info->trans_mutex);
972
973 if (snap_pending) {
974 ret = btrfs_wait_ordered_extents(root, 1);
975 BUG_ON(ret);
976 }
977
978 schedule_timeout(timeout);
979
980 mutex_lock(&root->fs_info->trans_mutex);
981 finish_wait(&cur_trans->writer_wait, &wait);
982 } while (cur_trans->num_writers > 1 ||
983 (cur_trans->num_joined != joined));
984
985 ret = create_pending_snapshots(trans, root->fs_info);
986 BUG_ON(ret);
987
988 WARN_ON(cur_trans != trans->transaction);
989
990 /* btrfs_commit_tree_roots is responsible for getting the
991 * various roots consistent with each other. Every pointer
992 * in the tree of tree roots has to point to the most up to date
993 * root for every subvolume and other tree. So, we have to keep
994 * the tree logging code from jumping in and changing any
995 * of the trees.
996 *
997 * At this point in the commit, there can't be any tree-log
998 * writers, but a little lower down we drop the trans mutex
999 * and let new people in. By holding the tree_log_mutex
1000 * from now until after the super is written, we avoid races
1001 * with the tree-log code.
1002 */
1003 mutex_lock(&root->fs_info->tree_log_mutex);
1004 /*
1005 * keep tree reloc code from adding new reloc trees
1006 */
1007 mutex_lock(&root->fs_info->tree_reloc_mutex);
1008
1009
1010 ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
1011 &dirty_fs_roots);
1012 BUG_ON(ret);
1013
1014 /* add_dirty_roots gets rid of all the tree log roots, it is now
1015 * safe to free the root of tree log roots
1016 */
1017 btrfs_free_log_root_tree(trans, root->fs_info);
1018
1019 ret = btrfs_commit_tree_roots(trans, root);
1020 BUG_ON(ret);
1021
1022 cur_trans = root->fs_info->running_transaction;
1023 spin_lock(&root->fs_info->new_trans_lock);
1024 root->fs_info->running_transaction = NULL;
1025 spin_unlock(&root->fs_info->new_trans_lock);
1026 btrfs_set_super_generation(&root->fs_info->super_copy,
1027 cur_trans->transid);
1028 btrfs_set_super_root(&root->fs_info->super_copy,
1029 root->fs_info->tree_root->node->start);
1030 btrfs_set_super_root_level(&root->fs_info->super_copy,
1031 btrfs_header_level(root->fs_info->tree_root->node));
1032
1033 btrfs_set_super_chunk_root(&root->fs_info->super_copy,
1034 chunk_root->node->start);
1035 btrfs_set_super_chunk_root_level(&root->fs_info->super_copy,
1036 btrfs_header_level(chunk_root->node));
1037 btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy,
1038 btrfs_header_generation(chunk_root->node));
1039
1040 if (!root->fs_info->log_root_recovering) {
1041 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1042 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1043 }
1044
1045 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1046 sizeof(root->fs_info->super_copy));
1047
1048 btrfs_copy_pinned(root, pinned_copy);
1049
1050 trans->transaction->blocked = 0;
1051 wake_up(&root->fs_info->transaction_throttle);
1052 wake_up(&root->fs_info->transaction_wait);
1053
1054 mutex_unlock(&root->fs_info->trans_mutex);
1055 ret = btrfs_write_and_wait_transaction(trans, root);
1056 BUG_ON(ret);
1057 write_ctree_super(trans, root);
1058
1059 /*
1060 * the super is written, we can safely allow the tree-loggers
1061 * to go about their business
1062 */
1063 mutex_unlock(&root->fs_info->tree_log_mutex);
1064
1065 btrfs_finish_extent_commit(trans, root, pinned_copy);
1066 kfree(pinned_copy);
1067
1068 btrfs_drop_dead_reloc_roots(root);
1069 mutex_unlock(&root->fs_info->tree_reloc_mutex);
1070
1071 /* do the directory inserts of any pending snapshot creations */
1072 finish_pending_snapshots(trans, root->fs_info);
1073
1074 mutex_lock(&root->fs_info->trans_mutex);
1075
1076 cur_trans->commit_done = 1;
1077 root->fs_info->last_trans_committed = cur_trans->transid;
1078 wake_up(&cur_trans->commit_wait);
1079
1080 put_transaction(cur_trans);
1081 put_transaction(cur_trans);
1082
1083 list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
1084 if (root->fs_info->closing)
1085 list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
1086
1087 mutex_unlock(&root->fs_info->trans_mutex);
1088
1089 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1090
1091 if (root->fs_info->closing) {
1092 drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
1093 }
1094 return ret;
1095}
1096
1097/*
1098 * interface function to delete all the snapshots we have scheduled for deletion
1099 */
1100int btrfs_clean_old_snapshots(struct btrfs_root *root)
1101{
1102 struct list_head dirty_roots;
1103 INIT_LIST_HEAD(&dirty_roots);
1104again:
1105 mutex_lock(&root->fs_info->trans_mutex);
1106 list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
1107 mutex_unlock(&root->fs_info->trans_mutex);
1108
1109 if (!list_empty(&dirty_roots)) {
1110 drop_dirty_roots(root, &dirty_roots);
1111 goto again;
1112 }
1113 return 0;
1114}