Btrfs: Run igrab on data=ordered inodes to prevent deadlocks during writeout
[linux-2.6-block.git] / fs / btrfs / transaction.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/sched.h>
21#include <linux/writeback.h>
22#include <linux/pagemap.h>
23#include "ctree.h"
24#include "disk-io.h"
25#include "transaction.h"
26
27static int total_trans = 0;
28extern struct kmem_cache *btrfs_trans_handle_cachep;
29extern struct kmem_cache *btrfs_transaction_cachep;
30
31static struct workqueue_struct *trans_wq;
32
33#define BTRFS_ROOT_TRANS_TAG 0
34#define BTRFS_ROOT_DEFRAG_TAG 1
35
36static void put_transaction(struct btrfs_transaction *transaction)
37{
38 WARN_ON(transaction->use_count == 0);
39 transaction->use_count--;
40 if (transaction->use_count == 0) {
41 WARN_ON(total_trans == 0);
42 total_trans--;
43 list_del_init(&transaction->list);
44 memset(transaction, 0, sizeof(*transaction));
45 kmem_cache_free(btrfs_transaction_cachep, transaction);
46 }
47}
48
49static int join_transaction(struct btrfs_root *root)
50{
51 struct btrfs_transaction *cur_trans;
52 cur_trans = root->fs_info->running_transaction;
53 if (!cur_trans) {
54 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
55 GFP_NOFS);
56 total_trans++;
57 BUG_ON(!cur_trans);
58 root->fs_info->generation++;
59 root->fs_info->running_transaction = cur_trans;
60 cur_trans->num_writers = 1;
61 cur_trans->num_joined = 0;
62 cur_trans->transid = root->fs_info->generation;
63 init_waitqueue_head(&cur_trans->writer_wait);
64 init_waitqueue_head(&cur_trans->commit_wait);
65 cur_trans->in_commit = 0;
66 cur_trans->use_count = 1;
67 cur_trans->commit_done = 0;
68 cur_trans->start_time = get_seconds();
69 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
70 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
71 btrfs_ordered_inode_tree_init(&cur_trans->ordered_inode_tree);
72 extent_map_tree_init(&cur_trans->dirty_pages,
73 root->fs_info->btree_inode->i_mapping,
74 GFP_NOFS);
75 } else {
76 cur_trans->num_writers++;
77 cur_trans->num_joined++;
78 }
79
80 return 0;
81}
82
83static int record_root_in_trans(struct btrfs_root *root)
84{
85 u64 running_trans_id = root->fs_info->running_transaction->transid;
86 if (root->ref_cows && root->last_trans < running_trans_id) {
87 WARN_ON(root == root->fs_info->extent_root);
88 if (root->root_item.refs != 0) {
89 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
90 (unsigned long)root->root_key.objectid,
91 BTRFS_ROOT_TRANS_TAG);
92 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
93 (unsigned long)root->root_key.objectid,
94 BTRFS_ROOT_DEFRAG_TAG);
95 root->commit_root = root->node;
96 extent_buffer_get(root->node);
97 } else {
98 WARN_ON(1);
99 }
100 root->last_trans = running_trans_id;
101 }
102 return 0;
103}
104
105struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
106 int num_blocks)
107{
108 struct btrfs_trans_handle *h =
109 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
110 int ret;
111
112 mutex_lock(&root->fs_info->trans_mutex);
113 ret = join_transaction(root);
114 BUG_ON(ret);
115
116 record_root_in_trans(root);
117 h->transid = root->fs_info->running_transaction->transid;
118 h->transaction = root->fs_info->running_transaction;
119 h->blocks_reserved = num_blocks;
120 h->blocks_used = 0;
121 h->block_group = NULL;
122 h->alloc_exclude_nr = 0;
123 h->alloc_exclude_start = 0;
124 root->fs_info->running_transaction->use_count++;
125 mutex_unlock(&root->fs_info->trans_mutex);
126 return h;
127}
128
129int btrfs_end_transaction(struct btrfs_trans_handle *trans,
130 struct btrfs_root *root)
131{
132 struct btrfs_transaction *cur_trans;
133
134 mutex_lock(&root->fs_info->trans_mutex);
135 cur_trans = root->fs_info->running_transaction;
136 WARN_ON(cur_trans != trans->transaction);
137 WARN_ON(cur_trans->num_writers < 1);
138 cur_trans->num_writers--;
139 if (waitqueue_active(&cur_trans->writer_wait))
140 wake_up(&cur_trans->writer_wait);
141 put_transaction(cur_trans);
142 mutex_unlock(&root->fs_info->trans_mutex);
143 memset(trans, 0, sizeof(*trans));
144 kmem_cache_free(btrfs_trans_handle_cachep, trans);
145 return 0;
146}
147
148
149int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
150 struct btrfs_root *root)
151{
152 int ret;
153 int err;
154 int werr = 0;
155 struct extent_map_tree *dirty_pages;
156 struct page *page;
157 struct inode *btree_inode = root->fs_info->btree_inode;
158 u64 start;
159 u64 end;
160 unsigned long index;
161
162 if (!trans || !trans->transaction) {
163 return filemap_write_and_wait(btree_inode->i_mapping);
164 }
165 dirty_pages = &trans->transaction->dirty_pages;
166 while(1) {
167 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
168 EXTENT_DIRTY);
169 if (ret)
170 break;
171 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
172 while(start <= end) {
173 index = start >> PAGE_CACHE_SHIFT;
174 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
175 page = find_lock_page(btree_inode->i_mapping, index);
176 if (!page)
177 continue;
178 if (PageWriteback(page)) {
179 if (PageDirty(page))
180 wait_on_page_writeback(page);
181 else {
182 unlock_page(page);
183 page_cache_release(page);
184 continue;
185 }
186 }
187 err = write_one_page(page, 0);
188 if (err)
189 werr = err;
190 page_cache_release(page);
191 }
192 }
193 err = filemap_fdatawait(btree_inode->i_mapping);
194 if (err)
195 werr = err;
196 return werr;
197}
198
199int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
200 struct btrfs_root *root)
201{
202 int ret;
203 u64 old_extent_block;
204 struct btrfs_fs_info *fs_info = root->fs_info;
205 struct btrfs_root *tree_root = fs_info->tree_root;
206 struct btrfs_root *extent_root = fs_info->extent_root;
207
208 btrfs_write_dirty_block_groups(trans, extent_root);
209 while(1) {
210 old_extent_block = btrfs_root_bytenr(&extent_root->root_item);
211 if (old_extent_block == extent_root->node->start)
212 break;
213 btrfs_set_root_bytenr(&extent_root->root_item,
214 extent_root->node->start);
215 btrfs_set_root_level(&extent_root->root_item,
216 btrfs_header_level(extent_root->node));
217 ret = btrfs_update_root(trans, tree_root,
218 &extent_root->root_key,
219 &extent_root->root_item);
220 BUG_ON(ret);
221 btrfs_write_dirty_block_groups(trans, extent_root);
222 }
223 return 0;
224}
225
226static int wait_for_commit(struct btrfs_root *root,
227 struct btrfs_transaction *commit)
228{
229 DEFINE_WAIT(wait);
230 mutex_lock(&root->fs_info->trans_mutex);
231 while(!commit->commit_done) {
232 prepare_to_wait(&commit->commit_wait, &wait,
233 TASK_UNINTERRUPTIBLE);
234 if (commit->commit_done)
235 break;
236 mutex_unlock(&root->fs_info->trans_mutex);
237 schedule();
238 mutex_lock(&root->fs_info->trans_mutex);
239 }
240 mutex_unlock(&root->fs_info->trans_mutex);
241 finish_wait(&commit->commit_wait, &wait);
242 return 0;
243}
244
245struct dirty_root {
246 struct list_head list;
247 struct btrfs_root *root;
248 struct btrfs_root *latest_root;
249};
250
251int btrfs_add_dead_root(struct btrfs_root *root,
252 struct btrfs_root *latest,
253 struct list_head *dead_list)
254{
255 struct dirty_root *dirty;
256
257 dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
258 if (!dirty)
259 return -ENOMEM;
260 dirty->root = root;
261 dirty->latest_root = latest;
262 list_add(&dirty->list, dead_list);
263 return 0;
264}
265
266static int add_dirty_roots(struct btrfs_trans_handle *trans,
267 struct radix_tree_root *radix,
268 struct list_head *list)
269{
270 struct dirty_root *dirty;
271 struct btrfs_root *gang[8];
272 struct btrfs_root *root;
273 int i;
274 int ret;
275 int err = 0;
276 u32 refs;
277
278 while(1) {
279 ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
280 ARRAY_SIZE(gang),
281 BTRFS_ROOT_TRANS_TAG);
282 if (ret == 0)
283 break;
284 for (i = 0; i < ret; i++) {
285 root = gang[i];
286 radix_tree_tag_clear(radix,
287 (unsigned long)root->root_key.objectid,
288 BTRFS_ROOT_TRANS_TAG);
289 if (root->commit_root == root->node) {
290 WARN_ON(root->node->start !=
291 btrfs_root_bytenr(&root->root_item));
292 free_extent_buffer(root->commit_root);
293 root->commit_root = NULL;
294
295 /* make sure to update the root on disk
296 * so we get any updates to the block used
297 * counts
298 */
299 err = btrfs_update_root(trans,
300 root->fs_info->tree_root,
301 &root->root_key,
302 &root->root_item);
303 continue;
304 }
305 dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
306 BUG_ON(!dirty);
307 dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
308 BUG_ON(!dirty->root);
309
310 memset(&root->root_item.drop_progress, 0,
311 sizeof(struct btrfs_disk_key));
312 root->root_item.drop_level = 0;
313
314 memcpy(dirty->root, root, sizeof(*root));
315 dirty->root->node = root->commit_root;
316 dirty->latest_root = root;
317 root->commit_root = NULL;
318
319 root->root_key.offset = root->fs_info->generation;
320 btrfs_set_root_bytenr(&root->root_item,
321 root->node->start);
322 btrfs_set_root_level(&root->root_item,
323 btrfs_header_level(root->node));
324 err = btrfs_insert_root(trans, root->fs_info->tree_root,
325 &root->root_key,
326 &root->root_item);
327 if (err)
328 break;
329
330 refs = btrfs_root_refs(&dirty->root->root_item);
331 btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
332 err = btrfs_update_root(trans, root->fs_info->tree_root,
333 &dirty->root->root_key,
334 &dirty->root->root_item);
335
336 BUG_ON(err);
337 if (refs == 1) {
338 list_add(&dirty->list, list);
339 } else {
340 WARN_ON(1);
341 kfree(dirty->root);
342 kfree(dirty);
343 }
344 }
345 }
346 return err;
347}
348
349int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
350{
351 struct btrfs_fs_info *info = root->fs_info;
352 int ret;
353 struct btrfs_trans_handle *trans;
354 unsigned long nr;
355
356 if (root->defrag_running)
357 return 0;
358 trans = btrfs_start_transaction(root, 1);
359 while (1) {
360 root->defrag_running = 1;
361 ret = btrfs_defrag_leaves(trans, root, cacheonly);
362 nr = trans->blocks_used;
363 btrfs_end_transaction(trans, root);
364 mutex_unlock(&info->fs_mutex);
365 btrfs_btree_balance_dirty(info->tree_root, nr);
366 cond_resched();
367
368 mutex_lock(&info->fs_mutex);
369 trans = btrfs_start_transaction(root, 1);
370 if (ret != -EAGAIN)
371 break;
372 }
373 root->defrag_running = 0;
374 radix_tree_tag_clear(&info->fs_roots_radix,
375 (unsigned long)root->root_key.objectid,
376 BTRFS_ROOT_DEFRAG_TAG);
377 btrfs_end_transaction(trans, root);
378 return 0;
379}
380
381int btrfs_defrag_dirty_roots(struct btrfs_fs_info *info)
382{
383 struct btrfs_root *gang[1];
384 struct btrfs_root *root;
385 int i;
386 int ret;
387 int err = 0;
388 u64 last = 0;
389
390 while(1) {
391 ret = radix_tree_gang_lookup_tag(&info->fs_roots_radix,
392 (void **)gang, last,
393 ARRAY_SIZE(gang),
394 BTRFS_ROOT_DEFRAG_TAG);
395 if (ret == 0)
396 break;
397 for (i = 0; i < ret; i++) {
398 root = gang[i];
399 last = root->root_key.objectid + 1;
400 btrfs_defrag_root(root, 1);
401 }
402 }
403 btrfs_defrag_root(info->extent_root, 1);
404 return err;
405}
406
407static int drop_dirty_roots(struct btrfs_root *tree_root,
408 struct list_head *list)
409{
410 struct dirty_root *dirty;
411 struct btrfs_trans_handle *trans;
412 unsigned long nr;
413 u64 num_bytes;
414 u64 bytes_used;
415 int ret = 0;
416 int err;
417
418 while(!list_empty(list)) {
419 struct btrfs_root *root;
420
421 mutex_lock(&tree_root->fs_info->fs_mutex);
422 dirty = list_entry(list->next, struct dirty_root, list);
423 list_del_init(&dirty->list);
424
425 num_bytes = btrfs_root_used(&dirty->root->root_item);
426 root = dirty->latest_root;
427 root->fs_info->throttles++;
428
429 while(1) {
430 trans = btrfs_start_transaction(tree_root, 1);
431 ret = btrfs_drop_snapshot(trans, dirty->root);
432 if (ret != -EAGAIN) {
433 break;
434 }
435
436 err = btrfs_update_root(trans,
437 tree_root,
438 &dirty->root->root_key,
439 &dirty->root->root_item);
440 if (err)
441 ret = err;
442 nr = trans->blocks_used;
443 ret = btrfs_end_transaction(trans, tree_root);
444 BUG_ON(ret);
445 mutex_unlock(&tree_root->fs_info->fs_mutex);
446 btrfs_btree_balance_dirty(tree_root, nr);
447 cond_resched();
448 mutex_lock(&tree_root->fs_info->fs_mutex);
449 }
450 BUG_ON(ret);
451 root->fs_info->throttles--;
452
453 num_bytes -= btrfs_root_used(&dirty->root->root_item);
454 bytes_used = btrfs_root_used(&root->root_item);
455 if (num_bytes) {
456 record_root_in_trans(root);
457 btrfs_set_root_used(&root->root_item,
458 bytes_used - num_bytes);
459 }
460 ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
461 if (ret) {
462 BUG();
463 break;
464 }
465 nr = trans->blocks_used;
466 ret = btrfs_end_transaction(trans, tree_root);
467 BUG_ON(ret);
468
469 free_extent_buffer(dirty->root->node);
470 kfree(dirty->root);
471 kfree(dirty);
472 mutex_unlock(&tree_root->fs_info->fs_mutex);
473
474 btrfs_btree_balance_dirty(tree_root, nr);
475 cond_resched();
476 }
477 return ret;
478}
479
480int btrfs_write_ordered_inodes(struct btrfs_trans_handle *trans,
481 struct btrfs_root *root)
482{
483 struct btrfs_transaction *cur_trans = trans->transaction;
484 struct inode *inode;
485 u64 root_objectid = 0;
486 u64 objectid = 0;
487 int ret;
488
489 root->fs_info->throttles++;
490 while(1) {
491 ret = btrfs_find_first_ordered_inode(
492 &cur_trans->ordered_inode_tree,
493 &root_objectid, &objectid);
494 if (!ret)
495 break;
496
497 mutex_unlock(&root->fs_info->trans_mutex);
498 mutex_unlock(&root->fs_info->fs_mutex);
499 inode = btrfs_ilookup(root->fs_info->sb, objectid,
500 root_objectid);
501 if (inode) {
502 if (S_ISREG(inode->i_mode))
503 filemap_fdatawrite(inode->i_mapping);
504 iput(inode);
505 }
506 mutex_lock(&root->fs_info->fs_mutex);
507 mutex_lock(&root->fs_info->trans_mutex);
508 }
509 while(1) {
510 root_objectid = 0;
511 objectid = 0;
512 ret = btrfs_find_del_first_ordered_inode(
513 &cur_trans->ordered_inode_tree,
514 &root_objectid, &objectid);
515 if (!ret)
516 break;
517 mutex_unlock(&root->fs_info->trans_mutex);
518 mutex_unlock(&root->fs_info->fs_mutex);
519 inode = btrfs_ilookup(root->fs_info->sb, objectid,
520 root_objectid);
521 if (inode) {
522 if (S_ISREG(inode->i_mode))
523 filemap_write_and_wait(inode->i_mapping);
524 atomic_dec(&inode->i_count);
525 iput(inode);
526 }
527 mutex_lock(&root->fs_info->fs_mutex);
528 mutex_lock(&root->fs_info->trans_mutex);
529 }
530 root->fs_info->throttles--;
531 return 0;
532}
533
534static int create_pending_snapshot(struct btrfs_trans_handle *trans,
535 struct btrfs_fs_info *fs_info,
536 struct btrfs_pending_snapshot *pending)
537{
538 struct btrfs_key key;
539 struct btrfs_root_item new_root_item;
540 struct btrfs_root *tree_root = fs_info->tree_root;
541 struct btrfs_root *root = pending->root;
542 struct extent_buffer *tmp;
543 int ret;
544 u64 objectid;
545
546 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
547 if (ret)
548 goto fail;
549
550 memcpy(&new_root_item, &root->root_item, sizeof(new_root_item));
551
552 key.objectid = objectid;
553 key.offset = 1;
554 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
555
556 extent_buffer_get(root->node);
557 btrfs_cow_block(trans, root, root->node, NULL, 0, &tmp);
558 free_extent_buffer(tmp);
559
560 btrfs_copy_root(trans, root, root->node, &tmp, objectid);
561
562 btrfs_set_root_bytenr(&new_root_item, tmp->start);
563 btrfs_set_root_level(&new_root_item, btrfs_header_level(tmp));
564 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
565 &new_root_item);
566 free_extent_buffer(tmp);
567 if (ret)
568 goto fail;
569
570 /*
571 * insert the directory item
572 */
573 key.offset = (u64)-1;
574 ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
575 pending->name, strlen(pending->name),
576 root->fs_info->sb->s_root->d_inode->i_ino,
577 &key, BTRFS_FT_DIR);
578
579 if (ret)
580 goto fail;
581
582 ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
583 pending->name, strlen(pending->name), objectid,
584 root->fs_info->sb->s_root->d_inode->i_ino);
585fail:
586 return ret;
587}
588
589static int create_pending_snapshots(struct btrfs_trans_handle *trans,
590 struct btrfs_fs_info *fs_info)
591{
592 struct btrfs_pending_snapshot *pending;
593 struct list_head *head = &trans->transaction->pending_snapshots;
594 int ret;
595
596 while(!list_empty(head)) {
597 pending = list_entry(head->next,
598 struct btrfs_pending_snapshot, list);
599 ret = create_pending_snapshot(trans, fs_info, pending);
600 BUG_ON(ret);
601 list_del(&pending->list);
602 kfree(pending->name);
603 kfree(pending);
604 }
605 return 0;
606}
607
608int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
609 struct btrfs_root *root)
610{
611 unsigned long joined = 0;
612 unsigned long timeout = 1;
613 struct btrfs_transaction *cur_trans;
614 struct btrfs_transaction *prev_trans = NULL;
615 struct list_head dirty_fs_roots;
616 struct extent_map_tree *pinned_copy;
617 DEFINE_WAIT(wait);
618 int ret;
619
620 INIT_LIST_HEAD(&dirty_fs_roots);
621
622 mutex_lock(&root->fs_info->trans_mutex);
623 if (trans->transaction->in_commit) {
624 cur_trans = trans->transaction;
625 trans->transaction->use_count++;
626 mutex_unlock(&root->fs_info->trans_mutex);
627 btrfs_end_transaction(trans, root);
628
629 mutex_unlock(&root->fs_info->fs_mutex);
630 ret = wait_for_commit(root, cur_trans);
631 BUG_ON(ret);
632
633 mutex_lock(&root->fs_info->trans_mutex);
634 put_transaction(cur_trans);
635 mutex_unlock(&root->fs_info->trans_mutex);
636
637 mutex_lock(&root->fs_info->fs_mutex);
638 return 0;
639 }
640
641 pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
642 if (!pinned_copy)
643 return -ENOMEM;
644
645 extent_map_tree_init(pinned_copy,
646 root->fs_info->btree_inode->i_mapping, GFP_NOFS);
647
648 trans->transaction->in_commit = 1;
649 cur_trans = trans->transaction;
650 if (cur_trans->list.prev != &root->fs_info->trans_list) {
651 prev_trans = list_entry(cur_trans->list.prev,
652 struct btrfs_transaction, list);
653 if (!prev_trans->commit_done) {
654 prev_trans->use_count++;
655 mutex_unlock(&root->fs_info->fs_mutex);
656 mutex_unlock(&root->fs_info->trans_mutex);
657
658 wait_for_commit(root, prev_trans);
659
660 mutex_lock(&root->fs_info->fs_mutex);
661 mutex_lock(&root->fs_info->trans_mutex);
662 put_transaction(prev_trans);
663 }
664 }
665
666 do {
667 joined = cur_trans->num_joined;
668 WARN_ON(cur_trans != trans->transaction);
669 prepare_to_wait(&cur_trans->writer_wait, &wait,
670 TASK_UNINTERRUPTIBLE);
671
672 if (cur_trans->num_writers > 1)
673 timeout = MAX_SCHEDULE_TIMEOUT;
674 else
675 timeout = 1;
676
677 mutex_unlock(&root->fs_info->fs_mutex);
678 mutex_unlock(&root->fs_info->trans_mutex);
679
680 schedule_timeout(timeout);
681
682 mutex_lock(&root->fs_info->fs_mutex);
683 mutex_lock(&root->fs_info->trans_mutex);
684 finish_wait(&cur_trans->writer_wait, &wait);
685 ret = btrfs_write_ordered_inodes(trans, root);
686
687 } while (cur_trans->num_writers > 1 ||
688 (cur_trans->num_joined != joined));
689
690 ret = create_pending_snapshots(trans, root->fs_info);
691 BUG_ON(ret);
692
693 WARN_ON(cur_trans != trans->transaction);
694
695 ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
696 &dirty_fs_roots);
697 BUG_ON(ret);
698
699 ret = btrfs_commit_tree_roots(trans, root);
700 BUG_ON(ret);
701
702 cur_trans = root->fs_info->running_transaction;
703 spin_lock(&root->fs_info->new_trans_lock);
704 root->fs_info->running_transaction = NULL;
705 spin_unlock(&root->fs_info->new_trans_lock);
706 btrfs_set_super_generation(&root->fs_info->super_copy,
707 cur_trans->transid);
708 btrfs_set_super_root(&root->fs_info->super_copy,
709 root->fs_info->tree_root->node->start);
710 btrfs_set_super_root_level(&root->fs_info->super_copy,
711 btrfs_header_level(root->fs_info->tree_root->node));
712
713 write_extent_buffer(root->fs_info->sb_buffer,
714 &root->fs_info->super_copy, 0,
715 sizeof(root->fs_info->super_copy));
716
717 btrfs_copy_pinned(root, pinned_copy);
718
719 mutex_unlock(&root->fs_info->trans_mutex);
720 mutex_unlock(&root->fs_info->fs_mutex);
721 ret = btrfs_write_and_wait_transaction(trans, root);
722 BUG_ON(ret);
723 write_ctree_super(trans, root);
724
725 mutex_lock(&root->fs_info->fs_mutex);
726 btrfs_finish_extent_commit(trans, root, pinned_copy);
727 mutex_lock(&root->fs_info->trans_mutex);
728
729 kfree(pinned_copy);
730
731 cur_trans->commit_done = 1;
732 root->fs_info->last_trans_committed = cur_trans->transid;
733 wake_up(&cur_trans->commit_wait);
734 put_transaction(cur_trans);
735 put_transaction(cur_trans);
736
737 if (root->fs_info->closing)
738 list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
739 else
740 list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
741
742 mutex_unlock(&root->fs_info->trans_mutex);
743 kmem_cache_free(btrfs_trans_handle_cachep, trans);
744
745 if (root->fs_info->closing) {
746 mutex_unlock(&root->fs_info->fs_mutex);
747 drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
748 mutex_lock(&root->fs_info->fs_mutex);
749 }
750 return ret;
751}
752
753int btrfs_clean_old_snapshots(struct btrfs_root *root)
754{
755 struct list_head dirty_roots;
756 INIT_LIST_HEAD(&dirty_roots);
757
758 mutex_lock(&root->fs_info->trans_mutex);
759 list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
760 mutex_unlock(&root->fs_info->trans_mutex);
761
762 if (!list_empty(&dirty_roots)) {
763 drop_dirty_roots(root, &dirty_roots);
764 }
765 return 0;
766}
767#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
768void btrfs_transaction_cleaner(void *p)
769#else
770void btrfs_transaction_cleaner(struct work_struct *work)
771#endif
772{
773#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
774 struct btrfs_fs_info *fs_info = p;
775#else
776 struct btrfs_fs_info *fs_info = container_of(work,
777 struct btrfs_fs_info,
778 trans_work.work);
779
780#endif
781 struct btrfs_root *root = fs_info->tree_root;
782 struct btrfs_transaction *cur;
783 struct btrfs_trans_handle *trans;
784 unsigned long now;
785 unsigned long delay = HZ * 30;
786 int ret;
787
788 mutex_lock(&root->fs_info->fs_mutex);
789 mutex_lock(&root->fs_info->trans_mutex);
790 cur = root->fs_info->running_transaction;
791 if (!cur) {
792 mutex_unlock(&root->fs_info->trans_mutex);
793 goto out;
794 }
795 now = get_seconds();
796 if (now < cur->start_time || now - cur->start_time < 30) {
797 mutex_unlock(&root->fs_info->trans_mutex);
798 delay = HZ * 5;
799 goto out;
800 }
801 mutex_unlock(&root->fs_info->trans_mutex);
802 btrfs_defrag_dirty_roots(root->fs_info);
803 trans = btrfs_start_transaction(root, 1);
804 ret = btrfs_commit_transaction(trans, root);
805out:
806 mutex_unlock(&root->fs_info->fs_mutex);
807 btrfs_clean_old_snapshots(root);
808 btrfs_transaction_queue_work(root, delay);
809}
810
811void btrfs_transaction_queue_work(struct btrfs_root *root, int delay)
812{
813 queue_delayed_work(trans_wq, &root->fs_info->trans_work, delay);
814}
815
816void btrfs_transaction_flush_work(struct btrfs_root *root)
817{
818 cancel_rearming_delayed_workqueue(trans_wq, &root->fs_info->trans_work);
819 flush_workqueue(trans_wq);
820}
821
822void __init btrfs_init_transaction_sys(void)
823{
824 trans_wq = create_workqueue("btrfs");
825}
826
827void btrfs_exit_transaction_sys(void)
828{
829 destroy_workqueue(trans_wq);
830}
831