Merge tag 'i2c-for-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[linux-block.git] / fs / btrfs / transaction.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/writeback.h>
11#include <linux/pagemap.h>
12#include <linux/blkdev.h>
13#include <linux/uuid.h>
14#include <linux/timekeeping.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "locking.h"
20#include "tree-log.h"
21#include "volumes.h"
22#include "dev-replace.h"
23#include "qgroup.h"
24#include "block-group.h"
25#include "space-info.h"
26#include "zoned.h"
27#include "fs.h"
28#include "accessors.h"
29#include "extent-tree.h"
30#include "root-tree.h"
31#include "defrag.h"
32#include "dir-item.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37
38static struct kmem_cache *btrfs_trans_handle_cachep;
39
40#define BTRFS_ROOT_TRANS_TAG 0
41
42/*
43 * Transaction states and transitions
44 *
45 * No running transaction (fs tree blocks are not modified)
46 * |
47 * | To next stage:
48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49 * V
50 * Transaction N [[TRANS_STATE_RUNNING]]
51 * |
52 * | New trans handles can be attached to transaction N by calling all
53 * | start_transaction() variants.
54 * |
55 * | To next stage:
56 * | Call btrfs_commit_transaction() on any trans handle attached to
57 * | transaction N
58 * V
59 * Transaction N [[TRANS_STATE_COMMIT_START]]
60 * |
61 * | Will wait for previous running transaction to completely finish if there
62 * | is one
63 * |
64 * | Then one of the following happes:
65 * | - Wait for all other trans handle holders to release.
66 * | The btrfs_commit_transaction() caller will do the commit work.
67 * | - Wait for current transaction to be committed by others.
68 * | Other btrfs_commit_transaction() caller will do the commit work.
69 * |
70 * | At this stage, only btrfs_join_transaction*() variants can attach
71 * | to this running transaction.
72 * | All other variants will wait for current one to finish and attach to
73 * | transaction N+1.
74 * |
75 * | To next stage:
76 * | Caller is chosen to commit transaction N, and all other trans handle
77 * | haven been released.
78 * V
79 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
80 * |
81 * | The heavy lifting transaction work is started.
82 * | From running delayed refs (modifying extent tree) to creating pending
83 * | snapshots, running qgroups.
84 * | In short, modify supporting trees to reflect modifications of subvolume
85 * | trees.
86 * |
87 * | At this stage, all start_transaction() calls will wait for this
88 * | transaction to finish and attach to transaction N+1.
89 * |
90 * | To next stage:
91 * | Until all supporting trees are updated.
92 * V
93 * Transaction N [[TRANS_STATE_UNBLOCKED]]
94 * | Transaction N+1
95 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
96 * | need to write them back to disk and update |
97 * | super blocks. |
98 * | |
99 * | At this stage, new transaction is allowed to |
100 * | start. |
101 * | All new start_transaction() calls will be |
102 * | attached to transid N+1. |
103 * | |
104 * | To next stage: |
105 * | Until all tree blocks are super blocks are |
106 * | written to block devices |
107 * V |
108 * Transaction N [[TRANS_STATE_COMPLETED]] V
109 * All tree blocks and super blocks are written. Transaction N+1
110 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
111 * data structures will be cleaned up. | Life goes on
112 */
113static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
114 [TRANS_STATE_RUNNING] = 0U,
115 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
116 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
117 __TRANS_ATTACH |
118 __TRANS_JOIN |
119 __TRANS_JOIN_NOSTART),
120 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
121 __TRANS_ATTACH |
122 __TRANS_JOIN |
123 __TRANS_JOIN_NOLOCK |
124 __TRANS_JOIN_NOSTART),
125 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
126 __TRANS_ATTACH |
127 __TRANS_JOIN |
128 __TRANS_JOIN_NOLOCK |
129 __TRANS_JOIN_NOSTART),
130 [TRANS_STATE_COMPLETED] = (__TRANS_START |
131 __TRANS_ATTACH |
132 __TRANS_JOIN |
133 __TRANS_JOIN_NOLOCK |
134 __TRANS_JOIN_NOSTART),
135};
136
137void btrfs_put_transaction(struct btrfs_transaction *transaction)
138{
139 WARN_ON(refcount_read(&transaction->use_count) == 0);
140 if (refcount_dec_and_test(&transaction->use_count)) {
141 BUG_ON(!list_empty(&transaction->list));
142 WARN_ON(!RB_EMPTY_ROOT(
143 &transaction->delayed_refs.href_root.rb_root));
144 WARN_ON(!RB_EMPTY_ROOT(
145 &transaction->delayed_refs.dirty_extent_root));
146 if (transaction->delayed_refs.pending_csums)
147 btrfs_err(transaction->fs_info,
148 "pending csums is %llu",
149 transaction->delayed_refs.pending_csums);
150 /*
151 * If any block groups are found in ->deleted_bgs then it's
152 * because the transaction was aborted and a commit did not
153 * happen (things failed before writing the new superblock
154 * and calling btrfs_finish_extent_commit()), so we can not
155 * discard the physical locations of the block groups.
156 */
157 while (!list_empty(&transaction->deleted_bgs)) {
158 struct btrfs_block_group *cache;
159
160 cache = list_first_entry(&transaction->deleted_bgs,
161 struct btrfs_block_group,
162 bg_list);
163 list_del_init(&cache->bg_list);
164 btrfs_unfreeze_block_group(cache);
165 btrfs_put_block_group(cache);
166 }
167 WARN_ON(!list_empty(&transaction->dev_update_list));
168 kfree(transaction);
169 }
170}
171
172static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
173{
174 struct btrfs_transaction *cur_trans = trans->transaction;
175 struct btrfs_fs_info *fs_info = trans->fs_info;
176 struct btrfs_root *root, *tmp;
177
178 /*
179 * At this point no one can be using this transaction to modify any tree
180 * and no one can start another transaction to modify any tree either.
181 */
182 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183
184 down_write(&fs_info->commit_root_sem);
185
186 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 fs_info->last_reloc_trans = trans->transid;
188
189 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
190 dirty_list) {
191 list_del_init(&root->dirty_list);
192 free_extent_buffer(root->commit_root);
193 root->commit_root = btrfs_root_node(root);
194 extent_io_tree_release(&root->dirty_log_pages);
195 btrfs_qgroup_clean_swapped_blocks(root);
196 }
197
198 /* We can free old roots now. */
199 spin_lock(&cur_trans->dropped_roots_lock);
200 while (!list_empty(&cur_trans->dropped_roots)) {
201 root = list_first_entry(&cur_trans->dropped_roots,
202 struct btrfs_root, root_list);
203 list_del_init(&root->root_list);
204 spin_unlock(&cur_trans->dropped_roots_lock);
205 btrfs_free_log(trans, root);
206 btrfs_drop_and_free_fs_root(fs_info, root);
207 spin_lock(&cur_trans->dropped_roots_lock);
208 }
209 spin_unlock(&cur_trans->dropped_roots_lock);
210
211 up_write(&fs_info->commit_root_sem);
212}
213
214static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215 unsigned int type)
216{
217 if (type & TRANS_EXTWRITERS)
218 atomic_inc(&trans->num_extwriters);
219}
220
221static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222 unsigned int type)
223{
224 if (type & TRANS_EXTWRITERS)
225 atomic_dec(&trans->num_extwriters);
226}
227
228static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229 unsigned int type)
230{
231 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232}
233
234static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235{
236 return atomic_read(&trans->num_extwriters);
237}
238
239/*
240 * To be called after doing the chunk btree updates right after allocating a new
241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242 * chunk after all chunk btree updates and after finishing the second phase of
243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244 * group had its chunk item insertion delayed to the second phase.
245 */
246void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247{
248 struct btrfs_fs_info *fs_info = trans->fs_info;
249
250 if (!trans->chunk_bytes_reserved)
251 return;
252
253 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254 trans->chunk_bytes_reserved, NULL);
255 trans->chunk_bytes_reserved = 0;
256}
257
258/*
259 * either allocate a new transaction or hop into the existing one
260 */
261static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262 unsigned int type)
263{
264 struct btrfs_transaction *cur_trans;
265
266 spin_lock(&fs_info->trans_lock);
267loop:
268 /* The file system has been taken offline. No new transactions. */
269 if (BTRFS_FS_ERROR(fs_info)) {
270 spin_unlock(&fs_info->trans_lock);
271 return -EROFS;
272 }
273
274 cur_trans = fs_info->running_transaction;
275 if (cur_trans) {
276 if (TRANS_ABORTED(cur_trans)) {
277 spin_unlock(&fs_info->trans_lock);
278 return cur_trans->aborted;
279 }
280 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
281 spin_unlock(&fs_info->trans_lock);
282 return -EBUSY;
283 }
284 refcount_inc(&cur_trans->use_count);
285 atomic_inc(&cur_trans->num_writers);
286 extwriter_counter_inc(cur_trans, type);
287 spin_unlock(&fs_info->trans_lock);
288 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
289 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
290 return 0;
291 }
292 spin_unlock(&fs_info->trans_lock);
293
294 /*
295 * If we are ATTACH, we just want to catch the current transaction,
296 * and commit it. If there is no transaction, just return ENOENT.
297 */
298 if (type == TRANS_ATTACH)
299 return -ENOENT;
300
301 /*
302 * JOIN_NOLOCK only happens during the transaction commit, so
303 * it is impossible that ->running_transaction is NULL
304 */
305 BUG_ON(type == TRANS_JOIN_NOLOCK);
306
307 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
308 if (!cur_trans)
309 return -ENOMEM;
310
311 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
312 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
313
314 spin_lock(&fs_info->trans_lock);
315 if (fs_info->running_transaction) {
316 /*
317 * someone started a transaction after we unlocked. Make sure
318 * to redo the checks above
319 */
320 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
321 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
322 kfree(cur_trans);
323 goto loop;
324 } else if (BTRFS_FS_ERROR(fs_info)) {
325 spin_unlock(&fs_info->trans_lock);
326 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
327 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
328 kfree(cur_trans);
329 return -EROFS;
330 }
331
332 cur_trans->fs_info = fs_info;
333 atomic_set(&cur_trans->pending_ordered, 0);
334 init_waitqueue_head(&cur_trans->pending_wait);
335 atomic_set(&cur_trans->num_writers, 1);
336 extwriter_counter_init(cur_trans, type);
337 init_waitqueue_head(&cur_trans->writer_wait);
338 init_waitqueue_head(&cur_trans->commit_wait);
339 cur_trans->state = TRANS_STATE_RUNNING;
340 /*
341 * One for this trans handle, one so it will live on until we
342 * commit the transaction.
343 */
344 refcount_set(&cur_trans->use_count, 2);
345 cur_trans->flags = 0;
346 cur_trans->start_time = ktime_get_seconds();
347
348 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
349
350 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
351 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
352 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
353
354 /*
355 * although the tree mod log is per file system and not per transaction,
356 * the log must never go across transaction boundaries.
357 */
358 smp_mb();
359 if (!list_empty(&fs_info->tree_mod_seq_list))
360 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
361 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
362 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
363 atomic64_set(&fs_info->tree_mod_seq, 0);
364
365 spin_lock_init(&cur_trans->delayed_refs.lock);
366
367 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
368 INIT_LIST_HEAD(&cur_trans->dev_update_list);
369 INIT_LIST_HEAD(&cur_trans->switch_commits);
370 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
371 INIT_LIST_HEAD(&cur_trans->io_bgs);
372 INIT_LIST_HEAD(&cur_trans->dropped_roots);
373 mutex_init(&cur_trans->cache_write_mutex);
374 spin_lock_init(&cur_trans->dirty_bgs_lock);
375 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
376 spin_lock_init(&cur_trans->dropped_roots_lock);
377 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
378 spin_lock_init(&cur_trans->releasing_ebs_lock);
379 list_add_tail(&cur_trans->list, &fs_info->trans_list);
380 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
381 IO_TREE_TRANS_DIRTY_PAGES);
382 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
383 IO_TREE_FS_PINNED_EXTENTS);
384 fs_info->generation++;
385 cur_trans->transid = fs_info->generation;
386 fs_info->running_transaction = cur_trans;
387 cur_trans->aborted = 0;
388 spin_unlock(&fs_info->trans_lock);
389
390 return 0;
391}
392
393/*
394 * This does all the record keeping required to make sure that a shareable root
395 * is properly recorded in a given transaction. This is required to make sure
396 * the old root from before we joined the transaction is deleted when the
397 * transaction commits.
398 */
399static int record_root_in_trans(struct btrfs_trans_handle *trans,
400 struct btrfs_root *root,
401 int force)
402{
403 struct btrfs_fs_info *fs_info = root->fs_info;
404 int ret = 0;
405
406 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
407 root->last_trans < trans->transid) || force) {
408 WARN_ON(!force && root->commit_root != root->node);
409
410 /*
411 * see below for IN_TRANS_SETUP usage rules
412 * we have the reloc mutex held now, so there
413 * is only one writer in this function
414 */
415 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416
417 /* make sure readers find IN_TRANS_SETUP before
418 * they find our root->last_trans update
419 */
420 smp_wmb();
421
422 spin_lock(&fs_info->fs_roots_radix_lock);
423 if (root->last_trans == trans->transid && !force) {
424 spin_unlock(&fs_info->fs_roots_radix_lock);
425 return 0;
426 }
427 radix_tree_tag_set(&fs_info->fs_roots_radix,
428 (unsigned long)root->root_key.objectid,
429 BTRFS_ROOT_TRANS_TAG);
430 spin_unlock(&fs_info->fs_roots_radix_lock);
431 root->last_trans = trans->transid;
432
433 /* this is pretty tricky. We don't want to
434 * take the relocation lock in btrfs_record_root_in_trans
435 * unless we're really doing the first setup for this root in
436 * this transaction.
437 *
438 * Normally we'd use root->last_trans as a flag to decide
439 * if we want to take the expensive mutex.
440 *
441 * But, we have to set root->last_trans before we
442 * init the relocation root, otherwise, we trip over warnings
443 * in ctree.c. The solution used here is to flag ourselves
444 * with root IN_TRANS_SETUP. When this is 1, we're still
445 * fixing up the reloc trees and everyone must wait.
446 *
447 * When this is zero, they can trust root->last_trans and fly
448 * through btrfs_record_root_in_trans without having to take the
449 * lock. smp_wmb() makes sure that all the writes above are
450 * done before we pop in the zero below
451 */
452 ret = btrfs_init_reloc_root(trans, root);
453 smp_mb__before_atomic();
454 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
455 }
456 return ret;
457}
458
459
460void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
461 struct btrfs_root *root)
462{
463 struct btrfs_fs_info *fs_info = root->fs_info;
464 struct btrfs_transaction *cur_trans = trans->transaction;
465
466 /* Add ourselves to the transaction dropped list */
467 spin_lock(&cur_trans->dropped_roots_lock);
468 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
469 spin_unlock(&cur_trans->dropped_roots_lock);
470
471 /* Make sure we don't try to update the root at commit time */
472 spin_lock(&fs_info->fs_roots_radix_lock);
473 radix_tree_tag_clear(&fs_info->fs_roots_radix,
474 (unsigned long)root->root_key.objectid,
475 BTRFS_ROOT_TRANS_TAG);
476 spin_unlock(&fs_info->fs_roots_radix_lock);
477}
478
479int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root)
481{
482 struct btrfs_fs_info *fs_info = root->fs_info;
483 int ret;
484
485 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
486 return 0;
487
488 /*
489 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
490 * and barriers
491 */
492 smp_rmb();
493 if (root->last_trans == trans->transid &&
494 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495 return 0;
496
497 mutex_lock(&fs_info->reloc_mutex);
498 ret = record_root_in_trans(trans, root, 0);
499 mutex_unlock(&fs_info->reloc_mutex);
500
501 return ret;
502}
503
504static inline int is_transaction_blocked(struct btrfs_transaction *trans)
505{
506 return (trans->state >= TRANS_STATE_COMMIT_START &&
507 trans->state < TRANS_STATE_UNBLOCKED &&
508 !TRANS_ABORTED(trans));
509}
510
511/* wait for commit against the current transaction to become unblocked
512 * when this is done, it is safe to start a new transaction, but the current
513 * transaction might not be fully on disk.
514 */
515static void wait_current_trans(struct btrfs_fs_info *fs_info)
516{
517 struct btrfs_transaction *cur_trans;
518
519 spin_lock(&fs_info->trans_lock);
520 cur_trans = fs_info->running_transaction;
521 if (cur_trans && is_transaction_blocked(cur_trans)) {
522 refcount_inc(&cur_trans->use_count);
523 spin_unlock(&fs_info->trans_lock);
524
525 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
526 wait_event(fs_info->transaction_wait,
527 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
528 TRANS_ABORTED(cur_trans));
529 btrfs_put_transaction(cur_trans);
530 } else {
531 spin_unlock(&fs_info->trans_lock);
532 }
533}
534
535static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
536{
537 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
538 return 0;
539
540 if (type == TRANS_START)
541 return 1;
542
543 return 0;
544}
545
546static inline bool need_reserve_reloc_root(struct btrfs_root *root)
547{
548 struct btrfs_fs_info *fs_info = root->fs_info;
549
550 if (!fs_info->reloc_ctl ||
551 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
552 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
553 root->reloc_root)
554 return false;
555
556 return true;
557}
558
559static struct btrfs_trans_handle *
560start_transaction(struct btrfs_root *root, unsigned int num_items,
561 unsigned int type, enum btrfs_reserve_flush_enum flush,
562 bool enforce_qgroups)
563{
564 struct btrfs_fs_info *fs_info = root->fs_info;
565 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
566 struct btrfs_trans_handle *h;
567 struct btrfs_transaction *cur_trans;
568 u64 num_bytes = 0;
569 u64 qgroup_reserved = 0;
570 bool reloc_reserved = false;
571 bool do_chunk_alloc = false;
572 int ret;
573
574 if (BTRFS_FS_ERROR(fs_info))
575 return ERR_PTR(-EROFS);
576
577 if (current->journal_info) {
578 WARN_ON(type & TRANS_EXTWRITERS);
579 h = current->journal_info;
580 refcount_inc(&h->use_count);
581 WARN_ON(refcount_read(&h->use_count) > 2);
582 h->orig_rsv = h->block_rsv;
583 h->block_rsv = NULL;
584 goto got_it;
585 }
586
587 /*
588 * Do the reservation before we join the transaction so we can do all
589 * the appropriate flushing if need be.
590 */
591 if (num_items && root != fs_info->chunk_root) {
592 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
593 u64 delayed_refs_bytes = 0;
594
595 qgroup_reserved = num_items * fs_info->nodesize;
596 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
597 enforce_qgroups);
598 if (ret)
599 return ERR_PTR(ret);
600
601 /*
602 * We want to reserve all the bytes we may need all at once, so
603 * we only do 1 enospc flushing cycle per transaction start. We
604 * accomplish this by simply assuming we'll do num_items worth
605 * of delayed refs updates in this trans handle, and refill that
606 * amount for whatever is missing in the reserve.
607 */
608 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
609 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
610 !btrfs_block_rsv_full(delayed_refs_rsv)) {
611 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
612 num_items);
613 num_bytes += delayed_refs_bytes;
614 }
615
616 /*
617 * Do the reservation for the relocation root creation
618 */
619 if (need_reserve_reloc_root(root)) {
620 num_bytes += fs_info->nodesize;
621 reloc_reserved = true;
622 }
623
624 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
625 if (ret)
626 goto reserve_fail;
627 if (delayed_refs_bytes) {
628 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
629 delayed_refs_bytes);
630 num_bytes -= delayed_refs_bytes;
631 }
632
633 if (rsv->space_info->force_alloc)
634 do_chunk_alloc = true;
635 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
636 !btrfs_block_rsv_full(delayed_refs_rsv)) {
637 /*
638 * Some people call with btrfs_start_transaction(root, 0)
639 * because they can be throttled, but have some other mechanism
640 * for reserving space. We still want these guys to refill the
641 * delayed block_rsv so just add 1 items worth of reservation
642 * here.
643 */
644 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
645 if (ret)
646 goto reserve_fail;
647 }
648again:
649 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
650 if (!h) {
651 ret = -ENOMEM;
652 goto alloc_fail;
653 }
654
655 /*
656 * If we are JOIN_NOLOCK we're already committing a transaction and
657 * waiting on this guy, so we don't need to do the sb_start_intwrite
658 * because we're already holding a ref. We need this because we could
659 * have raced in and did an fsync() on a file which can kick a commit
660 * and then we deadlock with somebody doing a freeze.
661 *
662 * If we are ATTACH, it means we just want to catch the current
663 * transaction and commit it, so we needn't do sb_start_intwrite().
664 */
665 if (type & __TRANS_FREEZABLE)
666 sb_start_intwrite(fs_info->sb);
667
668 if (may_wait_transaction(fs_info, type))
669 wait_current_trans(fs_info);
670
671 do {
672 ret = join_transaction(fs_info, type);
673 if (ret == -EBUSY) {
674 wait_current_trans(fs_info);
675 if (unlikely(type == TRANS_ATTACH ||
676 type == TRANS_JOIN_NOSTART))
677 ret = -ENOENT;
678 }
679 } while (ret == -EBUSY);
680
681 if (ret < 0)
682 goto join_fail;
683
684 cur_trans = fs_info->running_transaction;
685
686 h->transid = cur_trans->transid;
687 h->transaction = cur_trans;
688 refcount_set(&h->use_count, 1);
689 h->fs_info = root->fs_info;
690
691 h->type = type;
692 INIT_LIST_HEAD(&h->new_bgs);
693
694 smp_mb();
695 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
696 may_wait_transaction(fs_info, type)) {
697 current->journal_info = h;
698 btrfs_commit_transaction(h);
699 goto again;
700 }
701
702 if (num_bytes) {
703 trace_btrfs_space_reservation(fs_info, "transaction",
704 h->transid, num_bytes, 1);
705 h->block_rsv = &fs_info->trans_block_rsv;
706 h->bytes_reserved = num_bytes;
707 h->reloc_reserved = reloc_reserved;
708 }
709
710got_it:
711 if (!current->journal_info)
712 current->journal_info = h;
713
714 /*
715 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
716 * ALLOC_FORCE the first run through, and then we won't allocate for
717 * anybody else who races in later. We don't care about the return
718 * value here.
719 */
720 if (do_chunk_alloc && num_bytes) {
721 u64 flags = h->block_rsv->space_info->flags;
722
723 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
724 CHUNK_ALLOC_NO_FORCE);
725 }
726
727 /*
728 * btrfs_record_root_in_trans() needs to alloc new extents, and may
729 * call btrfs_join_transaction() while we're also starting a
730 * transaction.
731 *
732 * Thus it need to be called after current->journal_info initialized,
733 * or we can deadlock.
734 */
735 ret = btrfs_record_root_in_trans(h, root);
736 if (ret) {
737 /*
738 * The transaction handle is fully initialized and linked with
739 * other structures so it needs to be ended in case of errors,
740 * not just freed.
741 */
742 btrfs_end_transaction(h);
743 return ERR_PTR(ret);
744 }
745
746 return h;
747
748join_fail:
749 if (type & __TRANS_FREEZABLE)
750 sb_end_intwrite(fs_info->sb);
751 kmem_cache_free(btrfs_trans_handle_cachep, h);
752alloc_fail:
753 if (num_bytes)
754 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
755 num_bytes, NULL);
756reserve_fail:
757 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
758 return ERR_PTR(ret);
759}
760
761struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
762 unsigned int num_items)
763{
764 return start_transaction(root, num_items, TRANS_START,
765 BTRFS_RESERVE_FLUSH_ALL, true);
766}
767
768struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
769 struct btrfs_root *root,
770 unsigned int num_items)
771{
772 return start_transaction(root, num_items, TRANS_START,
773 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
774}
775
776struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
777{
778 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
779 true);
780}
781
782struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
783{
784 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
785 BTRFS_RESERVE_NO_FLUSH, true);
786}
787
788/*
789 * Similar to regular join but it never starts a transaction when none is
790 * running or after waiting for the current one to finish.
791 */
792struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
793{
794 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
795 BTRFS_RESERVE_NO_FLUSH, true);
796}
797
798/*
799 * btrfs_attach_transaction() - catch the running transaction
800 *
801 * It is used when we want to commit the current the transaction, but
802 * don't want to start a new one.
803 *
804 * Note: If this function return -ENOENT, it just means there is no
805 * running transaction. But it is possible that the inactive transaction
806 * is still in the memory, not fully on disk. If you hope there is no
807 * inactive transaction in the fs when -ENOENT is returned, you should
808 * invoke
809 * btrfs_attach_transaction_barrier()
810 */
811struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
812{
813 return start_transaction(root, 0, TRANS_ATTACH,
814 BTRFS_RESERVE_NO_FLUSH, true);
815}
816
817/*
818 * btrfs_attach_transaction_barrier() - catch the running transaction
819 *
820 * It is similar to the above function, the difference is this one
821 * will wait for all the inactive transactions until they fully
822 * complete.
823 */
824struct btrfs_trans_handle *
825btrfs_attach_transaction_barrier(struct btrfs_root *root)
826{
827 struct btrfs_trans_handle *trans;
828
829 trans = start_transaction(root, 0, TRANS_ATTACH,
830 BTRFS_RESERVE_NO_FLUSH, true);
831 if (trans == ERR_PTR(-ENOENT))
832 btrfs_wait_for_commit(root->fs_info, 0);
833
834 return trans;
835}
836
837/* Wait for a transaction commit to reach at least the given state. */
838static noinline void wait_for_commit(struct btrfs_transaction *commit,
839 const enum btrfs_trans_state min_state)
840{
841 struct btrfs_fs_info *fs_info = commit->fs_info;
842 u64 transid = commit->transid;
843 bool put = false;
844
845 /*
846 * At the moment this function is called with min_state either being
847 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
848 */
849 if (min_state == TRANS_STATE_COMPLETED)
850 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
851 else
852 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
853
854 while (1) {
855 wait_event(commit->commit_wait, commit->state >= min_state);
856 if (put)
857 btrfs_put_transaction(commit);
858
859 if (min_state < TRANS_STATE_COMPLETED)
860 break;
861
862 /*
863 * A transaction isn't really completed until all of the
864 * previous transactions are completed, but with fsync we can
865 * end up with SUPER_COMMITTED transactions before a COMPLETED
866 * transaction. Wait for those.
867 */
868
869 spin_lock(&fs_info->trans_lock);
870 commit = list_first_entry_or_null(&fs_info->trans_list,
871 struct btrfs_transaction,
872 list);
873 if (!commit || commit->transid > transid) {
874 spin_unlock(&fs_info->trans_lock);
875 break;
876 }
877 refcount_inc(&commit->use_count);
878 put = true;
879 spin_unlock(&fs_info->trans_lock);
880 }
881}
882
883int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
884{
885 struct btrfs_transaction *cur_trans = NULL, *t;
886 int ret = 0;
887
888 if (transid) {
889 if (transid <= fs_info->last_trans_committed)
890 goto out;
891
892 /* find specified transaction */
893 spin_lock(&fs_info->trans_lock);
894 list_for_each_entry(t, &fs_info->trans_list, list) {
895 if (t->transid == transid) {
896 cur_trans = t;
897 refcount_inc(&cur_trans->use_count);
898 ret = 0;
899 break;
900 }
901 if (t->transid > transid) {
902 ret = 0;
903 break;
904 }
905 }
906 spin_unlock(&fs_info->trans_lock);
907
908 /*
909 * The specified transaction doesn't exist, or we
910 * raced with btrfs_commit_transaction
911 */
912 if (!cur_trans) {
913 if (transid > fs_info->last_trans_committed)
914 ret = -EINVAL;
915 goto out;
916 }
917 } else {
918 /* find newest transaction that is committing | committed */
919 spin_lock(&fs_info->trans_lock);
920 list_for_each_entry_reverse(t, &fs_info->trans_list,
921 list) {
922 if (t->state >= TRANS_STATE_COMMIT_START) {
923 if (t->state == TRANS_STATE_COMPLETED)
924 break;
925 cur_trans = t;
926 refcount_inc(&cur_trans->use_count);
927 break;
928 }
929 }
930 spin_unlock(&fs_info->trans_lock);
931 if (!cur_trans)
932 goto out; /* nothing committing|committed */
933 }
934
935 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
936 btrfs_put_transaction(cur_trans);
937out:
938 return ret;
939}
940
941void btrfs_throttle(struct btrfs_fs_info *fs_info)
942{
943 wait_current_trans(fs_info);
944}
945
946bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
947{
948 struct btrfs_transaction *cur_trans = trans->transaction;
949
950 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
951 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
952 return true;
953
954 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
955 return true;
956
957 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
958}
959
960static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
961
962{
963 struct btrfs_fs_info *fs_info = trans->fs_info;
964
965 if (!trans->block_rsv) {
966 ASSERT(!trans->bytes_reserved);
967 return;
968 }
969
970 if (!trans->bytes_reserved)
971 return;
972
973 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
974 trace_btrfs_space_reservation(fs_info, "transaction",
975 trans->transid, trans->bytes_reserved, 0);
976 btrfs_block_rsv_release(fs_info, trans->block_rsv,
977 trans->bytes_reserved, NULL);
978 trans->bytes_reserved = 0;
979}
980
981static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
982 int throttle)
983{
984 struct btrfs_fs_info *info = trans->fs_info;
985 struct btrfs_transaction *cur_trans = trans->transaction;
986 int err = 0;
987
988 if (refcount_read(&trans->use_count) > 1) {
989 refcount_dec(&trans->use_count);
990 trans->block_rsv = trans->orig_rsv;
991 return 0;
992 }
993
994 btrfs_trans_release_metadata(trans);
995 trans->block_rsv = NULL;
996
997 btrfs_create_pending_block_groups(trans);
998
999 btrfs_trans_release_chunk_metadata(trans);
1000
1001 if (trans->type & __TRANS_FREEZABLE)
1002 sb_end_intwrite(info->sb);
1003
1004 WARN_ON(cur_trans != info->running_transaction);
1005 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1006 atomic_dec(&cur_trans->num_writers);
1007 extwriter_counter_dec(cur_trans, trans->type);
1008
1009 cond_wake_up(&cur_trans->writer_wait);
1010
1011 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1012 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1013
1014 btrfs_put_transaction(cur_trans);
1015
1016 if (current->journal_info == trans)
1017 current->journal_info = NULL;
1018
1019 if (throttle)
1020 btrfs_run_delayed_iputs(info);
1021
1022 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1023 wake_up_process(info->transaction_kthread);
1024 if (TRANS_ABORTED(trans))
1025 err = trans->aborted;
1026 else
1027 err = -EROFS;
1028 }
1029
1030 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1031 return err;
1032}
1033
1034int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1035{
1036 return __btrfs_end_transaction(trans, 0);
1037}
1038
1039int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1040{
1041 return __btrfs_end_transaction(trans, 1);
1042}
1043
1044/*
1045 * when btree blocks are allocated, they have some corresponding bits set for
1046 * them in one of two extent_io trees. This is used to make sure all of
1047 * those extents are sent to disk but does not wait on them
1048 */
1049int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1050 struct extent_io_tree *dirty_pages, int mark)
1051{
1052 int err = 0;
1053 int werr = 0;
1054 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1055 struct extent_state *cached_state = NULL;
1056 u64 start = 0;
1057 u64 end;
1058
1059 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1060 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1061 mark, &cached_state)) {
1062 bool wait_writeback = false;
1063
1064 err = convert_extent_bit(dirty_pages, start, end,
1065 EXTENT_NEED_WAIT,
1066 mark, &cached_state);
1067 /*
1068 * convert_extent_bit can return -ENOMEM, which is most of the
1069 * time a temporary error. So when it happens, ignore the error
1070 * and wait for writeback of this range to finish - because we
1071 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1072 * to __btrfs_wait_marked_extents() would not know that
1073 * writeback for this range started and therefore wouldn't
1074 * wait for it to finish - we don't want to commit a
1075 * superblock that points to btree nodes/leafs for which
1076 * writeback hasn't finished yet (and without errors).
1077 * We cleanup any entries left in the io tree when committing
1078 * the transaction (through extent_io_tree_release()).
1079 */
1080 if (err == -ENOMEM) {
1081 err = 0;
1082 wait_writeback = true;
1083 }
1084 if (!err)
1085 err = filemap_fdatawrite_range(mapping, start, end);
1086 if (err)
1087 werr = err;
1088 else if (wait_writeback)
1089 werr = filemap_fdatawait_range(mapping, start, end);
1090 free_extent_state(cached_state);
1091 cached_state = NULL;
1092 cond_resched();
1093 start = end + 1;
1094 }
1095 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1096 return werr;
1097}
1098
1099/*
1100 * when btree blocks are allocated, they have some corresponding bits set for
1101 * them in one of two extent_io trees. This is used to make sure all of
1102 * those extents are on disk for transaction or log commit. We wait
1103 * on all the pages and clear them from the dirty pages state tree
1104 */
1105static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1106 struct extent_io_tree *dirty_pages)
1107{
1108 int err = 0;
1109 int werr = 0;
1110 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1111 struct extent_state *cached_state = NULL;
1112 u64 start = 0;
1113 u64 end;
1114
1115 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1116 EXTENT_NEED_WAIT, &cached_state)) {
1117 /*
1118 * Ignore -ENOMEM errors returned by clear_extent_bit().
1119 * When committing the transaction, we'll remove any entries
1120 * left in the io tree. For a log commit, we don't remove them
1121 * after committing the log because the tree can be accessed
1122 * concurrently - we do it only at transaction commit time when
1123 * it's safe to do it (through extent_io_tree_release()).
1124 */
1125 err = clear_extent_bit(dirty_pages, start, end,
1126 EXTENT_NEED_WAIT, &cached_state);
1127 if (err == -ENOMEM)
1128 err = 0;
1129 if (!err)
1130 err = filemap_fdatawait_range(mapping, start, end);
1131 if (err)
1132 werr = err;
1133 free_extent_state(cached_state);
1134 cached_state = NULL;
1135 cond_resched();
1136 start = end + 1;
1137 }
1138 if (err)
1139 werr = err;
1140 return werr;
1141}
1142
1143static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1144 struct extent_io_tree *dirty_pages)
1145{
1146 bool errors = false;
1147 int err;
1148
1149 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1150 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1151 errors = true;
1152
1153 if (errors && !err)
1154 err = -EIO;
1155 return err;
1156}
1157
1158int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1159{
1160 struct btrfs_fs_info *fs_info = log_root->fs_info;
1161 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1162 bool errors = false;
1163 int err;
1164
1165 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1166
1167 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1168 if ((mark & EXTENT_DIRTY) &&
1169 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1170 errors = true;
1171
1172 if ((mark & EXTENT_NEW) &&
1173 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1174 errors = true;
1175
1176 if (errors && !err)
1177 err = -EIO;
1178 return err;
1179}
1180
1181/*
1182 * When btree blocks are allocated the corresponding extents are marked dirty.
1183 * This function ensures such extents are persisted on disk for transaction or
1184 * log commit.
1185 *
1186 * @trans: transaction whose dirty pages we'd like to write
1187 */
1188static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1189{
1190 int ret;
1191 int ret2;
1192 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1193 struct btrfs_fs_info *fs_info = trans->fs_info;
1194 struct blk_plug plug;
1195
1196 blk_start_plug(&plug);
1197 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1198 blk_finish_plug(&plug);
1199 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1200
1201 extent_io_tree_release(&trans->transaction->dirty_pages);
1202
1203 if (ret)
1204 return ret;
1205 else if (ret2)
1206 return ret2;
1207 else
1208 return 0;
1209}
1210
1211/*
1212 * this is used to update the root pointer in the tree of tree roots.
1213 *
1214 * But, in the case of the extent allocation tree, updating the root
1215 * pointer may allocate blocks which may change the root of the extent
1216 * allocation tree.
1217 *
1218 * So, this loops and repeats and makes sure the cowonly root didn't
1219 * change while the root pointer was being updated in the metadata.
1220 */
1221static int update_cowonly_root(struct btrfs_trans_handle *trans,
1222 struct btrfs_root *root)
1223{
1224 int ret;
1225 u64 old_root_bytenr;
1226 u64 old_root_used;
1227 struct btrfs_fs_info *fs_info = root->fs_info;
1228 struct btrfs_root *tree_root = fs_info->tree_root;
1229
1230 old_root_used = btrfs_root_used(&root->root_item);
1231
1232 while (1) {
1233 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1234 if (old_root_bytenr == root->node->start &&
1235 old_root_used == btrfs_root_used(&root->root_item))
1236 break;
1237
1238 btrfs_set_root_node(&root->root_item, root->node);
1239 ret = btrfs_update_root(trans, tree_root,
1240 &root->root_key,
1241 &root->root_item);
1242 if (ret)
1243 return ret;
1244
1245 old_root_used = btrfs_root_used(&root->root_item);
1246 }
1247
1248 return 0;
1249}
1250
1251/*
1252 * update all the cowonly tree roots on disk
1253 *
1254 * The error handling in this function may not be obvious. Any of the
1255 * failures will cause the file system to go offline. We still need
1256 * to clean up the delayed refs.
1257 */
1258static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1259{
1260 struct btrfs_fs_info *fs_info = trans->fs_info;
1261 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1262 struct list_head *io_bgs = &trans->transaction->io_bgs;
1263 struct list_head *next;
1264 struct extent_buffer *eb;
1265 int ret;
1266
1267 /*
1268 * At this point no one can be using this transaction to modify any tree
1269 * and no one can start another transaction to modify any tree either.
1270 */
1271 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1272
1273 eb = btrfs_lock_root_node(fs_info->tree_root);
1274 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1275 0, &eb, BTRFS_NESTING_COW);
1276 btrfs_tree_unlock(eb);
1277 free_extent_buffer(eb);
1278
1279 if (ret)
1280 return ret;
1281
1282 ret = btrfs_run_dev_stats(trans);
1283 if (ret)
1284 return ret;
1285 ret = btrfs_run_dev_replace(trans);
1286 if (ret)
1287 return ret;
1288 ret = btrfs_run_qgroups(trans);
1289 if (ret)
1290 return ret;
1291
1292 ret = btrfs_setup_space_cache(trans);
1293 if (ret)
1294 return ret;
1295
1296again:
1297 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1298 struct btrfs_root *root;
1299 next = fs_info->dirty_cowonly_roots.next;
1300 list_del_init(next);
1301 root = list_entry(next, struct btrfs_root, dirty_list);
1302 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1303
1304 list_add_tail(&root->dirty_list,
1305 &trans->transaction->switch_commits);
1306 ret = update_cowonly_root(trans, root);
1307 if (ret)
1308 return ret;
1309 }
1310
1311 /* Now flush any delayed refs generated by updating all of the roots */
1312 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1313 if (ret)
1314 return ret;
1315
1316 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1317 ret = btrfs_write_dirty_block_groups(trans);
1318 if (ret)
1319 return ret;
1320
1321 /*
1322 * We're writing the dirty block groups, which could generate
1323 * delayed refs, which could generate more dirty block groups,
1324 * so we want to keep this flushing in this loop to make sure
1325 * everything gets run.
1326 */
1327 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1328 if (ret)
1329 return ret;
1330 }
1331
1332 if (!list_empty(&fs_info->dirty_cowonly_roots))
1333 goto again;
1334
1335 /* Update dev-replace pointer once everything is committed */
1336 fs_info->dev_replace.committed_cursor_left =
1337 fs_info->dev_replace.cursor_left_last_write_of_item;
1338
1339 return 0;
1340}
1341
1342/*
1343 * If we had a pending drop we need to see if there are any others left in our
1344 * dead roots list, and if not clear our bit and wake any waiters.
1345 */
1346void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1347{
1348 /*
1349 * We put the drop in progress roots at the front of the list, so if the
1350 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1351 * up.
1352 */
1353 spin_lock(&fs_info->trans_lock);
1354 if (!list_empty(&fs_info->dead_roots)) {
1355 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1356 struct btrfs_root,
1357 root_list);
1358 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1359 spin_unlock(&fs_info->trans_lock);
1360 return;
1361 }
1362 }
1363 spin_unlock(&fs_info->trans_lock);
1364
1365 btrfs_wake_unfinished_drop(fs_info);
1366}
1367
1368/*
1369 * dead roots are old snapshots that need to be deleted. This allocates
1370 * a dirty root struct and adds it into the list of dead roots that need to
1371 * be deleted
1372 */
1373void btrfs_add_dead_root(struct btrfs_root *root)
1374{
1375 struct btrfs_fs_info *fs_info = root->fs_info;
1376
1377 spin_lock(&fs_info->trans_lock);
1378 if (list_empty(&root->root_list)) {
1379 btrfs_grab_root(root);
1380
1381 /* We want to process the partially complete drops first. */
1382 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1383 list_add(&root->root_list, &fs_info->dead_roots);
1384 else
1385 list_add_tail(&root->root_list, &fs_info->dead_roots);
1386 }
1387 spin_unlock(&fs_info->trans_lock);
1388}
1389
1390/*
1391 * Update each subvolume root and its relocation root, if it exists, in the tree
1392 * of tree roots. Also free log roots if they exist.
1393 */
1394static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1395{
1396 struct btrfs_fs_info *fs_info = trans->fs_info;
1397 struct btrfs_root *gang[8];
1398 int i;
1399 int ret;
1400
1401 /*
1402 * At this point no one can be using this transaction to modify any tree
1403 * and no one can start another transaction to modify any tree either.
1404 */
1405 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1406
1407 spin_lock(&fs_info->fs_roots_radix_lock);
1408 while (1) {
1409 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1410 (void **)gang, 0,
1411 ARRAY_SIZE(gang),
1412 BTRFS_ROOT_TRANS_TAG);
1413 if (ret == 0)
1414 break;
1415 for (i = 0; i < ret; i++) {
1416 struct btrfs_root *root = gang[i];
1417 int ret2;
1418
1419 /*
1420 * At this point we can neither have tasks logging inodes
1421 * from a root nor trying to commit a log tree.
1422 */
1423 ASSERT(atomic_read(&root->log_writers) == 0);
1424 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1425 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1426
1427 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1428 (unsigned long)root->root_key.objectid,
1429 BTRFS_ROOT_TRANS_TAG);
1430 spin_unlock(&fs_info->fs_roots_radix_lock);
1431
1432 btrfs_free_log(trans, root);
1433 ret2 = btrfs_update_reloc_root(trans, root);
1434 if (ret2)
1435 return ret2;
1436
1437 /* see comments in should_cow_block() */
1438 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1439 smp_mb__after_atomic();
1440
1441 if (root->commit_root != root->node) {
1442 list_add_tail(&root->dirty_list,
1443 &trans->transaction->switch_commits);
1444 btrfs_set_root_node(&root->root_item,
1445 root->node);
1446 }
1447
1448 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1449 &root->root_key,
1450 &root->root_item);
1451 if (ret2)
1452 return ret2;
1453 spin_lock(&fs_info->fs_roots_radix_lock);
1454 btrfs_qgroup_free_meta_all_pertrans(root);
1455 }
1456 }
1457 spin_unlock(&fs_info->fs_roots_radix_lock);
1458 return 0;
1459}
1460
1461/*
1462 * defrag a given btree.
1463 * Every leaf in the btree is read and defragged.
1464 */
1465int btrfs_defrag_root(struct btrfs_root *root)
1466{
1467 struct btrfs_fs_info *info = root->fs_info;
1468 struct btrfs_trans_handle *trans;
1469 int ret;
1470
1471 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1472 return 0;
1473
1474 while (1) {
1475 trans = btrfs_start_transaction(root, 0);
1476 if (IS_ERR(trans)) {
1477 ret = PTR_ERR(trans);
1478 break;
1479 }
1480
1481 ret = btrfs_defrag_leaves(trans, root);
1482
1483 btrfs_end_transaction(trans);
1484 btrfs_btree_balance_dirty(info);
1485 cond_resched();
1486
1487 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1488 break;
1489
1490 if (btrfs_defrag_cancelled(info)) {
1491 btrfs_debug(info, "defrag_root cancelled");
1492 ret = -EAGAIN;
1493 break;
1494 }
1495 }
1496 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1497 return ret;
1498}
1499
1500/*
1501 * Do all special snapshot related qgroup dirty hack.
1502 *
1503 * Will do all needed qgroup inherit and dirty hack like switch commit
1504 * roots inside one transaction and write all btree into disk, to make
1505 * qgroup works.
1506 */
1507static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1508 struct btrfs_root *src,
1509 struct btrfs_root *parent,
1510 struct btrfs_qgroup_inherit *inherit,
1511 u64 dst_objectid)
1512{
1513 struct btrfs_fs_info *fs_info = src->fs_info;
1514 int ret;
1515
1516 /*
1517 * Save some performance in the case that qgroups are not
1518 * enabled. If this check races with the ioctl, rescan will
1519 * kick in anyway.
1520 */
1521 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1522 return 0;
1523
1524 /*
1525 * Ensure dirty @src will be committed. Or, after coming
1526 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1527 * recorded root will never be updated again, causing an outdated root
1528 * item.
1529 */
1530 ret = record_root_in_trans(trans, src, 1);
1531 if (ret)
1532 return ret;
1533
1534 /*
1535 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1536 * src root, so we must run the delayed refs here.
1537 *
1538 * However this isn't particularly fool proof, because there's no
1539 * synchronization keeping us from changing the tree after this point
1540 * before we do the qgroup_inherit, or even from making changes while
1541 * we're doing the qgroup_inherit. But that's a problem for the future,
1542 * for now flush the delayed refs to narrow the race window where the
1543 * qgroup counters could end up wrong.
1544 */
1545 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1546 if (ret) {
1547 btrfs_abort_transaction(trans, ret);
1548 return ret;
1549 }
1550
1551 ret = commit_fs_roots(trans);
1552 if (ret)
1553 goto out;
1554 ret = btrfs_qgroup_account_extents(trans);
1555 if (ret < 0)
1556 goto out;
1557
1558 /* Now qgroup are all updated, we can inherit it to new qgroups */
1559 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1560 inherit);
1561 if (ret < 0)
1562 goto out;
1563
1564 /*
1565 * Now we do a simplified commit transaction, which will:
1566 * 1) commit all subvolume and extent tree
1567 * To ensure all subvolume and extent tree have a valid
1568 * commit_root to accounting later insert_dir_item()
1569 * 2) write all btree blocks onto disk
1570 * This is to make sure later btree modification will be cowed
1571 * Or commit_root can be populated and cause wrong qgroup numbers
1572 * In this simplified commit, we don't really care about other trees
1573 * like chunk and root tree, as they won't affect qgroup.
1574 * And we don't write super to avoid half committed status.
1575 */
1576 ret = commit_cowonly_roots(trans);
1577 if (ret)
1578 goto out;
1579 switch_commit_roots(trans);
1580 ret = btrfs_write_and_wait_transaction(trans);
1581 if (ret)
1582 btrfs_handle_fs_error(fs_info, ret,
1583 "Error while writing out transaction for qgroup");
1584
1585out:
1586 /*
1587 * Force parent root to be updated, as we recorded it before so its
1588 * last_trans == cur_transid.
1589 * Or it won't be committed again onto disk after later
1590 * insert_dir_item()
1591 */
1592 if (!ret)
1593 ret = record_root_in_trans(trans, parent, 1);
1594 return ret;
1595}
1596
1597/*
1598 * new snapshots need to be created at a very specific time in the
1599 * transaction commit. This does the actual creation.
1600 *
1601 * Note:
1602 * If the error which may affect the commitment of the current transaction
1603 * happens, we should return the error number. If the error which just affect
1604 * the creation of the pending snapshots, just return 0.
1605 */
1606static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1607 struct btrfs_pending_snapshot *pending)
1608{
1609
1610 struct btrfs_fs_info *fs_info = trans->fs_info;
1611 struct btrfs_key key;
1612 struct btrfs_root_item *new_root_item;
1613 struct btrfs_root *tree_root = fs_info->tree_root;
1614 struct btrfs_root *root = pending->root;
1615 struct btrfs_root *parent_root;
1616 struct btrfs_block_rsv *rsv;
1617 struct inode *parent_inode = pending->dir;
1618 struct btrfs_path *path;
1619 struct btrfs_dir_item *dir_item;
1620 struct extent_buffer *tmp;
1621 struct extent_buffer *old;
1622 struct timespec64 cur_time;
1623 int ret = 0;
1624 u64 to_reserve = 0;
1625 u64 index = 0;
1626 u64 objectid;
1627 u64 root_flags;
1628 unsigned int nofs_flags;
1629 struct fscrypt_name fname;
1630
1631 ASSERT(pending->path);
1632 path = pending->path;
1633
1634 ASSERT(pending->root_item);
1635 new_root_item = pending->root_item;
1636
1637 /*
1638 * We're inside a transaction and must make sure that any potential
1639 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1640 * filesystem.
1641 */
1642 nofs_flags = memalloc_nofs_save();
1643 pending->error = fscrypt_setup_filename(parent_inode,
1644 &pending->dentry->d_name, 0,
1645 &fname);
1646 memalloc_nofs_restore(nofs_flags);
1647 if (pending->error)
1648 goto free_pending;
1649
1650 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1651 if (pending->error)
1652 goto free_fname;
1653
1654 /*
1655 * Make qgroup to skip current new snapshot's qgroupid, as it is
1656 * accounted by later btrfs_qgroup_inherit().
1657 */
1658 btrfs_set_skip_qgroup(trans, objectid);
1659
1660 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1661
1662 if (to_reserve > 0) {
1663 pending->error = btrfs_block_rsv_add(fs_info,
1664 &pending->block_rsv,
1665 to_reserve,
1666 BTRFS_RESERVE_NO_FLUSH);
1667 if (pending->error)
1668 goto clear_skip_qgroup;
1669 }
1670
1671 key.objectid = objectid;
1672 key.offset = (u64)-1;
1673 key.type = BTRFS_ROOT_ITEM_KEY;
1674
1675 rsv = trans->block_rsv;
1676 trans->block_rsv = &pending->block_rsv;
1677 trans->bytes_reserved = trans->block_rsv->reserved;
1678 trace_btrfs_space_reservation(fs_info, "transaction",
1679 trans->transid,
1680 trans->bytes_reserved, 1);
1681 parent_root = BTRFS_I(parent_inode)->root;
1682 ret = record_root_in_trans(trans, parent_root, 0);
1683 if (ret)
1684 goto fail;
1685 cur_time = current_time(parent_inode);
1686
1687 /*
1688 * insert the directory item
1689 */
1690 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1691 BUG_ON(ret); /* -ENOMEM */
1692
1693 /* check if there is a file/dir which has the same name. */
1694 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1695 btrfs_ino(BTRFS_I(parent_inode)),
1696 &fname.disk_name, 0);
1697 if (dir_item != NULL && !IS_ERR(dir_item)) {
1698 pending->error = -EEXIST;
1699 goto dir_item_existed;
1700 } else if (IS_ERR(dir_item)) {
1701 ret = PTR_ERR(dir_item);
1702 btrfs_abort_transaction(trans, ret);
1703 goto fail;
1704 }
1705 btrfs_release_path(path);
1706
1707 /*
1708 * pull in the delayed directory update
1709 * and the delayed inode item
1710 * otherwise we corrupt the FS during
1711 * snapshot
1712 */
1713 ret = btrfs_run_delayed_items(trans);
1714 if (ret) { /* Transaction aborted */
1715 btrfs_abort_transaction(trans, ret);
1716 goto fail;
1717 }
1718
1719 ret = record_root_in_trans(trans, root, 0);
1720 if (ret) {
1721 btrfs_abort_transaction(trans, ret);
1722 goto fail;
1723 }
1724 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1725 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1726 btrfs_check_and_init_root_item(new_root_item);
1727
1728 root_flags = btrfs_root_flags(new_root_item);
1729 if (pending->readonly)
1730 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1731 else
1732 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1733 btrfs_set_root_flags(new_root_item, root_flags);
1734
1735 btrfs_set_root_generation_v2(new_root_item,
1736 trans->transid);
1737 generate_random_guid(new_root_item->uuid);
1738 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1739 BTRFS_UUID_SIZE);
1740 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1741 memset(new_root_item->received_uuid, 0,
1742 sizeof(new_root_item->received_uuid));
1743 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1744 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1745 btrfs_set_root_stransid(new_root_item, 0);
1746 btrfs_set_root_rtransid(new_root_item, 0);
1747 }
1748 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1749 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1750 btrfs_set_root_otransid(new_root_item, trans->transid);
1751
1752 old = btrfs_lock_root_node(root);
1753 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1754 BTRFS_NESTING_COW);
1755 if (ret) {
1756 btrfs_tree_unlock(old);
1757 free_extent_buffer(old);
1758 btrfs_abort_transaction(trans, ret);
1759 goto fail;
1760 }
1761
1762 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1763 /* clean up in any case */
1764 btrfs_tree_unlock(old);
1765 free_extent_buffer(old);
1766 if (ret) {
1767 btrfs_abort_transaction(trans, ret);
1768 goto fail;
1769 }
1770 /* see comments in should_cow_block() */
1771 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1772 smp_wmb();
1773
1774 btrfs_set_root_node(new_root_item, tmp);
1775 /* record when the snapshot was created in key.offset */
1776 key.offset = trans->transid;
1777 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1778 btrfs_tree_unlock(tmp);
1779 free_extent_buffer(tmp);
1780 if (ret) {
1781 btrfs_abort_transaction(trans, ret);
1782 goto fail;
1783 }
1784
1785 /*
1786 * insert root back/forward references
1787 */
1788 ret = btrfs_add_root_ref(trans, objectid,
1789 parent_root->root_key.objectid,
1790 btrfs_ino(BTRFS_I(parent_inode)), index,
1791 &fname.disk_name);
1792 if (ret) {
1793 btrfs_abort_transaction(trans, ret);
1794 goto fail;
1795 }
1796
1797 key.offset = (u64)-1;
1798 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1799 if (IS_ERR(pending->snap)) {
1800 ret = PTR_ERR(pending->snap);
1801 pending->snap = NULL;
1802 btrfs_abort_transaction(trans, ret);
1803 goto fail;
1804 }
1805
1806 ret = btrfs_reloc_post_snapshot(trans, pending);
1807 if (ret) {
1808 btrfs_abort_transaction(trans, ret);
1809 goto fail;
1810 }
1811
1812 /*
1813 * Do special qgroup accounting for snapshot, as we do some qgroup
1814 * snapshot hack to do fast snapshot.
1815 * To co-operate with that hack, we do hack again.
1816 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1817 */
1818 ret = qgroup_account_snapshot(trans, root, parent_root,
1819 pending->inherit, objectid);
1820 if (ret < 0)
1821 goto fail;
1822
1823 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1824 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1825 index);
1826 /* We have check then name at the beginning, so it is impossible. */
1827 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1828 if (ret) {
1829 btrfs_abort_transaction(trans, ret);
1830 goto fail;
1831 }
1832
1833 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1834 fname.disk_name.len * 2);
1835 parent_inode->i_mtime = current_time(parent_inode);
1836 parent_inode->i_ctime = parent_inode->i_mtime;
1837 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1838 if (ret) {
1839 btrfs_abort_transaction(trans, ret);
1840 goto fail;
1841 }
1842 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1843 BTRFS_UUID_KEY_SUBVOL,
1844 objectid);
1845 if (ret) {
1846 btrfs_abort_transaction(trans, ret);
1847 goto fail;
1848 }
1849 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1850 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1851 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1852 objectid);
1853 if (ret && ret != -EEXIST) {
1854 btrfs_abort_transaction(trans, ret);
1855 goto fail;
1856 }
1857 }
1858
1859fail:
1860 pending->error = ret;
1861dir_item_existed:
1862 trans->block_rsv = rsv;
1863 trans->bytes_reserved = 0;
1864clear_skip_qgroup:
1865 btrfs_clear_skip_qgroup(trans);
1866free_fname:
1867 fscrypt_free_filename(&fname);
1868free_pending:
1869 kfree(new_root_item);
1870 pending->root_item = NULL;
1871 btrfs_free_path(path);
1872 pending->path = NULL;
1873
1874 return ret;
1875}
1876
1877/*
1878 * create all the snapshots we've scheduled for creation
1879 */
1880static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1881{
1882 struct btrfs_pending_snapshot *pending, *next;
1883 struct list_head *head = &trans->transaction->pending_snapshots;
1884 int ret = 0;
1885
1886 list_for_each_entry_safe(pending, next, head, list) {
1887 list_del(&pending->list);
1888 ret = create_pending_snapshot(trans, pending);
1889 if (ret)
1890 break;
1891 }
1892 return ret;
1893}
1894
1895static void update_super_roots(struct btrfs_fs_info *fs_info)
1896{
1897 struct btrfs_root_item *root_item;
1898 struct btrfs_super_block *super;
1899
1900 super = fs_info->super_copy;
1901
1902 root_item = &fs_info->chunk_root->root_item;
1903 super->chunk_root = root_item->bytenr;
1904 super->chunk_root_generation = root_item->generation;
1905 super->chunk_root_level = root_item->level;
1906
1907 root_item = &fs_info->tree_root->root_item;
1908 super->root = root_item->bytenr;
1909 super->generation = root_item->generation;
1910 super->root_level = root_item->level;
1911 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1912 super->cache_generation = root_item->generation;
1913 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1914 super->cache_generation = 0;
1915 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1916 super->uuid_tree_generation = root_item->generation;
1917}
1918
1919int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1920{
1921 struct btrfs_transaction *trans;
1922 int ret = 0;
1923
1924 spin_lock(&info->trans_lock);
1925 trans = info->running_transaction;
1926 if (trans)
1927 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1928 spin_unlock(&info->trans_lock);
1929 return ret;
1930}
1931
1932int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1933{
1934 struct btrfs_transaction *trans;
1935 int ret = 0;
1936
1937 spin_lock(&info->trans_lock);
1938 trans = info->running_transaction;
1939 if (trans)
1940 ret = is_transaction_blocked(trans);
1941 spin_unlock(&info->trans_lock);
1942 return ret;
1943}
1944
1945void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1946{
1947 struct btrfs_fs_info *fs_info = trans->fs_info;
1948 struct btrfs_transaction *cur_trans;
1949
1950 /* Kick the transaction kthread. */
1951 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1952 wake_up_process(fs_info->transaction_kthread);
1953
1954 /* take transaction reference */
1955 cur_trans = trans->transaction;
1956 refcount_inc(&cur_trans->use_count);
1957
1958 btrfs_end_transaction(trans);
1959
1960 /*
1961 * Wait for the current transaction commit to start and block
1962 * subsequent transaction joins
1963 */
1964 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1965 wait_event(fs_info->transaction_blocked_wait,
1966 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1967 TRANS_ABORTED(cur_trans));
1968 btrfs_put_transaction(cur_trans);
1969}
1970
1971static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1972{
1973 struct btrfs_fs_info *fs_info = trans->fs_info;
1974 struct btrfs_transaction *cur_trans = trans->transaction;
1975
1976 WARN_ON(refcount_read(&trans->use_count) > 1);
1977
1978 btrfs_abort_transaction(trans, err);
1979
1980 spin_lock(&fs_info->trans_lock);
1981
1982 /*
1983 * If the transaction is removed from the list, it means this
1984 * transaction has been committed successfully, so it is impossible
1985 * to call the cleanup function.
1986 */
1987 BUG_ON(list_empty(&cur_trans->list));
1988
1989 if (cur_trans == fs_info->running_transaction) {
1990 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1991 spin_unlock(&fs_info->trans_lock);
1992
1993 /*
1994 * The thread has already released the lockdep map as reader
1995 * already in btrfs_commit_transaction().
1996 */
1997 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
1998 wait_event(cur_trans->writer_wait,
1999 atomic_read(&cur_trans->num_writers) == 1);
2000
2001 spin_lock(&fs_info->trans_lock);
2002 }
2003
2004 /*
2005 * Now that we know no one else is still using the transaction we can
2006 * remove the transaction from the list of transactions. This avoids
2007 * the transaction kthread from cleaning up the transaction while some
2008 * other task is still using it, which could result in a use-after-free
2009 * on things like log trees, as it forces the transaction kthread to
2010 * wait for this transaction to be cleaned up by us.
2011 */
2012 list_del_init(&cur_trans->list);
2013
2014 spin_unlock(&fs_info->trans_lock);
2015
2016 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2017
2018 spin_lock(&fs_info->trans_lock);
2019 if (cur_trans == fs_info->running_transaction)
2020 fs_info->running_transaction = NULL;
2021 spin_unlock(&fs_info->trans_lock);
2022
2023 if (trans->type & __TRANS_FREEZABLE)
2024 sb_end_intwrite(fs_info->sb);
2025 btrfs_put_transaction(cur_trans);
2026 btrfs_put_transaction(cur_trans);
2027
2028 trace_btrfs_transaction_commit(fs_info);
2029
2030 if (current->journal_info == trans)
2031 current->journal_info = NULL;
2032
2033 /*
2034 * If relocation is running, we can't cancel scrub because that will
2035 * result in a deadlock. Before relocating a block group, relocation
2036 * pauses scrub, then starts and commits a transaction before unpausing
2037 * scrub. If the transaction commit is being done by the relocation
2038 * task or triggered by another task and the relocation task is waiting
2039 * for the commit, and we end up here due to an error in the commit
2040 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2041 * asking for scrub to stop while having it asked to be paused higher
2042 * above in relocation code.
2043 */
2044 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2045 btrfs_scrub_cancel(fs_info);
2046
2047 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2048}
2049
2050/*
2051 * Release reserved delayed ref space of all pending block groups of the
2052 * transaction and remove them from the list
2053 */
2054static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2055{
2056 struct btrfs_fs_info *fs_info = trans->fs_info;
2057 struct btrfs_block_group *block_group, *tmp;
2058
2059 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2060 btrfs_delayed_refs_rsv_release(fs_info, 1);
2061 list_del_init(&block_group->bg_list);
2062 }
2063}
2064
2065static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2066{
2067 /*
2068 * We use try_to_writeback_inodes_sb() here because if we used
2069 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2070 * Currently are holding the fs freeze lock, if we do an async flush
2071 * we'll do btrfs_join_transaction() and deadlock because we need to
2072 * wait for the fs freeze lock. Using the direct flushing we benefit
2073 * from already being in a transaction and our join_transaction doesn't
2074 * have to re-take the fs freeze lock.
2075 *
2076 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2077 * if it can read lock sb->s_umount. It will always be able to lock it,
2078 * except when the filesystem is being unmounted or being frozen, but in
2079 * those cases sync_filesystem() is called, which results in calling
2080 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2081 * Note that we don't call writeback_inodes_sb() directly, because it
2082 * will emit a warning if sb->s_umount is not locked.
2083 */
2084 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2085 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2086 return 0;
2087}
2088
2089static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2090{
2091 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2092 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2093}
2094
2095/*
2096 * Add a pending snapshot associated with the given transaction handle to the
2097 * respective handle. This must be called after the transaction commit started
2098 * and while holding fs_info->trans_lock.
2099 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2100 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2101 * returns an error.
2102 */
2103static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2104{
2105 struct btrfs_transaction *cur_trans = trans->transaction;
2106
2107 if (!trans->pending_snapshot)
2108 return;
2109
2110 lockdep_assert_held(&trans->fs_info->trans_lock);
2111 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2112
2113 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2114}
2115
2116static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2117{
2118 fs_info->commit_stats.commit_count++;
2119 fs_info->commit_stats.last_commit_dur = interval;
2120 fs_info->commit_stats.max_commit_dur =
2121 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2122 fs_info->commit_stats.total_commit_dur += interval;
2123}
2124
2125int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2126{
2127 struct btrfs_fs_info *fs_info = trans->fs_info;
2128 struct btrfs_transaction *cur_trans = trans->transaction;
2129 struct btrfs_transaction *prev_trans = NULL;
2130 int ret;
2131 ktime_t start_time;
2132 ktime_t interval;
2133
2134 ASSERT(refcount_read(&trans->use_count) == 1);
2135 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2136
2137 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2138
2139 /* Stop the commit early if ->aborted is set */
2140 if (TRANS_ABORTED(cur_trans)) {
2141 ret = cur_trans->aborted;
2142 goto lockdep_trans_commit_start_release;
2143 }
2144
2145 btrfs_trans_release_metadata(trans);
2146 trans->block_rsv = NULL;
2147
2148 /*
2149 * We only want one transaction commit doing the flushing so we do not
2150 * waste a bunch of time on lock contention on the extent root node.
2151 */
2152 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2153 &cur_trans->delayed_refs.flags)) {
2154 /*
2155 * Make a pass through all the delayed refs we have so far.
2156 * Any running threads may add more while we are here.
2157 */
2158 ret = btrfs_run_delayed_refs(trans, 0);
2159 if (ret)
2160 goto lockdep_trans_commit_start_release;
2161 }
2162
2163 btrfs_create_pending_block_groups(trans);
2164
2165 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2166 int run_it = 0;
2167
2168 /* this mutex is also taken before trying to set
2169 * block groups readonly. We need to make sure
2170 * that nobody has set a block group readonly
2171 * after a extents from that block group have been
2172 * allocated for cache files. btrfs_set_block_group_ro
2173 * will wait for the transaction to commit if it
2174 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2175 *
2176 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2177 * only one process starts all the block group IO. It wouldn't
2178 * hurt to have more than one go through, but there's no
2179 * real advantage to it either.
2180 */
2181 mutex_lock(&fs_info->ro_block_group_mutex);
2182 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2183 &cur_trans->flags))
2184 run_it = 1;
2185 mutex_unlock(&fs_info->ro_block_group_mutex);
2186
2187 if (run_it) {
2188 ret = btrfs_start_dirty_block_groups(trans);
2189 if (ret)
2190 goto lockdep_trans_commit_start_release;
2191 }
2192 }
2193
2194 spin_lock(&fs_info->trans_lock);
2195 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2196 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2197
2198 add_pending_snapshot(trans);
2199
2200 spin_unlock(&fs_info->trans_lock);
2201 refcount_inc(&cur_trans->use_count);
2202
2203 if (trans->in_fsync)
2204 want_state = TRANS_STATE_SUPER_COMMITTED;
2205
2206 btrfs_trans_state_lockdep_release(fs_info,
2207 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2208 ret = btrfs_end_transaction(trans);
2209 wait_for_commit(cur_trans, want_state);
2210
2211 if (TRANS_ABORTED(cur_trans))
2212 ret = cur_trans->aborted;
2213
2214 btrfs_put_transaction(cur_trans);
2215
2216 return ret;
2217 }
2218
2219 cur_trans->state = TRANS_STATE_COMMIT_START;
2220 wake_up(&fs_info->transaction_blocked_wait);
2221 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2222
2223 if (cur_trans->list.prev != &fs_info->trans_list) {
2224 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2225
2226 if (trans->in_fsync)
2227 want_state = TRANS_STATE_SUPER_COMMITTED;
2228
2229 prev_trans = list_entry(cur_trans->list.prev,
2230 struct btrfs_transaction, list);
2231 if (prev_trans->state < want_state) {
2232 refcount_inc(&prev_trans->use_count);
2233 spin_unlock(&fs_info->trans_lock);
2234
2235 wait_for_commit(prev_trans, want_state);
2236
2237 ret = READ_ONCE(prev_trans->aborted);
2238
2239 btrfs_put_transaction(prev_trans);
2240 if (ret)
2241 goto lockdep_release;
2242 } else {
2243 spin_unlock(&fs_info->trans_lock);
2244 }
2245 } else {
2246 spin_unlock(&fs_info->trans_lock);
2247 /*
2248 * The previous transaction was aborted and was already removed
2249 * from the list of transactions at fs_info->trans_list. So we
2250 * abort to prevent writing a new superblock that reflects a
2251 * corrupt state (pointing to trees with unwritten nodes/leafs).
2252 */
2253 if (BTRFS_FS_ERROR(fs_info)) {
2254 ret = -EROFS;
2255 goto lockdep_release;
2256 }
2257 }
2258
2259 /*
2260 * Get the time spent on the work done by the commit thread and not
2261 * the time spent waiting on a previous commit
2262 */
2263 start_time = ktime_get_ns();
2264
2265 extwriter_counter_dec(cur_trans, trans->type);
2266
2267 ret = btrfs_start_delalloc_flush(fs_info);
2268 if (ret)
2269 goto lockdep_release;
2270
2271 ret = btrfs_run_delayed_items(trans);
2272 if (ret)
2273 goto lockdep_release;
2274
2275 /*
2276 * The thread has started/joined the transaction thus it holds the
2277 * lockdep map as a reader. It has to release it before acquiring the
2278 * lockdep map as a writer.
2279 */
2280 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2281 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2282 wait_event(cur_trans->writer_wait,
2283 extwriter_counter_read(cur_trans) == 0);
2284
2285 /* some pending stuffs might be added after the previous flush. */
2286 ret = btrfs_run_delayed_items(trans);
2287 if (ret) {
2288 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2289 goto cleanup_transaction;
2290 }
2291
2292 btrfs_wait_delalloc_flush(fs_info);
2293
2294 /*
2295 * Wait for all ordered extents started by a fast fsync that joined this
2296 * transaction. Otherwise if this transaction commits before the ordered
2297 * extents complete we lose logged data after a power failure.
2298 */
2299 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2300 wait_event(cur_trans->pending_wait,
2301 atomic_read(&cur_trans->pending_ordered) == 0);
2302
2303 btrfs_scrub_pause(fs_info);
2304 /*
2305 * Ok now we need to make sure to block out any other joins while we
2306 * commit the transaction. We could have started a join before setting
2307 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2308 */
2309 spin_lock(&fs_info->trans_lock);
2310 add_pending_snapshot(trans);
2311 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2312 spin_unlock(&fs_info->trans_lock);
2313
2314 /*
2315 * The thread has started/joined the transaction thus it holds the
2316 * lockdep map as a reader. It has to release it before acquiring the
2317 * lockdep map as a writer.
2318 */
2319 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2320 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2321 wait_event(cur_trans->writer_wait,
2322 atomic_read(&cur_trans->num_writers) == 1);
2323
2324 /*
2325 * Make lockdep happy by acquiring the state locks after
2326 * btrfs_trans_num_writers is released. If we acquired the state locks
2327 * before releasing the btrfs_trans_num_writers lock then lockdep would
2328 * complain because we did not follow the reverse order unlocking rule.
2329 */
2330 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2331 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2332 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2333
2334 /*
2335 * We've started the commit, clear the flag in case we were triggered to
2336 * do an async commit but somebody else started before the transaction
2337 * kthread could do the work.
2338 */
2339 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2340
2341 if (TRANS_ABORTED(cur_trans)) {
2342 ret = cur_trans->aborted;
2343 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2344 goto scrub_continue;
2345 }
2346 /*
2347 * the reloc mutex makes sure that we stop
2348 * the balancing code from coming in and moving
2349 * extents around in the middle of the commit
2350 */
2351 mutex_lock(&fs_info->reloc_mutex);
2352
2353 /*
2354 * We needn't worry about the delayed items because we will
2355 * deal with them in create_pending_snapshot(), which is the
2356 * core function of the snapshot creation.
2357 */
2358 ret = create_pending_snapshots(trans);
2359 if (ret)
2360 goto unlock_reloc;
2361
2362 /*
2363 * We insert the dir indexes of the snapshots and update the inode
2364 * of the snapshots' parents after the snapshot creation, so there
2365 * are some delayed items which are not dealt with. Now deal with
2366 * them.
2367 *
2368 * We needn't worry that this operation will corrupt the snapshots,
2369 * because all the tree which are snapshoted will be forced to COW
2370 * the nodes and leaves.
2371 */
2372 ret = btrfs_run_delayed_items(trans);
2373 if (ret)
2374 goto unlock_reloc;
2375
2376 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2377 if (ret)
2378 goto unlock_reloc;
2379
2380 /*
2381 * make sure none of the code above managed to slip in a
2382 * delayed item
2383 */
2384 btrfs_assert_delayed_root_empty(fs_info);
2385
2386 WARN_ON(cur_trans != trans->transaction);
2387
2388 ret = commit_fs_roots(trans);
2389 if (ret)
2390 goto unlock_reloc;
2391
2392 /* commit_fs_roots gets rid of all the tree log roots, it is now
2393 * safe to free the root of tree log roots
2394 */
2395 btrfs_free_log_root_tree(trans, fs_info);
2396
2397 /*
2398 * Since fs roots are all committed, we can get a quite accurate
2399 * new_roots. So let's do quota accounting.
2400 */
2401 ret = btrfs_qgroup_account_extents(trans);
2402 if (ret < 0)
2403 goto unlock_reloc;
2404
2405 ret = commit_cowonly_roots(trans);
2406 if (ret)
2407 goto unlock_reloc;
2408
2409 /*
2410 * The tasks which save the space cache and inode cache may also
2411 * update ->aborted, check it.
2412 */
2413 if (TRANS_ABORTED(cur_trans)) {
2414 ret = cur_trans->aborted;
2415 goto unlock_reloc;
2416 }
2417
2418 cur_trans = fs_info->running_transaction;
2419
2420 btrfs_set_root_node(&fs_info->tree_root->root_item,
2421 fs_info->tree_root->node);
2422 list_add_tail(&fs_info->tree_root->dirty_list,
2423 &cur_trans->switch_commits);
2424
2425 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2426 fs_info->chunk_root->node);
2427 list_add_tail(&fs_info->chunk_root->dirty_list,
2428 &cur_trans->switch_commits);
2429
2430 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2431 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2432 fs_info->block_group_root->node);
2433 list_add_tail(&fs_info->block_group_root->dirty_list,
2434 &cur_trans->switch_commits);
2435 }
2436
2437 switch_commit_roots(trans);
2438
2439 ASSERT(list_empty(&cur_trans->dirty_bgs));
2440 ASSERT(list_empty(&cur_trans->io_bgs));
2441 update_super_roots(fs_info);
2442
2443 btrfs_set_super_log_root(fs_info->super_copy, 0);
2444 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2445 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2446 sizeof(*fs_info->super_copy));
2447
2448 btrfs_commit_device_sizes(cur_trans);
2449
2450 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2451 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2452
2453 btrfs_trans_release_chunk_metadata(trans);
2454
2455 /*
2456 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2457 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2458 * make sure that before we commit our superblock, no other task can
2459 * start a new transaction and commit a log tree before we commit our
2460 * superblock. Anyone trying to commit a log tree locks this mutex before
2461 * writing its superblock.
2462 */
2463 mutex_lock(&fs_info->tree_log_mutex);
2464
2465 spin_lock(&fs_info->trans_lock);
2466 cur_trans->state = TRANS_STATE_UNBLOCKED;
2467 fs_info->running_transaction = NULL;
2468 spin_unlock(&fs_info->trans_lock);
2469 mutex_unlock(&fs_info->reloc_mutex);
2470
2471 wake_up(&fs_info->transaction_wait);
2472 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2473
2474 /* If we have features changed, wake up the cleaner to update sysfs. */
2475 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2476 fs_info->cleaner_kthread)
2477 wake_up_process(fs_info->cleaner_kthread);
2478
2479 ret = btrfs_write_and_wait_transaction(trans);
2480 if (ret) {
2481 btrfs_handle_fs_error(fs_info, ret,
2482 "Error while writing out transaction");
2483 mutex_unlock(&fs_info->tree_log_mutex);
2484 goto scrub_continue;
2485 }
2486
2487 /*
2488 * At this point, we should have written all the tree blocks allocated
2489 * in this transaction. So it's now safe to free the redirtyied extent
2490 * buffers.
2491 */
2492 btrfs_free_redirty_list(cur_trans);
2493
2494 ret = write_all_supers(fs_info, 0);
2495 /*
2496 * the super is written, we can safely allow the tree-loggers
2497 * to go about their business
2498 */
2499 mutex_unlock(&fs_info->tree_log_mutex);
2500 if (ret)
2501 goto scrub_continue;
2502
2503 /*
2504 * We needn't acquire the lock here because there is no other task
2505 * which can change it.
2506 */
2507 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2508 wake_up(&cur_trans->commit_wait);
2509 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2510
2511 btrfs_finish_extent_commit(trans);
2512
2513 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2514 btrfs_clear_space_info_full(fs_info);
2515
2516 fs_info->last_trans_committed = cur_trans->transid;
2517 /*
2518 * We needn't acquire the lock here because there is no other task
2519 * which can change it.
2520 */
2521 cur_trans->state = TRANS_STATE_COMPLETED;
2522 wake_up(&cur_trans->commit_wait);
2523 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2524
2525 spin_lock(&fs_info->trans_lock);
2526 list_del_init(&cur_trans->list);
2527 spin_unlock(&fs_info->trans_lock);
2528
2529 btrfs_put_transaction(cur_trans);
2530 btrfs_put_transaction(cur_trans);
2531
2532 if (trans->type & __TRANS_FREEZABLE)
2533 sb_end_intwrite(fs_info->sb);
2534
2535 trace_btrfs_transaction_commit(fs_info);
2536
2537 interval = ktime_get_ns() - start_time;
2538
2539 btrfs_scrub_continue(fs_info);
2540
2541 if (current->journal_info == trans)
2542 current->journal_info = NULL;
2543
2544 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2545
2546 update_commit_stats(fs_info, interval);
2547
2548 return ret;
2549
2550unlock_reloc:
2551 mutex_unlock(&fs_info->reloc_mutex);
2552 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2553scrub_continue:
2554 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2555 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2556 btrfs_scrub_continue(fs_info);
2557cleanup_transaction:
2558 btrfs_trans_release_metadata(trans);
2559 btrfs_cleanup_pending_block_groups(trans);
2560 btrfs_trans_release_chunk_metadata(trans);
2561 trans->block_rsv = NULL;
2562 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2563 if (current->journal_info == trans)
2564 current->journal_info = NULL;
2565 cleanup_transaction(trans, ret);
2566
2567 return ret;
2568
2569lockdep_release:
2570 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2571 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2572 goto cleanup_transaction;
2573
2574lockdep_trans_commit_start_release:
2575 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2576 btrfs_end_transaction(trans);
2577 return ret;
2578}
2579
2580/*
2581 * return < 0 if error
2582 * 0 if there are no more dead_roots at the time of call
2583 * 1 there are more to be processed, call me again
2584 *
2585 * The return value indicates there are certainly more snapshots to delete, but
2586 * if there comes a new one during processing, it may return 0. We don't mind,
2587 * because btrfs_commit_super will poke cleaner thread and it will process it a
2588 * few seconds later.
2589 */
2590int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2591{
2592 struct btrfs_root *root;
2593 int ret;
2594
2595 spin_lock(&fs_info->trans_lock);
2596 if (list_empty(&fs_info->dead_roots)) {
2597 spin_unlock(&fs_info->trans_lock);
2598 return 0;
2599 }
2600 root = list_first_entry(&fs_info->dead_roots,
2601 struct btrfs_root, root_list);
2602 list_del_init(&root->root_list);
2603 spin_unlock(&fs_info->trans_lock);
2604
2605 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2606
2607 btrfs_kill_all_delayed_nodes(root);
2608
2609 if (btrfs_header_backref_rev(root->node) <
2610 BTRFS_MIXED_BACKREF_REV)
2611 ret = btrfs_drop_snapshot(root, 0, 0);
2612 else
2613 ret = btrfs_drop_snapshot(root, 1, 0);
2614
2615 btrfs_put_root(root);
2616 return (ret < 0) ? 0 : 1;
2617}
2618
2619/*
2620 * We only mark the transaction aborted and then set the file system read-only.
2621 * This will prevent new transactions from starting or trying to join this
2622 * one.
2623 *
2624 * This means that error recovery at the call site is limited to freeing
2625 * any local memory allocations and passing the error code up without
2626 * further cleanup. The transaction should complete as it normally would
2627 * in the call path but will return -EIO.
2628 *
2629 * We'll complete the cleanup in btrfs_end_transaction and
2630 * btrfs_commit_transaction.
2631 */
2632void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2633 const char *function,
2634 unsigned int line, int errno, bool first_hit)
2635{
2636 struct btrfs_fs_info *fs_info = trans->fs_info;
2637
2638 WRITE_ONCE(trans->aborted, errno);
2639 WRITE_ONCE(trans->transaction->aborted, errno);
2640 if (first_hit && errno == -ENOSPC)
2641 btrfs_dump_space_info_for_trans_abort(fs_info);
2642 /* Wake up anybody who may be waiting on this transaction */
2643 wake_up(&fs_info->transaction_wait);
2644 wake_up(&fs_info->transaction_blocked_wait);
2645 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2646}
2647
2648int __init btrfs_transaction_init(void)
2649{
2650 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2651 sizeof(struct btrfs_trans_handle), 0,
2652 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2653 if (!btrfs_trans_handle_cachep)
2654 return -ENOMEM;
2655 return 0;
2656}
2657
2658void __cold btrfs_transaction_exit(void)
2659{
2660 kmem_cache_destroy(btrfs_trans_handle_cachep);
2661}