Merge branch 'upstream' of git://git.infradead.org/users/pcmoore/audit
[linux-2.6-block.git] / fs / btrfs / super.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/module.h>
21#include <linux/buffer_head.h>
22#include <linux/fs.h>
23#include <linux/pagemap.h>
24#include <linux/highmem.h>
25#include <linux/time.h>
26#include <linux/init.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/backing-dev.h>
30#include <linux/mount.h>
31#include <linux/mpage.h>
32#include <linux/swap.h>
33#include <linux/writeback.h>
34#include <linux/statfs.h>
35#include <linux/compat.h>
36#include <linux/parser.h>
37#include <linux/ctype.h>
38#include <linux/namei.h>
39#include <linux/miscdevice.h>
40#include <linux/magic.h>
41#include <linux/slab.h>
42#include <linux/cleancache.h>
43#include <linux/ratelimit.h>
44#include <linux/btrfs.h>
45#include "delayed-inode.h"
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
50#include "print-tree.h"
51#include "hash.h"
52#include "props.h"
53#include "xattr.h"
54#include "volumes.h"
55#include "export.h"
56#include "compression.h"
57#include "rcu-string.h"
58#include "dev-replace.h"
59#include "free-space-cache.h"
60#include "backref.h"
61#include "tests/btrfs-tests.h"
62
63#include "qgroup.h"
64#define CREATE_TRACE_POINTS
65#include <trace/events/btrfs.h>
66
67static const struct super_operations btrfs_super_ops;
68static struct file_system_type btrfs_fs_type;
69
70static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71
72static const char *btrfs_decode_error(int errno)
73{
74 char *errstr = "unknown";
75
76 switch (errno) {
77 case -EIO:
78 errstr = "IO failure";
79 break;
80 case -ENOMEM:
81 errstr = "Out of memory";
82 break;
83 case -EROFS:
84 errstr = "Readonly filesystem";
85 break;
86 case -EEXIST:
87 errstr = "Object already exists";
88 break;
89 case -ENOSPC:
90 errstr = "No space left";
91 break;
92 case -ENOENT:
93 errstr = "No such entry";
94 break;
95 }
96
97 return errstr;
98}
99
100static void save_error_info(struct btrfs_fs_info *fs_info)
101{
102 /*
103 * today we only save the error info into ram. Long term we'll
104 * also send it down to the disk
105 */
106 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
107}
108
109/* btrfs handle error by forcing the filesystem readonly */
110static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111{
112 struct super_block *sb = fs_info->sb;
113
114 if (sb->s_flags & MS_RDONLY)
115 return;
116
117 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
118 sb->s_flags |= MS_RDONLY;
119 btrfs_info(fs_info, "forced readonly");
120 /*
121 * Note that a running device replace operation is not
122 * canceled here although there is no way to update
123 * the progress. It would add the risk of a deadlock,
124 * therefore the canceling is ommited. The only penalty
125 * is that some I/O remains active until the procedure
126 * completes. The next time when the filesystem is
127 * mounted writeable again, the device replace
128 * operation continues.
129 */
130 }
131}
132
133#ifdef CONFIG_PRINTK
134/*
135 * __btrfs_std_error decodes expected errors from the caller and
136 * invokes the approciate error response.
137 */
138void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
139 unsigned int line, int errno, const char *fmt, ...)
140{
141 struct super_block *sb = fs_info->sb;
142 const char *errstr;
143
144 /*
145 * Special case: if the error is EROFS, and we're already
146 * under MS_RDONLY, then it is safe here.
147 */
148 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
149 return;
150
151 errstr = btrfs_decode_error(errno);
152 if (fmt) {
153 struct va_format vaf;
154 va_list args;
155
156 va_start(args, fmt);
157 vaf.fmt = fmt;
158 vaf.va = &args;
159
160 printk(KERN_CRIT
161 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
162 sb->s_id, function, line, errno, errstr, &vaf);
163 va_end(args);
164 } else {
165 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
166 sb->s_id, function, line, errno, errstr);
167 }
168
169 /* Don't go through full error handling during mount */
170 save_error_info(fs_info);
171 if (sb->s_flags & MS_BORN)
172 btrfs_handle_error(fs_info);
173}
174
175static const char * const logtypes[] = {
176 "emergency",
177 "alert",
178 "critical",
179 "error",
180 "warning",
181 "notice",
182 "info",
183 "debug",
184};
185
186void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
187{
188 struct super_block *sb = fs_info->sb;
189 char lvl[4];
190 struct va_format vaf;
191 va_list args;
192 const char *type = logtypes[4];
193 int kern_level;
194
195 va_start(args, fmt);
196
197 kern_level = printk_get_level(fmt);
198 if (kern_level) {
199 size_t size = printk_skip_level(fmt) - fmt;
200 memcpy(lvl, fmt, size);
201 lvl[size] = '\0';
202 fmt += size;
203 type = logtypes[kern_level - '0'];
204 } else
205 *lvl = '\0';
206
207 vaf.fmt = fmt;
208 vaf.va = &args;
209
210 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
211
212 va_end(args);
213}
214
215#else
216
217void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
218 unsigned int line, int errno, const char *fmt, ...)
219{
220 struct super_block *sb = fs_info->sb;
221
222 /*
223 * Special case: if the error is EROFS, and we're already
224 * under MS_RDONLY, then it is safe here.
225 */
226 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
227 return;
228
229 /* Don't go through full error handling during mount */
230 if (sb->s_flags & MS_BORN) {
231 save_error_info(fs_info);
232 btrfs_handle_error(fs_info);
233 }
234}
235#endif
236
237/*
238 * We only mark the transaction aborted and then set the file system read-only.
239 * This will prevent new transactions from starting or trying to join this
240 * one.
241 *
242 * This means that error recovery at the call site is limited to freeing
243 * any local memory allocations and passing the error code up without
244 * further cleanup. The transaction should complete as it normally would
245 * in the call path but will return -EIO.
246 *
247 * We'll complete the cleanup in btrfs_end_transaction and
248 * btrfs_commit_transaction.
249 */
250void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
251 struct btrfs_root *root, const char *function,
252 unsigned int line, int errno)
253{
254 /*
255 * Report first abort since mount
256 */
257 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
258 &root->fs_info->fs_state)) {
259 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
260 errno);
261 }
262 trans->aborted = errno;
263 /* Nothing used. The other threads that have joined this
264 * transaction may be able to continue. */
265 if (!trans->blocks_used && list_empty(&trans->new_bgs)) {
266 const char *errstr;
267
268 errstr = btrfs_decode_error(errno);
269 btrfs_warn(root->fs_info,
270 "%s:%d: Aborting unused transaction(%s).",
271 function, line, errstr);
272 return;
273 }
274 ACCESS_ONCE(trans->transaction->aborted) = errno;
275 /* Wake up anybody who may be waiting on this transaction */
276 wake_up(&root->fs_info->transaction_wait);
277 wake_up(&root->fs_info->transaction_blocked_wait);
278 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
279}
280/*
281 * __btrfs_panic decodes unexpected, fatal errors from the caller,
282 * issues an alert, and either panics or BUGs, depending on mount options.
283 */
284void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
285 unsigned int line, int errno, const char *fmt, ...)
286{
287 char *s_id = "<unknown>";
288 const char *errstr;
289 struct va_format vaf = { .fmt = fmt };
290 va_list args;
291
292 if (fs_info)
293 s_id = fs_info->sb->s_id;
294
295 va_start(args, fmt);
296 vaf.va = &args;
297
298 errstr = btrfs_decode_error(errno);
299 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
300 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
301 s_id, function, line, &vaf, errno, errstr);
302
303 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
304 function, line, &vaf, errno, errstr);
305 va_end(args);
306 /* Caller calls BUG() */
307}
308
309static void btrfs_put_super(struct super_block *sb)
310{
311 close_ctree(btrfs_sb(sb)->tree_root);
312}
313
314enum {
315 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
316 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
317 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
318 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
319 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
320 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
321 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
322 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
323 Opt_check_integrity, Opt_check_integrity_including_extent_data,
324 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
325 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
326 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
327 Opt_datasum, Opt_treelog, Opt_noinode_cache,
328 Opt_err,
329};
330
331static match_table_t tokens = {
332 {Opt_degraded, "degraded"},
333 {Opt_subvol, "subvol=%s"},
334 {Opt_subvolid, "subvolid=%s"},
335 {Opt_device, "device=%s"},
336 {Opt_nodatasum, "nodatasum"},
337 {Opt_datasum, "datasum"},
338 {Opt_nodatacow, "nodatacow"},
339 {Opt_datacow, "datacow"},
340 {Opt_nobarrier, "nobarrier"},
341 {Opt_barrier, "barrier"},
342 {Opt_max_inline, "max_inline=%s"},
343 {Opt_alloc_start, "alloc_start=%s"},
344 {Opt_thread_pool, "thread_pool=%d"},
345 {Opt_compress, "compress"},
346 {Opt_compress_type, "compress=%s"},
347 {Opt_compress_force, "compress-force"},
348 {Opt_compress_force_type, "compress-force=%s"},
349 {Opt_ssd, "ssd"},
350 {Opt_ssd_spread, "ssd_spread"},
351 {Opt_nossd, "nossd"},
352 {Opt_acl, "acl"},
353 {Opt_noacl, "noacl"},
354 {Opt_notreelog, "notreelog"},
355 {Opt_treelog, "treelog"},
356 {Opt_flushoncommit, "flushoncommit"},
357 {Opt_noflushoncommit, "noflushoncommit"},
358 {Opt_ratio, "metadata_ratio=%d"},
359 {Opt_discard, "discard"},
360 {Opt_nodiscard, "nodiscard"},
361 {Opt_space_cache, "space_cache"},
362 {Opt_clear_cache, "clear_cache"},
363 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
364 {Opt_enospc_debug, "enospc_debug"},
365 {Opt_noenospc_debug, "noenospc_debug"},
366 {Opt_subvolrootid, "subvolrootid=%d"},
367 {Opt_defrag, "autodefrag"},
368 {Opt_nodefrag, "noautodefrag"},
369 {Opt_inode_cache, "inode_cache"},
370 {Opt_noinode_cache, "noinode_cache"},
371 {Opt_no_space_cache, "nospace_cache"},
372 {Opt_recovery, "recovery"},
373 {Opt_skip_balance, "skip_balance"},
374 {Opt_check_integrity, "check_int"},
375 {Opt_check_integrity_including_extent_data, "check_int_data"},
376 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
377 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
378 {Opt_fatal_errors, "fatal_errors=%s"},
379 {Opt_commit_interval, "commit=%d"},
380 {Opt_err, NULL},
381};
382
383/*
384 * Regular mount options parser. Everything that is needed only when
385 * reading in a new superblock is parsed here.
386 * XXX JDM: This needs to be cleaned up for remount.
387 */
388int btrfs_parse_options(struct btrfs_root *root, char *options)
389{
390 struct btrfs_fs_info *info = root->fs_info;
391 substring_t args[MAX_OPT_ARGS];
392 char *p, *num, *orig = NULL;
393 u64 cache_gen;
394 int intarg;
395 int ret = 0;
396 char *compress_type;
397 bool compress_force = false;
398
399 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
400 if (cache_gen)
401 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
402
403 if (!options)
404 goto out;
405
406 /*
407 * strsep changes the string, duplicate it because parse_options
408 * gets called twice
409 */
410 options = kstrdup(options, GFP_NOFS);
411 if (!options)
412 return -ENOMEM;
413
414 orig = options;
415
416 while ((p = strsep(&options, ",")) != NULL) {
417 int token;
418 if (!*p)
419 continue;
420
421 token = match_token(p, tokens, args);
422 switch (token) {
423 case Opt_degraded:
424 btrfs_info(root->fs_info, "allowing degraded mounts");
425 btrfs_set_opt(info->mount_opt, DEGRADED);
426 break;
427 case Opt_subvol:
428 case Opt_subvolid:
429 case Opt_subvolrootid:
430 case Opt_device:
431 /*
432 * These are parsed by btrfs_parse_early_options
433 * and can be happily ignored here.
434 */
435 break;
436 case Opt_nodatasum:
437 btrfs_set_and_info(root, NODATASUM,
438 "setting nodatasum");
439 break;
440 case Opt_datasum:
441 if (btrfs_test_opt(root, NODATASUM)) {
442 if (btrfs_test_opt(root, NODATACOW))
443 btrfs_info(root->fs_info, "setting datasum, datacow enabled");
444 else
445 btrfs_info(root->fs_info, "setting datasum");
446 }
447 btrfs_clear_opt(info->mount_opt, NODATACOW);
448 btrfs_clear_opt(info->mount_opt, NODATASUM);
449 break;
450 case Opt_nodatacow:
451 if (!btrfs_test_opt(root, NODATACOW)) {
452 if (!btrfs_test_opt(root, COMPRESS) ||
453 !btrfs_test_opt(root, FORCE_COMPRESS)) {
454 btrfs_info(root->fs_info,
455 "setting nodatacow, compression disabled");
456 } else {
457 btrfs_info(root->fs_info, "setting nodatacow");
458 }
459 }
460 btrfs_clear_opt(info->mount_opt, COMPRESS);
461 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
462 btrfs_set_opt(info->mount_opt, NODATACOW);
463 btrfs_set_opt(info->mount_opt, NODATASUM);
464 break;
465 case Opt_datacow:
466 btrfs_clear_and_info(root, NODATACOW,
467 "setting datacow");
468 break;
469 case Opt_compress_force:
470 case Opt_compress_force_type:
471 compress_force = true;
472 /* Fallthrough */
473 case Opt_compress:
474 case Opt_compress_type:
475 if (token == Opt_compress ||
476 token == Opt_compress_force ||
477 strcmp(args[0].from, "zlib") == 0) {
478 compress_type = "zlib";
479 info->compress_type = BTRFS_COMPRESS_ZLIB;
480 btrfs_set_opt(info->mount_opt, COMPRESS);
481 btrfs_clear_opt(info->mount_opt, NODATACOW);
482 btrfs_clear_opt(info->mount_opt, NODATASUM);
483 } else if (strcmp(args[0].from, "lzo") == 0) {
484 compress_type = "lzo";
485 info->compress_type = BTRFS_COMPRESS_LZO;
486 btrfs_set_opt(info->mount_opt, COMPRESS);
487 btrfs_clear_opt(info->mount_opt, NODATACOW);
488 btrfs_clear_opt(info->mount_opt, NODATASUM);
489 btrfs_set_fs_incompat(info, COMPRESS_LZO);
490 } else if (strncmp(args[0].from, "no", 2) == 0) {
491 compress_type = "no";
492 btrfs_clear_opt(info->mount_opt, COMPRESS);
493 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
494 compress_force = false;
495 } else {
496 ret = -EINVAL;
497 goto out;
498 }
499
500 if (compress_force) {
501 btrfs_set_and_info(root, FORCE_COMPRESS,
502 "force %s compression",
503 compress_type);
504 } else {
505 if (!btrfs_test_opt(root, COMPRESS))
506 btrfs_info(root->fs_info,
507 "btrfs: use %s compression",
508 compress_type);
509 /*
510 * If we remount from compress-force=xxx to
511 * compress=xxx, we need clear FORCE_COMPRESS
512 * flag, otherwise, there is no way for users
513 * to disable forcible compression separately.
514 */
515 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
516 }
517 break;
518 case Opt_ssd:
519 btrfs_set_and_info(root, SSD,
520 "use ssd allocation scheme");
521 break;
522 case Opt_ssd_spread:
523 btrfs_set_and_info(root, SSD_SPREAD,
524 "use spread ssd allocation scheme");
525 btrfs_set_opt(info->mount_opt, SSD);
526 break;
527 case Opt_nossd:
528 btrfs_set_and_info(root, NOSSD,
529 "not using ssd allocation scheme");
530 btrfs_clear_opt(info->mount_opt, SSD);
531 break;
532 case Opt_barrier:
533 btrfs_clear_and_info(root, NOBARRIER,
534 "turning on barriers");
535 break;
536 case Opt_nobarrier:
537 btrfs_set_and_info(root, NOBARRIER,
538 "turning off barriers");
539 break;
540 case Opt_thread_pool:
541 ret = match_int(&args[0], &intarg);
542 if (ret) {
543 goto out;
544 } else if (intarg > 0) {
545 info->thread_pool_size = intarg;
546 } else {
547 ret = -EINVAL;
548 goto out;
549 }
550 break;
551 case Opt_max_inline:
552 num = match_strdup(&args[0]);
553 if (num) {
554 info->max_inline = memparse(num, NULL);
555 kfree(num);
556
557 if (info->max_inline) {
558 info->max_inline = min_t(u64,
559 info->max_inline,
560 root->sectorsize);
561 }
562 btrfs_info(root->fs_info, "max_inline at %llu",
563 info->max_inline);
564 } else {
565 ret = -ENOMEM;
566 goto out;
567 }
568 break;
569 case Opt_alloc_start:
570 num = match_strdup(&args[0]);
571 if (num) {
572 mutex_lock(&info->chunk_mutex);
573 info->alloc_start = memparse(num, NULL);
574 mutex_unlock(&info->chunk_mutex);
575 kfree(num);
576 btrfs_info(root->fs_info, "allocations start at %llu",
577 info->alloc_start);
578 } else {
579 ret = -ENOMEM;
580 goto out;
581 }
582 break;
583 case Opt_acl:
584#ifdef CONFIG_BTRFS_FS_POSIX_ACL
585 root->fs_info->sb->s_flags |= MS_POSIXACL;
586 break;
587#else
588 btrfs_err(root->fs_info,
589 "support for ACL not compiled in!");
590 ret = -EINVAL;
591 goto out;
592#endif
593 case Opt_noacl:
594 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
595 break;
596 case Opt_notreelog:
597 btrfs_set_and_info(root, NOTREELOG,
598 "disabling tree log");
599 break;
600 case Opt_treelog:
601 btrfs_clear_and_info(root, NOTREELOG,
602 "enabling tree log");
603 break;
604 case Opt_flushoncommit:
605 btrfs_set_and_info(root, FLUSHONCOMMIT,
606 "turning on flush-on-commit");
607 break;
608 case Opt_noflushoncommit:
609 btrfs_clear_and_info(root, FLUSHONCOMMIT,
610 "turning off flush-on-commit");
611 break;
612 case Opt_ratio:
613 ret = match_int(&args[0], &intarg);
614 if (ret) {
615 goto out;
616 } else if (intarg >= 0) {
617 info->metadata_ratio = intarg;
618 btrfs_info(root->fs_info, "metadata ratio %d",
619 info->metadata_ratio);
620 } else {
621 ret = -EINVAL;
622 goto out;
623 }
624 break;
625 case Opt_discard:
626 btrfs_set_and_info(root, DISCARD,
627 "turning on discard");
628 break;
629 case Opt_nodiscard:
630 btrfs_clear_and_info(root, DISCARD,
631 "turning off discard");
632 break;
633 case Opt_space_cache:
634 btrfs_set_and_info(root, SPACE_CACHE,
635 "enabling disk space caching");
636 break;
637 case Opt_rescan_uuid_tree:
638 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
639 break;
640 case Opt_no_space_cache:
641 btrfs_clear_and_info(root, SPACE_CACHE,
642 "disabling disk space caching");
643 break;
644 case Opt_inode_cache:
645 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
646 "enabling inode map caching");
647 break;
648 case Opt_noinode_cache:
649 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
650 "disabling inode map caching");
651 break;
652 case Opt_clear_cache:
653 btrfs_set_and_info(root, CLEAR_CACHE,
654 "force clearing of disk cache");
655 break;
656 case Opt_user_subvol_rm_allowed:
657 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
658 break;
659 case Opt_enospc_debug:
660 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
661 break;
662 case Opt_noenospc_debug:
663 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
664 break;
665 case Opt_defrag:
666 btrfs_set_and_info(root, AUTO_DEFRAG,
667 "enabling auto defrag");
668 break;
669 case Opt_nodefrag:
670 btrfs_clear_and_info(root, AUTO_DEFRAG,
671 "disabling auto defrag");
672 break;
673 case Opt_recovery:
674 btrfs_info(root->fs_info, "enabling auto recovery");
675 btrfs_set_opt(info->mount_opt, RECOVERY);
676 break;
677 case Opt_skip_balance:
678 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
679 break;
680#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
681 case Opt_check_integrity_including_extent_data:
682 btrfs_info(root->fs_info,
683 "enabling check integrity including extent data");
684 btrfs_set_opt(info->mount_opt,
685 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
686 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
687 break;
688 case Opt_check_integrity:
689 btrfs_info(root->fs_info, "enabling check integrity");
690 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
691 break;
692 case Opt_check_integrity_print_mask:
693 ret = match_int(&args[0], &intarg);
694 if (ret) {
695 goto out;
696 } else if (intarg >= 0) {
697 info->check_integrity_print_mask = intarg;
698 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
699 info->check_integrity_print_mask);
700 } else {
701 ret = -EINVAL;
702 goto out;
703 }
704 break;
705#else
706 case Opt_check_integrity_including_extent_data:
707 case Opt_check_integrity:
708 case Opt_check_integrity_print_mask:
709 btrfs_err(root->fs_info,
710 "support for check_integrity* not compiled in!");
711 ret = -EINVAL;
712 goto out;
713#endif
714 case Opt_fatal_errors:
715 if (strcmp(args[0].from, "panic") == 0)
716 btrfs_set_opt(info->mount_opt,
717 PANIC_ON_FATAL_ERROR);
718 else if (strcmp(args[0].from, "bug") == 0)
719 btrfs_clear_opt(info->mount_opt,
720 PANIC_ON_FATAL_ERROR);
721 else {
722 ret = -EINVAL;
723 goto out;
724 }
725 break;
726 case Opt_commit_interval:
727 intarg = 0;
728 ret = match_int(&args[0], &intarg);
729 if (ret < 0) {
730 btrfs_err(root->fs_info, "invalid commit interval");
731 ret = -EINVAL;
732 goto out;
733 }
734 if (intarg > 0) {
735 if (intarg > 300) {
736 btrfs_warn(root->fs_info, "excessive commit interval %d",
737 intarg);
738 }
739 info->commit_interval = intarg;
740 } else {
741 btrfs_info(root->fs_info, "using default commit interval %ds",
742 BTRFS_DEFAULT_COMMIT_INTERVAL);
743 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
744 }
745 break;
746 case Opt_err:
747 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
748 ret = -EINVAL;
749 goto out;
750 default:
751 break;
752 }
753 }
754out:
755 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
756 btrfs_info(root->fs_info, "disk space caching is enabled");
757 kfree(orig);
758 return ret;
759}
760
761/*
762 * Parse mount options that are required early in the mount process.
763 *
764 * All other options will be parsed on much later in the mount process and
765 * only when we need to allocate a new super block.
766 */
767static int btrfs_parse_early_options(const char *options, fmode_t flags,
768 void *holder, char **subvol_name, u64 *subvol_objectid,
769 struct btrfs_fs_devices **fs_devices)
770{
771 substring_t args[MAX_OPT_ARGS];
772 char *device_name, *opts, *orig, *p;
773 char *num = NULL;
774 int error = 0;
775
776 if (!options)
777 return 0;
778
779 /*
780 * strsep changes the string, duplicate it because parse_options
781 * gets called twice
782 */
783 opts = kstrdup(options, GFP_KERNEL);
784 if (!opts)
785 return -ENOMEM;
786 orig = opts;
787
788 while ((p = strsep(&opts, ",")) != NULL) {
789 int token;
790 if (!*p)
791 continue;
792
793 token = match_token(p, tokens, args);
794 switch (token) {
795 case Opt_subvol:
796 kfree(*subvol_name);
797 *subvol_name = match_strdup(&args[0]);
798 if (!*subvol_name) {
799 error = -ENOMEM;
800 goto out;
801 }
802 break;
803 case Opt_subvolid:
804 num = match_strdup(&args[0]);
805 if (num) {
806 *subvol_objectid = memparse(num, NULL);
807 kfree(num);
808 /* we want the original fs_tree */
809 if (!*subvol_objectid)
810 *subvol_objectid =
811 BTRFS_FS_TREE_OBJECTID;
812 } else {
813 error = -EINVAL;
814 goto out;
815 }
816 break;
817 case Opt_subvolrootid:
818 printk(KERN_WARNING
819 "BTRFS: 'subvolrootid' mount option is deprecated and has "
820 "no effect\n");
821 break;
822 case Opt_device:
823 device_name = match_strdup(&args[0]);
824 if (!device_name) {
825 error = -ENOMEM;
826 goto out;
827 }
828 error = btrfs_scan_one_device(device_name,
829 flags, holder, fs_devices);
830 kfree(device_name);
831 if (error)
832 goto out;
833 break;
834 default:
835 break;
836 }
837 }
838
839out:
840 kfree(orig);
841 return error;
842}
843
844static struct dentry *get_default_root(struct super_block *sb,
845 u64 subvol_objectid)
846{
847 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
848 struct btrfs_root *root = fs_info->tree_root;
849 struct btrfs_root *new_root;
850 struct btrfs_dir_item *di;
851 struct btrfs_path *path;
852 struct btrfs_key location;
853 struct inode *inode;
854 u64 dir_id;
855 int new = 0;
856
857 /*
858 * We have a specific subvol we want to mount, just setup location and
859 * go look up the root.
860 */
861 if (subvol_objectid) {
862 location.objectid = subvol_objectid;
863 location.type = BTRFS_ROOT_ITEM_KEY;
864 location.offset = (u64)-1;
865 goto find_root;
866 }
867
868 path = btrfs_alloc_path();
869 if (!path)
870 return ERR_PTR(-ENOMEM);
871 path->leave_spinning = 1;
872
873 /*
874 * Find the "default" dir item which points to the root item that we
875 * will mount by default if we haven't been given a specific subvolume
876 * to mount.
877 */
878 dir_id = btrfs_super_root_dir(fs_info->super_copy);
879 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
880 if (IS_ERR(di)) {
881 btrfs_free_path(path);
882 return ERR_CAST(di);
883 }
884 if (!di) {
885 /*
886 * Ok the default dir item isn't there. This is weird since
887 * it's always been there, but don't freak out, just try and
888 * mount to root most subvolume.
889 */
890 btrfs_free_path(path);
891 dir_id = BTRFS_FIRST_FREE_OBJECTID;
892 new_root = fs_info->fs_root;
893 goto setup_root;
894 }
895
896 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
897 btrfs_free_path(path);
898
899find_root:
900 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
901 if (IS_ERR(new_root))
902 return ERR_CAST(new_root);
903
904 dir_id = btrfs_root_dirid(&new_root->root_item);
905setup_root:
906 location.objectid = dir_id;
907 location.type = BTRFS_INODE_ITEM_KEY;
908 location.offset = 0;
909
910 inode = btrfs_iget(sb, &location, new_root, &new);
911 if (IS_ERR(inode))
912 return ERR_CAST(inode);
913
914 /*
915 * If we're just mounting the root most subvol put the inode and return
916 * a reference to the dentry. We will have already gotten a reference
917 * to the inode in btrfs_fill_super so we're good to go.
918 */
919 if (!new && sb->s_root->d_inode == inode) {
920 iput(inode);
921 return dget(sb->s_root);
922 }
923
924 return d_obtain_root(inode);
925}
926
927static int btrfs_fill_super(struct super_block *sb,
928 struct btrfs_fs_devices *fs_devices,
929 void *data, int silent)
930{
931 struct inode *inode;
932 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
933 struct btrfs_key key;
934 int err;
935
936 sb->s_maxbytes = MAX_LFS_FILESIZE;
937 sb->s_magic = BTRFS_SUPER_MAGIC;
938 sb->s_op = &btrfs_super_ops;
939 sb->s_d_op = &btrfs_dentry_operations;
940 sb->s_export_op = &btrfs_export_ops;
941 sb->s_xattr = btrfs_xattr_handlers;
942 sb->s_time_gran = 1;
943#ifdef CONFIG_BTRFS_FS_POSIX_ACL
944 sb->s_flags |= MS_POSIXACL;
945#endif
946 sb->s_flags |= MS_I_VERSION;
947 err = open_ctree(sb, fs_devices, (char *)data);
948 if (err) {
949 printk(KERN_ERR "BTRFS: open_ctree failed\n");
950 return err;
951 }
952
953 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
954 key.type = BTRFS_INODE_ITEM_KEY;
955 key.offset = 0;
956 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
957 if (IS_ERR(inode)) {
958 err = PTR_ERR(inode);
959 goto fail_close;
960 }
961
962 sb->s_root = d_make_root(inode);
963 if (!sb->s_root) {
964 err = -ENOMEM;
965 goto fail_close;
966 }
967
968 save_mount_options(sb, data);
969 cleancache_init_fs(sb);
970 sb->s_flags |= MS_ACTIVE;
971 return 0;
972
973fail_close:
974 close_ctree(fs_info->tree_root);
975 return err;
976}
977
978int btrfs_sync_fs(struct super_block *sb, int wait)
979{
980 struct btrfs_trans_handle *trans;
981 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
982 struct btrfs_root *root = fs_info->tree_root;
983
984 trace_btrfs_sync_fs(wait);
985
986 if (!wait) {
987 filemap_flush(fs_info->btree_inode->i_mapping);
988 return 0;
989 }
990
991 btrfs_wait_ordered_roots(fs_info, -1);
992
993 trans = btrfs_attach_transaction_barrier(root);
994 if (IS_ERR(trans)) {
995 /* no transaction, don't bother */
996 if (PTR_ERR(trans) == -ENOENT) {
997 /*
998 * Exit unless we have some pending changes
999 * that need to go through commit
1000 */
1001 if (fs_info->pending_changes == 0)
1002 return 0;
1003 /*
1004 * A non-blocking test if the fs is frozen. We must not
1005 * start a new transaction here otherwise a deadlock
1006 * happens. The pending operations are delayed to the
1007 * next commit after thawing.
1008 */
1009 if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1010 __sb_end_write(sb, SB_FREEZE_WRITE);
1011 else
1012 return 0;
1013 trans = btrfs_start_transaction(root, 0);
1014 }
1015 if (IS_ERR(trans))
1016 return PTR_ERR(trans);
1017 }
1018 return btrfs_commit_transaction(trans, root);
1019}
1020
1021static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1022{
1023 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1024 struct btrfs_root *root = info->tree_root;
1025 char *compress_type;
1026
1027 if (btrfs_test_opt(root, DEGRADED))
1028 seq_puts(seq, ",degraded");
1029 if (btrfs_test_opt(root, NODATASUM))
1030 seq_puts(seq, ",nodatasum");
1031 if (btrfs_test_opt(root, NODATACOW))
1032 seq_puts(seq, ",nodatacow");
1033 if (btrfs_test_opt(root, NOBARRIER))
1034 seq_puts(seq, ",nobarrier");
1035 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1036 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1037 if (info->alloc_start != 0)
1038 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1039 if (info->thread_pool_size != min_t(unsigned long,
1040 num_online_cpus() + 2, 8))
1041 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1042 if (btrfs_test_opt(root, COMPRESS)) {
1043 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1044 compress_type = "zlib";
1045 else
1046 compress_type = "lzo";
1047 if (btrfs_test_opt(root, FORCE_COMPRESS))
1048 seq_printf(seq, ",compress-force=%s", compress_type);
1049 else
1050 seq_printf(seq, ",compress=%s", compress_type);
1051 }
1052 if (btrfs_test_opt(root, NOSSD))
1053 seq_puts(seq, ",nossd");
1054 if (btrfs_test_opt(root, SSD_SPREAD))
1055 seq_puts(seq, ",ssd_spread");
1056 else if (btrfs_test_opt(root, SSD))
1057 seq_puts(seq, ",ssd");
1058 if (btrfs_test_opt(root, NOTREELOG))
1059 seq_puts(seq, ",notreelog");
1060 if (btrfs_test_opt(root, FLUSHONCOMMIT))
1061 seq_puts(seq, ",flushoncommit");
1062 if (btrfs_test_opt(root, DISCARD))
1063 seq_puts(seq, ",discard");
1064 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1065 seq_puts(seq, ",noacl");
1066 if (btrfs_test_opt(root, SPACE_CACHE))
1067 seq_puts(seq, ",space_cache");
1068 else
1069 seq_puts(seq, ",nospace_cache");
1070 if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1071 seq_puts(seq, ",rescan_uuid_tree");
1072 if (btrfs_test_opt(root, CLEAR_CACHE))
1073 seq_puts(seq, ",clear_cache");
1074 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1075 seq_puts(seq, ",user_subvol_rm_allowed");
1076 if (btrfs_test_opt(root, ENOSPC_DEBUG))
1077 seq_puts(seq, ",enospc_debug");
1078 if (btrfs_test_opt(root, AUTO_DEFRAG))
1079 seq_puts(seq, ",autodefrag");
1080 if (btrfs_test_opt(root, INODE_MAP_CACHE))
1081 seq_puts(seq, ",inode_cache");
1082 if (btrfs_test_opt(root, SKIP_BALANCE))
1083 seq_puts(seq, ",skip_balance");
1084 if (btrfs_test_opt(root, RECOVERY))
1085 seq_puts(seq, ",recovery");
1086#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1087 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1088 seq_puts(seq, ",check_int_data");
1089 else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1090 seq_puts(seq, ",check_int");
1091 if (info->check_integrity_print_mask)
1092 seq_printf(seq, ",check_int_print_mask=%d",
1093 info->check_integrity_print_mask);
1094#endif
1095 if (info->metadata_ratio)
1096 seq_printf(seq, ",metadata_ratio=%d",
1097 info->metadata_ratio);
1098 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1099 seq_puts(seq, ",fatal_errors=panic");
1100 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1101 seq_printf(seq, ",commit=%d", info->commit_interval);
1102 return 0;
1103}
1104
1105static int btrfs_test_super(struct super_block *s, void *data)
1106{
1107 struct btrfs_fs_info *p = data;
1108 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1109
1110 return fs_info->fs_devices == p->fs_devices;
1111}
1112
1113static int btrfs_set_super(struct super_block *s, void *data)
1114{
1115 int err = set_anon_super(s, data);
1116 if (!err)
1117 s->s_fs_info = data;
1118 return err;
1119}
1120
1121/*
1122 * subvolumes are identified by ino 256
1123 */
1124static inline int is_subvolume_inode(struct inode *inode)
1125{
1126 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1127 return 1;
1128 return 0;
1129}
1130
1131/*
1132 * This will strip out the subvol=%s argument for an argument string and add
1133 * subvolid=0 to make sure we get the actual tree root for path walking to the
1134 * subvol we want.
1135 */
1136static char *setup_root_args(char *args)
1137{
1138 unsigned len = strlen(args) + 2 + 1;
1139 char *src, *dst, *buf;
1140
1141 /*
1142 * We need the same args as before, but with this substitution:
1143 * s!subvol=[^,]+!subvolid=0!
1144 *
1145 * Since the replacement string is up to 2 bytes longer than the
1146 * original, allocate strlen(args) + 2 + 1 bytes.
1147 */
1148
1149 src = strstr(args, "subvol=");
1150 /* This shouldn't happen, but just in case.. */
1151 if (!src)
1152 return NULL;
1153
1154 buf = dst = kmalloc(len, GFP_NOFS);
1155 if (!buf)
1156 return NULL;
1157
1158 /*
1159 * If the subvol= arg is not at the start of the string,
1160 * copy whatever precedes it into buf.
1161 */
1162 if (src != args) {
1163 *src++ = '\0';
1164 strcpy(buf, args);
1165 dst += strlen(args);
1166 }
1167
1168 strcpy(dst, "subvolid=0");
1169 dst += strlen("subvolid=0");
1170
1171 /*
1172 * If there is a "," after the original subvol=... string,
1173 * copy that suffix into our buffer. Otherwise, we're done.
1174 */
1175 src = strchr(src, ',');
1176 if (src)
1177 strcpy(dst, src);
1178
1179 return buf;
1180}
1181
1182static struct dentry *mount_subvol(const char *subvol_name, int flags,
1183 const char *device_name, char *data)
1184{
1185 struct dentry *root;
1186 struct vfsmount *mnt;
1187 char *newargs;
1188
1189 newargs = setup_root_args(data);
1190 if (!newargs)
1191 return ERR_PTR(-ENOMEM);
1192 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1193 newargs);
1194
1195 if (PTR_RET(mnt) == -EBUSY) {
1196 if (flags & MS_RDONLY) {
1197 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1198 newargs);
1199 } else {
1200 int r;
1201 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1202 newargs);
1203 if (IS_ERR(mnt)) {
1204 kfree(newargs);
1205 return ERR_CAST(mnt);
1206 }
1207
1208 r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1209 if (r < 0) {
1210 /* FIXME: release vfsmount mnt ??*/
1211 kfree(newargs);
1212 return ERR_PTR(r);
1213 }
1214 }
1215 }
1216
1217 kfree(newargs);
1218
1219 if (IS_ERR(mnt))
1220 return ERR_CAST(mnt);
1221
1222 root = mount_subtree(mnt, subvol_name);
1223
1224 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1225 struct super_block *s = root->d_sb;
1226 dput(root);
1227 root = ERR_PTR(-EINVAL);
1228 deactivate_locked_super(s);
1229 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1230 subvol_name);
1231 }
1232
1233 return root;
1234}
1235
1236static int parse_security_options(char *orig_opts,
1237 struct security_mnt_opts *sec_opts)
1238{
1239 char *secdata = NULL;
1240 int ret = 0;
1241
1242 secdata = alloc_secdata();
1243 if (!secdata)
1244 return -ENOMEM;
1245 ret = security_sb_copy_data(orig_opts, secdata);
1246 if (ret) {
1247 free_secdata(secdata);
1248 return ret;
1249 }
1250 ret = security_sb_parse_opts_str(secdata, sec_opts);
1251 free_secdata(secdata);
1252 return ret;
1253}
1254
1255static int setup_security_options(struct btrfs_fs_info *fs_info,
1256 struct super_block *sb,
1257 struct security_mnt_opts *sec_opts)
1258{
1259 int ret = 0;
1260
1261 /*
1262 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1263 * is valid.
1264 */
1265 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1266 if (ret)
1267 return ret;
1268
1269#ifdef CONFIG_SECURITY
1270 if (!fs_info->security_opts.num_mnt_opts) {
1271 /* first time security setup, copy sec_opts to fs_info */
1272 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1273 } else {
1274 /*
1275 * Since SELinux(the only one supports security_mnt_opts) does
1276 * NOT support changing context during remount/mount same sb,
1277 * This must be the same or part of the same security options,
1278 * just free it.
1279 */
1280 security_free_mnt_opts(sec_opts);
1281 }
1282#endif
1283 return ret;
1284}
1285
1286/*
1287 * Find a superblock for the given device / mount point.
1288 *
1289 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1290 * for multiple device setup. Make sure to keep it in sync.
1291 */
1292static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1293 const char *device_name, void *data)
1294{
1295 struct block_device *bdev = NULL;
1296 struct super_block *s;
1297 struct dentry *root;
1298 struct btrfs_fs_devices *fs_devices = NULL;
1299 struct btrfs_fs_info *fs_info = NULL;
1300 struct security_mnt_opts new_sec_opts;
1301 fmode_t mode = FMODE_READ;
1302 char *subvol_name = NULL;
1303 u64 subvol_objectid = 0;
1304 int error = 0;
1305
1306 if (!(flags & MS_RDONLY))
1307 mode |= FMODE_WRITE;
1308
1309 error = btrfs_parse_early_options(data, mode, fs_type,
1310 &subvol_name, &subvol_objectid,
1311 &fs_devices);
1312 if (error) {
1313 kfree(subvol_name);
1314 return ERR_PTR(error);
1315 }
1316
1317 if (subvol_name) {
1318 root = mount_subvol(subvol_name, flags, device_name, data);
1319 kfree(subvol_name);
1320 return root;
1321 }
1322
1323 security_init_mnt_opts(&new_sec_opts);
1324 if (data) {
1325 error = parse_security_options(data, &new_sec_opts);
1326 if (error)
1327 return ERR_PTR(error);
1328 }
1329
1330 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1331 if (error)
1332 goto error_sec_opts;
1333
1334 /*
1335 * Setup a dummy root and fs_info for test/set super. This is because
1336 * we don't actually fill this stuff out until open_ctree, but we need
1337 * it for searching for existing supers, so this lets us do that and
1338 * then open_ctree will properly initialize everything later.
1339 */
1340 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1341 if (!fs_info) {
1342 error = -ENOMEM;
1343 goto error_sec_opts;
1344 }
1345
1346 fs_info->fs_devices = fs_devices;
1347
1348 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1349 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1350 security_init_mnt_opts(&fs_info->security_opts);
1351 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1352 error = -ENOMEM;
1353 goto error_fs_info;
1354 }
1355
1356 error = btrfs_open_devices(fs_devices, mode, fs_type);
1357 if (error)
1358 goto error_fs_info;
1359
1360 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1361 error = -EACCES;
1362 goto error_close_devices;
1363 }
1364
1365 bdev = fs_devices->latest_bdev;
1366 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1367 fs_info);
1368 if (IS_ERR(s)) {
1369 error = PTR_ERR(s);
1370 goto error_close_devices;
1371 }
1372
1373 if (s->s_root) {
1374 btrfs_close_devices(fs_devices);
1375 free_fs_info(fs_info);
1376 if ((flags ^ s->s_flags) & MS_RDONLY)
1377 error = -EBUSY;
1378 } else {
1379 char b[BDEVNAME_SIZE];
1380
1381 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1382 btrfs_sb(s)->bdev_holder = fs_type;
1383 error = btrfs_fill_super(s, fs_devices, data,
1384 flags & MS_SILENT ? 1 : 0);
1385 }
1386
1387 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1388 if (IS_ERR(root)) {
1389 deactivate_locked_super(s);
1390 error = PTR_ERR(root);
1391 goto error_sec_opts;
1392 }
1393
1394 fs_info = btrfs_sb(s);
1395 error = setup_security_options(fs_info, s, &new_sec_opts);
1396 if (error) {
1397 dput(root);
1398 deactivate_locked_super(s);
1399 goto error_sec_opts;
1400 }
1401
1402 return root;
1403
1404error_close_devices:
1405 btrfs_close_devices(fs_devices);
1406error_fs_info:
1407 free_fs_info(fs_info);
1408error_sec_opts:
1409 security_free_mnt_opts(&new_sec_opts);
1410 return ERR_PTR(error);
1411}
1412
1413static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1414 int new_pool_size, int old_pool_size)
1415{
1416 if (new_pool_size == old_pool_size)
1417 return;
1418
1419 fs_info->thread_pool_size = new_pool_size;
1420
1421 btrfs_info(fs_info, "resize thread pool %d -> %d",
1422 old_pool_size, new_pool_size);
1423
1424 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1425 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1426 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1427 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1428 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1429 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1430 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1431 new_pool_size);
1432 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1433 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1434 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1435 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1436 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1437 new_pool_size);
1438}
1439
1440static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1441{
1442 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1443}
1444
1445static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1446 unsigned long old_opts, int flags)
1447{
1448 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1449 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1450 (flags & MS_RDONLY))) {
1451 /* wait for any defraggers to finish */
1452 wait_event(fs_info->transaction_wait,
1453 (atomic_read(&fs_info->defrag_running) == 0));
1454 if (flags & MS_RDONLY)
1455 sync_filesystem(fs_info->sb);
1456 }
1457}
1458
1459static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1460 unsigned long old_opts)
1461{
1462 /*
1463 * We need cleanup all defragable inodes if the autodefragment is
1464 * close or the fs is R/O.
1465 */
1466 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1467 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1468 (fs_info->sb->s_flags & MS_RDONLY))) {
1469 btrfs_cleanup_defrag_inodes(fs_info);
1470 }
1471
1472 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1473}
1474
1475static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1476{
1477 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1478 struct btrfs_root *root = fs_info->tree_root;
1479 unsigned old_flags = sb->s_flags;
1480 unsigned long old_opts = fs_info->mount_opt;
1481 unsigned long old_compress_type = fs_info->compress_type;
1482 u64 old_max_inline = fs_info->max_inline;
1483 u64 old_alloc_start = fs_info->alloc_start;
1484 int old_thread_pool_size = fs_info->thread_pool_size;
1485 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1486 int ret;
1487
1488 sync_filesystem(sb);
1489 btrfs_remount_prepare(fs_info);
1490
1491 if (data) {
1492 struct security_mnt_opts new_sec_opts;
1493
1494 security_init_mnt_opts(&new_sec_opts);
1495 ret = parse_security_options(data, &new_sec_opts);
1496 if (ret)
1497 goto restore;
1498 ret = setup_security_options(fs_info, sb,
1499 &new_sec_opts);
1500 if (ret) {
1501 security_free_mnt_opts(&new_sec_opts);
1502 goto restore;
1503 }
1504 }
1505
1506 ret = btrfs_parse_options(root, data);
1507 if (ret) {
1508 ret = -EINVAL;
1509 goto restore;
1510 }
1511
1512 btrfs_remount_begin(fs_info, old_opts, *flags);
1513 btrfs_resize_thread_pool(fs_info,
1514 fs_info->thread_pool_size, old_thread_pool_size);
1515
1516 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1517 goto out;
1518
1519 if (*flags & MS_RDONLY) {
1520 /*
1521 * this also happens on 'umount -rf' or on shutdown, when
1522 * the filesystem is busy.
1523 */
1524 cancel_work_sync(&fs_info->async_reclaim_work);
1525
1526 /* wait for the uuid_scan task to finish */
1527 down(&fs_info->uuid_tree_rescan_sem);
1528 /* avoid complains from lockdep et al. */
1529 up(&fs_info->uuid_tree_rescan_sem);
1530
1531 sb->s_flags |= MS_RDONLY;
1532
1533 btrfs_dev_replace_suspend_for_unmount(fs_info);
1534 btrfs_scrub_cancel(fs_info);
1535 btrfs_pause_balance(fs_info);
1536
1537 ret = btrfs_commit_super(root);
1538 if (ret)
1539 goto restore;
1540 } else {
1541 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1542 btrfs_err(fs_info,
1543 "Remounting read-write after error is not allowed");
1544 ret = -EINVAL;
1545 goto restore;
1546 }
1547 if (fs_info->fs_devices->rw_devices == 0) {
1548 ret = -EACCES;
1549 goto restore;
1550 }
1551
1552 if (fs_info->fs_devices->missing_devices >
1553 fs_info->num_tolerated_disk_barrier_failures &&
1554 !(*flags & MS_RDONLY)) {
1555 btrfs_warn(fs_info,
1556 "too many missing devices, writeable remount is not allowed");
1557 ret = -EACCES;
1558 goto restore;
1559 }
1560
1561 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1562 ret = -EINVAL;
1563 goto restore;
1564 }
1565
1566 ret = btrfs_cleanup_fs_roots(fs_info);
1567 if (ret)
1568 goto restore;
1569
1570 /* recover relocation */
1571 mutex_lock(&fs_info->cleaner_mutex);
1572 ret = btrfs_recover_relocation(root);
1573 mutex_unlock(&fs_info->cleaner_mutex);
1574 if (ret)
1575 goto restore;
1576
1577 ret = btrfs_resume_balance_async(fs_info);
1578 if (ret)
1579 goto restore;
1580
1581 ret = btrfs_resume_dev_replace_async(fs_info);
1582 if (ret) {
1583 btrfs_warn(fs_info, "failed to resume dev_replace");
1584 goto restore;
1585 }
1586
1587 if (!fs_info->uuid_root) {
1588 btrfs_info(fs_info, "creating UUID tree");
1589 ret = btrfs_create_uuid_tree(fs_info);
1590 if (ret) {
1591 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1592 goto restore;
1593 }
1594 }
1595 sb->s_flags &= ~MS_RDONLY;
1596 }
1597out:
1598 wake_up_process(fs_info->transaction_kthread);
1599 btrfs_remount_cleanup(fs_info, old_opts);
1600 return 0;
1601
1602restore:
1603 /* We've hit an error - don't reset MS_RDONLY */
1604 if (sb->s_flags & MS_RDONLY)
1605 old_flags |= MS_RDONLY;
1606 sb->s_flags = old_flags;
1607 fs_info->mount_opt = old_opts;
1608 fs_info->compress_type = old_compress_type;
1609 fs_info->max_inline = old_max_inline;
1610 mutex_lock(&fs_info->chunk_mutex);
1611 fs_info->alloc_start = old_alloc_start;
1612 mutex_unlock(&fs_info->chunk_mutex);
1613 btrfs_resize_thread_pool(fs_info,
1614 old_thread_pool_size, fs_info->thread_pool_size);
1615 fs_info->metadata_ratio = old_metadata_ratio;
1616 btrfs_remount_cleanup(fs_info, old_opts);
1617 return ret;
1618}
1619
1620/* Used to sort the devices by max_avail(descending sort) */
1621static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1622 const void *dev_info2)
1623{
1624 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1625 ((struct btrfs_device_info *)dev_info2)->max_avail)
1626 return -1;
1627 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1628 ((struct btrfs_device_info *)dev_info2)->max_avail)
1629 return 1;
1630 else
1631 return 0;
1632}
1633
1634/*
1635 * sort the devices by max_avail, in which max free extent size of each device
1636 * is stored.(Descending Sort)
1637 */
1638static inline void btrfs_descending_sort_devices(
1639 struct btrfs_device_info *devices,
1640 size_t nr_devices)
1641{
1642 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1643 btrfs_cmp_device_free_bytes, NULL);
1644}
1645
1646/*
1647 * The helper to calc the free space on the devices that can be used to store
1648 * file data.
1649 */
1650static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1651{
1652 struct btrfs_fs_info *fs_info = root->fs_info;
1653 struct btrfs_device_info *devices_info;
1654 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1655 struct btrfs_device *device;
1656 u64 skip_space;
1657 u64 type;
1658 u64 avail_space;
1659 u64 used_space;
1660 u64 min_stripe_size;
1661 int min_stripes = 1, num_stripes = 1;
1662 int i = 0, nr_devices;
1663 int ret;
1664
1665 /*
1666 * We aren't under the device list lock, so this is racey-ish, but good
1667 * enough for our purposes.
1668 */
1669 nr_devices = fs_info->fs_devices->open_devices;
1670 if (!nr_devices) {
1671 smp_mb();
1672 nr_devices = fs_info->fs_devices->open_devices;
1673 ASSERT(nr_devices);
1674 if (!nr_devices) {
1675 *free_bytes = 0;
1676 return 0;
1677 }
1678 }
1679
1680 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1681 GFP_NOFS);
1682 if (!devices_info)
1683 return -ENOMEM;
1684
1685 /* calc min stripe number for data space alloction */
1686 type = btrfs_get_alloc_profile(root, 1);
1687 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1688 min_stripes = 2;
1689 num_stripes = nr_devices;
1690 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1691 min_stripes = 2;
1692 num_stripes = 2;
1693 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1694 min_stripes = 4;
1695 num_stripes = 4;
1696 }
1697
1698 if (type & BTRFS_BLOCK_GROUP_DUP)
1699 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1700 else
1701 min_stripe_size = BTRFS_STRIPE_LEN;
1702
1703 if (fs_info->alloc_start)
1704 mutex_lock(&fs_devices->device_list_mutex);
1705 rcu_read_lock();
1706 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1707 if (!device->in_fs_metadata || !device->bdev ||
1708 device->is_tgtdev_for_dev_replace)
1709 continue;
1710
1711 if (i >= nr_devices)
1712 break;
1713
1714 avail_space = device->total_bytes - device->bytes_used;
1715
1716 /* align with stripe_len */
1717 do_div(avail_space, BTRFS_STRIPE_LEN);
1718 avail_space *= BTRFS_STRIPE_LEN;
1719
1720 /*
1721 * In order to avoid overwritting the superblock on the drive,
1722 * btrfs starts at an offset of at least 1MB when doing chunk
1723 * allocation.
1724 */
1725 skip_space = 1024 * 1024;
1726
1727 /* user can set the offset in fs_info->alloc_start. */
1728 if (fs_info->alloc_start &&
1729 fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1730 device->total_bytes) {
1731 rcu_read_unlock();
1732 skip_space = max(fs_info->alloc_start, skip_space);
1733
1734 /*
1735 * btrfs can not use the free space in
1736 * [0, skip_space - 1], we must subtract it from the
1737 * total. In order to implement it, we account the used
1738 * space in this range first.
1739 */
1740 ret = btrfs_account_dev_extents_size(device, 0,
1741 skip_space - 1,
1742 &used_space);
1743 if (ret) {
1744 kfree(devices_info);
1745 mutex_unlock(&fs_devices->device_list_mutex);
1746 return ret;
1747 }
1748
1749 rcu_read_lock();
1750
1751 /* calc the free space in [0, skip_space - 1] */
1752 skip_space -= used_space;
1753 }
1754
1755 /*
1756 * we can use the free space in [0, skip_space - 1], subtract
1757 * it from the total.
1758 */
1759 if (avail_space && avail_space >= skip_space)
1760 avail_space -= skip_space;
1761 else
1762 avail_space = 0;
1763
1764 if (avail_space < min_stripe_size)
1765 continue;
1766
1767 devices_info[i].dev = device;
1768 devices_info[i].max_avail = avail_space;
1769
1770 i++;
1771 }
1772 rcu_read_unlock();
1773 if (fs_info->alloc_start)
1774 mutex_unlock(&fs_devices->device_list_mutex);
1775
1776 nr_devices = i;
1777
1778 btrfs_descending_sort_devices(devices_info, nr_devices);
1779
1780 i = nr_devices - 1;
1781 avail_space = 0;
1782 while (nr_devices >= min_stripes) {
1783 if (num_stripes > nr_devices)
1784 num_stripes = nr_devices;
1785
1786 if (devices_info[i].max_avail >= min_stripe_size) {
1787 int j;
1788 u64 alloc_size;
1789
1790 avail_space += devices_info[i].max_avail * num_stripes;
1791 alloc_size = devices_info[i].max_avail;
1792 for (j = i + 1 - num_stripes; j <= i; j++)
1793 devices_info[j].max_avail -= alloc_size;
1794 }
1795 i--;
1796 nr_devices--;
1797 }
1798
1799 kfree(devices_info);
1800 *free_bytes = avail_space;
1801 return 0;
1802}
1803
1804/*
1805 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1806 *
1807 * If there's a redundant raid level at DATA block groups, use the respective
1808 * multiplier to scale the sizes.
1809 *
1810 * Unused device space usage is based on simulating the chunk allocator
1811 * algorithm that respects the device sizes, order of allocations and the
1812 * 'alloc_start' value, this is a close approximation of the actual use but
1813 * there are other factors that may change the result (like a new metadata
1814 * chunk).
1815 *
1816 * FIXME: not accurate for mixed block groups, total and free/used are ok,
1817 * available appears slightly larger.
1818 */
1819static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1820{
1821 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1822 struct btrfs_super_block *disk_super = fs_info->super_copy;
1823 struct list_head *head = &fs_info->space_info;
1824 struct btrfs_space_info *found;
1825 u64 total_used = 0;
1826 u64 total_free_data = 0;
1827 int bits = dentry->d_sb->s_blocksize_bits;
1828 __be32 *fsid = (__be32 *)fs_info->fsid;
1829 unsigned factor = 1;
1830 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1831 int ret;
1832
1833 /*
1834 * holding chunk_muext to avoid allocating new chunks, holding
1835 * device_list_mutex to avoid the device being removed
1836 */
1837 rcu_read_lock();
1838 list_for_each_entry_rcu(found, head, list) {
1839 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1840 int i;
1841
1842 total_free_data += found->disk_total - found->disk_used;
1843 total_free_data -=
1844 btrfs_account_ro_block_groups_free_space(found);
1845
1846 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1847 if (!list_empty(&found->block_groups[i])) {
1848 switch (i) {
1849 case BTRFS_RAID_DUP:
1850 case BTRFS_RAID_RAID1:
1851 case BTRFS_RAID_RAID10:
1852 factor = 2;
1853 }
1854 }
1855 }
1856 }
1857
1858 total_used += found->disk_used;
1859 }
1860
1861 rcu_read_unlock();
1862
1863 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1864 buf->f_blocks >>= bits;
1865 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1866
1867 /* Account global block reserve as used, it's in logical size already */
1868 spin_lock(&block_rsv->lock);
1869 buf->f_bfree -= block_rsv->size >> bits;
1870 spin_unlock(&block_rsv->lock);
1871
1872 buf->f_bavail = div_u64(total_free_data, factor);
1873 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1874 if (ret)
1875 return ret;
1876 buf->f_bavail += div_u64(total_free_data, factor);
1877 buf->f_bavail = buf->f_bavail >> bits;
1878
1879 buf->f_type = BTRFS_SUPER_MAGIC;
1880 buf->f_bsize = dentry->d_sb->s_blocksize;
1881 buf->f_namelen = BTRFS_NAME_LEN;
1882
1883 /* We treat it as constant endianness (it doesn't matter _which_)
1884 because we want the fsid to come out the same whether mounted
1885 on a big-endian or little-endian host */
1886 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1887 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1888 /* Mask in the root object ID too, to disambiguate subvols */
1889 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1890 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1891
1892 return 0;
1893}
1894
1895static void btrfs_kill_super(struct super_block *sb)
1896{
1897 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1898 kill_anon_super(sb);
1899 free_fs_info(fs_info);
1900}
1901
1902static struct file_system_type btrfs_fs_type = {
1903 .owner = THIS_MODULE,
1904 .name = "btrfs",
1905 .mount = btrfs_mount,
1906 .kill_sb = btrfs_kill_super,
1907 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
1908};
1909MODULE_ALIAS_FS("btrfs");
1910
1911/*
1912 * used by btrfsctl to scan devices when no FS is mounted
1913 */
1914static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1915 unsigned long arg)
1916{
1917 struct btrfs_ioctl_vol_args *vol;
1918 struct btrfs_fs_devices *fs_devices;
1919 int ret = -ENOTTY;
1920
1921 if (!capable(CAP_SYS_ADMIN))
1922 return -EPERM;
1923
1924 vol = memdup_user((void __user *)arg, sizeof(*vol));
1925 if (IS_ERR(vol))
1926 return PTR_ERR(vol);
1927
1928 switch (cmd) {
1929 case BTRFS_IOC_SCAN_DEV:
1930 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1931 &btrfs_fs_type, &fs_devices);
1932 break;
1933 case BTRFS_IOC_DEVICES_READY:
1934 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1935 &btrfs_fs_type, &fs_devices);
1936 if (ret)
1937 break;
1938 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1939 break;
1940 }
1941
1942 kfree(vol);
1943 return ret;
1944}
1945
1946static int btrfs_freeze(struct super_block *sb)
1947{
1948 struct btrfs_trans_handle *trans;
1949 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1950
1951 trans = btrfs_attach_transaction_barrier(root);
1952 if (IS_ERR(trans)) {
1953 /* no transaction, don't bother */
1954 if (PTR_ERR(trans) == -ENOENT)
1955 return 0;
1956 return PTR_ERR(trans);
1957 }
1958 return btrfs_commit_transaction(trans, root);
1959}
1960
1961static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1962{
1963 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1964 struct btrfs_fs_devices *cur_devices;
1965 struct btrfs_device *dev, *first_dev = NULL;
1966 struct list_head *head;
1967 struct rcu_string *name;
1968
1969 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1970 cur_devices = fs_info->fs_devices;
1971 while (cur_devices) {
1972 head = &cur_devices->devices;
1973 list_for_each_entry(dev, head, dev_list) {
1974 if (dev->missing)
1975 continue;
1976 if (!dev->name)
1977 continue;
1978 if (!first_dev || dev->devid < first_dev->devid)
1979 first_dev = dev;
1980 }
1981 cur_devices = cur_devices->seed;
1982 }
1983
1984 if (first_dev) {
1985 rcu_read_lock();
1986 name = rcu_dereference(first_dev->name);
1987 seq_escape(m, name->str, " \t\n\\");
1988 rcu_read_unlock();
1989 } else {
1990 WARN_ON(1);
1991 }
1992 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1993 return 0;
1994}
1995
1996static const struct super_operations btrfs_super_ops = {
1997 .drop_inode = btrfs_drop_inode,
1998 .evict_inode = btrfs_evict_inode,
1999 .put_super = btrfs_put_super,
2000 .sync_fs = btrfs_sync_fs,
2001 .show_options = btrfs_show_options,
2002 .show_devname = btrfs_show_devname,
2003 .write_inode = btrfs_write_inode,
2004 .alloc_inode = btrfs_alloc_inode,
2005 .destroy_inode = btrfs_destroy_inode,
2006 .statfs = btrfs_statfs,
2007 .remount_fs = btrfs_remount,
2008 .freeze_fs = btrfs_freeze,
2009};
2010
2011static const struct file_operations btrfs_ctl_fops = {
2012 .unlocked_ioctl = btrfs_control_ioctl,
2013 .compat_ioctl = btrfs_control_ioctl,
2014 .owner = THIS_MODULE,
2015 .llseek = noop_llseek,
2016};
2017
2018static struct miscdevice btrfs_misc = {
2019 .minor = BTRFS_MINOR,
2020 .name = "btrfs-control",
2021 .fops = &btrfs_ctl_fops
2022};
2023
2024MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2025MODULE_ALIAS("devname:btrfs-control");
2026
2027static int btrfs_interface_init(void)
2028{
2029 return misc_register(&btrfs_misc);
2030}
2031
2032static void btrfs_interface_exit(void)
2033{
2034 if (misc_deregister(&btrfs_misc) < 0)
2035 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
2036}
2037
2038static void btrfs_print_info(void)
2039{
2040 printk(KERN_INFO "Btrfs loaded"
2041#ifdef CONFIG_BTRFS_DEBUG
2042 ", debug=on"
2043#endif
2044#ifdef CONFIG_BTRFS_ASSERT
2045 ", assert=on"
2046#endif
2047#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2048 ", integrity-checker=on"
2049#endif
2050 "\n");
2051}
2052
2053static int btrfs_run_sanity_tests(void)
2054{
2055 int ret;
2056
2057 ret = btrfs_init_test_fs();
2058 if (ret)
2059 return ret;
2060
2061 ret = btrfs_test_free_space_cache();
2062 if (ret)
2063 goto out;
2064 ret = btrfs_test_extent_buffer_operations();
2065 if (ret)
2066 goto out;
2067 ret = btrfs_test_extent_io();
2068 if (ret)
2069 goto out;
2070 ret = btrfs_test_inodes();
2071 if (ret)
2072 goto out;
2073 ret = btrfs_test_qgroups();
2074out:
2075 btrfs_destroy_test_fs();
2076 return ret;
2077}
2078
2079static int __init init_btrfs_fs(void)
2080{
2081 int err;
2082
2083 err = btrfs_hash_init();
2084 if (err)
2085 return err;
2086
2087 btrfs_props_init();
2088
2089 err = btrfs_init_sysfs();
2090 if (err)
2091 goto free_hash;
2092
2093 btrfs_init_compress();
2094
2095 err = btrfs_init_cachep();
2096 if (err)
2097 goto free_compress;
2098
2099 err = extent_io_init();
2100 if (err)
2101 goto free_cachep;
2102
2103 err = extent_map_init();
2104 if (err)
2105 goto free_extent_io;
2106
2107 err = ordered_data_init();
2108 if (err)
2109 goto free_extent_map;
2110
2111 err = btrfs_delayed_inode_init();
2112 if (err)
2113 goto free_ordered_data;
2114
2115 err = btrfs_auto_defrag_init();
2116 if (err)
2117 goto free_delayed_inode;
2118
2119 err = btrfs_delayed_ref_init();
2120 if (err)
2121 goto free_auto_defrag;
2122
2123 err = btrfs_prelim_ref_init();
2124 if (err)
2125 goto free_delayed_ref;
2126
2127 err = btrfs_end_io_wq_init();
2128 if (err)
2129 goto free_prelim_ref;
2130
2131 err = btrfs_interface_init();
2132 if (err)
2133 goto free_end_io_wq;
2134
2135 btrfs_init_lockdep();
2136
2137 btrfs_print_info();
2138
2139 err = btrfs_run_sanity_tests();
2140 if (err)
2141 goto unregister_ioctl;
2142
2143 err = register_filesystem(&btrfs_fs_type);
2144 if (err)
2145 goto unregister_ioctl;
2146
2147 return 0;
2148
2149unregister_ioctl:
2150 btrfs_interface_exit();
2151free_end_io_wq:
2152 btrfs_end_io_wq_exit();
2153free_prelim_ref:
2154 btrfs_prelim_ref_exit();
2155free_delayed_ref:
2156 btrfs_delayed_ref_exit();
2157free_auto_defrag:
2158 btrfs_auto_defrag_exit();
2159free_delayed_inode:
2160 btrfs_delayed_inode_exit();
2161free_ordered_data:
2162 ordered_data_exit();
2163free_extent_map:
2164 extent_map_exit();
2165free_extent_io:
2166 extent_io_exit();
2167free_cachep:
2168 btrfs_destroy_cachep();
2169free_compress:
2170 btrfs_exit_compress();
2171 btrfs_exit_sysfs();
2172free_hash:
2173 btrfs_hash_exit();
2174 return err;
2175}
2176
2177static void __exit exit_btrfs_fs(void)
2178{
2179 btrfs_destroy_cachep();
2180 btrfs_delayed_ref_exit();
2181 btrfs_auto_defrag_exit();
2182 btrfs_delayed_inode_exit();
2183 btrfs_prelim_ref_exit();
2184 ordered_data_exit();
2185 extent_map_exit();
2186 extent_io_exit();
2187 btrfs_interface_exit();
2188 btrfs_end_io_wq_exit();
2189 unregister_filesystem(&btrfs_fs_type);
2190 btrfs_exit_sysfs();
2191 btrfs_cleanup_fs_uuids();
2192 btrfs_exit_compress();
2193 btrfs_hash_exit();
2194}
2195
2196late_initcall(init_btrfs_fs);
2197module_exit(exit_btrfs_fs)
2198
2199MODULE_LICENSE("GPL");