| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2011, 2012 STRATO. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/blkdev.h> |
| 7 | #include <linux/ratelimit.h> |
| 8 | #include <linux/sched/mm.h> |
| 9 | #include <crypto/hash.h> |
| 10 | #include "ctree.h" |
| 11 | #include "discard.h" |
| 12 | #include "volumes.h" |
| 13 | #include "disk-io.h" |
| 14 | #include "ordered-data.h" |
| 15 | #include "transaction.h" |
| 16 | #include "backref.h" |
| 17 | #include "extent_io.h" |
| 18 | #include "dev-replace.h" |
| 19 | #include "raid56.h" |
| 20 | #include "block-group.h" |
| 21 | #include "zoned.h" |
| 22 | #include "fs.h" |
| 23 | #include "accessors.h" |
| 24 | #include "file-item.h" |
| 25 | #include "scrub.h" |
| 26 | #include "raid-stripe-tree.h" |
| 27 | |
| 28 | /* |
| 29 | * This is only the first step towards a full-features scrub. It reads all |
| 30 | * extent and super block and verifies the checksums. In case a bad checksum |
| 31 | * is found or the extent cannot be read, good data will be written back if |
| 32 | * any can be found. |
| 33 | * |
| 34 | * Future enhancements: |
| 35 | * - In case an unrepairable extent is encountered, track which files are |
| 36 | * affected and report them |
| 37 | * - track and record media errors, throw out bad devices |
| 38 | * - add a mode to also read unallocated space |
| 39 | */ |
| 40 | |
| 41 | struct scrub_ctx; |
| 42 | |
| 43 | /* |
| 44 | * The following value only influences the performance. |
| 45 | * |
| 46 | * This determines how many stripes would be submitted in one go, |
| 47 | * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP). |
| 48 | */ |
| 49 | #define SCRUB_STRIPES_PER_GROUP 8 |
| 50 | |
| 51 | /* |
| 52 | * How many groups we have for each sctx. |
| 53 | * |
| 54 | * This would be 8M per device, the same value as the old scrub in-flight bios |
| 55 | * size limit. |
| 56 | */ |
| 57 | #define SCRUB_GROUPS_PER_SCTX 16 |
| 58 | |
| 59 | #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP) |
| 60 | |
| 61 | /* |
| 62 | * The following value times PAGE_SIZE needs to be large enough to match the |
| 63 | * largest node/leaf/sector size that shall be supported. |
| 64 | */ |
| 65 | #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) |
| 66 | |
| 67 | /* Represent one sector and its needed info to verify the content. */ |
| 68 | struct scrub_sector_verification { |
| 69 | union { |
| 70 | /* |
| 71 | * Csum pointer for data csum verification. Should point to a |
| 72 | * sector csum inside scrub_stripe::csums. |
| 73 | * |
| 74 | * NULL if this data sector has no csum. |
| 75 | */ |
| 76 | u8 *csum; |
| 77 | |
| 78 | /* |
| 79 | * Extra info for metadata verification. All sectors inside a |
| 80 | * tree block share the same generation. |
| 81 | */ |
| 82 | u64 generation; |
| 83 | }; |
| 84 | }; |
| 85 | |
| 86 | enum scrub_stripe_flags { |
| 87 | /* Set when @mirror_num, @dev, @physical and @logical are set. */ |
| 88 | SCRUB_STRIPE_FLAG_INITIALIZED, |
| 89 | |
| 90 | /* Set when the read-repair is finished. */ |
| 91 | SCRUB_STRIPE_FLAG_REPAIR_DONE, |
| 92 | |
| 93 | /* |
| 94 | * Set for data stripes if it's triggered from P/Q stripe. |
| 95 | * During such scrub, we should not report errors in data stripes, nor |
| 96 | * update the accounting. |
| 97 | */ |
| 98 | SCRUB_STRIPE_FLAG_NO_REPORT, |
| 99 | }; |
| 100 | |
| 101 | /* |
| 102 | * We have multiple bitmaps for one scrub_stripe. |
| 103 | * However each bitmap has at most (BTRFS_STRIPE_LEN / blocksize) bits, |
| 104 | * which is normally 16, and much smaller than BITS_PER_LONG (32 or 64). |
| 105 | * |
| 106 | * So to reduce memory usage for each scrub_stripe, we pack those bitmaps |
| 107 | * into a larger one. |
| 108 | * |
| 109 | * These enum records where the sub-bitmap are inside the larger one. |
| 110 | * Each subbitmap starts at scrub_bitmap_nr_##name * nr_sectors bit. |
| 111 | */ |
| 112 | enum { |
| 113 | /* Which blocks are covered by extent items. */ |
| 114 | scrub_bitmap_nr_has_extent = 0, |
| 115 | |
| 116 | /* Which blocks are meteadata. */ |
| 117 | scrub_bitmap_nr_is_metadata, |
| 118 | |
| 119 | /* |
| 120 | * Which blocks have errors, including IO, csum, and metadata |
| 121 | * errors. |
| 122 | * This sub-bitmap is the OR results of the next few error related |
| 123 | * sub-bitmaps. |
| 124 | */ |
| 125 | scrub_bitmap_nr_error, |
| 126 | scrub_bitmap_nr_io_error, |
| 127 | scrub_bitmap_nr_csum_error, |
| 128 | scrub_bitmap_nr_meta_error, |
| 129 | scrub_bitmap_nr_meta_gen_error, |
| 130 | scrub_bitmap_nr_last, |
| 131 | }; |
| 132 | |
| 133 | #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE) |
| 134 | |
| 135 | /* |
| 136 | * Represent one contiguous range with a length of BTRFS_STRIPE_LEN. |
| 137 | */ |
| 138 | struct scrub_stripe { |
| 139 | struct scrub_ctx *sctx; |
| 140 | struct btrfs_block_group *bg; |
| 141 | |
| 142 | struct page *pages[SCRUB_STRIPE_PAGES]; |
| 143 | struct scrub_sector_verification *sectors; |
| 144 | |
| 145 | struct btrfs_device *dev; |
| 146 | u64 logical; |
| 147 | u64 physical; |
| 148 | |
| 149 | u16 mirror_num; |
| 150 | |
| 151 | /* Should be BTRFS_STRIPE_LEN / sectorsize. */ |
| 152 | u16 nr_sectors; |
| 153 | |
| 154 | /* |
| 155 | * How many data/meta extents are in this stripe. Only for scrub status |
| 156 | * reporting purposes. |
| 157 | */ |
| 158 | u16 nr_data_extents; |
| 159 | u16 nr_meta_extents; |
| 160 | |
| 161 | atomic_t pending_io; |
| 162 | wait_queue_head_t io_wait; |
| 163 | wait_queue_head_t repair_wait; |
| 164 | |
| 165 | /* |
| 166 | * Indicate the states of the stripe. Bits are defined in |
| 167 | * scrub_stripe_flags enum. |
| 168 | */ |
| 169 | unsigned long state; |
| 170 | |
| 171 | /* The large bitmap contains all the sub-bitmaps. */ |
| 172 | unsigned long bitmaps[BITS_TO_LONGS(scrub_bitmap_nr_last * |
| 173 | (BTRFS_STRIPE_LEN / BTRFS_MIN_BLOCKSIZE))]; |
| 174 | |
| 175 | /* |
| 176 | * For writeback (repair or replace) error reporting. |
| 177 | * This one is protected by a spinlock, thus can not be packed into |
| 178 | * the larger bitmap. |
| 179 | */ |
| 180 | unsigned long write_error_bitmap; |
| 181 | |
| 182 | /* Writeback can be concurrent, thus we need to protect the bitmap. */ |
| 183 | spinlock_t write_error_lock; |
| 184 | |
| 185 | /* |
| 186 | * Checksum for the whole stripe if this stripe is inside a data block |
| 187 | * group. |
| 188 | */ |
| 189 | u8 *csums; |
| 190 | |
| 191 | struct work_struct work; |
| 192 | }; |
| 193 | |
| 194 | struct scrub_ctx { |
| 195 | struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES]; |
| 196 | struct scrub_stripe *raid56_data_stripes; |
| 197 | struct btrfs_fs_info *fs_info; |
| 198 | struct btrfs_path extent_path; |
| 199 | struct btrfs_path csum_path; |
| 200 | int first_free; |
| 201 | int cur_stripe; |
| 202 | atomic_t cancel_req; |
| 203 | int readonly; |
| 204 | |
| 205 | /* State of IO submission throttling affecting the associated device */ |
| 206 | ktime_t throttle_deadline; |
| 207 | u64 throttle_sent; |
| 208 | |
| 209 | int is_dev_replace; |
| 210 | u64 write_pointer; |
| 211 | |
| 212 | struct mutex wr_lock; |
| 213 | struct btrfs_device *wr_tgtdev; |
| 214 | |
| 215 | /* |
| 216 | * statistics |
| 217 | */ |
| 218 | struct btrfs_scrub_progress stat; |
| 219 | spinlock_t stat_lock; |
| 220 | |
| 221 | /* |
| 222 | * Use a ref counter to avoid use-after-free issues. Scrub workers |
| 223 | * decrement bios_in_flight and workers_pending and then do a wakeup |
| 224 | * on the list_wait wait queue. We must ensure the main scrub task |
| 225 | * doesn't free the scrub context before or while the workers are |
| 226 | * doing the wakeup() call. |
| 227 | */ |
| 228 | refcount_t refs; |
| 229 | }; |
| 230 | |
| 231 | #define scrub_calc_start_bit(stripe, name, block_nr) \ |
| 232 | ({ \ |
| 233 | unsigned int __start_bit; \ |
| 234 | \ |
| 235 | ASSERT(block_nr < stripe->nr_sectors, \ |
| 236 | "nr_sectors=%u block_nr=%u", stripe->nr_sectors, block_nr); \ |
| 237 | __start_bit = scrub_bitmap_nr_##name * stripe->nr_sectors + block_nr; \ |
| 238 | __start_bit; \ |
| 239 | }) |
| 240 | |
| 241 | #define IMPLEMENT_SCRUB_BITMAP_OPS(name) \ |
| 242 | static inline void scrub_bitmap_set_##name(struct scrub_stripe *stripe, \ |
| 243 | unsigned int block_nr, \ |
| 244 | unsigned int nr_blocks) \ |
| 245 | { \ |
| 246 | const unsigned int start_bit = scrub_calc_start_bit(stripe, \ |
| 247 | name, block_nr); \ |
| 248 | \ |
| 249 | bitmap_set(stripe->bitmaps, start_bit, nr_blocks); \ |
| 250 | } \ |
| 251 | static inline void scrub_bitmap_clear_##name(struct scrub_stripe *stripe, \ |
| 252 | unsigned int block_nr, \ |
| 253 | unsigned int nr_blocks) \ |
| 254 | { \ |
| 255 | const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \ |
| 256 | block_nr); \ |
| 257 | \ |
| 258 | bitmap_clear(stripe->bitmaps, start_bit, nr_blocks); \ |
| 259 | } \ |
| 260 | static inline bool scrub_bitmap_test_bit_##name(struct scrub_stripe *stripe, \ |
| 261 | unsigned int block_nr) \ |
| 262 | { \ |
| 263 | const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \ |
| 264 | block_nr); \ |
| 265 | \ |
| 266 | return test_bit(start_bit, stripe->bitmaps); \ |
| 267 | } \ |
| 268 | static inline void scrub_bitmap_set_bit_##name(struct scrub_stripe *stripe, \ |
| 269 | unsigned int block_nr) \ |
| 270 | { \ |
| 271 | const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \ |
| 272 | block_nr); \ |
| 273 | \ |
| 274 | set_bit(start_bit, stripe->bitmaps); \ |
| 275 | } \ |
| 276 | static inline void scrub_bitmap_clear_bit_##name(struct scrub_stripe *stripe, \ |
| 277 | unsigned int block_nr) \ |
| 278 | { \ |
| 279 | const unsigned int start_bit = scrub_calc_start_bit(stripe, name, \ |
| 280 | block_nr); \ |
| 281 | \ |
| 282 | clear_bit(start_bit, stripe->bitmaps); \ |
| 283 | } \ |
| 284 | static inline unsigned long scrub_bitmap_read_##name(struct scrub_stripe *stripe) \ |
| 285 | { \ |
| 286 | const unsigned int nr_blocks = stripe->nr_sectors; \ |
| 287 | \ |
| 288 | ASSERT(nr_blocks > 0 && nr_blocks <= BITS_PER_LONG, \ |
| 289 | "nr_blocks=%u BITS_PER_LONG=%u", \ |
| 290 | nr_blocks, BITS_PER_LONG); \ |
| 291 | \ |
| 292 | return bitmap_read(stripe->bitmaps, nr_blocks * scrub_bitmap_nr_##name, \ |
| 293 | stripe->nr_sectors); \ |
| 294 | } \ |
| 295 | static inline bool scrub_bitmap_empty_##name(struct scrub_stripe *stripe) \ |
| 296 | { \ |
| 297 | unsigned long bitmap = scrub_bitmap_read_##name(stripe); \ |
| 298 | \ |
| 299 | return bitmap_empty(&bitmap, stripe->nr_sectors); \ |
| 300 | } \ |
| 301 | static inline unsigned int scrub_bitmap_weight_##name(struct scrub_stripe *stripe) \ |
| 302 | { \ |
| 303 | unsigned long bitmap = scrub_bitmap_read_##name(stripe); \ |
| 304 | \ |
| 305 | return bitmap_weight(&bitmap, stripe->nr_sectors); \ |
| 306 | } |
| 307 | IMPLEMENT_SCRUB_BITMAP_OPS(has_extent); |
| 308 | IMPLEMENT_SCRUB_BITMAP_OPS(is_metadata); |
| 309 | IMPLEMENT_SCRUB_BITMAP_OPS(error); |
| 310 | IMPLEMENT_SCRUB_BITMAP_OPS(io_error); |
| 311 | IMPLEMENT_SCRUB_BITMAP_OPS(csum_error); |
| 312 | IMPLEMENT_SCRUB_BITMAP_OPS(meta_error); |
| 313 | IMPLEMENT_SCRUB_BITMAP_OPS(meta_gen_error); |
| 314 | |
| 315 | struct scrub_warning { |
| 316 | struct btrfs_path *path; |
| 317 | u64 extent_item_size; |
| 318 | const char *errstr; |
| 319 | u64 physical; |
| 320 | u64 logical; |
| 321 | struct btrfs_device *dev; |
| 322 | }; |
| 323 | |
| 324 | struct scrub_error_records { |
| 325 | /* |
| 326 | * Bitmap recording which blocks hit errors (IO/csum/...) during the |
| 327 | * initial read. |
| 328 | */ |
| 329 | unsigned long init_error_bitmap; |
| 330 | |
| 331 | unsigned int nr_io_errors; |
| 332 | unsigned int nr_csum_errors; |
| 333 | unsigned int nr_meta_errors; |
| 334 | unsigned int nr_meta_gen_errors; |
| 335 | }; |
| 336 | |
| 337 | static void release_scrub_stripe(struct scrub_stripe *stripe) |
| 338 | { |
| 339 | if (!stripe) |
| 340 | return; |
| 341 | |
| 342 | for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) { |
| 343 | if (stripe->pages[i]) |
| 344 | __free_page(stripe->pages[i]); |
| 345 | stripe->pages[i] = NULL; |
| 346 | } |
| 347 | kfree(stripe->sectors); |
| 348 | kfree(stripe->csums); |
| 349 | stripe->sectors = NULL; |
| 350 | stripe->csums = NULL; |
| 351 | stripe->sctx = NULL; |
| 352 | stripe->state = 0; |
| 353 | } |
| 354 | |
| 355 | static int init_scrub_stripe(struct btrfs_fs_info *fs_info, |
| 356 | struct scrub_stripe *stripe) |
| 357 | { |
| 358 | int ret; |
| 359 | |
| 360 | memset(stripe, 0, sizeof(*stripe)); |
| 361 | |
| 362 | stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; |
| 363 | stripe->state = 0; |
| 364 | |
| 365 | init_waitqueue_head(&stripe->io_wait); |
| 366 | init_waitqueue_head(&stripe->repair_wait); |
| 367 | atomic_set(&stripe->pending_io, 0); |
| 368 | spin_lock_init(&stripe->write_error_lock); |
| 369 | |
| 370 | ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, false); |
| 371 | if (ret < 0) |
| 372 | goto error; |
| 373 | |
| 374 | stripe->sectors = kcalloc(stripe->nr_sectors, |
| 375 | sizeof(struct scrub_sector_verification), |
| 376 | GFP_KERNEL); |
| 377 | if (!stripe->sectors) |
| 378 | goto error; |
| 379 | |
| 380 | stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits, |
| 381 | fs_info->csum_size, GFP_KERNEL); |
| 382 | if (!stripe->csums) |
| 383 | goto error; |
| 384 | return 0; |
| 385 | error: |
| 386 | release_scrub_stripe(stripe); |
| 387 | return -ENOMEM; |
| 388 | } |
| 389 | |
| 390 | static void wait_scrub_stripe_io(struct scrub_stripe *stripe) |
| 391 | { |
| 392 | wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0); |
| 393 | } |
| 394 | |
| 395 | static void scrub_put_ctx(struct scrub_ctx *sctx); |
| 396 | |
| 397 | static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
| 398 | { |
| 399 | while (atomic_read(&fs_info->scrub_pause_req)) { |
| 400 | mutex_unlock(&fs_info->scrub_lock); |
| 401 | wait_event(fs_info->scrub_pause_wait, |
| 402 | atomic_read(&fs_info->scrub_pause_req) == 0); |
| 403 | mutex_lock(&fs_info->scrub_lock); |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | static void scrub_pause_on(struct btrfs_fs_info *fs_info) |
| 408 | { |
| 409 | atomic_inc(&fs_info->scrubs_paused); |
| 410 | wake_up(&fs_info->scrub_pause_wait); |
| 411 | } |
| 412 | |
| 413 | static void scrub_pause_off(struct btrfs_fs_info *fs_info) |
| 414 | { |
| 415 | mutex_lock(&fs_info->scrub_lock); |
| 416 | __scrub_blocked_if_needed(fs_info); |
| 417 | atomic_dec(&fs_info->scrubs_paused); |
| 418 | mutex_unlock(&fs_info->scrub_lock); |
| 419 | |
| 420 | wake_up(&fs_info->scrub_pause_wait); |
| 421 | } |
| 422 | |
| 423 | static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
| 424 | { |
| 425 | scrub_pause_on(fs_info); |
| 426 | scrub_pause_off(fs_info); |
| 427 | } |
| 428 | |
| 429 | static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) |
| 430 | { |
| 431 | int i; |
| 432 | |
| 433 | if (!sctx) |
| 434 | return; |
| 435 | |
| 436 | for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) |
| 437 | release_scrub_stripe(&sctx->stripes[i]); |
| 438 | |
| 439 | kvfree(sctx); |
| 440 | } |
| 441 | |
| 442 | static void scrub_put_ctx(struct scrub_ctx *sctx) |
| 443 | { |
| 444 | if (refcount_dec_and_test(&sctx->refs)) |
| 445 | scrub_free_ctx(sctx); |
| 446 | } |
| 447 | |
| 448 | static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( |
| 449 | struct btrfs_fs_info *fs_info, int is_dev_replace) |
| 450 | { |
| 451 | struct scrub_ctx *sctx; |
| 452 | int i; |
| 453 | |
| 454 | /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use |
| 455 | * kvzalloc(). |
| 456 | */ |
| 457 | sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL); |
| 458 | if (!sctx) |
| 459 | goto nomem; |
| 460 | refcount_set(&sctx->refs, 1); |
| 461 | sctx->is_dev_replace = is_dev_replace; |
| 462 | sctx->fs_info = fs_info; |
| 463 | sctx->extent_path.search_commit_root = 1; |
| 464 | sctx->extent_path.skip_locking = 1; |
| 465 | sctx->csum_path.search_commit_root = 1; |
| 466 | sctx->csum_path.skip_locking = 1; |
| 467 | for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) { |
| 468 | int ret; |
| 469 | |
| 470 | ret = init_scrub_stripe(fs_info, &sctx->stripes[i]); |
| 471 | if (ret < 0) |
| 472 | goto nomem; |
| 473 | sctx->stripes[i].sctx = sctx; |
| 474 | } |
| 475 | sctx->first_free = 0; |
| 476 | atomic_set(&sctx->cancel_req, 0); |
| 477 | |
| 478 | spin_lock_init(&sctx->stat_lock); |
| 479 | sctx->throttle_deadline = 0; |
| 480 | |
| 481 | mutex_init(&sctx->wr_lock); |
| 482 | if (is_dev_replace) { |
| 483 | WARN_ON(!fs_info->dev_replace.tgtdev); |
| 484 | sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; |
| 485 | } |
| 486 | |
| 487 | return sctx; |
| 488 | |
| 489 | nomem: |
| 490 | scrub_free_ctx(sctx); |
| 491 | return ERR_PTR(-ENOMEM); |
| 492 | } |
| 493 | |
| 494 | static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, |
| 495 | u64 root, void *warn_ctx) |
| 496 | { |
| 497 | u32 nlink; |
| 498 | int ret; |
| 499 | int i; |
| 500 | unsigned nofs_flag; |
| 501 | struct extent_buffer *eb; |
| 502 | struct btrfs_inode_item *inode_item; |
| 503 | struct scrub_warning *swarn = warn_ctx; |
| 504 | struct btrfs_fs_info *fs_info = swarn->dev->fs_info; |
| 505 | struct inode_fs_paths *ipath = NULL; |
| 506 | struct btrfs_root *local_root; |
| 507 | struct btrfs_key key; |
| 508 | |
| 509 | local_root = btrfs_get_fs_root(fs_info, root, true); |
| 510 | if (IS_ERR(local_root)) { |
| 511 | ret = PTR_ERR(local_root); |
| 512 | goto err; |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * this makes the path point to (inum INODE_ITEM ioff) |
| 517 | */ |
| 518 | key.objectid = inum; |
| 519 | key.type = BTRFS_INODE_ITEM_KEY; |
| 520 | key.offset = 0; |
| 521 | |
| 522 | ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); |
| 523 | if (ret) { |
| 524 | btrfs_put_root(local_root); |
| 525 | btrfs_release_path(swarn->path); |
| 526 | goto err; |
| 527 | } |
| 528 | |
| 529 | eb = swarn->path->nodes[0]; |
| 530 | inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], |
| 531 | struct btrfs_inode_item); |
| 532 | nlink = btrfs_inode_nlink(eb, inode_item); |
| 533 | btrfs_release_path(swarn->path); |
| 534 | |
| 535 | /* |
| 536 | * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub |
| 537 | * uses GFP_NOFS in this context, so we keep it consistent but it does |
| 538 | * not seem to be strictly necessary. |
| 539 | */ |
| 540 | nofs_flag = memalloc_nofs_save(); |
| 541 | ipath = init_ipath(4096, local_root, swarn->path); |
| 542 | memalloc_nofs_restore(nofs_flag); |
| 543 | if (IS_ERR(ipath)) { |
| 544 | btrfs_put_root(local_root); |
| 545 | ret = PTR_ERR(ipath); |
| 546 | ipath = NULL; |
| 547 | goto err; |
| 548 | } |
| 549 | ret = paths_from_inode(inum, ipath); |
| 550 | |
| 551 | if (ret < 0) |
| 552 | goto err; |
| 553 | |
| 554 | /* |
| 555 | * we deliberately ignore the bit ipath might have been too small to |
| 556 | * hold all of the paths here |
| 557 | */ |
| 558 | for (i = 0; i < ipath->fspath->elem_cnt; ++i) |
| 559 | btrfs_warn_in_rcu(fs_info, |
| 560 | "scrub: %s at logical %llu on dev %s, physical %llu root %llu inode %llu offset %llu length %u links %u (path: %s)", |
| 561 | swarn->errstr, swarn->logical, |
| 562 | btrfs_dev_name(swarn->dev), |
| 563 | swarn->physical, |
| 564 | root, inum, offset, |
| 565 | fs_info->sectorsize, nlink, |
| 566 | (char *)(unsigned long)ipath->fspath->val[i]); |
| 567 | |
| 568 | btrfs_put_root(local_root); |
| 569 | free_ipath(ipath); |
| 570 | return 0; |
| 571 | |
| 572 | err: |
| 573 | btrfs_warn_in_rcu(fs_info, |
| 574 | "scrub: %s at logical %llu on dev %s, physical %llu root %llu inode %llu offset %llu: path resolving failed with ret=%d", |
| 575 | swarn->errstr, swarn->logical, |
| 576 | btrfs_dev_name(swarn->dev), |
| 577 | swarn->physical, |
| 578 | root, inum, offset, ret); |
| 579 | |
| 580 | free_ipath(ipath); |
| 581 | return 0; |
| 582 | } |
| 583 | |
| 584 | static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev, |
| 585 | bool is_super, u64 logical, u64 physical) |
| 586 | { |
| 587 | struct btrfs_fs_info *fs_info = dev->fs_info; |
| 588 | struct btrfs_path *path; |
| 589 | struct btrfs_key found_key; |
| 590 | struct extent_buffer *eb; |
| 591 | struct btrfs_extent_item *ei; |
| 592 | struct scrub_warning swarn; |
| 593 | u64 flags = 0; |
| 594 | u32 item_size; |
| 595 | int ret; |
| 596 | |
| 597 | /* Super block error, no need to search extent tree. */ |
| 598 | if (is_super) { |
| 599 | btrfs_warn_in_rcu(fs_info, "scrub: %s on device %s, physical %llu", |
| 600 | errstr, btrfs_dev_name(dev), physical); |
| 601 | return; |
| 602 | } |
| 603 | path = btrfs_alloc_path(); |
| 604 | if (!path) |
| 605 | return; |
| 606 | |
| 607 | swarn.physical = physical; |
| 608 | swarn.logical = logical; |
| 609 | swarn.errstr = errstr; |
| 610 | swarn.dev = NULL; |
| 611 | |
| 612 | ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, |
| 613 | &flags); |
| 614 | if (ret < 0) |
| 615 | goto out; |
| 616 | |
| 617 | swarn.extent_item_size = found_key.offset; |
| 618 | |
| 619 | eb = path->nodes[0]; |
| 620 | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| 621 | item_size = btrfs_item_size(eb, path->slots[0]); |
| 622 | |
| 623 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| 624 | unsigned long ptr = 0; |
| 625 | u8 ref_level; |
| 626 | u64 ref_root; |
| 627 | |
| 628 | while (true) { |
| 629 | ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, |
| 630 | item_size, &ref_root, |
| 631 | &ref_level); |
| 632 | if (ret < 0) { |
| 633 | btrfs_warn(fs_info, |
| 634 | "scrub: failed to resolve tree backref for logical %llu: %d", |
| 635 | swarn.logical, ret); |
| 636 | break; |
| 637 | } |
| 638 | if (ret > 0) |
| 639 | break; |
| 640 | btrfs_warn_in_rcu(fs_info, |
| 641 | "scrub: %s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", |
| 642 | errstr, swarn.logical, btrfs_dev_name(dev), |
| 643 | swarn.physical, (ref_level ? "node" : "leaf"), |
| 644 | ref_level, ref_root); |
| 645 | } |
| 646 | btrfs_release_path(path); |
| 647 | } else { |
| 648 | struct btrfs_backref_walk_ctx ctx = { 0 }; |
| 649 | |
| 650 | btrfs_release_path(path); |
| 651 | |
| 652 | ctx.bytenr = found_key.objectid; |
| 653 | ctx.extent_item_pos = swarn.logical - found_key.objectid; |
| 654 | ctx.fs_info = fs_info; |
| 655 | |
| 656 | swarn.path = path; |
| 657 | swarn.dev = dev; |
| 658 | |
| 659 | iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn); |
| 660 | } |
| 661 | |
| 662 | out: |
| 663 | btrfs_free_path(path); |
| 664 | } |
| 665 | |
| 666 | static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) |
| 667 | { |
| 668 | int ret = 0; |
| 669 | u64 length; |
| 670 | |
| 671 | if (!btrfs_is_zoned(sctx->fs_info)) |
| 672 | return 0; |
| 673 | |
| 674 | if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) |
| 675 | return 0; |
| 676 | |
| 677 | if (sctx->write_pointer < physical) { |
| 678 | length = physical - sctx->write_pointer; |
| 679 | |
| 680 | ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, |
| 681 | sctx->write_pointer, length); |
| 682 | if (!ret) |
| 683 | sctx->write_pointer = physical; |
| 684 | } |
| 685 | return ret; |
| 686 | } |
| 687 | |
| 688 | static void *scrub_stripe_get_kaddr(struct scrub_stripe *stripe, int sector_nr) |
| 689 | { |
| 690 | u32 offset = (sector_nr << stripe->bg->fs_info->sectorsize_bits); |
| 691 | const struct page *page = stripe->pages[offset >> PAGE_SHIFT]; |
| 692 | |
| 693 | /* stripe->pages[] is allocated by us and no highmem is allowed. */ |
| 694 | ASSERT(page); |
| 695 | ASSERT(!PageHighMem(page)); |
| 696 | return page_address(page) + offset_in_page(offset); |
| 697 | } |
| 698 | |
| 699 | static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr) |
| 700 | { |
| 701 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| 702 | const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; |
| 703 | const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits); |
| 704 | void *first_kaddr = scrub_stripe_get_kaddr(stripe, sector_nr); |
| 705 | struct btrfs_header *header = first_kaddr; |
| 706 | SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| 707 | u8 on_disk_csum[BTRFS_CSUM_SIZE]; |
| 708 | u8 calculated_csum[BTRFS_CSUM_SIZE]; |
| 709 | |
| 710 | /* |
| 711 | * Here we don't have a good way to attach the pages (and subpages) |
| 712 | * to a dummy extent buffer, thus we have to directly grab the members |
| 713 | * from pages. |
| 714 | */ |
| 715 | memcpy(on_disk_csum, header->csum, fs_info->csum_size); |
| 716 | |
| 717 | if (logical != btrfs_stack_header_bytenr(header)) { |
| 718 | scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree); |
| 719 | scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); |
| 720 | btrfs_warn_rl(fs_info, |
| 721 | "scrub: tree block %llu mirror %u has bad bytenr, has %llu want %llu", |
| 722 | logical, stripe->mirror_num, |
| 723 | btrfs_stack_header_bytenr(header), logical); |
| 724 | return; |
| 725 | } |
| 726 | if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid, |
| 727 | BTRFS_FSID_SIZE) != 0) { |
| 728 | scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree); |
| 729 | scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); |
| 730 | btrfs_warn_rl(fs_info, |
| 731 | "scrub: tree block %llu mirror %u has bad fsid, has %pU want %pU", |
| 732 | logical, stripe->mirror_num, |
| 733 | header->fsid, fs_info->fs_devices->fsid); |
| 734 | return; |
| 735 | } |
| 736 | if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid, |
| 737 | BTRFS_UUID_SIZE) != 0) { |
| 738 | scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree); |
| 739 | scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); |
| 740 | btrfs_warn_rl(fs_info, |
| 741 | "scrub: tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU", |
| 742 | logical, stripe->mirror_num, |
| 743 | header->chunk_tree_uuid, fs_info->chunk_tree_uuid); |
| 744 | return; |
| 745 | } |
| 746 | |
| 747 | /* Now check tree block csum. */ |
| 748 | shash->tfm = fs_info->csum_shash; |
| 749 | crypto_shash_init(shash); |
| 750 | crypto_shash_update(shash, first_kaddr + BTRFS_CSUM_SIZE, |
| 751 | fs_info->sectorsize - BTRFS_CSUM_SIZE); |
| 752 | |
| 753 | for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) { |
| 754 | crypto_shash_update(shash, scrub_stripe_get_kaddr(stripe, i), |
| 755 | fs_info->sectorsize); |
| 756 | } |
| 757 | |
| 758 | crypto_shash_final(shash, calculated_csum); |
| 759 | if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) { |
| 760 | scrub_bitmap_set_meta_error(stripe, sector_nr, sectors_per_tree); |
| 761 | scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); |
| 762 | btrfs_warn_rl(fs_info, |
| 763 | "scrub: tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT, |
| 764 | logical, stripe->mirror_num, |
| 765 | CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum), |
| 766 | CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum)); |
| 767 | return; |
| 768 | } |
| 769 | if (stripe->sectors[sector_nr].generation != |
| 770 | btrfs_stack_header_generation(header)) { |
| 771 | scrub_bitmap_set_meta_gen_error(stripe, sector_nr, sectors_per_tree); |
| 772 | scrub_bitmap_set_error(stripe, sector_nr, sectors_per_tree); |
| 773 | btrfs_warn_rl(fs_info, |
| 774 | "scrub: tree block %llu mirror %u has bad generation, has %llu want %llu", |
| 775 | logical, stripe->mirror_num, |
| 776 | btrfs_stack_header_generation(header), |
| 777 | stripe->sectors[sector_nr].generation); |
| 778 | return; |
| 779 | } |
| 780 | scrub_bitmap_clear_error(stripe, sector_nr, sectors_per_tree); |
| 781 | scrub_bitmap_clear_csum_error(stripe, sector_nr, sectors_per_tree); |
| 782 | scrub_bitmap_clear_meta_error(stripe, sector_nr, sectors_per_tree); |
| 783 | scrub_bitmap_clear_meta_gen_error(stripe, sector_nr, sectors_per_tree); |
| 784 | } |
| 785 | |
| 786 | static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr) |
| 787 | { |
| 788 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| 789 | struct scrub_sector_verification *sector = &stripe->sectors[sector_nr]; |
| 790 | const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; |
| 791 | void *kaddr = scrub_stripe_get_kaddr(stripe, sector_nr); |
| 792 | u8 csum_buf[BTRFS_CSUM_SIZE]; |
| 793 | int ret; |
| 794 | |
| 795 | ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors); |
| 796 | |
| 797 | /* Sector not utilized, skip it. */ |
| 798 | if (!scrub_bitmap_test_bit_has_extent(stripe, sector_nr)) |
| 799 | return; |
| 800 | |
| 801 | /* IO error, no need to check. */ |
| 802 | if (scrub_bitmap_test_bit_io_error(stripe, sector_nr)) |
| 803 | return; |
| 804 | |
| 805 | /* Metadata, verify the full tree block. */ |
| 806 | if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) { |
| 807 | /* |
| 808 | * Check if the tree block crosses the stripe boundary. If |
| 809 | * crossed the boundary, we cannot verify it but only give a |
| 810 | * warning. |
| 811 | * |
| 812 | * This can only happen on a very old filesystem where chunks |
| 813 | * are not ensured to be stripe aligned. |
| 814 | */ |
| 815 | if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) { |
| 816 | btrfs_warn_rl(fs_info, |
| 817 | "scrub: tree block at %llu crosses stripe boundary %llu", |
| 818 | stripe->logical + |
| 819 | (sector_nr << fs_info->sectorsize_bits), |
| 820 | stripe->logical); |
| 821 | return; |
| 822 | } |
| 823 | scrub_verify_one_metadata(stripe, sector_nr); |
| 824 | return; |
| 825 | } |
| 826 | |
| 827 | /* |
| 828 | * Data is easier, we just verify the data csum (if we have it). For |
| 829 | * cases without csum, we have no other choice but to trust it. |
| 830 | */ |
| 831 | if (!sector->csum) { |
| 832 | scrub_bitmap_clear_bit_error(stripe, sector_nr); |
| 833 | return; |
| 834 | } |
| 835 | |
| 836 | ret = btrfs_check_sector_csum(fs_info, kaddr, csum_buf, sector->csum); |
| 837 | if (ret < 0) { |
| 838 | scrub_bitmap_set_bit_csum_error(stripe, sector_nr); |
| 839 | scrub_bitmap_set_bit_error(stripe, sector_nr); |
| 840 | } else { |
| 841 | scrub_bitmap_clear_bit_csum_error(stripe, sector_nr); |
| 842 | scrub_bitmap_clear_bit_error(stripe, sector_nr); |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | /* Verify specified sectors of a stripe. */ |
| 847 | static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap) |
| 848 | { |
| 849 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| 850 | const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; |
| 851 | int sector_nr; |
| 852 | |
| 853 | for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) { |
| 854 | scrub_verify_one_sector(stripe, sector_nr); |
| 855 | if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) |
| 856 | sector_nr += sectors_per_tree - 1; |
| 857 | } |
| 858 | } |
| 859 | |
| 860 | static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec) |
| 861 | { |
| 862 | int i; |
| 863 | |
| 864 | for (i = 0; i < stripe->nr_sectors; i++) { |
| 865 | if (scrub_stripe_get_kaddr(stripe, i) == bvec_virt(first_bvec)) |
| 866 | break; |
| 867 | } |
| 868 | ASSERT(i < stripe->nr_sectors); |
| 869 | return i; |
| 870 | } |
| 871 | |
| 872 | /* |
| 873 | * Repair read is different to the regular read: |
| 874 | * |
| 875 | * - Only reads the failed sectors |
| 876 | * - May have extra blocksize limits |
| 877 | */ |
| 878 | static void scrub_repair_read_endio(struct btrfs_bio *bbio) |
| 879 | { |
| 880 | struct scrub_stripe *stripe = bbio->private; |
| 881 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| 882 | struct bio_vec *bvec; |
| 883 | int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); |
| 884 | u32 bio_size = 0; |
| 885 | int i; |
| 886 | |
| 887 | ASSERT(sector_nr < stripe->nr_sectors); |
| 888 | |
| 889 | bio_for_each_bvec_all(bvec, &bbio->bio, i) |
| 890 | bio_size += bvec->bv_len; |
| 891 | |
| 892 | if (bbio->bio.bi_status) { |
| 893 | scrub_bitmap_set_io_error(stripe, sector_nr, |
| 894 | bio_size >> fs_info->sectorsize_bits); |
| 895 | scrub_bitmap_set_error(stripe, sector_nr, |
| 896 | bio_size >> fs_info->sectorsize_bits); |
| 897 | } else { |
| 898 | scrub_bitmap_clear_io_error(stripe, sector_nr, |
| 899 | bio_size >> fs_info->sectorsize_bits); |
| 900 | } |
| 901 | bio_put(&bbio->bio); |
| 902 | if (atomic_dec_and_test(&stripe->pending_io)) |
| 903 | wake_up(&stripe->io_wait); |
| 904 | } |
| 905 | |
| 906 | static int calc_next_mirror(int mirror, int num_copies) |
| 907 | { |
| 908 | ASSERT(mirror <= num_copies); |
| 909 | return (mirror + 1 > num_copies) ? 1 : mirror + 1; |
| 910 | } |
| 911 | |
| 912 | static void scrub_bio_add_sector(struct btrfs_bio *bbio, struct scrub_stripe *stripe, |
| 913 | int sector_nr) |
| 914 | { |
| 915 | void *kaddr = scrub_stripe_get_kaddr(stripe, sector_nr); |
| 916 | int ret; |
| 917 | |
| 918 | ret = bio_add_page(&bbio->bio, virt_to_page(kaddr), bbio->fs_info->sectorsize, |
| 919 | offset_in_page(kaddr)); |
| 920 | /* |
| 921 | * Caller should ensure the bbio has enough size. |
| 922 | * And we cannot use __bio_add_page(), which doesn't do any merge. |
| 923 | * |
| 924 | * Meanwhile for scrub_submit_initial_read() we fully rely on the merge |
| 925 | * to create the minimal amount of bio vectors, for fs block size < page |
| 926 | * size cases. |
| 927 | */ |
| 928 | ASSERT(ret == bbio->fs_info->sectorsize); |
| 929 | } |
| 930 | |
| 931 | static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe, |
| 932 | int mirror, int blocksize, bool wait) |
| 933 | { |
| 934 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| 935 | struct btrfs_bio *bbio = NULL; |
| 936 | const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe); |
| 937 | int i; |
| 938 | |
| 939 | ASSERT(stripe->mirror_num >= 1); |
| 940 | ASSERT(atomic_read(&stripe->pending_io) == 0); |
| 941 | |
| 942 | for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) { |
| 943 | /* The current sector cannot be merged, submit the bio. */ |
| 944 | if (bbio && ((i > 0 && !test_bit(i - 1, &old_error_bitmap)) || |
| 945 | bbio->bio.bi_iter.bi_size >= blocksize)) { |
| 946 | ASSERT(bbio->bio.bi_iter.bi_size); |
| 947 | atomic_inc(&stripe->pending_io); |
| 948 | btrfs_submit_bbio(bbio, mirror); |
| 949 | if (wait) |
| 950 | wait_scrub_stripe_io(stripe); |
| 951 | bbio = NULL; |
| 952 | } |
| 953 | |
| 954 | if (!bbio) { |
| 955 | bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, |
| 956 | fs_info, scrub_repair_read_endio, stripe); |
| 957 | bbio->bio.bi_iter.bi_sector = (stripe->logical + |
| 958 | (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT; |
| 959 | } |
| 960 | |
| 961 | scrub_bio_add_sector(bbio, stripe, i); |
| 962 | } |
| 963 | if (bbio) { |
| 964 | ASSERT(bbio->bio.bi_iter.bi_size); |
| 965 | atomic_inc(&stripe->pending_io); |
| 966 | btrfs_submit_bbio(bbio, mirror); |
| 967 | if (wait) |
| 968 | wait_scrub_stripe_io(stripe); |
| 969 | } |
| 970 | } |
| 971 | |
| 972 | static void scrub_stripe_report_errors(struct scrub_ctx *sctx, |
| 973 | struct scrub_stripe *stripe, |
| 974 | const struct scrub_error_records *errors) |
| 975 | { |
| 976 | static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, |
| 977 | DEFAULT_RATELIMIT_BURST); |
| 978 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 979 | struct btrfs_device *dev = NULL; |
| 980 | const unsigned long extent_bitmap = scrub_bitmap_read_has_extent(stripe); |
| 981 | const unsigned long error_bitmap = scrub_bitmap_read_error(stripe); |
| 982 | u64 physical = 0; |
| 983 | int nr_data_sectors = 0; |
| 984 | int nr_meta_sectors = 0; |
| 985 | int nr_nodatacsum_sectors = 0; |
| 986 | int nr_repaired_sectors = 0; |
| 987 | int sector_nr; |
| 988 | |
| 989 | if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state)) |
| 990 | return; |
| 991 | |
| 992 | /* |
| 993 | * Init needed infos for error reporting. |
| 994 | * |
| 995 | * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio() |
| 996 | * thus no need for dev/physical, error reporting still needs dev and physical. |
| 997 | */ |
| 998 | if (!bitmap_empty(&errors->init_error_bitmap, stripe->nr_sectors)) { |
| 999 | u64 mapped_len = fs_info->sectorsize; |
| 1000 | struct btrfs_io_context *bioc = NULL; |
| 1001 | int stripe_index = stripe->mirror_num - 1; |
| 1002 | int ret; |
| 1003 | |
| 1004 | /* For scrub, our mirror_num should always start at 1. */ |
| 1005 | ASSERT(stripe->mirror_num >= 1); |
| 1006 | ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, |
| 1007 | stripe->logical, &mapped_len, &bioc, |
| 1008 | NULL, NULL); |
| 1009 | /* |
| 1010 | * If we failed, dev will be NULL, and later detailed reports |
| 1011 | * will just be skipped. |
| 1012 | */ |
| 1013 | if (ret < 0) |
| 1014 | goto skip; |
| 1015 | physical = bioc->stripes[stripe_index].physical; |
| 1016 | dev = bioc->stripes[stripe_index].dev; |
| 1017 | btrfs_put_bioc(bioc); |
| 1018 | } |
| 1019 | |
| 1020 | skip: |
| 1021 | for_each_set_bit(sector_nr, &extent_bitmap, stripe->nr_sectors) { |
| 1022 | bool repaired = false; |
| 1023 | |
| 1024 | if (scrub_bitmap_test_bit_is_metadata(stripe, sector_nr)) { |
| 1025 | nr_meta_sectors++; |
| 1026 | } else { |
| 1027 | nr_data_sectors++; |
| 1028 | if (!stripe->sectors[sector_nr].csum) |
| 1029 | nr_nodatacsum_sectors++; |
| 1030 | } |
| 1031 | |
| 1032 | if (test_bit(sector_nr, &errors->init_error_bitmap) && |
| 1033 | !test_bit(sector_nr, &error_bitmap)) { |
| 1034 | nr_repaired_sectors++; |
| 1035 | repaired = true; |
| 1036 | } |
| 1037 | |
| 1038 | /* Good sector from the beginning, nothing need to be done. */ |
| 1039 | if (!test_bit(sector_nr, &errors->init_error_bitmap)) |
| 1040 | continue; |
| 1041 | |
| 1042 | /* |
| 1043 | * Report error for the corrupted sectors. If repaired, just |
| 1044 | * output the message of repaired message. |
| 1045 | */ |
| 1046 | if (repaired) { |
| 1047 | if (dev) { |
| 1048 | btrfs_err_rl_in_rcu(fs_info, |
| 1049 | "scrub: fixed up error at logical %llu on dev %s physical %llu", |
| 1050 | stripe->logical, btrfs_dev_name(dev), |
| 1051 | physical); |
| 1052 | } else { |
| 1053 | btrfs_err_rl_in_rcu(fs_info, |
| 1054 | "scrub: fixed up error at logical %llu on mirror %u", |
| 1055 | stripe->logical, stripe->mirror_num); |
| 1056 | } |
| 1057 | continue; |
| 1058 | } |
| 1059 | |
| 1060 | /* The remaining are all for unrepaired. */ |
| 1061 | if (dev) { |
| 1062 | btrfs_err_rl_in_rcu(fs_info, |
| 1063 | "scrub: unable to fixup (regular) error at logical %llu on dev %s physical %llu", |
| 1064 | stripe->logical, btrfs_dev_name(dev), |
| 1065 | physical); |
| 1066 | } else { |
| 1067 | btrfs_err_rl_in_rcu(fs_info, |
| 1068 | "scrub: unable to fixup (regular) error at logical %llu on mirror %u", |
| 1069 | stripe->logical, stripe->mirror_num); |
| 1070 | } |
| 1071 | |
| 1072 | if (scrub_bitmap_test_bit_io_error(stripe, sector_nr)) |
| 1073 | if (__ratelimit(&rs) && dev) |
| 1074 | scrub_print_common_warning("i/o error", dev, false, |
| 1075 | stripe->logical, physical); |
| 1076 | if (scrub_bitmap_test_bit_csum_error(stripe, sector_nr)) |
| 1077 | if (__ratelimit(&rs) && dev) |
| 1078 | scrub_print_common_warning("checksum error", dev, false, |
| 1079 | stripe->logical, physical); |
| 1080 | if (scrub_bitmap_test_bit_meta_error(stripe, sector_nr)) |
| 1081 | if (__ratelimit(&rs) && dev) |
| 1082 | scrub_print_common_warning("header error", dev, false, |
| 1083 | stripe->logical, physical); |
| 1084 | if (scrub_bitmap_test_bit_meta_gen_error(stripe, sector_nr)) |
| 1085 | if (__ratelimit(&rs) && dev) |
| 1086 | scrub_print_common_warning("generation error", dev, false, |
| 1087 | stripe->logical, physical); |
| 1088 | } |
| 1089 | |
| 1090 | /* Update the device stats. */ |
| 1091 | for (int i = 0; i < errors->nr_io_errors; i++) |
| 1092 | btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_READ_ERRS); |
| 1093 | for (int i = 0; i < errors->nr_csum_errors; i++) |
| 1094 | btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| 1095 | /* Generation mismatch error is based on each metadata, not each block. */ |
| 1096 | for (int i = 0; i < errors->nr_meta_gen_errors; |
| 1097 | i += (fs_info->nodesize >> fs_info->sectorsize_bits)) |
| 1098 | btrfs_dev_stat_inc_and_print(stripe->dev, BTRFS_DEV_STAT_GENERATION_ERRS); |
| 1099 | |
| 1100 | spin_lock(&sctx->stat_lock); |
| 1101 | sctx->stat.data_extents_scrubbed += stripe->nr_data_extents; |
| 1102 | sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents; |
| 1103 | sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits; |
| 1104 | sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits; |
| 1105 | sctx->stat.no_csum += nr_nodatacsum_sectors; |
| 1106 | sctx->stat.read_errors += errors->nr_io_errors; |
| 1107 | sctx->stat.csum_errors += errors->nr_csum_errors; |
| 1108 | sctx->stat.verify_errors += errors->nr_meta_errors + |
| 1109 | errors->nr_meta_gen_errors; |
| 1110 | sctx->stat.uncorrectable_errors += |
| 1111 | bitmap_weight(&error_bitmap, stripe->nr_sectors); |
| 1112 | sctx->stat.corrected_errors += nr_repaired_sectors; |
| 1113 | spin_unlock(&sctx->stat_lock); |
| 1114 | } |
| 1115 | |
| 1116 | static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, |
| 1117 | unsigned long write_bitmap, bool dev_replace); |
| 1118 | |
| 1119 | /* |
| 1120 | * The main entrance for all read related scrub work, including: |
| 1121 | * |
| 1122 | * - Wait for the initial read to finish |
| 1123 | * - Verify and locate any bad sectors |
| 1124 | * - Go through the remaining mirrors and try to read as large blocksize as |
| 1125 | * possible |
| 1126 | * - Go through all mirrors (including the failed mirror) sector-by-sector |
| 1127 | * - Submit writeback for repaired sectors |
| 1128 | * |
| 1129 | * Writeback for dev-replace does not happen here, it needs extra |
| 1130 | * synchronization for zoned devices. |
| 1131 | */ |
| 1132 | static void scrub_stripe_read_repair_worker(struct work_struct *work) |
| 1133 | { |
| 1134 | struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work); |
| 1135 | struct scrub_ctx *sctx = stripe->sctx; |
| 1136 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 1137 | struct scrub_error_records errors = { 0 }; |
| 1138 | int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, |
| 1139 | stripe->bg->length); |
| 1140 | unsigned long repaired; |
| 1141 | unsigned long error; |
| 1142 | int mirror; |
| 1143 | int i; |
| 1144 | |
| 1145 | ASSERT(stripe->mirror_num > 0); |
| 1146 | |
| 1147 | wait_scrub_stripe_io(stripe); |
| 1148 | scrub_verify_one_stripe(stripe, scrub_bitmap_read_has_extent(stripe)); |
| 1149 | /* Save the initial failed bitmap for later repair and report usage. */ |
| 1150 | errors.init_error_bitmap = scrub_bitmap_read_error(stripe); |
| 1151 | errors.nr_io_errors = scrub_bitmap_weight_io_error(stripe); |
| 1152 | errors.nr_csum_errors = scrub_bitmap_weight_csum_error(stripe); |
| 1153 | errors.nr_meta_errors = scrub_bitmap_weight_meta_error(stripe); |
| 1154 | errors.nr_meta_gen_errors = scrub_bitmap_weight_meta_gen_error(stripe); |
| 1155 | |
| 1156 | if (bitmap_empty(&errors.init_error_bitmap, stripe->nr_sectors)) |
| 1157 | goto out; |
| 1158 | |
| 1159 | /* |
| 1160 | * Try all remaining mirrors. |
| 1161 | * |
| 1162 | * Here we still try to read as large block as possible, as this is |
| 1163 | * faster and we have extra safety nets to rely on. |
| 1164 | */ |
| 1165 | for (mirror = calc_next_mirror(stripe->mirror_num, num_copies); |
| 1166 | mirror != stripe->mirror_num; |
| 1167 | mirror = calc_next_mirror(mirror, num_copies)) { |
| 1168 | const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe); |
| 1169 | |
| 1170 | scrub_stripe_submit_repair_read(stripe, mirror, |
| 1171 | BTRFS_STRIPE_LEN, false); |
| 1172 | wait_scrub_stripe_io(stripe); |
| 1173 | scrub_verify_one_stripe(stripe, old_error_bitmap); |
| 1174 | if (scrub_bitmap_empty_error(stripe)) |
| 1175 | goto out; |
| 1176 | } |
| 1177 | |
| 1178 | /* |
| 1179 | * Last safety net, try re-checking all mirrors, including the failed |
| 1180 | * one, sector-by-sector. |
| 1181 | * |
| 1182 | * As if one sector failed the drive's internal csum, the whole read |
| 1183 | * containing the offending sector would be marked as error. |
| 1184 | * Thus here we do sector-by-sector read. |
| 1185 | * |
| 1186 | * This can be slow, thus we only try it as the last resort. |
| 1187 | */ |
| 1188 | |
| 1189 | for (i = 0, mirror = stripe->mirror_num; |
| 1190 | i < num_copies; |
| 1191 | i++, mirror = calc_next_mirror(mirror, num_copies)) { |
| 1192 | const unsigned long old_error_bitmap = scrub_bitmap_read_error(stripe); |
| 1193 | |
| 1194 | scrub_stripe_submit_repair_read(stripe, mirror, |
| 1195 | fs_info->sectorsize, true); |
| 1196 | wait_scrub_stripe_io(stripe); |
| 1197 | scrub_verify_one_stripe(stripe, old_error_bitmap); |
| 1198 | if (scrub_bitmap_empty_error(stripe)) |
| 1199 | goto out; |
| 1200 | } |
| 1201 | out: |
| 1202 | error = scrub_bitmap_read_error(stripe); |
| 1203 | /* |
| 1204 | * Submit the repaired sectors. For zoned case, we cannot do repair |
| 1205 | * in-place, but queue the bg to be relocated. |
| 1206 | */ |
| 1207 | bitmap_andnot(&repaired, &errors.init_error_bitmap, &error, |
| 1208 | stripe->nr_sectors); |
| 1209 | if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) { |
| 1210 | if (btrfs_is_zoned(fs_info)) { |
| 1211 | btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start); |
| 1212 | } else { |
| 1213 | scrub_write_sectors(sctx, stripe, repaired, false); |
| 1214 | wait_scrub_stripe_io(stripe); |
| 1215 | } |
| 1216 | } |
| 1217 | |
| 1218 | scrub_stripe_report_errors(sctx, stripe, &errors); |
| 1219 | set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state); |
| 1220 | wake_up(&stripe->repair_wait); |
| 1221 | } |
| 1222 | |
| 1223 | static void scrub_read_endio(struct btrfs_bio *bbio) |
| 1224 | { |
| 1225 | struct scrub_stripe *stripe = bbio->private; |
| 1226 | struct bio_vec *bvec; |
| 1227 | int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); |
| 1228 | int num_sectors; |
| 1229 | u32 bio_size = 0; |
| 1230 | int i; |
| 1231 | |
| 1232 | ASSERT(sector_nr < stripe->nr_sectors); |
| 1233 | bio_for_each_bvec_all(bvec, &bbio->bio, i) |
| 1234 | bio_size += bvec->bv_len; |
| 1235 | num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits; |
| 1236 | |
| 1237 | if (bbio->bio.bi_status) { |
| 1238 | scrub_bitmap_set_io_error(stripe, sector_nr, num_sectors); |
| 1239 | scrub_bitmap_set_error(stripe, sector_nr, num_sectors); |
| 1240 | } else { |
| 1241 | scrub_bitmap_clear_io_error(stripe, sector_nr, num_sectors); |
| 1242 | } |
| 1243 | bio_put(&bbio->bio); |
| 1244 | if (atomic_dec_and_test(&stripe->pending_io)) { |
| 1245 | wake_up(&stripe->io_wait); |
| 1246 | INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); |
| 1247 | queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); |
| 1248 | } |
| 1249 | } |
| 1250 | |
| 1251 | static void scrub_write_endio(struct btrfs_bio *bbio) |
| 1252 | { |
| 1253 | struct scrub_stripe *stripe = bbio->private; |
| 1254 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| 1255 | struct bio_vec *bvec; |
| 1256 | int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); |
| 1257 | u32 bio_size = 0; |
| 1258 | int i; |
| 1259 | |
| 1260 | bio_for_each_bvec_all(bvec, &bbio->bio, i) |
| 1261 | bio_size += bvec->bv_len; |
| 1262 | |
| 1263 | if (bbio->bio.bi_status) { |
| 1264 | unsigned long flags; |
| 1265 | |
| 1266 | spin_lock_irqsave(&stripe->write_error_lock, flags); |
| 1267 | bitmap_set(&stripe->write_error_bitmap, sector_nr, |
| 1268 | bio_size >> fs_info->sectorsize_bits); |
| 1269 | spin_unlock_irqrestore(&stripe->write_error_lock, flags); |
| 1270 | for (int i = 0; i < (bio_size >> fs_info->sectorsize_bits); i++) |
| 1271 | btrfs_dev_stat_inc_and_print(stripe->dev, |
| 1272 | BTRFS_DEV_STAT_WRITE_ERRS); |
| 1273 | } |
| 1274 | bio_put(&bbio->bio); |
| 1275 | |
| 1276 | if (atomic_dec_and_test(&stripe->pending_io)) |
| 1277 | wake_up(&stripe->io_wait); |
| 1278 | } |
| 1279 | |
| 1280 | static void scrub_submit_write_bio(struct scrub_ctx *sctx, |
| 1281 | struct scrub_stripe *stripe, |
| 1282 | struct btrfs_bio *bbio, bool dev_replace) |
| 1283 | { |
| 1284 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 1285 | u32 bio_len = bbio->bio.bi_iter.bi_size; |
| 1286 | u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) - |
| 1287 | stripe->logical; |
| 1288 | |
| 1289 | fill_writer_pointer_gap(sctx, stripe->physical + bio_off); |
| 1290 | atomic_inc(&stripe->pending_io); |
| 1291 | btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace); |
| 1292 | if (!btrfs_is_zoned(fs_info)) |
| 1293 | return; |
| 1294 | /* |
| 1295 | * For zoned writeback, queue depth must be 1, thus we must wait for |
| 1296 | * the write to finish before the next write. |
| 1297 | */ |
| 1298 | wait_scrub_stripe_io(stripe); |
| 1299 | |
| 1300 | /* |
| 1301 | * And also need to update the write pointer if write finished |
| 1302 | * successfully. |
| 1303 | */ |
| 1304 | if (!test_bit(bio_off >> fs_info->sectorsize_bits, |
| 1305 | &stripe->write_error_bitmap)) |
| 1306 | sctx->write_pointer += bio_len; |
| 1307 | } |
| 1308 | |
| 1309 | /* |
| 1310 | * Submit the write bio(s) for the sectors specified by @write_bitmap. |
| 1311 | * |
| 1312 | * Here we utilize btrfs_submit_repair_write(), which has some extra benefits: |
| 1313 | * |
| 1314 | * - Only needs logical bytenr and mirror_num |
| 1315 | * Just like the scrub read path |
| 1316 | * |
| 1317 | * - Would only result in writes to the specified mirror |
| 1318 | * Unlike the regular writeback path, which would write back to all stripes |
| 1319 | * |
| 1320 | * - Handle dev-replace and read-repair writeback differently |
| 1321 | */ |
| 1322 | static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, |
| 1323 | unsigned long write_bitmap, bool dev_replace) |
| 1324 | { |
| 1325 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| 1326 | struct btrfs_bio *bbio = NULL; |
| 1327 | int sector_nr; |
| 1328 | |
| 1329 | for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) { |
| 1330 | /* We should only writeback sectors covered by an extent. */ |
| 1331 | ASSERT(scrub_bitmap_test_bit_has_extent(stripe, sector_nr)); |
| 1332 | |
| 1333 | /* Cannot merge with previous sector, submit the current one. */ |
| 1334 | if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) { |
| 1335 | scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); |
| 1336 | bbio = NULL; |
| 1337 | } |
| 1338 | if (!bbio) { |
| 1339 | bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE, |
| 1340 | fs_info, scrub_write_endio, stripe); |
| 1341 | bbio->bio.bi_iter.bi_sector = (stripe->logical + |
| 1342 | (sector_nr << fs_info->sectorsize_bits)) >> |
| 1343 | SECTOR_SHIFT; |
| 1344 | } |
| 1345 | scrub_bio_add_sector(bbio, stripe, sector_nr); |
| 1346 | } |
| 1347 | if (bbio) |
| 1348 | scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); |
| 1349 | } |
| 1350 | |
| 1351 | /* |
| 1352 | * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 |
| 1353 | * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. |
| 1354 | */ |
| 1355 | static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device, |
| 1356 | unsigned int bio_size) |
| 1357 | { |
| 1358 | const int time_slice = 1000; |
| 1359 | s64 delta; |
| 1360 | ktime_t now; |
| 1361 | u32 div; |
| 1362 | u64 bwlimit; |
| 1363 | |
| 1364 | bwlimit = READ_ONCE(device->scrub_speed_max); |
| 1365 | if (bwlimit == 0) |
| 1366 | return; |
| 1367 | |
| 1368 | /* |
| 1369 | * Slice is divided into intervals when the IO is submitted, adjust by |
| 1370 | * bwlimit and maximum of 64 intervals. |
| 1371 | */ |
| 1372 | div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); |
| 1373 | div = min_t(u32, 64, div); |
| 1374 | |
| 1375 | /* Start new epoch, set deadline */ |
| 1376 | now = ktime_get(); |
| 1377 | if (sctx->throttle_deadline == 0) { |
| 1378 | sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); |
| 1379 | sctx->throttle_sent = 0; |
| 1380 | } |
| 1381 | |
| 1382 | /* Still in the time to send? */ |
| 1383 | if (ktime_before(now, sctx->throttle_deadline)) { |
| 1384 | /* If current bio is within the limit, send it */ |
| 1385 | sctx->throttle_sent += bio_size; |
| 1386 | if (sctx->throttle_sent <= div_u64(bwlimit, div)) |
| 1387 | return; |
| 1388 | |
| 1389 | /* We're over the limit, sleep until the rest of the slice */ |
| 1390 | delta = ktime_ms_delta(sctx->throttle_deadline, now); |
| 1391 | } else { |
| 1392 | /* New request after deadline, start new epoch */ |
| 1393 | delta = 0; |
| 1394 | } |
| 1395 | |
| 1396 | if (delta) { |
| 1397 | long timeout; |
| 1398 | |
| 1399 | timeout = div_u64(delta * HZ, 1000); |
| 1400 | schedule_timeout_interruptible(timeout); |
| 1401 | } |
| 1402 | |
| 1403 | /* Next call will start the deadline period */ |
| 1404 | sctx->throttle_deadline = 0; |
| 1405 | } |
| 1406 | |
| 1407 | /* |
| 1408 | * Given a physical address, this will calculate it's |
| 1409 | * logical offset. if this is a parity stripe, it will return |
| 1410 | * the most left data stripe's logical offset. |
| 1411 | * |
| 1412 | * return 0 if it is a data stripe, 1 means parity stripe. |
| 1413 | */ |
| 1414 | static int get_raid56_logic_offset(u64 physical, int num, |
| 1415 | struct btrfs_chunk_map *map, u64 *offset, |
| 1416 | u64 *stripe_start) |
| 1417 | { |
| 1418 | int i; |
| 1419 | int j = 0; |
| 1420 | u64 last_offset; |
| 1421 | const int data_stripes = nr_data_stripes(map); |
| 1422 | |
| 1423 | last_offset = (physical - map->stripes[num].physical) * data_stripes; |
| 1424 | if (stripe_start) |
| 1425 | *stripe_start = last_offset; |
| 1426 | |
| 1427 | *offset = last_offset; |
| 1428 | for (i = 0; i < data_stripes; i++) { |
| 1429 | u32 stripe_nr; |
| 1430 | u32 stripe_index; |
| 1431 | u32 rot; |
| 1432 | |
| 1433 | *offset = last_offset + btrfs_stripe_nr_to_offset(i); |
| 1434 | |
| 1435 | stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes; |
| 1436 | |
| 1437 | /* Work out the disk rotation on this stripe-set */ |
| 1438 | rot = stripe_nr % map->num_stripes; |
| 1439 | /* calculate which stripe this data locates */ |
| 1440 | rot += i; |
| 1441 | stripe_index = rot % map->num_stripes; |
| 1442 | if (stripe_index == num) |
| 1443 | return 0; |
| 1444 | if (stripe_index < num) |
| 1445 | j++; |
| 1446 | } |
| 1447 | *offset = last_offset + btrfs_stripe_nr_to_offset(j); |
| 1448 | return 1; |
| 1449 | } |
| 1450 | |
| 1451 | /* |
| 1452 | * Return 0 if the extent item range covers any byte of the range. |
| 1453 | * Return <0 if the extent item is before @search_start. |
| 1454 | * Return >0 if the extent item is after @start_start + @search_len. |
| 1455 | */ |
| 1456 | static int compare_extent_item_range(struct btrfs_path *path, |
| 1457 | u64 search_start, u64 search_len) |
| 1458 | { |
| 1459 | struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; |
| 1460 | u64 len; |
| 1461 | struct btrfs_key key; |
| 1462 | |
| 1463 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| 1464 | ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || |
| 1465 | key.type == BTRFS_METADATA_ITEM_KEY); |
| 1466 | if (key.type == BTRFS_METADATA_ITEM_KEY) |
| 1467 | len = fs_info->nodesize; |
| 1468 | else |
| 1469 | len = key.offset; |
| 1470 | |
| 1471 | if (key.objectid + len <= search_start) |
| 1472 | return -1; |
| 1473 | if (key.objectid >= search_start + search_len) |
| 1474 | return 1; |
| 1475 | return 0; |
| 1476 | } |
| 1477 | |
| 1478 | /* |
| 1479 | * Locate one extent item which covers any byte in range |
| 1480 | * [@search_start, @search_start + @search_length) |
| 1481 | * |
| 1482 | * If the path is not initialized, we will initialize the search by doing |
| 1483 | * a btrfs_search_slot(). |
| 1484 | * If the path is already initialized, we will use the path as the initial |
| 1485 | * slot, to avoid duplicated btrfs_search_slot() calls. |
| 1486 | * |
| 1487 | * NOTE: If an extent item starts before @search_start, we will still |
| 1488 | * return the extent item. This is for data extent crossing stripe boundary. |
| 1489 | * |
| 1490 | * Return 0 if we found such extent item, and @path will point to the extent item. |
| 1491 | * Return >0 if no such extent item can be found, and @path will be released. |
| 1492 | * Return <0 if hit fatal error, and @path will be released. |
| 1493 | */ |
| 1494 | static int find_first_extent_item(struct btrfs_root *extent_root, |
| 1495 | struct btrfs_path *path, |
| 1496 | u64 search_start, u64 search_len) |
| 1497 | { |
| 1498 | struct btrfs_fs_info *fs_info = extent_root->fs_info; |
| 1499 | struct btrfs_key key; |
| 1500 | int ret; |
| 1501 | |
| 1502 | /* Continue using the existing path */ |
| 1503 | if (path->nodes[0]) |
| 1504 | goto search_forward; |
| 1505 | |
| 1506 | key.objectid = search_start; |
| 1507 | if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| 1508 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 1509 | else |
| 1510 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 1511 | key.offset = (u64)-1; |
| 1512 | |
| 1513 | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| 1514 | if (ret < 0) |
| 1515 | return ret; |
| 1516 | if (ret == 0) { |
| 1517 | /* |
| 1518 | * Key with offset -1 found, there would have to exist an extent |
| 1519 | * item with such offset, but this is out of the valid range. |
| 1520 | */ |
| 1521 | btrfs_release_path(path); |
| 1522 | return -EUCLEAN; |
| 1523 | } |
| 1524 | |
| 1525 | /* |
| 1526 | * Here we intentionally pass 0 as @min_objectid, as there could be |
| 1527 | * an extent item starting before @search_start. |
| 1528 | */ |
| 1529 | ret = btrfs_previous_extent_item(extent_root, path, 0); |
| 1530 | if (ret < 0) |
| 1531 | return ret; |
| 1532 | /* |
| 1533 | * No matter whether we have found an extent item, the next loop will |
| 1534 | * properly do every check on the key. |
| 1535 | */ |
| 1536 | search_forward: |
| 1537 | while (true) { |
| 1538 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| 1539 | if (key.objectid >= search_start + search_len) |
| 1540 | break; |
| 1541 | if (key.type != BTRFS_METADATA_ITEM_KEY && |
| 1542 | key.type != BTRFS_EXTENT_ITEM_KEY) |
| 1543 | goto next; |
| 1544 | |
| 1545 | ret = compare_extent_item_range(path, search_start, search_len); |
| 1546 | if (ret == 0) |
| 1547 | return ret; |
| 1548 | if (ret > 0) |
| 1549 | break; |
| 1550 | next: |
| 1551 | ret = btrfs_next_item(extent_root, path); |
| 1552 | if (ret) { |
| 1553 | /* Either no more items or a fatal error. */ |
| 1554 | btrfs_release_path(path); |
| 1555 | return ret; |
| 1556 | } |
| 1557 | } |
| 1558 | btrfs_release_path(path); |
| 1559 | return 1; |
| 1560 | } |
| 1561 | |
| 1562 | static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, |
| 1563 | u64 *size_ret, u64 *flags_ret, u64 *generation_ret) |
| 1564 | { |
| 1565 | struct btrfs_key key; |
| 1566 | struct btrfs_extent_item *ei; |
| 1567 | |
| 1568 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| 1569 | ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || |
| 1570 | key.type == BTRFS_EXTENT_ITEM_KEY); |
| 1571 | *extent_start_ret = key.objectid; |
| 1572 | if (key.type == BTRFS_METADATA_ITEM_KEY) |
| 1573 | *size_ret = path->nodes[0]->fs_info->nodesize; |
| 1574 | else |
| 1575 | *size_ret = key.offset; |
| 1576 | ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); |
| 1577 | *flags_ret = btrfs_extent_flags(path->nodes[0], ei); |
| 1578 | *generation_ret = btrfs_extent_generation(path->nodes[0], ei); |
| 1579 | } |
| 1580 | |
| 1581 | static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, |
| 1582 | u64 physical, u64 physical_end) |
| 1583 | { |
| 1584 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 1585 | int ret = 0; |
| 1586 | |
| 1587 | if (!btrfs_is_zoned(fs_info)) |
| 1588 | return 0; |
| 1589 | |
| 1590 | mutex_lock(&sctx->wr_lock); |
| 1591 | if (sctx->write_pointer < physical_end) { |
| 1592 | ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, |
| 1593 | physical, |
| 1594 | sctx->write_pointer); |
| 1595 | if (ret) |
| 1596 | btrfs_err(fs_info, "scrub: zoned: failed to recover write pointer"); |
| 1597 | } |
| 1598 | mutex_unlock(&sctx->wr_lock); |
| 1599 | btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); |
| 1600 | |
| 1601 | return ret; |
| 1602 | } |
| 1603 | |
| 1604 | static void fill_one_extent_info(struct btrfs_fs_info *fs_info, |
| 1605 | struct scrub_stripe *stripe, |
| 1606 | u64 extent_start, u64 extent_len, |
| 1607 | u64 extent_flags, u64 extent_gen) |
| 1608 | { |
| 1609 | for (u64 cur_logical = max(stripe->logical, extent_start); |
| 1610 | cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN, |
| 1611 | extent_start + extent_len); |
| 1612 | cur_logical += fs_info->sectorsize) { |
| 1613 | const int nr_sector = (cur_logical - stripe->logical) >> |
| 1614 | fs_info->sectorsize_bits; |
| 1615 | struct scrub_sector_verification *sector = |
| 1616 | &stripe->sectors[nr_sector]; |
| 1617 | |
| 1618 | scrub_bitmap_set_bit_has_extent(stripe, nr_sector); |
| 1619 | if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| 1620 | scrub_bitmap_set_bit_is_metadata(stripe, nr_sector); |
| 1621 | sector->generation = extent_gen; |
| 1622 | } |
| 1623 | } |
| 1624 | } |
| 1625 | |
| 1626 | static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe) |
| 1627 | { |
| 1628 | ASSERT(stripe->nr_sectors); |
| 1629 | bitmap_zero(stripe->bitmaps, scrub_bitmap_nr_last * stripe->nr_sectors); |
| 1630 | } |
| 1631 | |
| 1632 | /* |
| 1633 | * Locate one stripe which has at least one extent in its range. |
| 1634 | * |
| 1635 | * Return 0 if found such stripe, and store its info into @stripe. |
| 1636 | * Return >0 if there is no such stripe in the specified range. |
| 1637 | * Return <0 for error. |
| 1638 | */ |
| 1639 | static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg, |
| 1640 | struct btrfs_path *extent_path, |
| 1641 | struct btrfs_path *csum_path, |
| 1642 | struct btrfs_device *dev, u64 physical, |
| 1643 | int mirror_num, u64 logical_start, |
| 1644 | u32 logical_len, |
| 1645 | struct scrub_stripe *stripe) |
| 1646 | { |
| 1647 | struct btrfs_fs_info *fs_info = bg->fs_info; |
| 1648 | struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start); |
| 1649 | struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start); |
| 1650 | const u64 logical_end = logical_start + logical_len; |
| 1651 | u64 cur_logical = logical_start; |
| 1652 | u64 stripe_end; |
| 1653 | u64 extent_start; |
| 1654 | u64 extent_len; |
| 1655 | u64 extent_flags; |
| 1656 | u64 extent_gen; |
| 1657 | int ret; |
| 1658 | |
| 1659 | if (unlikely(!extent_root || !csum_root)) { |
| 1660 | btrfs_err(fs_info, "scrub: no valid extent or csum root found"); |
| 1661 | return -EUCLEAN; |
| 1662 | } |
| 1663 | memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) * |
| 1664 | stripe->nr_sectors); |
| 1665 | scrub_stripe_reset_bitmaps(stripe); |
| 1666 | |
| 1667 | /* The range must be inside the bg. */ |
| 1668 | ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); |
| 1669 | |
| 1670 | ret = find_first_extent_item(extent_root, extent_path, logical_start, |
| 1671 | logical_len); |
| 1672 | /* Either error or not found. */ |
| 1673 | if (ret) |
| 1674 | goto out; |
| 1675 | get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags, |
| 1676 | &extent_gen); |
| 1677 | if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| 1678 | stripe->nr_meta_extents++; |
| 1679 | if (extent_flags & BTRFS_EXTENT_FLAG_DATA) |
| 1680 | stripe->nr_data_extents++; |
| 1681 | cur_logical = max(extent_start, cur_logical); |
| 1682 | |
| 1683 | /* |
| 1684 | * Round down to stripe boundary. |
| 1685 | * |
| 1686 | * The extra calculation against bg->start is to handle block groups |
| 1687 | * whose logical bytenr is not BTRFS_STRIPE_LEN aligned. |
| 1688 | */ |
| 1689 | stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) + |
| 1690 | bg->start; |
| 1691 | stripe->physical = physical + stripe->logical - logical_start; |
| 1692 | stripe->dev = dev; |
| 1693 | stripe->bg = bg; |
| 1694 | stripe->mirror_num = mirror_num; |
| 1695 | stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1; |
| 1696 | |
| 1697 | /* Fill the first extent info into stripe->sectors[] array. */ |
| 1698 | fill_one_extent_info(fs_info, stripe, extent_start, extent_len, |
| 1699 | extent_flags, extent_gen); |
| 1700 | cur_logical = extent_start + extent_len; |
| 1701 | |
| 1702 | /* Fill the extent info for the remaining sectors. */ |
| 1703 | while (cur_logical <= stripe_end) { |
| 1704 | ret = find_first_extent_item(extent_root, extent_path, cur_logical, |
| 1705 | stripe_end - cur_logical + 1); |
| 1706 | if (ret < 0) |
| 1707 | goto out; |
| 1708 | if (ret > 0) { |
| 1709 | ret = 0; |
| 1710 | break; |
| 1711 | } |
| 1712 | get_extent_info(extent_path, &extent_start, &extent_len, |
| 1713 | &extent_flags, &extent_gen); |
| 1714 | if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| 1715 | stripe->nr_meta_extents++; |
| 1716 | if (extent_flags & BTRFS_EXTENT_FLAG_DATA) |
| 1717 | stripe->nr_data_extents++; |
| 1718 | fill_one_extent_info(fs_info, stripe, extent_start, extent_len, |
| 1719 | extent_flags, extent_gen); |
| 1720 | cur_logical = extent_start + extent_len; |
| 1721 | } |
| 1722 | |
| 1723 | /* Now fill the data csum. */ |
| 1724 | if (bg->flags & BTRFS_BLOCK_GROUP_DATA) { |
| 1725 | int sector_nr; |
| 1726 | unsigned long csum_bitmap = 0; |
| 1727 | |
| 1728 | /* Csum space should have already been allocated. */ |
| 1729 | ASSERT(stripe->csums); |
| 1730 | |
| 1731 | /* |
| 1732 | * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN |
| 1733 | * should contain at most 16 sectors. |
| 1734 | */ |
| 1735 | ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); |
| 1736 | |
| 1737 | ret = btrfs_lookup_csums_bitmap(csum_root, csum_path, |
| 1738 | stripe->logical, stripe_end, |
| 1739 | stripe->csums, &csum_bitmap); |
| 1740 | if (ret < 0) |
| 1741 | goto out; |
| 1742 | if (ret > 0) |
| 1743 | ret = 0; |
| 1744 | |
| 1745 | for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) { |
| 1746 | stripe->sectors[sector_nr].csum = stripe->csums + |
| 1747 | sector_nr * fs_info->csum_size; |
| 1748 | } |
| 1749 | } |
| 1750 | set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); |
| 1751 | out: |
| 1752 | return ret; |
| 1753 | } |
| 1754 | |
| 1755 | static void scrub_reset_stripe(struct scrub_stripe *stripe) |
| 1756 | { |
| 1757 | scrub_stripe_reset_bitmaps(stripe); |
| 1758 | |
| 1759 | stripe->nr_meta_extents = 0; |
| 1760 | stripe->nr_data_extents = 0; |
| 1761 | stripe->state = 0; |
| 1762 | |
| 1763 | for (int i = 0; i < stripe->nr_sectors; i++) { |
| 1764 | stripe->sectors[i].csum = NULL; |
| 1765 | stripe->sectors[i].generation = 0; |
| 1766 | } |
| 1767 | } |
| 1768 | |
| 1769 | static u32 stripe_length(const struct scrub_stripe *stripe) |
| 1770 | { |
| 1771 | ASSERT(stripe->bg); |
| 1772 | |
| 1773 | return min(BTRFS_STRIPE_LEN, |
| 1774 | stripe->bg->start + stripe->bg->length - stripe->logical); |
| 1775 | } |
| 1776 | |
| 1777 | static void scrub_submit_extent_sector_read(struct scrub_stripe *stripe) |
| 1778 | { |
| 1779 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| 1780 | struct btrfs_bio *bbio = NULL; |
| 1781 | unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits; |
| 1782 | const unsigned long has_extent = scrub_bitmap_read_has_extent(stripe); |
| 1783 | u64 stripe_len = BTRFS_STRIPE_LEN; |
| 1784 | int mirror = stripe->mirror_num; |
| 1785 | int i; |
| 1786 | |
| 1787 | atomic_inc(&stripe->pending_io); |
| 1788 | |
| 1789 | for_each_set_bit(i, &has_extent, stripe->nr_sectors) { |
| 1790 | /* We're beyond the chunk boundary, no need to read anymore. */ |
| 1791 | if (i >= nr_sectors) |
| 1792 | break; |
| 1793 | |
| 1794 | /* The current sector cannot be merged, submit the bio. */ |
| 1795 | if (bbio && |
| 1796 | ((i > 0 && !test_bit(i - 1, &has_extent)) || |
| 1797 | bbio->bio.bi_iter.bi_size >= stripe_len)) { |
| 1798 | ASSERT(bbio->bio.bi_iter.bi_size); |
| 1799 | atomic_inc(&stripe->pending_io); |
| 1800 | btrfs_submit_bbio(bbio, mirror); |
| 1801 | bbio = NULL; |
| 1802 | } |
| 1803 | |
| 1804 | if (!bbio) { |
| 1805 | struct btrfs_io_stripe io_stripe = {}; |
| 1806 | struct btrfs_io_context *bioc = NULL; |
| 1807 | const u64 logical = stripe->logical + |
| 1808 | (i << fs_info->sectorsize_bits); |
| 1809 | int err; |
| 1810 | |
| 1811 | io_stripe.rst_search_commit_root = true; |
| 1812 | stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits; |
| 1813 | /* |
| 1814 | * For RST cases, we need to manually split the bbio to |
| 1815 | * follow the RST boundary. |
| 1816 | */ |
| 1817 | err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, |
| 1818 | &stripe_len, &bioc, &io_stripe, &mirror); |
| 1819 | btrfs_put_bioc(bioc); |
| 1820 | if (err < 0) { |
| 1821 | if (err != -ENODATA) { |
| 1822 | /* |
| 1823 | * Earlier btrfs_get_raid_extent_offset() |
| 1824 | * returned -ENODATA, which means there's |
| 1825 | * no entry for the corresponding range |
| 1826 | * in the stripe tree. But if it's in |
| 1827 | * the extent tree, then it's a preallocated |
| 1828 | * extent and not an error. |
| 1829 | */ |
| 1830 | scrub_bitmap_set_bit_io_error(stripe, i); |
| 1831 | scrub_bitmap_set_bit_error(stripe, i); |
| 1832 | } |
| 1833 | continue; |
| 1834 | } |
| 1835 | |
| 1836 | bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, |
| 1837 | fs_info, scrub_read_endio, stripe); |
| 1838 | bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT; |
| 1839 | } |
| 1840 | |
| 1841 | scrub_bio_add_sector(bbio, stripe, i); |
| 1842 | } |
| 1843 | |
| 1844 | if (bbio) { |
| 1845 | ASSERT(bbio->bio.bi_iter.bi_size); |
| 1846 | atomic_inc(&stripe->pending_io); |
| 1847 | btrfs_submit_bbio(bbio, mirror); |
| 1848 | } |
| 1849 | |
| 1850 | if (atomic_dec_and_test(&stripe->pending_io)) { |
| 1851 | wake_up(&stripe->io_wait); |
| 1852 | INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); |
| 1853 | queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); |
| 1854 | } |
| 1855 | } |
| 1856 | |
| 1857 | static void scrub_submit_initial_read(struct scrub_ctx *sctx, |
| 1858 | struct scrub_stripe *stripe) |
| 1859 | { |
| 1860 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 1861 | struct btrfs_bio *bbio; |
| 1862 | unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits; |
| 1863 | int mirror = stripe->mirror_num; |
| 1864 | |
| 1865 | ASSERT(stripe->bg); |
| 1866 | ASSERT(stripe->mirror_num > 0); |
| 1867 | ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); |
| 1868 | |
| 1869 | if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) { |
| 1870 | scrub_submit_extent_sector_read(stripe); |
| 1871 | return; |
| 1872 | } |
| 1873 | |
| 1874 | bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info, |
| 1875 | scrub_read_endio, stripe); |
| 1876 | |
| 1877 | bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT; |
| 1878 | /* Read the whole range inside the chunk boundary. */ |
| 1879 | for (unsigned int cur = 0; cur < nr_sectors; cur++) |
| 1880 | scrub_bio_add_sector(bbio, stripe, cur); |
| 1881 | atomic_inc(&stripe->pending_io); |
| 1882 | |
| 1883 | /* |
| 1884 | * For dev-replace, either user asks to avoid the source dev, or |
| 1885 | * the device is missing, we try the next mirror instead. |
| 1886 | */ |
| 1887 | if (sctx->is_dev_replace && |
| 1888 | (fs_info->dev_replace.cont_reading_from_srcdev_mode == |
| 1889 | BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID || |
| 1890 | !stripe->dev->bdev)) { |
| 1891 | int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, |
| 1892 | stripe->bg->length); |
| 1893 | |
| 1894 | mirror = calc_next_mirror(mirror, num_copies); |
| 1895 | } |
| 1896 | btrfs_submit_bbio(bbio, mirror); |
| 1897 | } |
| 1898 | |
| 1899 | static bool stripe_has_metadata_error(struct scrub_stripe *stripe) |
| 1900 | { |
| 1901 | const unsigned long error = scrub_bitmap_read_error(stripe); |
| 1902 | int i; |
| 1903 | |
| 1904 | for_each_set_bit(i, &error, stripe->nr_sectors) { |
| 1905 | if (scrub_bitmap_test_bit_is_metadata(stripe, i)) { |
| 1906 | struct btrfs_fs_info *fs_info = stripe->bg->fs_info; |
| 1907 | |
| 1908 | btrfs_err(fs_info, |
| 1909 | "scrub: stripe %llu has unrepaired metadata sector at logical %llu", |
| 1910 | stripe->logical, |
| 1911 | stripe->logical + (i << fs_info->sectorsize_bits)); |
| 1912 | return true; |
| 1913 | } |
| 1914 | } |
| 1915 | return false; |
| 1916 | } |
| 1917 | |
| 1918 | static void submit_initial_group_read(struct scrub_ctx *sctx, |
| 1919 | unsigned int first_slot, |
| 1920 | unsigned int nr_stripes) |
| 1921 | { |
| 1922 | struct blk_plug plug; |
| 1923 | |
| 1924 | ASSERT(first_slot < SCRUB_TOTAL_STRIPES); |
| 1925 | ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES); |
| 1926 | |
| 1927 | scrub_throttle_dev_io(sctx, sctx->stripes[0].dev, |
| 1928 | btrfs_stripe_nr_to_offset(nr_stripes)); |
| 1929 | blk_start_plug(&plug); |
| 1930 | for (int i = 0; i < nr_stripes; i++) { |
| 1931 | struct scrub_stripe *stripe = &sctx->stripes[first_slot + i]; |
| 1932 | |
| 1933 | /* Those stripes should be initialized. */ |
| 1934 | ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); |
| 1935 | scrub_submit_initial_read(sctx, stripe); |
| 1936 | } |
| 1937 | blk_finish_plug(&plug); |
| 1938 | } |
| 1939 | |
| 1940 | static int flush_scrub_stripes(struct scrub_ctx *sctx) |
| 1941 | { |
| 1942 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 1943 | struct scrub_stripe *stripe; |
| 1944 | const int nr_stripes = sctx->cur_stripe; |
| 1945 | int ret = 0; |
| 1946 | |
| 1947 | if (!nr_stripes) |
| 1948 | return 0; |
| 1949 | |
| 1950 | ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state)); |
| 1951 | |
| 1952 | /* Submit the stripes which are populated but not submitted. */ |
| 1953 | if (nr_stripes % SCRUB_STRIPES_PER_GROUP) { |
| 1954 | const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP); |
| 1955 | |
| 1956 | submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot); |
| 1957 | } |
| 1958 | |
| 1959 | for (int i = 0; i < nr_stripes; i++) { |
| 1960 | stripe = &sctx->stripes[i]; |
| 1961 | |
| 1962 | wait_event(stripe->repair_wait, |
| 1963 | test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); |
| 1964 | } |
| 1965 | |
| 1966 | /* Submit for dev-replace. */ |
| 1967 | if (sctx->is_dev_replace) { |
| 1968 | /* |
| 1969 | * For dev-replace, if we know there is something wrong with |
| 1970 | * metadata, we should immediately abort. |
| 1971 | */ |
| 1972 | for (int i = 0; i < nr_stripes; i++) { |
| 1973 | if (stripe_has_metadata_error(&sctx->stripes[i])) { |
| 1974 | ret = -EIO; |
| 1975 | goto out; |
| 1976 | } |
| 1977 | } |
| 1978 | for (int i = 0; i < nr_stripes; i++) { |
| 1979 | unsigned long good; |
| 1980 | unsigned long has_extent; |
| 1981 | unsigned long error; |
| 1982 | |
| 1983 | stripe = &sctx->stripes[i]; |
| 1984 | |
| 1985 | ASSERT(stripe->dev == fs_info->dev_replace.srcdev); |
| 1986 | |
| 1987 | has_extent = scrub_bitmap_read_has_extent(stripe); |
| 1988 | error = scrub_bitmap_read_error(stripe); |
| 1989 | bitmap_andnot(&good, &has_extent, &error, stripe->nr_sectors); |
| 1990 | scrub_write_sectors(sctx, stripe, good, true); |
| 1991 | } |
| 1992 | } |
| 1993 | |
| 1994 | /* Wait for the above writebacks to finish. */ |
| 1995 | for (int i = 0; i < nr_stripes; i++) { |
| 1996 | stripe = &sctx->stripes[i]; |
| 1997 | |
| 1998 | wait_scrub_stripe_io(stripe); |
| 1999 | spin_lock(&sctx->stat_lock); |
| 2000 | sctx->stat.last_physical = stripe->physical + stripe_length(stripe); |
| 2001 | spin_unlock(&sctx->stat_lock); |
| 2002 | scrub_reset_stripe(stripe); |
| 2003 | } |
| 2004 | out: |
| 2005 | sctx->cur_stripe = 0; |
| 2006 | return ret; |
| 2007 | } |
| 2008 | |
| 2009 | static void raid56_scrub_wait_endio(struct bio *bio) |
| 2010 | { |
| 2011 | complete(bio->bi_private); |
| 2012 | } |
| 2013 | |
| 2014 | static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg, |
| 2015 | struct btrfs_device *dev, int mirror_num, |
| 2016 | u64 logical, u32 length, u64 physical, |
| 2017 | u64 *found_logical_ret) |
| 2018 | { |
| 2019 | struct scrub_stripe *stripe; |
| 2020 | int ret; |
| 2021 | |
| 2022 | /* |
| 2023 | * There should always be one slot left, as caller filling the last |
| 2024 | * slot should flush them all. |
| 2025 | */ |
| 2026 | ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES); |
| 2027 | |
| 2028 | /* @found_logical_ret must be specified. */ |
| 2029 | ASSERT(found_logical_ret); |
| 2030 | |
| 2031 | stripe = &sctx->stripes[sctx->cur_stripe]; |
| 2032 | scrub_reset_stripe(stripe); |
| 2033 | ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path, |
| 2034 | &sctx->csum_path, dev, physical, |
| 2035 | mirror_num, logical, length, stripe); |
| 2036 | /* Either >0 as no more extents or <0 for error. */ |
| 2037 | if (ret) |
| 2038 | return ret; |
| 2039 | *found_logical_ret = stripe->logical; |
| 2040 | sctx->cur_stripe++; |
| 2041 | |
| 2042 | /* We filled one group, submit it. */ |
| 2043 | if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) { |
| 2044 | const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP; |
| 2045 | |
| 2046 | submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP); |
| 2047 | } |
| 2048 | |
| 2049 | /* Last slot used, flush them all. */ |
| 2050 | if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES) |
| 2051 | return flush_scrub_stripes(sctx); |
| 2052 | return 0; |
| 2053 | } |
| 2054 | |
| 2055 | static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx, |
| 2056 | struct btrfs_device *scrub_dev, |
| 2057 | struct btrfs_block_group *bg, |
| 2058 | struct btrfs_chunk_map *map, |
| 2059 | u64 full_stripe_start) |
| 2060 | { |
| 2061 | DECLARE_COMPLETION_ONSTACK(io_done); |
| 2062 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 2063 | struct btrfs_raid_bio *rbio; |
| 2064 | struct btrfs_io_context *bioc = NULL; |
| 2065 | struct btrfs_path extent_path = { 0 }; |
| 2066 | struct btrfs_path csum_path = { 0 }; |
| 2067 | struct bio *bio; |
| 2068 | struct scrub_stripe *stripe; |
| 2069 | bool all_empty = true; |
| 2070 | const int data_stripes = nr_data_stripes(map); |
| 2071 | unsigned long extent_bitmap = 0; |
| 2072 | u64 length = btrfs_stripe_nr_to_offset(data_stripes); |
| 2073 | int ret; |
| 2074 | |
| 2075 | ASSERT(sctx->raid56_data_stripes); |
| 2076 | |
| 2077 | /* |
| 2078 | * For data stripe search, we cannot reuse the same extent/csum paths, |
| 2079 | * as the data stripe bytenr may be smaller than previous extent. Thus |
| 2080 | * we have to use our own extent/csum paths. |
| 2081 | */ |
| 2082 | extent_path.search_commit_root = 1; |
| 2083 | extent_path.skip_locking = 1; |
| 2084 | csum_path.search_commit_root = 1; |
| 2085 | csum_path.skip_locking = 1; |
| 2086 | |
| 2087 | for (int i = 0; i < data_stripes; i++) { |
| 2088 | int stripe_index; |
| 2089 | int rot; |
| 2090 | u64 physical; |
| 2091 | |
| 2092 | stripe = &sctx->raid56_data_stripes[i]; |
| 2093 | rot = div_u64(full_stripe_start - bg->start, |
| 2094 | data_stripes) >> BTRFS_STRIPE_LEN_SHIFT; |
| 2095 | stripe_index = (i + rot) % map->num_stripes; |
| 2096 | physical = map->stripes[stripe_index].physical + |
| 2097 | btrfs_stripe_nr_to_offset(rot); |
| 2098 | |
| 2099 | scrub_reset_stripe(stripe); |
| 2100 | set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state); |
| 2101 | ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path, |
| 2102 | map->stripes[stripe_index].dev, physical, 1, |
| 2103 | full_stripe_start + btrfs_stripe_nr_to_offset(i), |
| 2104 | BTRFS_STRIPE_LEN, stripe); |
| 2105 | if (ret < 0) |
| 2106 | goto out; |
| 2107 | /* |
| 2108 | * No extent in this data stripe, need to manually mark them |
| 2109 | * initialized to make later read submission happy. |
| 2110 | */ |
| 2111 | if (ret > 0) { |
| 2112 | stripe->logical = full_stripe_start + |
| 2113 | btrfs_stripe_nr_to_offset(i); |
| 2114 | stripe->dev = map->stripes[stripe_index].dev; |
| 2115 | stripe->mirror_num = 1; |
| 2116 | set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); |
| 2117 | } |
| 2118 | } |
| 2119 | |
| 2120 | /* Check if all data stripes are empty. */ |
| 2121 | for (int i = 0; i < data_stripes; i++) { |
| 2122 | stripe = &sctx->raid56_data_stripes[i]; |
| 2123 | if (!scrub_bitmap_empty_has_extent(stripe)) { |
| 2124 | all_empty = false; |
| 2125 | break; |
| 2126 | } |
| 2127 | } |
| 2128 | if (all_empty) { |
| 2129 | ret = 0; |
| 2130 | goto out; |
| 2131 | } |
| 2132 | |
| 2133 | for (int i = 0; i < data_stripes; i++) { |
| 2134 | stripe = &sctx->raid56_data_stripes[i]; |
| 2135 | scrub_submit_initial_read(sctx, stripe); |
| 2136 | } |
| 2137 | for (int i = 0; i < data_stripes; i++) { |
| 2138 | stripe = &sctx->raid56_data_stripes[i]; |
| 2139 | |
| 2140 | wait_event(stripe->repair_wait, |
| 2141 | test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); |
| 2142 | } |
| 2143 | /* For now, no zoned support for RAID56. */ |
| 2144 | ASSERT(!btrfs_is_zoned(sctx->fs_info)); |
| 2145 | |
| 2146 | /* |
| 2147 | * Now all data stripes are properly verified. Check if we have any |
| 2148 | * unrepaired, if so abort immediately or we could further corrupt the |
| 2149 | * P/Q stripes. |
| 2150 | * |
| 2151 | * During the loop, also populate extent_bitmap. |
| 2152 | */ |
| 2153 | for (int i = 0; i < data_stripes; i++) { |
| 2154 | unsigned long error; |
| 2155 | unsigned long has_extent; |
| 2156 | |
| 2157 | stripe = &sctx->raid56_data_stripes[i]; |
| 2158 | |
| 2159 | error = scrub_bitmap_read_error(stripe); |
| 2160 | has_extent = scrub_bitmap_read_has_extent(stripe); |
| 2161 | |
| 2162 | /* |
| 2163 | * We should only check the errors where there is an extent. |
| 2164 | * As we may hit an empty data stripe while it's missing. |
| 2165 | */ |
| 2166 | bitmap_and(&error, &error, &has_extent, stripe->nr_sectors); |
| 2167 | if (!bitmap_empty(&error, stripe->nr_sectors)) { |
| 2168 | btrfs_err(fs_info, |
| 2169 | "scrub: unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl", |
| 2170 | full_stripe_start, i, stripe->nr_sectors, |
| 2171 | &error); |
| 2172 | ret = -EIO; |
| 2173 | goto out; |
| 2174 | } |
| 2175 | bitmap_or(&extent_bitmap, &extent_bitmap, &has_extent, |
| 2176 | stripe->nr_sectors); |
| 2177 | } |
| 2178 | |
| 2179 | /* Now we can check and regenerate the P/Q stripe. */ |
| 2180 | bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS); |
| 2181 | bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT; |
| 2182 | bio->bi_private = &io_done; |
| 2183 | bio->bi_end_io = raid56_scrub_wait_endio; |
| 2184 | |
| 2185 | btrfs_bio_counter_inc_blocked(fs_info); |
| 2186 | ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start, |
| 2187 | &length, &bioc, NULL, NULL); |
| 2188 | if (ret < 0) { |
| 2189 | btrfs_put_bioc(bioc); |
| 2190 | btrfs_bio_counter_dec(fs_info); |
| 2191 | goto out; |
| 2192 | } |
| 2193 | rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap, |
| 2194 | BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); |
| 2195 | btrfs_put_bioc(bioc); |
| 2196 | if (!rbio) { |
| 2197 | ret = -ENOMEM; |
| 2198 | btrfs_bio_counter_dec(fs_info); |
| 2199 | goto out; |
| 2200 | } |
| 2201 | /* Use the recovered stripes as cache to avoid read them from disk again. */ |
| 2202 | for (int i = 0; i < data_stripes; i++) { |
| 2203 | stripe = &sctx->raid56_data_stripes[i]; |
| 2204 | |
| 2205 | raid56_parity_cache_data_pages(rbio, stripe->pages, |
| 2206 | full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT)); |
| 2207 | } |
| 2208 | raid56_parity_submit_scrub_rbio(rbio); |
| 2209 | wait_for_completion_io(&io_done); |
| 2210 | ret = blk_status_to_errno(bio->bi_status); |
| 2211 | bio_put(bio); |
| 2212 | btrfs_bio_counter_dec(fs_info); |
| 2213 | |
| 2214 | btrfs_release_path(&extent_path); |
| 2215 | btrfs_release_path(&csum_path); |
| 2216 | out: |
| 2217 | return ret; |
| 2218 | } |
| 2219 | |
| 2220 | /* |
| 2221 | * Scrub one range which can only has simple mirror based profile. |
| 2222 | * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in |
| 2223 | * RAID0/RAID10). |
| 2224 | * |
| 2225 | * Since we may need to handle a subset of block group, we need @logical_start |
| 2226 | * and @logical_length parameter. |
| 2227 | */ |
| 2228 | static int scrub_simple_mirror(struct scrub_ctx *sctx, |
| 2229 | struct btrfs_block_group *bg, |
| 2230 | u64 logical_start, u64 logical_length, |
| 2231 | struct btrfs_device *device, |
| 2232 | u64 physical, int mirror_num) |
| 2233 | { |
| 2234 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 2235 | const u64 logical_end = logical_start + logical_length; |
| 2236 | u64 cur_logical = logical_start; |
| 2237 | int ret = 0; |
| 2238 | |
| 2239 | /* The range must be inside the bg */ |
| 2240 | ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); |
| 2241 | |
| 2242 | /* Go through each extent items inside the logical range */ |
| 2243 | while (cur_logical < logical_end) { |
| 2244 | u64 found_logical = U64_MAX; |
| 2245 | u64 cur_physical = physical + cur_logical - logical_start; |
| 2246 | |
| 2247 | /* Canceled? */ |
| 2248 | if (atomic_read(&fs_info->scrub_cancel_req) || |
| 2249 | atomic_read(&sctx->cancel_req)) { |
| 2250 | ret = -ECANCELED; |
| 2251 | break; |
| 2252 | } |
| 2253 | /* Paused? */ |
| 2254 | if (atomic_read(&fs_info->scrub_pause_req)) { |
| 2255 | /* Push queued extents */ |
| 2256 | scrub_blocked_if_needed(fs_info); |
| 2257 | } |
| 2258 | /* Block group removed? */ |
| 2259 | spin_lock(&bg->lock); |
| 2260 | if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { |
| 2261 | spin_unlock(&bg->lock); |
| 2262 | ret = 0; |
| 2263 | break; |
| 2264 | } |
| 2265 | spin_unlock(&bg->lock); |
| 2266 | |
| 2267 | ret = queue_scrub_stripe(sctx, bg, device, mirror_num, |
| 2268 | cur_logical, logical_end - cur_logical, |
| 2269 | cur_physical, &found_logical); |
| 2270 | if (ret > 0) { |
| 2271 | /* No more extent, just update the accounting */ |
| 2272 | spin_lock(&sctx->stat_lock); |
| 2273 | sctx->stat.last_physical = physical + logical_length; |
| 2274 | spin_unlock(&sctx->stat_lock); |
| 2275 | ret = 0; |
| 2276 | break; |
| 2277 | } |
| 2278 | if (ret < 0) |
| 2279 | break; |
| 2280 | |
| 2281 | /* queue_scrub_stripe() returned 0, @found_logical must be updated. */ |
| 2282 | ASSERT(found_logical != U64_MAX); |
| 2283 | cur_logical = found_logical + BTRFS_STRIPE_LEN; |
| 2284 | |
| 2285 | /* Don't hold CPU for too long time */ |
| 2286 | cond_resched(); |
| 2287 | } |
| 2288 | return ret; |
| 2289 | } |
| 2290 | |
| 2291 | /* Calculate the full stripe length for simple stripe based profiles */ |
| 2292 | static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map) |
| 2293 | { |
| 2294 | ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| 2295 | BTRFS_BLOCK_GROUP_RAID10)); |
| 2296 | |
| 2297 | return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes); |
| 2298 | } |
| 2299 | |
| 2300 | /* Get the logical bytenr for the stripe */ |
| 2301 | static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map, |
| 2302 | struct btrfs_block_group *bg, |
| 2303 | int stripe_index) |
| 2304 | { |
| 2305 | ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| 2306 | BTRFS_BLOCK_GROUP_RAID10)); |
| 2307 | ASSERT(stripe_index < map->num_stripes); |
| 2308 | |
| 2309 | /* |
| 2310 | * (stripe_index / sub_stripes) gives how many data stripes we need to |
| 2311 | * skip. |
| 2312 | */ |
| 2313 | return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) + |
| 2314 | bg->start; |
| 2315 | } |
| 2316 | |
| 2317 | /* Get the mirror number for the stripe */ |
| 2318 | static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index) |
| 2319 | { |
| 2320 | ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| 2321 | BTRFS_BLOCK_GROUP_RAID10)); |
| 2322 | ASSERT(stripe_index < map->num_stripes); |
| 2323 | |
| 2324 | /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ |
| 2325 | return stripe_index % map->sub_stripes + 1; |
| 2326 | } |
| 2327 | |
| 2328 | static int scrub_simple_stripe(struct scrub_ctx *sctx, |
| 2329 | struct btrfs_block_group *bg, |
| 2330 | struct btrfs_chunk_map *map, |
| 2331 | struct btrfs_device *device, |
| 2332 | int stripe_index) |
| 2333 | { |
| 2334 | const u64 logical_increment = simple_stripe_full_stripe_len(map); |
| 2335 | const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); |
| 2336 | const u64 orig_physical = map->stripes[stripe_index].physical; |
| 2337 | const int mirror_num = simple_stripe_mirror_num(map, stripe_index); |
| 2338 | u64 cur_logical = orig_logical; |
| 2339 | u64 cur_physical = orig_physical; |
| 2340 | int ret = 0; |
| 2341 | |
| 2342 | while (cur_logical < bg->start + bg->length) { |
| 2343 | /* |
| 2344 | * Inside each stripe, RAID0 is just SINGLE, and RAID10 is |
| 2345 | * just RAID1, so we can reuse scrub_simple_mirror() to scrub |
| 2346 | * this stripe. |
| 2347 | */ |
| 2348 | ret = scrub_simple_mirror(sctx, bg, cur_logical, |
| 2349 | BTRFS_STRIPE_LEN, device, cur_physical, |
| 2350 | mirror_num); |
| 2351 | if (ret) |
| 2352 | return ret; |
| 2353 | /* Skip to next stripe which belongs to the target device */ |
| 2354 | cur_logical += logical_increment; |
| 2355 | /* For physical offset, we just go to next stripe */ |
| 2356 | cur_physical += BTRFS_STRIPE_LEN; |
| 2357 | } |
| 2358 | return ret; |
| 2359 | } |
| 2360 | |
| 2361 | static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, |
| 2362 | struct btrfs_block_group *bg, |
| 2363 | struct btrfs_chunk_map *map, |
| 2364 | struct btrfs_device *scrub_dev, |
| 2365 | int stripe_index) |
| 2366 | { |
| 2367 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 2368 | const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; |
| 2369 | const u64 chunk_logical = bg->start; |
| 2370 | int ret; |
| 2371 | int ret2; |
| 2372 | u64 physical = map->stripes[stripe_index].physical; |
| 2373 | const u64 dev_stripe_len = btrfs_calc_stripe_length(map); |
| 2374 | const u64 physical_end = physical + dev_stripe_len; |
| 2375 | u64 logical; |
| 2376 | u64 logic_end; |
| 2377 | /* The logical increment after finishing one stripe */ |
| 2378 | u64 increment; |
| 2379 | /* Offset inside the chunk */ |
| 2380 | u64 offset; |
| 2381 | u64 stripe_logical; |
| 2382 | |
| 2383 | /* Extent_path should be released by now. */ |
| 2384 | ASSERT(sctx->extent_path.nodes[0] == NULL); |
| 2385 | |
| 2386 | scrub_blocked_if_needed(fs_info); |
| 2387 | |
| 2388 | if (sctx->is_dev_replace && |
| 2389 | btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { |
| 2390 | mutex_lock(&sctx->wr_lock); |
| 2391 | sctx->write_pointer = physical; |
| 2392 | mutex_unlock(&sctx->wr_lock); |
| 2393 | } |
| 2394 | |
| 2395 | /* Prepare the extra data stripes used by RAID56. */ |
| 2396 | if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| 2397 | ASSERT(sctx->raid56_data_stripes == NULL); |
| 2398 | |
| 2399 | sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map), |
| 2400 | sizeof(struct scrub_stripe), |
| 2401 | GFP_KERNEL); |
| 2402 | if (!sctx->raid56_data_stripes) { |
| 2403 | ret = -ENOMEM; |
| 2404 | goto out; |
| 2405 | } |
| 2406 | for (int i = 0; i < nr_data_stripes(map); i++) { |
| 2407 | ret = init_scrub_stripe(fs_info, |
| 2408 | &sctx->raid56_data_stripes[i]); |
| 2409 | if (ret < 0) |
| 2410 | goto out; |
| 2411 | sctx->raid56_data_stripes[i].bg = bg; |
| 2412 | sctx->raid56_data_stripes[i].sctx = sctx; |
| 2413 | } |
| 2414 | } |
| 2415 | /* |
| 2416 | * There used to be a big double loop to handle all profiles using the |
| 2417 | * same routine, which grows larger and more gross over time. |
| 2418 | * |
| 2419 | * So here we handle each profile differently, so simpler profiles |
| 2420 | * have simpler scrubbing function. |
| 2421 | */ |
| 2422 | if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | |
| 2423 | BTRFS_BLOCK_GROUP_RAID56_MASK))) { |
| 2424 | /* |
| 2425 | * Above check rules out all complex profile, the remaining |
| 2426 | * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple |
| 2427 | * mirrored duplication without stripe. |
| 2428 | * |
| 2429 | * Only @physical and @mirror_num needs to calculated using |
| 2430 | * @stripe_index. |
| 2431 | */ |
| 2432 | ret = scrub_simple_mirror(sctx, bg, bg->start, bg->length, |
| 2433 | scrub_dev, map->stripes[stripe_index].physical, |
| 2434 | stripe_index + 1); |
| 2435 | offset = 0; |
| 2436 | goto out; |
| 2437 | } |
| 2438 | if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { |
| 2439 | ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index); |
| 2440 | offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes); |
| 2441 | goto out; |
| 2442 | } |
| 2443 | |
| 2444 | /* Only RAID56 goes through the old code */ |
| 2445 | ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); |
| 2446 | ret = 0; |
| 2447 | |
| 2448 | /* Calculate the logical end of the stripe */ |
| 2449 | get_raid56_logic_offset(physical_end, stripe_index, |
| 2450 | map, &logic_end, NULL); |
| 2451 | logic_end += chunk_logical; |
| 2452 | |
| 2453 | /* Initialize @offset in case we need to go to out: label */ |
| 2454 | get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); |
| 2455 | increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); |
| 2456 | |
| 2457 | /* |
| 2458 | * Due to the rotation, for RAID56 it's better to iterate each stripe |
| 2459 | * using their physical offset. |
| 2460 | */ |
| 2461 | while (physical < physical_end) { |
| 2462 | ret = get_raid56_logic_offset(physical, stripe_index, map, |
| 2463 | &logical, &stripe_logical); |
| 2464 | logical += chunk_logical; |
| 2465 | if (ret) { |
| 2466 | /* it is parity strip */ |
| 2467 | stripe_logical += chunk_logical; |
| 2468 | ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg, |
| 2469 | map, stripe_logical); |
| 2470 | spin_lock(&sctx->stat_lock); |
| 2471 | sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN, |
| 2472 | physical_end); |
| 2473 | spin_unlock(&sctx->stat_lock); |
| 2474 | if (ret) |
| 2475 | goto out; |
| 2476 | goto next; |
| 2477 | } |
| 2478 | |
| 2479 | /* |
| 2480 | * Now we're at a data stripe, scrub each extents in the range. |
| 2481 | * |
| 2482 | * At this stage, if we ignore the repair part, inside each data |
| 2483 | * stripe it is no different than SINGLE profile. |
| 2484 | * We can reuse scrub_simple_mirror() here, as the repair part |
| 2485 | * is still based on @mirror_num. |
| 2486 | */ |
| 2487 | ret = scrub_simple_mirror(sctx, bg, logical, BTRFS_STRIPE_LEN, |
| 2488 | scrub_dev, physical, 1); |
| 2489 | if (ret < 0) |
| 2490 | goto out; |
| 2491 | next: |
| 2492 | logical += increment; |
| 2493 | physical += BTRFS_STRIPE_LEN; |
| 2494 | spin_lock(&sctx->stat_lock); |
| 2495 | sctx->stat.last_physical = physical; |
| 2496 | spin_unlock(&sctx->stat_lock); |
| 2497 | } |
| 2498 | out: |
| 2499 | ret2 = flush_scrub_stripes(sctx); |
| 2500 | if (!ret) |
| 2501 | ret = ret2; |
| 2502 | btrfs_release_path(&sctx->extent_path); |
| 2503 | btrfs_release_path(&sctx->csum_path); |
| 2504 | |
| 2505 | if (sctx->raid56_data_stripes) { |
| 2506 | for (int i = 0; i < nr_data_stripes(map); i++) |
| 2507 | release_scrub_stripe(&sctx->raid56_data_stripes[i]); |
| 2508 | kfree(sctx->raid56_data_stripes); |
| 2509 | sctx->raid56_data_stripes = NULL; |
| 2510 | } |
| 2511 | |
| 2512 | if (sctx->is_dev_replace && ret >= 0) { |
| 2513 | int ret2; |
| 2514 | |
| 2515 | ret2 = sync_write_pointer_for_zoned(sctx, |
| 2516 | chunk_logical + offset, |
| 2517 | map->stripes[stripe_index].physical, |
| 2518 | physical_end); |
| 2519 | if (ret2) |
| 2520 | ret = ret2; |
| 2521 | } |
| 2522 | |
| 2523 | return ret < 0 ? ret : 0; |
| 2524 | } |
| 2525 | |
| 2526 | static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, |
| 2527 | struct btrfs_block_group *bg, |
| 2528 | struct btrfs_device *scrub_dev, |
| 2529 | u64 dev_offset, |
| 2530 | u64 dev_extent_len) |
| 2531 | { |
| 2532 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 2533 | struct btrfs_chunk_map *map; |
| 2534 | int i; |
| 2535 | int ret = 0; |
| 2536 | |
| 2537 | map = btrfs_find_chunk_map(fs_info, bg->start, bg->length); |
| 2538 | if (!map) { |
| 2539 | /* |
| 2540 | * Might have been an unused block group deleted by the cleaner |
| 2541 | * kthread or relocation. |
| 2542 | */ |
| 2543 | spin_lock(&bg->lock); |
| 2544 | if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) |
| 2545 | ret = -EINVAL; |
| 2546 | spin_unlock(&bg->lock); |
| 2547 | |
| 2548 | return ret; |
| 2549 | } |
| 2550 | if (map->start != bg->start) |
| 2551 | goto out; |
| 2552 | if (map->chunk_len < dev_extent_len) |
| 2553 | goto out; |
| 2554 | |
| 2555 | for (i = 0; i < map->num_stripes; ++i) { |
| 2556 | if (map->stripes[i].dev->bdev == scrub_dev->bdev && |
| 2557 | map->stripes[i].physical == dev_offset) { |
| 2558 | ret = scrub_stripe(sctx, bg, map, scrub_dev, i); |
| 2559 | if (ret) |
| 2560 | goto out; |
| 2561 | } |
| 2562 | } |
| 2563 | out: |
| 2564 | btrfs_free_chunk_map(map); |
| 2565 | |
| 2566 | return ret; |
| 2567 | } |
| 2568 | |
| 2569 | static int finish_extent_writes_for_zoned(struct btrfs_root *root, |
| 2570 | struct btrfs_block_group *cache) |
| 2571 | { |
| 2572 | struct btrfs_fs_info *fs_info = cache->fs_info; |
| 2573 | |
| 2574 | if (!btrfs_is_zoned(fs_info)) |
| 2575 | return 0; |
| 2576 | |
| 2577 | btrfs_wait_block_group_reservations(cache); |
| 2578 | btrfs_wait_nocow_writers(cache); |
| 2579 | btrfs_wait_ordered_roots(fs_info, U64_MAX, cache); |
| 2580 | |
| 2581 | return btrfs_commit_current_transaction(root); |
| 2582 | } |
| 2583 | |
| 2584 | static noinline_for_stack |
| 2585 | int scrub_enumerate_chunks(struct scrub_ctx *sctx, |
| 2586 | struct btrfs_device *scrub_dev, u64 start, u64 end) |
| 2587 | { |
| 2588 | struct btrfs_dev_extent *dev_extent = NULL; |
| 2589 | struct btrfs_path *path; |
| 2590 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 2591 | struct btrfs_root *root = fs_info->dev_root; |
| 2592 | u64 chunk_offset; |
| 2593 | int ret = 0; |
| 2594 | int ro_set; |
| 2595 | int slot; |
| 2596 | struct extent_buffer *l; |
| 2597 | struct btrfs_key key; |
| 2598 | struct btrfs_key found_key; |
| 2599 | struct btrfs_block_group *cache; |
| 2600 | struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; |
| 2601 | |
| 2602 | path = btrfs_alloc_path(); |
| 2603 | if (!path) |
| 2604 | return -ENOMEM; |
| 2605 | |
| 2606 | path->reada = READA_FORWARD; |
| 2607 | path->search_commit_root = 1; |
| 2608 | path->skip_locking = 1; |
| 2609 | |
| 2610 | key.objectid = scrub_dev->devid; |
| 2611 | key.type = BTRFS_DEV_EXTENT_KEY; |
| 2612 | key.offset = 0ull; |
| 2613 | |
| 2614 | while (1) { |
| 2615 | u64 dev_extent_len; |
| 2616 | |
| 2617 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 2618 | if (ret < 0) |
| 2619 | break; |
| 2620 | if (ret > 0) { |
| 2621 | if (path->slots[0] >= |
| 2622 | btrfs_header_nritems(path->nodes[0])) { |
| 2623 | ret = btrfs_next_leaf(root, path); |
| 2624 | if (ret < 0) |
| 2625 | break; |
| 2626 | if (ret > 0) { |
| 2627 | ret = 0; |
| 2628 | break; |
| 2629 | } |
| 2630 | } else { |
| 2631 | ret = 0; |
| 2632 | } |
| 2633 | } |
| 2634 | |
| 2635 | l = path->nodes[0]; |
| 2636 | slot = path->slots[0]; |
| 2637 | |
| 2638 | btrfs_item_key_to_cpu(l, &found_key, slot); |
| 2639 | |
| 2640 | if (found_key.objectid != scrub_dev->devid) |
| 2641 | break; |
| 2642 | |
| 2643 | if (found_key.type != BTRFS_DEV_EXTENT_KEY) |
| 2644 | break; |
| 2645 | |
| 2646 | if (found_key.offset >= end) |
| 2647 | break; |
| 2648 | |
| 2649 | if (found_key.offset < key.offset) |
| 2650 | break; |
| 2651 | |
| 2652 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| 2653 | dev_extent_len = btrfs_dev_extent_length(l, dev_extent); |
| 2654 | |
| 2655 | if (found_key.offset + dev_extent_len <= start) |
| 2656 | goto skip; |
| 2657 | |
| 2658 | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); |
| 2659 | |
| 2660 | /* |
| 2661 | * get a reference on the corresponding block group to prevent |
| 2662 | * the chunk from going away while we scrub it |
| 2663 | */ |
| 2664 | cache = btrfs_lookup_block_group(fs_info, chunk_offset); |
| 2665 | |
| 2666 | /* some chunks are removed but not committed to disk yet, |
| 2667 | * continue scrubbing */ |
| 2668 | if (!cache) |
| 2669 | goto skip; |
| 2670 | |
| 2671 | ASSERT(cache->start <= chunk_offset); |
| 2672 | /* |
| 2673 | * We are using the commit root to search for device extents, so |
| 2674 | * that means we could have found a device extent item from a |
| 2675 | * block group that was deleted in the current transaction. The |
| 2676 | * logical start offset of the deleted block group, stored at |
| 2677 | * @chunk_offset, might be part of the logical address range of |
| 2678 | * a new block group (which uses different physical extents). |
| 2679 | * In this case btrfs_lookup_block_group() has returned the new |
| 2680 | * block group, and its start address is less than @chunk_offset. |
| 2681 | * |
| 2682 | * We skip such new block groups, because it's pointless to |
| 2683 | * process them, as we won't find their extents because we search |
| 2684 | * for them using the commit root of the extent tree. For a device |
| 2685 | * replace it's also fine to skip it, we won't miss copying them |
| 2686 | * to the target device because we have the write duplication |
| 2687 | * setup through the regular write path (by btrfs_map_block()), |
| 2688 | * and we have committed a transaction when we started the device |
| 2689 | * replace, right after setting up the device replace state. |
| 2690 | */ |
| 2691 | if (cache->start < chunk_offset) { |
| 2692 | btrfs_put_block_group(cache); |
| 2693 | goto skip; |
| 2694 | } |
| 2695 | |
| 2696 | if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { |
| 2697 | if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { |
| 2698 | btrfs_put_block_group(cache); |
| 2699 | goto skip; |
| 2700 | } |
| 2701 | } |
| 2702 | |
| 2703 | /* |
| 2704 | * Make sure that while we are scrubbing the corresponding block |
| 2705 | * group doesn't get its logical address and its device extents |
| 2706 | * reused for another block group, which can possibly be of a |
| 2707 | * different type and different profile. We do this to prevent |
| 2708 | * false error detections and crashes due to bogus attempts to |
| 2709 | * repair extents. |
| 2710 | */ |
| 2711 | spin_lock(&cache->lock); |
| 2712 | if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { |
| 2713 | spin_unlock(&cache->lock); |
| 2714 | btrfs_put_block_group(cache); |
| 2715 | goto skip; |
| 2716 | } |
| 2717 | btrfs_freeze_block_group(cache); |
| 2718 | spin_unlock(&cache->lock); |
| 2719 | |
| 2720 | /* |
| 2721 | * we need call btrfs_inc_block_group_ro() with scrubs_paused, |
| 2722 | * to avoid deadlock caused by: |
| 2723 | * btrfs_inc_block_group_ro() |
| 2724 | * -> btrfs_wait_for_commit() |
| 2725 | * -> btrfs_commit_transaction() |
| 2726 | * -> btrfs_scrub_pause() |
| 2727 | */ |
| 2728 | scrub_pause_on(fs_info); |
| 2729 | |
| 2730 | /* |
| 2731 | * Don't do chunk preallocation for scrub. |
| 2732 | * |
| 2733 | * This is especially important for SYSTEM bgs, or we can hit |
| 2734 | * -EFBIG from btrfs_finish_chunk_alloc() like: |
| 2735 | * 1. The only SYSTEM bg is marked RO. |
| 2736 | * Since SYSTEM bg is small, that's pretty common. |
| 2737 | * 2. New SYSTEM bg will be allocated |
| 2738 | * Due to regular version will allocate new chunk. |
| 2739 | * 3. New SYSTEM bg is empty and will get cleaned up |
| 2740 | * Before cleanup really happens, it's marked RO again. |
| 2741 | * 4. Empty SYSTEM bg get scrubbed |
| 2742 | * We go back to 2. |
| 2743 | * |
| 2744 | * This can easily boost the amount of SYSTEM chunks if cleaner |
| 2745 | * thread can't be triggered fast enough, and use up all space |
| 2746 | * of btrfs_super_block::sys_chunk_array |
| 2747 | * |
| 2748 | * While for dev replace, we need to try our best to mark block |
| 2749 | * group RO, to prevent race between: |
| 2750 | * - Write duplication |
| 2751 | * Contains latest data |
| 2752 | * - Scrub copy |
| 2753 | * Contains data from commit tree |
| 2754 | * |
| 2755 | * If target block group is not marked RO, nocow writes can |
| 2756 | * be overwritten by scrub copy, causing data corruption. |
| 2757 | * So for dev-replace, it's not allowed to continue if a block |
| 2758 | * group is not RO. |
| 2759 | */ |
| 2760 | ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); |
| 2761 | if (!ret && sctx->is_dev_replace) { |
| 2762 | ret = finish_extent_writes_for_zoned(root, cache); |
| 2763 | if (ret) { |
| 2764 | btrfs_dec_block_group_ro(cache); |
| 2765 | scrub_pause_off(fs_info); |
| 2766 | btrfs_put_block_group(cache); |
| 2767 | break; |
| 2768 | } |
| 2769 | } |
| 2770 | |
| 2771 | if (ret == 0) { |
| 2772 | ro_set = 1; |
| 2773 | } else if (ret == -ENOSPC && !sctx->is_dev_replace && |
| 2774 | !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) { |
| 2775 | /* |
| 2776 | * btrfs_inc_block_group_ro return -ENOSPC when it |
| 2777 | * failed in creating new chunk for metadata. |
| 2778 | * It is not a problem for scrub, because |
| 2779 | * metadata are always cowed, and our scrub paused |
| 2780 | * commit_transactions. |
| 2781 | * |
| 2782 | * For RAID56 chunks, we have to mark them read-only |
| 2783 | * for scrub, as later we would use our own cache |
| 2784 | * out of RAID56 realm. |
| 2785 | * Thus we want the RAID56 bg to be marked RO to |
| 2786 | * prevent RMW from screwing up out cache. |
| 2787 | */ |
| 2788 | ro_set = 0; |
| 2789 | } else if (ret == -ETXTBSY) { |
| 2790 | btrfs_warn(fs_info, |
| 2791 | "scrub: skipping scrub of block group %llu due to active swapfile", |
| 2792 | cache->start); |
| 2793 | scrub_pause_off(fs_info); |
| 2794 | ret = 0; |
| 2795 | goto skip_unfreeze; |
| 2796 | } else { |
| 2797 | btrfs_warn(fs_info, "scrub: failed setting block group ro: %d", |
| 2798 | ret); |
| 2799 | btrfs_unfreeze_block_group(cache); |
| 2800 | btrfs_put_block_group(cache); |
| 2801 | scrub_pause_off(fs_info); |
| 2802 | break; |
| 2803 | } |
| 2804 | |
| 2805 | /* |
| 2806 | * Now the target block is marked RO, wait for nocow writes to |
| 2807 | * finish before dev-replace. |
| 2808 | * COW is fine, as COW never overwrites extents in commit tree. |
| 2809 | */ |
| 2810 | if (sctx->is_dev_replace) { |
| 2811 | btrfs_wait_nocow_writers(cache); |
| 2812 | btrfs_wait_ordered_roots(fs_info, U64_MAX, cache); |
| 2813 | } |
| 2814 | |
| 2815 | scrub_pause_off(fs_info); |
| 2816 | down_write(&dev_replace->rwsem); |
| 2817 | dev_replace->cursor_right = found_key.offset + dev_extent_len; |
| 2818 | dev_replace->cursor_left = found_key.offset; |
| 2819 | dev_replace->item_needs_writeback = 1; |
| 2820 | up_write(&dev_replace->rwsem); |
| 2821 | |
| 2822 | ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, |
| 2823 | dev_extent_len); |
| 2824 | if (sctx->is_dev_replace && |
| 2825 | !btrfs_finish_block_group_to_copy(dev_replace->srcdev, |
| 2826 | cache, found_key.offset)) |
| 2827 | ro_set = 0; |
| 2828 | |
| 2829 | down_write(&dev_replace->rwsem); |
| 2830 | dev_replace->cursor_left = dev_replace->cursor_right; |
| 2831 | dev_replace->item_needs_writeback = 1; |
| 2832 | up_write(&dev_replace->rwsem); |
| 2833 | |
| 2834 | if (ro_set) |
| 2835 | btrfs_dec_block_group_ro(cache); |
| 2836 | |
| 2837 | /* |
| 2838 | * We might have prevented the cleaner kthread from deleting |
| 2839 | * this block group if it was already unused because we raced |
| 2840 | * and set it to RO mode first. So add it back to the unused |
| 2841 | * list, otherwise it might not ever be deleted unless a manual |
| 2842 | * balance is triggered or it becomes used and unused again. |
| 2843 | */ |
| 2844 | spin_lock(&cache->lock); |
| 2845 | if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && |
| 2846 | !cache->ro && cache->reserved == 0 && cache->used == 0) { |
| 2847 | spin_unlock(&cache->lock); |
| 2848 | if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) |
| 2849 | btrfs_discard_queue_work(&fs_info->discard_ctl, |
| 2850 | cache); |
| 2851 | else |
| 2852 | btrfs_mark_bg_unused(cache); |
| 2853 | } else { |
| 2854 | spin_unlock(&cache->lock); |
| 2855 | } |
| 2856 | skip_unfreeze: |
| 2857 | btrfs_unfreeze_block_group(cache); |
| 2858 | btrfs_put_block_group(cache); |
| 2859 | if (ret) |
| 2860 | break; |
| 2861 | if (sctx->is_dev_replace && |
| 2862 | atomic64_read(&dev_replace->num_write_errors) > 0) { |
| 2863 | ret = -EIO; |
| 2864 | break; |
| 2865 | } |
| 2866 | if (sctx->stat.malloc_errors > 0) { |
| 2867 | ret = -ENOMEM; |
| 2868 | break; |
| 2869 | } |
| 2870 | skip: |
| 2871 | key.offset = found_key.offset + dev_extent_len; |
| 2872 | btrfs_release_path(path); |
| 2873 | } |
| 2874 | |
| 2875 | btrfs_free_path(path); |
| 2876 | |
| 2877 | return ret; |
| 2878 | } |
| 2879 | |
| 2880 | static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev, |
| 2881 | struct page *page, u64 physical, u64 generation) |
| 2882 | { |
| 2883 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 2884 | struct btrfs_super_block *sb = page_address(page); |
| 2885 | int ret; |
| 2886 | |
| 2887 | ret = bdev_rw_virt(dev->bdev, physical >> SECTOR_SHIFT, sb, |
| 2888 | BTRFS_SUPER_INFO_SIZE, REQ_OP_READ); |
| 2889 | if (ret < 0) |
| 2890 | return ret; |
| 2891 | ret = btrfs_check_super_csum(fs_info, sb); |
| 2892 | if (ret != 0) { |
| 2893 | btrfs_err_rl(fs_info, |
| 2894 | "scrub: super block at physical %llu devid %llu has bad csum", |
| 2895 | physical, dev->devid); |
| 2896 | return -EIO; |
| 2897 | } |
| 2898 | if (btrfs_super_generation(sb) != generation) { |
| 2899 | btrfs_err_rl(fs_info, |
| 2900 | "scrub: super block at physical %llu devid %llu has bad generation %llu expect %llu", |
| 2901 | physical, dev->devid, |
| 2902 | btrfs_super_generation(sb), generation); |
| 2903 | return -EUCLEAN; |
| 2904 | } |
| 2905 | |
| 2906 | return btrfs_validate_super(fs_info, sb, -1); |
| 2907 | } |
| 2908 | |
| 2909 | static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, |
| 2910 | struct btrfs_device *scrub_dev) |
| 2911 | { |
| 2912 | int i; |
| 2913 | u64 bytenr; |
| 2914 | u64 gen; |
| 2915 | int ret = 0; |
| 2916 | struct page *page; |
| 2917 | struct btrfs_fs_info *fs_info = sctx->fs_info; |
| 2918 | |
| 2919 | if (BTRFS_FS_ERROR(fs_info)) |
| 2920 | return -EROFS; |
| 2921 | |
| 2922 | page = alloc_page(GFP_KERNEL); |
| 2923 | if (!page) { |
| 2924 | spin_lock(&sctx->stat_lock); |
| 2925 | sctx->stat.malloc_errors++; |
| 2926 | spin_unlock(&sctx->stat_lock); |
| 2927 | return -ENOMEM; |
| 2928 | } |
| 2929 | |
| 2930 | /* Seed devices of a new filesystem has their own generation. */ |
| 2931 | if (scrub_dev->fs_devices != fs_info->fs_devices) |
| 2932 | gen = scrub_dev->generation; |
| 2933 | else |
| 2934 | gen = btrfs_get_last_trans_committed(fs_info); |
| 2935 | |
| 2936 | for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { |
| 2937 | ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr); |
| 2938 | if (ret == -ENOENT) |
| 2939 | break; |
| 2940 | |
| 2941 | if (ret) { |
| 2942 | spin_lock(&sctx->stat_lock); |
| 2943 | sctx->stat.super_errors++; |
| 2944 | spin_unlock(&sctx->stat_lock); |
| 2945 | continue; |
| 2946 | } |
| 2947 | |
| 2948 | if (bytenr + BTRFS_SUPER_INFO_SIZE > |
| 2949 | scrub_dev->commit_total_bytes) |
| 2950 | break; |
| 2951 | if (!btrfs_check_super_location(scrub_dev, bytenr)) |
| 2952 | continue; |
| 2953 | |
| 2954 | ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen); |
| 2955 | if (ret) { |
| 2956 | spin_lock(&sctx->stat_lock); |
| 2957 | sctx->stat.super_errors++; |
| 2958 | spin_unlock(&sctx->stat_lock); |
| 2959 | } |
| 2960 | } |
| 2961 | __free_page(page); |
| 2962 | return 0; |
| 2963 | } |
| 2964 | |
| 2965 | static void scrub_workers_put(struct btrfs_fs_info *fs_info) |
| 2966 | { |
| 2967 | if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, |
| 2968 | &fs_info->scrub_lock)) { |
| 2969 | struct workqueue_struct *scrub_workers = fs_info->scrub_workers; |
| 2970 | |
| 2971 | fs_info->scrub_workers = NULL; |
| 2972 | mutex_unlock(&fs_info->scrub_lock); |
| 2973 | |
| 2974 | if (scrub_workers) |
| 2975 | destroy_workqueue(scrub_workers); |
| 2976 | } |
| 2977 | } |
| 2978 | |
| 2979 | /* |
| 2980 | * get a reference count on fs_info->scrub_workers. start worker if necessary |
| 2981 | */ |
| 2982 | static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info) |
| 2983 | { |
| 2984 | struct workqueue_struct *scrub_workers = NULL; |
| 2985 | unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; |
| 2986 | int max_active = fs_info->thread_pool_size; |
| 2987 | int ret = -ENOMEM; |
| 2988 | |
| 2989 | if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) |
| 2990 | return 0; |
| 2991 | |
| 2992 | scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active); |
| 2993 | if (!scrub_workers) |
| 2994 | return -ENOMEM; |
| 2995 | |
| 2996 | mutex_lock(&fs_info->scrub_lock); |
| 2997 | if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { |
| 2998 | ASSERT(fs_info->scrub_workers == NULL); |
| 2999 | fs_info->scrub_workers = scrub_workers; |
| 3000 | refcount_set(&fs_info->scrub_workers_refcnt, 1); |
| 3001 | mutex_unlock(&fs_info->scrub_lock); |
| 3002 | return 0; |
| 3003 | } |
| 3004 | /* Other thread raced in and created the workers for us */ |
| 3005 | refcount_inc(&fs_info->scrub_workers_refcnt); |
| 3006 | mutex_unlock(&fs_info->scrub_lock); |
| 3007 | |
| 3008 | ret = 0; |
| 3009 | |
| 3010 | destroy_workqueue(scrub_workers); |
| 3011 | return ret; |
| 3012 | } |
| 3013 | |
| 3014 | int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, |
| 3015 | u64 end, struct btrfs_scrub_progress *progress, |
| 3016 | int readonly, int is_dev_replace) |
| 3017 | { |
| 3018 | struct btrfs_dev_lookup_args args = { .devid = devid }; |
| 3019 | struct scrub_ctx *sctx; |
| 3020 | int ret; |
| 3021 | struct btrfs_device *dev; |
| 3022 | unsigned int nofs_flag; |
| 3023 | bool need_commit = false; |
| 3024 | |
| 3025 | if (btrfs_fs_closing(fs_info)) |
| 3026 | return -EAGAIN; |
| 3027 | |
| 3028 | /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ |
| 3029 | ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); |
| 3030 | |
| 3031 | /* |
| 3032 | * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible |
| 3033 | * value (max nodesize / min sectorsize), thus nodesize should always |
| 3034 | * be fine. |
| 3035 | */ |
| 3036 | ASSERT(fs_info->nodesize <= |
| 3037 | SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); |
| 3038 | |
| 3039 | /* Allocate outside of device_list_mutex */ |
| 3040 | sctx = scrub_setup_ctx(fs_info, is_dev_replace); |
| 3041 | if (IS_ERR(sctx)) |
| 3042 | return PTR_ERR(sctx); |
| 3043 | |
| 3044 | ret = scrub_workers_get(fs_info); |
| 3045 | if (ret) |
| 3046 | goto out_free_ctx; |
| 3047 | |
| 3048 | mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| 3049 | dev = btrfs_find_device(fs_info->fs_devices, &args); |
| 3050 | if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && |
| 3051 | !is_dev_replace)) { |
| 3052 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 3053 | ret = -ENODEV; |
| 3054 | goto out; |
| 3055 | } |
| 3056 | |
| 3057 | if (!is_dev_replace && !readonly && |
| 3058 | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { |
| 3059 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 3060 | btrfs_err_in_rcu(fs_info, |
| 3061 | "scrub: devid %llu: filesystem on %s is not writable", |
| 3062 | devid, btrfs_dev_name(dev)); |
| 3063 | ret = -EROFS; |
| 3064 | goto out; |
| 3065 | } |
| 3066 | |
| 3067 | mutex_lock(&fs_info->scrub_lock); |
| 3068 | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
| 3069 | test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { |
| 3070 | mutex_unlock(&fs_info->scrub_lock); |
| 3071 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 3072 | ret = -EIO; |
| 3073 | goto out; |
| 3074 | } |
| 3075 | |
| 3076 | down_read(&fs_info->dev_replace.rwsem); |
| 3077 | if (dev->scrub_ctx || |
| 3078 | (!is_dev_replace && |
| 3079 | btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { |
| 3080 | up_read(&fs_info->dev_replace.rwsem); |
| 3081 | mutex_unlock(&fs_info->scrub_lock); |
| 3082 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 3083 | ret = -EINPROGRESS; |
| 3084 | goto out; |
| 3085 | } |
| 3086 | up_read(&fs_info->dev_replace.rwsem); |
| 3087 | |
| 3088 | sctx->readonly = readonly; |
| 3089 | dev->scrub_ctx = sctx; |
| 3090 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 3091 | |
| 3092 | /* |
| 3093 | * checking @scrub_pause_req here, we can avoid |
| 3094 | * race between committing transaction and scrubbing. |
| 3095 | */ |
| 3096 | __scrub_blocked_if_needed(fs_info); |
| 3097 | atomic_inc(&fs_info->scrubs_running); |
| 3098 | mutex_unlock(&fs_info->scrub_lock); |
| 3099 | |
| 3100 | /* |
| 3101 | * In order to avoid deadlock with reclaim when there is a transaction |
| 3102 | * trying to pause scrub, make sure we use GFP_NOFS for all the |
| 3103 | * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() |
| 3104 | * invoked by our callees. The pausing request is done when the |
| 3105 | * transaction commit starts, and it blocks the transaction until scrub |
| 3106 | * is paused (done at specific points at scrub_stripe() or right above |
| 3107 | * before incrementing fs_info->scrubs_running). |
| 3108 | */ |
| 3109 | nofs_flag = memalloc_nofs_save(); |
| 3110 | if (!is_dev_replace) { |
| 3111 | u64 old_super_errors; |
| 3112 | |
| 3113 | spin_lock(&sctx->stat_lock); |
| 3114 | old_super_errors = sctx->stat.super_errors; |
| 3115 | spin_unlock(&sctx->stat_lock); |
| 3116 | |
| 3117 | btrfs_info(fs_info, "scrub: started on devid %llu", devid); |
| 3118 | /* |
| 3119 | * by holding device list mutex, we can |
| 3120 | * kick off writing super in log tree sync. |
| 3121 | */ |
| 3122 | mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| 3123 | ret = scrub_supers(sctx, dev); |
| 3124 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 3125 | |
| 3126 | spin_lock(&sctx->stat_lock); |
| 3127 | /* |
| 3128 | * Super block errors found, but we can not commit transaction |
| 3129 | * at current context, since btrfs_commit_transaction() needs |
| 3130 | * to pause the current running scrub (hold by ourselves). |
| 3131 | */ |
| 3132 | if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) |
| 3133 | need_commit = true; |
| 3134 | spin_unlock(&sctx->stat_lock); |
| 3135 | } |
| 3136 | |
| 3137 | if (!ret) |
| 3138 | ret = scrub_enumerate_chunks(sctx, dev, start, end); |
| 3139 | memalloc_nofs_restore(nofs_flag); |
| 3140 | |
| 3141 | atomic_dec(&fs_info->scrubs_running); |
| 3142 | wake_up(&fs_info->scrub_pause_wait); |
| 3143 | |
| 3144 | if (progress) |
| 3145 | memcpy(progress, &sctx->stat, sizeof(*progress)); |
| 3146 | |
| 3147 | if (!is_dev_replace) |
| 3148 | btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", |
| 3149 | ret ? "not finished" : "finished", devid, ret); |
| 3150 | |
| 3151 | mutex_lock(&fs_info->scrub_lock); |
| 3152 | dev->scrub_ctx = NULL; |
| 3153 | mutex_unlock(&fs_info->scrub_lock); |
| 3154 | |
| 3155 | scrub_workers_put(fs_info); |
| 3156 | scrub_put_ctx(sctx); |
| 3157 | |
| 3158 | /* |
| 3159 | * We found some super block errors before, now try to force a |
| 3160 | * transaction commit, as scrub has finished. |
| 3161 | */ |
| 3162 | if (need_commit) { |
| 3163 | struct btrfs_trans_handle *trans; |
| 3164 | |
| 3165 | trans = btrfs_start_transaction(fs_info->tree_root, 0); |
| 3166 | if (IS_ERR(trans)) { |
| 3167 | ret = PTR_ERR(trans); |
| 3168 | btrfs_err(fs_info, |
| 3169 | "scrub: failed to start transaction to fix super block errors: %d", ret); |
| 3170 | return ret; |
| 3171 | } |
| 3172 | ret = btrfs_commit_transaction(trans); |
| 3173 | if (ret < 0) |
| 3174 | btrfs_err(fs_info, |
| 3175 | "scrub: failed to commit transaction to fix super block errors: %d", ret); |
| 3176 | } |
| 3177 | return ret; |
| 3178 | out: |
| 3179 | scrub_workers_put(fs_info); |
| 3180 | out_free_ctx: |
| 3181 | scrub_free_ctx(sctx); |
| 3182 | |
| 3183 | return ret; |
| 3184 | } |
| 3185 | |
| 3186 | void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) |
| 3187 | { |
| 3188 | mutex_lock(&fs_info->scrub_lock); |
| 3189 | atomic_inc(&fs_info->scrub_pause_req); |
| 3190 | while (atomic_read(&fs_info->scrubs_paused) != |
| 3191 | atomic_read(&fs_info->scrubs_running)) { |
| 3192 | mutex_unlock(&fs_info->scrub_lock); |
| 3193 | wait_event(fs_info->scrub_pause_wait, |
| 3194 | atomic_read(&fs_info->scrubs_paused) == |
| 3195 | atomic_read(&fs_info->scrubs_running)); |
| 3196 | mutex_lock(&fs_info->scrub_lock); |
| 3197 | } |
| 3198 | mutex_unlock(&fs_info->scrub_lock); |
| 3199 | } |
| 3200 | |
| 3201 | void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) |
| 3202 | { |
| 3203 | atomic_dec(&fs_info->scrub_pause_req); |
| 3204 | wake_up(&fs_info->scrub_pause_wait); |
| 3205 | } |
| 3206 | |
| 3207 | int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) |
| 3208 | { |
| 3209 | mutex_lock(&fs_info->scrub_lock); |
| 3210 | if (!atomic_read(&fs_info->scrubs_running)) { |
| 3211 | mutex_unlock(&fs_info->scrub_lock); |
| 3212 | return -ENOTCONN; |
| 3213 | } |
| 3214 | |
| 3215 | atomic_inc(&fs_info->scrub_cancel_req); |
| 3216 | while (atomic_read(&fs_info->scrubs_running)) { |
| 3217 | mutex_unlock(&fs_info->scrub_lock); |
| 3218 | wait_event(fs_info->scrub_pause_wait, |
| 3219 | atomic_read(&fs_info->scrubs_running) == 0); |
| 3220 | mutex_lock(&fs_info->scrub_lock); |
| 3221 | } |
| 3222 | atomic_dec(&fs_info->scrub_cancel_req); |
| 3223 | mutex_unlock(&fs_info->scrub_lock); |
| 3224 | |
| 3225 | return 0; |
| 3226 | } |
| 3227 | |
| 3228 | int btrfs_scrub_cancel_dev(struct btrfs_device *dev) |
| 3229 | { |
| 3230 | struct btrfs_fs_info *fs_info = dev->fs_info; |
| 3231 | struct scrub_ctx *sctx; |
| 3232 | |
| 3233 | mutex_lock(&fs_info->scrub_lock); |
| 3234 | sctx = dev->scrub_ctx; |
| 3235 | if (!sctx) { |
| 3236 | mutex_unlock(&fs_info->scrub_lock); |
| 3237 | return -ENOTCONN; |
| 3238 | } |
| 3239 | atomic_inc(&sctx->cancel_req); |
| 3240 | while (dev->scrub_ctx) { |
| 3241 | mutex_unlock(&fs_info->scrub_lock); |
| 3242 | wait_event(fs_info->scrub_pause_wait, |
| 3243 | dev->scrub_ctx == NULL); |
| 3244 | mutex_lock(&fs_info->scrub_lock); |
| 3245 | } |
| 3246 | mutex_unlock(&fs_info->scrub_lock); |
| 3247 | |
| 3248 | return 0; |
| 3249 | } |
| 3250 | |
| 3251 | int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, |
| 3252 | struct btrfs_scrub_progress *progress) |
| 3253 | { |
| 3254 | struct btrfs_dev_lookup_args args = { .devid = devid }; |
| 3255 | struct btrfs_device *dev; |
| 3256 | struct scrub_ctx *sctx = NULL; |
| 3257 | |
| 3258 | mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| 3259 | dev = btrfs_find_device(fs_info->fs_devices, &args); |
| 3260 | if (dev) |
| 3261 | sctx = dev->scrub_ctx; |
| 3262 | if (sctx) |
| 3263 | memcpy(progress, &sctx->stat, sizeof(*progress)); |
| 3264 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 3265 | |
| 3266 | return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; |
| 3267 | } |