| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2009 Oracle. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/sched.h> |
| 7 | #include <linux/pagemap.h> |
| 8 | #include <linux/writeback.h> |
| 9 | #include <linux/blkdev.h> |
| 10 | #include <linux/rbtree.h> |
| 11 | #include <linux/slab.h> |
| 12 | #include <linux/error-injection.h> |
| 13 | #include "ctree.h" |
| 14 | #include "disk-io.h" |
| 15 | #include "transaction.h" |
| 16 | #include "volumes.h" |
| 17 | #include "locking.h" |
| 18 | #include "btrfs_inode.h" |
| 19 | #include "async-thread.h" |
| 20 | #include "free-space-cache.h" |
| 21 | #include "qgroup.h" |
| 22 | #include "print-tree.h" |
| 23 | #include "delalloc-space.h" |
| 24 | #include "block-group.h" |
| 25 | #include "backref.h" |
| 26 | #include "misc.h" |
| 27 | #include "subpage.h" |
| 28 | #include "zoned.h" |
| 29 | #include "inode-item.h" |
| 30 | #include "space-info.h" |
| 31 | #include "fs.h" |
| 32 | #include "accessors.h" |
| 33 | #include "extent-tree.h" |
| 34 | #include "root-tree.h" |
| 35 | #include "file-item.h" |
| 36 | #include "relocation.h" |
| 37 | #include "super.h" |
| 38 | #include "tree-checker.h" |
| 39 | #include "raid-stripe-tree.h" |
| 40 | |
| 41 | /* |
| 42 | * Relocation overview |
| 43 | * |
| 44 | * [What does relocation do] |
| 45 | * |
| 46 | * The objective of relocation is to relocate all extents of the target block |
| 47 | * group to other block groups. |
| 48 | * This is utilized by resize (shrink only), profile converting, compacting |
| 49 | * space, or balance routine to spread chunks over devices. |
| 50 | * |
| 51 | * Before | After |
| 52 | * ------------------------------------------------------------------ |
| 53 | * BG A: 10 data extents | BG A: deleted |
| 54 | * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) |
| 55 | * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) |
| 56 | * |
| 57 | * [How does relocation work] |
| 58 | * |
| 59 | * 1. Mark the target block group read-only |
| 60 | * New extents won't be allocated from the target block group. |
| 61 | * |
| 62 | * 2.1 Record each extent in the target block group |
| 63 | * To build a proper map of extents to be relocated. |
| 64 | * |
| 65 | * 2.2 Build data reloc tree and reloc trees |
| 66 | * Data reloc tree will contain an inode, recording all newly relocated |
| 67 | * data extents. |
| 68 | * There will be only one data reloc tree for one data block group. |
| 69 | * |
| 70 | * Reloc tree will be a special snapshot of its source tree, containing |
| 71 | * relocated tree blocks. |
| 72 | * Each tree referring to a tree block in target block group will get its |
| 73 | * reloc tree built. |
| 74 | * |
| 75 | * 2.3 Swap source tree with its corresponding reloc tree |
| 76 | * Each involved tree only refers to new extents after swap. |
| 77 | * |
| 78 | * 3. Cleanup reloc trees and data reloc tree. |
| 79 | * As old extents in the target block group are still referenced by reloc |
| 80 | * trees, we need to clean them up before really freeing the target block |
| 81 | * group. |
| 82 | * |
| 83 | * The main complexity is in steps 2.2 and 2.3. |
| 84 | * |
| 85 | * The entry point of relocation is relocate_block_group() function. |
| 86 | */ |
| 87 | |
| 88 | #define RELOCATION_RESERVED_NODES 256 |
| 89 | /* |
| 90 | * map address of tree root to tree |
| 91 | */ |
| 92 | struct mapping_node { |
| 93 | union { |
| 94 | /* Use rb_simple_node for search/insert */ |
| 95 | struct { |
| 96 | struct rb_node rb_node; |
| 97 | u64 bytenr; |
| 98 | }; |
| 99 | |
| 100 | struct rb_simple_node simple_node; |
| 101 | }; |
| 102 | void *data; |
| 103 | }; |
| 104 | |
| 105 | struct mapping_tree { |
| 106 | struct rb_root rb_root; |
| 107 | spinlock_t lock; |
| 108 | }; |
| 109 | |
| 110 | /* |
| 111 | * present a tree block to process |
| 112 | */ |
| 113 | struct tree_block { |
| 114 | union { |
| 115 | /* Use rb_simple_node for search/insert */ |
| 116 | struct { |
| 117 | struct rb_node rb_node; |
| 118 | u64 bytenr; |
| 119 | }; |
| 120 | |
| 121 | struct rb_simple_node simple_node; |
| 122 | }; |
| 123 | u64 owner; |
| 124 | struct btrfs_key key; |
| 125 | u8 level; |
| 126 | bool key_ready; |
| 127 | }; |
| 128 | |
| 129 | #define MAX_EXTENTS 128 |
| 130 | |
| 131 | struct file_extent_cluster { |
| 132 | u64 start; |
| 133 | u64 end; |
| 134 | u64 boundary[MAX_EXTENTS]; |
| 135 | unsigned int nr; |
| 136 | u64 owning_root; |
| 137 | }; |
| 138 | |
| 139 | /* Stages of data relocation. */ |
| 140 | enum reloc_stage { |
| 141 | MOVE_DATA_EXTENTS, |
| 142 | UPDATE_DATA_PTRS |
| 143 | }; |
| 144 | |
| 145 | struct reloc_control { |
| 146 | /* block group to relocate */ |
| 147 | struct btrfs_block_group *block_group; |
| 148 | /* extent tree */ |
| 149 | struct btrfs_root *extent_root; |
| 150 | /* inode for moving data */ |
| 151 | struct inode *data_inode; |
| 152 | |
| 153 | struct btrfs_block_rsv *block_rsv; |
| 154 | |
| 155 | struct btrfs_backref_cache backref_cache; |
| 156 | |
| 157 | struct file_extent_cluster cluster; |
| 158 | /* tree blocks have been processed */ |
| 159 | struct extent_io_tree processed_blocks; |
| 160 | /* map start of tree root to corresponding reloc tree */ |
| 161 | struct mapping_tree reloc_root_tree; |
| 162 | /* list of reloc trees */ |
| 163 | struct list_head reloc_roots; |
| 164 | /* list of subvolume trees that get relocated */ |
| 165 | struct list_head dirty_subvol_roots; |
| 166 | /* size of metadata reservation for merging reloc trees */ |
| 167 | u64 merging_rsv_size; |
| 168 | /* size of relocated tree nodes */ |
| 169 | u64 nodes_relocated; |
| 170 | /* reserved size for block group relocation*/ |
| 171 | u64 reserved_bytes; |
| 172 | |
| 173 | u64 search_start; |
| 174 | u64 extents_found; |
| 175 | |
| 176 | enum reloc_stage stage; |
| 177 | bool create_reloc_tree; |
| 178 | bool merge_reloc_tree; |
| 179 | bool found_file_extent; |
| 180 | }; |
| 181 | |
| 182 | static void mark_block_processed(struct reloc_control *rc, |
| 183 | struct btrfs_backref_node *node) |
| 184 | { |
| 185 | u32 blocksize; |
| 186 | |
| 187 | if (node->level == 0 || |
| 188 | in_range(node->bytenr, rc->block_group->start, |
| 189 | rc->block_group->length)) { |
| 190 | blocksize = rc->extent_root->fs_info->nodesize; |
| 191 | btrfs_set_extent_bit(&rc->processed_blocks, node->bytenr, |
| 192 | node->bytenr + blocksize - 1, EXTENT_DIRTY, |
| 193 | NULL); |
| 194 | } |
| 195 | node->processed = 1; |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * walk up backref nodes until reach node presents tree root |
| 200 | */ |
| 201 | static struct btrfs_backref_node *walk_up_backref( |
| 202 | struct btrfs_backref_node *node, |
| 203 | struct btrfs_backref_edge *edges[], int *index) |
| 204 | { |
| 205 | struct btrfs_backref_edge *edge; |
| 206 | int idx = *index; |
| 207 | |
| 208 | while (!list_empty(&node->upper)) { |
| 209 | edge = list_first_entry(&node->upper, struct btrfs_backref_edge, |
| 210 | list[LOWER]); |
| 211 | edges[idx++] = edge; |
| 212 | node = edge->node[UPPER]; |
| 213 | } |
| 214 | BUG_ON(node->detached); |
| 215 | *index = idx; |
| 216 | return node; |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * walk down backref nodes to find start of next reference path |
| 221 | */ |
| 222 | static struct btrfs_backref_node *walk_down_backref( |
| 223 | struct btrfs_backref_edge *edges[], int *index) |
| 224 | { |
| 225 | struct btrfs_backref_edge *edge; |
| 226 | struct btrfs_backref_node *lower; |
| 227 | int idx = *index; |
| 228 | |
| 229 | while (idx > 0) { |
| 230 | edge = edges[idx - 1]; |
| 231 | lower = edge->node[LOWER]; |
| 232 | if (list_is_last(&edge->list[LOWER], &lower->upper)) { |
| 233 | idx--; |
| 234 | continue; |
| 235 | } |
| 236 | edge = list_first_entry(&edge->list[LOWER], struct btrfs_backref_edge, |
| 237 | list[LOWER]); |
| 238 | edges[idx - 1] = edge; |
| 239 | *index = idx; |
| 240 | return edge->node[UPPER]; |
| 241 | } |
| 242 | *index = 0; |
| 243 | return NULL; |
| 244 | } |
| 245 | |
| 246 | static bool reloc_root_is_dead(const struct btrfs_root *root) |
| 247 | { |
| 248 | /* |
| 249 | * Pair with set_bit/clear_bit in clean_dirty_subvols and |
| 250 | * btrfs_update_reloc_root. We need to see the updated bit before |
| 251 | * trying to access reloc_root |
| 252 | */ |
| 253 | smp_rmb(); |
| 254 | if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) |
| 255 | return true; |
| 256 | return false; |
| 257 | } |
| 258 | |
| 259 | /* |
| 260 | * Check if this subvolume tree has valid reloc tree. |
| 261 | * |
| 262 | * Reloc tree after swap is considered dead, thus not considered as valid. |
| 263 | * This is enough for most callers, as they don't distinguish dead reloc root |
| 264 | * from no reloc root. But btrfs_should_ignore_reloc_root() below is a |
| 265 | * special case. |
| 266 | */ |
| 267 | static bool have_reloc_root(const struct btrfs_root *root) |
| 268 | { |
| 269 | if (reloc_root_is_dead(root)) |
| 270 | return false; |
| 271 | if (!root->reloc_root) |
| 272 | return false; |
| 273 | return true; |
| 274 | } |
| 275 | |
| 276 | bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root) |
| 277 | { |
| 278 | struct btrfs_root *reloc_root; |
| 279 | |
| 280 | if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) |
| 281 | return false; |
| 282 | |
| 283 | /* This root has been merged with its reloc tree, we can ignore it */ |
| 284 | if (reloc_root_is_dead(root)) |
| 285 | return true; |
| 286 | |
| 287 | reloc_root = root->reloc_root; |
| 288 | if (!reloc_root) |
| 289 | return false; |
| 290 | |
| 291 | if (btrfs_header_generation(reloc_root->commit_root) == |
| 292 | root->fs_info->running_transaction->transid) |
| 293 | return false; |
| 294 | /* |
| 295 | * If there is reloc tree and it was created in previous transaction |
| 296 | * backref lookup can find the reloc tree, so backref node for the fs |
| 297 | * tree root is useless for relocation. |
| 298 | */ |
| 299 | return true; |
| 300 | } |
| 301 | |
| 302 | /* |
| 303 | * find reloc tree by address of tree root |
| 304 | */ |
| 305 | struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) |
| 306 | { |
| 307 | struct reloc_control *rc = fs_info->reloc_ctl; |
| 308 | struct rb_node *rb_node; |
| 309 | struct mapping_node *node; |
| 310 | struct btrfs_root *root = NULL; |
| 311 | |
| 312 | ASSERT(rc); |
| 313 | spin_lock(&rc->reloc_root_tree.lock); |
| 314 | rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); |
| 315 | if (rb_node) { |
| 316 | node = rb_entry(rb_node, struct mapping_node, rb_node); |
| 317 | root = node->data; |
| 318 | } |
| 319 | spin_unlock(&rc->reloc_root_tree.lock); |
| 320 | return btrfs_grab_root(root); |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | * For useless nodes, do two major clean ups: |
| 325 | * |
| 326 | * - Cleanup the children edges and nodes |
| 327 | * If child node is also orphan (no parent) during cleanup, then the child |
| 328 | * node will also be cleaned up. |
| 329 | * |
| 330 | * - Freeing up leaves (level 0), keeps nodes detached |
| 331 | * For nodes, the node is still cached as "detached" |
| 332 | * |
| 333 | * Return false if @node is not in the @useless_nodes list. |
| 334 | * Return true if @node is in the @useless_nodes list. |
| 335 | */ |
| 336 | static bool handle_useless_nodes(struct reloc_control *rc, |
| 337 | struct btrfs_backref_node *node) |
| 338 | { |
| 339 | struct btrfs_backref_cache *cache = &rc->backref_cache; |
| 340 | struct list_head *useless_node = &cache->useless_node; |
| 341 | bool ret = false; |
| 342 | |
| 343 | while (!list_empty(useless_node)) { |
| 344 | struct btrfs_backref_node *cur; |
| 345 | |
| 346 | cur = list_first_entry(useless_node, struct btrfs_backref_node, |
| 347 | list); |
| 348 | list_del_init(&cur->list); |
| 349 | |
| 350 | /* Only tree root nodes can be added to @useless_nodes */ |
| 351 | ASSERT(list_empty(&cur->upper)); |
| 352 | |
| 353 | if (cur == node) |
| 354 | ret = true; |
| 355 | |
| 356 | /* Cleanup the lower edges */ |
| 357 | while (!list_empty(&cur->lower)) { |
| 358 | struct btrfs_backref_edge *edge; |
| 359 | struct btrfs_backref_node *lower; |
| 360 | |
| 361 | edge = list_first_entry(&cur->lower, struct btrfs_backref_edge, |
| 362 | list[UPPER]); |
| 363 | list_del(&edge->list[UPPER]); |
| 364 | list_del(&edge->list[LOWER]); |
| 365 | lower = edge->node[LOWER]; |
| 366 | btrfs_backref_free_edge(cache, edge); |
| 367 | |
| 368 | /* Child node is also orphan, queue for cleanup */ |
| 369 | if (list_empty(&lower->upper)) |
| 370 | list_add(&lower->list, useless_node); |
| 371 | } |
| 372 | /* Mark this block processed for relocation */ |
| 373 | mark_block_processed(rc, cur); |
| 374 | |
| 375 | /* |
| 376 | * Backref nodes for tree leaves are deleted from the cache. |
| 377 | * Backref nodes for upper level tree blocks are left in the |
| 378 | * cache to avoid unnecessary backref lookup. |
| 379 | */ |
| 380 | if (cur->level > 0) { |
| 381 | cur->detached = 1; |
| 382 | } else { |
| 383 | rb_erase(&cur->rb_node, &cache->rb_root); |
| 384 | btrfs_backref_free_node(cache, cur); |
| 385 | } |
| 386 | } |
| 387 | return ret; |
| 388 | } |
| 389 | |
| 390 | /* |
| 391 | * Build backref tree for a given tree block. Root of the backref tree |
| 392 | * corresponds the tree block, leaves of the backref tree correspond roots of |
| 393 | * b-trees that reference the tree block. |
| 394 | * |
| 395 | * The basic idea of this function is check backrefs of a given block to find |
| 396 | * upper level blocks that reference the block, and then check backrefs of |
| 397 | * these upper level blocks recursively. The recursion stops when tree root is |
| 398 | * reached or backrefs for the block is cached. |
| 399 | * |
| 400 | * NOTE: if we find that backrefs for a block are cached, we know backrefs for |
| 401 | * all upper level blocks that directly/indirectly reference the block are also |
| 402 | * cached. |
| 403 | */ |
| 404 | static noinline_for_stack struct btrfs_backref_node *build_backref_tree( |
| 405 | struct btrfs_trans_handle *trans, |
| 406 | struct reloc_control *rc, struct btrfs_key *node_key, |
| 407 | int level, u64 bytenr) |
| 408 | { |
| 409 | struct btrfs_backref_iter *iter; |
| 410 | struct btrfs_backref_cache *cache = &rc->backref_cache; |
| 411 | /* For searching parent of TREE_BLOCK_REF */ |
| 412 | struct btrfs_path *path; |
| 413 | struct btrfs_backref_node *cur; |
| 414 | struct btrfs_backref_node *node = NULL; |
| 415 | struct btrfs_backref_edge *edge; |
| 416 | int ret; |
| 417 | |
| 418 | iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info); |
| 419 | if (!iter) |
| 420 | return ERR_PTR(-ENOMEM); |
| 421 | path = btrfs_alloc_path(); |
| 422 | if (!path) { |
| 423 | ret = -ENOMEM; |
| 424 | goto out; |
| 425 | } |
| 426 | |
| 427 | node = btrfs_backref_alloc_node(cache, bytenr, level); |
| 428 | if (!node) { |
| 429 | ret = -ENOMEM; |
| 430 | goto out; |
| 431 | } |
| 432 | |
| 433 | cur = node; |
| 434 | |
| 435 | /* Breadth-first search to build backref cache */ |
| 436 | do { |
| 437 | ret = btrfs_backref_add_tree_node(trans, cache, path, iter, |
| 438 | node_key, cur); |
| 439 | if (ret < 0) |
| 440 | goto out; |
| 441 | |
| 442 | edge = list_first_entry_or_null(&cache->pending_edge, |
| 443 | struct btrfs_backref_edge, list[UPPER]); |
| 444 | /* |
| 445 | * The pending list isn't empty, take the first block to |
| 446 | * process |
| 447 | */ |
| 448 | if (edge) { |
| 449 | list_del_init(&edge->list[UPPER]); |
| 450 | cur = edge->node[UPPER]; |
| 451 | } |
| 452 | } while (edge); |
| 453 | |
| 454 | /* Finish the upper linkage of newly added edges/nodes */ |
| 455 | ret = btrfs_backref_finish_upper_links(cache, node); |
| 456 | if (ret < 0) |
| 457 | goto out; |
| 458 | |
| 459 | if (handle_useless_nodes(rc, node)) |
| 460 | node = NULL; |
| 461 | out: |
| 462 | btrfs_free_path(iter->path); |
| 463 | kfree(iter); |
| 464 | btrfs_free_path(path); |
| 465 | if (ret) { |
| 466 | btrfs_backref_error_cleanup(cache, node); |
| 467 | return ERR_PTR(ret); |
| 468 | } |
| 469 | ASSERT(!node || !node->detached); |
| 470 | ASSERT(list_empty(&cache->useless_node) && |
| 471 | list_empty(&cache->pending_edge)); |
| 472 | return node; |
| 473 | } |
| 474 | |
| 475 | /* |
| 476 | * helper to add 'address of tree root -> reloc tree' mapping |
| 477 | */ |
| 478 | static int __add_reloc_root(struct btrfs_root *root) |
| 479 | { |
| 480 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 481 | struct rb_node *rb_node; |
| 482 | struct mapping_node *node; |
| 483 | struct reloc_control *rc = fs_info->reloc_ctl; |
| 484 | |
| 485 | node = kmalloc(sizeof(*node), GFP_NOFS); |
| 486 | if (!node) |
| 487 | return -ENOMEM; |
| 488 | |
| 489 | node->bytenr = root->commit_root->start; |
| 490 | node->data = root; |
| 491 | |
| 492 | spin_lock(&rc->reloc_root_tree.lock); |
| 493 | rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node); |
| 494 | spin_unlock(&rc->reloc_root_tree.lock); |
| 495 | if (rb_node) { |
| 496 | btrfs_err(fs_info, |
| 497 | "Duplicate root found for start=%llu while inserting into relocation tree", |
| 498 | node->bytenr); |
| 499 | return -EEXIST; |
| 500 | } |
| 501 | |
| 502 | list_add_tail(&root->root_list, &rc->reloc_roots); |
| 503 | return 0; |
| 504 | } |
| 505 | |
| 506 | /* |
| 507 | * helper to delete the 'address of tree root -> reloc tree' |
| 508 | * mapping |
| 509 | */ |
| 510 | static void __del_reloc_root(struct btrfs_root *root) |
| 511 | { |
| 512 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 513 | struct rb_node *rb_node; |
| 514 | struct mapping_node *node = NULL; |
| 515 | struct reloc_control *rc = fs_info->reloc_ctl; |
| 516 | bool put_ref = false; |
| 517 | |
| 518 | if (rc && root->node) { |
| 519 | spin_lock(&rc->reloc_root_tree.lock); |
| 520 | rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, |
| 521 | root->commit_root->start); |
| 522 | if (rb_node) { |
| 523 | node = rb_entry(rb_node, struct mapping_node, rb_node); |
| 524 | rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); |
| 525 | RB_CLEAR_NODE(&node->rb_node); |
| 526 | } |
| 527 | spin_unlock(&rc->reloc_root_tree.lock); |
| 528 | ASSERT(!node || (struct btrfs_root *)node->data == root); |
| 529 | } |
| 530 | |
| 531 | /* |
| 532 | * We only put the reloc root here if it's on the list. There's a lot |
| 533 | * of places where the pattern is to splice the rc->reloc_roots, process |
| 534 | * the reloc roots, and then add the reloc root back onto |
| 535 | * rc->reloc_roots. If we call __del_reloc_root while it's off of the |
| 536 | * list we don't want the reference being dropped, because the guy |
| 537 | * messing with the list is in charge of the reference. |
| 538 | */ |
| 539 | spin_lock(&fs_info->trans_lock); |
| 540 | if (!list_empty(&root->root_list)) { |
| 541 | put_ref = true; |
| 542 | list_del_init(&root->root_list); |
| 543 | } |
| 544 | spin_unlock(&fs_info->trans_lock); |
| 545 | if (put_ref) |
| 546 | btrfs_put_root(root); |
| 547 | kfree(node); |
| 548 | } |
| 549 | |
| 550 | /* |
| 551 | * helper to update the 'address of tree root -> reloc tree' |
| 552 | * mapping |
| 553 | */ |
| 554 | static int __update_reloc_root(struct btrfs_root *root) |
| 555 | { |
| 556 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 557 | struct rb_node *rb_node; |
| 558 | struct mapping_node *node = NULL; |
| 559 | struct reloc_control *rc = fs_info->reloc_ctl; |
| 560 | |
| 561 | spin_lock(&rc->reloc_root_tree.lock); |
| 562 | rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, |
| 563 | root->commit_root->start); |
| 564 | if (rb_node) { |
| 565 | node = rb_entry(rb_node, struct mapping_node, rb_node); |
| 566 | rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); |
| 567 | } |
| 568 | spin_unlock(&rc->reloc_root_tree.lock); |
| 569 | |
| 570 | if (!node) |
| 571 | return 0; |
| 572 | BUG_ON((struct btrfs_root *)node->data != root); |
| 573 | |
| 574 | spin_lock(&rc->reloc_root_tree.lock); |
| 575 | node->bytenr = root->node->start; |
| 576 | rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, &node->simple_node); |
| 577 | spin_unlock(&rc->reloc_root_tree.lock); |
| 578 | if (rb_node) |
| 579 | btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); |
| 580 | return 0; |
| 581 | } |
| 582 | |
| 583 | static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, |
| 584 | struct btrfs_root *root, u64 objectid) |
| 585 | { |
| 586 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 587 | struct btrfs_root *reloc_root; |
| 588 | struct extent_buffer *eb; |
| 589 | struct btrfs_root_item *root_item; |
| 590 | struct btrfs_key root_key; |
| 591 | int ret = 0; |
| 592 | bool must_abort = false; |
| 593 | |
| 594 | root_item = kmalloc(sizeof(*root_item), GFP_NOFS); |
| 595 | if (!root_item) |
| 596 | return ERR_PTR(-ENOMEM); |
| 597 | |
| 598 | root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; |
| 599 | root_key.type = BTRFS_ROOT_ITEM_KEY; |
| 600 | root_key.offset = objectid; |
| 601 | |
| 602 | if (btrfs_root_id(root) == objectid) { |
| 603 | u64 commit_root_gen; |
| 604 | |
| 605 | /* |
| 606 | * Relocation will wait for cleaner thread, and any half-dropped |
| 607 | * subvolume will be fully cleaned up at mount time. |
| 608 | * So here we shouldn't hit a subvolume with non-zero drop_progress. |
| 609 | * |
| 610 | * If this isn't the case, error out since it can make us attempt to |
| 611 | * drop references for extents that were already dropped before. |
| 612 | */ |
| 613 | if (unlikely(btrfs_disk_key_objectid(&root->root_item.drop_progress))) { |
| 614 | struct btrfs_key cpu_key; |
| 615 | |
| 616 | btrfs_disk_key_to_cpu(&cpu_key, &root->root_item.drop_progress); |
| 617 | btrfs_err(fs_info, |
| 618 | "cannot relocate partially dropped subvolume %llu, drop progress key (%llu %u %llu)", |
| 619 | objectid, cpu_key.objectid, cpu_key.type, cpu_key.offset); |
| 620 | ret = -EUCLEAN; |
| 621 | goto fail; |
| 622 | } |
| 623 | |
| 624 | /* called by btrfs_init_reloc_root */ |
| 625 | ret = btrfs_copy_root(trans, root, root->commit_root, &eb, |
| 626 | BTRFS_TREE_RELOC_OBJECTID); |
| 627 | if (ret) |
| 628 | goto fail; |
| 629 | |
| 630 | /* |
| 631 | * Set the last_snapshot field to the generation of the commit |
| 632 | * root - like this ctree.c:btrfs_block_can_be_shared() behaves |
| 633 | * correctly (returns true) when the relocation root is created |
| 634 | * either inside the critical section of a transaction commit |
| 635 | * (through transaction.c:qgroup_account_snapshot()) and when |
| 636 | * it's created before the transaction commit is started. |
| 637 | */ |
| 638 | commit_root_gen = btrfs_header_generation(root->commit_root); |
| 639 | btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); |
| 640 | } else { |
| 641 | /* |
| 642 | * called by btrfs_reloc_post_snapshot_hook. |
| 643 | * the source tree is a reloc tree, all tree blocks |
| 644 | * modified after it was created have RELOC flag |
| 645 | * set in their headers. so it's OK to not update |
| 646 | * the 'last_snapshot'. |
| 647 | */ |
| 648 | ret = btrfs_copy_root(trans, root, root->node, &eb, |
| 649 | BTRFS_TREE_RELOC_OBJECTID); |
| 650 | if (ret) |
| 651 | goto fail; |
| 652 | } |
| 653 | |
| 654 | /* |
| 655 | * We have changed references at this point, we must abort the |
| 656 | * transaction if anything fails. |
| 657 | */ |
| 658 | must_abort = true; |
| 659 | |
| 660 | memcpy(root_item, &root->root_item, sizeof(*root_item)); |
| 661 | btrfs_set_root_bytenr(root_item, eb->start); |
| 662 | btrfs_set_root_level(root_item, btrfs_header_level(eb)); |
| 663 | btrfs_set_root_generation(root_item, trans->transid); |
| 664 | |
| 665 | if (btrfs_root_id(root) == objectid) { |
| 666 | btrfs_set_root_refs(root_item, 0); |
| 667 | memset(&root_item->drop_progress, 0, |
| 668 | sizeof(struct btrfs_disk_key)); |
| 669 | btrfs_set_root_drop_level(root_item, 0); |
| 670 | } |
| 671 | |
| 672 | btrfs_tree_unlock(eb); |
| 673 | free_extent_buffer(eb); |
| 674 | |
| 675 | ret = btrfs_insert_root(trans, fs_info->tree_root, |
| 676 | &root_key, root_item); |
| 677 | if (ret) |
| 678 | goto fail; |
| 679 | |
| 680 | kfree(root_item); |
| 681 | |
| 682 | reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); |
| 683 | if (IS_ERR(reloc_root)) { |
| 684 | ret = PTR_ERR(reloc_root); |
| 685 | goto abort; |
| 686 | } |
| 687 | set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); |
| 688 | btrfs_set_root_last_trans(reloc_root, trans->transid); |
| 689 | return reloc_root; |
| 690 | fail: |
| 691 | kfree(root_item); |
| 692 | abort: |
| 693 | if (must_abort) |
| 694 | btrfs_abort_transaction(trans, ret); |
| 695 | return ERR_PTR(ret); |
| 696 | } |
| 697 | |
| 698 | /* |
| 699 | * create reloc tree for a given fs tree. reloc tree is just a |
| 700 | * snapshot of the fs tree with special root objectid. |
| 701 | * |
| 702 | * The reloc_root comes out of here with two references, one for |
| 703 | * root->reloc_root, and another for being on the rc->reloc_roots list. |
| 704 | */ |
| 705 | int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, |
| 706 | struct btrfs_root *root) |
| 707 | { |
| 708 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 709 | struct btrfs_root *reloc_root; |
| 710 | struct reloc_control *rc = fs_info->reloc_ctl; |
| 711 | struct btrfs_block_rsv *rsv; |
| 712 | int clear_rsv = 0; |
| 713 | int ret; |
| 714 | |
| 715 | if (!rc) |
| 716 | return 0; |
| 717 | |
| 718 | /* |
| 719 | * The subvolume has reloc tree but the swap is finished, no need to |
| 720 | * create/update the dead reloc tree |
| 721 | */ |
| 722 | if (reloc_root_is_dead(root)) |
| 723 | return 0; |
| 724 | |
| 725 | /* |
| 726 | * This is subtle but important. We do not do |
| 727 | * record_root_in_transaction for reloc roots, instead we record their |
| 728 | * corresponding fs root, and then here we update the last trans for the |
| 729 | * reloc root. This means that we have to do this for the entire life |
| 730 | * of the reloc root, regardless of which stage of the relocation we are |
| 731 | * in. |
| 732 | */ |
| 733 | if (root->reloc_root) { |
| 734 | reloc_root = root->reloc_root; |
| 735 | btrfs_set_root_last_trans(reloc_root, trans->transid); |
| 736 | return 0; |
| 737 | } |
| 738 | |
| 739 | /* |
| 740 | * We are merging reloc roots, we do not need new reloc trees. Also |
| 741 | * reloc trees never need their own reloc tree. |
| 742 | */ |
| 743 | if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) |
| 744 | return 0; |
| 745 | |
| 746 | if (!trans->reloc_reserved) { |
| 747 | rsv = trans->block_rsv; |
| 748 | trans->block_rsv = rc->block_rsv; |
| 749 | clear_rsv = 1; |
| 750 | } |
| 751 | reloc_root = create_reloc_root(trans, root, btrfs_root_id(root)); |
| 752 | if (clear_rsv) |
| 753 | trans->block_rsv = rsv; |
| 754 | if (IS_ERR(reloc_root)) |
| 755 | return PTR_ERR(reloc_root); |
| 756 | |
| 757 | ret = __add_reloc_root(reloc_root); |
| 758 | ASSERT(ret != -EEXIST); |
| 759 | if (ret) { |
| 760 | /* Pairs with create_reloc_root */ |
| 761 | btrfs_put_root(reloc_root); |
| 762 | return ret; |
| 763 | } |
| 764 | root->reloc_root = btrfs_grab_root(reloc_root); |
| 765 | return 0; |
| 766 | } |
| 767 | |
| 768 | /* |
| 769 | * update root item of reloc tree |
| 770 | */ |
| 771 | int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, |
| 772 | struct btrfs_root *root) |
| 773 | { |
| 774 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 775 | struct btrfs_root *reloc_root; |
| 776 | struct btrfs_root_item *root_item; |
| 777 | int ret; |
| 778 | |
| 779 | if (!have_reloc_root(root)) |
| 780 | return 0; |
| 781 | |
| 782 | reloc_root = root->reloc_root; |
| 783 | root_item = &reloc_root->root_item; |
| 784 | |
| 785 | /* |
| 786 | * We are probably ok here, but __del_reloc_root() will drop its ref of |
| 787 | * the root. We have the ref for root->reloc_root, but just in case |
| 788 | * hold it while we update the reloc root. |
| 789 | */ |
| 790 | btrfs_grab_root(reloc_root); |
| 791 | |
| 792 | /* root->reloc_root will stay until current relocation finished */ |
| 793 | if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree && |
| 794 | btrfs_root_refs(root_item) == 0) { |
| 795 | set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); |
| 796 | /* |
| 797 | * Mark the tree as dead before we change reloc_root so |
| 798 | * have_reloc_root will not touch it from now on. |
| 799 | */ |
| 800 | smp_wmb(); |
| 801 | __del_reloc_root(reloc_root); |
| 802 | } |
| 803 | |
| 804 | if (reloc_root->commit_root != reloc_root->node) { |
| 805 | __update_reloc_root(reloc_root); |
| 806 | btrfs_set_root_node(root_item, reloc_root->node); |
| 807 | free_extent_buffer(reloc_root->commit_root); |
| 808 | reloc_root->commit_root = btrfs_root_node(reloc_root); |
| 809 | } |
| 810 | |
| 811 | ret = btrfs_update_root(trans, fs_info->tree_root, |
| 812 | &reloc_root->root_key, root_item); |
| 813 | btrfs_put_root(reloc_root); |
| 814 | return ret; |
| 815 | } |
| 816 | |
| 817 | /* |
| 818 | * get new location of data |
| 819 | */ |
| 820 | static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, |
| 821 | u64 bytenr, u64 num_bytes) |
| 822 | { |
| 823 | struct btrfs_root *root = BTRFS_I(reloc_inode)->root; |
| 824 | struct btrfs_path *path; |
| 825 | struct btrfs_file_extent_item *fi; |
| 826 | struct extent_buffer *leaf; |
| 827 | int ret; |
| 828 | |
| 829 | path = btrfs_alloc_path(); |
| 830 | if (!path) |
| 831 | return -ENOMEM; |
| 832 | |
| 833 | bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start; |
| 834 | ret = btrfs_lookup_file_extent(NULL, root, path, |
| 835 | btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); |
| 836 | if (ret < 0) |
| 837 | goto out; |
| 838 | if (ret > 0) { |
| 839 | ret = -ENOENT; |
| 840 | goto out; |
| 841 | } |
| 842 | |
| 843 | leaf = path->nodes[0]; |
| 844 | fi = btrfs_item_ptr(leaf, path->slots[0], |
| 845 | struct btrfs_file_extent_item); |
| 846 | |
| 847 | BUG_ON(btrfs_file_extent_offset(leaf, fi) || |
| 848 | btrfs_file_extent_compression(leaf, fi) || |
| 849 | btrfs_file_extent_encryption(leaf, fi) || |
| 850 | btrfs_file_extent_other_encoding(leaf, fi)); |
| 851 | |
| 852 | if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { |
| 853 | ret = -EINVAL; |
| 854 | goto out; |
| 855 | } |
| 856 | |
| 857 | *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); |
| 858 | ret = 0; |
| 859 | out: |
| 860 | btrfs_free_path(path); |
| 861 | return ret; |
| 862 | } |
| 863 | |
| 864 | /* |
| 865 | * update file extent items in the tree leaf to point to |
| 866 | * the new locations. |
| 867 | */ |
| 868 | static noinline_for_stack |
| 869 | int replace_file_extents(struct btrfs_trans_handle *trans, |
| 870 | struct reloc_control *rc, |
| 871 | struct btrfs_root *root, |
| 872 | struct extent_buffer *leaf) |
| 873 | { |
| 874 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 875 | struct btrfs_key key; |
| 876 | struct btrfs_file_extent_item *fi; |
| 877 | struct btrfs_inode *inode = NULL; |
| 878 | u64 parent; |
| 879 | u64 bytenr; |
| 880 | u64 new_bytenr = 0; |
| 881 | u64 num_bytes; |
| 882 | u64 end; |
| 883 | u32 nritems; |
| 884 | u32 i; |
| 885 | int ret = 0; |
| 886 | int first = 1; |
| 887 | |
| 888 | if (rc->stage != UPDATE_DATA_PTRS) |
| 889 | return 0; |
| 890 | |
| 891 | /* reloc trees always use full backref */ |
| 892 | if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) |
| 893 | parent = leaf->start; |
| 894 | else |
| 895 | parent = 0; |
| 896 | |
| 897 | nritems = btrfs_header_nritems(leaf); |
| 898 | for (i = 0; i < nritems; i++) { |
| 899 | struct btrfs_ref ref = { 0 }; |
| 900 | |
| 901 | cond_resched(); |
| 902 | btrfs_item_key_to_cpu(leaf, &key, i); |
| 903 | if (key.type != BTRFS_EXTENT_DATA_KEY) |
| 904 | continue; |
| 905 | fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); |
| 906 | if (btrfs_file_extent_type(leaf, fi) == |
| 907 | BTRFS_FILE_EXTENT_INLINE) |
| 908 | continue; |
| 909 | bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); |
| 910 | num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); |
| 911 | if (bytenr == 0) |
| 912 | continue; |
| 913 | if (!in_range(bytenr, rc->block_group->start, |
| 914 | rc->block_group->length)) |
| 915 | continue; |
| 916 | |
| 917 | /* |
| 918 | * if we are modifying block in fs tree, wait for read_folio |
| 919 | * to complete and drop the extent cache |
| 920 | */ |
| 921 | if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) { |
| 922 | if (first) { |
| 923 | inode = btrfs_find_first_inode(root, key.objectid); |
| 924 | first = 0; |
| 925 | } else if (inode && btrfs_ino(inode) < key.objectid) { |
| 926 | btrfs_add_delayed_iput(inode); |
| 927 | inode = btrfs_find_first_inode(root, key.objectid); |
| 928 | } |
| 929 | if (inode && btrfs_ino(inode) == key.objectid) { |
| 930 | struct extent_state *cached_state = NULL; |
| 931 | |
| 932 | end = key.offset + |
| 933 | btrfs_file_extent_num_bytes(leaf, fi); |
| 934 | WARN_ON(!IS_ALIGNED(key.offset, |
| 935 | fs_info->sectorsize)); |
| 936 | WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); |
| 937 | end--; |
| 938 | /* Take mmap lock to serialize with reflinks. */ |
| 939 | if (!down_read_trylock(&inode->i_mmap_lock)) |
| 940 | continue; |
| 941 | ret = btrfs_try_lock_extent(&inode->io_tree, key.offset, |
| 942 | end, &cached_state); |
| 943 | if (!ret) { |
| 944 | up_read(&inode->i_mmap_lock); |
| 945 | continue; |
| 946 | } |
| 947 | |
| 948 | btrfs_drop_extent_map_range(inode, key.offset, end, true); |
| 949 | btrfs_unlock_extent(&inode->io_tree, key.offset, end, |
| 950 | &cached_state); |
| 951 | up_read(&inode->i_mmap_lock); |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | ret = get_new_location(rc->data_inode, &new_bytenr, |
| 956 | bytenr, num_bytes); |
| 957 | if (ret) { |
| 958 | /* |
| 959 | * Don't have to abort since we've not changed anything |
| 960 | * in the file extent yet. |
| 961 | */ |
| 962 | break; |
| 963 | } |
| 964 | |
| 965 | btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); |
| 966 | |
| 967 | key.offset -= btrfs_file_extent_offset(leaf, fi); |
| 968 | ref.action = BTRFS_ADD_DELAYED_REF; |
| 969 | ref.bytenr = new_bytenr; |
| 970 | ref.num_bytes = num_bytes; |
| 971 | ref.parent = parent; |
| 972 | ref.owning_root = btrfs_root_id(root); |
| 973 | ref.ref_root = btrfs_header_owner(leaf); |
| 974 | btrfs_init_data_ref(&ref, key.objectid, key.offset, |
| 975 | btrfs_root_id(root), false); |
| 976 | ret = btrfs_inc_extent_ref(trans, &ref); |
| 977 | if (ret) { |
| 978 | btrfs_abort_transaction(trans, ret); |
| 979 | break; |
| 980 | } |
| 981 | |
| 982 | ref.action = BTRFS_DROP_DELAYED_REF; |
| 983 | ref.bytenr = bytenr; |
| 984 | ref.num_bytes = num_bytes; |
| 985 | ref.parent = parent; |
| 986 | ref.owning_root = btrfs_root_id(root); |
| 987 | ref.ref_root = btrfs_header_owner(leaf); |
| 988 | btrfs_init_data_ref(&ref, key.objectid, key.offset, |
| 989 | btrfs_root_id(root), false); |
| 990 | ret = btrfs_free_extent(trans, &ref); |
| 991 | if (ret) { |
| 992 | btrfs_abort_transaction(trans, ret); |
| 993 | break; |
| 994 | } |
| 995 | } |
| 996 | if (inode) |
| 997 | btrfs_add_delayed_iput(inode); |
| 998 | return ret; |
| 999 | } |
| 1000 | |
| 1001 | static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb, |
| 1002 | int slot, const struct btrfs_path *path, |
| 1003 | int level) |
| 1004 | { |
| 1005 | struct btrfs_disk_key key1; |
| 1006 | struct btrfs_disk_key key2; |
| 1007 | btrfs_node_key(eb, &key1, slot); |
| 1008 | btrfs_node_key(path->nodes[level], &key2, path->slots[level]); |
| 1009 | return memcmp(&key1, &key2, sizeof(key1)); |
| 1010 | } |
| 1011 | |
| 1012 | /* |
| 1013 | * try to replace tree blocks in fs tree with the new blocks |
| 1014 | * in reloc tree. tree blocks haven't been modified since the |
| 1015 | * reloc tree was create can be replaced. |
| 1016 | * |
| 1017 | * if a block was replaced, level of the block + 1 is returned. |
| 1018 | * if no block got replaced, 0 is returned. if there are other |
| 1019 | * errors, a negative error number is returned. |
| 1020 | */ |
| 1021 | static noinline_for_stack |
| 1022 | int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, |
| 1023 | struct btrfs_root *dest, struct btrfs_root *src, |
| 1024 | struct btrfs_path *path, struct btrfs_key *next_key, |
| 1025 | int lowest_level, int max_level) |
| 1026 | { |
| 1027 | struct btrfs_fs_info *fs_info = dest->fs_info; |
| 1028 | struct extent_buffer *eb; |
| 1029 | struct extent_buffer *parent; |
| 1030 | struct btrfs_ref ref = { 0 }; |
| 1031 | struct btrfs_key key; |
| 1032 | u64 old_bytenr; |
| 1033 | u64 new_bytenr; |
| 1034 | u64 old_ptr_gen; |
| 1035 | u64 new_ptr_gen; |
| 1036 | u64 last_snapshot; |
| 1037 | u32 blocksize; |
| 1038 | int cow = 0; |
| 1039 | int level; |
| 1040 | int ret; |
| 1041 | int slot; |
| 1042 | |
| 1043 | ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID); |
| 1044 | ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID); |
| 1045 | |
| 1046 | last_snapshot = btrfs_root_last_snapshot(&src->root_item); |
| 1047 | again: |
| 1048 | slot = path->slots[lowest_level]; |
| 1049 | btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); |
| 1050 | |
| 1051 | eb = btrfs_lock_root_node(dest); |
| 1052 | level = btrfs_header_level(eb); |
| 1053 | |
| 1054 | if (level < lowest_level) { |
| 1055 | btrfs_tree_unlock(eb); |
| 1056 | free_extent_buffer(eb); |
| 1057 | return 0; |
| 1058 | } |
| 1059 | |
| 1060 | if (cow) { |
| 1061 | ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, |
| 1062 | BTRFS_NESTING_COW); |
| 1063 | if (ret) { |
| 1064 | btrfs_tree_unlock(eb); |
| 1065 | free_extent_buffer(eb); |
| 1066 | return ret; |
| 1067 | } |
| 1068 | } |
| 1069 | |
| 1070 | if (next_key) { |
| 1071 | next_key->objectid = (u64)-1; |
| 1072 | next_key->type = (u8)-1; |
| 1073 | next_key->offset = (u64)-1; |
| 1074 | } |
| 1075 | |
| 1076 | parent = eb; |
| 1077 | while (1) { |
| 1078 | level = btrfs_header_level(parent); |
| 1079 | ASSERT(level >= lowest_level); |
| 1080 | |
| 1081 | ret = btrfs_bin_search(parent, 0, &key, &slot); |
| 1082 | if (ret < 0) |
| 1083 | break; |
| 1084 | if (ret && slot > 0) |
| 1085 | slot--; |
| 1086 | |
| 1087 | if (next_key && slot + 1 < btrfs_header_nritems(parent)) |
| 1088 | btrfs_node_key_to_cpu(parent, next_key, slot + 1); |
| 1089 | |
| 1090 | old_bytenr = btrfs_node_blockptr(parent, slot); |
| 1091 | blocksize = fs_info->nodesize; |
| 1092 | old_ptr_gen = btrfs_node_ptr_generation(parent, slot); |
| 1093 | |
| 1094 | if (level <= max_level) { |
| 1095 | eb = path->nodes[level]; |
| 1096 | new_bytenr = btrfs_node_blockptr(eb, |
| 1097 | path->slots[level]); |
| 1098 | new_ptr_gen = btrfs_node_ptr_generation(eb, |
| 1099 | path->slots[level]); |
| 1100 | } else { |
| 1101 | new_bytenr = 0; |
| 1102 | new_ptr_gen = 0; |
| 1103 | } |
| 1104 | |
| 1105 | if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { |
| 1106 | ret = level; |
| 1107 | break; |
| 1108 | } |
| 1109 | |
| 1110 | if (new_bytenr == 0 || old_ptr_gen > last_snapshot || |
| 1111 | memcmp_node_keys(parent, slot, path, level)) { |
| 1112 | if (level <= lowest_level) { |
| 1113 | ret = 0; |
| 1114 | break; |
| 1115 | } |
| 1116 | |
| 1117 | eb = btrfs_read_node_slot(parent, slot); |
| 1118 | if (IS_ERR(eb)) { |
| 1119 | ret = PTR_ERR(eb); |
| 1120 | break; |
| 1121 | } |
| 1122 | btrfs_tree_lock(eb); |
| 1123 | if (cow) { |
| 1124 | ret = btrfs_cow_block(trans, dest, eb, parent, |
| 1125 | slot, &eb, |
| 1126 | BTRFS_NESTING_COW); |
| 1127 | if (ret) { |
| 1128 | btrfs_tree_unlock(eb); |
| 1129 | free_extent_buffer(eb); |
| 1130 | break; |
| 1131 | } |
| 1132 | } |
| 1133 | |
| 1134 | btrfs_tree_unlock(parent); |
| 1135 | free_extent_buffer(parent); |
| 1136 | |
| 1137 | parent = eb; |
| 1138 | continue; |
| 1139 | } |
| 1140 | |
| 1141 | if (!cow) { |
| 1142 | btrfs_tree_unlock(parent); |
| 1143 | free_extent_buffer(parent); |
| 1144 | cow = 1; |
| 1145 | goto again; |
| 1146 | } |
| 1147 | |
| 1148 | btrfs_node_key_to_cpu(path->nodes[level], &key, |
| 1149 | path->slots[level]); |
| 1150 | btrfs_release_path(path); |
| 1151 | |
| 1152 | path->lowest_level = level; |
| 1153 | set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); |
| 1154 | ret = btrfs_search_slot(trans, src, &key, path, 0, 1); |
| 1155 | clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); |
| 1156 | path->lowest_level = 0; |
| 1157 | if (ret) { |
| 1158 | if (ret > 0) |
| 1159 | ret = -ENOENT; |
| 1160 | break; |
| 1161 | } |
| 1162 | |
| 1163 | /* |
| 1164 | * Info qgroup to trace both subtrees. |
| 1165 | * |
| 1166 | * We must trace both trees. |
| 1167 | * 1) Tree reloc subtree |
| 1168 | * If not traced, we will leak data numbers |
| 1169 | * 2) Fs subtree |
| 1170 | * If not traced, we will double count old data |
| 1171 | * |
| 1172 | * We don't scan the subtree right now, but only record |
| 1173 | * the swapped tree blocks. |
| 1174 | * The real subtree rescan is delayed until we have new |
| 1175 | * CoW on the subtree root node before transaction commit. |
| 1176 | */ |
| 1177 | ret = btrfs_qgroup_add_swapped_blocks(dest, |
| 1178 | rc->block_group, parent, slot, |
| 1179 | path->nodes[level], path->slots[level], |
| 1180 | last_snapshot); |
| 1181 | if (ret < 0) |
| 1182 | break; |
| 1183 | /* |
| 1184 | * swap blocks in fs tree and reloc tree. |
| 1185 | */ |
| 1186 | btrfs_set_node_blockptr(parent, slot, new_bytenr); |
| 1187 | btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); |
| 1188 | |
| 1189 | btrfs_set_node_blockptr(path->nodes[level], |
| 1190 | path->slots[level], old_bytenr); |
| 1191 | btrfs_set_node_ptr_generation(path->nodes[level], |
| 1192 | path->slots[level], old_ptr_gen); |
| 1193 | |
| 1194 | ref.action = BTRFS_ADD_DELAYED_REF; |
| 1195 | ref.bytenr = old_bytenr; |
| 1196 | ref.num_bytes = blocksize; |
| 1197 | ref.parent = path->nodes[level]->start; |
| 1198 | ref.owning_root = btrfs_root_id(src); |
| 1199 | ref.ref_root = btrfs_root_id(src); |
| 1200 | btrfs_init_tree_ref(&ref, level - 1, 0, true); |
| 1201 | ret = btrfs_inc_extent_ref(trans, &ref); |
| 1202 | if (ret) { |
| 1203 | btrfs_abort_transaction(trans, ret); |
| 1204 | break; |
| 1205 | } |
| 1206 | |
| 1207 | ref.action = BTRFS_ADD_DELAYED_REF; |
| 1208 | ref.bytenr = new_bytenr; |
| 1209 | ref.num_bytes = blocksize; |
| 1210 | ref.parent = 0; |
| 1211 | ref.owning_root = btrfs_root_id(dest); |
| 1212 | ref.ref_root = btrfs_root_id(dest); |
| 1213 | btrfs_init_tree_ref(&ref, level - 1, 0, true); |
| 1214 | ret = btrfs_inc_extent_ref(trans, &ref); |
| 1215 | if (ret) { |
| 1216 | btrfs_abort_transaction(trans, ret); |
| 1217 | break; |
| 1218 | } |
| 1219 | |
| 1220 | /* We don't know the real owning_root, use 0. */ |
| 1221 | ref.action = BTRFS_DROP_DELAYED_REF; |
| 1222 | ref.bytenr = new_bytenr; |
| 1223 | ref.num_bytes = blocksize; |
| 1224 | ref.parent = path->nodes[level]->start; |
| 1225 | ref.owning_root = 0; |
| 1226 | ref.ref_root = btrfs_root_id(src); |
| 1227 | btrfs_init_tree_ref(&ref, level - 1, 0, true); |
| 1228 | ret = btrfs_free_extent(trans, &ref); |
| 1229 | if (ret) { |
| 1230 | btrfs_abort_transaction(trans, ret); |
| 1231 | break; |
| 1232 | } |
| 1233 | |
| 1234 | /* We don't know the real owning_root, use 0. */ |
| 1235 | ref.action = BTRFS_DROP_DELAYED_REF; |
| 1236 | ref.bytenr = old_bytenr; |
| 1237 | ref.num_bytes = blocksize; |
| 1238 | ref.parent = 0; |
| 1239 | ref.owning_root = 0; |
| 1240 | ref.ref_root = btrfs_root_id(dest); |
| 1241 | btrfs_init_tree_ref(&ref, level - 1, 0, true); |
| 1242 | ret = btrfs_free_extent(trans, &ref); |
| 1243 | if (ret) { |
| 1244 | btrfs_abort_transaction(trans, ret); |
| 1245 | break; |
| 1246 | } |
| 1247 | |
| 1248 | btrfs_unlock_up_safe(path, 0); |
| 1249 | |
| 1250 | ret = level; |
| 1251 | break; |
| 1252 | } |
| 1253 | btrfs_tree_unlock(parent); |
| 1254 | free_extent_buffer(parent); |
| 1255 | return ret; |
| 1256 | } |
| 1257 | |
| 1258 | /* |
| 1259 | * helper to find next relocated block in reloc tree |
| 1260 | */ |
| 1261 | static noinline_for_stack |
| 1262 | int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, |
| 1263 | int *level) |
| 1264 | { |
| 1265 | struct extent_buffer *eb; |
| 1266 | int i; |
| 1267 | u64 last_snapshot; |
| 1268 | u32 nritems; |
| 1269 | |
| 1270 | last_snapshot = btrfs_root_last_snapshot(&root->root_item); |
| 1271 | |
| 1272 | for (i = 0; i < *level; i++) { |
| 1273 | free_extent_buffer(path->nodes[i]); |
| 1274 | path->nodes[i] = NULL; |
| 1275 | } |
| 1276 | |
| 1277 | for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { |
| 1278 | eb = path->nodes[i]; |
| 1279 | nritems = btrfs_header_nritems(eb); |
| 1280 | while (path->slots[i] + 1 < nritems) { |
| 1281 | path->slots[i]++; |
| 1282 | if (btrfs_node_ptr_generation(eb, path->slots[i]) <= |
| 1283 | last_snapshot) |
| 1284 | continue; |
| 1285 | |
| 1286 | *level = i; |
| 1287 | return 0; |
| 1288 | } |
| 1289 | free_extent_buffer(path->nodes[i]); |
| 1290 | path->nodes[i] = NULL; |
| 1291 | } |
| 1292 | return 1; |
| 1293 | } |
| 1294 | |
| 1295 | /* |
| 1296 | * walk down reloc tree to find relocated block of lowest level |
| 1297 | */ |
| 1298 | static noinline_for_stack |
| 1299 | int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, |
| 1300 | int *level) |
| 1301 | { |
| 1302 | struct extent_buffer *eb = NULL; |
| 1303 | int i; |
| 1304 | u64 ptr_gen = 0; |
| 1305 | u64 last_snapshot; |
| 1306 | u32 nritems; |
| 1307 | |
| 1308 | last_snapshot = btrfs_root_last_snapshot(&root->root_item); |
| 1309 | |
| 1310 | for (i = *level; i > 0; i--) { |
| 1311 | eb = path->nodes[i]; |
| 1312 | nritems = btrfs_header_nritems(eb); |
| 1313 | while (path->slots[i] < nritems) { |
| 1314 | ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); |
| 1315 | if (ptr_gen > last_snapshot) |
| 1316 | break; |
| 1317 | path->slots[i]++; |
| 1318 | } |
| 1319 | if (path->slots[i] >= nritems) { |
| 1320 | if (i == *level) |
| 1321 | break; |
| 1322 | *level = i + 1; |
| 1323 | return 0; |
| 1324 | } |
| 1325 | if (i == 1) { |
| 1326 | *level = i; |
| 1327 | return 0; |
| 1328 | } |
| 1329 | |
| 1330 | eb = btrfs_read_node_slot(eb, path->slots[i]); |
| 1331 | if (IS_ERR(eb)) |
| 1332 | return PTR_ERR(eb); |
| 1333 | BUG_ON(btrfs_header_level(eb) != i - 1); |
| 1334 | path->nodes[i - 1] = eb; |
| 1335 | path->slots[i - 1] = 0; |
| 1336 | } |
| 1337 | return 1; |
| 1338 | } |
| 1339 | |
| 1340 | /* |
| 1341 | * invalidate extent cache for file extents whose key in range of |
| 1342 | * [min_key, max_key) |
| 1343 | */ |
| 1344 | static int invalidate_extent_cache(struct btrfs_root *root, |
| 1345 | const struct btrfs_key *min_key, |
| 1346 | const struct btrfs_key *max_key) |
| 1347 | { |
| 1348 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 1349 | struct btrfs_inode *inode = NULL; |
| 1350 | u64 objectid; |
| 1351 | u64 start, end; |
| 1352 | u64 ino; |
| 1353 | |
| 1354 | objectid = min_key->objectid; |
| 1355 | while (1) { |
| 1356 | struct extent_state *cached_state = NULL; |
| 1357 | |
| 1358 | cond_resched(); |
| 1359 | if (inode) |
| 1360 | iput(&inode->vfs_inode); |
| 1361 | |
| 1362 | if (objectid > max_key->objectid) |
| 1363 | break; |
| 1364 | |
| 1365 | inode = btrfs_find_first_inode(root, objectid); |
| 1366 | if (!inode) |
| 1367 | break; |
| 1368 | ino = btrfs_ino(inode); |
| 1369 | |
| 1370 | if (ino > max_key->objectid) { |
| 1371 | iput(&inode->vfs_inode); |
| 1372 | break; |
| 1373 | } |
| 1374 | |
| 1375 | objectid = ino + 1; |
| 1376 | if (!S_ISREG(inode->vfs_inode.i_mode)) |
| 1377 | continue; |
| 1378 | |
| 1379 | if (unlikely(min_key->objectid == ino)) { |
| 1380 | if (min_key->type > BTRFS_EXTENT_DATA_KEY) |
| 1381 | continue; |
| 1382 | if (min_key->type < BTRFS_EXTENT_DATA_KEY) |
| 1383 | start = 0; |
| 1384 | else { |
| 1385 | start = min_key->offset; |
| 1386 | WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); |
| 1387 | } |
| 1388 | } else { |
| 1389 | start = 0; |
| 1390 | } |
| 1391 | |
| 1392 | if (unlikely(max_key->objectid == ino)) { |
| 1393 | if (max_key->type < BTRFS_EXTENT_DATA_KEY) |
| 1394 | continue; |
| 1395 | if (max_key->type > BTRFS_EXTENT_DATA_KEY) { |
| 1396 | end = (u64)-1; |
| 1397 | } else { |
| 1398 | if (max_key->offset == 0) |
| 1399 | continue; |
| 1400 | end = max_key->offset; |
| 1401 | WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); |
| 1402 | end--; |
| 1403 | } |
| 1404 | } else { |
| 1405 | end = (u64)-1; |
| 1406 | } |
| 1407 | |
| 1408 | /* the lock_extent waits for read_folio to complete */ |
| 1409 | btrfs_lock_extent(&inode->io_tree, start, end, &cached_state); |
| 1410 | btrfs_drop_extent_map_range(inode, start, end, true); |
| 1411 | btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); |
| 1412 | } |
| 1413 | return 0; |
| 1414 | } |
| 1415 | |
| 1416 | static int find_next_key(struct btrfs_path *path, int level, |
| 1417 | struct btrfs_key *key) |
| 1418 | |
| 1419 | { |
| 1420 | while (level < BTRFS_MAX_LEVEL) { |
| 1421 | if (!path->nodes[level]) |
| 1422 | break; |
| 1423 | if (path->slots[level] + 1 < |
| 1424 | btrfs_header_nritems(path->nodes[level])) { |
| 1425 | btrfs_node_key_to_cpu(path->nodes[level], key, |
| 1426 | path->slots[level] + 1); |
| 1427 | return 0; |
| 1428 | } |
| 1429 | level++; |
| 1430 | } |
| 1431 | return 1; |
| 1432 | } |
| 1433 | |
| 1434 | /* |
| 1435 | * Insert current subvolume into reloc_control::dirty_subvol_roots |
| 1436 | */ |
| 1437 | static int insert_dirty_subvol(struct btrfs_trans_handle *trans, |
| 1438 | struct reloc_control *rc, |
| 1439 | struct btrfs_root *root) |
| 1440 | { |
| 1441 | struct btrfs_root *reloc_root = root->reloc_root; |
| 1442 | struct btrfs_root_item *reloc_root_item; |
| 1443 | int ret; |
| 1444 | |
| 1445 | /* @root must be a subvolume tree root with a valid reloc tree */ |
| 1446 | ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID); |
| 1447 | ASSERT(reloc_root); |
| 1448 | |
| 1449 | reloc_root_item = &reloc_root->root_item; |
| 1450 | memset(&reloc_root_item->drop_progress, 0, |
| 1451 | sizeof(reloc_root_item->drop_progress)); |
| 1452 | btrfs_set_root_drop_level(reloc_root_item, 0); |
| 1453 | btrfs_set_root_refs(reloc_root_item, 0); |
| 1454 | ret = btrfs_update_reloc_root(trans, root); |
| 1455 | if (ret) |
| 1456 | return ret; |
| 1457 | |
| 1458 | if (list_empty(&root->reloc_dirty_list)) { |
| 1459 | btrfs_grab_root(root); |
| 1460 | list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); |
| 1461 | } |
| 1462 | |
| 1463 | return 0; |
| 1464 | } |
| 1465 | |
| 1466 | static int clean_dirty_subvols(struct reloc_control *rc) |
| 1467 | { |
| 1468 | struct btrfs_root *root; |
| 1469 | struct btrfs_root *next; |
| 1470 | int ret = 0; |
| 1471 | int ret2; |
| 1472 | |
| 1473 | list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, |
| 1474 | reloc_dirty_list) { |
| 1475 | if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) { |
| 1476 | /* Merged subvolume, cleanup its reloc root */ |
| 1477 | struct btrfs_root *reloc_root = root->reloc_root; |
| 1478 | |
| 1479 | list_del_init(&root->reloc_dirty_list); |
| 1480 | root->reloc_root = NULL; |
| 1481 | /* |
| 1482 | * Need barrier to ensure clear_bit() only happens after |
| 1483 | * root->reloc_root = NULL. Pairs with have_reloc_root. |
| 1484 | */ |
| 1485 | smp_wmb(); |
| 1486 | clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); |
| 1487 | if (reloc_root) { |
| 1488 | /* |
| 1489 | * btrfs_drop_snapshot drops our ref we hold for |
| 1490 | * ->reloc_root. If it fails however we must |
| 1491 | * drop the ref ourselves. |
| 1492 | */ |
| 1493 | ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); |
| 1494 | if (ret2 < 0) { |
| 1495 | btrfs_put_root(reloc_root); |
| 1496 | if (!ret) |
| 1497 | ret = ret2; |
| 1498 | } |
| 1499 | } |
| 1500 | btrfs_put_root(root); |
| 1501 | } else { |
| 1502 | /* Orphan reloc tree, just clean it up */ |
| 1503 | ret2 = btrfs_drop_snapshot(root, 0, 1); |
| 1504 | if (ret2 < 0) { |
| 1505 | btrfs_put_root(root); |
| 1506 | if (!ret) |
| 1507 | ret = ret2; |
| 1508 | } |
| 1509 | } |
| 1510 | } |
| 1511 | return ret; |
| 1512 | } |
| 1513 | |
| 1514 | /* |
| 1515 | * merge the relocated tree blocks in reloc tree with corresponding |
| 1516 | * fs tree. |
| 1517 | */ |
| 1518 | static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, |
| 1519 | struct btrfs_root *root) |
| 1520 | { |
| 1521 | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; |
| 1522 | struct btrfs_key key; |
| 1523 | struct btrfs_key next_key; |
| 1524 | struct btrfs_trans_handle *trans = NULL; |
| 1525 | struct btrfs_root *reloc_root; |
| 1526 | struct btrfs_root_item *root_item; |
| 1527 | struct btrfs_path *path; |
| 1528 | struct extent_buffer *leaf; |
| 1529 | int reserve_level; |
| 1530 | int level; |
| 1531 | int max_level; |
| 1532 | int replaced = 0; |
| 1533 | int ret = 0; |
| 1534 | u32 min_reserved; |
| 1535 | |
| 1536 | path = btrfs_alloc_path(); |
| 1537 | if (!path) |
| 1538 | return -ENOMEM; |
| 1539 | path->reada = READA_FORWARD; |
| 1540 | |
| 1541 | reloc_root = root->reloc_root; |
| 1542 | root_item = &reloc_root->root_item; |
| 1543 | |
| 1544 | if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { |
| 1545 | level = btrfs_root_level(root_item); |
| 1546 | refcount_inc(&reloc_root->node->refs); |
| 1547 | path->nodes[level] = reloc_root->node; |
| 1548 | path->slots[level] = 0; |
| 1549 | } else { |
| 1550 | btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); |
| 1551 | |
| 1552 | level = btrfs_root_drop_level(root_item); |
| 1553 | BUG_ON(level == 0); |
| 1554 | path->lowest_level = level; |
| 1555 | ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); |
| 1556 | path->lowest_level = 0; |
| 1557 | if (ret < 0) { |
| 1558 | btrfs_free_path(path); |
| 1559 | return ret; |
| 1560 | } |
| 1561 | |
| 1562 | btrfs_node_key_to_cpu(path->nodes[level], &next_key, |
| 1563 | path->slots[level]); |
| 1564 | WARN_ON(memcmp(&key, &next_key, sizeof(key))); |
| 1565 | |
| 1566 | btrfs_unlock_up_safe(path, 0); |
| 1567 | } |
| 1568 | |
| 1569 | /* |
| 1570 | * In merge_reloc_root(), we modify the upper level pointer to swap the |
| 1571 | * tree blocks between reloc tree and subvolume tree. Thus for tree |
| 1572 | * block COW, we COW at most from level 1 to root level for each tree. |
| 1573 | * |
| 1574 | * Thus the needed metadata size is at most root_level * nodesize, |
| 1575 | * and * 2 since we have two trees to COW. |
| 1576 | */ |
| 1577 | reserve_level = max_t(int, 1, btrfs_root_level(root_item)); |
| 1578 | min_reserved = fs_info->nodesize * reserve_level * 2; |
| 1579 | memset(&next_key, 0, sizeof(next_key)); |
| 1580 | |
| 1581 | while (1) { |
| 1582 | ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, |
| 1583 | min_reserved, |
| 1584 | BTRFS_RESERVE_FLUSH_LIMIT); |
| 1585 | if (ret) |
| 1586 | goto out; |
| 1587 | trans = btrfs_start_transaction(root, 0); |
| 1588 | if (IS_ERR(trans)) { |
| 1589 | ret = PTR_ERR(trans); |
| 1590 | trans = NULL; |
| 1591 | goto out; |
| 1592 | } |
| 1593 | |
| 1594 | /* |
| 1595 | * At this point we no longer have a reloc_control, so we can't |
| 1596 | * depend on btrfs_init_reloc_root to update our last_trans. |
| 1597 | * |
| 1598 | * But that's ok, we started the trans handle on our |
| 1599 | * corresponding fs_root, which means it's been added to the |
| 1600 | * dirty list. At commit time we'll still call |
| 1601 | * btrfs_update_reloc_root() and update our root item |
| 1602 | * appropriately. |
| 1603 | */ |
| 1604 | btrfs_set_root_last_trans(reloc_root, trans->transid); |
| 1605 | trans->block_rsv = rc->block_rsv; |
| 1606 | |
| 1607 | replaced = 0; |
| 1608 | max_level = level; |
| 1609 | |
| 1610 | ret = walk_down_reloc_tree(reloc_root, path, &level); |
| 1611 | if (ret < 0) |
| 1612 | goto out; |
| 1613 | if (ret > 0) |
| 1614 | break; |
| 1615 | |
| 1616 | if (!find_next_key(path, level, &key) && |
| 1617 | btrfs_comp_cpu_keys(&next_key, &key) >= 0) { |
| 1618 | ret = 0; |
| 1619 | } else { |
| 1620 | ret = replace_path(trans, rc, root, reloc_root, path, |
| 1621 | &next_key, level, max_level); |
| 1622 | } |
| 1623 | if (ret < 0) |
| 1624 | goto out; |
| 1625 | if (ret > 0) { |
| 1626 | level = ret; |
| 1627 | btrfs_node_key_to_cpu(path->nodes[level], &key, |
| 1628 | path->slots[level]); |
| 1629 | replaced = 1; |
| 1630 | } |
| 1631 | |
| 1632 | ret = walk_up_reloc_tree(reloc_root, path, &level); |
| 1633 | if (ret > 0) |
| 1634 | break; |
| 1635 | |
| 1636 | BUG_ON(level == 0); |
| 1637 | /* |
| 1638 | * save the merging progress in the drop_progress. |
| 1639 | * this is OK since root refs == 1 in this case. |
| 1640 | */ |
| 1641 | btrfs_node_key(path->nodes[level], &root_item->drop_progress, |
| 1642 | path->slots[level]); |
| 1643 | btrfs_set_root_drop_level(root_item, level); |
| 1644 | |
| 1645 | btrfs_end_transaction_throttle(trans); |
| 1646 | trans = NULL; |
| 1647 | |
| 1648 | btrfs_btree_balance_dirty(fs_info); |
| 1649 | |
| 1650 | if (replaced && rc->stage == UPDATE_DATA_PTRS) |
| 1651 | invalidate_extent_cache(root, &key, &next_key); |
| 1652 | } |
| 1653 | |
| 1654 | /* |
| 1655 | * handle the case only one block in the fs tree need to be |
| 1656 | * relocated and the block is tree root. |
| 1657 | */ |
| 1658 | leaf = btrfs_lock_root_node(root); |
| 1659 | ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, |
| 1660 | BTRFS_NESTING_COW); |
| 1661 | btrfs_tree_unlock(leaf); |
| 1662 | free_extent_buffer(leaf); |
| 1663 | out: |
| 1664 | btrfs_free_path(path); |
| 1665 | |
| 1666 | if (ret == 0) { |
| 1667 | ret = insert_dirty_subvol(trans, rc, root); |
| 1668 | if (ret) |
| 1669 | btrfs_abort_transaction(trans, ret); |
| 1670 | } |
| 1671 | |
| 1672 | if (trans) |
| 1673 | btrfs_end_transaction_throttle(trans); |
| 1674 | |
| 1675 | btrfs_btree_balance_dirty(fs_info); |
| 1676 | |
| 1677 | if (replaced && rc->stage == UPDATE_DATA_PTRS) |
| 1678 | invalidate_extent_cache(root, &key, &next_key); |
| 1679 | |
| 1680 | return ret; |
| 1681 | } |
| 1682 | |
| 1683 | static noinline_for_stack |
| 1684 | int prepare_to_merge(struct reloc_control *rc, int err) |
| 1685 | { |
| 1686 | struct btrfs_root *root = rc->extent_root; |
| 1687 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 1688 | struct btrfs_root *reloc_root; |
| 1689 | struct btrfs_trans_handle *trans; |
| 1690 | LIST_HEAD(reloc_roots); |
| 1691 | u64 num_bytes = 0; |
| 1692 | int ret; |
| 1693 | |
| 1694 | mutex_lock(&fs_info->reloc_mutex); |
| 1695 | rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; |
| 1696 | rc->merging_rsv_size += rc->nodes_relocated * 2; |
| 1697 | mutex_unlock(&fs_info->reloc_mutex); |
| 1698 | |
| 1699 | again: |
| 1700 | if (!err) { |
| 1701 | num_bytes = rc->merging_rsv_size; |
| 1702 | ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes, |
| 1703 | BTRFS_RESERVE_FLUSH_ALL); |
| 1704 | if (ret) |
| 1705 | err = ret; |
| 1706 | } |
| 1707 | |
| 1708 | trans = btrfs_join_transaction(rc->extent_root); |
| 1709 | if (IS_ERR(trans)) { |
| 1710 | if (!err) |
| 1711 | btrfs_block_rsv_release(fs_info, rc->block_rsv, |
| 1712 | num_bytes, NULL); |
| 1713 | return PTR_ERR(trans); |
| 1714 | } |
| 1715 | |
| 1716 | if (!err) { |
| 1717 | if (num_bytes != rc->merging_rsv_size) { |
| 1718 | btrfs_end_transaction(trans); |
| 1719 | btrfs_block_rsv_release(fs_info, rc->block_rsv, |
| 1720 | num_bytes, NULL); |
| 1721 | goto again; |
| 1722 | } |
| 1723 | } |
| 1724 | |
| 1725 | rc->merge_reloc_tree = true; |
| 1726 | |
| 1727 | while (!list_empty(&rc->reloc_roots)) { |
| 1728 | reloc_root = list_first_entry(&rc->reloc_roots, |
| 1729 | struct btrfs_root, root_list); |
| 1730 | list_del_init(&reloc_root->root_list); |
| 1731 | |
| 1732 | root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, |
| 1733 | false); |
| 1734 | if (IS_ERR(root)) { |
| 1735 | /* |
| 1736 | * Even if we have an error we need this reloc root |
| 1737 | * back on our list so we can clean up properly. |
| 1738 | */ |
| 1739 | list_add(&reloc_root->root_list, &reloc_roots); |
| 1740 | btrfs_abort_transaction(trans, (int)PTR_ERR(root)); |
| 1741 | if (!err) |
| 1742 | err = PTR_ERR(root); |
| 1743 | break; |
| 1744 | } |
| 1745 | |
| 1746 | if (unlikely(root->reloc_root != reloc_root)) { |
| 1747 | if (root->reloc_root) { |
| 1748 | btrfs_err(fs_info, |
| 1749 | "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu", |
| 1750 | btrfs_root_id(root), |
| 1751 | btrfs_root_id(root->reloc_root), |
| 1752 | root->reloc_root->root_key.type, |
| 1753 | root->reloc_root->root_key.offset, |
| 1754 | btrfs_root_generation( |
| 1755 | &root->reloc_root->root_item), |
| 1756 | btrfs_root_id(reloc_root), |
| 1757 | reloc_root->root_key.type, |
| 1758 | reloc_root->root_key.offset, |
| 1759 | btrfs_root_generation( |
| 1760 | &reloc_root->root_item)); |
| 1761 | } else { |
| 1762 | btrfs_err(fs_info, |
| 1763 | "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu", |
| 1764 | btrfs_root_id(root), |
| 1765 | btrfs_root_id(reloc_root), |
| 1766 | reloc_root->root_key.type, |
| 1767 | reloc_root->root_key.offset, |
| 1768 | btrfs_root_generation( |
| 1769 | &reloc_root->root_item)); |
| 1770 | } |
| 1771 | list_add(&reloc_root->root_list, &reloc_roots); |
| 1772 | btrfs_put_root(root); |
| 1773 | btrfs_abort_transaction(trans, -EUCLEAN); |
| 1774 | if (!err) |
| 1775 | err = -EUCLEAN; |
| 1776 | break; |
| 1777 | } |
| 1778 | |
| 1779 | /* |
| 1780 | * set reference count to 1, so btrfs_recover_relocation |
| 1781 | * knows it should resumes merging |
| 1782 | */ |
| 1783 | if (!err) |
| 1784 | btrfs_set_root_refs(&reloc_root->root_item, 1); |
| 1785 | ret = btrfs_update_reloc_root(trans, root); |
| 1786 | |
| 1787 | /* |
| 1788 | * Even if we have an error we need this reloc root back on our |
| 1789 | * list so we can clean up properly. |
| 1790 | */ |
| 1791 | list_add(&reloc_root->root_list, &reloc_roots); |
| 1792 | btrfs_put_root(root); |
| 1793 | |
| 1794 | if (ret) { |
| 1795 | btrfs_abort_transaction(trans, ret); |
| 1796 | if (!err) |
| 1797 | err = ret; |
| 1798 | break; |
| 1799 | } |
| 1800 | } |
| 1801 | |
| 1802 | list_splice(&reloc_roots, &rc->reloc_roots); |
| 1803 | |
| 1804 | if (!err) |
| 1805 | err = btrfs_commit_transaction(trans); |
| 1806 | else |
| 1807 | btrfs_end_transaction(trans); |
| 1808 | return err; |
| 1809 | } |
| 1810 | |
| 1811 | static noinline_for_stack |
| 1812 | void free_reloc_roots(struct list_head *list) |
| 1813 | { |
| 1814 | struct btrfs_root *reloc_root, *tmp; |
| 1815 | |
| 1816 | list_for_each_entry_safe(reloc_root, tmp, list, root_list) |
| 1817 | __del_reloc_root(reloc_root); |
| 1818 | } |
| 1819 | |
| 1820 | static noinline_for_stack |
| 1821 | void merge_reloc_roots(struct reloc_control *rc) |
| 1822 | { |
| 1823 | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; |
| 1824 | struct btrfs_root *root; |
| 1825 | struct btrfs_root *reloc_root; |
| 1826 | LIST_HEAD(reloc_roots); |
| 1827 | int found = 0; |
| 1828 | int ret = 0; |
| 1829 | again: |
| 1830 | root = rc->extent_root; |
| 1831 | |
| 1832 | /* |
| 1833 | * this serializes us with btrfs_record_root_in_transaction, |
| 1834 | * we have to make sure nobody is in the middle of |
| 1835 | * adding their roots to the list while we are |
| 1836 | * doing this splice |
| 1837 | */ |
| 1838 | mutex_lock(&fs_info->reloc_mutex); |
| 1839 | list_splice_init(&rc->reloc_roots, &reloc_roots); |
| 1840 | mutex_unlock(&fs_info->reloc_mutex); |
| 1841 | |
| 1842 | while (!list_empty(&reloc_roots)) { |
| 1843 | found = 1; |
| 1844 | reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list); |
| 1845 | |
| 1846 | root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, |
| 1847 | false); |
| 1848 | if (btrfs_root_refs(&reloc_root->root_item) > 0) { |
| 1849 | if (WARN_ON(IS_ERR(root))) { |
| 1850 | /* |
| 1851 | * For recovery we read the fs roots on mount, |
| 1852 | * and if we didn't find the root then we marked |
| 1853 | * the reloc root as a garbage root. For normal |
| 1854 | * relocation obviously the root should exist in |
| 1855 | * memory. However there's no reason we can't |
| 1856 | * handle the error properly here just in case. |
| 1857 | */ |
| 1858 | ret = PTR_ERR(root); |
| 1859 | goto out; |
| 1860 | } |
| 1861 | if (WARN_ON(root->reloc_root != reloc_root)) { |
| 1862 | /* |
| 1863 | * This can happen if on-disk metadata has some |
| 1864 | * corruption, e.g. bad reloc tree key offset. |
| 1865 | */ |
| 1866 | ret = -EINVAL; |
| 1867 | goto out; |
| 1868 | } |
| 1869 | ret = merge_reloc_root(rc, root); |
| 1870 | btrfs_put_root(root); |
| 1871 | if (ret) { |
| 1872 | if (list_empty(&reloc_root->root_list)) |
| 1873 | list_add_tail(&reloc_root->root_list, |
| 1874 | &reloc_roots); |
| 1875 | goto out; |
| 1876 | } |
| 1877 | } else { |
| 1878 | if (!IS_ERR(root)) { |
| 1879 | if (root->reloc_root == reloc_root) { |
| 1880 | root->reloc_root = NULL; |
| 1881 | btrfs_put_root(reloc_root); |
| 1882 | } |
| 1883 | clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, |
| 1884 | &root->state); |
| 1885 | btrfs_put_root(root); |
| 1886 | } |
| 1887 | |
| 1888 | list_del_init(&reloc_root->root_list); |
| 1889 | /* Don't forget to queue this reloc root for cleanup */ |
| 1890 | list_add_tail(&reloc_root->reloc_dirty_list, |
| 1891 | &rc->dirty_subvol_roots); |
| 1892 | } |
| 1893 | } |
| 1894 | |
| 1895 | if (found) { |
| 1896 | found = 0; |
| 1897 | goto again; |
| 1898 | } |
| 1899 | out: |
| 1900 | if (ret) { |
| 1901 | btrfs_handle_fs_error(fs_info, ret, NULL); |
| 1902 | free_reloc_roots(&reloc_roots); |
| 1903 | |
| 1904 | /* new reloc root may be added */ |
| 1905 | mutex_lock(&fs_info->reloc_mutex); |
| 1906 | list_splice_init(&rc->reloc_roots, &reloc_roots); |
| 1907 | mutex_unlock(&fs_info->reloc_mutex); |
| 1908 | free_reloc_roots(&reloc_roots); |
| 1909 | } |
| 1910 | |
| 1911 | /* |
| 1912 | * We used to have |
| 1913 | * |
| 1914 | * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); |
| 1915 | * |
| 1916 | * here, but it's wrong. If we fail to start the transaction in |
| 1917 | * prepare_to_merge() we will have only 0 ref reloc roots, none of which |
| 1918 | * have actually been removed from the reloc_root_tree rb tree. This is |
| 1919 | * fine because we're bailing here, and we hold a reference on the root |
| 1920 | * for the list that holds it, so these roots will be cleaned up when we |
| 1921 | * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root |
| 1922 | * will be cleaned up on unmount. |
| 1923 | * |
| 1924 | * The remaining nodes will be cleaned up by free_reloc_control. |
| 1925 | */ |
| 1926 | } |
| 1927 | |
| 1928 | static void free_block_list(struct rb_root *blocks) |
| 1929 | { |
| 1930 | struct tree_block *block; |
| 1931 | struct rb_node *rb_node; |
| 1932 | while ((rb_node = rb_first(blocks))) { |
| 1933 | block = rb_entry(rb_node, struct tree_block, rb_node); |
| 1934 | rb_erase(rb_node, blocks); |
| 1935 | kfree(block); |
| 1936 | } |
| 1937 | } |
| 1938 | |
| 1939 | static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, |
| 1940 | struct btrfs_root *reloc_root) |
| 1941 | { |
| 1942 | struct btrfs_fs_info *fs_info = reloc_root->fs_info; |
| 1943 | struct btrfs_root *root; |
| 1944 | int ret; |
| 1945 | |
| 1946 | if (btrfs_get_root_last_trans(reloc_root) == trans->transid) |
| 1947 | return 0; |
| 1948 | |
| 1949 | root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); |
| 1950 | |
| 1951 | /* |
| 1952 | * This should succeed, since we can't have a reloc root without having |
| 1953 | * already looked up the actual root and created the reloc root for this |
| 1954 | * root. |
| 1955 | * |
| 1956 | * However if there's some sort of corruption where we have a ref to a |
| 1957 | * reloc root without a corresponding root this could return ENOENT. |
| 1958 | */ |
| 1959 | if (IS_ERR(root)) { |
| 1960 | DEBUG_WARN("error %ld reading root for reloc root", PTR_ERR(root)); |
| 1961 | return PTR_ERR(root); |
| 1962 | } |
| 1963 | if (root->reloc_root != reloc_root) { |
| 1964 | DEBUG_WARN("unexpected reloc root found"); |
| 1965 | btrfs_err(fs_info, |
| 1966 | "root %llu has two reloc roots associated with it", |
| 1967 | reloc_root->root_key.offset); |
| 1968 | btrfs_put_root(root); |
| 1969 | return -EUCLEAN; |
| 1970 | } |
| 1971 | ret = btrfs_record_root_in_trans(trans, root); |
| 1972 | btrfs_put_root(root); |
| 1973 | |
| 1974 | return ret; |
| 1975 | } |
| 1976 | |
| 1977 | static noinline_for_stack |
| 1978 | struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, |
| 1979 | struct reloc_control *rc, |
| 1980 | struct btrfs_backref_node *node, |
| 1981 | struct btrfs_backref_edge *edges[]) |
| 1982 | { |
| 1983 | struct btrfs_backref_node *next; |
| 1984 | struct btrfs_root *root; |
| 1985 | int index = 0; |
| 1986 | int ret; |
| 1987 | |
| 1988 | next = walk_up_backref(node, edges, &index); |
| 1989 | root = next->root; |
| 1990 | |
| 1991 | /* |
| 1992 | * If there is no root, then our references for this block are |
| 1993 | * incomplete, as we should be able to walk all the way up to a block |
| 1994 | * that is owned by a root. |
| 1995 | * |
| 1996 | * This path is only for SHAREABLE roots, so if we come upon a |
| 1997 | * non-SHAREABLE root then we have backrefs that resolve improperly. |
| 1998 | * |
| 1999 | * Both of these cases indicate file system corruption, or a bug in the |
| 2000 | * backref walking code. |
| 2001 | */ |
| 2002 | if (unlikely(!root)) { |
| 2003 | btrfs_err(trans->fs_info, |
| 2004 | "bytenr %llu doesn't have a backref path ending in a root", |
| 2005 | node->bytenr); |
| 2006 | return ERR_PTR(-EUCLEAN); |
| 2007 | } |
| 2008 | if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) { |
| 2009 | btrfs_err(trans->fs_info, |
| 2010 | "bytenr %llu has multiple refs with one ending in a non-shareable root", |
| 2011 | node->bytenr); |
| 2012 | return ERR_PTR(-EUCLEAN); |
| 2013 | } |
| 2014 | |
| 2015 | if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) { |
| 2016 | ret = record_reloc_root_in_trans(trans, root); |
| 2017 | if (ret) |
| 2018 | return ERR_PTR(ret); |
| 2019 | goto found; |
| 2020 | } |
| 2021 | |
| 2022 | ret = btrfs_record_root_in_trans(trans, root); |
| 2023 | if (ret) |
| 2024 | return ERR_PTR(ret); |
| 2025 | root = root->reloc_root; |
| 2026 | |
| 2027 | /* |
| 2028 | * We could have raced with another thread which failed, so |
| 2029 | * root->reloc_root may not be set, return ENOENT in this case. |
| 2030 | */ |
| 2031 | if (!root) |
| 2032 | return ERR_PTR(-ENOENT); |
| 2033 | |
| 2034 | if (next->new_bytenr) { |
| 2035 | /* |
| 2036 | * We just created the reloc root, so we shouldn't have |
| 2037 | * ->new_bytenr set yet. If it is then we have multiple roots |
| 2038 | * pointing at the same bytenr which indicates corruption, or |
| 2039 | * we've made a mistake in the backref walking code. |
| 2040 | */ |
| 2041 | ASSERT(next->new_bytenr == 0); |
| 2042 | btrfs_err(trans->fs_info, |
| 2043 | "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", |
| 2044 | node->bytenr, next->bytenr); |
| 2045 | return ERR_PTR(-EUCLEAN); |
| 2046 | } |
| 2047 | |
| 2048 | next->new_bytenr = root->node->start; |
| 2049 | btrfs_put_root(next->root); |
| 2050 | next->root = btrfs_grab_root(root); |
| 2051 | ASSERT(next->root); |
| 2052 | mark_block_processed(rc, next); |
| 2053 | found: |
| 2054 | next = node; |
| 2055 | /* setup backref node path for btrfs_reloc_cow_block */ |
| 2056 | while (1) { |
| 2057 | rc->backref_cache.path[next->level] = next; |
| 2058 | if (--index < 0) |
| 2059 | break; |
| 2060 | next = edges[index]->node[UPPER]; |
| 2061 | } |
| 2062 | return root; |
| 2063 | } |
| 2064 | |
| 2065 | /* |
| 2066 | * Select a tree root for relocation. |
| 2067 | * |
| 2068 | * Return NULL if the block is not shareable. We should use do_relocation() in |
| 2069 | * this case. |
| 2070 | * |
| 2071 | * Return a tree root pointer if the block is shareable. |
| 2072 | * Return -ENOENT if the block is root of reloc tree. |
| 2073 | */ |
| 2074 | static noinline_for_stack |
| 2075 | struct btrfs_root *select_one_root(struct btrfs_backref_node *node) |
| 2076 | { |
| 2077 | struct btrfs_backref_node *next; |
| 2078 | struct btrfs_root *root; |
| 2079 | struct btrfs_root *fs_root = NULL; |
| 2080 | struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; |
| 2081 | int index = 0; |
| 2082 | |
| 2083 | next = node; |
| 2084 | while (1) { |
| 2085 | cond_resched(); |
| 2086 | next = walk_up_backref(next, edges, &index); |
| 2087 | root = next->root; |
| 2088 | |
| 2089 | /* |
| 2090 | * This can occur if we have incomplete extent refs leading all |
| 2091 | * the way up a particular path, in this case return -EUCLEAN. |
| 2092 | */ |
| 2093 | if (!root) |
| 2094 | return ERR_PTR(-EUCLEAN); |
| 2095 | |
| 2096 | /* No other choice for non-shareable tree */ |
| 2097 | if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) |
| 2098 | return root; |
| 2099 | |
| 2100 | if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) |
| 2101 | fs_root = root; |
| 2102 | |
| 2103 | if (next != node) |
| 2104 | return NULL; |
| 2105 | |
| 2106 | next = walk_down_backref(edges, &index); |
| 2107 | if (!next || next->level <= node->level) |
| 2108 | break; |
| 2109 | } |
| 2110 | |
| 2111 | if (!fs_root) |
| 2112 | return ERR_PTR(-ENOENT); |
| 2113 | return fs_root; |
| 2114 | } |
| 2115 | |
| 2116 | static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc, |
| 2117 | struct btrfs_backref_node *node) |
| 2118 | { |
| 2119 | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; |
| 2120 | struct btrfs_backref_node *next = node; |
| 2121 | struct btrfs_backref_edge *edge; |
| 2122 | struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; |
| 2123 | u64 num_bytes = 0; |
| 2124 | int index = 0; |
| 2125 | |
| 2126 | BUG_ON(node->processed); |
| 2127 | |
| 2128 | while (next) { |
| 2129 | cond_resched(); |
| 2130 | while (1) { |
| 2131 | if (next->processed) |
| 2132 | break; |
| 2133 | |
| 2134 | num_bytes += fs_info->nodesize; |
| 2135 | |
| 2136 | if (list_empty(&next->upper)) |
| 2137 | break; |
| 2138 | |
| 2139 | edge = list_first_entry(&next->upper, struct btrfs_backref_edge, |
| 2140 | list[LOWER]); |
| 2141 | edges[index++] = edge; |
| 2142 | next = edge->node[UPPER]; |
| 2143 | } |
| 2144 | next = walk_down_backref(edges, &index); |
| 2145 | } |
| 2146 | return num_bytes; |
| 2147 | } |
| 2148 | |
| 2149 | static int refill_metadata_space(struct btrfs_trans_handle *trans, |
| 2150 | struct reloc_control *rc, u64 num_bytes) |
| 2151 | { |
| 2152 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 2153 | int ret; |
| 2154 | |
| 2155 | trans->block_rsv = rc->block_rsv; |
| 2156 | rc->reserved_bytes += num_bytes; |
| 2157 | |
| 2158 | /* |
| 2159 | * We are under a transaction here so we can only do limited flushing. |
| 2160 | * If we get an enospc just kick back -EAGAIN so we know to drop the |
| 2161 | * transaction and try to refill when we can flush all the things. |
| 2162 | */ |
| 2163 | ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes, |
| 2164 | BTRFS_RESERVE_FLUSH_LIMIT); |
| 2165 | if (ret) { |
| 2166 | u64 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; |
| 2167 | |
| 2168 | while (tmp <= rc->reserved_bytes) |
| 2169 | tmp <<= 1; |
| 2170 | /* |
| 2171 | * only one thread can access block_rsv at this point, |
| 2172 | * so we don't need hold lock to protect block_rsv. |
| 2173 | * we expand more reservation size here to allow enough |
| 2174 | * space for relocation and we will return earlier in |
| 2175 | * enospc case. |
| 2176 | */ |
| 2177 | rc->block_rsv->size = tmp + fs_info->nodesize * |
| 2178 | RELOCATION_RESERVED_NODES; |
| 2179 | return -EAGAIN; |
| 2180 | } |
| 2181 | |
| 2182 | return 0; |
| 2183 | } |
| 2184 | |
| 2185 | static int reserve_metadata_space(struct btrfs_trans_handle *trans, |
| 2186 | struct reloc_control *rc, |
| 2187 | struct btrfs_backref_node *node) |
| 2188 | { |
| 2189 | u64 num_bytes; |
| 2190 | |
| 2191 | num_bytes = calcu_metadata_size(rc, node) * 2; |
| 2192 | return refill_metadata_space(trans, rc, num_bytes); |
| 2193 | } |
| 2194 | |
| 2195 | /* |
| 2196 | * relocate a block tree, and then update pointers in upper level |
| 2197 | * blocks that reference the block to point to the new location. |
| 2198 | * |
| 2199 | * if called by link_to_upper, the block has already been relocated. |
| 2200 | * in that case this function just updates pointers. |
| 2201 | */ |
| 2202 | static int do_relocation(struct btrfs_trans_handle *trans, |
| 2203 | struct reloc_control *rc, |
| 2204 | struct btrfs_backref_node *node, |
| 2205 | struct btrfs_key *key, |
| 2206 | struct btrfs_path *path, int lowest) |
| 2207 | { |
| 2208 | struct btrfs_backref_node *upper; |
| 2209 | struct btrfs_backref_edge *edge; |
| 2210 | struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; |
| 2211 | struct btrfs_root *root; |
| 2212 | struct extent_buffer *eb; |
| 2213 | u32 blocksize; |
| 2214 | u64 bytenr; |
| 2215 | int slot; |
| 2216 | int ret = 0; |
| 2217 | |
| 2218 | /* |
| 2219 | * If we are lowest then this is the first time we're processing this |
| 2220 | * block, and thus shouldn't have an eb associated with it yet. |
| 2221 | */ |
| 2222 | ASSERT(!lowest || !node->eb); |
| 2223 | |
| 2224 | path->lowest_level = node->level + 1; |
| 2225 | rc->backref_cache.path[node->level] = node; |
| 2226 | list_for_each_entry(edge, &node->upper, list[LOWER]) { |
| 2227 | cond_resched(); |
| 2228 | |
| 2229 | upper = edge->node[UPPER]; |
| 2230 | root = select_reloc_root(trans, rc, upper, edges); |
| 2231 | if (IS_ERR(root)) { |
| 2232 | ret = PTR_ERR(root); |
| 2233 | goto next; |
| 2234 | } |
| 2235 | |
| 2236 | if (upper->eb && !upper->locked) { |
| 2237 | if (!lowest) { |
| 2238 | ret = btrfs_bin_search(upper->eb, 0, key, &slot); |
| 2239 | if (ret < 0) |
| 2240 | goto next; |
| 2241 | BUG_ON(ret); |
| 2242 | bytenr = btrfs_node_blockptr(upper->eb, slot); |
| 2243 | if (node->eb->start == bytenr) |
| 2244 | goto next; |
| 2245 | } |
| 2246 | btrfs_backref_drop_node_buffer(upper); |
| 2247 | } |
| 2248 | |
| 2249 | if (!upper->eb) { |
| 2250 | ret = btrfs_search_slot(trans, root, key, path, 0, 1); |
| 2251 | if (ret) { |
| 2252 | if (ret > 0) |
| 2253 | ret = -ENOENT; |
| 2254 | |
| 2255 | btrfs_release_path(path); |
| 2256 | break; |
| 2257 | } |
| 2258 | |
| 2259 | if (!upper->eb) { |
| 2260 | upper->eb = path->nodes[upper->level]; |
| 2261 | path->nodes[upper->level] = NULL; |
| 2262 | } else { |
| 2263 | BUG_ON(upper->eb != path->nodes[upper->level]); |
| 2264 | } |
| 2265 | |
| 2266 | upper->locked = 1; |
| 2267 | path->locks[upper->level] = 0; |
| 2268 | |
| 2269 | slot = path->slots[upper->level]; |
| 2270 | btrfs_release_path(path); |
| 2271 | } else { |
| 2272 | ret = btrfs_bin_search(upper->eb, 0, key, &slot); |
| 2273 | if (ret < 0) |
| 2274 | goto next; |
| 2275 | BUG_ON(ret); |
| 2276 | } |
| 2277 | |
| 2278 | bytenr = btrfs_node_blockptr(upper->eb, slot); |
| 2279 | if (lowest) { |
| 2280 | if (bytenr != node->bytenr) { |
| 2281 | btrfs_err(root->fs_info, |
| 2282 | "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", |
| 2283 | bytenr, node->bytenr, slot, |
| 2284 | upper->eb->start); |
| 2285 | ret = -EIO; |
| 2286 | goto next; |
| 2287 | } |
| 2288 | } else { |
| 2289 | if (node->eb->start == bytenr) |
| 2290 | goto next; |
| 2291 | } |
| 2292 | |
| 2293 | blocksize = root->fs_info->nodesize; |
| 2294 | eb = btrfs_read_node_slot(upper->eb, slot); |
| 2295 | if (IS_ERR(eb)) { |
| 2296 | ret = PTR_ERR(eb); |
| 2297 | goto next; |
| 2298 | } |
| 2299 | btrfs_tree_lock(eb); |
| 2300 | |
| 2301 | if (!node->eb) { |
| 2302 | ret = btrfs_cow_block(trans, root, eb, upper->eb, |
| 2303 | slot, &eb, BTRFS_NESTING_COW); |
| 2304 | btrfs_tree_unlock(eb); |
| 2305 | free_extent_buffer(eb); |
| 2306 | if (ret < 0) |
| 2307 | goto next; |
| 2308 | /* |
| 2309 | * We've just COWed this block, it should have updated |
| 2310 | * the correct backref node entry. |
| 2311 | */ |
| 2312 | ASSERT(node->eb == eb); |
| 2313 | } else { |
| 2314 | struct btrfs_ref ref = { |
| 2315 | .action = BTRFS_ADD_DELAYED_REF, |
| 2316 | .bytenr = node->eb->start, |
| 2317 | .num_bytes = blocksize, |
| 2318 | .parent = upper->eb->start, |
| 2319 | .owning_root = btrfs_header_owner(upper->eb), |
| 2320 | .ref_root = btrfs_header_owner(upper->eb), |
| 2321 | }; |
| 2322 | |
| 2323 | btrfs_set_node_blockptr(upper->eb, slot, |
| 2324 | node->eb->start); |
| 2325 | btrfs_set_node_ptr_generation(upper->eb, slot, |
| 2326 | trans->transid); |
| 2327 | btrfs_mark_buffer_dirty(trans, upper->eb); |
| 2328 | |
| 2329 | btrfs_init_tree_ref(&ref, node->level, |
| 2330 | btrfs_root_id(root), false); |
| 2331 | ret = btrfs_inc_extent_ref(trans, &ref); |
| 2332 | if (!ret) |
| 2333 | ret = btrfs_drop_subtree(trans, root, eb, |
| 2334 | upper->eb); |
| 2335 | if (ret) |
| 2336 | btrfs_abort_transaction(trans, ret); |
| 2337 | } |
| 2338 | next: |
| 2339 | if (!upper->pending) |
| 2340 | btrfs_backref_drop_node_buffer(upper); |
| 2341 | else |
| 2342 | btrfs_backref_unlock_node_buffer(upper); |
| 2343 | if (ret) |
| 2344 | break; |
| 2345 | } |
| 2346 | |
| 2347 | if (!ret && node->pending) { |
| 2348 | btrfs_backref_drop_node_buffer(node); |
| 2349 | list_del_init(&node->list); |
| 2350 | node->pending = 0; |
| 2351 | } |
| 2352 | |
| 2353 | path->lowest_level = 0; |
| 2354 | |
| 2355 | /* |
| 2356 | * We should have allocated all of our space in the block rsv and thus |
| 2357 | * shouldn't ENOSPC. |
| 2358 | */ |
| 2359 | ASSERT(ret != -ENOSPC); |
| 2360 | return ret; |
| 2361 | } |
| 2362 | |
| 2363 | static int link_to_upper(struct btrfs_trans_handle *trans, |
| 2364 | struct reloc_control *rc, |
| 2365 | struct btrfs_backref_node *node, |
| 2366 | struct btrfs_path *path) |
| 2367 | { |
| 2368 | struct btrfs_key key; |
| 2369 | |
| 2370 | btrfs_node_key_to_cpu(node->eb, &key, 0); |
| 2371 | return do_relocation(trans, rc, node, &key, path, 0); |
| 2372 | } |
| 2373 | |
| 2374 | static int finish_pending_nodes(struct btrfs_trans_handle *trans, |
| 2375 | struct reloc_control *rc, |
| 2376 | struct btrfs_path *path, int err) |
| 2377 | { |
| 2378 | LIST_HEAD(list); |
| 2379 | struct btrfs_backref_cache *cache = &rc->backref_cache; |
| 2380 | struct btrfs_backref_node *node; |
| 2381 | int level; |
| 2382 | int ret; |
| 2383 | |
| 2384 | for (level = 0; level < BTRFS_MAX_LEVEL; level++) { |
| 2385 | while (!list_empty(&cache->pending[level])) { |
| 2386 | node = list_first_entry(&cache->pending[level], |
| 2387 | struct btrfs_backref_node, list); |
| 2388 | list_move_tail(&node->list, &list); |
| 2389 | BUG_ON(!node->pending); |
| 2390 | |
| 2391 | if (!err) { |
| 2392 | ret = link_to_upper(trans, rc, node, path); |
| 2393 | if (ret < 0) |
| 2394 | err = ret; |
| 2395 | } |
| 2396 | } |
| 2397 | list_splice_init(&list, &cache->pending[level]); |
| 2398 | } |
| 2399 | return err; |
| 2400 | } |
| 2401 | |
| 2402 | /* |
| 2403 | * mark a block and all blocks directly/indirectly reference the block |
| 2404 | * as processed. |
| 2405 | */ |
| 2406 | static void update_processed_blocks(struct reloc_control *rc, |
| 2407 | struct btrfs_backref_node *node) |
| 2408 | { |
| 2409 | struct btrfs_backref_node *next = node; |
| 2410 | struct btrfs_backref_edge *edge; |
| 2411 | struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; |
| 2412 | int index = 0; |
| 2413 | |
| 2414 | while (next) { |
| 2415 | cond_resched(); |
| 2416 | while (1) { |
| 2417 | if (next->processed) |
| 2418 | break; |
| 2419 | |
| 2420 | mark_block_processed(rc, next); |
| 2421 | |
| 2422 | if (list_empty(&next->upper)) |
| 2423 | break; |
| 2424 | |
| 2425 | edge = list_first_entry(&next->upper, struct btrfs_backref_edge, |
| 2426 | list[LOWER]); |
| 2427 | edges[index++] = edge; |
| 2428 | next = edge->node[UPPER]; |
| 2429 | } |
| 2430 | next = walk_down_backref(edges, &index); |
| 2431 | } |
| 2432 | } |
| 2433 | |
| 2434 | static int tree_block_processed(u64 bytenr, struct reloc_control *rc) |
| 2435 | { |
| 2436 | u32 blocksize = rc->extent_root->fs_info->nodesize; |
| 2437 | |
| 2438 | if (btrfs_test_range_bit(&rc->processed_blocks, bytenr, |
| 2439 | bytenr + blocksize - 1, EXTENT_DIRTY, NULL)) |
| 2440 | return 1; |
| 2441 | return 0; |
| 2442 | } |
| 2443 | |
| 2444 | static int get_tree_block_key(struct btrfs_fs_info *fs_info, |
| 2445 | struct tree_block *block) |
| 2446 | { |
| 2447 | struct btrfs_tree_parent_check check = { |
| 2448 | .level = block->level, |
| 2449 | .owner_root = block->owner, |
| 2450 | .transid = block->key.offset |
| 2451 | }; |
| 2452 | struct extent_buffer *eb; |
| 2453 | |
| 2454 | eb = read_tree_block(fs_info, block->bytenr, &check); |
| 2455 | if (IS_ERR(eb)) |
| 2456 | return PTR_ERR(eb); |
| 2457 | if (!extent_buffer_uptodate(eb)) { |
| 2458 | free_extent_buffer(eb); |
| 2459 | return -EIO; |
| 2460 | } |
| 2461 | if (block->level == 0) |
| 2462 | btrfs_item_key_to_cpu(eb, &block->key, 0); |
| 2463 | else |
| 2464 | btrfs_node_key_to_cpu(eb, &block->key, 0); |
| 2465 | free_extent_buffer(eb); |
| 2466 | block->key_ready = true; |
| 2467 | return 0; |
| 2468 | } |
| 2469 | |
| 2470 | /* |
| 2471 | * helper function to relocate a tree block |
| 2472 | */ |
| 2473 | static int relocate_tree_block(struct btrfs_trans_handle *trans, |
| 2474 | struct reloc_control *rc, |
| 2475 | struct btrfs_backref_node *node, |
| 2476 | struct btrfs_key *key, |
| 2477 | struct btrfs_path *path) |
| 2478 | { |
| 2479 | struct btrfs_root *root; |
| 2480 | int ret = 0; |
| 2481 | |
| 2482 | if (!node) |
| 2483 | return 0; |
| 2484 | |
| 2485 | /* |
| 2486 | * If we fail here we want to drop our backref_node because we are going |
| 2487 | * to start over and regenerate the tree for it. |
| 2488 | */ |
| 2489 | ret = reserve_metadata_space(trans, rc, node); |
| 2490 | if (ret) |
| 2491 | goto out; |
| 2492 | |
| 2493 | BUG_ON(node->processed); |
| 2494 | root = select_one_root(node); |
| 2495 | if (IS_ERR(root)) { |
| 2496 | ret = PTR_ERR(root); |
| 2497 | |
| 2498 | /* See explanation in select_one_root for the -EUCLEAN case. */ |
| 2499 | ASSERT(ret == -ENOENT); |
| 2500 | if (ret == -ENOENT) { |
| 2501 | ret = 0; |
| 2502 | update_processed_blocks(rc, node); |
| 2503 | } |
| 2504 | goto out; |
| 2505 | } |
| 2506 | |
| 2507 | if (root) { |
| 2508 | if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { |
| 2509 | /* |
| 2510 | * This block was the root block of a root, and this is |
| 2511 | * the first time we're processing the block and thus it |
| 2512 | * should not have had the ->new_bytenr modified. |
| 2513 | * |
| 2514 | * However in the case of corruption we could have |
| 2515 | * multiple refs pointing to the same block improperly, |
| 2516 | * and thus we would trip over these checks. ASSERT() |
| 2517 | * for the developer case, because it could indicate a |
| 2518 | * bug in the backref code, however error out for a |
| 2519 | * normal user in the case of corruption. |
| 2520 | */ |
| 2521 | ASSERT(node->new_bytenr == 0); |
| 2522 | if (node->new_bytenr) { |
| 2523 | btrfs_err(root->fs_info, |
| 2524 | "bytenr %llu has improper references to it", |
| 2525 | node->bytenr); |
| 2526 | ret = -EUCLEAN; |
| 2527 | goto out; |
| 2528 | } |
| 2529 | ret = btrfs_record_root_in_trans(trans, root); |
| 2530 | if (ret) |
| 2531 | goto out; |
| 2532 | /* |
| 2533 | * Another thread could have failed, need to check if we |
| 2534 | * have reloc_root actually set. |
| 2535 | */ |
| 2536 | if (!root->reloc_root) { |
| 2537 | ret = -ENOENT; |
| 2538 | goto out; |
| 2539 | } |
| 2540 | root = root->reloc_root; |
| 2541 | node->new_bytenr = root->node->start; |
| 2542 | btrfs_put_root(node->root); |
| 2543 | node->root = btrfs_grab_root(root); |
| 2544 | ASSERT(node->root); |
| 2545 | } else { |
| 2546 | btrfs_err(root->fs_info, |
| 2547 | "bytenr %llu resolved to a non-shareable root", |
| 2548 | node->bytenr); |
| 2549 | ret = -EUCLEAN; |
| 2550 | goto out; |
| 2551 | } |
| 2552 | if (!ret) |
| 2553 | update_processed_blocks(rc, node); |
| 2554 | } else { |
| 2555 | ret = do_relocation(trans, rc, node, key, path, 1); |
| 2556 | } |
| 2557 | out: |
| 2558 | if (ret || node->level == 0) |
| 2559 | btrfs_backref_cleanup_node(&rc->backref_cache, node); |
| 2560 | return ret; |
| 2561 | } |
| 2562 | |
| 2563 | static int relocate_cowonly_block(struct btrfs_trans_handle *trans, |
| 2564 | struct reloc_control *rc, struct tree_block *block, |
| 2565 | struct btrfs_path *path) |
| 2566 | { |
| 2567 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 2568 | struct btrfs_root *root; |
| 2569 | u64 num_bytes; |
| 2570 | int nr_levels; |
| 2571 | int ret; |
| 2572 | |
| 2573 | root = btrfs_get_fs_root(fs_info, block->owner, true); |
| 2574 | if (IS_ERR(root)) |
| 2575 | return PTR_ERR(root); |
| 2576 | |
| 2577 | nr_levels = max(btrfs_header_level(root->node) - block->level, 0) + 1; |
| 2578 | |
| 2579 | num_bytes = fs_info->nodesize * nr_levels; |
| 2580 | ret = refill_metadata_space(trans, rc, num_bytes); |
| 2581 | if (ret) { |
| 2582 | btrfs_put_root(root); |
| 2583 | return ret; |
| 2584 | } |
| 2585 | path->lowest_level = block->level; |
| 2586 | if (root == root->fs_info->chunk_root) |
| 2587 | btrfs_reserve_chunk_metadata(trans, false); |
| 2588 | |
| 2589 | ret = btrfs_search_slot(trans, root, &block->key, path, 0, 1); |
| 2590 | path->lowest_level = 0; |
| 2591 | btrfs_release_path(path); |
| 2592 | |
| 2593 | if (root == root->fs_info->chunk_root) |
| 2594 | btrfs_trans_release_chunk_metadata(trans); |
| 2595 | if (ret > 0) |
| 2596 | ret = 0; |
| 2597 | btrfs_put_root(root); |
| 2598 | |
| 2599 | return ret; |
| 2600 | } |
| 2601 | |
| 2602 | /* |
| 2603 | * relocate a list of blocks |
| 2604 | */ |
| 2605 | static noinline_for_stack |
| 2606 | int relocate_tree_blocks(struct btrfs_trans_handle *trans, |
| 2607 | struct reloc_control *rc, struct rb_root *blocks) |
| 2608 | { |
| 2609 | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; |
| 2610 | struct btrfs_backref_node *node; |
| 2611 | struct btrfs_path *path; |
| 2612 | struct tree_block *block; |
| 2613 | struct tree_block *next; |
| 2614 | int ret = 0; |
| 2615 | |
| 2616 | path = btrfs_alloc_path(); |
| 2617 | if (!path) { |
| 2618 | ret = -ENOMEM; |
| 2619 | goto out_free_blocks; |
| 2620 | } |
| 2621 | |
| 2622 | /* Kick in readahead for tree blocks with missing keys */ |
| 2623 | rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { |
| 2624 | if (!block->key_ready) |
| 2625 | btrfs_readahead_tree_block(fs_info, block->bytenr, |
| 2626 | block->owner, 0, |
| 2627 | block->level); |
| 2628 | } |
| 2629 | |
| 2630 | /* Get first keys */ |
| 2631 | rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { |
| 2632 | if (!block->key_ready) { |
| 2633 | ret = get_tree_block_key(fs_info, block); |
| 2634 | if (ret) |
| 2635 | goto out_free_path; |
| 2636 | } |
| 2637 | } |
| 2638 | |
| 2639 | /* Do tree relocation */ |
| 2640 | rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { |
| 2641 | /* |
| 2642 | * For COWonly blocks, or the data reloc tree, we only need to |
| 2643 | * COW down to the block, there's no need to generate a backref |
| 2644 | * tree. |
| 2645 | */ |
| 2646 | if (block->owner && |
| 2647 | (!btrfs_is_fstree(block->owner) || |
| 2648 | block->owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { |
| 2649 | ret = relocate_cowonly_block(trans, rc, block, path); |
| 2650 | if (ret) |
| 2651 | break; |
| 2652 | continue; |
| 2653 | } |
| 2654 | |
| 2655 | node = build_backref_tree(trans, rc, &block->key, |
| 2656 | block->level, block->bytenr); |
| 2657 | if (IS_ERR(node)) { |
| 2658 | ret = PTR_ERR(node); |
| 2659 | goto out; |
| 2660 | } |
| 2661 | |
| 2662 | ret = relocate_tree_block(trans, rc, node, &block->key, |
| 2663 | path); |
| 2664 | if (ret < 0) |
| 2665 | break; |
| 2666 | } |
| 2667 | out: |
| 2668 | ret = finish_pending_nodes(trans, rc, path, ret); |
| 2669 | |
| 2670 | out_free_path: |
| 2671 | btrfs_free_path(path); |
| 2672 | out_free_blocks: |
| 2673 | free_block_list(blocks); |
| 2674 | return ret; |
| 2675 | } |
| 2676 | |
| 2677 | static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc) |
| 2678 | { |
| 2679 | const struct file_extent_cluster *cluster = &rc->cluster; |
| 2680 | struct btrfs_inode *inode = BTRFS_I(rc->data_inode); |
| 2681 | u64 alloc_hint = 0; |
| 2682 | u64 start; |
| 2683 | u64 end; |
| 2684 | u64 offset = inode->reloc_block_group_start; |
| 2685 | u64 num_bytes; |
| 2686 | int nr; |
| 2687 | int ret = 0; |
| 2688 | u64 prealloc_start = cluster->start - offset; |
| 2689 | u64 prealloc_end = cluster->end - offset; |
| 2690 | u64 cur_offset = prealloc_start; |
| 2691 | |
| 2692 | /* |
| 2693 | * For blocksize < folio size case (either bs < page size or large folios), |
| 2694 | * beyond i_size, all blocks are filled with zero. |
| 2695 | * |
| 2696 | * If the current cluster covers the above range, btrfs_do_readpage() |
| 2697 | * will skip the read, and relocate_one_folio() will later writeback |
| 2698 | * the padding zeros as new data, causing data corruption. |
| 2699 | * |
| 2700 | * Here we have to invalidate the cache covering our cluster. |
| 2701 | */ |
| 2702 | ret = filemap_invalidate_inode(&inode->vfs_inode, true, prealloc_start, |
| 2703 | prealloc_end); |
| 2704 | if (ret < 0) |
| 2705 | return ret; |
| 2706 | |
| 2707 | BUG_ON(cluster->start != cluster->boundary[0]); |
| 2708 | ret = btrfs_alloc_data_chunk_ondemand(inode, |
| 2709 | prealloc_end + 1 - prealloc_start); |
| 2710 | if (ret) |
| 2711 | return ret; |
| 2712 | |
| 2713 | btrfs_inode_lock(inode, 0); |
| 2714 | for (nr = 0; nr < cluster->nr; nr++) { |
| 2715 | struct extent_state *cached_state = NULL; |
| 2716 | |
| 2717 | start = cluster->boundary[nr] - offset; |
| 2718 | if (nr + 1 < cluster->nr) |
| 2719 | end = cluster->boundary[nr + 1] - 1 - offset; |
| 2720 | else |
| 2721 | end = cluster->end - offset; |
| 2722 | |
| 2723 | btrfs_lock_extent(&inode->io_tree, start, end, &cached_state); |
| 2724 | num_bytes = end + 1 - start; |
| 2725 | ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, |
| 2726 | num_bytes, num_bytes, |
| 2727 | end + 1, &alloc_hint); |
| 2728 | cur_offset = end + 1; |
| 2729 | btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); |
| 2730 | if (ret) |
| 2731 | break; |
| 2732 | } |
| 2733 | btrfs_inode_unlock(inode, 0); |
| 2734 | |
| 2735 | if (cur_offset < prealloc_end) |
| 2736 | btrfs_free_reserved_data_space_noquota(inode, |
| 2737 | prealloc_end + 1 - cur_offset); |
| 2738 | return ret; |
| 2739 | } |
| 2740 | |
| 2741 | static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc) |
| 2742 | { |
| 2743 | struct btrfs_inode *inode = BTRFS_I(rc->data_inode); |
| 2744 | struct extent_map *em; |
| 2745 | struct extent_state *cached_state = NULL; |
| 2746 | u64 offset = inode->reloc_block_group_start; |
| 2747 | u64 start = rc->cluster.start - offset; |
| 2748 | u64 end = rc->cluster.end - offset; |
| 2749 | int ret = 0; |
| 2750 | |
| 2751 | em = btrfs_alloc_extent_map(); |
| 2752 | if (!em) |
| 2753 | return -ENOMEM; |
| 2754 | |
| 2755 | em->start = start; |
| 2756 | em->len = end + 1 - start; |
| 2757 | em->disk_bytenr = rc->cluster.start; |
| 2758 | em->disk_num_bytes = em->len; |
| 2759 | em->ram_bytes = em->len; |
| 2760 | em->flags |= EXTENT_FLAG_PINNED; |
| 2761 | |
| 2762 | btrfs_lock_extent(&inode->io_tree, start, end, &cached_state); |
| 2763 | ret = btrfs_replace_extent_map_range(inode, em, false); |
| 2764 | btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state); |
| 2765 | btrfs_free_extent_map(em); |
| 2766 | |
| 2767 | return ret; |
| 2768 | } |
| 2769 | |
| 2770 | /* |
| 2771 | * Allow error injection to test balance/relocation cancellation |
| 2772 | */ |
| 2773 | noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info) |
| 2774 | { |
| 2775 | return atomic_read(&fs_info->balance_cancel_req) || |
| 2776 | atomic_read(&fs_info->reloc_cancel_req) || |
| 2777 | fatal_signal_pending(current); |
| 2778 | } |
| 2779 | ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); |
| 2780 | |
| 2781 | static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster, |
| 2782 | int cluster_nr) |
| 2783 | { |
| 2784 | /* Last extent, use cluster end directly */ |
| 2785 | if (cluster_nr >= cluster->nr - 1) |
| 2786 | return cluster->end; |
| 2787 | |
| 2788 | /* Use next boundary start*/ |
| 2789 | return cluster->boundary[cluster_nr + 1] - 1; |
| 2790 | } |
| 2791 | |
| 2792 | static int relocate_one_folio(struct reloc_control *rc, |
| 2793 | struct file_ra_state *ra, |
| 2794 | int *cluster_nr, u64 *file_offset_ret) |
| 2795 | { |
| 2796 | const struct file_extent_cluster *cluster = &rc->cluster; |
| 2797 | struct inode *inode = rc->data_inode; |
| 2798 | struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); |
| 2799 | const u64 orig_file_offset = *file_offset_ret; |
| 2800 | u64 offset = BTRFS_I(inode)->reloc_block_group_start; |
| 2801 | const pgoff_t last_index = (cluster->end - offset) >> PAGE_SHIFT; |
| 2802 | const pgoff_t index = orig_file_offset >> PAGE_SHIFT; |
| 2803 | gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); |
| 2804 | struct folio *folio; |
| 2805 | u64 folio_start; |
| 2806 | u64 folio_end; |
| 2807 | u64 cur; |
| 2808 | int ret; |
| 2809 | const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags); |
| 2810 | |
| 2811 | ASSERT(index <= last_index); |
| 2812 | again: |
| 2813 | folio = filemap_lock_folio(inode->i_mapping, index); |
| 2814 | if (IS_ERR(folio)) { |
| 2815 | |
| 2816 | /* |
| 2817 | * On relocation we're doing readahead on the relocation inode, |
| 2818 | * but if the filesystem is backed by a RAID stripe tree we can |
| 2819 | * get ENOENT (e.g. due to preallocated extents not being |
| 2820 | * mapped in the RST) from the lookup. |
| 2821 | * |
| 2822 | * But readahead doesn't handle the error and submits invalid |
| 2823 | * reads to the device, causing a assertion failures. |
| 2824 | */ |
| 2825 | if (!use_rst) |
| 2826 | page_cache_sync_readahead(inode->i_mapping, ra, NULL, |
| 2827 | index, last_index + 1 - index); |
| 2828 | folio = __filemap_get_folio(inode->i_mapping, index, |
| 2829 | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, |
| 2830 | mask); |
| 2831 | if (IS_ERR(folio)) |
| 2832 | return PTR_ERR(folio); |
| 2833 | } |
| 2834 | |
| 2835 | if (folio_test_readahead(folio) && !use_rst) |
| 2836 | page_cache_async_readahead(inode->i_mapping, ra, NULL, |
| 2837 | folio, last_index + 1 - index); |
| 2838 | |
| 2839 | if (!folio_test_uptodate(folio)) { |
| 2840 | btrfs_read_folio(NULL, folio); |
| 2841 | folio_lock(folio); |
| 2842 | if (!folio_test_uptodate(folio)) { |
| 2843 | ret = -EIO; |
| 2844 | goto release_folio; |
| 2845 | } |
| 2846 | if (folio->mapping != inode->i_mapping) { |
| 2847 | folio_unlock(folio); |
| 2848 | folio_put(folio); |
| 2849 | goto again; |
| 2850 | } |
| 2851 | } |
| 2852 | |
| 2853 | /* |
| 2854 | * We could have lost folio private when we dropped the lock to read the |
| 2855 | * folio above, make sure we set_folio_extent_mapped() here so we have any |
| 2856 | * of the subpage blocksize stuff we need in place. |
| 2857 | */ |
| 2858 | ret = set_folio_extent_mapped(folio); |
| 2859 | if (ret < 0) |
| 2860 | goto release_folio; |
| 2861 | |
| 2862 | folio_start = folio_pos(folio); |
| 2863 | folio_end = folio_start + folio_size(folio) - 1; |
| 2864 | |
| 2865 | /* |
| 2866 | * Start from the cluster, as for subpage case, the cluster can start |
| 2867 | * inside the folio. |
| 2868 | */ |
| 2869 | cur = max(folio_start, cluster->boundary[*cluster_nr] - offset); |
| 2870 | while (cur <= folio_end) { |
| 2871 | struct extent_state *cached_state = NULL; |
| 2872 | u64 extent_start = cluster->boundary[*cluster_nr] - offset; |
| 2873 | u64 extent_end = get_cluster_boundary_end(cluster, |
| 2874 | *cluster_nr) - offset; |
| 2875 | u64 clamped_start = max(folio_start, extent_start); |
| 2876 | u64 clamped_end = min(folio_end, extent_end); |
| 2877 | u32 clamped_len = clamped_end + 1 - clamped_start; |
| 2878 | |
| 2879 | /* Reserve metadata for this range */ |
| 2880 | ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), |
| 2881 | clamped_len, clamped_len, |
| 2882 | false); |
| 2883 | if (ret) |
| 2884 | goto release_folio; |
| 2885 | |
| 2886 | /* Mark the range delalloc and dirty for later writeback */ |
| 2887 | btrfs_lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, |
| 2888 | clamped_end, &cached_state); |
| 2889 | ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, |
| 2890 | clamped_end, 0, &cached_state); |
| 2891 | if (ret) { |
| 2892 | btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, |
| 2893 | clamped_start, clamped_end, |
| 2894 | EXTENT_LOCKED | EXTENT_BOUNDARY, |
| 2895 | &cached_state); |
| 2896 | btrfs_delalloc_release_metadata(BTRFS_I(inode), |
| 2897 | clamped_len, true); |
| 2898 | btrfs_delalloc_release_extents(BTRFS_I(inode), |
| 2899 | clamped_len); |
| 2900 | goto release_folio; |
| 2901 | } |
| 2902 | btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len); |
| 2903 | |
| 2904 | /* |
| 2905 | * Set the boundary if it's inside the folio. |
| 2906 | * Data relocation requires the destination extents to have the |
| 2907 | * same size as the source. |
| 2908 | * EXTENT_BOUNDARY bit prevents current extent from being merged |
| 2909 | * with previous extent. |
| 2910 | */ |
| 2911 | if (in_range(cluster->boundary[*cluster_nr] - offset, |
| 2912 | folio_start, folio_size(folio))) { |
| 2913 | u64 boundary_start = cluster->boundary[*cluster_nr] - |
| 2914 | offset; |
| 2915 | u64 boundary_end = boundary_start + |
| 2916 | fs_info->sectorsize - 1; |
| 2917 | |
| 2918 | btrfs_set_extent_bit(&BTRFS_I(inode)->io_tree, |
| 2919 | boundary_start, boundary_end, |
| 2920 | EXTENT_BOUNDARY, NULL); |
| 2921 | } |
| 2922 | btrfs_unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, |
| 2923 | &cached_state); |
| 2924 | btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); |
| 2925 | cur += clamped_len; |
| 2926 | |
| 2927 | /* Crossed extent end, go to next extent */ |
| 2928 | if (cur >= extent_end) { |
| 2929 | (*cluster_nr)++; |
| 2930 | /* Just finished the last extent of the cluster, exit. */ |
| 2931 | if (*cluster_nr >= cluster->nr) |
| 2932 | break; |
| 2933 | } |
| 2934 | } |
| 2935 | folio_unlock(folio); |
| 2936 | folio_put(folio); |
| 2937 | |
| 2938 | balance_dirty_pages_ratelimited(inode->i_mapping); |
| 2939 | btrfs_throttle(fs_info); |
| 2940 | if (btrfs_should_cancel_balance(fs_info)) |
| 2941 | ret = -ECANCELED; |
| 2942 | *file_offset_ret = folio_end + 1; |
| 2943 | return ret; |
| 2944 | |
| 2945 | release_folio: |
| 2946 | folio_unlock(folio); |
| 2947 | folio_put(folio); |
| 2948 | return ret; |
| 2949 | } |
| 2950 | |
| 2951 | static int relocate_file_extent_cluster(struct reloc_control *rc) |
| 2952 | { |
| 2953 | struct inode *inode = rc->data_inode; |
| 2954 | const struct file_extent_cluster *cluster = &rc->cluster; |
| 2955 | u64 offset = BTRFS_I(inode)->reloc_block_group_start; |
| 2956 | u64 cur_file_offset = cluster->start - offset; |
| 2957 | struct file_ra_state *ra; |
| 2958 | int cluster_nr = 0; |
| 2959 | int ret = 0; |
| 2960 | |
| 2961 | if (!cluster->nr) |
| 2962 | return 0; |
| 2963 | |
| 2964 | ra = kzalloc(sizeof(*ra), GFP_NOFS); |
| 2965 | if (!ra) |
| 2966 | return -ENOMEM; |
| 2967 | |
| 2968 | ret = prealloc_file_extent_cluster(rc); |
| 2969 | if (ret) |
| 2970 | goto out; |
| 2971 | |
| 2972 | file_ra_state_init(ra, inode->i_mapping); |
| 2973 | |
| 2974 | ret = setup_relocation_extent_mapping(rc); |
| 2975 | if (ret) |
| 2976 | goto out; |
| 2977 | |
| 2978 | while (cur_file_offset < cluster->end - offset) { |
| 2979 | ret = relocate_one_folio(rc, ra, &cluster_nr, &cur_file_offset); |
| 2980 | if (ret) |
| 2981 | break; |
| 2982 | } |
| 2983 | if (ret == 0) |
| 2984 | WARN_ON(cluster_nr != cluster->nr); |
| 2985 | out: |
| 2986 | kfree(ra); |
| 2987 | return ret; |
| 2988 | } |
| 2989 | |
| 2990 | static noinline_for_stack int relocate_data_extent(struct reloc_control *rc, |
| 2991 | const struct btrfs_key *extent_key) |
| 2992 | { |
| 2993 | struct inode *inode = rc->data_inode; |
| 2994 | struct file_extent_cluster *cluster = &rc->cluster; |
| 2995 | int ret; |
| 2996 | struct btrfs_root *root = BTRFS_I(inode)->root; |
| 2997 | |
| 2998 | if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { |
| 2999 | ret = relocate_file_extent_cluster(rc); |
| 3000 | if (ret) |
| 3001 | return ret; |
| 3002 | cluster->nr = 0; |
| 3003 | } |
| 3004 | |
| 3005 | /* |
| 3006 | * Under simple quotas, we set root->relocation_src_root when we find |
| 3007 | * the extent. If adjacent extents have different owners, we can't merge |
| 3008 | * them while relocating. Handle this by storing the owning root that |
| 3009 | * started a cluster and if we see an extent from a different root break |
| 3010 | * cluster formation (just like the above case of non-adjacent extents). |
| 3011 | * |
| 3012 | * Without simple quotas, relocation_src_root is always 0, so we should |
| 3013 | * never see a mismatch, and it should have no effect on relocation |
| 3014 | * clusters. |
| 3015 | */ |
| 3016 | if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) { |
| 3017 | u64 tmp = root->relocation_src_root; |
| 3018 | |
| 3019 | /* |
| 3020 | * root->relocation_src_root is the state that actually affects |
| 3021 | * the preallocation we do here, so set it to the root owning |
| 3022 | * the cluster we need to relocate. |
| 3023 | */ |
| 3024 | root->relocation_src_root = cluster->owning_root; |
| 3025 | ret = relocate_file_extent_cluster(rc); |
| 3026 | if (ret) |
| 3027 | return ret; |
| 3028 | cluster->nr = 0; |
| 3029 | /* And reset it back for the current extent's owning root. */ |
| 3030 | root->relocation_src_root = tmp; |
| 3031 | } |
| 3032 | |
| 3033 | if (!cluster->nr) { |
| 3034 | cluster->start = extent_key->objectid; |
| 3035 | cluster->owning_root = root->relocation_src_root; |
| 3036 | } |
| 3037 | else |
| 3038 | BUG_ON(cluster->nr >= MAX_EXTENTS); |
| 3039 | cluster->end = extent_key->objectid + extent_key->offset - 1; |
| 3040 | cluster->boundary[cluster->nr] = extent_key->objectid; |
| 3041 | cluster->nr++; |
| 3042 | |
| 3043 | if (cluster->nr >= MAX_EXTENTS) { |
| 3044 | ret = relocate_file_extent_cluster(rc); |
| 3045 | if (ret) |
| 3046 | return ret; |
| 3047 | cluster->nr = 0; |
| 3048 | } |
| 3049 | return 0; |
| 3050 | } |
| 3051 | |
| 3052 | /* |
| 3053 | * helper to add a tree block to the list. |
| 3054 | * the major work is getting the generation and level of the block |
| 3055 | */ |
| 3056 | static int add_tree_block(struct reloc_control *rc, |
| 3057 | const struct btrfs_key *extent_key, |
| 3058 | struct btrfs_path *path, |
| 3059 | struct rb_root *blocks) |
| 3060 | { |
| 3061 | struct extent_buffer *eb; |
| 3062 | struct btrfs_extent_item *ei; |
| 3063 | struct btrfs_tree_block_info *bi; |
| 3064 | struct tree_block *block; |
| 3065 | struct rb_node *rb_node; |
| 3066 | u32 item_size; |
| 3067 | int level = -1; |
| 3068 | u64 generation; |
| 3069 | u64 owner = 0; |
| 3070 | |
| 3071 | eb = path->nodes[0]; |
| 3072 | item_size = btrfs_item_size(eb, path->slots[0]); |
| 3073 | |
| 3074 | if (extent_key->type == BTRFS_METADATA_ITEM_KEY || |
| 3075 | item_size >= sizeof(*ei) + sizeof(*bi)) { |
| 3076 | unsigned long ptr = 0, end; |
| 3077 | |
| 3078 | ei = btrfs_item_ptr(eb, path->slots[0], |
| 3079 | struct btrfs_extent_item); |
| 3080 | end = (unsigned long)ei + item_size; |
| 3081 | if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { |
| 3082 | bi = (struct btrfs_tree_block_info *)(ei + 1); |
| 3083 | level = btrfs_tree_block_level(eb, bi); |
| 3084 | ptr = (unsigned long)(bi + 1); |
| 3085 | } else { |
| 3086 | level = (int)extent_key->offset; |
| 3087 | ptr = (unsigned long)(ei + 1); |
| 3088 | } |
| 3089 | generation = btrfs_extent_generation(eb, ei); |
| 3090 | |
| 3091 | /* |
| 3092 | * We're reading random blocks without knowing their owner ahead |
| 3093 | * of time. This is ok most of the time, as all reloc roots and |
| 3094 | * fs roots have the same lock type. However normal trees do |
| 3095 | * not, and the only way to know ahead of time is to read the |
| 3096 | * inline ref offset. We know it's an fs root if |
| 3097 | * |
| 3098 | * 1. There's more than one ref. |
| 3099 | * 2. There's a SHARED_DATA_REF_KEY set. |
| 3100 | * 3. FULL_BACKREF is set on the flags. |
| 3101 | * |
| 3102 | * Otherwise it's safe to assume that the ref offset == the |
| 3103 | * owner of this block, so we can use that when calling |
| 3104 | * read_tree_block. |
| 3105 | */ |
| 3106 | if (btrfs_extent_refs(eb, ei) == 1 && |
| 3107 | !(btrfs_extent_flags(eb, ei) & |
| 3108 | BTRFS_BLOCK_FLAG_FULL_BACKREF) && |
| 3109 | ptr < end) { |
| 3110 | struct btrfs_extent_inline_ref *iref; |
| 3111 | int type; |
| 3112 | |
| 3113 | iref = (struct btrfs_extent_inline_ref *)ptr; |
| 3114 | type = btrfs_get_extent_inline_ref_type(eb, iref, |
| 3115 | BTRFS_REF_TYPE_BLOCK); |
| 3116 | if (type == BTRFS_REF_TYPE_INVALID) |
| 3117 | return -EINVAL; |
| 3118 | if (type == BTRFS_TREE_BLOCK_REF_KEY) |
| 3119 | owner = btrfs_extent_inline_ref_offset(eb, iref); |
| 3120 | } |
| 3121 | } else { |
| 3122 | btrfs_print_leaf(eb); |
| 3123 | btrfs_err(rc->block_group->fs_info, |
| 3124 | "unrecognized tree backref at tree block %llu slot %u", |
| 3125 | eb->start, path->slots[0]); |
| 3126 | btrfs_release_path(path); |
| 3127 | return -EUCLEAN; |
| 3128 | } |
| 3129 | |
| 3130 | btrfs_release_path(path); |
| 3131 | |
| 3132 | BUG_ON(level == -1); |
| 3133 | |
| 3134 | block = kmalloc(sizeof(*block), GFP_NOFS); |
| 3135 | if (!block) |
| 3136 | return -ENOMEM; |
| 3137 | |
| 3138 | block->bytenr = extent_key->objectid; |
| 3139 | block->key.objectid = rc->extent_root->fs_info->nodesize; |
| 3140 | block->key.offset = generation; |
| 3141 | block->level = level; |
| 3142 | block->key_ready = false; |
| 3143 | block->owner = owner; |
| 3144 | |
| 3145 | rb_node = rb_simple_insert(blocks, &block->simple_node); |
| 3146 | if (rb_node) |
| 3147 | btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, |
| 3148 | -EEXIST); |
| 3149 | |
| 3150 | return 0; |
| 3151 | } |
| 3152 | |
| 3153 | /* |
| 3154 | * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY |
| 3155 | */ |
| 3156 | static int __add_tree_block(struct reloc_control *rc, |
| 3157 | u64 bytenr, u32 blocksize, |
| 3158 | struct rb_root *blocks) |
| 3159 | { |
| 3160 | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; |
| 3161 | struct btrfs_path *path; |
| 3162 | struct btrfs_key key; |
| 3163 | int ret; |
| 3164 | bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); |
| 3165 | |
| 3166 | if (tree_block_processed(bytenr, rc)) |
| 3167 | return 0; |
| 3168 | |
| 3169 | if (rb_simple_search(blocks, bytenr)) |
| 3170 | return 0; |
| 3171 | |
| 3172 | path = btrfs_alloc_path(); |
| 3173 | if (!path) |
| 3174 | return -ENOMEM; |
| 3175 | again: |
| 3176 | key.objectid = bytenr; |
| 3177 | if (skinny) { |
| 3178 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 3179 | key.offset = (u64)-1; |
| 3180 | } else { |
| 3181 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 3182 | key.offset = blocksize; |
| 3183 | } |
| 3184 | |
| 3185 | path->search_commit_root = 1; |
| 3186 | path->skip_locking = 1; |
| 3187 | ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); |
| 3188 | if (ret < 0) |
| 3189 | goto out; |
| 3190 | |
| 3191 | if (ret > 0 && skinny) { |
| 3192 | if (path->slots[0]) { |
| 3193 | path->slots[0]--; |
| 3194 | btrfs_item_key_to_cpu(path->nodes[0], &key, |
| 3195 | path->slots[0]); |
| 3196 | if (key.objectid == bytenr && |
| 3197 | (key.type == BTRFS_METADATA_ITEM_KEY || |
| 3198 | (key.type == BTRFS_EXTENT_ITEM_KEY && |
| 3199 | key.offset == blocksize))) |
| 3200 | ret = 0; |
| 3201 | } |
| 3202 | |
| 3203 | if (ret) { |
| 3204 | skinny = false; |
| 3205 | btrfs_release_path(path); |
| 3206 | goto again; |
| 3207 | } |
| 3208 | } |
| 3209 | if (ret) { |
| 3210 | ASSERT(ret == 1); |
| 3211 | btrfs_print_leaf(path->nodes[0]); |
| 3212 | btrfs_err(fs_info, |
| 3213 | "tree block extent item (%llu) is not found in extent tree", |
| 3214 | bytenr); |
| 3215 | WARN_ON(1); |
| 3216 | ret = -EINVAL; |
| 3217 | goto out; |
| 3218 | } |
| 3219 | |
| 3220 | ret = add_tree_block(rc, &key, path, blocks); |
| 3221 | out: |
| 3222 | btrfs_free_path(path); |
| 3223 | return ret; |
| 3224 | } |
| 3225 | |
| 3226 | static int delete_block_group_cache(struct btrfs_block_group *block_group, |
| 3227 | struct inode *inode, |
| 3228 | u64 ino) |
| 3229 | { |
| 3230 | struct btrfs_fs_info *fs_info = block_group->fs_info; |
| 3231 | struct btrfs_root *root = fs_info->tree_root; |
| 3232 | struct btrfs_trans_handle *trans; |
| 3233 | struct btrfs_inode *btrfs_inode; |
| 3234 | int ret = 0; |
| 3235 | |
| 3236 | if (inode) |
| 3237 | goto truncate; |
| 3238 | |
| 3239 | btrfs_inode = btrfs_iget(ino, root); |
| 3240 | if (IS_ERR(btrfs_inode)) |
| 3241 | return -ENOENT; |
| 3242 | inode = &btrfs_inode->vfs_inode; |
| 3243 | |
| 3244 | truncate: |
| 3245 | ret = btrfs_check_trunc_cache_free_space(fs_info, |
| 3246 | &fs_info->global_block_rsv); |
| 3247 | if (ret) |
| 3248 | goto out; |
| 3249 | |
| 3250 | trans = btrfs_join_transaction(root); |
| 3251 | if (IS_ERR(trans)) { |
| 3252 | ret = PTR_ERR(trans); |
| 3253 | goto out; |
| 3254 | } |
| 3255 | |
| 3256 | ret = btrfs_truncate_free_space_cache(trans, block_group, inode); |
| 3257 | |
| 3258 | btrfs_end_transaction(trans); |
| 3259 | btrfs_btree_balance_dirty(fs_info); |
| 3260 | out: |
| 3261 | iput(inode); |
| 3262 | return ret; |
| 3263 | } |
| 3264 | |
| 3265 | /* |
| 3266 | * Locate the free space cache EXTENT_DATA in root tree leaf and delete the |
| 3267 | * cache inode, to avoid free space cache data extent blocking data relocation. |
| 3268 | */ |
| 3269 | static int delete_v1_space_cache(struct extent_buffer *leaf, |
| 3270 | struct btrfs_block_group *block_group, |
| 3271 | u64 data_bytenr) |
| 3272 | { |
| 3273 | u64 space_cache_ino; |
| 3274 | struct btrfs_file_extent_item *ei; |
| 3275 | struct btrfs_key key; |
| 3276 | bool found = false; |
| 3277 | int i; |
| 3278 | int ret; |
| 3279 | |
| 3280 | if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) |
| 3281 | return 0; |
| 3282 | |
| 3283 | for (i = 0; i < btrfs_header_nritems(leaf); i++) { |
| 3284 | u8 type; |
| 3285 | |
| 3286 | btrfs_item_key_to_cpu(leaf, &key, i); |
| 3287 | if (key.type != BTRFS_EXTENT_DATA_KEY) |
| 3288 | continue; |
| 3289 | ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); |
| 3290 | type = btrfs_file_extent_type(leaf, ei); |
| 3291 | |
| 3292 | if ((type == BTRFS_FILE_EXTENT_REG || |
| 3293 | type == BTRFS_FILE_EXTENT_PREALLOC) && |
| 3294 | btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { |
| 3295 | found = true; |
| 3296 | space_cache_ino = key.objectid; |
| 3297 | break; |
| 3298 | } |
| 3299 | } |
| 3300 | if (!found) |
| 3301 | return -ENOENT; |
| 3302 | ret = delete_block_group_cache(block_group, NULL, space_cache_ino); |
| 3303 | return ret; |
| 3304 | } |
| 3305 | |
| 3306 | /* |
| 3307 | * helper to find all tree blocks that reference a given data extent |
| 3308 | */ |
| 3309 | static noinline_for_stack int add_data_references(struct reloc_control *rc, |
| 3310 | const struct btrfs_key *extent_key, |
| 3311 | struct btrfs_path *path, |
| 3312 | struct rb_root *blocks) |
| 3313 | { |
| 3314 | struct btrfs_backref_walk_ctx ctx = { 0 }; |
| 3315 | struct ulist_iterator leaf_uiter; |
| 3316 | struct ulist_node *ref_node = NULL; |
| 3317 | const u32 blocksize = rc->extent_root->fs_info->nodesize; |
| 3318 | int ret = 0; |
| 3319 | |
| 3320 | btrfs_release_path(path); |
| 3321 | |
| 3322 | ctx.bytenr = extent_key->objectid; |
| 3323 | ctx.skip_inode_ref_list = true; |
| 3324 | ctx.fs_info = rc->extent_root->fs_info; |
| 3325 | |
| 3326 | ret = btrfs_find_all_leafs(&ctx); |
| 3327 | if (ret < 0) |
| 3328 | return ret; |
| 3329 | |
| 3330 | ULIST_ITER_INIT(&leaf_uiter); |
| 3331 | while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) { |
| 3332 | struct btrfs_tree_parent_check check = { 0 }; |
| 3333 | struct extent_buffer *eb; |
| 3334 | |
| 3335 | eb = read_tree_block(ctx.fs_info, ref_node->val, &check); |
| 3336 | if (IS_ERR(eb)) { |
| 3337 | ret = PTR_ERR(eb); |
| 3338 | break; |
| 3339 | } |
| 3340 | ret = delete_v1_space_cache(eb, rc->block_group, |
| 3341 | extent_key->objectid); |
| 3342 | free_extent_buffer(eb); |
| 3343 | if (ret < 0) |
| 3344 | break; |
| 3345 | ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); |
| 3346 | if (ret < 0) |
| 3347 | break; |
| 3348 | } |
| 3349 | if (ret < 0) |
| 3350 | free_block_list(blocks); |
| 3351 | ulist_free(ctx.refs); |
| 3352 | return ret; |
| 3353 | } |
| 3354 | |
| 3355 | /* |
| 3356 | * helper to find next unprocessed extent |
| 3357 | */ |
| 3358 | static noinline_for_stack |
| 3359 | int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, |
| 3360 | struct btrfs_key *extent_key) |
| 3361 | { |
| 3362 | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; |
| 3363 | struct btrfs_key key; |
| 3364 | struct extent_buffer *leaf; |
| 3365 | u64 start, end, last; |
| 3366 | int ret; |
| 3367 | |
| 3368 | last = rc->block_group->start + rc->block_group->length; |
| 3369 | while (1) { |
| 3370 | bool block_found; |
| 3371 | |
| 3372 | cond_resched(); |
| 3373 | if (rc->search_start >= last) { |
| 3374 | ret = 1; |
| 3375 | break; |
| 3376 | } |
| 3377 | |
| 3378 | key.objectid = rc->search_start; |
| 3379 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 3380 | key.offset = 0; |
| 3381 | |
| 3382 | path->search_commit_root = 1; |
| 3383 | path->skip_locking = 1; |
| 3384 | ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, |
| 3385 | 0, 0); |
| 3386 | if (ret < 0) |
| 3387 | break; |
| 3388 | next: |
| 3389 | leaf = path->nodes[0]; |
| 3390 | if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| 3391 | ret = btrfs_next_leaf(rc->extent_root, path); |
| 3392 | if (ret != 0) |
| 3393 | break; |
| 3394 | leaf = path->nodes[0]; |
| 3395 | } |
| 3396 | |
| 3397 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 3398 | if (key.objectid >= last) { |
| 3399 | ret = 1; |
| 3400 | break; |
| 3401 | } |
| 3402 | |
| 3403 | if (key.type != BTRFS_EXTENT_ITEM_KEY && |
| 3404 | key.type != BTRFS_METADATA_ITEM_KEY) { |
| 3405 | path->slots[0]++; |
| 3406 | goto next; |
| 3407 | } |
| 3408 | |
| 3409 | if (key.type == BTRFS_EXTENT_ITEM_KEY && |
| 3410 | key.objectid + key.offset <= rc->search_start) { |
| 3411 | path->slots[0]++; |
| 3412 | goto next; |
| 3413 | } |
| 3414 | |
| 3415 | if (key.type == BTRFS_METADATA_ITEM_KEY && |
| 3416 | key.objectid + fs_info->nodesize <= |
| 3417 | rc->search_start) { |
| 3418 | path->slots[0]++; |
| 3419 | goto next; |
| 3420 | } |
| 3421 | |
| 3422 | block_found = btrfs_find_first_extent_bit(&rc->processed_blocks, |
| 3423 | key.objectid, &start, &end, |
| 3424 | EXTENT_DIRTY, NULL); |
| 3425 | |
| 3426 | if (block_found && start <= key.objectid) { |
| 3427 | btrfs_release_path(path); |
| 3428 | rc->search_start = end + 1; |
| 3429 | } else { |
| 3430 | if (key.type == BTRFS_EXTENT_ITEM_KEY) |
| 3431 | rc->search_start = key.objectid + key.offset; |
| 3432 | else |
| 3433 | rc->search_start = key.objectid + |
| 3434 | fs_info->nodesize; |
| 3435 | memcpy(extent_key, &key, sizeof(key)); |
| 3436 | return 0; |
| 3437 | } |
| 3438 | } |
| 3439 | btrfs_release_path(path); |
| 3440 | return ret; |
| 3441 | } |
| 3442 | |
| 3443 | static void set_reloc_control(struct reloc_control *rc) |
| 3444 | { |
| 3445 | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; |
| 3446 | |
| 3447 | mutex_lock(&fs_info->reloc_mutex); |
| 3448 | fs_info->reloc_ctl = rc; |
| 3449 | mutex_unlock(&fs_info->reloc_mutex); |
| 3450 | } |
| 3451 | |
| 3452 | static void unset_reloc_control(struct reloc_control *rc) |
| 3453 | { |
| 3454 | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; |
| 3455 | |
| 3456 | mutex_lock(&fs_info->reloc_mutex); |
| 3457 | fs_info->reloc_ctl = NULL; |
| 3458 | mutex_unlock(&fs_info->reloc_mutex); |
| 3459 | } |
| 3460 | |
| 3461 | static noinline_for_stack |
| 3462 | int prepare_to_relocate(struct reloc_control *rc) |
| 3463 | { |
| 3464 | struct btrfs_trans_handle *trans; |
| 3465 | int ret; |
| 3466 | |
| 3467 | rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, |
| 3468 | BTRFS_BLOCK_RSV_TEMP); |
| 3469 | if (!rc->block_rsv) |
| 3470 | return -ENOMEM; |
| 3471 | |
| 3472 | memset(&rc->cluster, 0, sizeof(rc->cluster)); |
| 3473 | rc->search_start = rc->block_group->start; |
| 3474 | rc->extents_found = 0; |
| 3475 | rc->nodes_relocated = 0; |
| 3476 | rc->merging_rsv_size = 0; |
| 3477 | rc->reserved_bytes = 0; |
| 3478 | rc->block_rsv->size = rc->extent_root->fs_info->nodesize * |
| 3479 | RELOCATION_RESERVED_NODES; |
| 3480 | ret = btrfs_block_rsv_refill(rc->extent_root->fs_info, |
| 3481 | rc->block_rsv, rc->block_rsv->size, |
| 3482 | BTRFS_RESERVE_FLUSH_ALL); |
| 3483 | if (ret) |
| 3484 | return ret; |
| 3485 | |
| 3486 | rc->create_reloc_tree = true; |
| 3487 | set_reloc_control(rc); |
| 3488 | |
| 3489 | trans = btrfs_join_transaction(rc->extent_root); |
| 3490 | if (IS_ERR(trans)) { |
| 3491 | unset_reloc_control(rc); |
| 3492 | /* |
| 3493 | * extent tree is not a ref_cow tree and has no reloc_root to |
| 3494 | * cleanup. And callers are responsible to free the above |
| 3495 | * block rsv. |
| 3496 | */ |
| 3497 | return PTR_ERR(trans); |
| 3498 | } |
| 3499 | |
| 3500 | ret = btrfs_commit_transaction(trans); |
| 3501 | if (ret) |
| 3502 | unset_reloc_control(rc); |
| 3503 | |
| 3504 | return ret; |
| 3505 | } |
| 3506 | |
| 3507 | static noinline_for_stack int relocate_block_group(struct reloc_control *rc) |
| 3508 | { |
| 3509 | struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; |
| 3510 | struct rb_root blocks = RB_ROOT; |
| 3511 | struct btrfs_key key; |
| 3512 | struct btrfs_trans_handle *trans = NULL; |
| 3513 | struct btrfs_path *path; |
| 3514 | struct btrfs_extent_item *ei; |
| 3515 | u64 flags; |
| 3516 | int ret; |
| 3517 | int err = 0; |
| 3518 | int progress = 0; |
| 3519 | |
| 3520 | path = btrfs_alloc_path(); |
| 3521 | if (!path) |
| 3522 | return -ENOMEM; |
| 3523 | path->reada = READA_FORWARD; |
| 3524 | |
| 3525 | ret = prepare_to_relocate(rc); |
| 3526 | if (ret) { |
| 3527 | err = ret; |
| 3528 | goto out_free; |
| 3529 | } |
| 3530 | |
| 3531 | while (1) { |
| 3532 | rc->reserved_bytes = 0; |
| 3533 | ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, |
| 3534 | rc->block_rsv->size, |
| 3535 | BTRFS_RESERVE_FLUSH_ALL); |
| 3536 | if (ret) { |
| 3537 | err = ret; |
| 3538 | break; |
| 3539 | } |
| 3540 | progress++; |
| 3541 | trans = btrfs_start_transaction(rc->extent_root, 0); |
| 3542 | if (IS_ERR(trans)) { |
| 3543 | err = PTR_ERR(trans); |
| 3544 | trans = NULL; |
| 3545 | break; |
| 3546 | } |
| 3547 | restart: |
| 3548 | if (rc->backref_cache.last_trans != trans->transid) |
| 3549 | btrfs_backref_release_cache(&rc->backref_cache); |
| 3550 | rc->backref_cache.last_trans = trans->transid; |
| 3551 | |
| 3552 | ret = find_next_extent(rc, path, &key); |
| 3553 | if (ret < 0) |
| 3554 | err = ret; |
| 3555 | if (ret != 0) |
| 3556 | break; |
| 3557 | |
| 3558 | rc->extents_found++; |
| 3559 | |
| 3560 | ei = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| 3561 | struct btrfs_extent_item); |
| 3562 | flags = btrfs_extent_flags(path->nodes[0], ei); |
| 3563 | |
| 3564 | /* |
| 3565 | * If we are relocating a simple quota owned extent item, we |
| 3566 | * need to note the owner on the reloc data root so that when |
| 3567 | * we allocate the replacement item, we can attribute it to the |
| 3568 | * correct eventual owner (rather than the reloc data root). |
| 3569 | */ |
| 3570 | if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) { |
| 3571 | struct btrfs_root *root = BTRFS_I(rc->data_inode)->root; |
| 3572 | u64 owning_root_id = btrfs_get_extent_owner_root(fs_info, |
| 3573 | path->nodes[0], |
| 3574 | path->slots[0]); |
| 3575 | |
| 3576 | root->relocation_src_root = owning_root_id; |
| 3577 | } |
| 3578 | |
| 3579 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| 3580 | ret = add_tree_block(rc, &key, path, &blocks); |
| 3581 | } else if (rc->stage == UPDATE_DATA_PTRS && |
| 3582 | (flags & BTRFS_EXTENT_FLAG_DATA)) { |
| 3583 | ret = add_data_references(rc, &key, path, &blocks); |
| 3584 | } else { |
| 3585 | btrfs_release_path(path); |
| 3586 | ret = 0; |
| 3587 | } |
| 3588 | if (ret < 0) { |
| 3589 | err = ret; |
| 3590 | break; |
| 3591 | } |
| 3592 | |
| 3593 | if (!RB_EMPTY_ROOT(&blocks)) { |
| 3594 | ret = relocate_tree_blocks(trans, rc, &blocks); |
| 3595 | if (ret < 0) { |
| 3596 | if (ret != -EAGAIN) { |
| 3597 | err = ret; |
| 3598 | break; |
| 3599 | } |
| 3600 | rc->extents_found--; |
| 3601 | rc->search_start = key.objectid; |
| 3602 | } |
| 3603 | } |
| 3604 | |
| 3605 | btrfs_end_transaction_throttle(trans); |
| 3606 | btrfs_btree_balance_dirty(fs_info); |
| 3607 | trans = NULL; |
| 3608 | |
| 3609 | if (rc->stage == MOVE_DATA_EXTENTS && |
| 3610 | (flags & BTRFS_EXTENT_FLAG_DATA)) { |
| 3611 | rc->found_file_extent = true; |
| 3612 | ret = relocate_data_extent(rc, &key); |
| 3613 | if (ret < 0) { |
| 3614 | err = ret; |
| 3615 | break; |
| 3616 | } |
| 3617 | } |
| 3618 | if (btrfs_should_cancel_balance(fs_info)) { |
| 3619 | err = -ECANCELED; |
| 3620 | break; |
| 3621 | } |
| 3622 | } |
| 3623 | if (trans && progress && err == -ENOSPC) { |
| 3624 | ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); |
| 3625 | if (ret == 1) { |
| 3626 | err = 0; |
| 3627 | progress = 0; |
| 3628 | goto restart; |
| 3629 | } |
| 3630 | } |
| 3631 | |
| 3632 | btrfs_release_path(path); |
| 3633 | btrfs_clear_extent_bit(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, NULL); |
| 3634 | |
| 3635 | if (trans) { |
| 3636 | btrfs_end_transaction_throttle(trans); |
| 3637 | btrfs_btree_balance_dirty(fs_info); |
| 3638 | } |
| 3639 | |
| 3640 | if (!err) { |
| 3641 | ret = relocate_file_extent_cluster(rc); |
| 3642 | if (ret < 0) |
| 3643 | err = ret; |
| 3644 | } |
| 3645 | |
| 3646 | rc->create_reloc_tree = false; |
| 3647 | set_reloc_control(rc); |
| 3648 | |
| 3649 | btrfs_backref_release_cache(&rc->backref_cache); |
| 3650 | btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); |
| 3651 | |
| 3652 | /* |
| 3653 | * Even in the case when the relocation is cancelled, we should all go |
| 3654 | * through prepare_to_merge() and merge_reloc_roots(). |
| 3655 | * |
| 3656 | * For error (including cancelled balance), prepare_to_merge() will |
| 3657 | * mark all reloc trees orphan, then queue them for cleanup in |
| 3658 | * merge_reloc_roots() |
| 3659 | */ |
| 3660 | err = prepare_to_merge(rc, err); |
| 3661 | |
| 3662 | merge_reloc_roots(rc); |
| 3663 | |
| 3664 | rc->merge_reloc_tree = false; |
| 3665 | unset_reloc_control(rc); |
| 3666 | btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); |
| 3667 | |
| 3668 | /* get rid of pinned extents */ |
| 3669 | trans = btrfs_join_transaction(rc->extent_root); |
| 3670 | if (IS_ERR(trans)) { |
| 3671 | err = PTR_ERR(trans); |
| 3672 | goto out_free; |
| 3673 | } |
| 3674 | ret = btrfs_commit_transaction(trans); |
| 3675 | if (ret && !err) |
| 3676 | err = ret; |
| 3677 | out_free: |
| 3678 | ret = clean_dirty_subvols(rc); |
| 3679 | if (ret < 0 && !err) |
| 3680 | err = ret; |
| 3681 | btrfs_free_block_rsv(fs_info, rc->block_rsv); |
| 3682 | btrfs_free_path(path); |
| 3683 | return err; |
| 3684 | } |
| 3685 | |
| 3686 | static int __insert_orphan_inode(struct btrfs_trans_handle *trans, |
| 3687 | struct btrfs_root *root, u64 objectid) |
| 3688 | { |
| 3689 | struct btrfs_path *path; |
| 3690 | struct btrfs_inode_item *item; |
| 3691 | struct extent_buffer *leaf; |
| 3692 | int ret; |
| 3693 | |
| 3694 | path = btrfs_alloc_path(); |
| 3695 | if (!path) |
| 3696 | return -ENOMEM; |
| 3697 | |
| 3698 | ret = btrfs_insert_empty_inode(trans, root, path, objectid); |
| 3699 | if (ret) |
| 3700 | goto out; |
| 3701 | |
| 3702 | leaf = path->nodes[0]; |
| 3703 | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); |
| 3704 | memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); |
| 3705 | btrfs_set_inode_generation(leaf, item, 1); |
| 3706 | btrfs_set_inode_size(leaf, item, 0); |
| 3707 | btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); |
| 3708 | btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | |
| 3709 | BTRFS_INODE_PREALLOC); |
| 3710 | out: |
| 3711 | btrfs_free_path(path); |
| 3712 | return ret; |
| 3713 | } |
| 3714 | |
| 3715 | static void delete_orphan_inode(struct btrfs_trans_handle *trans, |
| 3716 | struct btrfs_root *root, u64 objectid) |
| 3717 | { |
| 3718 | struct btrfs_path *path; |
| 3719 | struct btrfs_key key; |
| 3720 | int ret = 0; |
| 3721 | |
| 3722 | path = btrfs_alloc_path(); |
| 3723 | if (!path) { |
| 3724 | ret = -ENOMEM; |
| 3725 | goto out; |
| 3726 | } |
| 3727 | |
| 3728 | key.objectid = objectid; |
| 3729 | key.type = BTRFS_INODE_ITEM_KEY; |
| 3730 | key.offset = 0; |
| 3731 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| 3732 | if (ret) { |
| 3733 | if (ret > 0) |
| 3734 | ret = -ENOENT; |
| 3735 | goto out; |
| 3736 | } |
| 3737 | ret = btrfs_del_item(trans, root, path); |
| 3738 | out: |
| 3739 | if (ret) |
| 3740 | btrfs_abort_transaction(trans, ret); |
| 3741 | btrfs_free_path(path); |
| 3742 | } |
| 3743 | |
| 3744 | /* |
| 3745 | * helper to create inode for data relocation. |
| 3746 | * the inode is in data relocation tree and its link count is 0 |
| 3747 | */ |
| 3748 | static noinline_for_stack struct inode *create_reloc_inode( |
| 3749 | const struct btrfs_block_group *group) |
| 3750 | { |
| 3751 | struct btrfs_fs_info *fs_info = group->fs_info; |
| 3752 | struct btrfs_inode *inode = NULL; |
| 3753 | struct btrfs_trans_handle *trans; |
| 3754 | struct btrfs_root *root; |
| 3755 | u64 objectid; |
| 3756 | int ret = 0; |
| 3757 | |
| 3758 | root = btrfs_grab_root(fs_info->data_reloc_root); |
| 3759 | trans = btrfs_start_transaction(root, 6); |
| 3760 | if (IS_ERR(trans)) { |
| 3761 | btrfs_put_root(root); |
| 3762 | return ERR_CAST(trans); |
| 3763 | } |
| 3764 | |
| 3765 | ret = btrfs_get_free_objectid(root, &objectid); |
| 3766 | if (ret) |
| 3767 | goto out; |
| 3768 | |
| 3769 | ret = __insert_orphan_inode(trans, root, objectid); |
| 3770 | if (ret) |
| 3771 | goto out; |
| 3772 | |
| 3773 | inode = btrfs_iget(objectid, root); |
| 3774 | if (IS_ERR(inode)) { |
| 3775 | delete_orphan_inode(trans, root, objectid); |
| 3776 | ret = PTR_ERR(inode); |
| 3777 | inode = NULL; |
| 3778 | goto out; |
| 3779 | } |
| 3780 | inode->reloc_block_group_start = group->start; |
| 3781 | |
| 3782 | ret = btrfs_orphan_add(trans, inode); |
| 3783 | out: |
| 3784 | btrfs_put_root(root); |
| 3785 | btrfs_end_transaction(trans); |
| 3786 | btrfs_btree_balance_dirty(fs_info); |
| 3787 | if (ret) { |
| 3788 | if (inode) |
| 3789 | iput(&inode->vfs_inode); |
| 3790 | return ERR_PTR(ret); |
| 3791 | } |
| 3792 | return &inode->vfs_inode; |
| 3793 | } |
| 3794 | |
| 3795 | /* |
| 3796 | * Mark start of chunk relocation that is cancellable. Check if the cancellation |
| 3797 | * has been requested meanwhile and don't start in that case. |
| 3798 | * |
| 3799 | * Return: |
| 3800 | * 0 success |
| 3801 | * -EINPROGRESS operation is already in progress, that's probably a bug |
| 3802 | * -ECANCELED cancellation request was set before the operation started |
| 3803 | */ |
| 3804 | static int reloc_chunk_start(struct btrfs_fs_info *fs_info) |
| 3805 | { |
| 3806 | if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { |
| 3807 | /* This should not happen */ |
| 3808 | btrfs_err(fs_info, "reloc already running, cannot start"); |
| 3809 | return -EINPROGRESS; |
| 3810 | } |
| 3811 | |
| 3812 | if (atomic_read(&fs_info->reloc_cancel_req) > 0) { |
| 3813 | btrfs_info(fs_info, "chunk relocation canceled on start"); |
| 3814 | /* |
| 3815 | * On cancel, clear all requests but let the caller mark |
| 3816 | * the end after cleanup operations. |
| 3817 | */ |
| 3818 | atomic_set(&fs_info->reloc_cancel_req, 0); |
| 3819 | return -ECANCELED; |
| 3820 | } |
| 3821 | return 0; |
| 3822 | } |
| 3823 | |
| 3824 | /* |
| 3825 | * Mark end of chunk relocation that is cancellable and wake any waiters. |
| 3826 | */ |
| 3827 | static void reloc_chunk_end(struct btrfs_fs_info *fs_info) |
| 3828 | { |
| 3829 | /* Requested after start, clear bit first so any waiters can continue */ |
| 3830 | if (atomic_read(&fs_info->reloc_cancel_req) > 0) |
| 3831 | btrfs_info(fs_info, "chunk relocation canceled during operation"); |
| 3832 | clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); |
| 3833 | atomic_set(&fs_info->reloc_cancel_req, 0); |
| 3834 | } |
| 3835 | |
| 3836 | static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) |
| 3837 | { |
| 3838 | struct reloc_control *rc; |
| 3839 | |
| 3840 | rc = kzalloc(sizeof(*rc), GFP_NOFS); |
| 3841 | if (!rc) |
| 3842 | return NULL; |
| 3843 | |
| 3844 | INIT_LIST_HEAD(&rc->reloc_roots); |
| 3845 | INIT_LIST_HEAD(&rc->dirty_subvol_roots); |
| 3846 | btrfs_backref_init_cache(fs_info, &rc->backref_cache, true); |
| 3847 | rc->reloc_root_tree.rb_root = RB_ROOT; |
| 3848 | spin_lock_init(&rc->reloc_root_tree.lock); |
| 3849 | btrfs_extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS); |
| 3850 | return rc; |
| 3851 | } |
| 3852 | |
| 3853 | static void free_reloc_control(struct reloc_control *rc) |
| 3854 | { |
| 3855 | struct mapping_node *node, *tmp; |
| 3856 | |
| 3857 | free_reloc_roots(&rc->reloc_roots); |
| 3858 | rbtree_postorder_for_each_entry_safe(node, tmp, |
| 3859 | &rc->reloc_root_tree.rb_root, rb_node) |
| 3860 | kfree(node); |
| 3861 | |
| 3862 | kfree(rc); |
| 3863 | } |
| 3864 | |
| 3865 | /* |
| 3866 | * Print the block group being relocated |
| 3867 | */ |
| 3868 | static void describe_relocation(struct btrfs_block_group *block_group) |
| 3869 | { |
| 3870 | char buf[128] = "NONE"; |
| 3871 | |
| 3872 | btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); |
| 3873 | |
| 3874 | btrfs_info(block_group->fs_info, "relocating block group %llu flags %s", |
| 3875 | block_group->start, buf); |
| 3876 | } |
| 3877 | |
| 3878 | static const char *stage_to_string(enum reloc_stage stage) |
| 3879 | { |
| 3880 | if (stage == MOVE_DATA_EXTENTS) |
| 3881 | return "move data extents"; |
| 3882 | if (stage == UPDATE_DATA_PTRS) |
| 3883 | return "update data pointers"; |
| 3884 | return "unknown"; |
| 3885 | } |
| 3886 | |
| 3887 | /* |
| 3888 | * function to relocate all extents in a block group. |
| 3889 | */ |
| 3890 | int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start, |
| 3891 | bool verbose) |
| 3892 | { |
| 3893 | struct btrfs_block_group *bg; |
| 3894 | struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start); |
| 3895 | struct reloc_control *rc; |
| 3896 | struct inode *inode; |
| 3897 | struct btrfs_path *path; |
| 3898 | int ret; |
| 3899 | int rw = 0; |
| 3900 | int err = 0; |
| 3901 | |
| 3902 | /* |
| 3903 | * This only gets set if we had a half-deleted snapshot on mount. We |
| 3904 | * cannot allow relocation to start while we're still trying to clean up |
| 3905 | * these pending deletions. |
| 3906 | */ |
| 3907 | ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE); |
| 3908 | if (ret) |
| 3909 | return ret; |
| 3910 | |
| 3911 | /* We may have been woken up by close_ctree, so bail if we're closing. */ |
| 3912 | if (btrfs_fs_closing(fs_info)) |
| 3913 | return -EINTR; |
| 3914 | |
| 3915 | bg = btrfs_lookup_block_group(fs_info, group_start); |
| 3916 | if (!bg) |
| 3917 | return -ENOENT; |
| 3918 | |
| 3919 | /* |
| 3920 | * Relocation of a data block group creates ordered extents. Without |
| 3921 | * sb_start_write(), we can freeze the filesystem while unfinished |
| 3922 | * ordered extents are left. Such ordered extents can cause a deadlock |
| 3923 | * e.g. when syncfs() is waiting for their completion but they can't |
| 3924 | * finish because they block when joining a transaction, due to the |
| 3925 | * fact that the freeze locks are being held in write mode. |
| 3926 | */ |
| 3927 | if (bg->flags & BTRFS_BLOCK_GROUP_DATA) |
| 3928 | ASSERT(sb_write_started(fs_info->sb)); |
| 3929 | |
| 3930 | if (btrfs_pinned_by_swapfile(fs_info, bg)) { |
| 3931 | btrfs_put_block_group(bg); |
| 3932 | return -ETXTBSY; |
| 3933 | } |
| 3934 | |
| 3935 | rc = alloc_reloc_control(fs_info); |
| 3936 | if (!rc) { |
| 3937 | btrfs_put_block_group(bg); |
| 3938 | return -ENOMEM; |
| 3939 | } |
| 3940 | |
| 3941 | ret = reloc_chunk_start(fs_info); |
| 3942 | if (ret < 0) { |
| 3943 | err = ret; |
| 3944 | goto out_put_bg; |
| 3945 | } |
| 3946 | |
| 3947 | rc->extent_root = extent_root; |
| 3948 | rc->block_group = bg; |
| 3949 | |
| 3950 | ret = btrfs_inc_block_group_ro(rc->block_group, true); |
| 3951 | if (ret) { |
| 3952 | err = ret; |
| 3953 | goto out; |
| 3954 | } |
| 3955 | rw = 1; |
| 3956 | |
| 3957 | path = btrfs_alloc_path(); |
| 3958 | if (!path) { |
| 3959 | err = -ENOMEM; |
| 3960 | goto out; |
| 3961 | } |
| 3962 | |
| 3963 | inode = lookup_free_space_inode(rc->block_group, path); |
| 3964 | btrfs_free_path(path); |
| 3965 | |
| 3966 | if (!IS_ERR(inode)) |
| 3967 | ret = delete_block_group_cache(rc->block_group, inode, 0); |
| 3968 | else |
| 3969 | ret = PTR_ERR(inode); |
| 3970 | |
| 3971 | if (ret && ret != -ENOENT) { |
| 3972 | err = ret; |
| 3973 | goto out; |
| 3974 | } |
| 3975 | |
| 3976 | rc->data_inode = create_reloc_inode(rc->block_group); |
| 3977 | if (IS_ERR(rc->data_inode)) { |
| 3978 | err = PTR_ERR(rc->data_inode); |
| 3979 | rc->data_inode = NULL; |
| 3980 | goto out; |
| 3981 | } |
| 3982 | |
| 3983 | if (verbose) |
| 3984 | describe_relocation(rc->block_group); |
| 3985 | |
| 3986 | btrfs_wait_block_group_reservations(rc->block_group); |
| 3987 | btrfs_wait_nocow_writers(rc->block_group); |
| 3988 | btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group); |
| 3989 | |
| 3990 | ret = btrfs_zone_finish(rc->block_group); |
| 3991 | WARN_ON(ret && ret != -EAGAIN); |
| 3992 | |
| 3993 | while (1) { |
| 3994 | enum reloc_stage finishes_stage; |
| 3995 | |
| 3996 | mutex_lock(&fs_info->cleaner_mutex); |
| 3997 | ret = relocate_block_group(rc); |
| 3998 | mutex_unlock(&fs_info->cleaner_mutex); |
| 3999 | if (ret < 0) |
| 4000 | err = ret; |
| 4001 | |
| 4002 | finishes_stage = rc->stage; |
| 4003 | /* |
| 4004 | * We may have gotten ENOSPC after we already dirtied some |
| 4005 | * extents. If writeout happens while we're relocating a |
| 4006 | * different block group we could end up hitting the |
| 4007 | * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in |
| 4008 | * btrfs_reloc_cow_block. Make sure we write everything out |
| 4009 | * properly so we don't trip over this problem, and then break |
| 4010 | * out of the loop if we hit an error. |
| 4011 | */ |
| 4012 | if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { |
| 4013 | ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0, |
| 4014 | (u64)-1); |
| 4015 | if (ret) |
| 4016 | err = ret; |
| 4017 | invalidate_mapping_pages(rc->data_inode->i_mapping, |
| 4018 | 0, -1); |
| 4019 | rc->stage = UPDATE_DATA_PTRS; |
| 4020 | } |
| 4021 | |
| 4022 | if (err < 0) |
| 4023 | goto out; |
| 4024 | |
| 4025 | if (rc->extents_found == 0) |
| 4026 | break; |
| 4027 | |
| 4028 | if (verbose) |
| 4029 | btrfs_info(fs_info, "found %llu extents, stage: %s", |
| 4030 | rc->extents_found, |
| 4031 | stage_to_string(finishes_stage)); |
| 4032 | } |
| 4033 | |
| 4034 | WARN_ON(rc->block_group->pinned > 0); |
| 4035 | WARN_ON(rc->block_group->reserved > 0); |
| 4036 | WARN_ON(rc->block_group->used > 0); |
| 4037 | out: |
| 4038 | if (err && rw) |
| 4039 | btrfs_dec_block_group_ro(rc->block_group); |
| 4040 | iput(rc->data_inode); |
| 4041 | out_put_bg: |
| 4042 | btrfs_put_block_group(bg); |
| 4043 | reloc_chunk_end(fs_info); |
| 4044 | free_reloc_control(rc); |
| 4045 | return err; |
| 4046 | } |
| 4047 | |
| 4048 | static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) |
| 4049 | { |
| 4050 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 4051 | struct btrfs_trans_handle *trans; |
| 4052 | int ret, err; |
| 4053 | |
| 4054 | trans = btrfs_start_transaction(fs_info->tree_root, 0); |
| 4055 | if (IS_ERR(trans)) |
| 4056 | return PTR_ERR(trans); |
| 4057 | |
| 4058 | memset(&root->root_item.drop_progress, 0, |
| 4059 | sizeof(root->root_item.drop_progress)); |
| 4060 | btrfs_set_root_drop_level(&root->root_item, 0); |
| 4061 | btrfs_set_root_refs(&root->root_item, 0); |
| 4062 | ret = btrfs_update_root(trans, fs_info->tree_root, |
| 4063 | &root->root_key, &root->root_item); |
| 4064 | |
| 4065 | err = btrfs_end_transaction(trans); |
| 4066 | if (err) |
| 4067 | return err; |
| 4068 | return ret; |
| 4069 | } |
| 4070 | |
| 4071 | /* |
| 4072 | * recover relocation interrupted by system crash. |
| 4073 | * |
| 4074 | * this function resumes merging reloc trees with corresponding fs trees. |
| 4075 | * this is important for keeping the sharing of tree blocks |
| 4076 | */ |
| 4077 | int btrfs_recover_relocation(struct btrfs_fs_info *fs_info) |
| 4078 | { |
| 4079 | LIST_HEAD(reloc_roots); |
| 4080 | struct btrfs_key key; |
| 4081 | struct btrfs_root *fs_root; |
| 4082 | struct btrfs_root *reloc_root; |
| 4083 | struct btrfs_path *path; |
| 4084 | struct extent_buffer *leaf; |
| 4085 | struct reloc_control *rc = NULL; |
| 4086 | struct btrfs_trans_handle *trans; |
| 4087 | int ret2; |
| 4088 | int ret = 0; |
| 4089 | |
| 4090 | path = btrfs_alloc_path(); |
| 4091 | if (!path) |
| 4092 | return -ENOMEM; |
| 4093 | path->reada = READA_BACK; |
| 4094 | |
| 4095 | key.objectid = BTRFS_TREE_RELOC_OBJECTID; |
| 4096 | key.type = BTRFS_ROOT_ITEM_KEY; |
| 4097 | key.offset = (u64)-1; |
| 4098 | |
| 4099 | while (1) { |
| 4100 | ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, |
| 4101 | path, 0, 0); |
| 4102 | if (ret < 0) |
| 4103 | goto out; |
| 4104 | if (ret > 0) { |
| 4105 | if (path->slots[0] == 0) |
| 4106 | break; |
| 4107 | path->slots[0]--; |
| 4108 | } |
| 4109 | ret = 0; |
| 4110 | leaf = path->nodes[0]; |
| 4111 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 4112 | btrfs_release_path(path); |
| 4113 | |
| 4114 | if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || |
| 4115 | key.type != BTRFS_ROOT_ITEM_KEY) |
| 4116 | break; |
| 4117 | |
| 4118 | reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key); |
| 4119 | if (IS_ERR(reloc_root)) { |
| 4120 | ret = PTR_ERR(reloc_root); |
| 4121 | goto out; |
| 4122 | } |
| 4123 | |
| 4124 | set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); |
| 4125 | list_add(&reloc_root->root_list, &reloc_roots); |
| 4126 | |
| 4127 | if (btrfs_root_refs(&reloc_root->root_item) > 0) { |
| 4128 | fs_root = btrfs_get_fs_root(fs_info, |
| 4129 | reloc_root->root_key.offset, false); |
| 4130 | if (IS_ERR(fs_root)) { |
| 4131 | ret = PTR_ERR(fs_root); |
| 4132 | if (ret != -ENOENT) |
| 4133 | goto out; |
| 4134 | ret = mark_garbage_root(reloc_root); |
| 4135 | if (ret < 0) |
| 4136 | goto out; |
| 4137 | ret = 0; |
| 4138 | } else { |
| 4139 | btrfs_put_root(fs_root); |
| 4140 | } |
| 4141 | } |
| 4142 | |
| 4143 | if (key.offset == 0) |
| 4144 | break; |
| 4145 | |
| 4146 | key.offset--; |
| 4147 | } |
| 4148 | btrfs_release_path(path); |
| 4149 | |
| 4150 | if (list_empty(&reloc_roots)) |
| 4151 | goto out; |
| 4152 | |
| 4153 | rc = alloc_reloc_control(fs_info); |
| 4154 | if (!rc) { |
| 4155 | ret = -ENOMEM; |
| 4156 | goto out; |
| 4157 | } |
| 4158 | |
| 4159 | ret = reloc_chunk_start(fs_info); |
| 4160 | if (ret < 0) |
| 4161 | goto out_end; |
| 4162 | |
| 4163 | rc->extent_root = btrfs_extent_root(fs_info, 0); |
| 4164 | |
| 4165 | set_reloc_control(rc); |
| 4166 | |
| 4167 | trans = btrfs_join_transaction(rc->extent_root); |
| 4168 | if (IS_ERR(trans)) { |
| 4169 | ret = PTR_ERR(trans); |
| 4170 | goto out_unset; |
| 4171 | } |
| 4172 | |
| 4173 | rc->merge_reloc_tree = true; |
| 4174 | |
| 4175 | while (!list_empty(&reloc_roots)) { |
| 4176 | reloc_root = list_first_entry(&reloc_roots, struct btrfs_root, root_list); |
| 4177 | list_del(&reloc_root->root_list); |
| 4178 | |
| 4179 | if (btrfs_root_refs(&reloc_root->root_item) == 0) { |
| 4180 | list_add_tail(&reloc_root->root_list, |
| 4181 | &rc->reloc_roots); |
| 4182 | continue; |
| 4183 | } |
| 4184 | |
| 4185 | fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, |
| 4186 | false); |
| 4187 | if (IS_ERR(fs_root)) { |
| 4188 | ret = PTR_ERR(fs_root); |
| 4189 | list_add_tail(&reloc_root->root_list, &reloc_roots); |
| 4190 | btrfs_end_transaction(trans); |
| 4191 | goto out_unset; |
| 4192 | } |
| 4193 | |
| 4194 | ret = __add_reloc_root(reloc_root); |
| 4195 | ASSERT(ret != -EEXIST); |
| 4196 | if (ret) { |
| 4197 | list_add_tail(&reloc_root->root_list, &reloc_roots); |
| 4198 | btrfs_put_root(fs_root); |
| 4199 | btrfs_end_transaction(trans); |
| 4200 | goto out_unset; |
| 4201 | } |
| 4202 | fs_root->reloc_root = btrfs_grab_root(reloc_root); |
| 4203 | btrfs_put_root(fs_root); |
| 4204 | } |
| 4205 | |
| 4206 | ret = btrfs_commit_transaction(trans); |
| 4207 | if (ret) |
| 4208 | goto out_unset; |
| 4209 | |
| 4210 | merge_reloc_roots(rc); |
| 4211 | |
| 4212 | unset_reloc_control(rc); |
| 4213 | |
| 4214 | trans = btrfs_join_transaction(rc->extent_root); |
| 4215 | if (IS_ERR(trans)) { |
| 4216 | ret = PTR_ERR(trans); |
| 4217 | goto out_clean; |
| 4218 | } |
| 4219 | ret = btrfs_commit_transaction(trans); |
| 4220 | out_clean: |
| 4221 | ret2 = clean_dirty_subvols(rc); |
| 4222 | if (ret2 < 0 && !ret) |
| 4223 | ret = ret2; |
| 4224 | out_unset: |
| 4225 | unset_reloc_control(rc); |
| 4226 | out_end: |
| 4227 | reloc_chunk_end(fs_info); |
| 4228 | free_reloc_control(rc); |
| 4229 | out: |
| 4230 | free_reloc_roots(&reloc_roots); |
| 4231 | |
| 4232 | btrfs_free_path(path); |
| 4233 | |
| 4234 | if (ret == 0) { |
| 4235 | /* cleanup orphan inode in data relocation tree */ |
| 4236 | fs_root = btrfs_grab_root(fs_info->data_reloc_root); |
| 4237 | ASSERT(fs_root); |
| 4238 | ret = btrfs_orphan_cleanup(fs_root); |
| 4239 | btrfs_put_root(fs_root); |
| 4240 | } |
| 4241 | return ret; |
| 4242 | } |
| 4243 | |
| 4244 | /* |
| 4245 | * helper to add ordered checksum for data relocation. |
| 4246 | * |
| 4247 | * cloning checksum properly handles the nodatasum extents. |
| 4248 | * it also saves CPU time to re-calculate the checksum. |
| 4249 | */ |
| 4250 | int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered) |
| 4251 | { |
| 4252 | struct btrfs_inode *inode = ordered->inode; |
| 4253 | struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| 4254 | u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start; |
| 4255 | struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr); |
| 4256 | LIST_HEAD(list); |
| 4257 | int ret; |
| 4258 | |
| 4259 | ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, |
| 4260 | disk_bytenr + ordered->num_bytes - 1, |
| 4261 | &list, false); |
| 4262 | if (ret < 0) { |
| 4263 | btrfs_mark_ordered_extent_error(ordered); |
| 4264 | return ret; |
| 4265 | } |
| 4266 | |
| 4267 | while (!list_empty(&list)) { |
| 4268 | struct btrfs_ordered_sum *sums = |
| 4269 | list_first_entry(&list, struct btrfs_ordered_sum, list); |
| 4270 | |
| 4271 | list_del_init(&sums->list); |
| 4272 | |
| 4273 | /* |
| 4274 | * We need to offset the new_bytenr based on where the csum is. |
| 4275 | * We need to do this because we will read in entire prealloc |
| 4276 | * extents but we may have written to say the middle of the |
| 4277 | * prealloc extent, so we need to make sure the csum goes with |
| 4278 | * the right disk offset. |
| 4279 | * |
| 4280 | * We can do this because the data reloc inode refers strictly |
| 4281 | * to the on disk bytes, so we don't have to worry about |
| 4282 | * disk_len vs real len like with real inodes since it's all |
| 4283 | * disk length. |
| 4284 | */ |
| 4285 | sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr; |
| 4286 | btrfs_add_ordered_sum(ordered, sums); |
| 4287 | } |
| 4288 | |
| 4289 | return 0; |
| 4290 | } |
| 4291 | |
| 4292 | int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, |
| 4293 | struct btrfs_root *root, |
| 4294 | const struct extent_buffer *buf, |
| 4295 | struct extent_buffer *cow) |
| 4296 | { |
| 4297 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 4298 | struct reloc_control *rc; |
| 4299 | struct btrfs_backref_node *node; |
| 4300 | int first_cow = 0; |
| 4301 | int level; |
| 4302 | int ret = 0; |
| 4303 | |
| 4304 | rc = fs_info->reloc_ctl; |
| 4305 | if (!rc) |
| 4306 | return 0; |
| 4307 | |
| 4308 | BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root)); |
| 4309 | |
| 4310 | level = btrfs_header_level(buf); |
| 4311 | if (btrfs_header_generation(buf) <= |
| 4312 | btrfs_root_last_snapshot(&root->root_item)) |
| 4313 | first_cow = 1; |
| 4314 | |
| 4315 | if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) { |
| 4316 | WARN_ON(!first_cow && level == 0); |
| 4317 | |
| 4318 | node = rc->backref_cache.path[level]; |
| 4319 | |
| 4320 | /* |
| 4321 | * If node->bytenr != buf->start and node->new_bytenr != |
| 4322 | * buf->start then we've got the wrong backref node for what we |
| 4323 | * expected to see here and the cache is incorrect. |
| 4324 | */ |
| 4325 | if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) { |
| 4326 | btrfs_err(fs_info, |
| 4327 | "bytenr %llu was found but our backref cache was expecting %llu or %llu", |
| 4328 | buf->start, node->bytenr, node->new_bytenr); |
| 4329 | return -EUCLEAN; |
| 4330 | } |
| 4331 | |
| 4332 | btrfs_backref_drop_node_buffer(node); |
| 4333 | refcount_inc(&cow->refs); |
| 4334 | node->eb = cow; |
| 4335 | node->new_bytenr = cow->start; |
| 4336 | |
| 4337 | if (!node->pending) { |
| 4338 | list_move_tail(&node->list, |
| 4339 | &rc->backref_cache.pending[level]); |
| 4340 | node->pending = 1; |
| 4341 | } |
| 4342 | |
| 4343 | if (first_cow) |
| 4344 | mark_block_processed(rc, node); |
| 4345 | |
| 4346 | if (first_cow && level > 0) |
| 4347 | rc->nodes_relocated += buf->len; |
| 4348 | } |
| 4349 | |
| 4350 | if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) |
| 4351 | ret = replace_file_extents(trans, rc, root, cow); |
| 4352 | return ret; |
| 4353 | } |
| 4354 | |
| 4355 | /* |
| 4356 | * called before creating snapshot. it calculates metadata reservation |
| 4357 | * required for relocating tree blocks in the snapshot |
| 4358 | */ |
| 4359 | void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, |
| 4360 | u64 *bytes_to_reserve) |
| 4361 | { |
| 4362 | struct btrfs_root *root = pending->root; |
| 4363 | struct reloc_control *rc = root->fs_info->reloc_ctl; |
| 4364 | |
| 4365 | if (!rc || !have_reloc_root(root)) |
| 4366 | return; |
| 4367 | |
| 4368 | if (!rc->merge_reloc_tree) |
| 4369 | return; |
| 4370 | |
| 4371 | root = root->reloc_root; |
| 4372 | BUG_ON(btrfs_root_refs(&root->root_item) == 0); |
| 4373 | /* |
| 4374 | * relocation is in the stage of merging trees. the space |
| 4375 | * used by merging a reloc tree is twice the size of |
| 4376 | * relocated tree nodes in the worst case. half for cowing |
| 4377 | * the reloc tree, half for cowing the fs tree. the space |
| 4378 | * used by cowing the reloc tree will be freed after the |
| 4379 | * tree is dropped. if we create snapshot, cowing the fs |
| 4380 | * tree may use more space than it frees. so we need |
| 4381 | * reserve extra space. |
| 4382 | */ |
| 4383 | *bytes_to_reserve += rc->nodes_relocated; |
| 4384 | } |
| 4385 | |
| 4386 | /* |
| 4387 | * called after snapshot is created. migrate block reservation |
| 4388 | * and create reloc root for the newly created snapshot |
| 4389 | * |
| 4390 | * This is similar to btrfs_init_reloc_root(), we come out of here with two |
| 4391 | * references held on the reloc_root, one for root->reloc_root and one for |
| 4392 | * rc->reloc_roots. |
| 4393 | */ |
| 4394 | int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, |
| 4395 | struct btrfs_pending_snapshot *pending) |
| 4396 | { |
| 4397 | struct btrfs_root *root = pending->root; |
| 4398 | struct btrfs_root *reloc_root; |
| 4399 | struct btrfs_root *new_root; |
| 4400 | struct reloc_control *rc = root->fs_info->reloc_ctl; |
| 4401 | int ret; |
| 4402 | |
| 4403 | if (!rc || !have_reloc_root(root)) |
| 4404 | return 0; |
| 4405 | |
| 4406 | rc = root->fs_info->reloc_ctl; |
| 4407 | rc->merging_rsv_size += rc->nodes_relocated; |
| 4408 | |
| 4409 | if (rc->merge_reloc_tree) { |
| 4410 | ret = btrfs_block_rsv_migrate(&pending->block_rsv, |
| 4411 | rc->block_rsv, |
| 4412 | rc->nodes_relocated, true); |
| 4413 | if (ret) |
| 4414 | return ret; |
| 4415 | } |
| 4416 | |
| 4417 | new_root = pending->snap; |
| 4418 | reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root)); |
| 4419 | if (IS_ERR(reloc_root)) |
| 4420 | return PTR_ERR(reloc_root); |
| 4421 | |
| 4422 | ret = __add_reloc_root(reloc_root); |
| 4423 | ASSERT(ret != -EEXIST); |
| 4424 | if (ret) { |
| 4425 | /* Pairs with create_reloc_root */ |
| 4426 | btrfs_put_root(reloc_root); |
| 4427 | return ret; |
| 4428 | } |
| 4429 | new_root->reloc_root = btrfs_grab_root(reloc_root); |
| 4430 | return 0; |
| 4431 | } |
| 4432 | |
| 4433 | /* |
| 4434 | * Get the current bytenr for the block group which is being relocated. |
| 4435 | * |
| 4436 | * Return U64_MAX if no running relocation. |
| 4437 | */ |
| 4438 | u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info) |
| 4439 | { |
| 4440 | u64 logical = U64_MAX; |
| 4441 | |
| 4442 | lockdep_assert_held(&fs_info->reloc_mutex); |
| 4443 | |
| 4444 | if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group) |
| 4445 | logical = fs_info->reloc_ctl->block_group->start; |
| 4446 | return logical; |
| 4447 | } |