| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2012 Fusion-io All rights reserved. |
| 4 | * Copyright (C) 2012 Intel Corp. All rights reserved. |
| 5 | */ |
| 6 | |
| 7 | #include <linux/sched.h> |
| 8 | #include <linux/bio.h> |
| 9 | #include <linux/slab.h> |
| 10 | #include <linux/blkdev.h> |
| 11 | #include <linux/raid/pq.h> |
| 12 | #include <linux/hash.h> |
| 13 | #include <linux/list_sort.h> |
| 14 | #include <linux/raid/xor.h> |
| 15 | #include <linux/mm.h> |
| 16 | #include "messages.h" |
| 17 | #include "ctree.h" |
| 18 | #include "disk-io.h" |
| 19 | #include "volumes.h" |
| 20 | #include "raid56.h" |
| 21 | #include "async-thread.h" |
| 22 | #include "file-item.h" |
| 23 | #include "btrfs_inode.h" |
| 24 | |
| 25 | /* set when additional merges to this rbio are not allowed */ |
| 26 | #define RBIO_RMW_LOCKED_BIT 1 |
| 27 | |
| 28 | /* |
| 29 | * set when this rbio is sitting in the hash, but it is just a cache |
| 30 | * of past RMW |
| 31 | */ |
| 32 | #define RBIO_CACHE_BIT 2 |
| 33 | |
| 34 | /* |
| 35 | * set when it is safe to trust the stripe_pages for caching |
| 36 | */ |
| 37 | #define RBIO_CACHE_READY_BIT 3 |
| 38 | |
| 39 | #define RBIO_CACHE_SIZE 1024 |
| 40 | |
| 41 | #define BTRFS_STRIPE_HASH_TABLE_BITS 11 |
| 42 | |
| 43 | static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc) |
| 44 | { |
| 45 | if (unlikely(!bioc)) { |
| 46 | btrfs_crit(fs_info, "bioc=NULL"); |
| 47 | return; |
| 48 | } |
| 49 | btrfs_crit(fs_info, |
| 50 | "bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u", |
| 51 | bioc->logical, bioc->full_stripe_logical, bioc->size, |
| 52 | bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes, |
| 53 | bioc->replace_stripe_src, bioc->num_stripes); |
| 54 | for (int i = 0; i < bioc->num_stripes; i++) { |
| 55 | btrfs_crit(fs_info, " nr=%d devid=%llu physical=%llu", |
| 56 | i, bioc->stripes[i].dev->devid, |
| 57 | bioc->stripes[i].physical); |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info, |
| 62 | const struct btrfs_raid_bio *rbio) |
| 63 | { |
| 64 | if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) |
| 65 | return; |
| 66 | |
| 67 | dump_bioc(fs_info, rbio->bioc); |
| 68 | btrfs_crit(fs_info, |
| 69 | "rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u scrubp=%u dbitmap=0x%lx", |
| 70 | rbio->flags, rbio->nr_sectors, rbio->nr_data, |
| 71 | rbio->real_stripes, rbio->stripe_nsectors, |
| 72 | rbio->scrubp, rbio->dbitmap); |
| 73 | } |
| 74 | |
| 75 | #define ASSERT_RBIO(expr, rbio) \ |
| 76 | ({ \ |
| 77 | if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \ |
| 78 | const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \ |
| 79 | (rbio)->bioc->fs_info : NULL; \ |
| 80 | \ |
| 81 | btrfs_dump_rbio(__fs_info, (rbio)); \ |
| 82 | } \ |
| 83 | ASSERT((expr)); \ |
| 84 | }) |
| 85 | |
| 86 | #define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr) \ |
| 87 | ({ \ |
| 88 | if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \ |
| 89 | const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \ |
| 90 | (rbio)->bioc->fs_info : NULL; \ |
| 91 | \ |
| 92 | btrfs_dump_rbio(__fs_info, (rbio)); \ |
| 93 | btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr)); \ |
| 94 | } \ |
| 95 | ASSERT((expr)); \ |
| 96 | }) |
| 97 | |
| 98 | #define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr) \ |
| 99 | ({ \ |
| 100 | if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \ |
| 101 | const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \ |
| 102 | (rbio)->bioc->fs_info : NULL; \ |
| 103 | \ |
| 104 | btrfs_dump_rbio(__fs_info, (rbio)); \ |
| 105 | btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr)); \ |
| 106 | } \ |
| 107 | ASSERT((expr)); \ |
| 108 | }) |
| 109 | |
| 110 | #define ASSERT_RBIO_LOGICAL(expr, rbio, logical) \ |
| 111 | ({ \ |
| 112 | if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \ |
| 113 | const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \ |
| 114 | (rbio)->bioc->fs_info : NULL; \ |
| 115 | \ |
| 116 | btrfs_dump_rbio(__fs_info, (rbio)); \ |
| 117 | btrfs_crit(__fs_info, "logical=%llu", (logical)); \ |
| 118 | } \ |
| 119 | ASSERT((expr)); \ |
| 120 | }) |
| 121 | |
| 122 | /* Used by the raid56 code to lock stripes for read/modify/write */ |
| 123 | struct btrfs_stripe_hash { |
| 124 | struct list_head hash_list; |
| 125 | spinlock_t lock; |
| 126 | }; |
| 127 | |
| 128 | /* Used by the raid56 code to lock stripes for read/modify/write */ |
| 129 | struct btrfs_stripe_hash_table { |
| 130 | struct list_head stripe_cache; |
| 131 | spinlock_t cache_lock; |
| 132 | int cache_size; |
| 133 | struct btrfs_stripe_hash table[]; |
| 134 | }; |
| 135 | |
| 136 | /* |
| 137 | * A structure to present a sector inside a page, the length is fixed to |
| 138 | * sectorsize; |
| 139 | */ |
| 140 | struct sector_ptr { |
| 141 | /* |
| 142 | * Blocks from the bio list can still be highmem. |
| 143 | * So here we use physical address to present a page and the offset inside it. |
| 144 | */ |
| 145 | phys_addr_t paddr; |
| 146 | bool has_paddr; |
| 147 | bool uptodate; |
| 148 | }; |
| 149 | |
| 150 | static void rmw_rbio_work(struct work_struct *work); |
| 151 | static void rmw_rbio_work_locked(struct work_struct *work); |
| 152 | static void index_rbio_pages(struct btrfs_raid_bio *rbio); |
| 153 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); |
| 154 | |
| 155 | static int finish_parity_scrub(struct btrfs_raid_bio *rbio); |
| 156 | static void scrub_rbio_work_locked(struct work_struct *work); |
| 157 | |
| 158 | static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio) |
| 159 | { |
| 160 | bitmap_free(rbio->error_bitmap); |
| 161 | kfree(rbio->stripe_pages); |
| 162 | kfree(rbio->bio_sectors); |
| 163 | kfree(rbio->stripe_sectors); |
| 164 | kfree(rbio->finish_pointers); |
| 165 | } |
| 166 | |
| 167 | static void free_raid_bio(struct btrfs_raid_bio *rbio) |
| 168 | { |
| 169 | int i; |
| 170 | |
| 171 | if (!refcount_dec_and_test(&rbio->refs)) |
| 172 | return; |
| 173 | |
| 174 | WARN_ON(!list_empty(&rbio->stripe_cache)); |
| 175 | WARN_ON(!list_empty(&rbio->hash_list)); |
| 176 | WARN_ON(!bio_list_empty(&rbio->bio_list)); |
| 177 | |
| 178 | for (i = 0; i < rbio->nr_pages; i++) { |
| 179 | if (rbio->stripe_pages[i]) { |
| 180 | __free_page(rbio->stripe_pages[i]); |
| 181 | rbio->stripe_pages[i] = NULL; |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | btrfs_put_bioc(rbio->bioc); |
| 186 | free_raid_bio_pointers(rbio); |
| 187 | kfree(rbio); |
| 188 | } |
| 189 | |
| 190 | static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func) |
| 191 | { |
| 192 | INIT_WORK(&rbio->work, work_func); |
| 193 | queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work); |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * the stripe hash table is used for locking, and to collect |
| 198 | * bios in hopes of making a full stripe |
| 199 | */ |
| 200 | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) |
| 201 | { |
| 202 | struct btrfs_stripe_hash_table *table; |
| 203 | struct btrfs_stripe_hash_table *x; |
| 204 | struct btrfs_stripe_hash *cur; |
| 205 | struct btrfs_stripe_hash *h; |
| 206 | unsigned int num_entries = 1U << BTRFS_STRIPE_HASH_TABLE_BITS; |
| 207 | |
| 208 | if (info->stripe_hash_table) |
| 209 | return 0; |
| 210 | |
| 211 | /* |
| 212 | * The table is large, starting with order 4 and can go as high as |
| 213 | * order 7 in case lock debugging is turned on. |
| 214 | * |
| 215 | * Try harder to allocate and fallback to vmalloc to lower the chance |
| 216 | * of a failing mount. |
| 217 | */ |
| 218 | table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); |
| 219 | if (!table) |
| 220 | return -ENOMEM; |
| 221 | |
| 222 | spin_lock_init(&table->cache_lock); |
| 223 | INIT_LIST_HEAD(&table->stripe_cache); |
| 224 | |
| 225 | h = table->table; |
| 226 | |
| 227 | for (unsigned int i = 0; i < num_entries; i++) { |
| 228 | cur = h + i; |
| 229 | INIT_LIST_HEAD(&cur->hash_list); |
| 230 | spin_lock_init(&cur->lock); |
| 231 | } |
| 232 | |
| 233 | x = cmpxchg(&info->stripe_hash_table, NULL, table); |
| 234 | kvfree(x); |
| 235 | return 0; |
| 236 | } |
| 237 | |
| 238 | static void memcpy_sectors(const struct sector_ptr *dst, |
| 239 | const struct sector_ptr *src, u32 blocksize) |
| 240 | { |
| 241 | memcpy_page(phys_to_page(dst->paddr), offset_in_page(dst->paddr), |
| 242 | phys_to_page(src->paddr), offset_in_page(src->paddr), |
| 243 | blocksize); |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | * caching an rbio means to copy anything from the |
| 248 | * bio_sectors array into the stripe_pages array. We |
| 249 | * use the page uptodate bit in the stripe cache array |
| 250 | * to indicate if it has valid data |
| 251 | * |
| 252 | * once the caching is done, we set the cache ready |
| 253 | * bit. |
| 254 | */ |
| 255 | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) |
| 256 | { |
| 257 | int i; |
| 258 | int ret; |
| 259 | |
| 260 | ret = alloc_rbio_pages(rbio); |
| 261 | if (ret) |
| 262 | return; |
| 263 | |
| 264 | for (i = 0; i < rbio->nr_sectors; i++) { |
| 265 | /* Some range not covered by bio (partial write), skip it */ |
| 266 | if (!rbio->bio_sectors[i].has_paddr) { |
| 267 | /* |
| 268 | * Even if the sector is not covered by bio, if it is |
| 269 | * a data sector it should still be uptodate as it is |
| 270 | * read from disk. |
| 271 | */ |
| 272 | if (i < rbio->nr_data * rbio->stripe_nsectors) |
| 273 | ASSERT(rbio->stripe_sectors[i].uptodate); |
| 274 | continue; |
| 275 | } |
| 276 | |
| 277 | memcpy_sectors(&rbio->stripe_sectors[i], &rbio->bio_sectors[i], |
| 278 | rbio->bioc->fs_info->sectorsize); |
| 279 | rbio->stripe_sectors[i].uptodate = 1; |
| 280 | } |
| 281 | set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
| 282 | } |
| 283 | |
| 284 | /* |
| 285 | * we hash on the first logical address of the stripe |
| 286 | */ |
| 287 | static int rbio_bucket(struct btrfs_raid_bio *rbio) |
| 288 | { |
| 289 | u64 num = rbio->bioc->full_stripe_logical; |
| 290 | |
| 291 | /* |
| 292 | * we shift down quite a bit. We're using byte |
| 293 | * addressing, and most of the lower bits are zeros. |
| 294 | * This tends to upset hash_64, and it consistently |
| 295 | * returns just one or two different values. |
| 296 | * |
| 297 | * shifting off the lower bits fixes things. |
| 298 | */ |
| 299 | return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); |
| 300 | } |
| 301 | |
| 302 | static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio, |
| 303 | unsigned int page_nr) |
| 304 | { |
| 305 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; |
| 306 | const u32 sectors_per_page = PAGE_SIZE / sectorsize; |
| 307 | int i; |
| 308 | |
| 309 | ASSERT(page_nr < rbio->nr_pages); |
| 310 | |
| 311 | for (i = sectors_per_page * page_nr; |
| 312 | i < sectors_per_page * page_nr + sectors_per_page; |
| 313 | i++) { |
| 314 | if (!rbio->stripe_sectors[i].uptodate) |
| 315 | return false; |
| 316 | } |
| 317 | return true; |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * Update the stripe_sectors[] array to use correct page and pgoff |
| 322 | * |
| 323 | * Should be called every time any page pointer in stripes_pages[] got modified. |
| 324 | */ |
| 325 | static void index_stripe_sectors(struct btrfs_raid_bio *rbio) |
| 326 | { |
| 327 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; |
| 328 | u32 offset; |
| 329 | int i; |
| 330 | |
| 331 | for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) { |
| 332 | int page_index = offset >> PAGE_SHIFT; |
| 333 | |
| 334 | ASSERT(page_index < rbio->nr_pages); |
| 335 | if (!rbio->stripe_pages[page_index]) |
| 336 | continue; |
| 337 | |
| 338 | rbio->stripe_sectors[i].has_paddr = true; |
| 339 | rbio->stripe_sectors[i].paddr = |
| 340 | page_to_phys(rbio->stripe_pages[page_index]) + |
| 341 | offset_in_page(offset); |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | static void steal_rbio_page(struct btrfs_raid_bio *src, |
| 346 | struct btrfs_raid_bio *dest, int page_nr) |
| 347 | { |
| 348 | const u32 sectorsize = src->bioc->fs_info->sectorsize; |
| 349 | const u32 sectors_per_page = PAGE_SIZE / sectorsize; |
| 350 | int i; |
| 351 | |
| 352 | if (dest->stripe_pages[page_nr]) |
| 353 | __free_page(dest->stripe_pages[page_nr]); |
| 354 | dest->stripe_pages[page_nr] = src->stripe_pages[page_nr]; |
| 355 | src->stripe_pages[page_nr] = NULL; |
| 356 | |
| 357 | /* Also update the sector->uptodate bits. */ |
| 358 | for (i = sectors_per_page * page_nr; |
| 359 | i < sectors_per_page * page_nr + sectors_per_page; i++) |
| 360 | dest->stripe_sectors[i].uptodate = true; |
| 361 | } |
| 362 | |
| 363 | static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr) |
| 364 | { |
| 365 | const int sector_nr = (page_nr << PAGE_SHIFT) >> |
| 366 | rbio->bioc->fs_info->sectorsize_bits; |
| 367 | |
| 368 | /* |
| 369 | * We have ensured PAGE_SIZE is aligned with sectorsize, thus |
| 370 | * we won't have a page which is half data half parity. |
| 371 | * |
| 372 | * Thus if the first sector of the page belongs to data stripes, then |
| 373 | * the full page belongs to data stripes. |
| 374 | */ |
| 375 | return (sector_nr < rbio->nr_data * rbio->stripe_nsectors); |
| 376 | } |
| 377 | |
| 378 | /* |
| 379 | * Stealing an rbio means taking all the uptodate pages from the stripe array |
| 380 | * in the source rbio and putting them into the destination rbio. |
| 381 | * |
| 382 | * This will also update the involved stripe_sectors[] which are referring to |
| 383 | * the old pages. |
| 384 | */ |
| 385 | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) |
| 386 | { |
| 387 | int i; |
| 388 | |
| 389 | if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) |
| 390 | return; |
| 391 | |
| 392 | for (i = 0; i < dest->nr_pages; i++) { |
| 393 | struct page *p = src->stripe_pages[i]; |
| 394 | |
| 395 | /* |
| 396 | * We don't need to steal P/Q pages as they will always be |
| 397 | * regenerated for RMW or full write anyway. |
| 398 | */ |
| 399 | if (!is_data_stripe_page(src, i)) |
| 400 | continue; |
| 401 | |
| 402 | /* |
| 403 | * If @src already has RBIO_CACHE_READY_BIT, it should have |
| 404 | * all data stripe pages present and uptodate. |
| 405 | */ |
| 406 | ASSERT(p); |
| 407 | ASSERT(full_page_sectors_uptodate(src, i)); |
| 408 | steal_rbio_page(src, dest, i); |
| 409 | } |
| 410 | index_stripe_sectors(dest); |
| 411 | index_stripe_sectors(src); |
| 412 | } |
| 413 | |
| 414 | /* |
| 415 | * merging means we take the bio_list from the victim and |
| 416 | * splice it into the destination. The victim should |
| 417 | * be discarded afterwards. |
| 418 | * |
| 419 | * must be called with dest->rbio_list_lock held |
| 420 | */ |
| 421 | static void merge_rbio(struct btrfs_raid_bio *dest, |
| 422 | struct btrfs_raid_bio *victim) |
| 423 | { |
| 424 | bio_list_merge_init(&dest->bio_list, &victim->bio_list); |
| 425 | dest->bio_list_bytes += victim->bio_list_bytes; |
| 426 | /* Also inherit the bitmaps from @victim. */ |
| 427 | bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap, |
| 428 | dest->stripe_nsectors); |
| 429 | } |
| 430 | |
| 431 | /* |
| 432 | * used to prune items that are in the cache. The caller |
| 433 | * must hold the hash table lock. |
| 434 | */ |
| 435 | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) |
| 436 | { |
| 437 | int bucket = rbio_bucket(rbio); |
| 438 | struct btrfs_stripe_hash_table *table; |
| 439 | struct btrfs_stripe_hash *h; |
| 440 | int freeit = 0; |
| 441 | |
| 442 | /* |
| 443 | * check the bit again under the hash table lock. |
| 444 | */ |
| 445 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) |
| 446 | return; |
| 447 | |
| 448 | table = rbio->bioc->fs_info->stripe_hash_table; |
| 449 | h = table->table + bucket; |
| 450 | |
| 451 | /* hold the lock for the bucket because we may be |
| 452 | * removing it from the hash table |
| 453 | */ |
| 454 | spin_lock(&h->lock); |
| 455 | |
| 456 | /* |
| 457 | * hold the lock for the bio list because we need |
| 458 | * to make sure the bio list is empty |
| 459 | */ |
| 460 | spin_lock(&rbio->bio_list_lock); |
| 461 | |
| 462 | if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { |
| 463 | list_del_init(&rbio->stripe_cache); |
| 464 | table->cache_size -= 1; |
| 465 | freeit = 1; |
| 466 | |
| 467 | /* if the bio list isn't empty, this rbio is |
| 468 | * still involved in an IO. We take it out |
| 469 | * of the cache list, and drop the ref that |
| 470 | * was held for the list. |
| 471 | * |
| 472 | * If the bio_list was empty, we also remove |
| 473 | * the rbio from the hash_table, and drop |
| 474 | * the corresponding ref |
| 475 | */ |
| 476 | if (bio_list_empty(&rbio->bio_list)) { |
| 477 | if (!list_empty(&rbio->hash_list)) { |
| 478 | list_del_init(&rbio->hash_list); |
| 479 | refcount_dec(&rbio->refs); |
| 480 | BUG_ON(!list_empty(&rbio->plug_list)); |
| 481 | } |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | spin_unlock(&rbio->bio_list_lock); |
| 486 | spin_unlock(&h->lock); |
| 487 | |
| 488 | if (freeit) |
| 489 | free_raid_bio(rbio); |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * prune a given rbio from the cache |
| 494 | */ |
| 495 | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) |
| 496 | { |
| 497 | struct btrfs_stripe_hash_table *table; |
| 498 | |
| 499 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) |
| 500 | return; |
| 501 | |
| 502 | table = rbio->bioc->fs_info->stripe_hash_table; |
| 503 | |
| 504 | spin_lock(&table->cache_lock); |
| 505 | __remove_rbio_from_cache(rbio); |
| 506 | spin_unlock(&table->cache_lock); |
| 507 | } |
| 508 | |
| 509 | /* |
| 510 | * remove everything in the cache |
| 511 | */ |
| 512 | static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) |
| 513 | { |
| 514 | struct btrfs_stripe_hash_table *table; |
| 515 | struct btrfs_raid_bio *rbio; |
| 516 | |
| 517 | table = info->stripe_hash_table; |
| 518 | |
| 519 | spin_lock(&table->cache_lock); |
| 520 | while (!list_empty(&table->stripe_cache)) { |
| 521 | rbio = list_first_entry(&table->stripe_cache, |
| 522 | struct btrfs_raid_bio, stripe_cache); |
| 523 | __remove_rbio_from_cache(rbio); |
| 524 | } |
| 525 | spin_unlock(&table->cache_lock); |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * remove all cached entries and free the hash table |
| 530 | * used by unmount |
| 531 | */ |
| 532 | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) |
| 533 | { |
| 534 | if (!info->stripe_hash_table) |
| 535 | return; |
| 536 | btrfs_clear_rbio_cache(info); |
| 537 | kvfree(info->stripe_hash_table); |
| 538 | info->stripe_hash_table = NULL; |
| 539 | } |
| 540 | |
| 541 | /* |
| 542 | * insert an rbio into the stripe cache. It |
| 543 | * must have already been prepared by calling |
| 544 | * cache_rbio_pages |
| 545 | * |
| 546 | * If this rbio was already cached, it gets |
| 547 | * moved to the front of the lru. |
| 548 | * |
| 549 | * If the size of the rbio cache is too big, we |
| 550 | * prune an item. |
| 551 | */ |
| 552 | static void cache_rbio(struct btrfs_raid_bio *rbio) |
| 553 | { |
| 554 | struct btrfs_stripe_hash_table *table; |
| 555 | |
| 556 | if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) |
| 557 | return; |
| 558 | |
| 559 | table = rbio->bioc->fs_info->stripe_hash_table; |
| 560 | |
| 561 | spin_lock(&table->cache_lock); |
| 562 | spin_lock(&rbio->bio_list_lock); |
| 563 | |
| 564 | /* bump our ref if we were not in the list before */ |
| 565 | if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) |
| 566 | refcount_inc(&rbio->refs); |
| 567 | |
| 568 | if (!list_empty(&rbio->stripe_cache)){ |
| 569 | list_move(&rbio->stripe_cache, &table->stripe_cache); |
| 570 | } else { |
| 571 | list_add(&rbio->stripe_cache, &table->stripe_cache); |
| 572 | table->cache_size += 1; |
| 573 | } |
| 574 | |
| 575 | spin_unlock(&rbio->bio_list_lock); |
| 576 | |
| 577 | if (table->cache_size > RBIO_CACHE_SIZE) { |
| 578 | struct btrfs_raid_bio *found; |
| 579 | |
| 580 | found = list_last_entry(&table->stripe_cache, |
| 581 | struct btrfs_raid_bio, |
| 582 | stripe_cache); |
| 583 | |
| 584 | if (found != rbio) |
| 585 | __remove_rbio_from_cache(found); |
| 586 | } |
| 587 | |
| 588 | spin_unlock(&table->cache_lock); |
| 589 | } |
| 590 | |
| 591 | /* |
| 592 | * helper function to run the xor_blocks api. It is only |
| 593 | * able to do MAX_XOR_BLOCKS at a time, so we need to |
| 594 | * loop through. |
| 595 | */ |
| 596 | static void run_xor(void **pages, int src_cnt, ssize_t len) |
| 597 | { |
| 598 | int src_off = 0; |
| 599 | int xor_src_cnt = 0; |
| 600 | void *dest = pages[src_cnt]; |
| 601 | |
| 602 | while(src_cnt > 0) { |
| 603 | xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); |
| 604 | xor_blocks(xor_src_cnt, len, dest, pages + src_off); |
| 605 | |
| 606 | src_cnt -= xor_src_cnt; |
| 607 | src_off += xor_src_cnt; |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | /* |
| 612 | * Returns true if the bio list inside this rbio covers an entire stripe (no |
| 613 | * rmw required). |
| 614 | */ |
| 615 | static int rbio_is_full(struct btrfs_raid_bio *rbio) |
| 616 | { |
| 617 | unsigned long size = rbio->bio_list_bytes; |
| 618 | int ret = 1; |
| 619 | |
| 620 | spin_lock(&rbio->bio_list_lock); |
| 621 | if (size != rbio->nr_data * BTRFS_STRIPE_LEN) |
| 622 | ret = 0; |
| 623 | BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN); |
| 624 | spin_unlock(&rbio->bio_list_lock); |
| 625 | |
| 626 | return ret; |
| 627 | } |
| 628 | |
| 629 | /* |
| 630 | * returns 1 if it is safe to merge two rbios together. |
| 631 | * The merging is safe if the two rbios correspond to |
| 632 | * the same stripe and if they are both going in the same |
| 633 | * direction (read vs write), and if neither one is |
| 634 | * locked for final IO |
| 635 | * |
| 636 | * The caller is responsible for locking such that |
| 637 | * rmw_locked is safe to test |
| 638 | */ |
| 639 | static int rbio_can_merge(struct btrfs_raid_bio *last, |
| 640 | struct btrfs_raid_bio *cur) |
| 641 | { |
| 642 | if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || |
| 643 | test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) |
| 644 | return 0; |
| 645 | |
| 646 | /* |
| 647 | * we can't merge with cached rbios, since the |
| 648 | * idea is that when we merge the destination |
| 649 | * rbio is going to run our IO for us. We can |
| 650 | * steal from cached rbios though, other functions |
| 651 | * handle that. |
| 652 | */ |
| 653 | if (test_bit(RBIO_CACHE_BIT, &last->flags) || |
| 654 | test_bit(RBIO_CACHE_BIT, &cur->flags)) |
| 655 | return 0; |
| 656 | |
| 657 | if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical) |
| 658 | return 0; |
| 659 | |
| 660 | /* we can't merge with different operations */ |
| 661 | if (last->operation != cur->operation) |
| 662 | return 0; |
| 663 | /* |
| 664 | * We've need read the full stripe from the drive. |
| 665 | * check and repair the parity and write the new results. |
| 666 | * |
| 667 | * We're not allowed to add any new bios to the |
| 668 | * bio list here, anyone else that wants to |
| 669 | * change this stripe needs to do their own rmw. |
| 670 | */ |
| 671 | if (last->operation == BTRFS_RBIO_PARITY_SCRUB) |
| 672 | return 0; |
| 673 | |
| 674 | if (last->operation == BTRFS_RBIO_READ_REBUILD) |
| 675 | return 0; |
| 676 | |
| 677 | return 1; |
| 678 | } |
| 679 | |
| 680 | static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio, |
| 681 | unsigned int stripe_nr, |
| 682 | unsigned int sector_nr) |
| 683 | { |
| 684 | ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr); |
| 685 | ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr); |
| 686 | |
| 687 | return stripe_nr * rbio->stripe_nsectors + sector_nr; |
| 688 | } |
| 689 | |
| 690 | /* Return a sector from rbio->stripe_sectors, not from the bio list */ |
| 691 | static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio, |
| 692 | unsigned int stripe_nr, |
| 693 | unsigned int sector_nr) |
| 694 | { |
| 695 | return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr, |
| 696 | sector_nr)]; |
| 697 | } |
| 698 | |
| 699 | /* Grab a sector inside P stripe */ |
| 700 | static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio, |
| 701 | unsigned int sector_nr) |
| 702 | { |
| 703 | return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr); |
| 704 | } |
| 705 | |
| 706 | /* Grab a sector inside Q stripe, return NULL if not RAID6 */ |
| 707 | static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio, |
| 708 | unsigned int sector_nr) |
| 709 | { |
| 710 | if (rbio->nr_data + 1 == rbio->real_stripes) |
| 711 | return NULL; |
| 712 | return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr); |
| 713 | } |
| 714 | |
| 715 | /* |
| 716 | * The first stripe in the table for a logical address |
| 717 | * has the lock. rbios are added in one of three ways: |
| 718 | * |
| 719 | * 1) Nobody has the stripe locked yet. The rbio is given |
| 720 | * the lock and 0 is returned. The caller must start the IO |
| 721 | * themselves. |
| 722 | * |
| 723 | * 2) Someone has the stripe locked, but we're able to merge |
| 724 | * with the lock owner. The rbio is freed and the IO will |
| 725 | * start automatically along with the existing rbio. 1 is returned. |
| 726 | * |
| 727 | * 3) Someone has the stripe locked, but we're not able to merge. |
| 728 | * The rbio is added to the lock owner's plug list, or merged into |
| 729 | * an rbio already on the plug list. When the lock owner unlocks, |
| 730 | * the next rbio on the list is run and the IO is started automatically. |
| 731 | * 1 is returned |
| 732 | * |
| 733 | * If we return 0, the caller still owns the rbio and must continue with |
| 734 | * IO submission. If we return 1, the caller must assume the rbio has |
| 735 | * already been freed. |
| 736 | */ |
| 737 | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) |
| 738 | { |
| 739 | struct btrfs_stripe_hash *h; |
| 740 | struct btrfs_raid_bio *cur; |
| 741 | struct btrfs_raid_bio *pending; |
| 742 | struct btrfs_raid_bio *freeit = NULL; |
| 743 | struct btrfs_raid_bio *cache_drop = NULL; |
| 744 | int ret = 0; |
| 745 | |
| 746 | h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio); |
| 747 | |
| 748 | spin_lock(&h->lock); |
| 749 | list_for_each_entry(cur, &h->hash_list, hash_list) { |
| 750 | if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical) |
| 751 | continue; |
| 752 | |
| 753 | spin_lock(&cur->bio_list_lock); |
| 754 | |
| 755 | /* Can we steal this cached rbio's pages? */ |
| 756 | if (bio_list_empty(&cur->bio_list) && |
| 757 | list_empty(&cur->plug_list) && |
| 758 | test_bit(RBIO_CACHE_BIT, &cur->flags) && |
| 759 | !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { |
| 760 | list_del_init(&cur->hash_list); |
| 761 | refcount_dec(&cur->refs); |
| 762 | |
| 763 | steal_rbio(cur, rbio); |
| 764 | cache_drop = cur; |
| 765 | spin_unlock(&cur->bio_list_lock); |
| 766 | |
| 767 | goto lockit; |
| 768 | } |
| 769 | |
| 770 | /* Can we merge into the lock owner? */ |
| 771 | if (rbio_can_merge(cur, rbio)) { |
| 772 | merge_rbio(cur, rbio); |
| 773 | spin_unlock(&cur->bio_list_lock); |
| 774 | freeit = rbio; |
| 775 | ret = 1; |
| 776 | goto out; |
| 777 | } |
| 778 | |
| 779 | |
| 780 | /* |
| 781 | * We couldn't merge with the running rbio, see if we can merge |
| 782 | * with the pending ones. We don't have to check for rmw_locked |
| 783 | * because there is no way they are inside finish_rmw right now |
| 784 | */ |
| 785 | list_for_each_entry(pending, &cur->plug_list, plug_list) { |
| 786 | if (rbio_can_merge(pending, rbio)) { |
| 787 | merge_rbio(pending, rbio); |
| 788 | spin_unlock(&cur->bio_list_lock); |
| 789 | freeit = rbio; |
| 790 | ret = 1; |
| 791 | goto out; |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * No merging, put us on the tail of the plug list, our rbio |
| 797 | * will be started with the currently running rbio unlocks |
| 798 | */ |
| 799 | list_add_tail(&rbio->plug_list, &cur->plug_list); |
| 800 | spin_unlock(&cur->bio_list_lock); |
| 801 | ret = 1; |
| 802 | goto out; |
| 803 | } |
| 804 | lockit: |
| 805 | refcount_inc(&rbio->refs); |
| 806 | list_add(&rbio->hash_list, &h->hash_list); |
| 807 | out: |
| 808 | spin_unlock(&h->lock); |
| 809 | if (cache_drop) |
| 810 | remove_rbio_from_cache(cache_drop); |
| 811 | if (freeit) |
| 812 | free_raid_bio(freeit); |
| 813 | return ret; |
| 814 | } |
| 815 | |
| 816 | static void recover_rbio_work_locked(struct work_struct *work); |
| 817 | |
| 818 | /* |
| 819 | * called as rmw or parity rebuild is completed. If the plug list has more |
| 820 | * rbios waiting for this stripe, the next one on the list will be started |
| 821 | */ |
| 822 | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) |
| 823 | { |
| 824 | int bucket; |
| 825 | struct btrfs_stripe_hash *h; |
| 826 | int keep_cache = 0; |
| 827 | |
| 828 | bucket = rbio_bucket(rbio); |
| 829 | h = rbio->bioc->fs_info->stripe_hash_table->table + bucket; |
| 830 | |
| 831 | if (list_empty(&rbio->plug_list)) |
| 832 | cache_rbio(rbio); |
| 833 | |
| 834 | spin_lock(&h->lock); |
| 835 | spin_lock(&rbio->bio_list_lock); |
| 836 | |
| 837 | if (!list_empty(&rbio->hash_list)) { |
| 838 | /* |
| 839 | * if we're still cached and there is no other IO |
| 840 | * to perform, just leave this rbio here for others |
| 841 | * to steal from later |
| 842 | */ |
| 843 | if (list_empty(&rbio->plug_list) && |
| 844 | test_bit(RBIO_CACHE_BIT, &rbio->flags)) { |
| 845 | keep_cache = 1; |
| 846 | clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| 847 | BUG_ON(!bio_list_empty(&rbio->bio_list)); |
| 848 | goto done; |
| 849 | } |
| 850 | |
| 851 | list_del_init(&rbio->hash_list); |
| 852 | refcount_dec(&rbio->refs); |
| 853 | |
| 854 | /* |
| 855 | * we use the plug list to hold all the rbios |
| 856 | * waiting for the chance to lock this stripe. |
| 857 | * hand the lock over to one of them. |
| 858 | */ |
| 859 | if (!list_empty(&rbio->plug_list)) { |
| 860 | struct btrfs_raid_bio *next; |
| 861 | struct list_head *head = rbio->plug_list.next; |
| 862 | |
| 863 | next = list_entry(head, struct btrfs_raid_bio, |
| 864 | plug_list); |
| 865 | |
| 866 | list_del_init(&rbio->plug_list); |
| 867 | |
| 868 | list_add(&next->hash_list, &h->hash_list); |
| 869 | refcount_inc(&next->refs); |
| 870 | spin_unlock(&rbio->bio_list_lock); |
| 871 | spin_unlock(&h->lock); |
| 872 | |
| 873 | if (next->operation == BTRFS_RBIO_READ_REBUILD) { |
| 874 | start_async_work(next, recover_rbio_work_locked); |
| 875 | } else if (next->operation == BTRFS_RBIO_WRITE) { |
| 876 | steal_rbio(rbio, next); |
| 877 | start_async_work(next, rmw_rbio_work_locked); |
| 878 | } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { |
| 879 | steal_rbio(rbio, next); |
| 880 | start_async_work(next, scrub_rbio_work_locked); |
| 881 | } |
| 882 | |
| 883 | goto done_nolock; |
| 884 | } |
| 885 | } |
| 886 | done: |
| 887 | spin_unlock(&rbio->bio_list_lock); |
| 888 | spin_unlock(&h->lock); |
| 889 | |
| 890 | done_nolock: |
| 891 | if (!keep_cache) |
| 892 | remove_rbio_from_cache(rbio); |
| 893 | } |
| 894 | |
| 895 | static void rbio_endio_bio_list(struct bio *cur, blk_status_t status) |
| 896 | { |
| 897 | struct bio *next; |
| 898 | |
| 899 | while (cur) { |
| 900 | next = cur->bi_next; |
| 901 | cur->bi_next = NULL; |
| 902 | cur->bi_status = status; |
| 903 | bio_endio(cur); |
| 904 | cur = next; |
| 905 | } |
| 906 | } |
| 907 | |
| 908 | /* |
| 909 | * this frees the rbio and runs through all the bios in the |
| 910 | * bio_list and calls end_io on them |
| 911 | */ |
| 912 | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t status) |
| 913 | { |
| 914 | struct bio *cur = bio_list_get(&rbio->bio_list); |
| 915 | struct bio *extra; |
| 916 | |
| 917 | kfree(rbio->csum_buf); |
| 918 | bitmap_free(rbio->csum_bitmap); |
| 919 | rbio->csum_buf = NULL; |
| 920 | rbio->csum_bitmap = NULL; |
| 921 | |
| 922 | /* |
| 923 | * Clear the data bitmap, as the rbio may be cached for later usage. |
| 924 | * do this before before unlock_stripe() so there will be no new bio |
| 925 | * for this bio. |
| 926 | */ |
| 927 | bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors); |
| 928 | |
| 929 | /* |
| 930 | * At this moment, rbio->bio_list is empty, however since rbio does not |
| 931 | * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the |
| 932 | * hash list, rbio may be merged with others so that rbio->bio_list |
| 933 | * becomes non-empty. |
| 934 | * Once unlock_stripe() is done, rbio->bio_list will not be updated any |
| 935 | * more and we can call bio_endio() on all queued bios. |
| 936 | */ |
| 937 | unlock_stripe(rbio); |
| 938 | extra = bio_list_get(&rbio->bio_list); |
| 939 | free_raid_bio(rbio); |
| 940 | |
| 941 | rbio_endio_bio_list(cur, status); |
| 942 | if (extra) |
| 943 | rbio_endio_bio_list(extra, status); |
| 944 | } |
| 945 | |
| 946 | /* |
| 947 | * Get a sector pointer specified by its @stripe_nr and @sector_nr. |
| 948 | * |
| 949 | * @rbio: The raid bio |
| 950 | * @stripe_nr: Stripe number, valid range [0, real_stripe) |
| 951 | * @sector_nr: Sector number inside the stripe, |
| 952 | * valid range [0, stripe_nsectors) |
| 953 | * @bio_list_only: Whether to use sectors inside the bio list only. |
| 954 | * |
| 955 | * The read/modify/write code wants to reuse the original bio page as much |
| 956 | * as possible, and only use stripe_sectors as fallback. |
| 957 | */ |
| 958 | static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio, |
| 959 | int stripe_nr, int sector_nr, |
| 960 | bool bio_list_only) |
| 961 | { |
| 962 | struct sector_ptr *sector; |
| 963 | int index; |
| 964 | |
| 965 | ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->real_stripes, |
| 966 | rbio, stripe_nr); |
| 967 | ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors, |
| 968 | rbio, sector_nr); |
| 969 | |
| 970 | index = stripe_nr * rbio->stripe_nsectors + sector_nr; |
| 971 | ASSERT(index >= 0 && index < rbio->nr_sectors); |
| 972 | |
| 973 | spin_lock(&rbio->bio_list_lock); |
| 974 | sector = &rbio->bio_sectors[index]; |
| 975 | if (sector->has_paddr || bio_list_only) { |
| 976 | /* Don't return sector without a valid page pointer */ |
| 977 | if (!sector->has_paddr) |
| 978 | sector = NULL; |
| 979 | spin_unlock(&rbio->bio_list_lock); |
| 980 | return sector; |
| 981 | } |
| 982 | spin_unlock(&rbio->bio_list_lock); |
| 983 | |
| 984 | return &rbio->stripe_sectors[index]; |
| 985 | } |
| 986 | |
| 987 | /* |
| 988 | * allocation and initial setup for the btrfs_raid_bio. Not |
| 989 | * this does not allocate any pages for rbio->pages. |
| 990 | */ |
| 991 | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, |
| 992 | struct btrfs_io_context *bioc) |
| 993 | { |
| 994 | const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes; |
| 995 | const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT; |
| 996 | const unsigned int num_pages = stripe_npages * real_stripes; |
| 997 | const unsigned int stripe_nsectors = |
| 998 | BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; |
| 999 | const unsigned int num_sectors = stripe_nsectors * real_stripes; |
| 1000 | struct btrfs_raid_bio *rbio; |
| 1001 | |
| 1002 | /* PAGE_SIZE must also be aligned to sectorsize for subpage support */ |
| 1003 | ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize)); |
| 1004 | /* |
| 1005 | * Our current stripe len should be fixed to 64k thus stripe_nsectors |
| 1006 | * (at most 16) should be no larger than BITS_PER_LONG. |
| 1007 | */ |
| 1008 | ASSERT(stripe_nsectors <= BITS_PER_LONG); |
| 1009 | |
| 1010 | /* |
| 1011 | * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256 |
| 1012 | * (limited by u8). |
| 1013 | */ |
| 1014 | ASSERT(real_stripes >= 2); |
| 1015 | ASSERT(real_stripes <= U8_MAX); |
| 1016 | |
| 1017 | rbio = kzalloc(sizeof(*rbio), GFP_NOFS); |
| 1018 | if (!rbio) |
| 1019 | return ERR_PTR(-ENOMEM); |
| 1020 | rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *), |
| 1021 | GFP_NOFS); |
| 1022 | rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), |
| 1023 | GFP_NOFS); |
| 1024 | rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), |
| 1025 | GFP_NOFS); |
| 1026 | rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS); |
| 1027 | rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS); |
| 1028 | |
| 1029 | if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors || |
| 1030 | !rbio->finish_pointers || !rbio->error_bitmap) { |
| 1031 | free_raid_bio_pointers(rbio); |
| 1032 | kfree(rbio); |
| 1033 | return ERR_PTR(-ENOMEM); |
| 1034 | } |
| 1035 | |
| 1036 | bio_list_init(&rbio->bio_list); |
| 1037 | init_waitqueue_head(&rbio->io_wait); |
| 1038 | INIT_LIST_HEAD(&rbio->plug_list); |
| 1039 | spin_lock_init(&rbio->bio_list_lock); |
| 1040 | INIT_LIST_HEAD(&rbio->stripe_cache); |
| 1041 | INIT_LIST_HEAD(&rbio->hash_list); |
| 1042 | btrfs_get_bioc(bioc); |
| 1043 | rbio->bioc = bioc; |
| 1044 | rbio->nr_pages = num_pages; |
| 1045 | rbio->nr_sectors = num_sectors; |
| 1046 | rbio->real_stripes = real_stripes; |
| 1047 | rbio->stripe_npages = stripe_npages; |
| 1048 | rbio->stripe_nsectors = stripe_nsectors; |
| 1049 | refcount_set(&rbio->refs, 1); |
| 1050 | atomic_set(&rbio->stripes_pending, 0); |
| 1051 | |
| 1052 | ASSERT(btrfs_nr_parity_stripes(bioc->map_type)); |
| 1053 | rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type); |
| 1054 | ASSERT(rbio->nr_data > 0); |
| 1055 | |
| 1056 | return rbio; |
| 1057 | } |
| 1058 | |
| 1059 | /* allocate pages for all the stripes in the bio, including parity */ |
| 1060 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) |
| 1061 | { |
| 1062 | int ret; |
| 1063 | |
| 1064 | ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false); |
| 1065 | if (ret < 0) |
| 1066 | return ret; |
| 1067 | /* Mapping all sectors */ |
| 1068 | index_stripe_sectors(rbio); |
| 1069 | return 0; |
| 1070 | } |
| 1071 | |
| 1072 | /* only allocate pages for p/q stripes */ |
| 1073 | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) |
| 1074 | { |
| 1075 | const int data_pages = rbio->nr_data * rbio->stripe_npages; |
| 1076 | int ret; |
| 1077 | |
| 1078 | ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages, |
| 1079 | rbio->stripe_pages + data_pages, false); |
| 1080 | if (ret < 0) |
| 1081 | return ret; |
| 1082 | |
| 1083 | index_stripe_sectors(rbio); |
| 1084 | return 0; |
| 1085 | } |
| 1086 | |
| 1087 | /* |
| 1088 | * Return the total number of errors found in the vertical stripe of @sector_nr. |
| 1089 | * |
| 1090 | * @faila and @failb will also be updated to the first and second stripe |
| 1091 | * number of the errors. |
| 1092 | */ |
| 1093 | static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr, |
| 1094 | int *faila, int *failb) |
| 1095 | { |
| 1096 | int stripe_nr; |
| 1097 | int found_errors = 0; |
| 1098 | |
| 1099 | if (faila || failb) { |
| 1100 | /* |
| 1101 | * Both @faila and @failb should be valid pointers if any of |
| 1102 | * them is specified. |
| 1103 | */ |
| 1104 | ASSERT(faila && failb); |
| 1105 | *faila = -1; |
| 1106 | *failb = -1; |
| 1107 | } |
| 1108 | |
| 1109 | for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { |
| 1110 | int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr; |
| 1111 | |
| 1112 | if (test_bit(total_sector_nr, rbio->error_bitmap)) { |
| 1113 | found_errors++; |
| 1114 | if (faila) { |
| 1115 | /* Update faila and failb. */ |
| 1116 | if (*faila < 0) |
| 1117 | *faila = stripe_nr; |
| 1118 | else if (*failb < 0) |
| 1119 | *failb = stripe_nr; |
| 1120 | } |
| 1121 | } |
| 1122 | } |
| 1123 | return found_errors; |
| 1124 | } |
| 1125 | |
| 1126 | /* |
| 1127 | * Add a single sector @sector into our list of bios for IO. |
| 1128 | * |
| 1129 | * Return 0 if everything went well. |
| 1130 | * Return <0 for error. |
| 1131 | */ |
| 1132 | static int rbio_add_io_sector(struct btrfs_raid_bio *rbio, |
| 1133 | struct bio_list *bio_list, |
| 1134 | struct sector_ptr *sector, |
| 1135 | unsigned int stripe_nr, |
| 1136 | unsigned int sector_nr, |
| 1137 | enum req_op op) |
| 1138 | { |
| 1139 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; |
| 1140 | struct bio *last = bio_list->tail; |
| 1141 | int ret; |
| 1142 | struct bio *bio; |
| 1143 | struct btrfs_io_stripe *stripe; |
| 1144 | u64 disk_start; |
| 1145 | |
| 1146 | /* |
| 1147 | * Note: here stripe_nr has taken device replace into consideration, |
| 1148 | * thus it can be larger than rbio->real_stripe. |
| 1149 | * So here we check against bioc->num_stripes, not rbio->real_stripes. |
| 1150 | */ |
| 1151 | ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes, |
| 1152 | rbio, stripe_nr); |
| 1153 | ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors, |
| 1154 | rbio, sector_nr); |
| 1155 | ASSERT(sector->has_paddr); |
| 1156 | |
| 1157 | stripe = &rbio->bioc->stripes[stripe_nr]; |
| 1158 | disk_start = stripe->physical + sector_nr * sectorsize; |
| 1159 | |
| 1160 | /* if the device is missing, just fail this stripe */ |
| 1161 | if (!stripe->dev->bdev) { |
| 1162 | int found_errors; |
| 1163 | |
| 1164 | set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr, |
| 1165 | rbio->error_bitmap); |
| 1166 | |
| 1167 | /* Check if we have reached tolerance early. */ |
| 1168 | found_errors = get_rbio_veritical_errors(rbio, sector_nr, |
| 1169 | NULL, NULL); |
| 1170 | if (found_errors > rbio->bioc->max_errors) |
| 1171 | return -EIO; |
| 1172 | return 0; |
| 1173 | } |
| 1174 | |
| 1175 | /* see if we can add this page onto our existing bio */ |
| 1176 | if (last) { |
| 1177 | u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT; |
| 1178 | last_end += last->bi_iter.bi_size; |
| 1179 | |
| 1180 | /* |
| 1181 | * we can't merge these if they are from different |
| 1182 | * devices or if they are not contiguous |
| 1183 | */ |
| 1184 | if (last_end == disk_start && !last->bi_status && |
| 1185 | last->bi_bdev == stripe->dev->bdev) { |
| 1186 | ret = bio_add_page(last, phys_to_page(sector->paddr), |
| 1187 | sectorsize, offset_in_page(sector->paddr)); |
| 1188 | if (ret == sectorsize) |
| 1189 | return 0; |
| 1190 | } |
| 1191 | } |
| 1192 | |
| 1193 | /* put a new bio on the list */ |
| 1194 | bio = bio_alloc(stripe->dev->bdev, |
| 1195 | max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1), |
| 1196 | op, GFP_NOFS); |
| 1197 | bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT; |
| 1198 | bio->bi_private = rbio; |
| 1199 | |
| 1200 | __bio_add_page(bio, phys_to_page(sector->paddr), sectorsize, |
| 1201 | offset_in_page(sector->paddr)); |
| 1202 | bio_list_add(bio_list, bio); |
| 1203 | return 0; |
| 1204 | } |
| 1205 | |
| 1206 | static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio) |
| 1207 | { |
| 1208 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; |
| 1209 | const u32 sectorsize_bits = rbio->bioc->fs_info->sectorsize_bits; |
| 1210 | struct bvec_iter iter = bio->bi_iter; |
| 1211 | u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - |
| 1212 | rbio->bioc->full_stripe_logical; |
| 1213 | |
| 1214 | while (iter.bi_size) { |
| 1215 | unsigned int index = (offset >> sectorsize_bits); |
| 1216 | struct sector_ptr *sector = &rbio->bio_sectors[index]; |
| 1217 | struct bio_vec bv = bio_iter_iovec(bio, iter); |
| 1218 | |
| 1219 | sector->has_paddr = true; |
| 1220 | sector->paddr = bvec_phys(&bv); |
| 1221 | bio_advance_iter_single(bio, &iter, sectorsize); |
| 1222 | offset += sectorsize; |
| 1223 | } |
| 1224 | } |
| 1225 | |
| 1226 | /* |
| 1227 | * helper function to walk our bio list and populate the bio_pages array with |
| 1228 | * the result. This seems expensive, but it is faster than constantly |
| 1229 | * searching through the bio list as we setup the IO in finish_rmw or stripe |
| 1230 | * reconstruction. |
| 1231 | * |
| 1232 | * This must be called before you trust the answers from page_in_rbio |
| 1233 | */ |
| 1234 | static void index_rbio_pages(struct btrfs_raid_bio *rbio) |
| 1235 | { |
| 1236 | struct bio *bio; |
| 1237 | |
| 1238 | spin_lock(&rbio->bio_list_lock); |
| 1239 | bio_list_for_each(bio, &rbio->bio_list) |
| 1240 | index_one_bio(rbio, bio); |
| 1241 | |
| 1242 | spin_unlock(&rbio->bio_list_lock); |
| 1243 | } |
| 1244 | |
| 1245 | static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio, |
| 1246 | struct raid56_bio_trace_info *trace_info) |
| 1247 | { |
| 1248 | const struct btrfs_io_context *bioc = rbio->bioc; |
| 1249 | int i; |
| 1250 | |
| 1251 | ASSERT(bioc); |
| 1252 | |
| 1253 | /* We rely on bio->bi_bdev to find the stripe number. */ |
| 1254 | if (!bio->bi_bdev) |
| 1255 | goto not_found; |
| 1256 | |
| 1257 | for (i = 0; i < bioc->num_stripes; i++) { |
| 1258 | if (bio->bi_bdev != bioc->stripes[i].dev->bdev) |
| 1259 | continue; |
| 1260 | trace_info->stripe_nr = i; |
| 1261 | trace_info->devid = bioc->stripes[i].dev->devid; |
| 1262 | trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - |
| 1263 | bioc->stripes[i].physical; |
| 1264 | return; |
| 1265 | } |
| 1266 | |
| 1267 | not_found: |
| 1268 | trace_info->devid = -1; |
| 1269 | trace_info->offset = -1; |
| 1270 | trace_info->stripe_nr = -1; |
| 1271 | } |
| 1272 | |
| 1273 | static inline void bio_list_put(struct bio_list *bio_list) |
| 1274 | { |
| 1275 | struct bio *bio; |
| 1276 | |
| 1277 | while ((bio = bio_list_pop(bio_list))) |
| 1278 | bio_put(bio); |
| 1279 | } |
| 1280 | |
| 1281 | static void assert_rbio(struct btrfs_raid_bio *rbio) |
| 1282 | { |
| 1283 | if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) |
| 1284 | return; |
| 1285 | |
| 1286 | /* |
| 1287 | * At least two stripes (2 disks RAID5), and since real_stripes is U8, |
| 1288 | * we won't go beyond 256 disks anyway. |
| 1289 | */ |
| 1290 | ASSERT_RBIO(rbio->real_stripes >= 2, rbio); |
| 1291 | ASSERT_RBIO(rbio->nr_data > 0, rbio); |
| 1292 | |
| 1293 | /* |
| 1294 | * This is another check to make sure nr data stripes is smaller |
| 1295 | * than total stripes. |
| 1296 | */ |
| 1297 | ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio); |
| 1298 | } |
| 1299 | |
| 1300 | static inline void *kmap_local_sector(const struct sector_ptr *sector) |
| 1301 | { |
| 1302 | /* The sector pointer must have a page mapped to it. */ |
| 1303 | ASSERT(sector->has_paddr); |
| 1304 | |
| 1305 | return kmap_local_page(phys_to_page(sector->paddr)) + |
| 1306 | offset_in_page(sector->paddr); |
| 1307 | } |
| 1308 | |
| 1309 | /* Generate PQ for one vertical stripe. */ |
| 1310 | static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr) |
| 1311 | { |
| 1312 | void **pointers = rbio->finish_pointers; |
| 1313 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; |
| 1314 | struct sector_ptr *sector; |
| 1315 | int stripe; |
| 1316 | const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6; |
| 1317 | |
| 1318 | /* First collect one sector from each data stripe */ |
| 1319 | for (stripe = 0; stripe < rbio->nr_data; stripe++) { |
| 1320 | sector = sector_in_rbio(rbio, stripe, sectornr, 0); |
| 1321 | pointers[stripe] = kmap_local_sector(sector); |
| 1322 | } |
| 1323 | |
| 1324 | /* Then add the parity stripe */ |
| 1325 | sector = rbio_pstripe_sector(rbio, sectornr); |
| 1326 | sector->uptodate = 1; |
| 1327 | pointers[stripe++] = kmap_local_sector(sector); |
| 1328 | |
| 1329 | if (has_qstripe) { |
| 1330 | /* |
| 1331 | * RAID6, add the qstripe and call the library function |
| 1332 | * to fill in our p/q |
| 1333 | */ |
| 1334 | sector = rbio_qstripe_sector(rbio, sectornr); |
| 1335 | sector->uptodate = 1; |
| 1336 | pointers[stripe++] = kmap_local_sector(sector); |
| 1337 | |
| 1338 | assert_rbio(rbio); |
| 1339 | raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, |
| 1340 | pointers); |
| 1341 | } else { |
| 1342 | /* raid5 */ |
| 1343 | memcpy(pointers[rbio->nr_data], pointers[0], sectorsize); |
| 1344 | run_xor(pointers + 1, rbio->nr_data - 1, sectorsize); |
| 1345 | } |
| 1346 | for (stripe = stripe - 1; stripe >= 0; stripe--) |
| 1347 | kunmap_local(pointers[stripe]); |
| 1348 | } |
| 1349 | |
| 1350 | static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio, |
| 1351 | struct bio_list *bio_list) |
| 1352 | { |
| 1353 | /* The total sector number inside the full stripe. */ |
| 1354 | int total_sector_nr; |
| 1355 | int sectornr; |
| 1356 | int stripe; |
| 1357 | int ret; |
| 1358 | |
| 1359 | ASSERT(bio_list_size(bio_list) == 0); |
| 1360 | |
| 1361 | /* We should have at least one data sector. */ |
| 1362 | ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors)); |
| 1363 | |
| 1364 | /* |
| 1365 | * Reset errors, as we may have errors inherited from from degraded |
| 1366 | * write. |
| 1367 | */ |
| 1368 | bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); |
| 1369 | |
| 1370 | /* |
| 1371 | * Start assembly. Make bios for everything from the higher layers (the |
| 1372 | * bio_list in our rbio) and our P/Q. Ignore everything else. |
| 1373 | */ |
| 1374 | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; |
| 1375 | total_sector_nr++) { |
| 1376 | struct sector_ptr *sector; |
| 1377 | |
| 1378 | stripe = total_sector_nr / rbio->stripe_nsectors; |
| 1379 | sectornr = total_sector_nr % rbio->stripe_nsectors; |
| 1380 | |
| 1381 | /* This vertical stripe has no data, skip it. */ |
| 1382 | if (!test_bit(sectornr, &rbio->dbitmap)) |
| 1383 | continue; |
| 1384 | |
| 1385 | if (stripe < rbio->nr_data) { |
| 1386 | sector = sector_in_rbio(rbio, stripe, sectornr, 1); |
| 1387 | if (!sector) |
| 1388 | continue; |
| 1389 | } else { |
| 1390 | sector = rbio_stripe_sector(rbio, stripe, sectornr); |
| 1391 | } |
| 1392 | |
| 1393 | ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, |
| 1394 | sectornr, REQ_OP_WRITE); |
| 1395 | if (ret) |
| 1396 | goto error; |
| 1397 | } |
| 1398 | |
| 1399 | if (likely(!rbio->bioc->replace_nr_stripes)) |
| 1400 | return 0; |
| 1401 | |
| 1402 | /* |
| 1403 | * Make a copy for the replace target device. |
| 1404 | * |
| 1405 | * Thus the source stripe number (in replace_stripe_src) should be valid. |
| 1406 | */ |
| 1407 | ASSERT(rbio->bioc->replace_stripe_src >= 0); |
| 1408 | |
| 1409 | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; |
| 1410 | total_sector_nr++) { |
| 1411 | struct sector_ptr *sector; |
| 1412 | |
| 1413 | stripe = total_sector_nr / rbio->stripe_nsectors; |
| 1414 | sectornr = total_sector_nr % rbio->stripe_nsectors; |
| 1415 | |
| 1416 | /* |
| 1417 | * For RAID56, there is only one device that can be replaced, |
| 1418 | * and replace_stripe_src[0] indicates the stripe number we |
| 1419 | * need to copy from. |
| 1420 | */ |
| 1421 | if (stripe != rbio->bioc->replace_stripe_src) { |
| 1422 | /* |
| 1423 | * We can skip the whole stripe completely, note |
| 1424 | * total_sector_nr will be increased by one anyway. |
| 1425 | */ |
| 1426 | ASSERT(sectornr == 0); |
| 1427 | total_sector_nr += rbio->stripe_nsectors - 1; |
| 1428 | continue; |
| 1429 | } |
| 1430 | |
| 1431 | /* This vertical stripe has no data, skip it. */ |
| 1432 | if (!test_bit(sectornr, &rbio->dbitmap)) |
| 1433 | continue; |
| 1434 | |
| 1435 | if (stripe < rbio->nr_data) { |
| 1436 | sector = sector_in_rbio(rbio, stripe, sectornr, 1); |
| 1437 | if (!sector) |
| 1438 | continue; |
| 1439 | } else { |
| 1440 | sector = rbio_stripe_sector(rbio, stripe, sectornr); |
| 1441 | } |
| 1442 | |
| 1443 | ret = rbio_add_io_sector(rbio, bio_list, sector, |
| 1444 | rbio->real_stripes, |
| 1445 | sectornr, REQ_OP_WRITE); |
| 1446 | if (ret) |
| 1447 | goto error; |
| 1448 | } |
| 1449 | |
| 1450 | return 0; |
| 1451 | error: |
| 1452 | bio_list_put(bio_list); |
| 1453 | return -EIO; |
| 1454 | } |
| 1455 | |
| 1456 | static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio) |
| 1457 | { |
| 1458 | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; |
| 1459 | u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - |
| 1460 | rbio->bioc->full_stripe_logical; |
| 1461 | int total_nr_sector = offset >> fs_info->sectorsize_bits; |
| 1462 | |
| 1463 | ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors); |
| 1464 | |
| 1465 | bitmap_set(rbio->error_bitmap, total_nr_sector, |
| 1466 | bio->bi_iter.bi_size >> fs_info->sectorsize_bits); |
| 1467 | |
| 1468 | /* |
| 1469 | * Special handling for raid56_alloc_missing_rbio() used by |
| 1470 | * scrub/replace. Unlike call path in raid56_parity_recover(), they |
| 1471 | * pass an empty bio here. Thus we have to find out the missing device |
| 1472 | * and mark the stripe error instead. |
| 1473 | */ |
| 1474 | if (bio->bi_iter.bi_size == 0) { |
| 1475 | bool found_missing = false; |
| 1476 | int stripe_nr; |
| 1477 | |
| 1478 | for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { |
| 1479 | if (!rbio->bioc->stripes[stripe_nr].dev->bdev) { |
| 1480 | found_missing = true; |
| 1481 | bitmap_set(rbio->error_bitmap, |
| 1482 | stripe_nr * rbio->stripe_nsectors, |
| 1483 | rbio->stripe_nsectors); |
| 1484 | } |
| 1485 | } |
| 1486 | ASSERT(found_missing); |
| 1487 | } |
| 1488 | } |
| 1489 | |
| 1490 | /* |
| 1491 | * For subpage case, we can no longer set page Up-to-date directly for |
| 1492 | * stripe_pages[], thus we need to locate the sector. |
| 1493 | */ |
| 1494 | static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio, |
| 1495 | phys_addr_t paddr) |
| 1496 | { |
| 1497 | int i; |
| 1498 | |
| 1499 | for (i = 0; i < rbio->nr_sectors; i++) { |
| 1500 | struct sector_ptr *sector = &rbio->stripe_sectors[i]; |
| 1501 | |
| 1502 | if (sector->has_paddr && sector->paddr == paddr) |
| 1503 | return sector; |
| 1504 | } |
| 1505 | return NULL; |
| 1506 | } |
| 1507 | |
| 1508 | /* |
| 1509 | * this sets each page in the bio uptodate. It should only be used on private |
| 1510 | * rbio pages, nothing that comes in from the higher layers |
| 1511 | */ |
| 1512 | static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio) |
| 1513 | { |
| 1514 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; |
| 1515 | struct bio_vec *bvec; |
| 1516 | struct bvec_iter_all iter_all; |
| 1517 | |
| 1518 | ASSERT(!bio_flagged(bio, BIO_CLONED)); |
| 1519 | |
| 1520 | bio_for_each_segment_all(bvec, bio, iter_all) { |
| 1521 | struct sector_ptr *sector; |
| 1522 | phys_addr_t paddr = bvec_phys(bvec); |
| 1523 | |
| 1524 | for (u32 off = 0; off < bvec->bv_len; off += sectorsize) { |
| 1525 | sector = find_stripe_sector(rbio, paddr + off); |
| 1526 | ASSERT(sector); |
| 1527 | if (sector) |
| 1528 | sector->uptodate = 1; |
| 1529 | } |
| 1530 | } |
| 1531 | } |
| 1532 | |
| 1533 | static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio) |
| 1534 | { |
| 1535 | phys_addr_t bvec_paddr = bvec_phys(bio_first_bvec_all(bio)); |
| 1536 | int i; |
| 1537 | |
| 1538 | for (i = 0; i < rbio->nr_sectors; i++) { |
| 1539 | if (rbio->stripe_sectors[i].paddr == bvec_paddr) |
| 1540 | break; |
| 1541 | if (rbio->bio_sectors[i].has_paddr && |
| 1542 | rbio->bio_sectors[i].paddr == bvec_paddr) |
| 1543 | break; |
| 1544 | } |
| 1545 | ASSERT(i < rbio->nr_sectors); |
| 1546 | return i; |
| 1547 | } |
| 1548 | |
| 1549 | static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio) |
| 1550 | { |
| 1551 | int total_sector_nr = get_bio_sector_nr(rbio, bio); |
| 1552 | u32 bio_size = 0; |
| 1553 | struct bio_vec *bvec; |
| 1554 | int i; |
| 1555 | |
| 1556 | bio_for_each_bvec_all(bvec, bio, i) |
| 1557 | bio_size += bvec->bv_len; |
| 1558 | |
| 1559 | /* |
| 1560 | * Since we can have multiple bios touching the error_bitmap, we cannot |
| 1561 | * call bitmap_set() without protection. |
| 1562 | * |
| 1563 | * Instead use set_bit() for each bit, as set_bit() itself is atomic. |
| 1564 | */ |
| 1565 | for (i = total_sector_nr; i < total_sector_nr + |
| 1566 | (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++) |
| 1567 | set_bit(i, rbio->error_bitmap); |
| 1568 | } |
| 1569 | |
| 1570 | /* Verify the data sectors at read time. */ |
| 1571 | static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio, |
| 1572 | struct bio *bio) |
| 1573 | { |
| 1574 | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; |
| 1575 | int total_sector_nr = get_bio_sector_nr(rbio, bio); |
| 1576 | struct bio_vec *bvec; |
| 1577 | struct bvec_iter_all iter_all; |
| 1578 | |
| 1579 | /* No data csum for the whole stripe, no need to verify. */ |
| 1580 | if (!rbio->csum_bitmap || !rbio->csum_buf) |
| 1581 | return; |
| 1582 | |
| 1583 | /* P/Q stripes, they have no data csum to verify against. */ |
| 1584 | if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors) |
| 1585 | return; |
| 1586 | |
| 1587 | bio_for_each_segment_all(bvec, bio, iter_all) { |
| 1588 | void *kaddr; |
| 1589 | |
| 1590 | kaddr = bvec_kmap_local(bvec); |
| 1591 | for (u32 off = 0; off < bvec->bv_len; |
| 1592 | off += fs_info->sectorsize, total_sector_nr++) { |
| 1593 | u8 csum_buf[BTRFS_CSUM_SIZE]; |
| 1594 | u8 *expected_csum = rbio->csum_buf + |
| 1595 | total_sector_nr * fs_info->csum_size; |
| 1596 | int ret; |
| 1597 | |
| 1598 | /* No csum for this sector, skip to the next sector. */ |
| 1599 | if (!test_bit(total_sector_nr, rbio->csum_bitmap)) |
| 1600 | continue; |
| 1601 | |
| 1602 | ret = btrfs_check_sector_csum(fs_info, kaddr + off, |
| 1603 | csum_buf, expected_csum); |
| 1604 | if (ret < 0) |
| 1605 | set_bit(total_sector_nr, rbio->error_bitmap); |
| 1606 | } |
| 1607 | kunmap_local(kaddr); |
| 1608 | } |
| 1609 | } |
| 1610 | |
| 1611 | static void raid_wait_read_end_io(struct bio *bio) |
| 1612 | { |
| 1613 | struct btrfs_raid_bio *rbio = bio->bi_private; |
| 1614 | |
| 1615 | if (bio->bi_status) { |
| 1616 | rbio_update_error_bitmap(rbio, bio); |
| 1617 | } else { |
| 1618 | set_bio_pages_uptodate(rbio, bio); |
| 1619 | verify_bio_data_sectors(rbio, bio); |
| 1620 | } |
| 1621 | |
| 1622 | bio_put(bio); |
| 1623 | if (atomic_dec_and_test(&rbio->stripes_pending)) |
| 1624 | wake_up(&rbio->io_wait); |
| 1625 | } |
| 1626 | |
| 1627 | static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio, |
| 1628 | struct bio_list *bio_list) |
| 1629 | { |
| 1630 | struct bio *bio; |
| 1631 | |
| 1632 | atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); |
| 1633 | while ((bio = bio_list_pop(bio_list))) { |
| 1634 | bio->bi_end_io = raid_wait_read_end_io; |
| 1635 | |
| 1636 | if (trace_raid56_read_enabled()) { |
| 1637 | struct raid56_bio_trace_info trace_info = { 0 }; |
| 1638 | |
| 1639 | bio_get_trace_info(rbio, bio, &trace_info); |
| 1640 | trace_raid56_read(rbio, bio, &trace_info); |
| 1641 | } |
| 1642 | submit_bio(bio); |
| 1643 | } |
| 1644 | |
| 1645 | wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); |
| 1646 | } |
| 1647 | |
| 1648 | static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio) |
| 1649 | { |
| 1650 | const int data_pages = rbio->nr_data * rbio->stripe_npages; |
| 1651 | int ret; |
| 1652 | |
| 1653 | ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false); |
| 1654 | if (ret < 0) |
| 1655 | return ret; |
| 1656 | |
| 1657 | index_stripe_sectors(rbio); |
| 1658 | return 0; |
| 1659 | } |
| 1660 | |
| 1661 | /* |
| 1662 | * We use plugging call backs to collect full stripes. |
| 1663 | * Any time we get a partial stripe write while plugged |
| 1664 | * we collect it into a list. When the unplug comes down, |
| 1665 | * we sort the list by logical block number and merge |
| 1666 | * everything we can into the same rbios |
| 1667 | */ |
| 1668 | struct btrfs_plug_cb { |
| 1669 | struct blk_plug_cb cb; |
| 1670 | struct btrfs_fs_info *info; |
| 1671 | struct list_head rbio_list; |
| 1672 | }; |
| 1673 | |
| 1674 | /* |
| 1675 | * rbios on the plug list are sorted for easier merging. |
| 1676 | */ |
| 1677 | static int plug_cmp(void *priv, const struct list_head *a, |
| 1678 | const struct list_head *b) |
| 1679 | { |
| 1680 | const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, |
| 1681 | plug_list); |
| 1682 | const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, |
| 1683 | plug_list); |
| 1684 | u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; |
| 1685 | u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; |
| 1686 | |
| 1687 | if (a_sector < b_sector) |
| 1688 | return -1; |
| 1689 | if (a_sector > b_sector) |
| 1690 | return 1; |
| 1691 | return 0; |
| 1692 | } |
| 1693 | |
| 1694 | static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule) |
| 1695 | { |
| 1696 | struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb); |
| 1697 | struct btrfs_raid_bio *cur; |
| 1698 | struct btrfs_raid_bio *last = NULL; |
| 1699 | |
| 1700 | list_sort(NULL, &plug->rbio_list, plug_cmp); |
| 1701 | |
| 1702 | while (!list_empty(&plug->rbio_list)) { |
| 1703 | cur = list_first_entry(&plug->rbio_list, |
| 1704 | struct btrfs_raid_bio, plug_list); |
| 1705 | list_del_init(&cur->plug_list); |
| 1706 | |
| 1707 | if (rbio_is_full(cur)) { |
| 1708 | /* We have a full stripe, queue it down. */ |
| 1709 | start_async_work(cur, rmw_rbio_work); |
| 1710 | continue; |
| 1711 | } |
| 1712 | if (last) { |
| 1713 | if (rbio_can_merge(last, cur)) { |
| 1714 | merge_rbio(last, cur); |
| 1715 | free_raid_bio(cur); |
| 1716 | continue; |
| 1717 | } |
| 1718 | start_async_work(last, rmw_rbio_work); |
| 1719 | } |
| 1720 | last = cur; |
| 1721 | } |
| 1722 | if (last) |
| 1723 | start_async_work(last, rmw_rbio_work); |
| 1724 | kfree(plug); |
| 1725 | } |
| 1726 | |
| 1727 | /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ |
| 1728 | static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) |
| 1729 | { |
| 1730 | const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; |
| 1731 | const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; |
| 1732 | const u64 full_stripe_start = rbio->bioc->full_stripe_logical; |
| 1733 | const u32 orig_len = orig_bio->bi_iter.bi_size; |
| 1734 | const u32 sectorsize = fs_info->sectorsize; |
| 1735 | u64 cur_logical; |
| 1736 | |
| 1737 | ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start && |
| 1738 | orig_logical + orig_len <= full_stripe_start + |
| 1739 | rbio->nr_data * BTRFS_STRIPE_LEN, |
| 1740 | rbio, orig_logical); |
| 1741 | |
| 1742 | bio_list_add(&rbio->bio_list, orig_bio); |
| 1743 | rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; |
| 1744 | |
| 1745 | /* Update the dbitmap. */ |
| 1746 | for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; |
| 1747 | cur_logical += sectorsize) { |
| 1748 | int bit = ((u32)(cur_logical - full_stripe_start) >> |
| 1749 | fs_info->sectorsize_bits) % rbio->stripe_nsectors; |
| 1750 | |
| 1751 | set_bit(bit, &rbio->dbitmap); |
| 1752 | } |
| 1753 | } |
| 1754 | |
| 1755 | /* |
| 1756 | * our main entry point for writes from the rest of the FS. |
| 1757 | */ |
| 1758 | void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc) |
| 1759 | { |
| 1760 | struct btrfs_fs_info *fs_info = bioc->fs_info; |
| 1761 | struct btrfs_raid_bio *rbio; |
| 1762 | struct btrfs_plug_cb *plug = NULL; |
| 1763 | struct blk_plug_cb *cb; |
| 1764 | |
| 1765 | rbio = alloc_rbio(fs_info, bioc); |
| 1766 | if (IS_ERR(rbio)) { |
| 1767 | bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); |
| 1768 | bio_endio(bio); |
| 1769 | return; |
| 1770 | } |
| 1771 | rbio->operation = BTRFS_RBIO_WRITE; |
| 1772 | rbio_add_bio(rbio, bio); |
| 1773 | |
| 1774 | /* |
| 1775 | * Don't plug on full rbios, just get them out the door |
| 1776 | * as quickly as we can |
| 1777 | */ |
| 1778 | if (!rbio_is_full(rbio)) { |
| 1779 | cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug)); |
| 1780 | if (cb) { |
| 1781 | plug = container_of(cb, struct btrfs_plug_cb, cb); |
| 1782 | if (!plug->info) { |
| 1783 | plug->info = fs_info; |
| 1784 | INIT_LIST_HEAD(&plug->rbio_list); |
| 1785 | } |
| 1786 | list_add_tail(&rbio->plug_list, &plug->rbio_list); |
| 1787 | return; |
| 1788 | } |
| 1789 | } |
| 1790 | |
| 1791 | /* |
| 1792 | * Either we don't have any existing plug, or we're doing a full stripe, |
| 1793 | * queue the rmw work now. |
| 1794 | */ |
| 1795 | start_async_work(rbio, rmw_rbio_work); |
| 1796 | } |
| 1797 | |
| 1798 | static int verify_one_sector(struct btrfs_raid_bio *rbio, |
| 1799 | int stripe_nr, int sector_nr) |
| 1800 | { |
| 1801 | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; |
| 1802 | struct sector_ptr *sector; |
| 1803 | u8 csum_buf[BTRFS_CSUM_SIZE]; |
| 1804 | u8 *csum_expected; |
| 1805 | void *kaddr; |
| 1806 | int ret; |
| 1807 | |
| 1808 | if (!rbio->csum_bitmap || !rbio->csum_buf) |
| 1809 | return 0; |
| 1810 | |
| 1811 | /* No way to verify P/Q as they are not covered by data csum. */ |
| 1812 | if (stripe_nr >= rbio->nr_data) |
| 1813 | return 0; |
| 1814 | /* |
| 1815 | * If we're rebuilding a read, we have to use pages from the |
| 1816 | * bio list if possible. |
| 1817 | */ |
| 1818 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { |
| 1819 | sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); |
| 1820 | } else { |
| 1821 | sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); |
| 1822 | } |
| 1823 | |
| 1824 | csum_expected = rbio->csum_buf + |
| 1825 | (stripe_nr * rbio->stripe_nsectors + sector_nr) * |
| 1826 | fs_info->csum_size; |
| 1827 | kaddr = kmap_local_sector(sector); |
| 1828 | ret = btrfs_check_sector_csum(fs_info, kaddr, csum_buf, csum_expected); |
| 1829 | kunmap_local(kaddr); |
| 1830 | return ret; |
| 1831 | } |
| 1832 | |
| 1833 | /* |
| 1834 | * Recover a vertical stripe specified by @sector_nr. |
| 1835 | * @*pointers are the pre-allocated pointers by the caller, so we don't |
| 1836 | * need to allocate/free the pointers again and again. |
| 1837 | */ |
| 1838 | static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr, |
| 1839 | void **pointers, void **unmap_array) |
| 1840 | { |
| 1841 | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; |
| 1842 | struct sector_ptr *sector; |
| 1843 | const u32 sectorsize = fs_info->sectorsize; |
| 1844 | int found_errors; |
| 1845 | int faila; |
| 1846 | int failb; |
| 1847 | int stripe_nr; |
| 1848 | int ret = 0; |
| 1849 | |
| 1850 | /* |
| 1851 | * Now we just use bitmap to mark the horizontal stripes in |
| 1852 | * which we have data when doing parity scrub. |
| 1853 | */ |
| 1854 | if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && |
| 1855 | !test_bit(sector_nr, &rbio->dbitmap)) |
| 1856 | return 0; |
| 1857 | |
| 1858 | found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila, |
| 1859 | &failb); |
| 1860 | /* |
| 1861 | * No errors in the vertical stripe, skip it. Can happen for recovery |
| 1862 | * which only part of a stripe failed csum check. |
| 1863 | */ |
| 1864 | if (!found_errors) |
| 1865 | return 0; |
| 1866 | |
| 1867 | if (found_errors > rbio->bioc->max_errors) |
| 1868 | return -EIO; |
| 1869 | |
| 1870 | /* |
| 1871 | * Setup our array of pointers with sectors from each stripe |
| 1872 | * |
| 1873 | * NOTE: store a duplicate array of pointers to preserve the |
| 1874 | * pointer order. |
| 1875 | */ |
| 1876 | for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { |
| 1877 | /* |
| 1878 | * If we're rebuilding a read, we have to use pages from the |
| 1879 | * bio list if possible. |
| 1880 | */ |
| 1881 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { |
| 1882 | sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); |
| 1883 | } else { |
| 1884 | sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); |
| 1885 | } |
| 1886 | pointers[stripe_nr] = kmap_local_sector(sector); |
| 1887 | unmap_array[stripe_nr] = pointers[stripe_nr]; |
| 1888 | } |
| 1889 | |
| 1890 | /* All raid6 handling here */ |
| 1891 | if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) { |
| 1892 | /* Single failure, rebuild from parity raid5 style */ |
| 1893 | if (failb < 0) { |
| 1894 | if (faila == rbio->nr_data) |
| 1895 | /* |
| 1896 | * Just the P stripe has failed, without |
| 1897 | * a bad data or Q stripe. |
| 1898 | * We have nothing to do, just skip the |
| 1899 | * recovery for this stripe. |
| 1900 | */ |
| 1901 | goto cleanup; |
| 1902 | /* |
| 1903 | * a single failure in raid6 is rebuilt |
| 1904 | * in the pstripe code below |
| 1905 | */ |
| 1906 | goto pstripe; |
| 1907 | } |
| 1908 | |
| 1909 | /* |
| 1910 | * If the q stripe is failed, do a pstripe reconstruction from |
| 1911 | * the xors. |
| 1912 | * If both the q stripe and the P stripe are failed, we're |
| 1913 | * here due to a crc mismatch and we can't give them the |
| 1914 | * data they want. |
| 1915 | */ |
| 1916 | if (failb == rbio->real_stripes - 1) { |
| 1917 | if (faila == rbio->real_stripes - 2) |
| 1918 | /* |
| 1919 | * Only P and Q are corrupted. |
| 1920 | * We only care about data stripes recovery, |
| 1921 | * can skip this vertical stripe. |
| 1922 | */ |
| 1923 | goto cleanup; |
| 1924 | /* |
| 1925 | * Otherwise we have one bad data stripe and |
| 1926 | * a good P stripe. raid5! |
| 1927 | */ |
| 1928 | goto pstripe; |
| 1929 | } |
| 1930 | |
| 1931 | if (failb == rbio->real_stripes - 2) { |
| 1932 | raid6_datap_recov(rbio->real_stripes, sectorsize, |
| 1933 | faila, pointers); |
| 1934 | } else { |
| 1935 | raid6_2data_recov(rbio->real_stripes, sectorsize, |
| 1936 | faila, failb, pointers); |
| 1937 | } |
| 1938 | } else { |
| 1939 | void *p; |
| 1940 | |
| 1941 | /* Rebuild from P stripe here (raid5 or raid6). */ |
| 1942 | ASSERT(failb == -1); |
| 1943 | pstripe: |
| 1944 | /* Copy parity block into failed block to start with */ |
| 1945 | memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize); |
| 1946 | |
| 1947 | /* Rearrange the pointer array */ |
| 1948 | p = pointers[faila]; |
| 1949 | for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1; |
| 1950 | stripe_nr++) |
| 1951 | pointers[stripe_nr] = pointers[stripe_nr + 1]; |
| 1952 | pointers[rbio->nr_data - 1] = p; |
| 1953 | |
| 1954 | /* Xor in the rest */ |
| 1955 | run_xor(pointers, rbio->nr_data - 1, sectorsize); |
| 1956 | |
| 1957 | } |
| 1958 | |
| 1959 | /* |
| 1960 | * No matter if this is a RMW or recovery, we should have all |
| 1961 | * failed sectors repaired in the vertical stripe, thus they are now |
| 1962 | * uptodate. |
| 1963 | * Especially if we determine to cache the rbio, we need to |
| 1964 | * have at least all data sectors uptodate. |
| 1965 | * |
| 1966 | * If possible, also check if the repaired sector matches its data |
| 1967 | * checksum. |
| 1968 | */ |
| 1969 | if (faila >= 0) { |
| 1970 | ret = verify_one_sector(rbio, faila, sector_nr); |
| 1971 | if (ret < 0) |
| 1972 | goto cleanup; |
| 1973 | |
| 1974 | sector = rbio_stripe_sector(rbio, faila, sector_nr); |
| 1975 | sector->uptodate = 1; |
| 1976 | } |
| 1977 | if (failb >= 0) { |
| 1978 | ret = verify_one_sector(rbio, failb, sector_nr); |
| 1979 | if (ret < 0) |
| 1980 | goto cleanup; |
| 1981 | |
| 1982 | sector = rbio_stripe_sector(rbio, failb, sector_nr); |
| 1983 | sector->uptodate = 1; |
| 1984 | } |
| 1985 | |
| 1986 | cleanup: |
| 1987 | for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--) |
| 1988 | kunmap_local(unmap_array[stripe_nr]); |
| 1989 | return ret; |
| 1990 | } |
| 1991 | |
| 1992 | static int recover_sectors(struct btrfs_raid_bio *rbio) |
| 1993 | { |
| 1994 | void **pointers = NULL; |
| 1995 | void **unmap_array = NULL; |
| 1996 | int sectornr; |
| 1997 | int ret = 0; |
| 1998 | |
| 1999 | /* |
| 2000 | * @pointers array stores the pointer for each sector. |
| 2001 | * |
| 2002 | * @unmap_array stores copy of pointers that does not get reordered |
| 2003 | * during reconstruction so that kunmap_local works. |
| 2004 | */ |
| 2005 | pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); |
| 2006 | unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); |
| 2007 | if (!pointers || !unmap_array) { |
| 2008 | ret = -ENOMEM; |
| 2009 | goto out; |
| 2010 | } |
| 2011 | |
| 2012 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { |
| 2013 | spin_lock(&rbio->bio_list_lock); |
| 2014 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| 2015 | spin_unlock(&rbio->bio_list_lock); |
| 2016 | } |
| 2017 | |
| 2018 | index_rbio_pages(rbio); |
| 2019 | |
| 2020 | for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { |
| 2021 | ret = recover_vertical(rbio, sectornr, pointers, unmap_array); |
| 2022 | if (ret < 0) |
| 2023 | break; |
| 2024 | } |
| 2025 | |
| 2026 | out: |
| 2027 | kfree(pointers); |
| 2028 | kfree(unmap_array); |
| 2029 | return ret; |
| 2030 | } |
| 2031 | |
| 2032 | static void recover_rbio(struct btrfs_raid_bio *rbio) |
| 2033 | { |
| 2034 | struct bio_list bio_list = BIO_EMPTY_LIST; |
| 2035 | int total_sector_nr; |
| 2036 | int ret = 0; |
| 2037 | |
| 2038 | /* |
| 2039 | * Either we're doing recover for a read failure or degraded write, |
| 2040 | * caller should have set error bitmap correctly. |
| 2041 | */ |
| 2042 | ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors)); |
| 2043 | |
| 2044 | /* For recovery, we need to read all sectors including P/Q. */ |
| 2045 | ret = alloc_rbio_pages(rbio); |
| 2046 | if (ret < 0) |
| 2047 | goto out; |
| 2048 | |
| 2049 | index_rbio_pages(rbio); |
| 2050 | |
| 2051 | /* |
| 2052 | * Read everything that hasn't failed. However this time we will |
| 2053 | * not trust any cached sector. |
| 2054 | * As we may read out some stale data but higher layer is not reading |
| 2055 | * that stale part. |
| 2056 | * |
| 2057 | * So here we always re-read everything in recovery path. |
| 2058 | */ |
| 2059 | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; |
| 2060 | total_sector_nr++) { |
| 2061 | int stripe = total_sector_nr / rbio->stripe_nsectors; |
| 2062 | int sectornr = total_sector_nr % rbio->stripe_nsectors; |
| 2063 | struct sector_ptr *sector; |
| 2064 | |
| 2065 | /* |
| 2066 | * Skip the range which has error. It can be a range which is |
| 2067 | * marked error (for csum mismatch), or it can be a missing |
| 2068 | * device. |
| 2069 | */ |
| 2070 | if (!rbio->bioc->stripes[stripe].dev->bdev || |
| 2071 | test_bit(total_sector_nr, rbio->error_bitmap)) { |
| 2072 | /* |
| 2073 | * Also set the error bit for missing device, which |
| 2074 | * may not yet have its error bit set. |
| 2075 | */ |
| 2076 | set_bit(total_sector_nr, rbio->error_bitmap); |
| 2077 | continue; |
| 2078 | } |
| 2079 | |
| 2080 | sector = rbio_stripe_sector(rbio, stripe, sectornr); |
| 2081 | ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, |
| 2082 | sectornr, REQ_OP_READ); |
| 2083 | if (ret < 0) { |
| 2084 | bio_list_put(&bio_list); |
| 2085 | goto out; |
| 2086 | } |
| 2087 | } |
| 2088 | |
| 2089 | submit_read_wait_bio_list(rbio, &bio_list); |
| 2090 | ret = recover_sectors(rbio); |
| 2091 | out: |
| 2092 | rbio_orig_end_io(rbio, errno_to_blk_status(ret)); |
| 2093 | } |
| 2094 | |
| 2095 | static void recover_rbio_work(struct work_struct *work) |
| 2096 | { |
| 2097 | struct btrfs_raid_bio *rbio; |
| 2098 | |
| 2099 | rbio = container_of(work, struct btrfs_raid_bio, work); |
| 2100 | if (!lock_stripe_add(rbio)) |
| 2101 | recover_rbio(rbio); |
| 2102 | } |
| 2103 | |
| 2104 | static void recover_rbio_work_locked(struct work_struct *work) |
| 2105 | { |
| 2106 | recover_rbio(container_of(work, struct btrfs_raid_bio, work)); |
| 2107 | } |
| 2108 | |
| 2109 | static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num) |
| 2110 | { |
| 2111 | bool found = false; |
| 2112 | int sector_nr; |
| 2113 | |
| 2114 | /* |
| 2115 | * This is for RAID6 extra recovery tries, thus mirror number should |
| 2116 | * be large than 2. |
| 2117 | * Mirror 1 means read from data stripes. Mirror 2 means rebuild using |
| 2118 | * RAID5 methods. |
| 2119 | */ |
| 2120 | ASSERT(mirror_num > 2); |
| 2121 | for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { |
| 2122 | int found_errors; |
| 2123 | int faila; |
| 2124 | int failb; |
| 2125 | |
| 2126 | found_errors = get_rbio_veritical_errors(rbio, sector_nr, |
| 2127 | &faila, &failb); |
| 2128 | /* This vertical stripe doesn't have errors. */ |
| 2129 | if (!found_errors) |
| 2130 | continue; |
| 2131 | |
| 2132 | /* |
| 2133 | * If we found errors, there should be only one error marked |
| 2134 | * by previous set_rbio_range_error(). |
| 2135 | */ |
| 2136 | ASSERT(found_errors == 1); |
| 2137 | found = true; |
| 2138 | |
| 2139 | /* Now select another stripe to mark as error. */ |
| 2140 | failb = rbio->real_stripes - (mirror_num - 1); |
| 2141 | if (failb <= faila) |
| 2142 | failb--; |
| 2143 | |
| 2144 | /* Set the extra bit in error bitmap. */ |
| 2145 | if (failb >= 0) |
| 2146 | set_bit(failb * rbio->stripe_nsectors + sector_nr, |
| 2147 | rbio->error_bitmap); |
| 2148 | } |
| 2149 | |
| 2150 | /* We should found at least one vertical stripe with error.*/ |
| 2151 | ASSERT(found); |
| 2152 | } |
| 2153 | |
| 2154 | /* |
| 2155 | * the main entry point for reads from the higher layers. This |
| 2156 | * is really only called when the normal read path had a failure, |
| 2157 | * so we assume the bio they send down corresponds to a failed part |
| 2158 | * of the drive. |
| 2159 | */ |
| 2160 | void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc, |
| 2161 | int mirror_num) |
| 2162 | { |
| 2163 | struct btrfs_fs_info *fs_info = bioc->fs_info; |
| 2164 | struct btrfs_raid_bio *rbio; |
| 2165 | |
| 2166 | rbio = alloc_rbio(fs_info, bioc); |
| 2167 | if (IS_ERR(rbio)) { |
| 2168 | bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); |
| 2169 | bio_endio(bio); |
| 2170 | return; |
| 2171 | } |
| 2172 | |
| 2173 | rbio->operation = BTRFS_RBIO_READ_REBUILD; |
| 2174 | rbio_add_bio(rbio, bio); |
| 2175 | |
| 2176 | set_rbio_range_error(rbio, bio); |
| 2177 | |
| 2178 | /* |
| 2179 | * Loop retry: |
| 2180 | * for 'mirror == 2', reconstruct from all other stripes. |
| 2181 | * for 'mirror_num > 2', select a stripe to fail on every retry. |
| 2182 | */ |
| 2183 | if (mirror_num > 2) |
| 2184 | set_rbio_raid6_extra_error(rbio, mirror_num); |
| 2185 | |
| 2186 | start_async_work(rbio, recover_rbio_work); |
| 2187 | } |
| 2188 | |
| 2189 | static void fill_data_csums(struct btrfs_raid_bio *rbio) |
| 2190 | { |
| 2191 | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; |
| 2192 | struct btrfs_root *csum_root = btrfs_csum_root(fs_info, |
| 2193 | rbio->bioc->full_stripe_logical); |
| 2194 | const u64 start = rbio->bioc->full_stripe_logical; |
| 2195 | const u32 len = (rbio->nr_data * rbio->stripe_nsectors) << |
| 2196 | fs_info->sectorsize_bits; |
| 2197 | int ret; |
| 2198 | |
| 2199 | /* The rbio should not have its csum buffer initialized. */ |
| 2200 | ASSERT(!rbio->csum_buf && !rbio->csum_bitmap); |
| 2201 | |
| 2202 | /* |
| 2203 | * Skip the csum search if: |
| 2204 | * |
| 2205 | * - The rbio doesn't belong to data block groups |
| 2206 | * Then we are doing IO for tree blocks, no need to search csums. |
| 2207 | * |
| 2208 | * - The rbio belongs to mixed block groups |
| 2209 | * This is to avoid deadlock, as we're already holding the full |
| 2210 | * stripe lock, if we trigger a metadata read, and it needs to do |
| 2211 | * raid56 recovery, we will deadlock. |
| 2212 | */ |
| 2213 | if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) || |
| 2214 | rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA) |
| 2215 | return; |
| 2216 | |
| 2217 | rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors * |
| 2218 | fs_info->csum_size, GFP_NOFS); |
| 2219 | rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors, |
| 2220 | GFP_NOFS); |
| 2221 | if (!rbio->csum_buf || !rbio->csum_bitmap) { |
| 2222 | ret = -ENOMEM; |
| 2223 | goto error; |
| 2224 | } |
| 2225 | |
| 2226 | ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1, |
| 2227 | rbio->csum_buf, rbio->csum_bitmap); |
| 2228 | if (ret < 0) |
| 2229 | goto error; |
| 2230 | if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits)) |
| 2231 | goto no_csum; |
| 2232 | return; |
| 2233 | |
| 2234 | error: |
| 2235 | /* |
| 2236 | * We failed to allocate memory or grab the csum, but it's not fatal, |
| 2237 | * we can still continue. But better to warn users that RMW is no |
| 2238 | * longer safe for this particular sub-stripe write. |
| 2239 | */ |
| 2240 | btrfs_warn_rl(fs_info, |
| 2241 | "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d", |
| 2242 | rbio->bioc->full_stripe_logical, ret); |
| 2243 | no_csum: |
| 2244 | kfree(rbio->csum_buf); |
| 2245 | bitmap_free(rbio->csum_bitmap); |
| 2246 | rbio->csum_buf = NULL; |
| 2247 | rbio->csum_bitmap = NULL; |
| 2248 | } |
| 2249 | |
| 2250 | static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio) |
| 2251 | { |
| 2252 | struct bio_list bio_list = BIO_EMPTY_LIST; |
| 2253 | int total_sector_nr; |
| 2254 | int ret = 0; |
| 2255 | |
| 2256 | /* |
| 2257 | * Fill the data csums we need for data verification. We need to fill |
| 2258 | * the csum_bitmap/csum_buf first, as our endio function will try to |
| 2259 | * verify the data sectors. |
| 2260 | */ |
| 2261 | fill_data_csums(rbio); |
| 2262 | |
| 2263 | /* |
| 2264 | * Build a list of bios to read all sectors (including data and P/Q). |
| 2265 | * |
| 2266 | * This behavior is to compensate the later csum verification and recovery. |
| 2267 | */ |
| 2268 | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; |
| 2269 | total_sector_nr++) { |
| 2270 | struct sector_ptr *sector; |
| 2271 | int stripe = total_sector_nr / rbio->stripe_nsectors; |
| 2272 | int sectornr = total_sector_nr % rbio->stripe_nsectors; |
| 2273 | |
| 2274 | sector = rbio_stripe_sector(rbio, stripe, sectornr); |
| 2275 | ret = rbio_add_io_sector(rbio, &bio_list, sector, |
| 2276 | stripe, sectornr, REQ_OP_READ); |
| 2277 | if (ret) { |
| 2278 | bio_list_put(&bio_list); |
| 2279 | return ret; |
| 2280 | } |
| 2281 | } |
| 2282 | |
| 2283 | /* |
| 2284 | * We may or may not have any corrupted sectors (including missing dev |
| 2285 | * and csum mismatch), just let recover_sectors() to handle them all. |
| 2286 | */ |
| 2287 | submit_read_wait_bio_list(rbio, &bio_list); |
| 2288 | return recover_sectors(rbio); |
| 2289 | } |
| 2290 | |
| 2291 | static void raid_wait_write_end_io(struct bio *bio) |
| 2292 | { |
| 2293 | struct btrfs_raid_bio *rbio = bio->bi_private; |
| 2294 | |
| 2295 | if (bio->bi_status) |
| 2296 | rbio_update_error_bitmap(rbio, bio); |
| 2297 | bio_put(bio); |
| 2298 | if (atomic_dec_and_test(&rbio->stripes_pending)) |
| 2299 | wake_up(&rbio->io_wait); |
| 2300 | } |
| 2301 | |
| 2302 | static void submit_write_bios(struct btrfs_raid_bio *rbio, |
| 2303 | struct bio_list *bio_list) |
| 2304 | { |
| 2305 | struct bio *bio; |
| 2306 | |
| 2307 | atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); |
| 2308 | while ((bio = bio_list_pop(bio_list))) { |
| 2309 | bio->bi_end_io = raid_wait_write_end_io; |
| 2310 | |
| 2311 | if (trace_raid56_write_enabled()) { |
| 2312 | struct raid56_bio_trace_info trace_info = { 0 }; |
| 2313 | |
| 2314 | bio_get_trace_info(rbio, bio, &trace_info); |
| 2315 | trace_raid56_write(rbio, bio, &trace_info); |
| 2316 | } |
| 2317 | submit_bio(bio); |
| 2318 | } |
| 2319 | } |
| 2320 | |
| 2321 | /* |
| 2322 | * To determine if we need to read any sector from the disk. |
| 2323 | * Should only be utilized in RMW path, to skip cached rbio. |
| 2324 | */ |
| 2325 | static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio) |
| 2326 | { |
| 2327 | int i; |
| 2328 | |
| 2329 | for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) { |
| 2330 | struct sector_ptr *sector = &rbio->stripe_sectors[i]; |
| 2331 | |
| 2332 | /* |
| 2333 | * We have a sector which doesn't have page nor uptodate, |
| 2334 | * thus this rbio can not be cached one, as cached one must |
| 2335 | * have all its data sectors present and uptodate. |
| 2336 | */ |
| 2337 | if (!sector->has_paddr || !sector->uptodate) |
| 2338 | return true; |
| 2339 | } |
| 2340 | return false; |
| 2341 | } |
| 2342 | |
| 2343 | static void rmw_rbio(struct btrfs_raid_bio *rbio) |
| 2344 | { |
| 2345 | struct bio_list bio_list; |
| 2346 | int sectornr; |
| 2347 | int ret = 0; |
| 2348 | |
| 2349 | /* |
| 2350 | * Allocate the pages for parity first, as P/Q pages will always be |
| 2351 | * needed for both full-stripe and sub-stripe writes. |
| 2352 | */ |
| 2353 | ret = alloc_rbio_parity_pages(rbio); |
| 2354 | if (ret < 0) |
| 2355 | goto out; |
| 2356 | |
| 2357 | /* |
| 2358 | * Either full stripe write, or we have every data sector already |
| 2359 | * cached, can go to write path immediately. |
| 2360 | */ |
| 2361 | if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) { |
| 2362 | /* |
| 2363 | * Now we're doing sub-stripe write, also need all data stripes |
| 2364 | * to do the full RMW. |
| 2365 | */ |
| 2366 | ret = alloc_rbio_data_pages(rbio); |
| 2367 | if (ret < 0) |
| 2368 | goto out; |
| 2369 | |
| 2370 | index_rbio_pages(rbio); |
| 2371 | |
| 2372 | ret = rmw_read_wait_recover(rbio); |
| 2373 | if (ret < 0) |
| 2374 | goto out; |
| 2375 | } |
| 2376 | |
| 2377 | /* |
| 2378 | * At this stage we're not allowed to add any new bios to the |
| 2379 | * bio list any more, anyone else that wants to change this stripe |
| 2380 | * needs to do their own rmw. |
| 2381 | */ |
| 2382 | spin_lock(&rbio->bio_list_lock); |
| 2383 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| 2384 | spin_unlock(&rbio->bio_list_lock); |
| 2385 | |
| 2386 | bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); |
| 2387 | |
| 2388 | index_rbio_pages(rbio); |
| 2389 | |
| 2390 | /* |
| 2391 | * We don't cache full rbios because we're assuming |
| 2392 | * the higher layers are unlikely to use this area of |
| 2393 | * the disk again soon. If they do use it again, |
| 2394 | * hopefully they will send another full bio. |
| 2395 | */ |
| 2396 | if (!rbio_is_full(rbio)) |
| 2397 | cache_rbio_pages(rbio); |
| 2398 | else |
| 2399 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
| 2400 | |
| 2401 | for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) |
| 2402 | generate_pq_vertical(rbio, sectornr); |
| 2403 | |
| 2404 | bio_list_init(&bio_list); |
| 2405 | ret = rmw_assemble_write_bios(rbio, &bio_list); |
| 2406 | if (ret < 0) |
| 2407 | goto out; |
| 2408 | |
| 2409 | /* We should have at least one bio assembled. */ |
| 2410 | ASSERT(bio_list_size(&bio_list)); |
| 2411 | submit_write_bios(rbio, &bio_list); |
| 2412 | wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); |
| 2413 | |
| 2414 | /* We may have more errors than our tolerance during the read. */ |
| 2415 | for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { |
| 2416 | int found_errors; |
| 2417 | |
| 2418 | found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL); |
| 2419 | if (found_errors > rbio->bioc->max_errors) { |
| 2420 | ret = -EIO; |
| 2421 | break; |
| 2422 | } |
| 2423 | } |
| 2424 | out: |
| 2425 | rbio_orig_end_io(rbio, errno_to_blk_status(ret)); |
| 2426 | } |
| 2427 | |
| 2428 | static void rmw_rbio_work(struct work_struct *work) |
| 2429 | { |
| 2430 | struct btrfs_raid_bio *rbio; |
| 2431 | |
| 2432 | rbio = container_of(work, struct btrfs_raid_bio, work); |
| 2433 | if (lock_stripe_add(rbio) == 0) |
| 2434 | rmw_rbio(rbio); |
| 2435 | } |
| 2436 | |
| 2437 | static void rmw_rbio_work_locked(struct work_struct *work) |
| 2438 | { |
| 2439 | rmw_rbio(container_of(work, struct btrfs_raid_bio, work)); |
| 2440 | } |
| 2441 | |
| 2442 | /* |
| 2443 | * The following code is used to scrub/replace the parity stripe |
| 2444 | * |
| 2445 | * Caller must have already increased bio_counter for getting @bioc. |
| 2446 | * |
| 2447 | * Note: We need make sure all the pages that add into the scrub/replace |
| 2448 | * raid bio are correct and not be changed during the scrub/replace. That |
| 2449 | * is those pages just hold metadata or file data with checksum. |
| 2450 | */ |
| 2451 | |
| 2452 | struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio, |
| 2453 | struct btrfs_io_context *bioc, |
| 2454 | struct btrfs_device *scrub_dev, |
| 2455 | unsigned long *dbitmap, int stripe_nsectors) |
| 2456 | { |
| 2457 | struct btrfs_fs_info *fs_info = bioc->fs_info; |
| 2458 | struct btrfs_raid_bio *rbio; |
| 2459 | int i; |
| 2460 | |
| 2461 | rbio = alloc_rbio(fs_info, bioc); |
| 2462 | if (IS_ERR(rbio)) |
| 2463 | return NULL; |
| 2464 | bio_list_add(&rbio->bio_list, bio); |
| 2465 | /* |
| 2466 | * This is a special bio which is used to hold the completion handler |
| 2467 | * and make the scrub rbio is similar to the other types |
| 2468 | */ |
| 2469 | ASSERT(!bio->bi_iter.bi_size); |
| 2470 | rbio->operation = BTRFS_RBIO_PARITY_SCRUB; |
| 2471 | |
| 2472 | /* |
| 2473 | * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted |
| 2474 | * to the end position, so this search can start from the first parity |
| 2475 | * stripe. |
| 2476 | */ |
| 2477 | for (i = rbio->nr_data; i < rbio->real_stripes; i++) { |
| 2478 | if (bioc->stripes[i].dev == scrub_dev) { |
| 2479 | rbio->scrubp = i; |
| 2480 | break; |
| 2481 | } |
| 2482 | } |
| 2483 | ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i); |
| 2484 | |
| 2485 | bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors); |
| 2486 | return rbio; |
| 2487 | } |
| 2488 | |
| 2489 | /* |
| 2490 | * We just scrub the parity that we have correct data on the same horizontal, |
| 2491 | * so we needn't allocate all pages for all the stripes. |
| 2492 | */ |
| 2493 | static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) |
| 2494 | { |
| 2495 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; |
| 2496 | int total_sector_nr; |
| 2497 | |
| 2498 | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; |
| 2499 | total_sector_nr++) { |
| 2500 | struct page *page; |
| 2501 | int sectornr = total_sector_nr % rbio->stripe_nsectors; |
| 2502 | int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT; |
| 2503 | |
| 2504 | if (!test_bit(sectornr, &rbio->dbitmap)) |
| 2505 | continue; |
| 2506 | if (rbio->stripe_pages[index]) |
| 2507 | continue; |
| 2508 | page = alloc_page(GFP_NOFS); |
| 2509 | if (!page) |
| 2510 | return -ENOMEM; |
| 2511 | rbio->stripe_pages[index] = page; |
| 2512 | } |
| 2513 | index_stripe_sectors(rbio); |
| 2514 | return 0; |
| 2515 | } |
| 2516 | |
| 2517 | static int finish_parity_scrub(struct btrfs_raid_bio *rbio) |
| 2518 | { |
| 2519 | struct btrfs_io_context *bioc = rbio->bioc; |
| 2520 | const u32 sectorsize = bioc->fs_info->sectorsize; |
| 2521 | void **pointers = rbio->finish_pointers; |
| 2522 | unsigned long *pbitmap = &rbio->finish_pbitmap; |
| 2523 | int nr_data = rbio->nr_data; |
| 2524 | int stripe; |
| 2525 | int sectornr; |
| 2526 | bool has_qstripe; |
| 2527 | struct page *page; |
| 2528 | struct sector_ptr p_sector = { 0 }; |
| 2529 | struct sector_ptr q_sector = { 0 }; |
| 2530 | struct bio_list bio_list; |
| 2531 | int is_replace = 0; |
| 2532 | int ret; |
| 2533 | |
| 2534 | bio_list_init(&bio_list); |
| 2535 | |
| 2536 | if (rbio->real_stripes - rbio->nr_data == 1) |
| 2537 | has_qstripe = false; |
| 2538 | else if (rbio->real_stripes - rbio->nr_data == 2) |
| 2539 | has_qstripe = true; |
| 2540 | else |
| 2541 | BUG(); |
| 2542 | |
| 2543 | /* |
| 2544 | * Replace is running and our P/Q stripe is being replaced, then we |
| 2545 | * need to duplicate the final write to replace target. |
| 2546 | */ |
| 2547 | if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) { |
| 2548 | is_replace = 1; |
| 2549 | bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors); |
| 2550 | } |
| 2551 | |
| 2552 | /* |
| 2553 | * Because the higher layers(scrubber) are unlikely to |
| 2554 | * use this area of the disk again soon, so don't cache |
| 2555 | * it. |
| 2556 | */ |
| 2557 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
| 2558 | |
| 2559 | page = alloc_page(GFP_NOFS); |
| 2560 | if (!page) |
| 2561 | return -ENOMEM; |
| 2562 | p_sector.has_paddr = true; |
| 2563 | p_sector.paddr = page_to_phys(page); |
| 2564 | p_sector.uptodate = 1; |
| 2565 | page = NULL; |
| 2566 | |
| 2567 | if (has_qstripe) { |
| 2568 | /* RAID6, allocate and map temp space for the Q stripe */ |
| 2569 | page = alloc_page(GFP_NOFS); |
| 2570 | if (!page) { |
| 2571 | __free_page(phys_to_page(p_sector.paddr)); |
| 2572 | p_sector.has_paddr = false; |
| 2573 | return -ENOMEM; |
| 2574 | } |
| 2575 | q_sector.has_paddr = true; |
| 2576 | q_sector.paddr = page_to_phys(page); |
| 2577 | q_sector.uptodate = 1; |
| 2578 | page = NULL; |
| 2579 | pointers[rbio->real_stripes - 1] = kmap_local_sector(&q_sector); |
| 2580 | } |
| 2581 | |
| 2582 | bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); |
| 2583 | |
| 2584 | /* Map the parity stripe just once */ |
| 2585 | pointers[nr_data] = kmap_local_sector(&p_sector); |
| 2586 | |
| 2587 | for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { |
| 2588 | struct sector_ptr *sector; |
| 2589 | void *parity; |
| 2590 | |
| 2591 | /* first collect one page from each data stripe */ |
| 2592 | for (stripe = 0; stripe < nr_data; stripe++) { |
| 2593 | sector = sector_in_rbio(rbio, stripe, sectornr, 0); |
| 2594 | pointers[stripe] = kmap_local_sector(sector); |
| 2595 | } |
| 2596 | |
| 2597 | if (has_qstripe) { |
| 2598 | assert_rbio(rbio); |
| 2599 | /* RAID6, call the library function to fill in our P/Q */ |
| 2600 | raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, |
| 2601 | pointers); |
| 2602 | } else { |
| 2603 | /* raid5 */ |
| 2604 | memcpy(pointers[nr_data], pointers[0], sectorsize); |
| 2605 | run_xor(pointers + 1, nr_data - 1, sectorsize); |
| 2606 | } |
| 2607 | |
| 2608 | /* Check scrubbing parity and repair it */ |
| 2609 | sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); |
| 2610 | parity = kmap_local_sector(sector); |
| 2611 | if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0) |
| 2612 | memcpy(parity, pointers[rbio->scrubp], sectorsize); |
| 2613 | else |
| 2614 | /* Parity is right, needn't writeback */ |
| 2615 | bitmap_clear(&rbio->dbitmap, sectornr, 1); |
| 2616 | kunmap_local(parity); |
| 2617 | |
| 2618 | for (stripe = nr_data - 1; stripe >= 0; stripe--) |
| 2619 | kunmap_local(pointers[stripe]); |
| 2620 | } |
| 2621 | |
| 2622 | kunmap_local(pointers[nr_data]); |
| 2623 | __free_page(phys_to_page(p_sector.paddr)); |
| 2624 | p_sector.has_paddr = false; |
| 2625 | if (q_sector.has_paddr) { |
| 2626 | __free_page(phys_to_page(q_sector.paddr)); |
| 2627 | q_sector.has_paddr = false; |
| 2628 | } |
| 2629 | |
| 2630 | /* |
| 2631 | * time to start writing. Make bios for everything from the |
| 2632 | * higher layers (the bio_list in our rbio) and our p/q. Ignore |
| 2633 | * everything else. |
| 2634 | */ |
| 2635 | for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { |
| 2636 | struct sector_ptr *sector; |
| 2637 | |
| 2638 | sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); |
| 2639 | ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp, |
| 2640 | sectornr, REQ_OP_WRITE); |
| 2641 | if (ret) |
| 2642 | goto cleanup; |
| 2643 | } |
| 2644 | |
| 2645 | if (!is_replace) |
| 2646 | goto submit_write; |
| 2647 | |
| 2648 | /* |
| 2649 | * Replace is running and our parity stripe needs to be duplicated to |
| 2650 | * the target device. Check we have a valid source stripe number. |
| 2651 | */ |
| 2652 | ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio); |
| 2653 | for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) { |
| 2654 | struct sector_ptr *sector; |
| 2655 | |
| 2656 | sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); |
| 2657 | ret = rbio_add_io_sector(rbio, &bio_list, sector, |
| 2658 | rbio->real_stripes, |
| 2659 | sectornr, REQ_OP_WRITE); |
| 2660 | if (ret) |
| 2661 | goto cleanup; |
| 2662 | } |
| 2663 | |
| 2664 | submit_write: |
| 2665 | submit_write_bios(rbio, &bio_list); |
| 2666 | return 0; |
| 2667 | |
| 2668 | cleanup: |
| 2669 | bio_list_put(&bio_list); |
| 2670 | return ret; |
| 2671 | } |
| 2672 | |
| 2673 | static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) |
| 2674 | { |
| 2675 | if (stripe >= 0 && stripe < rbio->nr_data) |
| 2676 | return 1; |
| 2677 | return 0; |
| 2678 | } |
| 2679 | |
| 2680 | static int recover_scrub_rbio(struct btrfs_raid_bio *rbio) |
| 2681 | { |
| 2682 | void **pointers = NULL; |
| 2683 | void **unmap_array = NULL; |
| 2684 | int sector_nr; |
| 2685 | int ret = 0; |
| 2686 | |
| 2687 | /* |
| 2688 | * @pointers array stores the pointer for each sector. |
| 2689 | * |
| 2690 | * @unmap_array stores copy of pointers that does not get reordered |
| 2691 | * during reconstruction so that kunmap_local works. |
| 2692 | */ |
| 2693 | pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); |
| 2694 | unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); |
| 2695 | if (!pointers || !unmap_array) { |
| 2696 | ret = -ENOMEM; |
| 2697 | goto out; |
| 2698 | } |
| 2699 | |
| 2700 | for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { |
| 2701 | int dfail = 0, failp = -1; |
| 2702 | int faila; |
| 2703 | int failb; |
| 2704 | int found_errors; |
| 2705 | |
| 2706 | found_errors = get_rbio_veritical_errors(rbio, sector_nr, |
| 2707 | &faila, &failb); |
| 2708 | if (found_errors > rbio->bioc->max_errors) { |
| 2709 | ret = -EIO; |
| 2710 | goto out; |
| 2711 | } |
| 2712 | if (found_errors == 0) |
| 2713 | continue; |
| 2714 | |
| 2715 | /* We should have at least one error here. */ |
| 2716 | ASSERT(faila >= 0 || failb >= 0); |
| 2717 | |
| 2718 | if (is_data_stripe(rbio, faila)) |
| 2719 | dfail++; |
| 2720 | else if (is_parity_stripe(faila)) |
| 2721 | failp = faila; |
| 2722 | |
| 2723 | if (is_data_stripe(rbio, failb)) |
| 2724 | dfail++; |
| 2725 | else if (is_parity_stripe(failb)) |
| 2726 | failp = failb; |
| 2727 | /* |
| 2728 | * Because we can not use a scrubbing parity to repair the |
| 2729 | * data, so the capability of the repair is declined. (In the |
| 2730 | * case of RAID5, we can not repair anything.) |
| 2731 | */ |
| 2732 | if (dfail > rbio->bioc->max_errors - 1) { |
| 2733 | ret = -EIO; |
| 2734 | goto out; |
| 2735 | } |
| 2736 | /* |
| 2737 | * If all data is good, only parity is correctly, just repair |
| 2738 | * the parity, no need to recover data stripes. |
| 2739 | */ |
| 2740 | if (dfail == 0) |
| 2741 | continue; |
| 2742 | |
| 2743 | /* |
| 2744 | * Here means we got one corrupted data stripe and one |
| 2745 | * corrupted parity on RAID6, if the corrupted parity is |
| 2746 | * scrubbing parity, luckily, use the other one to repair the |
| 2747 | * data, or we can not repair the data stripe. |
| 2748 | */ |
| 2749 | if (failp != rbio->scrubp) { |
| 2750 | ret = -EIO; |
| 2751 | goto out; |
| 2752 | } |
| 2753 | |
| 2754 | ret = recover_vertical(rbio, sector_nr, pointers, unmap_array); |
| 2755 | if (ret < 0) |
| 2756 | goto out; |
| 2757 | } |
| 2758 | out: |
| 2759 | kfree(pointers); |
| 2760 | kfree(unmap_array); |
| 2761 | return ret; |
| 2762 | } |
| 2763 | |
| 2764 | static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio) |
| 2765 | { |
| 2766 | struct bio_list bio_list = BIO_EMPTY_LIST; |
| 2767 | int total_sector_nr; |
| 2768 | int ret = 0; |
| 2769 | |
| 2770 | /* Build a list of bios to read all the missing parts. */ |
| 2771 | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; |
| 2772 | total_sector_nr++) { |
| 2773 | int sectornr = total_sector_nr % rbio->stripe_nsectors; |
| 2774 | int stripe = total_sector_nr / rbio->stripe_nsectors; |
| 2775 | struct sector_ptr *sector; |
| 2776 | |
| 2777 | /* No data in the vertical stripe, no need to read. */ |
| 2778 | if (!test_bit(sectornr, &rbio->dbitmap)) |
| 2779 | continue; |
| 2780 | |
| 2781 | /* |
| 2782 | * We want to find all the sectors missing from the rbio and |
| 2783 | * read them from the disk. If sector_in_rbio() finds a sector |
| 2784 | * in the bio list we don't need to read it off the stripe. |
| 2785 | */ |
| 2786 | sector = sector_in_rbio(rbio, stripe, sectornr, 1); |
| 2787 | if (sector) |
| 2788 | continue; |
| 2789 | |
| 2790 | sector = rbio_stripe_sector(rbio, stripe, sectornr); |
| 2791 | /* |
| 2792 | * The bio cache may have handed us an uptodate sector. If so, |
| 2793 | * use it. |
| 2794 | */ |
| 2795 | if (sector->uptodate) |
| 2796 | continue; |
| 2797 | |
| 2798 | ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, |
| 2799 | sectornr, REQ_OP_READ); |
| 2800 | if (ret) { |
| 2801 | bio_list_put(&bio_list); |
| 2802 | return ret; |
| 2803 | } |
| 2804 | } |
| 2805 | |
| 2806 | submit_read_wait_bio_list(rbio, &bio_list); |
| 2807 | return 0; |
| 2808 | } |
| 2809 | |
| 2810 | static void scrub_rbio(struct btrfs_raid_bio *rbio) |
| 2811 | { |
| 2812 | int sector_nr; |
| 2813 | int ret; |
| 2814 | |
| 2815 | ret = alloc_rbio_essential_pages(rbio); |
| 2816 | if (ret) |
| 2817 | goto out; |
| 2818 | |
| 2819 | bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); |
| 2820 | |
| 2821 | ret = scrub_assemble_read_bios(rbio); |
| 2822 | if (ret < 0) |
| 2823 | goto out; |
| 2824 | |
| 2825 | /* We may have some failures, recover the failed sectors first. */ |
| 2826 | ret = recover_scrub_rbio(rbio); |
| 2827 | if (ret < 0) |
| 2828 | goto out; |
| 2829 | |
| 2830 | /* |
| 2831 | * We have every sector properly prepared. Can finish the scrub |
| 2832 | * and writeback the good content. |
| 2833 | */ |
| 2834 | ret = finish_parity_scrub(rbio); |
| 2835 | wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); |
| 2836 | for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { |
| 2837 | int found_errors; |
| 2838 | |
| 2839 | found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL); |
| 2840 | if (found_errors > rbio->bioc->max_errors) { |
| 2841 | ret = -EIO; |
| 2842 | break; |
| 2843 | } |
| 2844 | } |
| 2845 | out: |
| 2846 | rbio_orig_end_io(rbio, errno_to_blk_status(ret)); |
| 2847 | } |
| 2848 | |
| 2849 | static void scrub_rbio_work_locked(struct work_struct *work) |
| 2850 | { |
| 2851 | scrub_rbio(container_of(work, struct btrfs_raid_bio, work)); |
| 2852 | } |
| 2853 | |
| 2854 | void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) |
| 2855 | { |
| 2856 | if (!lock_stripe_add(rbio)) |
| 2857 | start_async_work(rbio, scrub_rbio_work_locked); |
| 2858 | } |
| 2859 | |
| 2860 | /* |
| 2861 | * This is for scrub call sites where we already have correct data contents. |
| 2862 | * This allows us to avoid reading data stripes again. |
| 2863 | * |
| 2864 | * Unfortunately here we have to do page copy, other than reusing the pages. |
| 2865 | * This is due to the fact rbio has its own page management for its cache. |
| 2866 | */ |
| 2867 | void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio, |
| 2868 | struct page **data_pages, u64 data_logical) |
| 2869 | { |
| 2870 | const u64 offset_in_full_stripe = data_logical - |
| 2871 | rbio->bioc->full_stripe_logical; |
| 2872 | const int page_index = offset_in_full_stripe >> PAGE_SHIFT; |
| 2873 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; |
| 2874 | const u32 sectors_per_page = PAGE_SIZE / sectorsize; |
| 2875 | int ret; |
| 2876 | |
| 2877 | /* |
| 2878 | * If we hit ENOMEM temporarily, but later at |
| 2879 | * raid56_parity_submit_scrub_rbio() time it succeeded, we just do |
| 2880 | * the extra read, not a big deal. |
| 2881 | * |
| 2882 | * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time, |
| 2883 | * the bio would got proper error number set. |
| 2884 | */ |
| 2885 | ret = alloc_rbio_data_pages(rbio); |
| 2886 | if (ret < 0) |
| 2887 | return; |
| 2888 | |
| 2889 | /* data_logical must be at stripe boundary and inside the full stripe. */ |
| 2890 | ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN)); |
| 2891 | ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT)); |
| 2892 | |
| 2893 | for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) { |
| 2894 | struct page *dst = rbio->stripe_pages[page_nr + page_index]; |
| 2895 | struct page *src = data_pages[page_nr]; |
| 2896 | |
| 2897 | memcpy_page(dst, 0, src, 0, PAGE_SIZE); |
| 2898 | for (int sector_nr = sectors_per_page * page_index; |
| 2899 | sector_nr < sectors_per_page * (page_index + 1); |
| 2900 | sector_nr++) |
| 2901 | rbio->stripe_sectors[sector_nr].uptodate = true; |
| 2902 | } |
| 2903 | } |