| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2007 Oracle. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/fs.h> |
| 7 | #include <linux/blkdev.h> |
| 8 | #include <linux/radix-tree.h> |
| 9 | #include <linux/writeback.h> |
| 10 | #include <linux/workqueue.h> |
| 11 | #include <linux/kthread.h> |
| 12 | #include <linux/slab.h> |
| 13 | #include <linux/migrate.h> |
| 14 | #include <linux/ratelimit.h> |
| 15 | #include <linux/uuid.h> |
| 16 | #include <linux/semaphore.h> |
| 17 | #include <linux/error-injection.h> |
| 18 | #include <linux/crc32c.h> |
| 19 | #include <linux/sched/mm.h> |
| 20 | #include <linux/unaligned.h> |
| 21 | #include <crypto/hash.h> |
| 22 | #include "ctree.h" |
| 23 | #include "disk-io.h" |
| 24 | #include "transaction.h" |
| 25 | #include "btrfs_inode.h" |
| 26 | #include "bio.h" |
| 27 | #include "print-tree.h" |
| 28 | #include "locking.h" |
| 29 | #include "tree-log.h" |
| 30 | #include "free-space-cache.h" |
| 31 | #include "free-space-tree.h" |
| 32 | #include "dev-replace.h" |
| 33 | #include "raid56.h" |
| 34 | #include "sysfs.h" |
| 35 | #include "qgroup.h" |
| 36 | #include "compression.h" |
| 37 | #include "tree-checker.h" |
| 38 | #include "ref-verify.h" |
| 39 | #include "block-group.h" |
| 40 | #include "discard.h" |
| 41 | #include "space-info.h" |
| 42 | #include "zoned.h" |
| 43 | #include "subpage.h" |
| 44 | #include "fs.h" |
| 45 | #include "accessors.h" |
| 46 | #include "extent-tree.h" |
| 47 | #include "root-tree.h" |
| 48 | #include "defrag.h" |
| 49 | #include "uuid-tree.h" |
| 50 | #include "relocation.h" |
| 51 | #include "scrub.h" |
| 52 | #include "super.h" |
| 53 | |
| 54 | #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ |
| 55 | BTRFS_HEADER_FLAG_RELOC |\ |
| 56 | BTRFS_SUPER_FLAG_ERROR |\ |
| 57 | BTRFS_SUPER_FLAG_SEEDING |\ |
| 58 | BTRFS_SUPER_FLAG_METADUMP |\ |
| 59 | BTRFS_SUPER_FLAG_METADUMP_V2) |
| 60 | |
| 61 | static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); |
| 62 | static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); |
| 63 | |
| 64 | static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) |
| 65 | { |
| 66 | if (fs_info->csum_shash) |
| 67 | crypto_free_shash(fs_info->csum_shash); |
| 68 | } |
| 69 | |
| 70 | /* |
| 71 | * Compute the csum of a btree block and store the result to provided buffer. |
| 72 | */ |
| 73 | static void csum_tree_block(struct extent_buffer *buf, u8 *result) |
| 74 | { |
| 75 | struct btrfs_fs_info *fs_info = buf->fs_info; |
| 76 | int num_pages; |
| 77 | u32 first_page_part; |
| 78 | SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| 79 | char *kaddr; |
| 80 | int i; |
| 81 | |
| 82 | shash->tfm = fs_info->csum_shash; |
| 83 | crypto_shash_init(shash); |
| 84 | |
| 85 | if (buf->addr) { |
| 86 | /* Pages are contiguous, handle them as a big one. */ |
| 87 | kaddr = buf->addr; |
| 88 | first_page_part = fs_info->nodesize; |
| 89 | num_pages = 1; |
| 90 | } else { |
| 91 | kaddr = folio_address(buf->folios[0]); |
| 92 | first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); |
| 93 | num_pages = num_extent_pages(buf); |
| 94 | } |
| 95 | |
| 96 | crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, |
| 97 | first_page_part - BTRFS_CSUM_SIZE); |
| 98 | |
| 99 | /* |
| 100 | * Multiple single-page folios case would reach here. |
| 101 | * |
| 102 | * nodesize <= PAGE_SIZE and large folio all handled by above |
| 103 | * crypto_shash_update() already. |
| 104 | */ |
| 105 | for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { |
| 106 | kaddr = folio_address(buf->folios[i]); |
| 107 | crypto_shash_update(shash, kaddr, PAGE_SIZE); |
| 108 | } |
| 109 | memset(result, 0, BTRFS_CSUM_SIZE); |
| 110 | crypto_shash_final(shash, result); |
| 111 | } |
| 112 | |
| 113 | /* |
| 114 | * we can't consider a given block up to date unless the transid of the |
| 115 | * block matches the transid in the parent node's pointer. This is how we |
| 116 | * detect blocks that either didn't get written at all or got written |
| 117 | * in the wrong place. |
| 118 | */ |
| 119 | int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) |
| 120 | { |
| 121 | if (!extent_buffer_uptodate(eb)) |
| 122 | return 0; |
| 123 | |
| 124 | if (!parent_transid || btrfs_header_generation(eb) == parent_transid) |
| 125 | return 1; |
| 126 | |
| 127 | if (atomic) |
| 128 | return -EAGAIN; |
| 129 | |
| 130 | if (!extent_buffer_uptodate(eb) || |
| 131 | btrfs_header_generation(eb) != parent_transid) { |
| 132 | btrfs_err_rl(eb->fs_info, |
| 133 | "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", |
| 134 | eb->start, eb->read_mirror, |
| 135 | parent_transid, btrfs_header_generation(eb)); |
| 136 | clear_extent_buffer_uptodate(eb); |
| 137 | return 0; |
| 138 | } |
| 139 | return 1; |
| 140 | } |
| 141 | |
| 142 | static bool btrfs_supported_super_csum(u16 csum_type) |
| 143 | { |
| 144 | switch (csum_type) { |
| 145 | case BTRFS_CSUM_TYPE_CRC32: |
| 146 | case BTRFS_CSUM_TYPE_XXHASH: |
| 147 | case BTRFS_CSUM_TYPE_SHA256: |
| 148 | case BTRFS_CSUM_TYPE_BLAKE2: |
| 149 | return true; |
| 150 | default: |
| 151 | return false; |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | /* |
| 156 | * Return 0 if the superblock checksum type matches the checksum value of that |
| 157 | * algorithm. Pass the raw disk superblock data. |
| 158 | */ |
| 159 | int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, |
| 160 | const struct btrfs_super_block *disk_sb) |
| 161 | { |
| 162 | char result[BTRFS_CSUM_SIZE]; |
| 163 | SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| 164 | |
| 165 | shash->tfm = fs_info->csum_shash; |
| 166 | |
| 167 | /* |
| 168 | * The super_block structure does not span the whole |
| 169 | * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is |
| 170 | * filled with zeros and is included in the checksum. |
| 171 | */ |
| 172 | crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, |
| 173 | BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); |
| 174 | |
| 175 | if (memcmp(disk_sb->csum, result, fs_info->csum_size)) |
| 176 | return 1; |
| 177 | |
| 178 | return 0; |
| 179 | } |
| 180 | |
| 181 | static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, |
| 182 | int mirror_num) |
| 183 | { |
| 184 | struct btrfs_fs_info *fs_info = eb->fs_info; |
| 185 | int ret = 0; |
| 186 | |
| 187 | if (sb_rdonly(fs_info->sb)) |
| 188 | return -EROFS; |
| 189 | |
| 190 | for (int i = 0; i < num_extent_folios(eb); i++) { |
| 191 | struct folio *folio = eb->folios[i]; |
| 192 | u64 start = max_t(u64, eb->start, folio_pos(folio)); |
| 193 | u64 end = min_t(u64, eb->start + eb->len, |
| 194 | folio_pos(folio) + eb->folio_size); |
| 195 | u32 len = end - start; |
| 196 | phys_addr_t paddr = PFN_PHYS(folio_pfn(folio)) + |
| 197 | offset_in_folio(folio, start); |
| 198 | |
| 199 | ret = btrfs_repair_io_failure(fs_info, 0, start, len, start, |
| 200 | paddr, mirror_num); |
| 201 | if (ret) |
| 202 | break; |
| 203 | } |
| 204 | |
| 205 | return ret; |
| 206 | } |
| 207 | |
| 208 | /* |
| 209 | * helper to read a given tree block, doing retries as required when |
| 210 | * the checksums don't match and we have alternate mirrors to try. |
| 211 | * |
| 212 | * @check: expected tree parentness check, see the comments of the |
| 213 | * structure for details. |
| 214 | */ |
| 215 | int btrfs_read_extent_buffer(struct extent_buffer *eb, |
| 216 | const struct btrfs_tree_parent_check *check) |
| 217 | { |
| 218 | struct btrfs_fs_info *fs_info = eb->fs_info; |
| 219 | int failed = 0; |
| 220 | int ret; |
| 221 | int num_copies = 0; |
| 222 | int mirror_num = 0; |
| 223 | int failed_mirror = 0; |
| 224 | |
| 225 | ASSERT(check); |
| 226 | |
| 227 | while (1) { |
| 228 | ret = read_extent_buffer_pages(eb, mirror_num, check); |
| 229 | if (!ret) |
| 230 | break; |
| 231 | |
| 232 | num_copies = btrfs_num_copies(fs_info, |
| 233 | eb->start, eb->len); |
| 234 | if (num_copies == 1) |
| 235 | break; |
| 236 | |
| 237 | if (!failed_mirror) { |
| 238 | failed = 1; |
| 239 | failed_mirror = eb->read_mirror; |
| 240 | } |
| 241 | |
| 242 | mirror_num++; |
| 243 | if (mirror_num == failed_mirror) |
| 244 | mirror_num++; |
| 245 | |
| 246 | if (mirror_num > num_copies) |
| 247 | break; |
| 248 | } |
| 249 | |
| 250 | if (failed && !ret && failed_mirror) |
| 251 | btrfs_repair_eb_io_failure(eb, failed_mirror); |
| 252 | |
| 253 | return ret; |
| 254 | } |
| 255 | |
| 256 | /* |
| 257 | * Checksum a dirty tree block before IO. |
| 258 | */ |
| 259 | int btree_csum_one_bio(struct btrfs_bio *bbio) |
| 260 | { |
| 261 | struct extent_buffer *eb = bbio->private; |
| 262 | struct btrfs_fs_info *fs_info = eb->fs_info; |
| 263 | u64 found_start = btrfs_header_bytenr(eb); |
| 264 | u64 last_trans; |
| 265 | u8 result[BTRFS_CSUM_SIZE]; |
| 266 | int ret; |
| 267 | |
| 268 | /* Btree blocks are always contiguous on disk. */ |
| 269 | if (WARN_ON_ONCE(bbio->file_offset != eb->start)) |
| 270 | return -EIO; |
| 271 | if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) |
| 272 | return -EIO; |
| 273 | |
| 274 | /* |
| 275 | * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't |
| 276 | * checksum it but zero-out its content. This is done to preserve |
| 277 | * ordering of I/O without unnecessarily writing out data. |
| 278 | */ |
| 279 | if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { |
| 280 | memzero_extent_buffer(eb, 0, eb->len); |
| 281 | return 0; |
| 282 | } |
| 283 | |
| 284 | if (WARN_ON_ONCE(found_start != eb->start)) |
| 285 | return -EIO; |
| 286 | if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb))) |
| 287 | return -EIO; |
| 288 | |
| 289 | ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, |
| 290 | offsetof(struct btrfs_header, fsid), |
| 291 | BTRFS_FSID_SIZE) == 0); |
| 292 | csum_tree_block(eb, result); |
| 293 | |
| 294 | if (btrfs_header_level(eb)) |
| 295 | ret = btrfs_check_node(eb); |
| 296 | else |
| 297 | ret = btrfs_check_leaf(eb); |
| 298 | |
| 299 | if (ret < 0) |
| 300 | goto error; |
| 301 | |
| 302 | /* |
| 303 | * Also check the generation, the eb reached here must be newer than |
| 304 | * last committed. Or something seriously wrong happened. |
| 305 | */ |
| 306 | last_trans = btrfs_get_last_trans_committed(fs_info); |
| 307 | if (unlikely(btrfs_header_generation(eb) <= last_trans)) { |
| 308 | ret = -EUCLEAN; |
| 309 | btrfs_err(fs_info, |
| 310 | "block=%llu bad generation, have %llu expect > %llu", |
| 311 | eb->start, btrfs_header_generation(eb), last_trans); |
| 312 | goto error; |
| 313 | } |
| 314 | write_extent_buffer(eb, result, 0, fs_info->csum_size); |
| 315 | return 0; |
| 316 | |
| 317 | error: |
| 318 | btrfs_print_tree(eb, 0); |
| 319 | btrfs_err(fs_info, "block=%llu write time tree block corruption detected", |
| 320 | eb->start); |
| 321 | /* |
| 322 | * Be noisy if this is an extent buffer from a log tree. We don't abort |
| 323 | * a transaction in case there's a bad log tree extent buffer, we just |
| 324 | * fallback to a transaction commit. Still we want to know when there is |
| 325 | * a bad log tree extent buffer, as that may signal a bug somewhere. |
| 326 | */ |
| 327 | WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || |
| 328 | btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); |
| 329 | return ret; |
| 330 | } |
| 331 | |
| 332 | static bool check_tree_block_fsid(struct extent_buffer *eb) |
| 333 | { |
| 334 | struct btrfs_fs_info *fs_info = eb->fs_info; |
| 335 | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; |
| 336 | u8 fsid[BTRFS_FSID_SIZE]; |
| 337 | |
| 338 | read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), |
| 339 | BTRFS_FSID_SIZE); |
| 340 | |
| 341 | /* |
| 342 | * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. |
| 343 | * This is then overwritten by metadata_uuid if it is present in the |
| 344 | * device_list_add(). The same true for a seed device as well. So use of |
| 345 | * fs_devices::metadata_uuid is appropriate here. |
| 346 | */ |
| 347 | if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) |
| 348 | return false; |
| 349 | |
| 350 | list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) |
| 351 | if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) |
| 352 | return false; |
| 353 | |
| 354 | return true; |
| 355 | } |
| 356 | |
| 357 | /* Do basic extent buffer checks at read time */ |
| 358 | int btrfs_validate_extent_buffer(struct extent_buffer *eb, |
| 359 | const struct btrfs_tree_parent_check *check) |
| 360 | { |
| 361 | struct btrfs_fs_info *fs_info = eb->fs_info; |
| 362 | u64 found_start; |
| 363 | const u32 csum_size = fs_info->csum_size; |
| 364 | u8 found_level; |
| 365 | u8 result[BTRFS_CSUM_SIZE]; |
| 366 | const u8 *header_csum; |
| 367 | int ret = 0; |
| 368 | const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); |
| 369 | |
| 370 | ASSERT(check); |
| 371 | |
| 372 | found_start = btrfs_header_bytenr(eb); |
| 373 | if (found_start != eb->start) { |
| 374 | btrfs_err_rl(fs_info, |
| 375 | "bad tree block start, mirror %u want %llu have %llu", |
| 376 | eb->read_mirror, eb->start, found_start); |
| 377 | ret = -EIO; |
| 378 | goto out; |
| 379 | } |
| 380 | if (check_tree_block_fsid(eb)) { |
| 381 | btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", |
| 382 | eb->start, eb->read_mirror); |
| 383 | ret = -EIO; |
| 384 | goto out; |
| 385 | } |
| 386 | found_level = btrfs_header_level(eb); |
| 387 | if (found_level >= BTRFS_MAX_LEVEL) { |
| 388 | btrfs_err(fs_info, |
| 389 | "bad tree block level, mirror %u level %d on logical %llu", |
| 390 | eb->read_mirror, btrfs_header_level(eb), eb->start); |
| 391 | ret = -EIO; |
| 392 | goto out; |
| 393 | } |
| 394 | |
| 395 | csum_tree_block(eb, result); |
| 396 | header_csum = folio_address(eb->folios[0]) + |
| 397 | get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); |
| 398 | |
| 399 | if (memcmp(result, header_csum, csum_size) != 0) { |
| 400 | btrfs_warn_rl(fs_info, |
| 401 | "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s", |
| 402 | eb->start, eb->read_mirror, |
| 403 | CSUM_FMT_VALUE(csum_size, header_csum), |
| 404 | CSUM_FMT_VALUE(csum_size, result), |
| 405 | btrfs_header_level(eb), |
| 406 | ignore_csum ? ", ignored" : ""); |
| 407 | if (!ignore_csum) { |
| 408 | ret = -EUCLEAN; |
| 409 | goto out; |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | if (found_level != check->level) { |
| 414 | btrfs_err(fs_info, |
| 415 | "level verify failed on logical %llu mirror %u wanted %u found %u", |
| 416 | eb->start, eb->read_mirror, check->level, found_level); |
| 417 | ret = -EIO; |
| 418 | goto out; |
| 419 | } |
| 420 | if (unlikely(check->transid && |
| 421 | btrfs_header_generation(eb) != check->transid)) { |
| 422 | btrfs_err_rl(eb->fs_info, |
| 423 | "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", |
| 424 | eb->start, eb->read_mirror, check->transid, |
| 425 | btrfs_header_generation(eb)); |
| 426 | ret = -EIO; |
| 427 | goto out; |
| 428 | } |
| 429 | if (check->has_first_key) { |
| 430 | const struct btrfs_key *expect_key = &check->first_key; |
| 431 | struct btrfs_key found_key; |
| 432 | |
| 433 | if (found_level) |
| 434 | btrfs_node_key_to_cpu(eb, &found_key, 0); |
| 435 | else |
| 436 | btrfs_item_key_to_cpu(eb, &found_key, 0); |
| 437 | if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { |
| 438 | btrfs_err(fs_info, |
| 439 | "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", |
| 440 | eb->start, check->transid, |
| 441 | expect_key->objectid, |
| 442 | expect_key->type, expect_key->offset, |
| 443 | found_key.objectid, found_key.type, |
| 444 | found_key.offset); |
| 445 | ret = -EUCLEAN; |
| 446 | goto out; |
| 447 | } |
| 448 | } |
| 449 | if (check->owner_root) { |
| 450 | ret = btrfs_check_eb_owner(eb, check->owner_root); |
| 451 | if (ret < 0) |
| 452 | goto out; |
| 453 | } |
| 454 | |
| 455 | /* If this is a leaf block and it is corrupt, just return -EIO. */ |
| 456 | if (found_level == 0 && btrfs_check_leaf(eb)) |
| 457 | ret = -EIO; |
| 458 | |
| 459 | if (found_level > 0 && btrfs_check_node(eb)) |
| 460 | ret = -EIO; |
| 461 | |
| 462 | if (ret) |
| 463 | btrfs_err(fs_info, |
| 464 | "read time tree block corruption detected on logical %llu mirror %u", |
| 465 | eb->start, eb->read_mirror); |
| 466 | out: |
| 467 | return ret; |
| 468 | } |
| 469 | |
| 470 | #ifdef CONFIG_MIGRATION |
| 471 | static int btree_migrate_folio(struct address_space *mapping, |
| 472 | struct folio *dst, struct folio *src, enum migrate_mode mode) |
| 473 | { |
| 474 | /* |
| 475 | * we can't safely write a btree page from here, |
| 476 | * we haven't done the locking hook |
| 477 | */ |
| 478 | if (folio_test_dirty(src)) |
| 479 | return -EAGAIN; |
| 480 | /* |
| 481 | * Buffers may be managed in a filesystem specific way. |
| 482 | * We must have no buffers or drop them. |
| 483 | */ |
| 484 | if (folio_get_private(src) && |
| 485 | !filemap_release_folio(src, GFP_KERNEL)) |
| 486 | return -EAGAIN; |
| 487 | return migrate_folio(mapping, dst, src, mode); |
| 488 | } |
| 489 | #else |
| 490 | #define btree_migrate_folio NULL |
| 491 | #endif |
| 492 | |
| 493 | static int btree_writepages(struct address_space *mapping, |
| 494 | struct writeback_control *wbc) |
| 495 | { |
| 496 | int ret; |
| 497 | |
| 498 | if (wbc->sync_mode == WB_SYNC_NONE) { |
| 499 | struct btrfs_fs_info *fs_info; |
| 500 | |
| 501 | if (wbc->for_kupdate) |
| 502 | return 0; |
| 503 | |
| 504 | fs_info = inode_to_fs_info(mapping->host); |
| 505 | /* this is a bit racy, but that's ok */ |
| 506 | ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, |
| 507 | BTRFS_DIRTY_METADATA_THRESH, |
| 508 | fs_info->dirty_metadata_batch); |
| 509 | if (ret < 0) |
| 510 | return 0; |
| 511 | } |
| 512 | return btree_write_cache_pages(mapping, wbc); |
| 513 | } |
| 514 | |
| 515 | static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) |
| 516 | { |
| 517 | if (folio_test_writeback(folio) || folio_test_dirty(folio)) |
| 518 | return false; |
| 519 | |
| 520 | return try_release_extent_buffer(folio); |
| 521 | } |
| 522 | |
| 523 | static void btree_invalidate_folio(struct folio *folio, size_t offset, |
| 524 | size_t length) |
| 525 | { |
| 526 | struct extent_io_tree *tree; |
| 527 | |
| 528 | tree = &folio_to_inode(folio)->io_tree; |
| 529 | extent_invalidate_folio(tree, folio, offset); |
| 530 | btree_release_folio(folio, GFP_NOFS); |
| 531 | if (folio_get_private(folio)) { |
| 532 | btrfs_warn(folio_to_fs_info(folio), |
| 533 | "folio private not zero on folio %llu", |
| 534 | (unsigned long long)folio_pos(folio)); |
| 535 | folio_detach_private(folio); |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | #ifdef DEBUG |
| 540 | static bool btree_dirty_folio(struct address_space *mapping, |
| 541 | struct folio *folio) |
| 542 | { |
| 543 | struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); |
| 544 | struct btrfs_subpage_info *spi = fs_info->subpage_info; |
| 545 | struct btrfs_subpage *subpage; |
| 546 | struct extent_buffer *eb; |
| 547 | int cur_bit = 0; |
| 548 | u64 page_start = folio_pos(folio); |
| 549 | |
| 550 | if (fs_info->sectorsize == PAGE_SIZE) { |
| 551 | eb = folio_get_private(folio); |
| 552 | BUG_ON(!eb); |
| 553 | BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); |
| 554 | BUG_ON(!atomic_read(&eb->refs)); |
| 555 | btrfs_assert_tree_write_locked(eb); |
| 556 | return filemap_dirty_folio(mapping, folio); |
| 557 | } |
| 558 | |
| 559 | ASSERT(spi); |
| 560 | subpage = folio_get_private(folio); |
| 561 | |
| 562 | for (cur_bit = spi->dirty_offset; |
| 563 | cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; |
| 564 | cur_bit++) { |
| 565 | unsigned long flags; |
| 566 | u64 cur; |
| 567 | |
| 568 | spin_lock_irqsave(&subpage->lock, flags); |
| 569 | if (!test_bit(cur_bit, subpage->bitmaps)) { |
| 570 | spin_unlock_irqrestore(&subpage->lock, flags); |
| 571 | continue; |
| 572 | } |
| 573 | spin_unlock_irqrestore(&subpage->lock, flags); |
| 574 | cur = page_start + cur_bit * fs_info->sectorsize; |
| 575 | |
| 576 | eb = find_extent_buffer(fs_info, cur); |
| 577 | ASSERT(eb); |
| 578 | ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); |
| 579 | ASSERT(atomic_read(&eb->refs)); |
| 580 | btrfs_assert_tree_write_locked(eb); |
| 581 | free_extent_buffer(eb); |
| 582 | |
| 583 | cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; |
| 584 | } |
| 585 | return filemap_dirty_folio(mapping, folio); |
| 586 | } |
| 587 | #else |
| 588 | #define btree_dirty_folio filemap_dirty_folio |
| 589 | #endif |
| 590 | |
| 591 | static const struct address_space_operations btree_aops = { |
| 592 | .writepages = btree_writepages, |
| 593 | .release_folio = btree_release_folio, |
| 594 | .invalidate_folio = btree_invalidate_folio, |
| 595 | .migrate_folio = btree_migrate_folio, |
| 596 | .dirty_folio = btree_dirty_folio, |
| 597 | }; |
| 598 | |
| 599 | struct extent_buffer *btrfs_find_create_tree_block( |
| 600 | struct btrfs_fs_info *fs_info, |
| 601 | u64 bytenr, u64 owner_root, |
| 602 | int level) |
| 603 | { |
| 604 | if (btrfs_is_testing(fs_info)) |
| 605 | return alloc_test_extent_buffer(fs_info, bytenr); |
| 606 | return alloc_extent_buffer(fs_info, bytenr, owner_root, level); |
| 607 | } |
| 608 | |
| 609 | /* |
| 610 | * Read tree block at logical address @bytenr and do variant basic but critical |
| 611 | * verification. |
| 612 | * |
| 613 | * @check: expected tree parentness check, see comments of the |
| 614 | * structure for details. |
| 615 | */ |
| 616 | struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, |
| 617 | struct btrfs_tree_parent_check *check) |
| 618 | { |
| 619 | struct extent_buffer *buf = NULL; |
| 620 | int ret; |
| 621 | |
| 622 | ASSERT(check); |
| 623 | |
| 624 | buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, |
| 625 | check->level); |
| 626 | if (IS_ERR(buf)) |
| 627 | return buf; |
| 628 | |
| 629 | ret = btrfs_read_extent_buffer(buf, check); |
| 630 | if (ret) { |
| 631 | free_extent_buffer_stale(buf); |
| 632 | return ERR_PTR(ret); |
| 633 | } |
| 634 | return buf; |
| 635 | |
| 636 | } |
| 637 | |
| 638 | static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, |
| 639 | u64 objectid, gfp_t flags) |
| 640 | { |
| 641 | struct btrfs_root *root; |
| 642 | bool dummy = btrfs_is_testing(fs_info); |
| 643 | |
| 644 | root = kzalloc(sizeof(*root), flags); |
| 645 | if (!root) |
| 646 | return NULL; |
| 647 | |
| 648 | memset(&root->root_key, 0, sizeof(root->root_key)); |
| 649 | memset(&root->root_item, 0, sizeof(root->root_item)); |
| 650 | memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); |
| 651 | root->fs_info = fs_info; |
| 652 | root->root_key.objectid = objectid; |
| 653 | root->node = NULL; |
| 654 | root->commit_root = NULL; |
| 655 | root->state = 0; |
| 656 | RB_CLEAR_NODE(&root->rb_node); |
| 657 | |
| 658 | btrfs_set_root_last_trans(root, 0); |
| 659 | root->free_objectid = 0; |
| 660 | root->nr_delalloc_inodes = 0; |
| 661 | root->nr_ordered_extents = 0; |
| 662 | xa_init(&root->inodes); |
| 663 | xa_init(&root->delayed_nodes); |
| 664 | |
| 665 | btrfs_init_root_block_rsv(root); |
| 666 | |
| 667 | INIT_LIST_HEAD(&root->dirty_list); |
| 668 | INIT_LIST_HEAD(&root->root_list); |
| 669 | INIT_LIST_HEAD(&root->delalloc_inodes); |
| 670 | INIT_LIST_HEAD(&root->delalloc_root); |
| 671 | INIT_LIST_HEAD(&root->ordered_extents); |
| 672 | INIT_LIST_HEAD(&root->ordered_root); |
| 673 | INIT_LIST_HEAD(&root->reloc_dirty_list); |
| 674 | spin_lock_init(&root->delalloc_lock); |
| 675 | spin_lock_init(&root->ordered_extent_lock); |
| 676 | spin_lock_init(&root->accounting_lock); |
| 677 | spin_lock_init(&root->qgroup_meta_rsv_lock); |
| 678 | mutex_init(&root->objectid_mutex); |
| 679 | mutex_init(&root->log_mutex); |
| 680 | mutex_init(&root->ordered_extent_mutex); |
| 681 | mutex_init(&root->delalloc_mutex); |
| 682 | init_waitqueue_head(&root->qgroup_flush_wait); |
| 683 | init_waitqueue_head(&root->log_writer_wait); |
| 684 | init_waitqueue_head(&root->log_commit_wait[0]); |
| 685 | init_waitqueue_head(&root->log_commit_wait[1]); |
| 686 | INIT_LIST_HEAD(&root->log_ctxs[0]); |
| 687 | INIT_LIST_HEAD(&root->log_ctxs[1]); |
| 688 | atomic_set(&root->log_commit[0], 0); |
| 689 | atomic_set(&root->log_commit[1], 0); |
| 690 | atomic_set(&root->log_writers, 0); |
| 691 | atomic_set(&root->log_batch, 0); |
| 692 | refcount_set(&root->refs, 1); |
| 693 | atomic_set(&root->snapshot_force_cow, 0); |
| 694 | atomic_set(&root->nr_swapfiles, 0); |
| 695 | btrfs_set_root_log_transid(root, 0); |
| 696 | root->log_transid_committed = -1; |
| 697 | btrfs_set_root_last_log_commit(root, 0); |
| 698 | root->anon_dev = 0; |
| 699 | if (!dummy) { |
| 700 | btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages, |
| 701 | IO_TREE_ROOT_DIRTY_LOG_PAGES); |
| 702 | btrfs_extent_io_tree_init(fs_info, &root->log_csum_range, |
| 703 | IO_TREE_LOG_CSUM_RANGE); |
| 704 | } |
| 705 | |
| 706 | spin_lock_init(&root->root_item_lock); |
| 707 | btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); |
| 708 | #ifdef CONFIG_BTRFS_DEBUG |
| 709 | INIT_LIST_HEAD(&root->leak_list); |
| 710 | spin_lock(&fs_info->fs_roots_radix_lock); |
| 711 | list_add_tail(&root->leak_list, &fs_info->allocated_roots); |
| 712 | spin_unlock(&fs_info->fs_roots_radix_lock); |
| 713 | #endif |
| 714 | |
| 715 | return root; |
| 716 | } |
| 717 | |
| 718 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| 719 | /* Should only be used by the testing infrastructure */ |
| 720 | struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) |
| 721 | { |
| 722 | struct btrfs_root *root; |
| 723 | |
| 724 | if (!fs_info) |
| 725 | return ERR_PTR(-EINVAL); |
| 726 | |
| 727 | root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); |
| 728 | if (!root) |
| 729 | return ERR_PTR(-ENOMEM); |
| 730 | |
| 731 | /* We don't use the stripesize in selftest, set it as sectorsize */ |
| 732 | root->alloc_bytenr = 0; |
| 733 | |
| 734 | return root; |
| 735 | } |
| 736 | #endif |
| 737 | |
| 738 | static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) |
| 739 | { |
| 740 | const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); |
| 741 | const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); |
| 742 | |
| 743 | return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); |
| 744 | } |
| 745 | |
| 746 | static int global_root_key_cmp(const void *k, const struct rb_node *node) |
| 747 | { |
| 748 | const struct btrfs_key *key = k; |
| 749 | const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); |
| 750 | |
| 751 | return btrfs_comp_cpu_keys(key, &root->root_key); |
| 752 | } |
| 753 | |
| 754 | int btrfs_global_root_insert(struct btrfs_root *root) |
| 755 | { |
| 756 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 757 | struct rb_node *tmp; |
| 758 | int ret = 0; |
| 759 | |
| 760 | write_lock(&fs_info->global_root_lock); |
| 761 | tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); |
| 762 | write_unlock(&fs_info->global_root_lock); |
| 763 | |
| 764 | if (tmp) { |
| 765 | ret = -EEXIST; |
| 766 | btrfs_warn(fs_info, "global root %llu %llu already exists", |
| 767 | btrfs_root_id(root), root->root_key.offset); |
| 768 | } |
| 769 | return ret; |
| 770 | } |
| 771 | |
| 772 | void btrfs_global_root_delete(struct btrfs_root *root) |
| 773 | { |
| 774 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 775 | |
| 776 | write_lock(&fs_info->global_root_lock); |
| 777 | rb_erase(&root->rb_node, &fs_info->global_root_tree); |
| 778 | write_unlock(&fs_info->global_root_lock); |
| 779 | } |
| 780 | |
| 781 | struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, |
| 782 | struct btrfs_key *key) |
| 783 | { |
| 784 | struct rb_node *node; |
| 785 | struct btrfs_root *root = NULL; |
| 786 | |
| 787 | read_lock(&fs_info->global_root_lock); |
| 788 | node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); |
| 789 | if (node) |
| 790 | root = container_of(node, struct btrfs_root, rb_node); |
| 791 | read_unlock(&fs_info->global_root_lock); |
| 792 | |
| 793 | return root; |
| 794 | } |
| 795 | |
| 796 | static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) |
| 797 | { |
| 798 | struct btrfs_block_group *block_group; |
| 799 | u64 ret; |
| 800 | |
| 801 | if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) |
| 802 | return 0; |
| 803 | |
| 804 | if (bytenr) |
| 805 | block_group = btrfs_lookup_block_group(fs_info, bytenr); |
| 806 | else |
| 807 | block_group = btrfs_lookup_first_block_group(fs_info, bytenr); |
| 808 | ASSERT(block_group); |
| 809 | if (!block_group) |
| 810 | return 0; |
| 811 | ret = block_group->global_root_id; |
| 812 | btrfs_put_block_group(block_group); |
| 813 | |
| 814 | return ret; |
| 815 | } |
| 816 | |
| 817 | struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) |
| 818 | { |
| 819 | struct btrfs_key key = { |
| 820 | .objectid = BTRFS_CSUM_TREE_OBJECTID, |
| 821 | .type = BTRFS_ROOT_ITEM_KEY, |
| 822 | .offset = btrfs_global_root_id(fs_info, bytenr), |
| 823 | }; |
| 824 | |
| 825 | return btrfs_global_root(fs_info, &key); |
| 826 | } |
| 827 | |
| 828 | struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) |
| 829 | { |
| 830 | struct btrfs_key key = { |
| 831 | .objectid = BTRFS_EXTENT_TREE_OBJECTID, |
| 832 | .type = BTRFS_ROOT_ITEM_KEY, |
| 833 | .offset = btrfs_global_root_id(fs_info, bytenr), |
| 834 | }; |
| 835 | |
| 836 | return btrfs_global_root(fs_info, &key); |
| 837 | } |
| 838 | |
| 839 | struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, |
| 840 | u64 objectid) |
| 841 | { |
| 842 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 843 | struct extent_buffer *leaf; |
| 844 | struct btrfs_root *tree_root = fs_info->tree_root; |
| 845 | struct btrfs_root *root; |
| 846 | struct btrfs_key key; |
| 847 | unsigned int nofs_flag; |
| 848 | int ret = 0; |
| 849 | |
| 850 | /* |
| 851 | * We're holding a transaction handle, so use a NOFS memory allocation |
| 852 | * context to avoid deadlock if reclaim happens. |
| 853 | */ |
| 854 | nofs_flag = memalloc_nofs_save(); |
| 855 | root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); |
| 856 | memalloc_nofs_restore(nofs_flag); |
| 857 | if (!root) |
| 858 | return ERR_PTR(-ENOMEM); |
| 859 | |
| 860 | root->root_key.objectid = objectid; |
| 861 | root->root_key.type = BTRFS_ROOT_ITEM_KEY; |
| 862 | root->root_key.offset = 0; |
| 863 | |
| 864 | leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, |
| 865 | 0, BTRFS_NESTING_NORMAL); |
| 866 | if (IS_ERR(leaf)) { |
| 867 | ret = PTR_ERR(leaf); |
| 868 | leaf = NULL; |
| 869 | goto fail; |
| 870 | } |
| 871 | |
| 872 | root->node = leaf; |
| 873 | btrfs_mark_buffer_dirty(trans, leaf); |
| 874 | |
| 875 | root->commit_root = btrfs_root_node(root); |
| 876 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 877 | |
| 878 | btrfs_set_root_flags(&root->root_item, 0); |
| 879 | btrfs_set_root_limit(&root->root_item, 0); |
| 880 | btrfs_set_root_bytenr(&root->root_item, leaf->start); |
| 881 | btrfs_set_root_generation(&root->root_item, trans->transid); |
| 882 | btrfs_set_root_level(&root->root_item, 0); |
| 883 | btrfs_set_root_refs(&root->root_item, 1); |
| 884 | btrfs_set_root_used(&root->root_item, leaf->len); |
| 885 | btrfs_set_root_last_snapshot(&root->root_item, 0); |
| 886 | btrfs_set_root_dirid(&root->root_item, 0); |
| 887 | if (is_fstree(objectid)) |
| 888 | generate_random_guid(root->root_item.uuid); |
| 889 | else |
| 890 | export_guid(root->root_item.uuid, &guid_null); |
| 891 | btrfs_set_root_drop_level(&root->root_item, 0); |
| 892 | |
| 893 | btrfs_tree_unlock(leaf); |
| 894 | |
| 895 | key.objectid = objectid; |
| 896 | key.type = BTRFS_ROOT_ITEM_KEY; |
| 897 | key.offset = 0; |
| 898 | ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); |
| 899 | if (ret) |
| 900 | goto fail; |
| 901 | |
| 902 | return root; |
| 903 | |
| 904 | fail: |
| 905 | btrfs_put_root(root); |
| 906 | |
| 907 | return ERR_PTR(ret); |
| 908 | } |
| 909 | |
| 910 | static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info) |
| 911 | { |
| 912 | struct btrfs_root *root; |
| 913 | |
| 914 | root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); |
| 915 | if (!root) |
| 916 | return ERR_PTR(-ENOMEM); |
| 917 | |
| 918 | root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; |
| 919 | root->root_key.type = BTRFS_ROOT_ITEM_KEY; |
| 920 | root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; |
| 921 | |
| 922 | return root; |
| 923 | } |
| 924 | |
| 925 | int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, |
| 926 | struct btrfs_root *root) |
| 927 | { |
| 928 | struct extent_buffer *leaf; |
| 929 | |
| 930 | /* |
| 931 | * DON'T set SHAREABLE bit for log trees. |
| 932 | * |
| 933 | * Log trees are not exposed to user space thus can't be snapshotted, |
| 934 | * and they go away before a real commit is actually done. |
| 935 | * |
| 936 | * They do store pointers to file data extents, and those reference |
| 937 | * counts still get updated (along with back refs to the log tree). |
| 938 | */ |
| 939 | |
| 940 | leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, |
| 941 | NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); |
| 942 | if (IS_ERR(leaf)) |
| 943 | return PTR_ERR(leaf); |
| 944 | |
| 945 | root->node = leaf; |
| 946 | |
| 947 | btrfs_mark_buffer_dirty(trans, root->node); |
| 948 | btrfs_tree_unlock(root->node); |
| 949 | |
| 950 | return 0; |
| 951 | } |
| 952 | |
| 953 | int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, |
| 954 | struct btrfs_fs_info *fs_info) |
| 955 | { |
| 956 | struct btrfs_root *log_root; |
| 957 | |
| 958 | log_root = alloc_log_tree(fs_info); |
| 959 | if (IS_ERR(log_root)) |
| 960 | return PTR_ERR(log_root); |
| 961 | |
| 962 | if (!btrfs_is_zoned(fs_info)) { |
| 963 | int ret = btrfs_alloc_log_tree_node(trans, log_root); |
| 964 | |
| 965 | if (ret) { |
| 966 | btrfs_put_root(log_root); |
| 967 | return ret; |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | WARN_ON(fs_info->log_root_tree); |
| 972 | fs_info->log_root_tree = log_root; |
| 973 | return 0; |
| 974 | } |
| 975 | |
| 976 | int btrfs_add_log_tree(struct btrfs_trans_handle *trans, |
| 977 | struct btrfs_root *root) |
| 978 | { |
| 979 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 980 | struct btrfs_root *log_root; |
| 981 | struct btrfs_inode_item *inode_item; |
| 982 | int ret; |
| 983 | |
| 984 | log_root = alloc_log_tree(fs_info); |
| 985 | if (IS_ERR(log_root)) |
| 986 | return PTR_ERR(log_root); |
| 987 | |
| 988 | ret = btrfs_alloc_log_tree_node(trans, log_root); |
| 989 | if (ret) { |
| 990 | btrfs_put_root(log_root); |
| 991 | return ret; |
| 992 | } |
| 993 | |
| 994 | btrfs_set_root_last_trans(log_root, trans->transid); |
| 995 | log_root->root_key.offset = btrfs_root_id(root); |
| 996 | |
| 997 | inode_item = &log_root->root_item.inode; |
| 998 | btrfs_set_stack_inode_generation(inode_item, 1); |
| 999 | btrfs_set_stack_inode_size(inode_item, 3); |
| 1000 | btrfs_set_stack_inode_nlink(inode_item, 1); |
| 1001 | btrfs_set_stack_inode_nbytes(inode_item, |
| 1002 | fs_info->nodesize); |
| 1003 | btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); |
| 1004 | |
| 1005 | btrfs_set_root_node(&log_root->root_item, log_root->node); |
| 1006 | |
| 1007 | WARN_ON(root->log_root); |
| 1008 | root->log_root = log_root; |
| 1009 | btrfs_set_root_log_transid(root, 0); |
| 1010 | root->log_transid_committed = -1; |
| 1011 | btrfs_set_root_last_log_commit(root, 0); |
| 1012 | return 0; |
| 1013 | } |
| 1014 | |
| 1015 | static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, |
| 1016 | struct btrfs_path *path, |
| 1017 | const struct btrfs_key *key) |
| 1018 | { |
| 1019 | struct btrfs_root *root; |
| 1020 | struct btrfs_tree_parent_check check = { 0 }; |
| 1021 | struct btrfs_fs_info *fs_info = tree_root->fs_info; |
| 1022 | u64 generation; |
| 1023 | int ret; |
| 1024 | int level; |
| 1025 | |
| 1026 | root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); |
| 1027 | if (!root) |
| 1028 | return ERR_PTR(-ENOMEM); |
| 1029 | |
| 1030 | ret = btrfs_find_root(tree_root, key, path, |
| 1031 | &root->root_item, &root->root_key); |
| 1032 | if (ret) { |
| 1033 | if (ret > 0) |
| 1034 | ret = -ENOENT; |
| 1035 | goto fail; |
| 1036 | } |
| 1037 | |
| 1038 | generation = btrfs_root_generation(&root->root_item); |
| 1039 | level = btrfs_root_level(&root->root_item); |
| 1040 | check.level = level; |
| 1041 | check.transid = generation; |
| 1042 | check.owner_root = key->objectid; |
| 1043 | root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), |
| 1044 | &check); |
| 1045 | if (IS_ERR(root->node)) { |
| 1046 | ret = PTR_ERR(root->node); |
| 1047 | root->node = NULL; |
| 1048 | goto fail; |
| 1049 | } |
| 1050 | if (!btrfs_buffer_uptodate(root->node, generation, 0)) { |
| 1051 | ret = -EIO; |
| 1052 | goto fail; |
| 1053 | } |
| 1054 | |
| 1055 | /* |
| 1056 | * For real fs, and not log/reloc trees, root owner must |
| 1057 | * match its root node owner |
| 1058 | */ |
| 1059 | if (!btrfs_is_testing(fs_info) && |
| 1060 | btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && |
| 1061 | btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && |
| 1062 | btrfs_root_id(root) != btrfs_header_owner(root->node)) { |
| 1063 | btrfs_crit(fs_info, |
| 1064 | "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", |
| 1065 | btrfs_root_id(root), root->node->start, |
| 1066 | btrfs_header_owner(root->node), |
| 1067 | btrfs_root_id(root)); |
| 1068 | ret = -EUCLEAN; |
| 1069 | goto fail; |
| 1070 | } |
| 1071 | root->commit_root = btrfs_root_node(root); |
| 1072 | return root; |
| 1073 | fail: |
| 1074 | btrfs_put_root(root); |
| 1075 | return ERR_PTR(ret); |
| 1076 | } |
| 1077 | |
| 1078 | struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, |
| 1079 | const struct btrfs_key *key) |
| 1080 | { |
| 1081 | struct btrfs_root *root; |
| 1082 | BTRFS_PATH_AUTO_FREE(path); |
| 1083 | |
| 1084 | path = btrfs_alloc_path(); |
| 1085 | if (!path) |
| 1086 | return ERR_PTR(-ENOMEM); |
| 1087 | root = read_tree_root_path(tree_root, path, key); |
| 1088 | |
| 1089 | return root; |
| 1090 | } |
| 1091 | |
| 1092 | /* |
| 1093 | * Initialize subvolume root in-memory structure. |
| 1094 | * |
| 1095 | * @anon_dev: anonymous device to attach to the root, if zero, allocate new |
| 1096 | * |
| 1097 | * In case of failure the caller is responsible to call btrfs_free_fs_root() |
| 1098 | */ |
| 1099 | static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) |
| 1100 | { |
| 1101 | int ret; |
| 1102 | |
| 1103 | btrfs_drew_lock_init(&root->snapshot_lock); |
| 1104 | |
| 1105 | if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && |
| 1106 | !btrfs_is_data_reloc_root(root) && |
| 1107 | is_fstree(btrfs_root_id(root))) { |
| 1108 | set_bit(BTRFS_ROOT_SHAREABLE, &root->state); |
| 1109 | btrfs_check_and_init_root_item(&root->root_item); |
| 1110 | } |
| 1111 | |
| 1112 | /* |
| 1113 | * Don't assign anonymous block device to roots that are not exposed to |
| 1114 | * userspace, the id pool is limited to 1M |
| 1115 | */ |
| 1116 | if (is_fstree(btrfs_root_id(root)) && |
| 1117 | btrfs_root_refs(&root->root_item) > 0) { |
| 1118 | if (!anon_dev) { |
| 1119 | ret = get_anon_bdev(&root->anon_dev); |
| 1120 | if (ret) |
| 1121 | return ret; |
| 1122 | } else { |
| 1123 | root->anon_dev = anon_dev; |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | mutex_lock(&root->objectid_mutex); |
| 1128 | ret = btrfs_init_root_free_objectid(root); |
| 1129 | if (ret) { |
| 1130 | mutex_unlock(&root->objectid_mutex); |
| 1131 | return ret; |
| 1132 | } |
| 1133 | |
| 1134 | ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); |
| 1135 | |
| 1136 | mutex_unlock(&root->objectid_mutex); |
| 1137 | |
| 1138 | return 0; |
| 1139 | } |
| 1140 | |
| 1141 | static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, |
| 1142 | u64 root_id) |
| 1143 | { |
| 1144 | struct btrfs_root *root; |
| 1145 | |
| 1146 | spin_lock(&fs_info->fs_roots_radix_lock); |
| 1147 | root = radix_tree_lookup(&fs_info->fs_roots_radix, |
| 1148 | (unsigned long)root_id); |
| 1149 | root = btrfs_grab_root(root); |
| 1150 | spin_unlock(&fs_info->fs_roots_radix_lock); |
| 1151 | return root; |
| 1152 | } |
| 1153 | |
| 1154 | static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, |
| 1155 | u64 objectid) |
| 1156 | { |
| 1157 | struct btrfs_key key = { |
| 1158 | .objectid = objectid, |
| 1159 | .type = BTRFS_ROOT_ITEM_KEY, |
| 1160 | .offset = 0, |
| 1161 | }; |
| 1162 | |
| 1163 | switch (objectid) { |
| 1164 | case BTRFS_ROOT_TREE_OBJECTID: |
| 1165 | return btrfs_grab_root(fs_info->tree_root); |
| 1166 | case BTRFS_EXTENT_TREE_OBJECTID: |
| 1167 | return btrfs_grab_root(btrfs_global_root(fs_info, &key)); |
| 1168 | case BTRFS_CHUNK_TREE_OBJECTID: |
| 1169 | return btrfs_grab_root(fs_info->chunk_root); |
| 1170 | case BTRFS_DEV_TREE_OBJECTID: |
| 1171 | return btrfs_grab_root(fs_info->dev_root); |
| 1172 | case BTRFS_CSUM_TREE_OBJECTID: |
| 1173 | return btrfs_grab_root(btrfs_global_root(fs_info, &key)); |
| 1174 | case BTRFS_QUOTA_TREE_OBJECTID: |
| 1175 | return btrfs_grab_root(fs_info->quota_root); |
| 1176 | case BTRFS_UUID_TREE_OBJECTID: |
| 1177 | return btrfs_grab_root(fs_info->uuid_root); |
| 1178 | case BTRFS_BLOCK_GROUP_TREE_OBJECTID: |
| 1179 | return btrfs_grab_root(fs_info->block_group_root); |
| 1180 | case BTRFS_FREE_SPACE_TREE_OBJECTID: |
| 1181 | return btrfs_grab_root(btrfs_global_root(fs_info, &key)); |
| 1182 | case BTRFS_RAID_STRIPE_TREE_OBJECTID: |
| 1183 | return btrfs_grab_root(fs_info->stripe_root); |
| 1184 | default: |
| 1185 | return NULL; |
| 1186 | } |
| 1187 | } |
| 1188 | |
| 1189 | int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, |
| 1190 | struct btrfs_root *root) |
| 1191 | { |
| 1192 | int ret; |
| 1193 | |
| 1194 | ret = radix_tree_preload(GFP_NOFS); |
| 1195 | if (ret) |
| 1196 | return ret; |
| 1197 | |
| 1198 | spin_lock(&fs_info->fs_roots_radix_lock); |
| 1199 | ret = radix_tree_insert(&fs_info->fs_roots_radix, |
| 1200 | (unsigned long)btrfs_root_id(root), |
| 1201 | root); |
| 1202 | if (ret == 0) { |
| 1203 | btrfs_grab_root(root); |
| 1204 | set_bit(BTRFS_ROOT_IN_RADIX, &root->state); |
| 1205 | } |
| 1206 | spin_unlock(&fs_info->fs_roots_radix_lock); |
| 1207 | radix_tree_preload_end(); |
| 1208 | |
| 1209 | return ret; |
| 1210 | } |
| 1211 | |
| 1212 | void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) |
| 1213 | { |
| 1214 | #ifdef CONFIG_BTRFS_DEBUG |
| 1215 | struct btrfs_root *root; |
| 1216 | |
| 1217 | while (!list_empty(&fs_info->allocated_roots)) { |
| 1218 | char buf[BTRFS_ROOT_NAME_BUF_LEN]; |
| 1219 | |
| 1220 | root = list_first_entry(&fs_info->allocated_roots, |
| 1221 | struct btrfs_root, leak_list); |
| 1222 | btrfs_err(fs_info, "leaked root %s refcount %d", |
| 1223 | btrfs_root_name(&root->root_key, buf), |
| 1224 | refcount_read(&root->refs)); |
| 1225 | WARN_ON_ONCE(1); |
| 1226 | while (refcount_read(&root->refs) > 1) |
| 1227 | btrfs_put_root(root); |
| 1228 | btrfs_put_root(root); |
| 1229 | } |
| 1230 | #endif |
| 1231 | } |
| 1232 | |
| 1233 | static void free_global_roots(struct btrfs_fs_info *fs_info) |
| 1234 | { |
| 1235 | struct btrfs_root *root; |
| 1236 | struct rb_node *node; |
| 1237 | |
| 1238 | while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { |
| 1239 | root = rb_entry(node, struct btrfs_root, rb_node); |
| 1240 | rb_erase(&root->rb_node, &fs_info->global_root_tree); |
| 1241 | btrfs_put_root(root); |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) |
| 1246 | { |
| 1247 | struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; |
| 1248 | |
| 1249 | percpu_counter_destroy(&fs_info->stats_read_blocks); |
| 1250 | percpu_counter_destroy(&fs_info->dirty_metadata_bytes); |
| 1251 | percpu_counter_destroy(&fs_info->delalloc_bytes); |
| 1252 | percpu_counter_destroy(&fs_info->ordered_bytes); |
| 1253 | if (percpu_counter_initialized(em_counter)) |
| 1254 | ASSERT(percpu_counter_sum_positive(em_counter) == 0); |
| 1255 | percpu_counter_destroy(em_counter); |
| 1256 | percpu_counter_destroy(&fs_info->dev_replace.bio_counter); |
| 1257 | btrfs_free_csum_hash(fs_info); |
| 1258 | btrfs_free_stripe_hash_table(fs_info); |
| 1259 | btrfs_free_ref_cache(fs_info); |
| 1260 | kfree(fs_info->balance_ctl); |
| 1261 | kfree(fs_info->delayed_root); |
| 1262 | free_global_roots(fs_info); |
| 1263 | btrfs_put_root(fs_info->tree_root); |
| 1264 | btrfs_put_root(fs_info->chunk_root); |
| 1265 | btrfs_put_root(fs_info->dev_root); |
| 1266 | btrfs_put_root(fs_info->quota_root); |
| 1267 | btrfs_put_root(fs_info->uuid_root); |
| 1268 | btrfs_put_root(fs_info->fs_root); |
| 1269 | btrfs_put_root(fs_info->data_reloc_root); |
| 1270 | btrfs_put_root(fs_info->block_group_root); |
| 1271 | btrfs_put_root(fs_info->stripe_root); |
| 1272 | btrfs_check_leaked_roots(fs_info); |
| 1273 | btrfs_extent_buffer_leak_debug_check(fs_info); |
| 1274 | kfree(fs_info->super_copy); |
| 1275 | kfree(fs_info->super_for_commit); |
| 1276 | kvfree(fs_info); |
| 1277 | } |
| 1278 | |
| 1279 | |
| 1280 | /* |
| 1281 | * Get an in-memory reference of a root structure. |
| 1282 | * |
| 1283 | * For essential trees like root/extent tree, we grab it from fs_info directly. |
| 1284 | * For subvolume trees, we check the cached filesystem roots first. If not |
| 1285 | * found, then read it from disk and add it to cached fs roots. |
| 1286 | * |
| 1287 | * Caller should release the root by calling btrfs_put_root() after the usage. |
| 1288 | * |
| 1289 | * NOTE: Reloc and log trees can't be read by this function as they share the |
| 1290 | * same root objectid. |
| 1291 | * |
| 1292 | * @objectid: root id |
| 1293 | * @anon_dev: preallocated anonymous block device number for new roots, |
| 1294 | * pass NULL for a new allocation. |
| 1295 | * @check_ref: whether to check root item references, If true, return -ENOENT |
| 1296 | * for orphan roots |
| 1297 | */ |
| 1298 | static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, |
| 1299 | u64 objectid, dev_t *anon_dev, |
| 1300 | bool check_ref) |
| 1301 | { |
| 1302 | struct btrfs_root *root; |
| 1303 | struct btrfs_path *path; |
| 1304 | struct btrfs_key key; |
| 1305 | int ret; |
| 1306 | |
| 1307 | root = btrfs_get_global_root(fs_info, objectid); |
| 1308 | if (root) |
| 1309 | return root; |
| 1310 | |
| 1311 | /* |
| 1312 | * If we're called for non-subvolume trees, and above function didn't |
| 1313 | * find one, do not try to read it from disk. |
| 1314 | * |
| 1315 | * This is namely for free-space-tree and quota tree, which can change |
| 1316 | * at runtime and should only be grabbed from fs_info. |
| 1317 | */ |
| 1318 | if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) |
| 1319 | return ERR_PTR(-ENOENT); |
| 1320 | again: |
| 1321 | root = btrfs_lookup_fs_root(fs_info, objectid); |
| 1322 | if (root) { |
| 1323 | /* |
| 1324 | * Some other caller may have read out the newly inserted |
| 1325 | * subvolume already (for things like backref walk etc). Not |
| 1326 | * that common but still possible. In that case, we just need |
| 1327 | * to free the anon_dev. |
| 1328 | */ |
| 1329 | if (unlikely(anon_dev && *anon_dev)) { |
| 1330 | free_anon_bdev(*anon_dev); |
| 1331 | *anon_dev = 0; |
| 1332 | } |
| 1333 | |
| 1334 | if (check_ref && btrfs_root_refs(&root->root_item) == 0) { |
| 1335 | btrfs_put_root(root); |
| 1336 | return ERR_PTR(-ENOENT); |
| 1337 | } |
| 1338 | return root; |
| 1339 | } |
| 1340 | |
| 1341 | key.objectid = objectid; |
| 1342 | key.type = BTRFS_ROOT_ITEM_KEY; |
| 1343 | key.offset = (u64)-1; |
| 1344 | root = btrfs_read_tree_root(fs_info->tree_root, &key); |
| 1345 | if (IS_ERR(root)) |
| 1346 | return root; |
| 1347 | |
| 1348 | if (check_ref && btrfs_root_refs(&root->root_item) == 0) { |
| 1349 | ret = -ENOENT; |
| 1350 | goto fail; |
| 1351 | } |
| 1352 | |
| 1353 | ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); |
| 1354 | if (ret) |
| 1355 | goto fail; |
| 1356 | |
| 1357 | path = btrfs_alloc_path(); |
| 1358 | if (!path) { |
| 1359 | ret = -ENOMEM; |
| 1360 | goto fail; |
| 1361 | } |
| 1362 | key.objectid = BTRFS_ORPHAN_OBJECTID; |
| 1363 | key.type = BTRFS_ORPHAN_ITEM_KEY; |
| 1364 | key.offset = objectid; |
| 1365 | |
| 1366 | ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); |
| 1367 | btrfs_free_path(path); |
| 1368 | if (ret < 0) |
| 1369 | goto fail; |
| 1370 | if (ret == 0) |
| 1371 | set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); |
| 1372 | |
| 1373 | ret = btrfs_insert_fs_root(fs_info, root); |
| 1374 | if (ret) { |
| 1375 | if (ret == -EEXIST) { |
| 1376 | btrfs_put_root(root); |
| 1377 | goto again; |
| 1378 | } |
| 1379 | goto fail; |
| 1380 | } |
| 1381 | return root; |
| 1382 | fail: |
| 1383 | /* |
| 1384 | * If our caller provided us an anonymous device, then it's his |
| 1385 | * responsibility to free it in case we fail. So we have to set our |
| 1386 | * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() |
| 1387 | * and once again by our caller. |
| 1388 | */ |
| 1389 | if (anon_dev && *anon_dev) |
| 1390 | root->anon_dev = 0; |
| 1391 | btrfs_put_root(root); |
| 1392 | return ERR_PTR(ret); |
| 1393 | } |
| 1394 | |
| 1395 | /* |
| 1396 | * Get in-memory reference of a root structure |
| 1397 | * |
| 1398 | * @objectid: tree objectid |
| 1399 | * @check_ref: if set, verify that the tree exists and the item has at least |
| 1400 | * one reference |
| 1401 | */ |
| 1402 | struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, |
| 1403 | u64 objectid, bool check_ref) |
| 1404 | { |
| 1405 | return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); |
| 1406 | } |
| 1407 | |
| 1408 | /* |
| 1409 | * Get in-memory reference of a root structure, created as new, optionally pass |
| 1410 | * the anonymous block device id |
| 1411 | * |
| 1412 | * @objectid: tree objectid |
| 1413 | * @anon_dev: if NULL, allocate a new anonymous block device or use the |
| 1414 | * parameter value if not NULL |
| 1415 | */ |
| 1416 | struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, |
| 1417 | u64 objectid, dev_t *anon_dev) |
| 1418 | { |
| 1419 | return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); |
| 1420 | } |
| 1421 | |
| 1422 | /* |
| 1423 | * Return a root for the given objectid. |
| 1424 | * |
| 1425 | * @fs_info: the fs_info |
| 1426 | * @objectid: the objectid we need to lookup |
| 1427 | * |
| 1428 | * This is exclusively used for backref walking, and exists specifically because |
| 1429 | * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref |
| 1430 | * creation time, which means we may have to read the tree_root in order to look |
| 1431 | * up a fs root that is not in memory. If the root is not in memory we will |
| 1432 | * read the tree root commit root and look up the fs root from there. This is a |
| 1433 | * temporary root, it will not be inserted into the radix tree as it doesn't |
| 1434 | * have the most uptodate information, it'll simply be discarded once the |
| 1435 | * backref code is finished using the root. |
| 1436 | */ |
| 1437 | struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, |
| 1438 | struct btrfs_path *path, |
| 1439 | u64 objectid) |
| 1440 | { |
| 1441 | struct btrfs_root *root; |
| 1442 | struct btrfs_key key; |
| 1443 | |
| 1444 | ASSERT(path->search_commit_root && path->skip_locking); |
| 1445 | |
| 1446 | /* |
| 1447 | * This can return -ENOENT if we ask for a root that doesn't exist, but |
| 1448 | * since this is called via the backref walking code we won't be looking |
| 1449 | * up a root that doesn't exist, unless there's corruption. So if root |
| 1450 | * != NULL just return it. |
| 1451 | */ |
| 1452 | root = btrfs_get_global_root(fs_info, objectid); |
| 1453 | if (root) |
| 1454 | return root; |
| 1455 | |
| 1456 | root = btrfs_lookup_fs_root(fs_info, objectid); |
| 1457 | if (root) |
| 1458 | return root; |
| 1459 | |
| 1460 | key.objectid = objectid; |
| 1461 | key.type = BTRFS_ROOT_ITEM_KEY; |
| 1462 | key.offset = (u64)-1; |
| 1463 | root = read_tree_root_path(fs_info->tree_root, path, &key); |
| 1464 | btrfs_release_path(path); |
| 1465 | |
| 1466 | return root; |
| 1467 | } |
| 1468 | |
| 1469 | static int cleaner_kthread(void *arg) |
| 1470 | { |
| 1471 | struct btrfs_fs_info *fs_info = arg; |
| 1472 | int again; |
| 1473 | |
| 1474 | while (1) { |
| 1475 | again = 0; |
| 1476 | |
| 1477 | set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); |
| 1478 | |
| 1479 | /* Make the cleaner go to sleep early. */ |
| 1480 | if (btrfs_need_cleaner_sleep(fs_info)) |
| 1481 | goto sleep; |
| 1482 | |
| 1483 | /* |
| 1484 | * Do not do anything if we might cause open_ctree() to block |
| 1485 | * before we have finished mounting the filesystem. |
| 1486 | */ |
| 1487 | if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) |
| 1488 | goto sleep; |
| 1489 | |
| 1490 | if (!mutex_trylock(&fs_info->cleaner_mutex)) |
| 1491 | goto sleep; |
| 1492 | |
| 1493 | /* |
| 1494 | * Avoid the problem that we change the status of the fs |
| 1495 | * during the above check and trylock. |
| 1496 | */ |
| 1497 | if (btrfs_need_cleaner_sleep(fs_info)) { |
| 1498 | mutex_unlock(&fs_info->cleaner_mutex); |
| 1499 | goto sleep; |
| 1500 | } |
| 1501 | |
| 1502 | if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) |
| 1503 | btrfs_sysfs_feature_update(fs_info); |
| 1504 | |
| 1505 | btrfs_run_delayed_iputs(fs_info); |
| 1506 | |
| 1507 | again = btrfs_clean_one_deleted_snapshot(fs_info); |
| 1508 | mutex_unlock(&fs_info->cleaner_mutex); |
| 1509 | |
| 1510 | /* |
| 1511 | * The defragger has dealt with the R/O remount and umount, |
| 1512 | * needn't do anything special here. |
| 1513 | */ |
| 1514 | btrfs_run_defrag_inodes(fs_info); |
| 1515 | |
| 1516 | /* |
| 1517 | * Acquires fs_info->reclaim_bgs_lock to avoid racing |
| 1518 | * with relocation (btrfs_relocate_chunk) and relocation |
| 1519 | * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) |
| 1520 | * after acquiring fs_info->reclaim_bgs_lock. So we |
| 1521 | * can't hold, nor need to, fs_info->cleaner_mutex when deleting |
| 1522 | * unused block groups. |
| 1523 | */ |
| 1524 | btrfs_delete_unused_bgs(fs_info); |
| 1525 | |
| 1526 | /* |
| 1527 | * Reclaim block groups in the reclaim_bgs list after we deleted |
| 1528 | * all unused block_groups. This possibly gives us some more free |
| 1529 | * space. |
| 1530 | */ |
| 1531 | btrfs_reclaim_bgs(fs_info); |
| 1532 | sleep: |
| 1533 | clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); |
| 1534 | if (kthread_should_park()) |
| 1535 | kthread_parkme(); |
| 1536 | if (kthread_should_stop()) |
| 1537 | return 0; |
| 1538 | if (!again) { |
| 1539 | set_current_state(TASK_INTERRUPTIBLE); |
| 1540 | schedule(); |
| 1541 | __set_current_state(TASK_RUNNING); |
| 1542 | } |
| 1543 | } |
| 1544 | } |
| 1545 | |
| 1546 | static int transaction_kthread(void *arg) |
| 1547 | { |
| 1548 | struct btrfs_root *root = arg; |
| 1549 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 1550 | struct btrfs_trans_handle *trans; |
| 1551 | struct btrfs_transaction *cur; |
| 1552 | u64 transid; |
| 1553 | time64_t delta; |
| 1554 | unsigned long delay; |
| 1555 | bool cannot_commit; |
| 1556 | |
| 1557 | do { |
| 1558 | cannot_commit = false; |
| 1559 | delay = secs_to_jiffies(fs_info->commit_interval); |
| 1560 | mutex_lock(&fs_info->transaction_kthread_mutex); |
| 1561 | |
| 1562 | spin_lock(&fs_info->trans_lock); |
| 1563 | cur = fs_info->running_transaction; |
| 1564 | if (!cur) { |
| 1565 | spin_unlock(&fs_info->trans_lock); |
| 1566 | goto sleep; |
| 1567 | } |
| 1568 | |
| 1569 | delta = ktime_get_seconds() - cur->start_time; |
| 1570 | if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && |
| 1571 | cur->state < TRANS_STATE_COMMIT_PREP && |
| 1572 | delta < fs_info->commit_interval) { |
| 1573 | spin_unlock(&fs_info->trans_lock); |
| 1574 | delay -= secs_to_jiffies(delta - 1); |
| 1575 | delay = min(delay, |
| 1576 | secs_to_jiffies(fs_info->commit_interval)); |
| 1577 | goto sleep; |
| 1578 | } |
| 1579 | transid = cur->transid; |
| 1580 | spin_unlock(&fs_info->trans_lock); |
| 1581 | |
| 1582 | /* If the file system is aborted, this will always fail. */ |
| 1583 | trans = btrfs_attach_transaction(root); |
| 1584 | if (IS_ERR(trans)) { |
| 1585 | if (PTR_ERR(trans) != -ENOENT) |
| 1586 | cannot_commit = true; |
| 1587 | goto sleep; |
| 1588 | } |
| 1589 | if (transid == trans->transid) { |
| 1590 | btrfs_commit_transaction(trans); |
| 1591 | } else { |
| 1592 | btrfs_end_transaction(trans); |
| 1593 | } |
| 1594 | sleep: |
| 1595 | wake_up_process(fs_info->cleaner_kthread); |
| 1596 | mutex_unlock(&fs_info->transaction_kthread_mutex); |
| 1597 | |
| 1598 | if (BTRFS_FS_ERROR(fs_info)) |
| 1599 | btrfs_cleanup_transaction(fs_info); |
| 1600 | if (!kthread_should_stop() && |
| 1601 | (!btrfs_transaction_blocked(fs_info) || |
| 1602 | cannot_commit)) |
| 1603 | schedule_timeout_interruptible(delay); |
| 1604 | } while (!kthread_should_stop()); |
| 1605 | return 0; |
| 1606 | } |
| 1607 | |
| 1608 | /* |
| 1609 | * This will find the highest generation in the array of root backups. The |
| 1610 | * index of the highest array is returned, or -EINVAL if we can't find |
| 1611 | * anything. |
| 1612 | * |
| 1613 | * We check to make sure the array is valid by comparing the |
| 1614 | * generation of the latest root in the array with the generation |
| 1615 | * in the super block. If they don't match we pitch it. |
| 1616 | */ |
| 1617 | static int find_newest_super_backup(struct btrfs_fs_info *info) |
| 1618 | { |
| 1619 | const u64 newest_gen = btrfs_super_generation(info->super_copy); |
| 1620 | u64 cur; |
| 1621 | struct btrfs_root_backup *root_backup; |
| 1622 | int i; |
| 1623 | |
| 1624 | for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { |
| 1625 | root_backup = info->super_copy->super_roots + i; |
| 1626 | cur = btrfs_backup_tree_root_gen(root_backup); |
| 1627 | if (cur == newest_gen) |
| 1628 | return i; |
| 1629 | } |
| 1630 | |
| 1631 | return -EINVAL; |
| 1632 | } |
| 1633 | |
| 1634 | /* |
| 1635 | * copy all the root pointers into the super backup array. |
| 1636 | * this will bump the backup pointer by one when it is |
| 1637 | * done |
| 1638 | */ |
| 1639 | static void backup_super_roots(struct btrfs_fs_info *info) |
| 1640 | { |
| 1641 | const int next_backup = info->backup_root_index; |
| 1642 | struct btrfs_root_backup *root_backup; |
| 1643 | |
| 1644 | root_backup = info->super_for_commit->super_roots + next_backup; |
| 1645 | |
| 1646 | /* |
| 1647 | * make sure all of our padding and empty slots get zero filled |
| 1648 | * regardless of which ones we use today |
| 1649 | */ |
| 1650 | memset(root_backup, 0, sizeof(*root_backup)); |
| 1651 | |
| 1652 | info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; |
| 1653 | |
| 1654 | btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); |
| 1655 | btrfs_set_backup_tree_root_gen(root_backup, |
| 1656 | btrfs_header_generation(info->tree_root->node)); |
| 1657 | |
| 1658 | btrfs_set_backup_tree_root_level(root_backup, |
| 1659 | btrfs_header_level(info->tree_root->node)); |
| 1660 | |
| 1661 | btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); |
| 1662 | btrfs_set_backup_chunk_root_gen(root_backup, |
| 1663 | btrfs_header_generation(info->chunk_root->node)); |
| 1664 | btrfs_set_backup_chunk_root_level(root_backup, |
| 1665 | btrfs_header_level(info->chunk_root->node)); |
| 1666 | |
| 1667 | if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { |
| 1668 | struct btrfs_root *extent_root = btrfs_extent_root(info, 0); |
| 1669 | struct btrfs_root *csum_root = btrfs_csum_root(info, 0); |
| 1670 | |
| 1671 | btrfs_set_backup_extent_root(root_backup, |
| 1672 | extent_root->node->start); |
| 1673 | btrfs_set_backup_extent_root_gen(root_backup, |
| 1674 | btrfs_header_generation(extent_root->node)); |
| 1675 | btrfs_set_backup_extent_root_level(root_backup, |
| 1676 | btrfs_header_level(extent_root->node)); |
| 1677 | |
| 1678 | btrfs_set_backup_csum_root(root_backup, csum_root->node->start); |
| 1679 | btrfs_set_backup_csum_root_gen(root_backup, |
| 1680 | btrfs_header_generation(csum_root->node)); |
| 1681 | btrfs_set_backup_csum_root_level(root_backup, |
| 1682 | btrfs_header_level(csum_root->node)); |
| 1683 | } |
| 1684 | |
| 1685 | /* |
| 1686 | * we might commit during log recovery, which happens before we set |
| 1687 | * the fs_root. Make sure it is valid before we fill it in. |
| 1688 | */ |
| 1689 | if (info->fs_root && info->fs_root->node) { |
| 1690 | btrfs_set_backup_fs_root(root_backup, |
| 1691 | info->fs_root->node->start); |
| 1692 | btrfs_set_backup_fs_root_gen(root_backup, |
| 1693 | btrfs_header_generation(info->fs_root->node)); |
| 1694 | btrfs_set_backup_fs_root_level(root_backup, |
| 1695 | btrfs_header_level(info->fs_root->node)); |
| 1696 | } |
| 1697 | |
| 1698 | btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); |
| 1699 | btrfs_set_backup_dev_root_gen(root_backup, |
| 1700 | btrfs_header_generation(info->dev_root->node)); |
| 1701 | btrfs_set_backup_dev_root_level(root_backup, |
| 1702 | btrfs_header_level(info->dev_root->node)); |
| 1703 | |
| 1704 | btrfs_set_backup_total_bytes(root_backup, |
| 1705 | btrfs_super_total_bytes(info->super_copy)); |
| 1706 | btrfs_set_backup_bytes_used(root_backup, |
| 1707 | btrfs_super_bytes_used(info->super_copy)); |
| 1708 | btrfs_set_backup_num_devices(root_backup, |
| 1709 | btrfs_super_num_devices(info->super_copy)); |
| 1710 | |
| 1711 | /* |
| 1712 | * if we don't copy this out to the super_copy, it won't get remembered |
| 1713 | * for the next commit |
| 1714 | */ |
| 1715 | memcpy(&info->super_copy->super_roots, |
| 1716 | &info->super_for_commit->super_roots, |
| 1717 | sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); |
| 1718 | } |
| 1719 | |
| 1720 | /* |
| 1721 | * Reads a backup root based on the passed priority. Prio 0 is the newest, prio |
| 1722 | * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots |
| 1723 | * |
| 1724 | * @fs_info: filesystem whose backup roots need to be read |
| 1725 | * @priority: priority of backup root required |
| 1726 | * |
| 1727 | * Returns backup root index on success and -EINVAL otherwise. |
| 1728 | */ |
| 1729 | static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) |
| 1730 | { |
| 1731 | int backup_index = find_newest_super_backup(fs_info); |
| 1732 | struct btrfs_super_block *super = fs_info->super_copy; |
| 1733 | struct btrfs_root_backup *root_backup; |
| 1734 | |
| 1735 | if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { |
| 1736 | if (priority == 0) |
| 1737 | return backup_index; |
| 1738 | |
| 1739 | backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; |
| 1740 | backup_index %= BTRFS_NUM_BACKUP_ROOTS; |
| 1741 | } else { |
| 1742 | return -EINVAL; |
| 1743 | } |
| 1744 | |
| 1745 | root_backup = super->super_roots + backup_index; |
| 1746 | |
| 1747 | btrfs_set_super_generation(super, |
| 1748 | btrfs_backup_tree_root_gen(root_backup)); |
| 1749 | btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); |
| 1750 | btrfs_set_super_root_level(super, |
| 1751 | btrfs_backup_tree_root_level(root_backup)); |
| 1752 | btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); |
| 1753 | |
| 1754 | /* |
| 1755 | * Fixme: the total bytes and num_devices need to match or we should |
| 1756 | * need a fsck |
| 1757 | */ |
| 1758 | btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); |
| 1759 | btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); |
| 1760 | |
| 1761 | return backup_index; |
| 1762 | } |
| 1763 | |
| 1764 | /* helper to cleanup workers */ |
| 1765 | static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) |
| 1766 | { |
| 1767 | btrfs_destroy_workqueue(fs_info->fixup_workers); |
| 1768 | btrfs_destroy_workqueue(fs_info->delalloc_workers); |
| 1769 | btrfs_destroy_workqueue(fs_info->workers); |
| 1770 | if (fs_info->endio_workers) |
| 1771 | destroy_workqueue(fs_info->endio_workers); |
| 1772 | if (fs_info->rmw_workers) |
| 1773 | destroy_workqueue(fs_info->rmw_workers); |
| 1774 | if (fs_info->compressed_write_workers) |
| 1775 | destroy_workqueue(fs_info->compressed_write_workers); |
| 1776 | btrfs_destroy_workqueue(fs_info->endio_write_workers); |
| 1777 | btrfs_destroy_workqueue(fs_info->endio_freespace_worker); |
| 1778 | btrfs_destroy_workqueue(fs_info->delayed_workers); |
| 1779 | btrfs_destroy_workqueue(fs_info->caching_workers); |
| 1780 | btrfs_destroy_workqueue(fs_info->flush_workers); |
| 1781 | btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); |
| 1782 | if (fs_info->discard_ctl.discard_workers) |
| 1783 | destroy_workqueue(fs_info->discard_ctl.discard_workers); |
| 1784 | /* |
| 1785 | * Now that all other work queues are destroyed, we can safely destroy |
| 1786 | * the queues used for metadata I/O, since tasks from those other work |
| 1787 | * queues can do metadata I/O operations. |
| 1788 | */ |
| 1789 | if (fs_info->endio_meta_workers) |
| 1790 | destroy_workqueue(fs_info->endio_meta_workers); |
| 1791 | } |
| 1792 | |
| 1793 | static void free_root_extent_buffers(struct btrfs_root *root) |
| 1794 | { |
| 1795 | if (root) { |
| 1796 | free_extent_buffer(root->node); |
| 1797 | free_extent_buffer(root->commit_root); |
| 1798 | root->node = NULL; |
| 1799 | root->commit_root = NULL; |
| 1800 | } |
| 1801 | } |
| 1802 | |
| 1803 | static void free_global_root_pointers(struct btrfs_fs_info *fs_info) |
| 1804 | { |
| 1805 | struct btrfs_root *root, *tmp; |
| 1806 | |
| 1807 | rbtree_postorder_for_each_entry_safe(root, tmp, |
| 1808 | &fs_info->global_root_tree, |
| 1809 | rb_node) |
| 1810 | free_root_extent_buffers(root); |
| 1811 | } |
| 1812 | |
| 1813 | /* helper to cleanup tree roots */ |
| 1814 | static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) |
| 1815 | { |
| 1816 | free_root_extent_buffers(info->tree_root); |
| 1817 | |
| 1818 | free_global_root_pointers(info); |
| 1819 | free_root_extent_buffers(info->dev_root); |
| 1820 | free_root_extent_buffers(info->quota_root); |
| 1821 | free_root_extent_buffers(info->uuid_root); |
| 1822 | free_root_extent_buffers(info->fs_root); |
| 1823 | free_root_extent_buffers(info->data_reloc_root); |
| 1824 | free_root_extent_buffers(info->block_group_root); |
| 1825 | free_root_extent_buffers(info->stripe_root); |
| 1826 | if (free_chunk_root) |
| 1827 | free_root_extent_buffers(info->chunk_root); |
| 1828 | } |
| 1829 | |
| 1830 | void btrfs_put_root(struct btrfs_root *root) |
| 1831 | { |
| 1832 | if (!root) |
| 1833 | return; |
| 1834 | |
| 1835 | if (refcount_dec_and_test(&root->refs)) { |
| 1836 | if (WARN_ON(!xa_empty(&root->inodes))) |
| 1837 | xa_destroy(&root->inodes); |
| 1838 | if (WARN_ON(!xa_empty(&root->delayed_nodes))) |
| 1839 | xa_destroy(&root->delayed_nodes); |
| 1840 | WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); |
| 1841 | if (root->anon_dev) |
| 1842 | free_anon_bdev(root->anon_dev); |
| 1843 | free_root_extent_buffers(root); |
| 1844 | #ifdef CONFIG_BTRFS_DEBUG |
| 1845 | spin_lock(&root->fs_info->fs_roots_radix_lock); |
| 1846 | list_del_init(&root->leak_list); |
| 1847 | spin_unlock(&root->fs_info->fs_roots_radix_lock); |
| 1848 | #endif |
| 1849 | kfree(root); |
| 1850 | } |
| 1851 | } |
| 1852 | |
| 1853 | void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) |
| 1854 | { |
| 1855 | int ret; |
| 1856 | struct btrfs_root *gang[8]; |
| 1857 | int i; |
| 1858 | |
| 1859 | while (!list_empty(&fs_info->dead_roots)) { |
| 1860 | gang[0] = list_first_entry(&fs_info->dead_roots, |
| 1861 | struct btrfs_root, root_list); |
| 1862 | list_del(&gang[0]->root_list); |
| 1863 | |
| 1864 | if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) |
| 1865 | btrfs_drop_and_free_fs_root(fs_info, gang[0]); |
| 1866 | btrfs_put_root(gang[0]); |
| 1867 | } |
| 1868 | |
| 1869 | while (1) { |
| 1870 | ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, |
| 1871 | (void **)gang, 0, |
| 1872 | ARRAY_SIZE(gang)); |
| 1873 | if (!ret) |
| 1874 | break; |
| 1875 | for (i = 0; i < ret; i++) |
| 1876 | btrfs_drop_and_free_fs_root(fs_info, gang[i]); |
| 1877 | } |
| 1878 | } |
| 1879 | |
| 1880 | static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) |
| 1881 | { |
| 1882 | mutex_init(&fs_info->scrub_lock); |
| 1883 | atomic_set(&fs_info->scrubs_running, 0); |
| 1884 | atomic_set(&fs_info->scrub_pause_req, 0); |
| 1885 | atomic_set(&fs_info->scrubs_paused, 0); |
| 1886 | atomic_set(&fs_info->scrub_cancel_req, 0); |
| 1887 | init_waitqueue_head(&fs_info->scrub_pause_wait); |
| 1888 | refcount_set(&fs_info->scrub_workers_refcnt, 0); |
| 1889 | } |
| 1890 | |
| 1891 | static void btrfs_init_balance(struct btrfs_fs_info *fs_info) |
| 1892 | { |
| 1893 | spin_lock_init(&fs_info->balance_lock); |
| 1894 | mutex_init(&fs_info->balance_mutex); |
| 1895 | atomic_set(&fs_info->balance_pause_req, 0); |
| 1896 | atomic_set(&fs_info->balance_cancel_req, 0); |
| 1897 | fs_info->balance_ctl = NULL; |
| 1898 | init_waitqueue_head(&fs_info->balance_wait_q); |
| 1899 | atomic_set(&fs_info->reloc_cancel_req, 0); |
| 1900 | } |
| 1901 | |
| 1902 | static int btrfs_init_btree_inode(struct super_block *sb) |
| 1903 | { |
| 1904 | struct btrfs_fs_info *fs_info = btrfs_sb(sb); |
| 1905 | unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, |
| 1906 | fs_info->tree_root); |
| 1907 | struct inode *inode; |
| 1908 | |
| 1909 | inode = new_inode(sb); |
| 1910 | if (!inode) |
| 1911 | return -ENOMEM; |
| 1912 | |
| 1913 | btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); |
| 1914 | set_nlink(inode, 1); |
| 1915 | /* |
| 1916 | * we set the i_size on the btree inode to the max possible int. |
| 1917 | * the real end of the address space is determined by all of |
| 1918 | * the devices in the system |
| 1919 | */ |
| 1920 | inode->i_size = OFFSET_MAX; |
| 1921 | inode->i_mapping->a_ops = &btree_aops; |
| 1922 | mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); |
| 1923 | |
| 1924 | btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, |
| 1925 | IO_TREE_BTREE_INODE_IO); |
| 1926 | btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree); |
| 1927 | |
| 1928 | BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); |
| 1929 | set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); |
| 1930 | __insert_inode_hash(inode, hash); |
| 1931 | fs_info->btree_inode = inode; |
| 1932 | |
| 1933 | return 0; |
| 1934 | } |
| 1935 | |
| 1936 | static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) |
| 1937 | { |
| 1938 | mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); |
| 1939 | init_rwsem(&fs_info->dev_replace.rwsem); |
| 1940 | init_waitqueue_head(&fs_info->dev_replace.replace_wait); |
| 1941 | } |
| 1942 | |
| 1943 | static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) |
| 1944 | { |
| 1945 | spin_lock_init(&fs_info->qgroup_lock); |
| 1946 | mutex_init(&fs_info->qgroup_ioctl_lock); |
| 1947 | fs_info->qgroup_tree = RB_ROOT; |
| 1948 | INIT_LIST_HEAD(&fs_info->dirty_qgroups); |
| 1949 | fs_info->qgroup_seq = 1; |
| 1950 | fs_info->qgroup_ulist = NULL; |
| 1951 | fs_info->qgroup_rescan_running = false; |
| 1952 | fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT; |
| 1953 | mutex_init(&fs_info->qgroup_rescan_lock); |
| 1954 | } |
| 1955 | |
| 1956 | static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) |
| 1957 | { |
| 1958 | u32 max_active = fs_info->thread_pool_size; |
| 1959 | unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; |
| 1960 | unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; |
| 1961 | |
| 1962 | fs_info->workers = |
| 1963 | btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); |
| 1964 | |
| 1965 | fs_info->delalloc_workers = |
| 1966 | btrfs_alloc_workqueue(fs_info, "delalloc", |
| 1967 | flags, max_active, 2); |
| 1968 | |
| 1969 | fs_info->flush_workers = |
| 1970 | btrfs_alloc_workqueue(fs_info, "flush_delalloc", |
| 1971 | flags, max_active, 0); |
| 1972 | |
| 1973 | fs_info->caching_workers = |
| 1974 | btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); |
| 1975 | |
| 1976 | fs_info->fixup_workers = |
| 1977 | btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); |
| 1978 | |
| 1979 | fs_info->endio_workers = |
| 1980 | alloc_workqueue("btrfs-endio", flags, max_active); |
| 1981 | fs_info->endio_meta_workers = |
| 1982 | alloc_workqueue("btrfs-endio-meta", flags, max_active); |
| 1983 | fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); |
| 1984 | fs_info->endio_write_workers = |
| 1985 | btrfs_alloc_workqueue(fs_info, "endio-write", flags, |
| 1986 | max_active, 2); |
| 1987 | fs_info->compressed_write_workers = |
| 1988 | alloc_workqueue("btrfs-compressed-write", flags, max_active); |
| 1989 | fs_info->endio_freespace_worker = |
| 1990 | btrfs_alloc_workqueue(fs_info, "freespace-write", flags, |
| 1991 | max_active, 0); |
| 1992 | fs_info->delayed_workers = |
| 1993 | btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, |
| 1994 | max_active, 0); |
| 1995 | fs_info->qgroup_rescan_workers = |
| 1996 | btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", |
| 1997 | ordered_flags); |
| 1998 | fs_info->discard_ctl.discard_workers = |
| 1999 | alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE); |
| 2000 | |
| 2001 | if (!(fs_info->workers && |
| 2002 | fs_info->delalloc_workers && fs_info->flush_workers && |
| 2003 | fs_info->endio_workers && fs_info->endio_meta_workers && |
| 2004 | fs_info->compressed_write_workers && |
| 2005 | fs_info->endio_write_workers && |
| 2006 | fs_info->endio_freespace_worker && fs_info->rmw_workers && |
| 2007 | fs_info->caching_workers && fs_info->fixup_workers && |
| 2008 | fs_info->delayed_workers && fs_info->qgroup_rescan_workers && |
| 2009 | fs_info->discard_ctl.discard_workers)) { |
| 2010 | return -ENOMEM; |
| 2011 | } |
| 2012 | |
| 2013 | return 0; |
| 2014 | } |
| 2015 | |
| 2016 | static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) |
| 2017 | { |
| 2018 | struct crypto_shash *csum_shash; |
| 2019 | const char *csum_driver = btrfs_super_csum_driver(csum_type); |
| 2020 | |
| 2021 | csum_shash = crypto_alloc_shash(csum_driver, 0, 0); |
| 2022 | |
| 2023 | if (IS_ERR(csum_shash)) { |
| 2024 | btrfs_err(fs_info, "error allocating %s hash for checksum", |
| 2025 | csum_driver); |
| 2026 | return PTR_ERR(csum_shash); |
| 2027 | } |
| 2028 | |
| 2029 | fs_info->csum_shash = csum_shash; |
| 2030 | |
| 2031 | /* |
| 2032 | * Check if the checksum implementation is a fast accelerated one. |
| 2033 | * As-is this is a bit of a hack and should be replaced once the csum |
| 2034 | * implementations provide that information themselves. |
| 2035 | */ |
| 2036 | switch (csum_type) { |
| 2037 | case BTRFS_CSUM_TYPE_CRC32: |
| 2038 | if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) |
| 2039 | set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); |
| 2040 | break; |
| 2041 | case BTRFS_CSUM_TYPE_XXHASH: |
| 2042 | set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); |
| 2043 | break; |
| 2044 | default: |
| 2045 | break; |
| 2046 | } |
| 2047 | |
| 2048 | btrfs_info(fs_info, "using %s (%s) checksum algorithm", |
| 2049 | btrfs_super_csum_name(csum_type), |
| 2050 | crypto_shash_driver_name(csum_shash)); |
| 2051 | return 0; |
| 2052 | } |
| 2053 | |
| 2054 | static int btrfs_replay_log(struct btrfs_fs_info *fs_info, |
| 2055 | struct btrfs_fs_devices *fs_devices) |
| 2056 | { |
| 2057 | int ret; |
| 2058 | struct btrfs_tree_parent_check check = { 0 }; |
| 2059 | struct btrfs_root *log_tree_root; |
| 2060 | struct btrfs_super_block *disk_super = fs_info->super_copy; |
| 2061 | u64 bytenr = btrfs_super_log_root(disk_super); |
| 2062 | int level = btrfs_super_log_root_level(disk_super); |
| 2063 | |
| 2064 | if (fs_devices->rw_devices == 0) { |
| 2065 | btrfs_warn(fs_info, "log replay required on RO media"); |
| 2066 | return -EIO; |
| 2067 | } |
| 2068 | |
| 2069 | log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, |
| 2070 | GFP_KERNEL); |
| 2071 | if (!log_tree_root) |
| 2072 | return -ENOMEM; |
| 2073 | |
| 2074 | check.level = level; |
| 2075 | check.transid = fs_info->generation + 1; |
| 2076 | check.owner_root = BTRFS_TREE_LOG_OBJECTID; |
| 2077 | log_tree_root->node = read_tree_block(fs_info, bytenr, &check); |
| 2078 | if (IS_ERR(log_tree_root->node)) { |
| 2079 | btrfs_warn(fs_info, "failed to read log tree"); |
| 2080 | ret = PTR_ERR(log_tree_root->node); |
| 2081 | log_tree_root->node = NULL; |
| 2082 | btrfs_put_root(log_tree_root); |
| 2083 | return ret; |
| 2084 | } |
| 2085 | if (!extent_buffer_uptodate(log_tree_root->node)) { |
| 2086 | btrfs_err(fs_info, "failed to read log tree"); |
| 2087 | btrfs_put_root(log_tree_root); |
| 2088 | return -EIO; |
| 2089 | } |
| 2090 | |
| 2091 | /* returns with log_tree_root freed on success */ |
| 2092 | ret = btrfs_recover_log_trees(log_tree_root); |
| 2093 | if (ret) { |
| 2094 | btrfs_handle_fs_error(fs_info, ret, |
| 2095 | "Failed to recover log tree"); |
| 2096 | btrfs_put_root(log_tree_root); |
| 2097 | return ret; |
| 2098 | } |
| 2099 | |
| 2100 | if (sb_rdonly(fs_info->sb)) { |
| 2101 | ret = btrfs_commit_super(fs_info); |
| 2102 | if (ret) |
| 2103 | return ret; |
| 2104 | } |
| 2105 | |
| 2106 | return 0; |
| 2107 | } |
| 2108 | |
| 2109 | static int load_global_roots_objectid(struct btrfs_root *tree_root, |
| 2110 | struct btrfs_path *path, u64 objectid, |
| 2111 | const char *name) |
| 2112 | { |
| 2113 | struct btrfs_fs_info *fs_info = tree_root->fs_info; |
| 2114 | struct btrfs_root *root; |
| 2115 | u64 max_global_id = 0; |
| 2116 | int ret; |
| 2117 | struct btrfs_key key = { |
| 2118 | .objectid = objectid, |
| 2119 | .type = BTRFS_ROOT_ITEM_KEY, |
| 2120 | .offset = 0, |
| 2121 | }; |
| 2122 | bool found = false; |
| 2123 | |
| 2124 | /* If we have IGNOREDATACSUMS skip loading these roots. */ |
| 2125 | if (objectid == BTRFS_CSUM_TREE_OBJECTID && |
| 2126 | btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { |
| 2127 | set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); |
| 2128 | return 0; |
| 2129 | } |
| 2130 | |
| 2131 | while (1) { |
| 2132 | ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); |
| 2133 | if (ret < 0) |
| 2134 | break; |
| 2135 | |
| 2136 | if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { |
| 2137 | ret = btrfs_next_leaf(tree_root, path); |
| 2138 | if (ret) { |
| 2139 | if (ret > 0) |
| 2140 | ret = 0; |
| 2141 | break; |
| 2142 | } |
| 2143 | } |
| 2144 | ret = 0; |
| 2145 | |
| 2146 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| 2147 | if (key.objectid != objectid) |
| 2148 | break; |
| 2149 | btrfs_release_path(path); |
| 2150 | |
| 2151 | /* |
| 2152 | * Just worry about this for extent tree, it'll be the same for |
| 2153 | * everybody. |
| 2154 | */ |
| 2155 | if (objectid == BTRFS_EXTENT_TREE_OBJECTID) |
| 2156 | max_global_id = max(max_global_id, key.offset); |
| 2157 | |
| 2158 | found = true; |
| 2159 | root = read_tree_root_path(tree_root, path, &key); |
| 2160 | if (IS_ERR(root)) { |
| 2161 | ret = PTR_ERR(root); |
| 2162 | break; |
| 2163 | } |
| 2164 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 2165 | ret = btrfs_global_root_insert(root); |
| 2166 | if (ret) { |
| 2167 | btrfs_put_root(root); |
| 2168 | break; |
| 2169 | } |
| 2170 | key.offset++; |
| 2171 | } |
| 2172 | btrfs_release_path(path); |
| 2173 | |
| 2174 | if (objectid == BTRFS_EXTENT_TREE_OBJECTID) |
| 2175 | fs_info->nr_global_roots = max_global_id + 1; |
| 2176 | |
| 2177 | if (!found || ret) { |
| 2178 | if (objectid == BTRFS_CSUM_TREE_OBJECTID) |
| 2179 | set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); |
| 2180 | |
| 2181 | if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) |
| 2182 | ret = ret ? ret : -ENOENT; |
| 2183 | else |
| 2184 | ret = 0; |
| 2185 | btrfs_err(fs_info, "failed to load root %s", name); |
| 2186 | } |
| 2187 | return ret; |
| 2188 | } |
| 2189 | |
| 2190 | static int load_global_roots(struct btrfs_root *tree_root) |
| 2191 | { |
| 2192 | BTRFS_PATH_AUTO_FREE(path); |
| 2193 | int ret; |
| 2194 | |
| 2195 | path = btrfs_alloc_path(); |
| 2196 | if (!path) |
| 2197 | return -ENOMEM; |
| 2198 | |
| 2199 | ret = load_global_roots_objectid(tree_root, path, |
| 2200 | BTRFS_EXTENT_TREE_OBJECTID, "extent"); |
| 2201 | if (ret) |
| 2202 | return ret; |
| 2203 | ret = load_global_roots_objectid(tree_root, path, |
| 2204 | BTRFS_CSUM_TREE_OBJECTID, "csum"); |
| 2205 | if (ret) |
| 2206 | return ret; |
| 2207 | if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) |
| 2208 | return ret; |
| 2209 | ret = load_global_roots_objectid(tree_root, path, |
| 2210 | BTRFS_FREE_SPACE_TREE_OBJECTID, |
| 2211 | "free space"); |
| 2212 | |
| 2213 | return ret; |
| 2214 | } |
| 2215 | |
| 2216 | static int btrfs_read_roots(struct btrfs_fs_info *fs_info) |
| 2217 | { |
| 2218 | struct btrfs_root *tree_root = fs_info->tree_root; |
| 2219 | struct btrfs_root *root; |
| 2220 | struct btrfs_key location; |
| 2221 | int ret; |
| 2222 | |
| 2223 | ASSERT(fs_info->tree_root); |
| 2224 | |
| 2225 | ret = load_global_roots(tree_root); |
| 2226 | if (ret) |
| 2227 | return ret; |
| 2228 | |
| 2229 | location.type = BTRFS_ROOT_ITEM_KEY; |
| 2230 | location.offset = 0; |
| 2231 | |
| 2232 | if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { |
| 2233 | location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; |
| 2234 | root = btrfs_read_tree_root(tree_root, &location); |
| 2235 | if (IS_ERR(root)) { |
| 2236 | if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { |
| 2237 | ret = PTR_ERR(root); |
| 2238 | goto out; |
| 2239 | } |
| 2240 | } else { |
| 2241 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 2242 | fs_info->block_group_root = root; |
| 2243 | } |
| 2244 | } |
| 2245 | |
| 2246 | location.objectid = BTRFS_DEV_TREE_OBJECTID; |
| 2247 | root = btrfs_read_tree_root(tree_root, &location); |
| 2248 | if (IS_ERR(root)) { |
| 2249 | if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { |
| 2250 | ret = PTR_ERR(root); |
| 2251 | goto out; |
| 2252 | } |
| 2253 | } else { |
| 2254 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 2255 | fs_info->dev_root = root; |
| 2256 | } |
| 2257 | /* Initialize fs_info for all devices in any case */ |
| 2258 | ret = btrfs_init_devices_late(fs_info); |
| 2259 | if (ret) |
| 2260 | goto out; |
| 2261 | |
| 2262 | /* |
| 2263 | * This tree can share blocks with some other fs tree during relocation |
| 2264 | * and we need a proper setup by btrfs_get_fs_root |
| 2265 | */ |
| 2266 | root = btrfs_get_fs_root(tree_root->fs_info, |
| 2267 | BTRFS_DATA_RELOC_TREE_OBJECTID, true); |
| 2268 | if (IS_ERR(root)) { |
| 2269 | if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { |
| 2270 | ret = PTR_ERR(root); |
| 2271 | goto out; |
| 2272 | } |
| 2273 | } else { |
| 2274 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 2275 | fs_info->data_reloc_root = root; |
| 2276 | } |
| 2277 | |
| 2278 | location.objectid = BTRFS_QUOTA_TREE_OBJECTID; |
| 2279 | root = btrfs_read_tree_root(tree_root, &location); |
| 2280 | if (!IS_ERR(root)) { |
| 2281 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 2282 | fs_info->quota_root = root; |
| 2283 | } |
| 2284 | |
| 2285 | location.objectid = BTRFS_UUID_TREE_OBJECTID; |
| 2286 | root = btrfs_read_tree_root(tree_root, &location); |
| 2287 | if (IS_ERR(root)) { |
| 2288 | if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { |
| 2289 | ret = PTR_ERR(root); |
| 2290 | if (ret != -ENOENT) |
| 2291 | goto out; |
| 2292 | } |
| 2293 | } else { |
| 2294 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 2295 | fs_info->uuid_root = root; |
| 2296 | } |
| 2297 | |
| 2298 | if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { |
| 2299 | location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; |
| 2300 | root = btrfs_read_tree_root(tree_root, &location); |
| 2301 | if (IS_ERR(root)) { |
| 2302 | if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { |
| 2303 | ret = PTR_ERR(root); |
| 2304 | goto out; |
| 2305 | } |
| 2306 | } else { |
| 2307 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 2308 | fs_info->stripe_root = root; |
| 2309 | } |
| 2310 | } |
| 2311 | |
| 2312 | return 0; |
| 2313 | out: |
| 2314 | btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", |
| 2315 | location.objectid, ret); |
| 2316 | return ret; |
| 2317 | } |
| 2318 | |
| 2319 | static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info, |
| 2320 | const struct btrfs_super_block *sb) |
| 2321 | { |
| 2322 | unsigned int cur = 0; /* Offset inside the sys chunk array */ |
| 2323 | /* |
| 2324 | * At sb read time, fs_info is not fully initialized. Thus we have |
| 2325 | * to use super block sectorsize, which should have been validated. |
| 2326 | */ |
| 2327 | const u32 sectorsize = btrfs_super_sectorsize(sb); |
| 2328 | u32 sys_array_size = btrfs_super_sys_array_size(sb); |
| 2329 | |
| 2330 | if (sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { |
| 2331 | btrfs_err(fs_info, "system chunk array too big %u > %u", |
| 2332 | sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); |
| 2333 | return -EUCLEAN; |
| 2334 | } |
| 2335 | |
| 2336 | while (cur < sys_array_size) { |
| 2337 | struct btrfs_disk_key *disk_key; |
| 2338 | struct btrfs_chunk *chunk; |
| 2339 | struct btrfs_key key; |
| 2340 | u64 type; |
| 2341 | u16 num_stripes; |
| 2342 | u32 len; |
| 2343 | int ret; |
| 2344 | |
| 2345 | disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur); |
| 2346 | len = sizeof(*disk_key); |
| 2347 | |
| 2348 | if (cur + len > sys_array_size) |
| 2349 | goto short_read; |
| 2350 | cur += len; |
| 2351 | |
| 2352 | btrfs_disk_key_to_cpu(&key, disk_key); |
| 2353 | if (key.type != BTRFS_CHUNK_ITEM_KEY) { |
| 2354 | btrfs_err(fs_info, |
| 2355 | "unexpected item type %u in sys_array at offset %u", |
| 2356 | key.type, cur); |
| 2357 | return -EUCLEAN; |
| 2358 | } |
| 2359 | chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur); |
| 2360 | num_stripes = btrfs_stack_chunk_num_stripes(chunk); |
| 2361 | if (cur + btrfs_chunk_item_size(num_stripes) > sys_array_size) |
| 2362 | goto short_read; |
| 2363 | type = btrfs_stack_chunk_type(chunk); |
| 2364 | if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) { |
| 2365 | btrfs_err(fs_info, |
| 2366 | "invalid chunk type %llu in sys_array at offset %u", |
| 2367 | type, cur); |
| 2368 | return -EUCLEAN; |
| 2369 | } |
| 2370 | ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset, |
| 2371 | sectorsize); |
| 2372 | if (ret < 0) |
| 2373 | return ret; |
| 2374 | cur += btrfs_chunk_item_size(num_stripes); |
| 2375 | } |
| 2376 | return 0; |
| 2377 | short_read: |
| 2378 | btrfs_err(fs_info, |
| 2379 | "super block sys chunk array short read, cur=%u sys_array_size=%u", |
| 2380 | cur, sys_array_size); |
| 2381 | return -EUCLEAN; |
| 2382 | } |
| 2383 | |
| 2384 | /* |
| 2385 | * Real super block validation |
| 2386 | * NOTE: super csum type and incompat features will not be checked here. |
| 2387 | * |
| 2388 | * @sb: super block to check |
| 2389 | * @mirror_num: the super block number to check its bytenr: |
| 2390 | * 0 the primary (1st) sb |
| 2391 | * 1, 2 2nd and 3rd backup copy |
| 2392 | * -1 skip bytenr check |
| 2393 | */ |
| 2394 | int btrfs_validate_super(const struct btrfs_fs_info *fs_info, |
| 2395 | const struct btrfs_super_block *sb, int mirror_num) |
| 2396 | { |
| 2397 | u64 nodesize = btrfs_super_nodesize(sb); |
| 2398 | u64 sectorsize = btrfs_super_sectorsize(sb); |
| 2399 | int ret = 0; |
| 2400 | const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); |
| 2401 | |
| 2402 | if (btrfs_super_magic(sb) != BTRFS_MAGIC) { |
| 2403 | btrfs_err(fs_info, "no valid FS found"); |
| 2404 | ret = -EINVAL; |
| 2405 | } |
| 2406 | if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { |
| 2407 | if (!ignore_flags) { |
| 2408 | btrfs_err(fs_info, |
| 2409 | "unrecognized or unsupported super flag 0x%llx", |
| 2410 | btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); |
| 2411 | ret = -EINVAL; |
| 2412 | } else { |
| 2413 | btrfs_info(fs_info, |
| 2414 | "unrecognized or unsupported super flags: 0x%llx, ignored", |
| 2415 | btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); |
| 2416 | } |
| 2417 | } |
| 2418 | if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { |
| 2419 | btrfs_err(fs_info, "tree_root level too big: %d >= %d", |
| 2420 | btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); |
| 2421 | ret = -EINVAL; |
| 2422 | } |
| 2423 | if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { |
| 2424 | btrfs_err(fs_info, "chunk_root level too big: %d >= %d", |
| 2425 | btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); |
| 2426 | ret = -EINVAL; |
| 2427 | } |
| 2428 | if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { |
| 2429 | btrfs_err(fs_info, "log_root level too big: %d >= %d", |
| 2430 | btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); |
| 2431 | ret = -EINVAL; |
| 2432 | } |
| 2433 | |
| 2434 | /* |
| 2435 | * Check sectorsize and nodesize first, other check will need it. |
| 2436 | * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. |
| 2437 | */ |
| 2438 | if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE || |
| 2439 | sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { |
| 2440 | btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); |
| 2441 | ret = -EINVAL; |
| 2442 | } |
| 2443 | |
| 2444 | /* |
| 2445 | * We only support at most 3 sectorsizes: 4K, PAGE_SIZE, MIN_BLOCKSIZE. |
| 2446 | * |
| 2447 | * For 4K page sized systems with non-debug builds, all 3 matches (4K). |
| 2448 | * For 4K page sized systems with debug builds, there are two block sizes |
| 2449 | * supported. (4K and 2K) |
| 2450 | * |
| 2451 | * We can support 16K sectorsize with 64K page size without problem, |
| 2452 | * but such sectorsize/pagesize combination doesn't make much sense. |
| 2453 | * 4K will be our future standard, PAGE_SIZE is supported from the very |
| 2454 | * beginning. |
| 2455 | */ |
| 2456 | if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && |
| 2457 | sectorsize != PAGE_SIZE && |
| 2458 | sectorsize != BTRFS_MIN_BLOCKSIZE)) { |
| 2459 | btrfs_err(fs_info, |
| 2460 | "sectorsize %llu not yet supported for page size %lu", |
| 2461 | sectorsize, PAGE_SIZE); |
| 2462 | ret = -EINVAL; |
| 2463 | } |
| 2464 | |
| 2465 | if (!is_power_of_2(nodesize) || nodesize < sectorsize || |
| 2466 | nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { |
| 2467 | btrfs_err(fs_info, "invalid nodesize %llu", nodesize); |
| 2468 | ret = -EINVAL; |
| 2469 | } |
| 2470 | if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { |
| 2471 | btrfs_err(fs_info, "invalid leafsize %u, should be %llu", |
| 2472 | le32_to_cpu(sb->__unused_leafsize), nodesize); |
| 2473 | ret = -EINVAL; |
| 2474 | } |
| 2475 | |
| 2476 | /* Root alignment check */ |
| 2477 | if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { |
| 2478 | btrfs_warn(fs_info, "tree_root block unaligned: %llu", |
| 2479 | btrfs_super_root(sb)); |
| 2480 | ret = -EINVAL; |
| 2481 | } |
| 2482 | if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { |
| 2483 | btrfs_warn(fs_info, "chunk_root block unaligned: %llu", |
| 2484 | btrfs_super_chunk_root(sb)); |
| 2485 | ret = -EINVAL; |
| 2486 | } |
| 2487 | if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { |
| 2488 | btrfs_warn(fs_info, "log_root block unaligned: %llu", |
| 2489 | btrfs_super_log_root(sb)); |
| 2490 | ret = -EINVAL; |
| 2491 | } |
| 2492 | |
| 2493 | if (!fs_info->fs_devices->temp_fsid && |
| 2494 | memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { |
| 2495 | btrfs_err(fs_info, |
| 2496 | "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", |
| 2497 | sb->fsid, fs_info->fs_devices->fsid); |
| 2498 | ret = -EINVAL; |
| 2499 | } |
| 2500 | |
| 2501 | if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), |
| 2502 | BTRFS_FSID_SIZE) != 0) { |
| 2503 | btrfs_err(fs_info, |
| 2504 | "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", |
| 2505 | btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); |
| 2506 | ret = -EINVAL; |
| 2507 | } |
| 2508 | |
| 2509 | if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, |
| 2510 | BTRFS_FSID_SIZE) != 0) { |
| 2511 | btrfs_err(fs_info, |
| 2512 | "dev_item UUID does not match metadata fsid: %pU != %pU", |
| 2513 | fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); |
| 2514 | ret = -EINVAL; |
| 2515 | } |
| 2516 | |
| 2517 | /* |
| 2518 | * Artificial requirement for block-group-tree to force newer features |
| 2519 | * (free-space-tree, no-holes) so the test matrix is smaller. |
| 2520 | */ |
| 2521 | if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && |
| 2522 | (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || |
| 2523 | !btrfs_fs_incompat(fs_info, NO_HOLES))) { |
| 2524 | btrfs_err(fs_info, |
| 2525 | "block-group-tree feature requires free-space-tree and no-holes"); |
| 2526 | ret = -EINVAL; |
| 2527 | } |
| 2528 | |
| 2529 | /* |
| 2530 | * Hint to catch really bogus numbers, bitflips or so, more exact checks are |
| 2531 | * done later |
| 2532 | */ |
| 2533 | if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { |
| 2534 | btrfs_err(fs_info, "bytes_used is too small %llu", |
| 2535 | btrfs_super_bytes_used(sb)); |
| 2536 | ret = -EINVAL; |
| 2537 | } |
| 2538 | if (!is_power_of_2(btrfs_super_stripesize(sb))) { |
| 2539 | btrfs_err(fs_info, "invalid stripesize %u", |
| 2540 | btrfs_super_stripesize(sb)); |
| 2541 | ret = -EINVAL; |
| 2542 | } |
| 2543 | if (btrfs_super_num_devices(sb) > (1UL << 31)) |
| 2544 | btrfs_warn(fs_info, "suspicious number of devices: %llu", |
| 2545 | btrfs_super_num_devices(sb)); |
| 2546 | if (btrfs_super_num_devices(sb) == 0) { |
| 2547 | btrfs_err(fs_info, "number of devices is 0"); |
| 2548 | ret = -EINVAL; |
| 2549 | } |
| 2550 | |
| 2551 | if (mirror_num >= 0 && |
| 2552 | btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { |
| 2553 | btrfs_err(fs_info, "super offset mismatch %llu != %u", |
| 2554 | btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); |
| 2555 | ret = -EINVAL; |
| 2556 | } |
| 2557 | |
| 2558 | if (ret) |
| 2559 | return ret; |
| 2560 | |
| 2561 | ret = validate_sys_chunk_array(fs_info, sb); |
| 2562 | |
| 2563 | /* |
| 2564 | * Obvious sys_chunk_array corruptions, it must hold at least one key |
| 2565 | * and one chunk |
| 2566 | */ |
| 2567 | if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { |
| 2568 | btrfs_err(fs_info, "system chunk array too big %u > %u", |
| 2569 | btrfs_super_sys_array_size(sb), |
| 2570 | BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); |
| 2571 | ret = -EINVAL; |
| 2572 | } |
| 2573 | if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) |
| 2574 | + sizeof(struct btrfs_chunk)) { |
| 2575 | btrfs_err(fs_info, "system chunk array too small %u < %zu", |
| 2576 | btrfs_super_sys_array_size(sb), |
| 2577 | sizeof(struct btrfs_disk_key) |
| 2578 | + sizeof(struct btrfs_chunk)); |
| 2579 | ret = -EINVAL; |
| 2580 | } |
| 2581 | |
| 2582 | /* |
| 2583 | * The generation is a global counter, we'll trust it more than the others |
| 2584 | * but it's still possible that it's the one that's wrong. |
| 2585 | */ |
| 2586 | if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) |
| 2587 | btrfs_warn(fs_info, |
| 2588 | "suspicious: generation < chunk_root_generation: %llu < %llu", |
| 2589 | btrfs_super_generation(sb), |
| 2590 | btrfs_super_chunk_root_generation(sb)); |
| 2591 | if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) |
| 2592 | && btrfs_super_cache_generation(sb) != (u64)-1) |
| 2593 | btrfs_warn(fs_info, |
| 2594 | "suspicious: generation < cache_generation: %llu < %llu", |
| 2595 | btrfs_super_generation(sb), |
| 2596 | btrfs_super_cache_generation(sb)); |
| 2597 | |
| 2598 | return ret; |
| 2599 | } |
| 2600 | |
| 2601 | /* |
| 2602 | * Validation of super block at mount time. |
| 2603 | * Some checks already done early at mount time, like csum type and incompat |
| 2604 | * flags will be skipped. |
| 2605 | */ |
| 2606 | static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) |
| 2607 | { |
| 2608 | return btrfs_validate_super(fs_info, fs_info->super_copy, 0); |
| 2609 | } |
| 2610 | |
| 2611 | /* |
| 2612 | * Validation of super block at write time. |
| 2613 | * Some checks like bytenr check will be skipped as their values will be |
| 2614 | * overwritten soon. |
| 2615 | * Extra checks like csum type and incompat flags will be done here. |
| 2616 | */ |
| 2617 | static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, |
| 2618 | struct btrfs_super_block *sb) |
| 2619 | { |
| 2620 | int ret; |
| 2621 | |
| 2622 | ret = btrfs_validate_super(fs_info, sb, -1); |
| 2623 | if (ret < 0) |
| 2624 | goto out; |
| 2625 | if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { |
| 2626 | ret = -EUCLEAN; |
| 2627 | btrfs_err(fs_info, "invalid csum type, has %u want %u", |
| 2628 | btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); |
| 2629 | goto out; |
| 2630 | } |
| 2631 | if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { |
| 2632 | ret = -EUCLEAN; |
| 2633 | btrfs_err(fs_info, |
| 2634 | "invalid incompat flags, has 0x%llx valid mask 0x%llx", |
| 2635 | btrfs_super_incompat_flags(sb), |
| 2636 | (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); |
| 2637 | goto out; |
| 2638 | } |
| 2639 | out: |
| 2640 | if (ret < 0) |
| 2641 | btrfs_err(fs_info, |
| 2642 | "super block corruption detected before writing it to disk"); |
| 2643 | return ret; |
| 2644 | } |
| 2645 | |
| 2646 | static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) |
| 2647 | { |
| 2648 | struct btrfs_tree_parent_check check = { |
| 2649 | .level = level, |
| 2650 | .transid = gen, |
| 2651 | .owner_root = btrfs_root_id(root) |
| 2652 | }; |
| 2653 | int ret = 0; |
| 2654 | |
| 2655 | root->node = read_tree_block(root->fs_info, bytenr, &check); |
| 2656 | if (IS_ERR(root->node)) { |
| 2657 | ret = PTR_ERR(root->node); |
| 2658 | root->node = NULL; |
| 2659 | return ret; |
| 2660 | } |
| 2661 | if (!extent_buffer_uptodate(root->node)) { |
| 2662 | free_extent_buffer(root->node); |
| 2663 | root->node = NULL; |
| 2664 | return -EIO; |
| 2665 | } |
| 2666 | |
| 2667 | btrfs_set_root_node(&root->root_item, root->node); |
| 2668 | root->commit_root = btrfs_root_node(root); |
| 2669 | btrfs_set_root_refs(&root->root_item, 1); |
| 2670 | return ret; |
| 2671 | } |
| 2672 | |
| 2673 | static int load_important_roots(struct btrfs_fs_info *fs_info) |
| 2674 | { |
| 2675 | struct btrfs_super_block *sb = fs_info->super_copy; |
| 2676 | u64 gen, bytenr; |
| 2677 | int level, ret; |
| 2678 | |
| 2679 | bytenr = btrfs_super_root(sb); |
| 2680 | gen = btrfs_super_generation(sb); |
| 2681 | level = btrfs_super_root_level(sb); |
| 2682 | ret = load_super_root(fs_info->tree_root, bytenr, gen, level); |
| 2683 | if (ret) { |
| 2684 | btrfs_warn(fs_info, "couldn't read tree root"); |
| 2685 | return ret; |
| 2686 | } |
| 2687 | return 0; |
| 2688 | } |
| 2689 | |
| 2690 | static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) |
| 2691 | { |
| 2692 | int backup_index = find_newest_super_backup(fs_info); |
| 2693 | struct btrfs_super_block *sb = fs_info->super_copy; |
| 2694 | struct btrfs_root *tree_root = fs_info->tree_root; |
| 2695 | bool handle_error = false; |
| 2696 | int ret = 0; |
| 2697 | int i; |
| 2698 | |
| 2699 | for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { |
| 2700 | if (handle_error) { |
| 2701 | if (!IS_ERR(tree_root->node)) |
| 2702 | free_extent_buffer(tree_root->node); |
| 2703 | tree_root->node = NULL; |
| 2704 | |
| 2705 | if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) |
| 2706 | break; |
| 2707 | |
| 2708 | free_root_pointers(fs_info, 0); |
| 2709 | |
| 2710 | /* |
| 2711 | * Don't use the log in recovery mode, it won't be |
| 2712 | * valid |
| 2713 | */ |
| 2714 | btrfs_set_super_log_root(sb, 0); |
| 2715 | |
| 2716 | btrfs_warn(fs_info, "try to load backup roots slot %d", i); |
| 2717 | ret = read_backup_root(fs_info, i); |
| 2718 | backup_index = ret; |
| 2719 | if (ret < 0) |
| 2720 | return ret; |
| 2721 | } |
| 2722 | |
| 2723 | ret = load_important_roots(fs_info); |
| 2724 | if (ret) { |
| 2725 | handle_error = true; |
| 2726 | continue; |
| 2727 | } |
| 2728 | |
| 2729 | /* |
| 2730 | * No need to hold btrfs_root::objectid_mutex since the fs |
| 2731 | * hasn't been fully initialised and we are the only user |
| 2732 | */ |
| 2733 | ret = btrfs_init_root_free_objectid(tree_root); |
| 2734 | if (ret < 0) { |
| 2735 | handle_error = true; |
| 2736 | continue; |
| 2737 | } |
| 2738 | |
| 2739 | ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); |
| 2740 | |
| 2741 | ret = btrfs_read_roots(fs_info); |
| 2742 | if (ret < 0) { |
| 2743 | handle_error = true; |
| 2744 | continue; |
| 2745 | } |
| 2746 | |
| 2747 | /* All successful */ |
| 2748 | fs_info->generation = btrfs_header_generation(tree_root->node); |
| 2749 | btrfs_set_last_trans_committed(fs_info, fs_info->generation); |
| 2750 | fs_info->last_reloc_trans = 0; |
| 2751 | |
| 2752 | /* Always begin writing backup roots after the one being used */ |
| 2753 | if (backup_index < 0) { |
| 2754 | fs_info->backup_root_index = 0; |
| 2755 | } else { |
| 2756 | fs_info->backup_root_index = backup_index + 1; |
| 2757 | fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; |
| 2758 | } |
| 2759 | break; |
| 2760 | } |
| 2761 | |
| 2762 | return ret; |
| 2763 | } |
| 2764 | |
| 2765 | /* |
| 2766 | * Lockdep gets confused between our buffer_tree which requires IRQ locking because |
| 2767 | * we modify marks in the IRQ context, and our delayed inode xarray which doesn't |
| 2768 | * have these requirements. Use a class key so lockdep doesn't get them mixed up. |
| 2769 | */ |
| 2770 | static struct lock_class_key buffer_xa_class; |
| 2771 | |
| 2772 | void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) |
| 2773 | { |
| 2774 | INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); |
| 2775 | |
| 2776 | /* Use the same flags as mapping->i_pages. */ |
| 2777 | xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); |
| 2778 | lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class); |
| 2779 | |
| 2780 | INIT_LIST_HEAD(&fs_info->trans_list); |
| 2781 | INIT_LIST_HEAD(&fs_info->dead_roots); |
| 2782 | INIT_LIST_HEAD(&fs_info->delayed_iputs); |
| 2783 | INIT_LIST_HEAD(&fs_info->delalloc_roots); |
| 2784 | INIT_LIST_HEAD(&fs_info->caching_block_groups); |
| 2785 | spin_lock_init(&fs_info->delalloc_root_lock); |
| 2786 | spin_lock_init(&fs_info->trans_lock); |
| 2787 | spin_lock_init(&fs_info->fs_roots_radix_lock); |
| 2788 | spin_lock_init(&fs_info->delayed_iput_lock); |
| 2789 | spin_lock_init(&fs_info->defrag_inodes_lock); |
| 2790 | spin_lock_init(&fs_info->super_lock); |
| 2791 | spin_lock_init(&fs_info->unused_bgs_lock); |
| 2792 | spin_lock_init(&fs_info->treelog_bg_lock); |
| 2793 | spin_lock_init(&fs_info->zone_active_bgs_lock); |
| 2794 | spin_lock_init(&fs_info->relocation_bg_lock); |
| 2795 | rwlock_init(&fs_info->tree_mod_log_lock); |
| 2796 | rwlock_init(&fs_info->global_root_lock); |
| 2797 | mutex_init(&fs_info->unused_bg_unpin_mutex); |
| 2798 | mutex_init(&fs_info->reclaim_bgs_lock); |
| 2799 | mutex_init(&fs_info->reloc_mutex); |
| 2800 | mutex_init(&fs_info->delalloc_root_mutex); |
| 2801 | mutex_init(&fs_info->zoned_meta_io_lock); |
| 2802 | mutex_init(&fs_info->zoned_data_reloc_io_lock); |
| 2803 | seqlock_init(&fs_info->profiles_lock); |
| 2804 | |
| 2805 | btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); |
| 2806 | btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); |
| 2807 | btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); |
| 2808 | btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); |
| 2809 | btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, |
| 2810 | BTRFS_LOCKDEP_TRANS_COMMIT_PREP); |
| 2811 | btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, |
| 2812 | BTRFS_LOCKDEP_TRANS_UNBLOCKED); |
| 2813 | btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, |
| 2814 | BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); |
| 2815 | btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, |
| 2816 | BTRFS_LOCKDEP_TRANS_COMPLETED); |
| 2817 | |
| 2818 | INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); |
| 2819 | INIT_LIST_HEAD(&fs_info->space_info); |
| 2820 | INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); |
| 2821 | INIT_LIST_HEAD(&fs_info->unused_bgs); |
| 2822 | INIT_LIST_HEAD(&fs_info->reclaim_bgs); |
| 2823 | INIT_LIST_HEAD(&fs_info->zone_active_bgs); |
| 2824 | #ifdef CONFIG_BTRFS_DEBUG |
| 2825 | INIT_LIST_HEAD(&fs_info->allocated_roots); |
| 2826 | INIT_LIST_HEAD(&fs_info->allocated_ebs); |
| 2827 | spin_lock_init(&fs_info->eb_leak_lock); |
| 2828 | #endif |
| 2829 | fs_info->mapping_tree = RB_ROOT_CACHED; |
| 2830 | rwlock_init(&fs_info->mapping_tree_lock); |
| 2831 | btrfs_init_block_rsv(&fs_info->global_block_rsv, |
| 2832 | BTRFS_BLOCK_RSV_GLOBAL); |
| 2833 | btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); |
| 2834 | btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); |
| 2835 | btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG); |
| 2836 | btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); |
| 2837 | btrfs_init_block_rsv(&fs_info->delayed_block_rsv, |
| 2838 | BTRFS_BLOCK_RSV_DELOPS); |
| 2839 | btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, |
| 2840 | BTRFS_BLOCK_RSV_DELREFS); |
| 2841 | |
| 2842 | atomic_set(&fs_info->async_delalloc_pages, 0); |
| 2843 | atomic_set(&fs_info->defrag_running, 0); |
| 2844 | atomic_set(&fs_info->nr_delayed_iputs, 0); |
| 2845 | atomic64_set(&fs_info->tree_mod_seq, 0); |
| 2846 | fs_info->global_root_tree = RB_ROOT; |
| 2847 | fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; |
| 2848 | fs_info->metadata_ratio = 0; |
| 2849 | fs_info->defrag_inodes = RB_ROOT; |
| 2850 | atomic64_set(&fs_info->free_chunk_space, 0); |
| 2851 | fs_info->tree_mod_log = RB_ROOT; |
| 2852 | fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; |
| 2853 | btrfs_init_ref_verify(fs_info); |
| 2854 | |
| 2855 | fs_info->thread_pool_size = min_t(unsigned long, |
| 2856 | num_online_cpus() + 2, 8); |
| 2857 | |
| 2858 | INIT_LIST_HEAD(&fs_info->ordered_roots); |
| 2859 | spin_lock_init(&fs_info->ordered_root_lock); |
| 2860 | |
| 2861 | btrfs_init_scrub(fs_info); |
| 2862 | btrfs_init_balance(fs_info); |
| 2863 | btrfs_init_async_reclaim_work(fs_info); |
| 2864 | btrfs_init_extent_map_shrinker_work(fs_info); |
| 2865 | |
| 2866 | rwlock_init(&fs_info->block_group_cache_lock); |
| 2867 | fs_info->block_group_cache_tree = RB_ROOT_CACHED; |
| 2868 | |
| 2869 | btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents, |
| 2870 | IO_TREE_FS_EXCLUDED_EXTENTS); |
| 2871 | |
| 2872 | mutex_init(&fs_info->ordered_operations_mutex); |
| 2873 | mutex_init(&fs_info->tree_log_mutex); |
| 2874 | mutex_init(&fs_info->chunk_mutex); |
| 2875 | mutex_init(&fs_info->transaction_kthread_mutex); |
| 2876 | mutex_init(&fs_info->cleaner_mutex); |
| 2877 | mutex_init(&fs_info->ro_block_group_mutex); |
| 2878 | init_rwsem(&fs_info->commit_root_sem); |
| 2879 | init_rwsem(&fs_info->cleanup_work_sem); |
| 2880 | init_rwsem(&fs_info->subvol_sem); |
| 2881 | sema_init(&fs_info->uuid_tree_rescan_sem, 1); |
| 2882 | |
| 2883 | btrfs_init_dev_replace_locks(fs_info); |
| 2884 | btrfs_init_qgroup(fs_info); |
| 2885 | btrfs_discard_init(fs_info); |
| 2886 | |
| 2887 | btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); |
| 2888 | btrfs_init_free_cluster(&fs_info->data_alloc_cluster); |
| 2889 | |
| 2890 | init_waitqueue_head(&fs_info->transaction_throttle); |
| 2891 | init_waitqueue_head(&fs_info->transaction_wait); |
| 2892 | init_waitqueue_head(&fs_info->transaction_blocked_wait); |
| 2893 | init_waitqueue_head(&fs_info->async_submit_wait); |
| 2894 | init_waitqueue_head(&fs_info->delayed_iputs_wait); |
| 2895 | |
| 2896 | /* Usable values until the real ones are cached from the superblock */ |
| 2897 | fs_info->nodesize = 4096; |
| 2898 | fs_info->sectorsize = 4096; |
| 2899 | fs_info->sectorsize_bits = ilog2(4096); |
| 2900 | fs_info->stripesize = 4096; |
| 2901 | |
| 2902 | /* Default compress algorithm when user does -o compress */ |
| 2903 | fs_info->compress_type = BTRFS_COMPRESS_ZLIB; |
| 2904 | |
| 2905 | fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; |
| 2906 | |
| 2907 | spin_lock_init(&fs_info->swapfile_pins_lock); |
| 2908 | fs_info->swapfile_pins = RB_ROOT; |
| 2909 | |
| 2910 | fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; |
| 2911 | INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); |
| 2912 | } |
| 2913 | |
| 2914 | static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) |
| 2915 | { |
| 2916 | int ret; |
| 2917 | |
| 2918 | fs_info->sb = sb; |
| 2919 | /* Temporary fixed values for block size until we read the superblock. */ |
| 2920 | sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; |
| 2921 | sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); |
| 2922 | |
| 2923 | ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); |
| 2924 | if (ret) |
| 2925 | return ret; |
| 2926 | |
| 2927 | ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); |
| 2928 | if (ret) |
| 2929 | return ret; |
| 2930 | |
| 2931 | ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); |
| 2932 | if (ret) |
| 2933 | return ret; |
| 2934 | |
| 2935 | ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL); |
| 2936 | if (ret) |
| 2937 | return ret; |
| 2938 | |
| 2939 | fs_info->dirty_metadata_batch = PAGE_SIZE * |
| 2940 | (1 + ilog2(nr_cpu_ids)); |
| 2941 | |
| 2942 | ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); |
| 2943 | if (ret) |
| 2944 | return ret; |
| 2945 | |
| 2946 | ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, |
| 2947 | GFP_KERNEL); |
| 2948 | if (ret) |
| 2949 | return ret; |
| 2950 | |
| 2951 | fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), |
| 2952 | GFP_KERNEL); |
| 2953 | if (!fs_info->delayed_root) |
| 2954 | return -ENOMEM; |
| 2955 | btrfs_init_delayed_root(fs_info->delayed_root); |
| 2956 | |
| 2957 | if (sb_rdonly(sb)) |
| 2958 | set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); |
| 2959 | if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) |
| 2960 | set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); |
| 2961 | |
| 2962 | return btrfs_alloc_stripe_hash_table(fs_info); |
| 2963 | } |
| 2964 | |
| 2965 | static int btrfs_uuid_rescan_kthread(void *data) |
| 2966 | { |
| 2967 | struct btrfs_fs_info *fs_info = data; |
| 2968 | int ret; |
| 2969 | |
| 2970 | /* |
| 2971 | * 1st step is to iterate through the existing UUID tree and |
| 2972 | * to delete all entries that contain outdated data. |
| 2973 | * 2nd step is to add all missing entries to the UUID tree. |
| 2974 | */ |
| 2975 | ret = btrfs_uuid_tree_iterate(fs_info); |
| 2976 | if (ret < 0) { |
| 2977 | if (ret != -EINTR) |
| 2978 | btrfs_warn(fs_info, "iterating uuid_tree failed %d", |
| 2979 | ret); |
| 2980 | up(&fs_info->uuid_tree_rescan_sem); |
| 2981 | return ret; |
| 2982 | } |
| 2983 | return btrfs_uuid_scan_kthread(data); |
| 2984 | } |
| 2985 | |
| 2986 | static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) |
| 2987 | { |
| 2988 | struct task_struct *task; |
| 2989 | |
| 2990 | down(&fs_info->uuid_tree_rescan_sem); |
| 2991 | task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); |
| 2992 | if (IS_ERR(task)) { |
| 2993 | /* fs_info->update_uuid_tree_gen remains 0 in all error case */ |
| 2994 | btrfs_warn(fs_info, "failed to start uuid_rescan task"); |
| 2995 | up(&fs_info->uuid_tree_rescan_sem); |
| 2996 | return PTR_ERR(task); |
| 2997 | } |
| 2998 | |
| 2999 | return 0; |
| 3000 | } |
| 3001 | |
| 3002 | static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) |
| 3003 | { |
| 3004 | u64 root_objectid = 0; |
| 3005 | struct btrfs_root *gang[8]; |
| 3006 | int ret = 0; |
| 3007 | |
| 3008 | while (1) { |
| 3009 | unsigned int found; |
| 3010 | |
| 3011 | spin_lock(&fs_info->fs_roots_radix_lock); |
| 3012 | found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, |
| 3013 | (void **)gang, root_objectid, |
| 3014 | ARRAY_SIZE(gang)); |
| 3015 | if (!found) { |
| 3016 | spin_unlock(&fs_info->fs_roots_radix_lock); |
| 3017 | break; |
| 3018 | } |
| 3019 | root_objectid = btrfs_root_id(gang[found - 1]) + 1; |
| 3020 | |
| 3021 | for (int i = 0; i < found; i++) { |
| 3022 | /* Avoid to grab roots in dead_roots. */ |
| 3023 | if (btrfs_root_refs(&gang[i]->root_item) == 0) { |
| 3024 | gang[i] = NULL; |
| 3025 | continue; |
| 3026 | } |
| 3027 | /* Grab all the search result for later use. */ |
| 3028 | gang[i] = btrfs_grab_root(gang[i]); |
| 3029 | } |
| 3030 | spin_unlock(&fs_info->fs_roots_radix_lock); |
| 3031 | |
| 3032 | for (int i = 0; i < found; i++) { |
| 3033 | if (!gang[i]) |
| 3034 | continue; |
| 3035 | root_objectid = btrfs_root_id(gang[i]); |
| 3036 | /* |
| 3037 | * Continue to release the remaining roots after the first |
| 3038 | * error without cleanup and preserve the first error |
| 3039 | * for the return. |
| 3040 | */ |
| 3041 | if (!ret) |
| 3042 | ret = btrfs_orphan_cleanup(gang[i]); |
| 3043 | btrfs_put_root(gang[i]); |
| 3044 | } |
| 3045 | if (ret) |
| 3046 | break; |
| 3047 | |
| 3048 | root_objectid++; |
| 3049 | } |
| 3050 | return ret; |
| 3051 | } |
| 3052 | |
| 3053 | /* |
| 3054 | * Mounting logic specific to read-write file systems. Shared by open_ctree |
| 3055 | * and btrfs_remount when remounting from read-only to read-write. |
| 3056 | */ |
| 3057 | int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) |
| 3058 | { |
| 3059 | int ret; |
| 3060 | const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); |
| 3061 | bool rebuild_free_space_tree = false; |
| 3062 | |
| 3063 | if (btrfs_test_opt(fs_info, CLEAR_CACHE) && |
| 3064 | btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { |
| 3065 | if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) |
| 3066 | btrfs_warn(fs_info, |
| 3067 | "'clear_cache' option is ignored with extent tree v2"); |
| 3068 | else |
| 3069 | rebuild_free_space_tree = true; |
| 3070 | } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && |
| 3071 | !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { |
| 3072 | btrfs_warn(fs_info, "free space tree is invalid"); |
| 3073 | rebuild_free_space_tree = true; |
| 3074 | } |
| 3075 | |
| 3076 | if (rebuild_free_space_tree) { |
| 3077 | btrfs_info(fs_info, "rebuilding free space tree"); |
| 3078 | ret = btrfs_rebuild_free_space_tree(fs_info); |
| 3079 | if (ret) { |
| 3080 | btrfs_warn(fs_info, |
| 3081 | "failed to rebuild free space tree: %d", ret); |
| 3082 | goto out; |
| 3083 | } |
| 3084 | } |
| 3085 | |
| 3086 | if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && |
| 3087 | !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { |
| 3088 | btrfs_info(fs_info, "disabling free space tree"); |
| 3089 | ret = btrfs_delete_free_space_tree(fs_info); |
| 3090 | if (ret) { |
| 3091 | btrfs_warn(fs_info, |
| 3092 | "failed to disable free space tree: %d", ret); |
| 3093 | goto out; |
| 3094 | } |
| 3095 | } |
| 3096 | |
| 3097 | /* |
| 3098 | * btrfs_find_orphan_roots() is responsible for finding all the dead |
| 3099 | * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load |
| 3100 | * them into the fs_info->fs_roots_radix tree. This must be done before |
| 3101 | * calling btrfs_orphan_cleanup() on the tree root. If we don't do it |
| 3102 | * first, then btrfs_orphan_cleanup() will delete a dead root's orphan |
| 3103 | * item before the root's tree is deleted - this means that if we unmount |
| 3104 | * or crash before the deletion completes, on the next mount we will not |
| 3105 | * delete what remains of the tree because the orphan item does not |
| 3106 | * exists anymore, which is what tells us we have a pending deletion. |
| 3107 | */ |
| 3108 | ret = btrfs_find_orphan_roots(fs_info); |
| 3109 | if (ret) |
| 3110 | goto out; |
| 3111 | |
| 3112 | ret = btrfs_cleanup_fs_roots(fs_info); |
| 3113 | if (ret) |
| 3114 | goto out; |
| 3115 | |
| 3116 | down_read(&fs_info->cleanup_work_sem); |
| 3117 | if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || |
| 3118 | (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { |
| 3119 | up_read(&fs_info->cleanup_work_sem); |
| 3120 | goto out; |
| 3121 | } |
| 3122 | up_read(&fs_info->cleanup_work_sem); |
| 3123 | |
| 3124 | mutex_lock(&fs_info->cleaner_mutex); |
| 3125 | ret = btrfs_recover_relocation(fs_info); |
| 3126 | mutex_unlock(&fs_info->cleaner_mutex); |
| 3127 | if (ret < 0) { |
| 3128 | btrfs_warn(fs_info, "failed to recover relocation: %d", ret); |
| 3129 | goto out; |
| 3130 | } |
| 3131 | |
| 3132 | if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && |
| 3133 | !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { |
| 3134 | btrfs_info(fs_info, "creating free space tree"); |
| 3135 | ret = btrfs_create_free_space_tree(fs_info); |
| 3136 | if (ret) { |
| 3137 | btrfs_warn(fs_info, |
| 3138 | "failed to create free space tree: %d", ret); |
| 3139 | goto out; |
| 3140 | } |
| 3141 | } |
| 3142 | |
| 3143 | if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { |
| 3144 | ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); |
| 3145 | if (ret) |
| 3146 | goto out; |
| 3147 | } |
| 3148 | |
| 3149 | ret = btrfs_resume_balance_async(fs_info); |
| 3150 | if (ret) |
| 3151 | goto out; |
| 3152 | |
| 3153 | ret = btrfs_resume_dev_replace_async(fs_info); |
| 3154 | if (ret) { |
| 3155 | btrfs_warn(fs_info, "failed to resume dev_replace"); |
| 3156 | goto out; |
| 3157 | } |
| 3158 | |
| 3159 | btrfs_qgroup_rescan_resume(fs_info); |
| 3160 | |
| 3161 | if (!fs_info->uuid_root) { |
| 3162 | btrfs_info(fs_info, "creating UUID tree"); |
| 3163 | ret = btrfs_create_uuid_tree(fs_info); |
| 3164 | if (ret) { |
| 3165 | btrfs_warn(fs_info, |
| 3166 | "failed to create the UUID tree %d", ret); |
| 3167 | goto out; |
| 3168 | } |
| 3169 | } |
| 3170 | |
| 3171 | out: |
| 3172 | return ret; |
| 3173 | } |
| 3174 | |
| 3175 | /* |
| 3176 | * Do various sanity and dependency checks of different features. |
| 3177 | * |
| 3178 | * @is_rw_mount: If the mount is read-write. |
| 3179 | * |
| 3180 | * This is the place for less strict checks (like for subpage or artificial |
| 3181 | * feature dependencies). |
| 3182 | * |
| 3183 | * For strict checks or possible corruption detection, see |
| 3184 | * btrfs_validate_super(). |
| 3185 | * |
| 3186 | * This should be called after btrfs_parse_options(), as some mount options |
| 3187 | * (space cache related) can modify on-disk format like free space tree and |
| 3188 | * screw up certain feature dependencies. |
| 3189 | */ |
| 3190 | int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) |
| 3191 | { |
| 3192 | struct btrfs_super_block *disk_super = fs_info->super_copy; |
| 3193 | u64 incompat = btrfs_super_incompat_flags(disk_super); |
| 3194 | const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); |
| 3195 | const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); |
| 3196 | |
| 3197 | if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { |
| 3198 | btrfs_err(fs_info, |
| 3199 | "cannot mount because of unknown incompat features (0x%llx)", |
| 3200 | incompat); |
| 3201 | return -EINVAL; |
| 3202 | } |
| 3203 | |
| 3204 | /* Runtime limitation for mixed block groups. */ |
| 3205 | if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && |
| 3206 | (fs_info->sectorsize != fs_info->nodesize)) { |
| 3207 | btrfs_err(fs_info, |
| 3208 | "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", |
| 3209 | fs_info->nodesize, fs_info->sectorsize); |
| 3210 | return -EINVAL; |
| 3211 | } |
| 3212 | |
| 3213 | /* Mixed backref is an always-enabled feature. */ |
| 3214 | incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; |
| 3215 | |
| 3216 | /* Set compression related flags just in case. */ |
| 3217 | if (fs_info->compress_type == BTRFS_COMPRESS_LZO) |
| 3218 | incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; |
| 3219 | else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) |
| 3220 | incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; |
| 3221 | |
| 3222 | /* |
| 3223 | * An ancient flag, which should really be marked deprecated. |
| 3224 | * Such runtime limitation doesn't really need a incompat flag. |
| 3225 | */ |
| 3226 | if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) |
| 3227 | incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; |
| 3228 | |
| 3229 | if (compat_ro_unsupp && is_rw_mount) { |
| 3230 | btrfs_err(fs_info, |
| 3231 | "cannot mount read-write because of unknown compat_ro features (0x%llx)", |
| 3232 | compat_ro); |
| 3233 | return -EINVAL; |
| 3234 | } |
| 3235 | |
| 3236 | /* |
| 3237 | * We have unsupported RO compat features, although RO mounted, we |
| 3238 | * should not cause any metadata writes, including log replay. |
| 3239 | * Or we could screw up whatever the new feature requires. |
| 3240 | */ |
| 3241 | if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && |
| 3242 | !btrfs_test_opt(fs_info, NOLOGREPLAY)) { |
| 3243 | btrfs_err(fs_info, |
| 3244 | "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", |
| 3245 | compat_ro); |
| 3246 | return -EINVAL; |
| 3247 | } |
| 3248 | |
| 3249 | /* |
| 3250 | * Artificial limitations for block group tree, to force |
| 3251 | * block-group-tree to rely on no-holes and free-space-tree. |
| 3252 | */ |
| 3253 | if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && |
| 3254 | (!btrfs_fs_incompat(fs_info, NO_HOLES) || |
| 3255 | !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { |
| 3256 | btrfs_err(fs_info, |
| 3257 | "block-group-tree feature requires no-holes and free-space-tree features"); |
| 3258 | return -EINVAL; |
| 3259 | } |
| 3260 | |
| 3261 | /* |
| 3262 | * Subpage runtime limitation on v1 cache. |
| 3263 | * |
| 3264 | * V1 space cache still has some hard codeed PAGE_SIZE usage, while |
| 3265 | * we're already defaulting to v2 cache, no need to bother v1 as it's |
| 3266 | * going to be deprecated anyway. |
| 3267 | */ |
| 3268 | if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { |
| 3269 | btrfs_warn(fs_info, |
| 3270 | "v1 space cache is not supported for page size %lu with sectorsize %u", |
| 3271 | PAGE_SIZE, fs_info->sectorsize); |
| 3272 | return -EINVAL; |
| 3273 | } |
| 3274 | |
| 3275 | /* This can be called by remount, we need to protect the super block. */ |
| 3276 | spin_lock(&fs_info->super_lock); |
| 3277 | btrfs_set_super_incompat_flags(disk_super, incompat); |
| 3278 | spin_unlock(&fs_info->super_lock); |
| 3279 | |
| 3280 | return 0; |
| 3281 | } |
| 3282 | |
| 3283 | int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices) |
| 3284 | { |
| 3285 | u32 sectorsize; |
| 3286 | u32 nodesize; |
| 3287 | u32 stripesize; |
| 3288 | u64 generation; |
| 3289 | u16 csum_type; |
| 3290 | struct btrfs_super_block *disk_super; |
| 3291 | struct btrfs_fs_info *fs_info = btrfs_sb(sb); |
| 3292 | struct btrfs_root *tree_root; |
| 3293 | struct btrfs_root *chunk_root; |
| 3294 | int ret; |
| 3295 | int level; |
| 3296 | |
| 3297 | ret = init_mount_fs_info(fs_info, sb); |
| 3298 | if (ret) |
| 3299 | goto fail; |
| 3300 | |
| 3301 | /* These need to be init'ed before we start creating inodes and such. */ |
| 3302 | tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, |
| 3303 | GFP_KERNEL); |
| 3304 | fs_info->tree_root = tree_root; |
| 3305 | chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, |
| 3306 | GFP_KERNEL); |
| 3307 | fs_info->chunk_root = chunk_root; |
| 3308 | if (!tree_root || !chunk_root) { |
| 3309 | ret = -ENOMEM; |
| 3310 | goto fail; |
| 3311 | } |
| 3312 | |
| 3313 | ret = btrfs_init_btree_inode(sb); |
| 3314 | if (ret) |
| 3315 | goto fail; |
| 3316 | |
| 3317 | invalidate_bdev(fs_devices->latest_dev->bdev); |
| 3318 | |
| 3319 | /* |
| 3320 | * Read super block and check the signature bytes only |
| 3321 | */ |
| 3322 | disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false); |
| 3323 | if (IS_ERR(disk_super)) { |
| 3324 | ret = PTR_ERR(disk_super); |
| 3325 | goto fail_alloc; |
| 3326 | } |
| 3327 | |
| 3328 | btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); |
| 3329 | /* |
| 3330 | * Verify the type first, if that or the checksum value are |
| 3331 | * corrupted, we'll find out |
| 3332 | */ |
| 3333 | csum_type = btrfs_super_csum_type(disk_super); |
| 3334 | if (!btrfs_supported_super_csum(csum_type)) { |
| 3335 | btrfs_err(fs_info, "unsupported checksum algorithm: %u", |
| 3336 | csum_type); |
| 3337 | ret = -EINVAL; |
| 3338 | btrfs_release_disk_super(disk_super); |
| 3339 | goto fail_alloc; |
| 3340 | } |
| 3341 | |
| 3342 | fs_info->csum_size = btrfs_super_csum_size(disk_super); |
| 3343 | |
| 3344 | ret = btrfs_init_csum_hash(fs_info, csum_type); |
| 3345 | if (ret) { |
| 3346 | btrfs_release_disk_super(disk_super); |
| 3347 | goto fail_alloc; |
| 3348 | } |
| 3349 | |
| 3350 | /* |
| 3351 | * We want to check superblock checksum, the type is stored inside. |
| 3352 | * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). |
| 3353 | */ |
| 3354 | if (btrfs_check_super_csum(fs_info, disk_super)) { |
| 3355 | btrfs_err(fs_info, "superblock checksum mismatch"); |
| 3356 | ret = -EINVAL; |
| 3357 | btrfs_release_disk_super(disk_super); |
| 3358 | goto fail_alloc; |
| 3359 | } |
| 3360 | |
| 3361 | /* |
| 3362 | * super_copy is zeroed at allocation time and we never touch the |
| 3363 | * following bytes up to INFO_SIZE, the checksum is calculated from |
| 3364 | * the whole block of INFO_SIZE |
| 3365 | */ |
| 3366 | memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); |
| 3367 | btrfs_release_disk_super(disk_super); |
| 3368 | |
| 3369 | disk_super = fs_info->super_copy; |
| 3370 | |
| 3371 | memcpy(fs_info->super_for_commit, fs_info->super_copy, |
| 3372 | sizeof(*fs_info->super_for_commit)); |
| 3373 | |
| 3374 | ret = btrfs_validate_mount_super(fs_info); |
| 3375 | if (ret) { |
| 3376 | btrfs_err(fs_info, "superblock contains fatal errors"); |
| 3377 | ret = -EINVAL; |
| 3378 | goto fail_alloc; |
| 3379 | } |
| 3380 | |
| 3381 | if (!btrfs_super_root(disk_super)) { |
| 3382 | btrfs_err(fs_info, "invalid superblock tree root bytenr"); |
| 3383 | ret = -EINVAL; |
| 3384 | goto fail_alloc; |
| 3385 | } |
| 3386 | |
| 3387 | /* check FS state, whether FS is broken. */ |
| 3388 | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) |
| 3389 | WRITE_ONCE(fs_info->fs_error, -EUCLEAN); |
| 3390 | |
| 3391 | /* Set up fs_info before parsing mount options */ |
| 3392 | nodesize = btrfs_super_nodesize(disk_super); |
| 3393 | sectorsize = btrfs_super_sectorsize(disk_super); |
| 3394 | stripesize = sectorsize; |
| 3395 | fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); |
| 3396 | fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); |
| 3397 | |
| 3398 | fs_info->nodesize = nodesize; |
| 3399 | fs_info->sectorsize = sectorsize; |
| 3400 | fs_info->sectorsize_bits = ilog2(sectorsize); |
| 3401 | fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; |
| 3402 | fs_info->stripesize = stripesize; |
| 3403 | fs_info->fs_devices->fs_info = fs_info; |
| 3404 | |
| 3405 | /* |
| 3406 | * Handle the space caching options appropriately now that we have the |
| 3407 | * super block loaded and validated. |
| 3408 | */ |
| 3409 | btrfs_set_free_space_cache_settings(fs_info); |
| 3410 | |
| 3411 | if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { |
| 3412 | ret = -EINVAL; |
| 3413 | goto fail_alloc; |
| 3414 | } |
| 3415 | |
| 3416 | ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); |
| 3417 | if (ret < 0) |
| 3418 | goto fail_alloc; |
| 3419 | |
| 3420 | /* |
| 3421 | * At this point our mount options are validated, if we set ->max_inline |
| 3422 | * to something non-standard make sure we truncate it to sectorsize. |
| 3423 | */ |
| 3424 | fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); |
| 3425 | |
| 3426 | ret = btrfs_init_workqueues(fs_info); |
| 3427 | if (ret) |
| 3428 | goto fail_sb_buffer; |
| 3429 | |
| 3430 | sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); |
| 3431 | sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); |
| 3432 | |
| 3433 | /* Update the values for the current filesystem. */ |
| 3434 | sb->s_blocksize = sectorsize; |
| 3435 | sb->s_blocksize_bits = blksize_bits(sectorsize); |
| 3436 | memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); |
| 3437 | |
| 3438 | mutex_lock(&fs_info->chunk_mutex); |
| 3439 | ret = btrfs_read_sys_array(fs_info); |
| 3440 | mutex_unlock(&fs_info->chunk_mutex); |
| 3441 | if (ret) { |
| 3442 | btrfs_err(fs_info, "failed to read the system array: %d", ret); |
| 3443 | goto fail_sb_buffer; |
| 3444 | } |
| 3445 | |
| 3446 | generation = btrfs_super_chunk_root_generation(disk_super); |
| 3447 | level = btrfs_super_chunk_root_level(disk_super); |
| 3448 | ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), |
| 3449 | generation, level); |
| 3450 | if (ret) { |
| 3451 | btrfs_err(fs_info, "failed to read chunk root"); |
| 3452 | goto fail_tree_roots; |
| 3453 | } |
| 3454 | |
| 3455 | read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, |
| 3456 | offsetof(struct btrfs_header, chunk_tree_uuid), |
| 3457 | BTRFS_UUID_SIZE); |
| 3458 | |
| 3459 | ret = btrfs_read_chunk_tree(fs_info); |
| 3460 | if (ret) { |
| 3461 | btrfs_err(fs_info, "failed to read chunk tree: %d", ret); |
| 3462 | goto fail_tree_roots; |
| 3463 | } |
| 3464 | |
| 3465 | /* |
| 3466 | * At this point we know all the devices that make this filesystem, |
| 3467 | * including the seed devices but we don't know yet if the replace |
| 3468 | * target is required. So free devices that are not part of this |
| 3469 | * filesystem but skip the replace target device which is checked |
| 3470 | * below in btrfs_init_dev_replace(). |
| 3471 | */ |
| 3472 | btrfs_free_extra_devids(fs_devices); |
| 3473 | if (!fs_devices->latest_dev->bdev) { |
| 3474 | btrfs_err(fs_info, "failed to read devices"); |
| 3475 | ret = -EIO; |
| 3476 | goto fail_tree_roots; |
| 3477 | } |
| 3478 | |
| 3479 | ret = init_tree_roots(fs_info); |
| 3480 | if (ret) |
| 3481 | goto fail_tree_roots; |
| 3482 | |
| 3483 | /* |
| 3484 | * Get zone type information of zoned block devices. This will also |
| 3485 | * handle emulation of a zoned filesystem if a regular device has the |
| 3486 | * zoned incompat feature flag set. |
| 3487 | */ |
| 3488 | ret = btrfs_get_dev_zone_info_all_devices(fs_info); |
| 3489 | if (ret) { |
| 3490 | btrfs_err(fs_info, |
| 3491 | "zoned: failed to read device zone info: %d", ret); |
| 3492 | goto fail_block_groups; |
| 3493 | } |
| 3494 | |
| 3495 | /* |
| 3496 | * If we have a uuid root and we're not being told to rescan we need to |
| 3497 | * check the generation here so we can set the |
| 3498 | * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the |
| 3499 | * transaction during a balance or the log replay without updating the |
| 3500 | * uuid generation, and then if we crash we would rescan the uuid tree, |
| 3501 | * even though it was perfectly fine. |
| 3502 | */ |
| 3503 | if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && |
| 3504 | fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) |
| 3505 | set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); |
| 3506 | |
| 3507 | ret = btrfs_verify_dev_extents(fs_info); |
| 3508 | if (ret) { |
| 3509 | btrfs_err(fs_info, |
| 3510 | "failed to verify dev extents against chunks: %d", |
| 3511 | ret); |
| 3512 | goto fail_block_groups; |
| 3513 | } |
| 3514 | ret = btrfs_recover_balance(fs_info); |
| 3515 | if (ret) { |
| 3516 | btrfs_err(fs_info, "failed to recover balance: %d", ret); |
| 3517 | goto fail_block_groups; |
| 3518 | } |
| 3519 | |
| 3520 | ret = btrfs_init_dev_stats(fs_info); |
| 3521 | if (ret) { |
| 3522 | btrfs_err(fs_info, "failed to init dev_stats: %d", ret); |
| 3523 | goto fail_block_groups; |
| 3524 | } |
| 3525 | |
| 3526 | ret = btrfs_init_dev_replace(fs_info); |
| 3527 | if (ret) { |
| 3528 | btrfs_err(fs_info, "failed to init dev_replace: %d", ret); |
| 3529 | goto fail_block_groups; |
| 3530 | } |
| 3531 | |
| 3532 | ret = btrfs_check_zoned_mode(fs_info); |
| 3533 | if (ret) { |
| 3534 | btrfs_err(fs_info, "failed to initialize zoned mode: %d", |
| 3535 | ret); |
| 3536 | goto fail_block_groups; |
| 3537 | } |
| 3538 | |
| 3539 | ret = btrfs_sysfs_add_fsid(fs_devices); |
| 3540 | if (ret) { |
| 3541 | btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", |
| 3542 | ret); |
| 3543 | goto fail_block_groups; |
| 3544 | } |
| 3545 | |
| 3546 | ret = btrfs_sysfs_add_mounted(fs_info); |
| 3547 | if (ret) { |
| 3548 | btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); |
| 3549 | goto fail_fsdev_sysfs; |
| 3550 | } |
| 3551 | |
| 3552 | ret = btrfs_init_space_info(fs_info); |
| 3553 | if (ret) { |
| 3554 | btrfs_err(fs_info, "failed to initialize space info: %d", ret); |
| 3555 | goto fail_sysfs; |
| 3556 | } |
| 3557 | |
| 3558 | ret = btrfs_read_block_groups(fs_info); |
| 3559 | if (ret) { |
| 3560 | btrfs_err(fs_info, "failed to read block groups: %d", ret); |
| 3561 | goto fail_sysfs; |
| 3562 | } |
| 3563 | |
| 3564 | btrfs_free_zone_cache(fs_info); |
| 3565 | |
| 3566 | btrfs_check_active_zone_reservation(fs_info); |
| 3567 | |
| 3568 | if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && |
| 3569 | !btrfs_check_rw_degradable(fs_info, NULL)) { |
| 3570 | btrfs_warn(fs_info, |
| 3571 | "writable mount is not allowed due to too many missing devices"); |
| 3572 | ret = -EINVAL; |
| 3573 | goto fail_sysfs; |
| 3574 | } |
| 3575 | |
| 3576 | fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, |
| 3577 | "btrfs-cleaner"); |
| 3578 | if (IS_ERR(fs_info->cleaner_kthread)) { |
| 3579 | ret = PTR_ERR(fs_info->cleaner_kthread); |
| 3580 | goto fail_sysfs; |
| 3581 | } |
| 3582 | |
| 3583 | fs_info->transaction_kthread = kthread_run(transaction_kthread, |
| 3584 | tree_root, |
| 3585 | "btrfs-transaction"); |
| 3586 | if (IS_ERR(fs_info->transaction_kthread)) { |
| 3587 | ret = PTR_ERR(fs_info->transaction_kthread); |
| 3588 | goto fail_cleaner; |
| 3589 | } |
| 3590 | |
| 3591 | ret = btrfs_read_qgroup_config(fs_info); |
| 3592 | if (ret) |
| 3593 | goto fail_trans_kthread; |
| 3594 | |
| 3595 | if (btrfs_build_ref_tree(fs_info)) |
| 3596 | btrfs_err(fs_info, "couldn't build ref tree"); |
| 3597 | |
| 3598 | /* do not make disk changes in broken FS or nologreplay is given */ |
| 3599 | if (btrfs_super_log_root(disk_super) != 0 && |
| 3600 | !btrfs_test_opt(fs_info, NOLOGREPLAY)) { |
| 3601 | btrfs_info(fs_info, "start tree-log replay"); |
| 3602 | ret = btrfs_replay_log(fs_info, fs_devices); |
| 3603 | if (ret) |
| 3604 | goto fail_qgroup; |
| 3605 | } |
| 3606 | |
| 3607 | fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); |
| 3608 | if (IS_ERR(fs_info->fs_root)) { |
| 3609 | ret = PTR_ERR(fs_info->fs_root); |
| 3610 | btrfs_warn(fs_info, "failed to read fs tree: %d", ret); |
| 3611 | fs_info->fs_root = NULL; |
| 3612 | goto fail_qgroup; |
| 3613 | } |
| 3614 | |
| 3615 | if (sb_rdonly(sb)) |
| 3616 | return 0; |
| 3617 | |
| 3618 | ret = btrfs_start_pre_rw_mount(fs_info); |
| 3619 | if (ret) { |
| 3620 | close_ctree(fs_info); |
| 3621 | return ret; |
| 3622 | } |
| 3623 | btrfs_discard_resume(fs_info); |
| 3624 | |
| 3625 | if (fs_info->uuid_root && |
| 3626 | (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || |
| 3627 | fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { |
| 3628 | btrfs_info(fs_info, "checking UUID tree"); |
| 3629 | ret = btrfs_check_uuid_tree(fs_info); |
| 3630 | if (ret) { |
| 3631 | btrfs_warn(fs_info, |
| 3632 | "failed to check the UUID tree: %d", ret); |
| 3633 | close_ctree(fs_info); |
| 3634 | return ret; |
| 3635 | } |
| 3636 | } |
| 3637 | |
| 3638 | set_bit(BTRFS_FS_OPEN, &fs_info->flags); |
| 3639 | |
| 3640 | /* Kick the cleaner thread so it'll start deleting snapshots. */ |
| 3641 | if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) |
| 3642 | wake_up_process(fs_info->cleaner_kthread); |
| 3643 | |
| 3644 | return 0; |
| 3645 | |
| 3646 | fail_qgroup: |
| 3647 | btrfs_free_qgroup_config(fs_info); |
| 3648 | fail_trans_kthread: |
| 3649 | kthread_stop(fs_info->transaction_kthread); |
| 3650 | btrfs_cleanup_transaction(fs_info); |
| 3651 | btrfs_free_fs_roots(fs_info); |
| 3652 | fail_cleaner: |
| 3653 | kthread_stop(fs_info->cleaner_kthread); |
| 3654 | |
| 3655 | /* |
| 3656 | * make sure we're done with the btree inode before we stop our |
| 3657 | * kthreads |
| 3658 | */ |
| 3659 | filemap_write_and_wait(fs_info->btree_inode->i_mapping); |
| 3660 | |
| 3661 | fail_sysfs: |
| 3662 | btrfs_sysfs_remove_mounted(fs_info); |
| 3663 | |
| 3664 | fail_fsdev_sysfs: |
| 3665 | btrfs_sysfs_remove_fsid(fs_info->fs_devices); |
| 3666 | |
| 3667 | fail_block_groups: |
| 3668 | btrfs_put_block_group_cache(fs_info); |
| 3669 | |
| 3670 | fail_tree_roots: |
| 3671 | if (fs_info->data_reloc_root) |
| 3672 | btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); |
| 3673 | free_root_pointers(fs_info, true); |
| 3674 | invalidate_inode_pages2(fs_info->btree_inode->i_mapping); |
| 3675 | |
| 3676 | fail_sb_buffer: |
| 3677 | btrfs_stop_all_workers(fs_info); |
| 3678 | btrfs_free_block_groups(fs_info); |
| 3679 | fail_alloc: |
| 3680 | btrfs_mapping_tree_free(fs_info); |
| 3681 | |
| 3682 | iput(fs_info->btree_inode); |
| 3683 | fail: |
| 3684 | btrfs_close_devices(fs_info->fs_devices); |
| 3685 | ASSERT(ret < 0); |
| 3686 | return ret; |
| 3687 | } |
| 3688 | ALLOW_ERROR_INJECTION(open_ctree, ERRNO); |
| 3689 | |
| 3690 | static void btrfs_end_super_write(struct bio *bio) |
| 3691 | { |
| 3692 | struct btrfs_device *device = bio->bi_private; |
| 3693 | struct folio_iter fi; |
| 3694 | |
| 3695 | bio_for_each_folio_all(fi, bio) { |
| 3696 | if (bio->bi_status) { |
| 3697 | btrfs_warn_rl_in_rcu(device->fs_info, |
| 3698 | "lost super block write due to IO error on %s (%d)", |
| 3699 | btrfs_dev_name(device), |
| 3700 | blk_status_to_errno(bio->bi_status)); |
| 3701 | btrfs_dev_stat_inc_and_print(device, |
| 3702 | BTRFS_DEV_STAT_WRITE_ERRS); |
| 3703 | /* Ensure failure if the primary sb fails. */ |
| 3704 | if (bio->bi_opf & REQ_FUA) |
| 3705 | atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, |
| 3706 | &device->sb_write_errors); |
| 3707 | else |
| 3708 | atomic_inc(&device->sb_write_errors); |
| 3709 | } |
| 3710 | folio_unlock(fi.folio); |
| 3711 | folio_put(fi.folio); |
| 3712 | } |
| 3713 | |
| 3714 | bio_put(bio); |
| 3715 | } |
| 3716 | |
| 3717 | /* |
| 3718 | * Write superblock @sb to the @device. Do not wait for completion, all the |
| 3719 | * folios we use for writing are locked. |
| 3720 | * |
| 3721 | * Write @max_mirrors copies of the superblock, where 0 means default that fit |
| 3722 | * the expected device size at commit time. Note that max_mirrors must be |
| 3723 | * same for write and wait phases. |
| 3724 | * |
| 3725 | * Return number of errors when folio is not found or submission fails. |
| 3726 | */ |
| 3727 | static int write_dev_supers(struct btrfs_device *device, |
| 3728 | struct btrfs_super_block *sb, int max_mirrors) |
| 3729 | { |
| 3730 | struct btrfs_fs_info *fs_info = device->fs_info; |
| 3731 | struct address_space *mapping = device->bdev->bd_mapping; |
| 3732 | SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| 3733 | int i; |
| 3734 | int ret; |
| 3735 | u64 bytenr, bytenr_orig; |
| 3736 | |
| 3737 | atomic_set(&device->sb_write_errors, 0); |
| 3738 | |
| 3739 | if (max_mirrors == 0) |
| 3740 | max_mirrors = BTRFS_SUPER_MIRROR_MAX; |
| 3741 | |
| 3742 | shash->tfm = fs_info->csum_shash; |
| 3743 | |
| 3744 | for (i = 0; i < max_mirrors; i++) { |
| 3745 | struct folio *folio; |
| 3746 | struct bio *bio; |
| 3747 | struct btrfs_super_block *disk_super; |
| 3748 | size_t offset; |
| 3749 | |
| 3750 | bytenr_orig = btrfs_sb_offset(i); |
| 3751 | ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); |
| 3752 | if (ret == -ENOENT) { |
| 3753 | continue; |
| 3754 | } else if (ret < 0) { |
| 3755 | btrfs_err(device->fs_info, |
| 3756 | "couldn't get super block location for mirror %d error %d", |
| 3757 | i, ret); |
| 3758 | atomic_inc(&device->sb_write_errors); |
| 3759 | continue; |
| 3760 | } |
| 3761 | if (bytenr + BTRFS_SUPER_INFO_SIZE >= |
| 3762 | device->commit_total_bytes) |
| 3763 | break; |
| 3764 | |
| 3765 | btrfs_set_super_bytenr(sb, bytenr_orig); |
| 3766 | |
| 3767 | crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, |
| 3768 | BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, |
| 3769 | sb->csum); |
| 3770 | |
| 3771 | folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, |
| 3772 | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, |
| 3773 | GFP_NOFS); |
| 3774 | if (IS_ERR(folio)) { |
| 3775 | btrfs_err(device->fs_info, |
| 3776 | "couldn't get super block page for bytenr %llu error %ld", |
| 3777 | bytenr, PTR_ERR(folio)); |
| 3778 | atomic_inc(&device->sb_write_errors); |
| 3779 | continue; |
| 3780 | } |
| 3781 | |
| 3782 | offset = offset_in_folio(folio, bytenr); |
| 3783 | disk_super = folio_address(folio) + offset; |
| 3784 | memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); |
| 3785 | |
| 3786 | /* |
| 3787 | * Directly use bios here instead of relying on the page cache |
| 3788 | * to do I/O, so we don't lose the ability to do integrity |
| 3789 | * checking. |
| 3790 | */ |
| 3791 | bio = bio_alloc(device->bdev, 1, |
| 3792 | REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, |
| 3793 | GFP_NOFS); |
| 3794 | bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; |
| 3795 | bio->bi_private = device; |
| 3796 | bio->bi_end_io = btrfs_end_super_write; |
| 3797 | bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); |
| 3798 | |
| 3799 | /* |
| 3800 | * We FUA only the first super block. The others we allow to |
| 3801 | * go down lazy and there's a short window where the on-disk |
| 3802 | * copies might still contain the older version. |
| 3803 | */ |
| 3804 | if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) |
| 3805 | bio->bi_opf |= REQ_FUA; |
| 3806 | submit_bio(bio); |
| 3807 | |
| 3808 | if (btrfs_advance_sb_log(device, i)) |
| 3809 | atomic_inc(&device->sb_write_errors); |
| 3810 | } |
| 3811 | return atomic_read(&device->sb_write_errors) < i ? 0 : -1; |
| 3812 | } |
| 3813 | |
| 3814 | /* |
| 3815 | * Wait for write completion of superblocks done by write_dev_supers, |
| 3816 | * @max_mirrors same for write and wait phases. |
| 3817 | * |
| 3818 | * Return -1 if primary super block write failed or when there were no super block |
| 3819 | * copies written. Otherwise 0. |
| 3820 | */ |
| 3821 | static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) |
| 3822 | { |
| 3823 | int i; |
| 3824 | int errors = 0; |
| 3825 | bool primary_failed = false; |
| 3826 | int ret; |
| 3827 | u64 bytenr; |
| 3828 | |
| 3829 | if (max_mirrors == 0) |
| 3830 | max_mirrors = BTRFS_SUPER_MIRROR_MAX; |
| 3831 | |
| 3832 | for (i = 0; i < max_mirrors; i++) { |
| 3833 | struct folio *folio; |
| 3834 | |
| 3835 | ret = btrfs_sb_log_location(device, i, READ, &bytenr); |
| 3836 | if (ret == -ENOENT) { |
| 3837 | break; |
| 3838 | } else if (ret < 0) { |
| 3839 | errors++; |
| 3840 | if (i == 0) |
| 3841 | primary_failed = true; |
| 3842 | continue; |
| 3843 | } |
| 3844 | if (bytenr + BTRFS_SUPER_INFO_SIZE >= |
| 3845 | device->commit_total_bytes) |
| 3846 | break; |
| 3847 | |
| 3848 | folio = filemap_get_folio(device->bdev->bd_mapping, |
| 3849 | bytenr >> PAGE_SHIFT); |
| 3850 | /* If the folio has been removed, then we know it completed. */ |
| 3851 | if (IS_ERR(folio)) |
| 3852 | continue; |
| 3853 | |
| 3854 | /* Folio will be unlocked once the write completes. */ |
| 3855 | folio_wait_locked(folio); |
| 3856 | folio_put(folio); |
| 3857 | } |
| 3858 | |
| 3859 | errors += atomic_read(&device->sb_write_errors); |
| 3860 | if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) |
| 3861 | primary_failed = true; |
| 3862 | if (primary_failed) { |
| 3863 | btrfs_err(device->fs_info, "error writing primary super block to device %llu", |
| 3864 | device->devid); |
| 3865 | return -1; |
| 3866 | } |
| 3867 | |
| 3868 | return errors < i ? 0 : -1; |
| 3869 | } |
| 3870 | |
| 3871 | /* |
| 3872 | * endio for the write_dev_flush, this will wake anyone waiting |
| 3873 | * for the barrier when it is done |
| 3874 | */ |
| 3875 | static void btrfs_end_empty_barrier(struct bio *bio) |
| 3876 | { |
| 3877 | bio_uninit(bio); |
| 3878 | complete(bio->bi_private); |
| 3879 | } |
| 3880 | |
| 3881 | /* |
| 3882 | * Submit a flush request to the device if it supports it. Error handling is |
| 3883 | * done in the waiting counterpart. |
| 3884 | */ |
| 3885 | static void write_dev_flush(struct btrfs_device *device) |
| 3886 | { |
| 3887 | struct bio *bio = &device->flush_bio; |
| 3888 | |
| 3889 | device->last_flush_error = BLK_STS_OK; |
| 3890 | |
| 3891 | bio_init(bio, device->bdev, NULL, 0, |
| 3892 | REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); |
| 3893 | bio->bi_end_io = btrfs_end_empty_barrier; |
| 3894 | init_completion(&device->flush_wait); |
| 3895 | bio->bi_private = &device->flush_wait; |
| 3896 | submit_bio(bio); |
| 3897 | set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); |
| 3898 | } |
| 3899 | |
| 3900 | /* |
| 3901 | * If the flush bio has been submitted by write_dev_flush, wait for it. |
| 3902 | * Return true for any error, and false otherwise. |
| 3903 | */ |
| 3904 | static bool wait_dev_flush(struct btrfs_device *device) |
| 3905 | { |
| 3906 | struct bio *bio = &device->flush_bio; |
| 3907 | |
| 3908 | if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) |
| 3909 | return false; |
| 3910 | |
| 3911 | wait_for_completion_io(&device->flush_wait); |
| 3912 | |
| 3913 | if (bio->bi_status) { |
| 3914 | device->last_flush_error = bio->bi_status; |
| 3915 | btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); |
| 3916 | return true; |
| 3917 | } |
| 3918 | |
| 3919 | return false; |
| 3920 | } |
| 3921 | |
| 3922 | /* |
| 3923 | * send an empty flush down to each device in parallel, |
| 3924 | * then wait for them |
| 3925 | */ |
| 3926 | static int barrier_all_devices(struct btrfs_fs_info *info) |
| 3927 | { |
| 3928 | struct list_head *head; |
| 3929 | struct btrfs_device *dev; |
| 3930 | int errors_wait = 0; |
| 3931 | |
| 3932 | lockdep_assert_held(&info->fs_devices->device_list_mutex); |
| 3933 | /* send down all the barriers */ |
| 3934 | head = &info->fs_devices->devices; |
| 3935 | list_for_each_entry(dev, head, dev_list) { |
| 3936 | if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) |
| 3937 | continue; |
| 3938 | if (!dev->bdev) |
| 3939 | continue; |
| 3940 | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
| 3941 | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) |
| 3942 | continue; |
| 3943 | |
| 3944 | write_dev_flush(dev); |
| 3945 | } |
| 3946 | |
| 3947 | /* wait for all the barriers */ |
| 3948 | list_for_each_entry(dev, head, dev_list) { |
| 3949 | if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) |
| 3950 | continue; |
| 3951 | if (!dev->bdev) { |
| 3952 | errors_wait++; |
| 3953 | continue; |
| 3954 | } |
| 3955 | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
| 3956 | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) |
| 3957 | continue; |
| 3958 | |
| 3959 | if (wait_dev_flush(dev)) |
| 3960 | errors_wait++; |
| 3961 | } |
| 3962 | |
| 3963 | /* |
| 3964 | * Checks last_flush_error of disks in order to determine the device |
| 3965 | * state. |
| 3966 | */ |
| 3967 | if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) |
| 3968 | return -EIO; |
| 3969 | |
| 3970 | return 0; |
| 3971 | } |
| 3972 | |
| 3973 | int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) |
| 3974 | { |
| 3975 | int raid_type; |
| 3976 | int min_tolerated = INT_MAX; |
| 3977 | |
| 3978 | if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || |
| 3979 | (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) |
| 3980 | min_tolerated = min_t(int, min_tolerated, |
| 3981 | btrfs_raid_array[BTRFS_RAID_SINGLE]. |
| 3982 | tolerated_failures); |
| 3983 | |
| 3984 | for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { |
| 3985 | if (raid_type == BTRFS_RAID_SINGLE) |
| 3986 | continue; |
| 3987 | if (!(flags & btrfs_raid_array[raid_type].bg_flag)) |
| 3988 | continue; |
| 3989 | min_tolerated = min_t(int, min_tolerated, |
| 3990 | btrfs_raid_array[raid_type]. |
| 3991 | tolerated_failures); |
| 3992 | } |
| 3993 | |
| 3994 | if (min_tolerated == INT_MAX) { |
| 3995 | pr_warn("BTRFS: unknown raid flag: %llu", flags); |
| 3996 | min_tolerated = 0; |
| 3997 | } |
| 3998 | |
| 3999 | return min_tolerated; |
| 4000 | } |
| 4001 | |
| 4002 | int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) |
| 4003 | { |
| 4004 | struct list_head *head; |
| 4005 | struct btrfs_device *dev; |
| 4006 | struct btrfs_super_block *sb; |
| 4007 | struct btrfs_dev_item *dev_item; |
| 4008 | int ret; |
| 4009 | int do_barriers; |
| 4010 | int max_errors; |
| 4011 | int total_errors = 0; |
| 4012 | u64 flags; |
| 4013 | |
| 4014 | do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); |
| 4015 | |
| 4016 | /* |
| 4017 | * max_mirrors == 0 indicates we're from commit_transaction, |
| 4018 | * not from fsync where the tree roots in fs_info have not |
| 4019 | * been consistent on disk. |
| 4020 | */ |
| 4021 | if (max_mirrors == 0) |
| 4022 | backup_super_roots(fs_info); |
| 4023 | |
| 4024 | sb = fs_info->super_for_commit; |
| 4025 | dev_item = &sb->dev_item; |
| 4026 | |
| 4027 | mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| 4028 | head = &fs_info->fs_devices->devices; |
| 4029 | max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; |
| 4030 | |
| 4031 | if (do_barriers) { |
| 4032 | ret = barrier_all_devices(fs_info); |
| 4033 | if (ret) { |
| 4034 | mutex_unlock( |
| 4035 | &fs_info->fs_devices->device_list_mutex); |
| 4036 | btrfs_handle_fs_error(fs_info, ret, |
| 4037 | "errors while submitting device barriers."); |
| 4038 | return ret; |
| 4039 | } |
| 4040 | } |
| 4041 | |
| 4042 | list_for_each_entry(dev, head, dev_list) { |
| 4043 | if (!dev->bdev) { |
| 4044 | total_errors++; |
| 4045 | continue; |
| 4046 | } |
| 4047 | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
| 4048 | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) |
| 4049 | continue; |
| 4050 | |
| 4051 | btrfs_set_stack_device_generation(dev_item, 0); |
| 4052 | btrfs_set_stack_device_type(dev_item, dev->type); |
| 4053 | btrfs_set_stack_device_id(dev_item, dev->devid); |
| 4054 | btrfs_set_stack_device_total_bytes(dev_item, |
| 4055 | dev->commit_total_bytes); |
| 4056 | btrfs_set_stack_device_bytes_used(dev_item, |
| 4057 | dev->commit_bytes_used); |
| 4058 | btrfs_set_stack_device_io_align(dev_item, dev->io_align); |
| 4059 | btrfs_set_stack_device_io_width(dev_item, dev->io_width); |
| 4060 | btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); |
| 4061 | memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); |
| 4062 | memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, |
| 4063 | BTRFS_FSID_SIZE); |
| 4064 | |
| 4065 | flags = btrfs_super_flags(sb); |
| 4066 | btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); |
| 4067 | |
| 4068 | ret = btrfs_validate_write_super(fs_info, sb); |
| 4069 | if (ret < 0) { |
| 4070 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 4071 | btrfs_handle_fs_error(fs_info, -EUCLEAN, |
| 4072 | "unexpected superblock corruption detected"); |
| 4073 | return -EUCLEAN; |
| 4074 | } |
| 4075 | |
| 4076 | ret = write_dev_supers(dev, sb, max_mirrors); |
| 4077 | if (ret) |
| 4078 | total_errors++; |
| 4079 | } |
| 4080 | if (total_errors > max_errors) { |
| 4081 | btrfs_err(fs_info, "%d errors while writing supers", |
| 4082 | total_errors); |
| 4083 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 4084 | |
| 4085 | /* FUA is masked off if unsupported and can't be the reason */ |
| 4086 | btrfs_handle_fs_error(fs_info, -EIO, |
| 4087 | "%d errors while writing supers", |
| 4088 | total_errors); |
| 4089 | return -EIO; |
| 4090 | } |
| 4091 | |
| 4092 | total_errors = 0; |
| 4093 | list_for_each_entry(dev, head, dev_list) { |
| 4094 | if (!dev->bdev) |
| 4095 | continue; |
| 4096 | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
| 4097 | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) |
| 4098 | continue; |
| 4099 | |
| 4100 | ret = wait_dev_supers(dev, max_mirrors); |
| 4101 | if (ret) |
| 4102 | total_errors++; |
| 4103 | } |
| 4104 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 4105 | if (total_errors > max_errors) { |
| 4106 | btrfs_handle_fs_error(fs_info, -EIO, |
| 4107 | "%d errors while writing supers", |
| 4108 | total_errors); |
| 4109 | return -EIO; |
| 4110 | } |
| 4111 | return 0; |
| 4112 | } |
| 4113 | |
| 4114 | /* Drop a fs root from the radix tree and free it. */ |
| 4115 | void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, |
| 4116 | struct btrfs_root *root) |
| 4117 | { |
| 4118 | bool drop_ref = false; |
| 4119 | |
| 4120 | spin_lock(&fs_info->fs_roots_radix_lock); |
| 4121 | radix_tree_delete(&fs_info->fs_roots_radix, |
| 4122 | (unsigned long)btrfs_root_id(root)); |
| 4123 | if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) |
| 4124 | drop_ref = true; |
| 4125 | spin_unlock(&fs_info->fs_roots_radix_lock); |
| 4126 | |
| 4127 | if (BTRFS_FS_ERROR(fs_info)) { |
| 4128 | ASSERT(root->log_root == NULL); |
| 4129 | if (root->reloc_root) { |
| 4130 | btrfs_put_root(root->reloc_root); |
| 4131 | root->reloc_root = NULL; |
| 4132 | } |
| 4133 | } |
| 4134 | |
| 4135 | if (drop_ref) |
| 4136 | btrfs_put_root(root); |
| 4137 | } |
| 4138 | |
| 4139 | int btrfs_commit_super(struct btrfs_fs_info *fs_info) |
| 4140 | { |
| 4141 | mutex_lock(&fs_info->cleaner_mutex); |
| 4142 | btrfs_run_delayed_iputs(fs_info); |
| 4143 | mutex_unlock(&fs_info->cleaner_mutex); |
| 4144 | wake_up_process(fs_info->cleaner_kthread); |
| 4145 | |
| 4146 | /* wait until ongoing cleanup work done */ |
| 4147 | down_write(&fs_info->cleanup_work_sem); |
| 4148 | up_write(&fs_info->cleanup_work_sem); |
| 4149 | |
| 4150 | return btrfs_commit_current_transaction(fs_info->tree_root); |
| 4151 | } |
| 4152 | |
| 4153 | static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) |
| 4154 | { |
| 4155 | struct btrfs_transaction *trans; |
| 4156 | struct btrfs_transaction *tmp; |
| 4157 | bool found = false; |
| 4158 | |
| 4159 | /* |
| 4160 | * This function is only called at the very end of close_ctree(), |
| 4161 | * thus no other running transaction, no need to take trans_lock. |
| 4162 | */ |
| 4163 | ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); |
| 4164 | list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { |
| 4165 | struct extent_state *cached = NULL; |
| 4166 | u64 dirty_bytes = 0; |
| 4167 | u64 cur = 0; |
| 4168 | u64 found_start; |
| 4169 | u64 found_end; |
| 4170 | |
| 4171 | found = true; |
| 4172 | while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur, |
| 4173 | &found_start, &found_end, |
| 4174 | EXTENT_DIRTY, &cached)) { |
| 4175 | dirty_bytes += found_end + 1 - found_start; |
| 4176 | cur = found_end + 1; |
| 4177 | } |
| 4178 | btrfs_warn(fs_info, |
| 4179 | "transaction %llu (with %llu dirty metadata bytes) is not committed", |
| 4180 | trans->transid, dirty_bytes); |
| 4181 | btrfs_cleanup_one_transaction(trans); |
| 4182 | |
| 4183 | if (trans == fs_info->running_transaction) |
| 4184 | fs_info->running_transaction = NULL; |
| 4185 | list_del_init(&trans->list); |
| 4186 | |
| 4187 | btrfs_put_transaction(trans); |
| 4188 | trace_btrfs_transaction_commit(fs_info); |
| 4189 | } |
| 4190 | ASSERT(!found); |
| 4191 | } |
| 4192 | |
| 4193 | void __cold close_ctree(struct btrfs_fs_info *fs_info) |
| 4194 | { |
| 4195 | int ret; |
| 4196 | |
| 4197 | set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); |
| 4198 | |
| 4199 | /* |
| 4200 | * If we had UNFINISHED_DROPS we could still be processing them, so |
| 4201 | * clear that bit and wake up relocation so it can stop. |
| 4202 | * We must do this before stopping the block group reclaim task, because |
| 4203 | * at btrfs_relocate_block_group() we wait for this bit, and after the |
| 4204 | * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we |
| 4205 | * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will |
| 4206 | * return 1. |
| 4207 | */ |
| 4208 | btrfs_wake_unfinished_drop(fs_info); |
| 4209 | |
| 4210 | /* |
| 4211 | * We may have the reclaim task running and relocating a data block group, |
| 4212 | * in which case it may create delayed iputs. So stop it before we park |
| 4213 | * the cleaner kthread otherwise we can get new delayed iputs after |
| 4214 | * parking the cleaner, and that can make the async reclaim task to hang |
| 4215 | * if it's waiting for delayed iputs to complete, since the cleaner is |
| 4216 | * parked and can not run delayed iputs - this will make us hang when |
| 4217 | * trying to stop the async reclaim task. |
| 4218 | */ |
| 4219 | cancel_work_sync(&fs_info->reclaim_bgs_work); |
| 4220 | /* |
| 4221 | * We don't want the cleaner to start new transactions, add more delayed |
| 4222 | * iputs, etc. while we're closing. We can't use kthread_stop() yet |
| 4223 | * because that frees the task_struct, and the transaction kthread might |
| 4224 | * still try to wake up the cleaner. |
| 4225 | */ |
| 4226 | kthread_park(fs_info->cleaner_kthread); |
| 4227 | |
| 4228 | /* wait for the qgroup rescan worker to stop */ |
| 4229 | btrfs_qgroup_wait_for_completion(fs_info, false); |
| 4230 | |
| 4231 | /* wait for the uuid_scan task to finish */ |
| 4232 | down(&fs_info->uuid_tree_rescan_sem); |
| 4233 | /* avoid complains from lockdep et al., set sem back to initial state */ |
| 4234 | up(&fs_info->uuid_tree_rescan_sem); |
| 4235 | |
| 4236 | /* pause restriper - we want to resume on mount */ |
| 4237 | btrfs_pause_balance(fs_info); |
| 4238 | |
| 4239 | btrfs_dev_replace_suspend_for_unmount(fs_info); |
| 4240 | |
| 4241 | btrfs_scrub_cancel(fs_info); |
| 4242 | |
| 4243 | /* wait for any defraggers to finish */ |
| 4244 | wait_event(fs_info->transaction_wait, |
| 4245 | (atomic_read(&fs_info->defrag_running) == 0)); |
| 4246 | |
| 4247 | /* clear out the rbtree of defraggable inodes */ |
| 4248 | btrfs_cleanup_defrag_inodes(fs_info); |
| 4249 | |
| 4250 | /* |
| 4251 | * Handle the error fs first, as it will flush and wait for all ordered |
| 4252 | * extents. This will generate delayed iputs, thus we want to handle |
| 4253 | * it first. |
| 4254 | */ |
| 4255 | if (unlikely(BTRFS_FS_ERROR(fs_info))) |
| 4256 | btrfs_error_commit_super(fs_info); |
| 4257 | |
| 4258 | /* |
| 4259 | * Wait for any fixup workers to complete. |
| 4260 | * If we don't wait for them here and they are still running by the time |
| 4261 | * we call kthread_stop() against the cleaner kthread further below, we |
| 4262 | * get an use-after-free on the cleaner because the fixup worker adds an |
| 4263 | * inode to the list of delayed iputs and then attempts to wakeup the |
| 4264 | * cleaner kthread, which was already stopped and destroyed. We parked |
| 4265 | * already the cleaner, but below we run all pending delayed iputs. |
| 4266 | */ |
| 4267 | btrfs_flush_workqueue(fs_info->fixup_workers); |
| 4268 | /* |
| 4269 | * Similar case here, we have to wait for delalloc workers before we |
| 4270 | * proceed below and stop the cleaner kthread, otherwise we trigger a |
| 4271 | * use-after-tree on the cleaner kthread task_struct when a delalloc |
| 4272 | * worker running submit_compressed_extents() adds a delayed iput, which |
| 4273 | * does a wake up on the cleaner kthread, which was already freed below |
| 4274 | * when we call kthread_stop(). |
| 4275 | */ |
| 4276 | btrfs_flush_workqueue(fs_info->delalloc_workers); |
| 4277 | |
| 4278 | /* |
| 4279 | * We can have ordered extents getting their last reference dropped from |
| 4280 | * the fs_info->workers queue because for async writes for data bios we |
| 4281 | * queue a work for that queue, at btrfs_wq_submit_bio(), that runs |
| 4282 | * run_one_async_done() which calls btrfs_bio_end_io() in case the bio |
| 4283 | * has an error, and that later function can do the final |
| 4284 | * btrfs_put_ordered_extent() on the ordered extent attached to the bio, |
| 4285 | * which adds a delayed iput for the inode. So we must flush the queue |
| 4286 | * so that we don't have delayed iputs after committing the current |
| 4287 | * transaction below and stopping the cleaner and transaction kthreads. |
| 4288 | */ |
| 4289 | btrfs_flush_workqueue(fs_info->workers); |
| 4290 | |
| 4291 | /* |
| 4292 | * When finishing a compressed write bio we schedule a work queue item |
| 4293 | * to finish an ordered extent - btrfs_finish_compressed_write_work() |
| 4294 | * calls btrfs_finish_ordered_extent() which in turns does a call to |
| 4295 | * btrfs_queue_ordered_fn(), and that queues the ordered extent |
| 4296 | * completion either in the endio_write_workers work queue or in the |
| 4297 | * fs_info->endio_freespace_worker work queue. We flush those queues |
| 4298 | * below, so before we flush them we must flush this queue for the |
| 4299 | * workers of compressed writes. |
| 4300 | */ |
| 4301 | flush_workqueue(fs_info->compressed_write_workers); |
| 4302 | |
| 4303 | /* |
| 4304 | * After we parked the cleaner kthread, ordered extents may have |
| 4305 | * completed and created new delayed iputs. If one of the async reclaim |
| 4306 | * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we |
| 4307 | * can hang forever trying to stop it, because if a delayed iput is |
| 4308 | * added after it ran btrfs_run_delayed_iputs() and before it called |
| 4309 | * btrfs_wait_on_delayed_iputs(), it will hang forever since there is |
| 4310 | * no one else to run iputs. |
| 4311 | * |
| 4312 | * So wait for all ongoing ordered extents to complete and then run |
| 4313 | * delayed iputs. This works because once we reach this point no one |
| 4314 | * can create new ordered extents, but delayed iputs can still be added |
| 4315 | * by a reclaim worker (see comments further below). |
| 4316 | * |
| 4317 | * Also note that btrfs_wait_ordered_roots() is not safe here, because |
| 4318 | * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, |
| 4319 | * but the delayed iput for the respective inode is made only when doing |
| 4320 | * the final btrfs_put_ordered_extent() (which must happen at |
| 4321 | * btrfs_finish_ordered_io() when we are unmounting). |
| 4322 | */ |
| 4323 | btrfs_flush_workqueue(fs_info->endio_write_workers); |
| 4324 | /* Ordered extents for free space inodes. */ |
| 4325 | btrfs_flush_workqueue(fs_info->endio_freespace_worker); |
| 4326 | /* |
| 4327 | * Run delayed iputs in case an async reclaim worker is waiting for them |
| 4328 | * to be run as mentioned above. |
| 4329 | */ |
| 4330 | btrfs_run_delayed_iputs(fs_info); |
| 4331 | |
| 4332 | cancel_work_sync(&fs_info->async_reclaim_work); |
| 4333 | cancel_work_sync(&fs_info->async_data_reclaim_work); |
| 4334 | cancel_work_sync(&fs_info->preempt_reclaim_work); |
| 4335 | cancel_work_sync(&fs_info->em_shrinker_work); |
| 4336 | |
| 4337 | /* |
| 4338 | * Run delayed iputs again because an async reclaim worker may have |
| 4339 | * added new ones if it was flushing delalloc: |
| 4340 | * |
| 4341 | * shrink_delalloc() -> btrfs_start_delalloc_roots() -> |
| 4342 | * start_delalloc_inodes() -> btrfs_add_delayed_iput() |
| 4343 | */ |
| 4344 | btrfs_run_delayed_iputs(fs_info); |
| 4345 | |
| 4346 | /* There should be no more workload to generate new delayed iputs. */ |
| 4347 | set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state); |
| 4348 | |
| 4349 | /* Cancel or finish ongoing discard work */ |
| 4350 | btrfs_discard_cleanup(fs_info); |
| 4351 | |
| 4352 | if (!sb_rdonly(fs_info->sb)) { |
| 4353 | /* |
| 4354 | * The cleaner kthread is stopped, so do one final pass over |
| 4355 | * unused block groups. |
| 4356 | */ |
| 4357 | btrfs_delete_unused_bgs(fs_info); |
| 4358 | |
| 4359 | /* |
| 4360 | * There might be existing delayed inode workers still running |
| 4361 | * and holding an empty delayed inode item. We must wait for |
| 4362 | * them to complete first because they can create a transaction. |
| 4363 | * This happens when someone calls btrfs_balance_delayed_items() |
| 4364 | * and then a transaction commit runs the same delayed nodes |
| 4365 | * before any delayed worker has done something with the nodes. |
| 4366 | * We must wait for any worker here and not at transaction |
| 4367 | * commit time since that could cause a deadlock. |
| 4368 | * This is a very rare case. |
| 4369 | */ |
| 4370 | btrfs_flush_workqueue(fs_info->delayed_workers); |
| 4371 | |
| 4372 | ret = btrfs_commit_super(fs_info); |
| 4373 | if (ret) |
| 4374 | btrfs_err(fs_info, "commit super ret %d", ret); |
| 4375 | } |
| 4376 | |
| 4377 | kthread_stop(fs_info->transaction_kthread); |
| 4378 | kthread_stop(fs_info->cleaner_kthread); |
| 4379 | |
| 4380 | ASSERT(list_empty(&fs_info->delayed_iputs)); |
| 4381 | set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); |
| 4382 | |
| 4383 | if (btrfs_check_quota_leak(fs_info)) { |
| 4384 | DEBUG_WARN("qgroup reserved space leaked"); |
| 4385 | btrfs_err(fs_info, "qgroup reserved space leaked"); |
| 4386 | } |
| 4387 | |
| 4388 | btrfs_free_qgroup_config(fs_info); |
| 4389 | ASSERT(list_empty(&fs_info->delalloc_roots)); |
| 4390 | |
| 4391 | if (percpu_counter_sum(&fs_info->delalloc_bytes)) { |
| 4392 | btrfs_info(fs_info, "at unmount delalloc count %lld", |
| 4393 | percpu_counter_sum(&fs_info->delalloc_bytes)); |
| 4394 | } |
| 4395 | |
| 4396 | if (percpu_counter_sum(&fs_info->ordered_bytes)) |
| 4397 | btrfs_info(fs_info, "at unmount dio bytes count %lld", |
| 4398 | percpu_counter_sum(&fs_info->ordered_bytes)); |
| 4399 | |
| 4400 | btrfs_sysfs_remove_mounted(fs_info); |
| 4401 | btrfs_sysfs_remove_fsid(fs_info->fs_devices); |
| 4402 | |
| 4403 | btrfs_put_block_group_cache(fs_info); |
| 4404 | |
| 4405 | /* |
| 4406 | * we must make sure there is not any read request to |
| 4407 | * submit after we stopping all workers. |
| 4408 | */ |
| 4409 | invalidate_inode_pages2(fs_info->btree_inode->i_mapping); |
| 4410 | btrfs_stop_all_workers(fs_info); |
| 4411 | |
| 4412 | /* We shouldn't have any transaction open at this point */ |
| 4413 | warn_about_uncommitted_trans(fs_info); |
| 4414 | |
| 4415 | clear_bit(BTRFS_FS_OPEN, &fs_info->flags); |
| 4416 | free_root_pointers(fs_info, true); |
| 4417 | btrfs_free_fs_roots(fs_info); |
| 4418 | |
| 4419 | /* |
| 4420 | * We must free the block groups after dropping the fs_roots as we could |
| 4421 | * have had an IO error and have left over tree log blocks that aren't |
| 4422 | * cleaned up until the fs roots are freed. This makes the block group |
| 4423 | * accounting appear to be wrong because there's pending reserved bytes, |
| 4424 | * so make sure we do the block group cleanup afterwards. |
| 4425 | */ |
| 4426 | btrfs_free_block_groups(fs_info); |
| 4427 | |
| 4428 | iput(fs_info->btree_inode); |
| 4429 | |
| 4430 | btrfs_mapping_tree_free(fs_info); |
| 4431 | btrfs_close_devices(fs_info->fs_devices); |
| 4432 | } |
| 4433 | |
| 4434 | void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, |
| 4435 | struct extent_buffer *buf) |
| 4436 | { |
| 4437 | struct btrfs_fs_info *fs_info = buf->fs_info; |
| 4438 | u64 transid = btrfs_header_generation(buf); |
| 4439 | |
| 4440 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| 4441 | /* |
| 4442 | * This is a fast path so only do this check if we have sanity tests |
| 4443 | * enabled. Normal people shouldn't be using unmapped buffers as dirty |
| 4444 | * outside of the sanity tests. |
| 4445 | */ |
| 4446 | if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) |
| 4447 | return; |
| 4448 | #endif |
| 4449 | /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ |
| 4450 | ASSERT(trans->transid == fs_info->generation); |
| 4451 | btrfs_assert_tree_write_locked(buf); |
| 4452 | if (unlikely(transid != fs_info->generation)) { |
| 4453 | btrfs_abort_transaction(trans, -EUCLEAN); |
| 4454 | btrfs_crit(fs_info, |
| 4455 | "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", |
| 4456 | buf->start, transid, fs_info->generation); |
| 4457 | } |
| 4458 | set_extent_buffer_dirty(buf); |
| 4459 | } |
| 4460 | |
| 4461 | static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, |
| 4462 | int flush_delayed) |
| 4463 | { |
| 4464 | /* |
| 4465 | * looks as though older kernels can get into trouble with |
| 4466 | * this code, they end up stuck in balance_dirty_pages forever |
| 4467 | */ |
| 4468 | int ret; |
| 4469 | |
| 4470 | if (current->flags & PF_MEMALLOC) |
| 4471 | return; |
| 4472 | |
| 4473 | if (flush_delayed) |
| 4474 | btrfs_balance_delayed_items(fs_info); |
| 4475 | |
| 4476 | ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, |
| 4477 | BTRFS_DIRTY_METADATA_THRESH, |
| 4478 | fs_info->dirty_metadata_batch); |
| 4479 | if (ret > 0) { |
| 4480 | balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); |
| 4481 | } |
| 4482 | } |
| 4483 | |
| 4484 | void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) |
| 4485 | { |
| 4486 | __btrfs_btree_balance_dirty(fs_info, 1); |
| 4487 | } |
| 4488 | |
| 4489 | void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) |
| 4490 | { |
| 4491 | __btrfs_btree_balance_dirty(fs_info, 0); |
| 4492 | } |
| 4493 | |
| 4494 | static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) |
| 4495 | { |
| 4496 | /* cleanup FS via transaction */ |
| 4497 | btrfs_cleanup_transaction(fs_info); |
| 4498 | |
| 4499 | down_write(&fs_info->cleanup_work_sem); |
| 4500 | up_write(&fs_info->cleanup_work_sem); |
| 4501 | } |
| 4502 | |
| 4503 | static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) |
| 4504 | { |
| 4505 | struct btrfs_root *gang[8]; |
| 4506 | u64 root_objectid = 0; |
| 4507 | int ret; |
| 4508 | |
| 4509 | spin_lock(&fs_info->fs_roots_radix_lock); |
| 4510 | while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, |
| 4511 | (void **)gang, root_objectid, |
| 4512 | ARRAY_SIZE(gang))) != 0) { |
| 4513 | int i; |
| 4514 | |
| 4515 | for (i = 0; i < ret; i++) |
| 4516 | gang[i] = btrfs_grab_root(gang[i]); |
| 4517 | spin_unlock(&fs_info->fs_roots_radix_lock); |
| 4518 | |
| 4519 | for (i = 0; i < ret; i++) { |
| 4520 | if (!gang[i]) |
| 4521 | continue; |
| 4522 | root_objectid = btrfs_root_id(gang[i]); |
| 4523 | btrfs_free_log(NULL, gang[i]); |
| 4524 | btrfs_put_root(gang[i]); |
| 4525 | } |
| 4526 | root_objectid++; |
| 4527 | spin_lock(&fs_info->fs_roots_radix_lock); |
| 4528 | } |
| 4529 | spin_unlock(&fs_info->fs_roots_radix_lock); |
| 4530 | btrfs_free_log_root_tree(NULL, fs_info); |
| 4531 | } |
| 4532 | |
| 4533 | static void btrfs_destroy_ordered_extents(struct btrfs_root *root) |
| 4534 | { |
| 4535 | struct btrfs_ordered_extent *ordered; |
| 4536 | |
| 4537 | spin_lock(&root->ordered_extent_lock); |
| 4538 | /* |
| 4539 | * This will just short circuit the ordered completion stuff which will |
| 4540 | * make sure the ordered extent gets properly cleaned up. |
| 4541 | */ |
| 4542 | list_for_each_entry(ordered, &root->ordered_extents, |
| 4543 | root_extent_list) |
| 4544 | set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); |
| 4545 | spin_unlock(&root->ordered_extent_lock); |
| 4546 | } |
| 4547 | |
| 4548 | static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) |
| 4549 | { |
| 4550 | struct btrfs_root *root; |
| 4551 | LIST_HEAD(splice); |
| 4552 | |
| 4553 | spin_lock(&fs_info->ordered_root_lock); |
| 4554 | list_splice_init(&fs_info->ordered_roots, &splice); |
| 4555 | while (!list_empty(&splice)) { |
| 4556 | root = list_first_entry(&splice, struct btrfs_root, |
| 4557 | ordered_root); |
| 4558 | list_move_tail(&root->ordered_root, |
| 4559 | &fs_info->ordered_roots); |
| 4560 | |
| 4561 | spin_unlock(&fs_info->ordered_root_lock); |
| 4562 | btrfs_destroy_ordered_extents(root); |
| 4563 | |
| 4564 | cond_resched(); |
| 4565 | spin_lock(&fs_info->ordered_root_lock); |
| 4566 | } |
| 4567 | spin_unlock(&fs_info->ordered_root_lock); |
| 4568 | |
| 4569 | /* |
| 4570 | * We need this here because if we've been flipped read-only we won't |
| 4571 | * get sync() from the umount, so we need to make sure any ordered |
| 4572 | * extents that haven't had their dirty pages IO start writeout yet |
| 4573 | * actually get run and error out properly. |
| 4574 | */ |
| 4575 | btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); |
| 4576 | } |
| 4577 | |
| 4578 | static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) |
| 4579 | { |
| 4580 | struct btrfs_inode *btrfs_inode; |
| 4581 | LIST_HEAD(splice); |
| 4582 | |
| 4583 | spin_lock(&root->delalloc_lock); |
| 4584 | list_splice_init(&root->delalloc_inodes, &splice); |
| 4585 | |
| 4586 | while (!list_empty(&splice)) { |
| 4587 | struct inode *inode = NULL; |
| 4588 | btrfs_inode = list_first_entry(&splice, struct btrfs_inode, |
| 4589 | delalloc_inodes); |
| 4590 | btrfs_del_delalloc_inode(btrfs_inode); |
| 4591 | spin_unlock(&root->delalloc_lock); |
| 4592 | |
| 4593 | /* |
| 4594 | * Make sure we get a live inode and that it'll not disappear |
| 4595 | * meanwhile. |
| 4596 | */ |
| 4597 | inode = igrab(&btrfs_inode->vfs_inode); |
| 4598 | if (inode) { |
| 4599 | unsigned int nofs_flag; |
| 4600 | |
| 4601 | nofs_flag = memalloc_nofs_save(); |
| 4602 | invalidate_inode_pages2(inode->i_mapping); |
| 4603 | memalloc_nofs_restore(nofs_flag); |
| 4604 | iput(inode); |
| 4605 | } |
| 4606 | spin_lock(&root->delalloc_lock); |
| 4607 | } |
| 4608 | spin_unlock(&root->delalloc_lock); |
| 4609 | } |
| 4610 | |
| 4611 | static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) |
| 4612 | { |
| 4613 | struct btrfs_root *root; |
| 4614 | LIST_HEAD(splice); |
| 4615 | |
| 4616 | spin_lock(&fs_info->delalloc_root_lock); |
| 4617 | list_splice_init(&fs_info->delalloc_roots, &splice); |
| 4618 | while (!list_empty(&splice)) { |
| 4619 | root = list_first_entry(&splice, struct btrfs_root, |
| 4620 | delalloc_root); |
| 4621 | root = btrfs_grab_root(root); |
| 4622 | BUG_ON(!root); |
| 4623 | spin_unlock(&fs_info->delalloc_root_lock); |
| 4624 | |
| 4625 | btrfs_destroy_delalloc_inodes(root); |
| 4626 | btrfs_put_root(root); |
| 4627 | |
| 4628 | spin_lock(&fs_info->delalloc_root_lock); |
| 4629 | } |
| 4630 | spin_unlock(&fs_info->delalloc_root_lock); |
| 4631 | } |
| 4632 | |
| 4633 | static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, |
| 4634 | struct extent_io_tree *dirty_pages, |
| 4635 | int mark) |
| 4636 | { |
| 4637 | struct extent_buffer *eb; |
| 4638 | u64 start = 0; |
| 4639 | u64 end; |
| 4640 | |
| 4641 | while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end, |
| 4642 | mark, NULL)) { |
| 4643 | btrfs_clear_extent_bits(dirty_pages, start, end, mark); |
| 4644 | while (start <= end) { |
| 4645 | eb = find_extent_buffer(fs_info, start); |
| 4646 | start += fs_info->nodesize; |
| 4647 | if (!eb) |
| 4648 | continue; |
| 4649 | |
| 4650 | btrfs_tree_lock(eb); |
| 4651 | wait_on_extent_buffer_writeback(eb); |
| 4652 | btrfs_clear_buffer_dirty(NULL, eb); |
| 4653 | btrfs_tree_unlock(eb); |
| 4654 | |
| 4655 | free_extent_buffer_stale(eb); |
| 4656 | } |
| 4657 | } |
| 4658 | } |
| 4659 | |
| 4660 | static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, |
| 4661 | struct extent_io_tree *unpin) |
| 4662 | { |
| 4663 | u64 start; |
| 4664 | u64 end; |
| 4665 | |
| 4666 | while (1) { |
| 4667 | struct extent_state *cached_state = NULL; |
| 4668 | |
| 4669 | /* |
| 4670 | * The btrfs_finish_extent_commit() may get the same range as |
| 4671 | * ours between find_first_extent_bit and clear_extent_dirty. |
| 4672 | * Hence, hold the unused_bg_unpin_mutex to avoid double unpin |
| 4673 | * the same extent range. |
| 4674 | */ |
| 4675 | mutex_lock(&fs_info->unused_bg_unpin_mutex); |
| 4676 | if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end, |
| 4677 | EXTENT_DIRTY, &cached_state)) { |
| 4678 | mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| 4679 | break; |
| 4680 | } |
| 4681 | |
| 4682 | btrfs_clear_extent_dirty(unpin, start, end, &cached_state); |
| 4683 | btrfs_free_extent_state(cached_state); |
| 4684 | btrfs_error_unpin_extent_range(fs_info, start, end); |
| 4685 | mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| 4686 | cond_resched(); |
| 4687 | } |
| 4688 | } |
| 4689 | |
| 4690 | static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) |
| 4691 | { |
| 4692 | struct inode *inode; |
| 4693 | |
| 4694 | inode = cache->io_ctl.inode; |
| 4695 | if (inode) { |
| 4696 | unsigned int nofs_flag; |
| 4697 | |
| 4698 | nofs_flag = memalloc_nofs_save(); |
| 4699 | invalidate_inode_pages2(inode->i_mapping); |
| 4700 | memalloc_nofs_restore(nofs_flag); |
| 4701 | |
| 4702 | BTRFS_I(inode)->generation = 0; |
| 4703 | cache->io_ctl.inode = NULL; |
| 4704 | iput(inode); |
| 4705 | } |
| 4706 | ASSERT(cache->io_ctl.pages == NULL); |
| 4707 | btrfs_put_block_group(cache); |
| 4708 | } |
| 4709 | |
| 4710 | void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, |
| 4711 | struct btrfs_fs_info *fs_info) |
| 4712 | { |
| 4713 | struct btrfs_block_group *cache; |
| 4714 | |
| 4715 | spin_lock(&cur_trans->dirty_bgs_lock); |
| 4716 | while (!list_empty(&cur_trans->dirty_bgs)) { |
| 4717 | cache = list_first_entry(&cur_trans->dirty_bgs, |
| 4718 | struct btrfs_block_group, |
| 4719 | dirty_list); |
| 4720 | |
| 4721 | if (!list_empty(&cache->io_list)) { |
| 4722 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 4723 | list_del_init(&cache->io_list); |
| 4724 | btrfs_cleanup_bg_io(cache); |
| 4725 | spin_lock(&cur_trans->dirty_bgs_lock); |
| 4726 | } |
| 4727 | |
| 4728 | list_del_init(&cache->dirty_list); |
| 4729 | spin_lock(&cache->lock); |
| 4730 | cache->disk_cache_state = BTRFS_DC_ERROR; |
| 4731 | spin_unlock(&cache->lock); |
| 4732 | |
| 4733 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 4734 | btrfs_put_block_group(cache); |
| 4735 | btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); |
| 4736 | spin_lock(&cur_trans->dirty_bgs_lock); |
| 4737 | } |
| 4738 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 4739 | |
| 4740 | /* |
| 4741 | * Refer to the definition of io_bgs member for details why it's safe |
| 4742 | * to use it without any locking |
| 4743 | */ |
| 4744 | while (!list_empty(&cur_trans->io_bgs)) { |
| 4745 | cache = list_first_entry(&cur_trans->io_bgs, |
| 4746 | struct btrfs_block_group, |
| 4747 | io_list); |
| 4748 | |
| 4749 | list_del_init(&cache->io_list); |
| 4750 | spin_lock(&cache->lock); |
| 4751 | cache->disk_cache_state = BTRFS_DC_ERROR; |
| 4752 | spin_unlock(&cache->lock); |
| 4753 | btrfs_cleanup_bg_io(cache); |
| 4754 | } |
| 4755 | } |
| 4756 | |
| 4757 | static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) |
| 4758 | { |
| 4759 | struct btrfs_root *gang[8]; |
| 4760 | int i; |
| 4761 | int ret; |
| 4762 | |
| 4763 | spin_lock(&fs_info->fs_roots_radix_lock); |
| 4764 | while (1) { |
| 4765 | ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, |
| 4766 | (void **)gang, 0, |
| 4767 | ARRAY_SIZE(gang), |
| 4768 | BTRFS_ROOT_TRANS_TAG); |
| 4769 | if (ret == 0) |
| 4770 | break; |
| 4771 | for (i = 0; i < ret; i++) { |
| 4772 | struct btrfs_root *root = gang[i]; |
| 4773 | |
| 4774 | btrfs_qgroup_free_meta_all_pertrans(root); |
| 4775 | radix_tree_tag_clear(&fs_info->fs_roots_radix, |
| 4776 | (unsigned long)btrfs_root_id(root), |
| 4777 | BTRFS_ROOT_TRANS_TAG); |
| 4778 | } |
| 4779 | } |
| 4780 | spin_unlock(&fs_info->fs_roots_radix_lock); |
| 4781 | } |
| 4782 | |
| 4783 | void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans) |
| 4784 | { |
| 4785 | struct btrfs_fs_info *fs_info = cur_trans->fs_info; |
| 4786 | struct btrfs_device *dev, *tmp; |
| 4787 | |
| 4788 | btrfs_cleanup_dirty_bgs(cur_trans, fs_info); |
| 4789 | ASSERT(list_empty(&cur_trans->dirty_bgs)); |
| 4790 | ASSERT(list_empty(&cur_trans->io_bgs)); |
| 4791 | |
| 4792 | list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, |
| 4793 | post_commit_list) { |
| 4794 | list_del_init(&dev->post_commit_list); |
| 4795 | } |
| 4796 | |
| 4797 | btrfs_destroy_delayed_refs(cur_trans); |
| 4798 | |
| 4799 | cur_trans->state = TRANS_STATE_COMMIT_START; |
| 4800 | wake_up(&fs_info->transaction_blocked_wait); |
| 4801 | |
| 4802 | cur_trans->state = TRANS_STATE_UNBLOCKED; |
| 4803 | wake_up(&fs_info->transaction_wait); |
| 4804 | |
| 4805 | btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, |
| 4806 | EXTENT_DIRTY); |
| 4807 | btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); |
| 4808 | |
| 4809 | cur_trans->state =TRANS_STATE_COMPLETED; |
| 4810 | wake_up(&cur_trans->commit_wait); |
| 4811 | } |
| 4812 | |
| 4813 | static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) |
| 4814 | { |
| 4815 | struct btrfs_transaction *t; |
| 4816 | |
| 4817 | mutex_lock(&fs_info->transaction_kthread_mutex); |
| 4818 | |
| 4819 | spin_lock(&fs_info->trans_lock); |
| 4820 | while (!list_empty(&fs_info->trans_list)) { |
| 4821 | t = list_first_entry(&fs_info->trans_list, |
| 4822 | struct btrfs_transaction, list); |
| 4823 | if (t->state >= TRANS_STATE_COMMIT_PREP) { |
| 4824 | refcount_inc(&t->use_count); |
| 4825 | spin_unlock(&fs_info->trans_lock); |
| 4826 | btrfs_wait_for_commit(fs_info, t->transid); |
| 4827 | btrfs_put_transaction(t); |
| 4828 | spin_lock(&fs_info->trans_lock); |
| 4829 | continue; |
| 4830 | } |
| 4831 | if (t == fs_info->running_transaction) { |
| 4832 | t->state = TRANS_STATE_COMMIT_DOING; |
| 4833 | spin_unlock(&fs_info->trans_lock); |
| 4834 | /* |
| 4835 | * We wait for 0 num_writers since we don't hold a trans |
| 4836 | * handle open currently for this transaction. |
| 4837 | */ |
| 4838 | wait_event(t->writer_wait, |
| 4839 | atomic_read(&t->num_writers) == 0); |
| 4840 | } else { |
| 4841 | spin_unlock(&fs_info->trans_lock); |
| 4842 | } |
| 4843 | btrfs_cleanup_one_transaction(t); |
| 4844 | |
| 4845 | spin_lock(&fs_info->trans_lock); |
| 4846 | if (t == fs_info->running_transaction) |
| 4847 | fs_info->running_transaction = NULL; |
| 4848 | list_del_init(&t->list); |
| 4849 | spin_unlock(&fs_info->trans_lock); |
| 4850 | |
| 4851 | btrfs_put_transaction(t); |
| 4852 | trace_btrfs_transaction_commit(fs_info); |
| 4853 | spin_lock(&fs_info->trans_lock); |
| 4854 | } |
| 4855 | spin_unlock(&fs_info->trans_lock); |
| 4856 | btrfs_destroy_all_ordered_extents(fs_info); |
| 4857 | btrfs_destroy_delayed_inodes(fs_info); |
| 4858 | btrfs_assert_delayed_root_empty(fs_info); |
| 4859 | btrfs_destroy_all_delalloc_inodes(fs_info); |
| 4860 | btrfs_drop_all_logs(fs_info); |
| 4861 | btrfs_free_all_qgroup_pertrans(fs_info); |
| 4862 | mutex_unlock(&fs_info->transaction_kthread_mutex); |
| 4863 | |
| 4864 | return 0; |
| 4865 | } |
| 4866 | |
| 4867 | int btrfs_init_root_free_objectid(struct btrfs_root *root) |
| 4868 | { |
| 4869 | BTRFS_PATH_AUTO_FREE(path); |
| 4870 | int ret; |
| 4871 | struct extent_buffer *l; |
| 4872 | struct btrfs_key search_key; |
| 4873 | struct btrfs_key found_key; |
| 4874 | int slot; |
| 4875 | |
| 4876 | path = btrfs_alloc_path(); |
| 4877 | if (!path) |
| 4878 | return -ENOMEM; |
| 4879 | |
| 4880 | search_key.objectid = BTRFS_LAST_FREE_OBJECTID; |
| 4881 | search_key.type = -1; |
| 4882 | search_key.offset = (u64)-1; |
| 4883 | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| 4884 | if (ret < 0) |
| 4885 | return ret; |
| 4886 | if (ret == 0) { |
| 4887 | /* |
| 4888 | * Key with offset -1 found, there would have to exist a root |
| 4889 | * with such id, but this is out of valid range. |
| 4890 | */ |
| 4891 | return -EUCLEAN; |
| 4892 | } |
| 4893 | if (path->slots[0] > 0) { |
| 4894 | slot = path->slots[0] - 1; |
| 4895 | l = path->nodes[0]; |
| 4896 | btrfs_item_key_to_cpu(l, &found_key, slot); |
| 4897 | root->free_objectid = max_t(u64, found_key.objectid + 1, |
| 4898 | BTRFS_FIRST_FREE_OBJECTID); |
| 4899 | } else { |
| 4900 | root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; |
| 4901 | } |
| 4902 | |
| 4903 | return 0; |
| 4904 | } |
| 4905 | |
| 4906 | int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) |
| 4907 | { |
| 4908 | int ret; |
| 4909 | mutex_lock(&root->objectid_mutex); |
| 4910 | |
| 4911 | if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { |
| 4912 | btrfs_warn(root->fs_info, |
| 4913 | "the objectid of root %llu reaches its highest value", |
| 4914 | btrfs_root_id(root)); |
| 4915 | ret = -ENOSPC; |
| 4916 | goto out; |
| 4917 | } |
| 4918 | |
| 4919 | *objectid = root->free_objectid++; |
| 4920 | ret = 0; |
| 4921 | out: |
| 4922 | mutex_unlock(&root->objectid_mutex); |
| 4923 | return ret; |
| 4924 | } |