btrfs: fix misleading variable name for flags
[linux-2.6-block.git] / fs / btrfs / disk-io.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/blkdev.h>
21#include <linux/scatterlist.h>
22#include <linux/swap.h>
23#include <linux/radix-tree.h>
24#include <linux/writeback.h>
25#include <linux/buffer_head.h>
26#include <linux/workqueue.h>
27#include <linux/kthread.h>
28#include <linux/freezer.h>
29#include <linux/crc32c.h>
30#include <linux/slab.h>
31#include <linux/migrate.h>
32#include <linux/ratelimit.h>
33#include <linux/uuid.h>
34#include <asm/unaligned.h>
35#include "compat.h"
36#include "ctree.h"
37#include "disk-io.h"
38#include "transaction.h"
39#include "btrfs_inode.h"
40#include "volumes.h"
41#include "print-tree.h"
42#include "async-thread.h"
43#include "locking.h"
44#include "tree-log.h"
45#include "free-space-cache.h"
46#include "inode-map.h"
47#include "check-integrity.h"
48#include "rcu-string.h"
49#include "dev-replace.h"
50#include "raid56.h"
51
52#ifdef CONFIG_X86
53#include <asm/cpufeature.h>
54#endif
55
56static struct extent_io_ops btree_extent_io_ops;
57static void end_workqueue_fn(struct btrfs_work *work);
58static void free_fs_root(struct btrfs_root *root);
59static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60 int read_only);
61static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
63static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73static int btrfs_cleanup_transaction(struct btrfs_root *root);
74static void btrfs_error_commit_super(struct btrfs_root *root);
75
76/*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
81struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
87 int metadata;
88 struct list_head list;
89 struct btrfs_work work;
90};
91
92/*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
97struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
103 int rw;
104 int mirror_num;
105 unsigned long bio_flags;
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
111 struct btrfs_work work;
112 int error;
113};
114
115/*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
125 *
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
129 *
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
133 *
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
137 */
138#ifdef CONFIG_DEBUG_LOCK_ALLOC
139# if BTRFS_MAX_LEVEL != 8
140# error
141# endif
142
143static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148} btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = 0, .name_stem = "tree" },
160};
161
162void __init btrfs_init_lockdep(void)
163{
164 int i, j;
165
166 /* initialize lockdep class names */
167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 snprintf(ks->names[j], sizeof(ks->names[j]),
172 "btrfs-%s-%02d", ks->name_stem, j);
173 }
174}
175
176void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177 int level)
178{
179 struct btrfs_lockdep_keyset *ks;
180
181 BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 if (ks->id == objectid)
186 break;
187
188 lockdep_set_class_and_name(&eb->lock,
189 &ks->keys[level], ks->names[level]);
190}
191
192#endif
193
194/*
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
197 */
198static struct extent_map *btree_get_extent(struct inode *inode,
199 struct page *page, size_t pg_offset, u64 start, u64 len,
200 int create)
201{
202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 struct extent_map *em;
204 int ret;
205
206 read_lock(&em_tree->lock);
207 em = lookup_extent_mapping(em_tree, start, len);
208 if (em) {
209 em->bdev =
210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211 read_unlock(&em_tree->lock);
212 goto out;
213 }
214 read_unlock(&em_tree->lock);
215
216 em = alloc_extent_map();
217 if (!em) {
218 em = ERR_PTR(-ENOMEM);
219 goto out;
220 }
221 em->start = 0;
222 em->len = (u64)-1;
223 em->block_len = (u64)-1;
224 em->block_start = 0;
225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227 write_lock(&em_tree->lock);
228 ret = add_extent_mapping(em_tree, em, 0);
229 if (ret == -EEXIST) {
230 free_extent_map(em);
231 em = lookup_extent_mapping(em_tree, start, len);
232 if (!em)
233 em = ERR_PTR(-EIO);
234 } else if (ret) {
235 free_extent_map(em);
236 em = ERR_PTR(ret);
237 }
238 write_unlock(&em_tree->lock);
239
240out:
241 return em;
242}
243
244u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245{
246 return crc32c(seed, data, len);
247}
248
249void btrfs_csum_final(u32 crc, char *result)
250{
251 put_unaligned_le32(~crc, result);
252}
253
254/*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260{
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318}
319
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329{
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357}
358
359/*
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
362 */
363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
365 u64 start, u64 parent_transid)
366{
367 struct extent_io_tree *io_tree;
368 int failed = 0;
369 int ret;
370 int num_copies = 0;
371 int mirror_num = 0;
372 int failed_mirror = 0;
373
374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 while (1) {
377 ret = read_extent_buffer_pages(io_tree, eb, start,
378 WAIT_COMPLETE,
379 btree_get_extent, mirror_num);
380 if (!ret) {
381 if (!verify_parent_transid(io_tree, eb,
382 parent_transid, 0))
383 break;
384 else
385 ret = -EIO;
386 }
387
388 /*
389 * This buffer's crc is fine, but its contents are corrupted, so
390 * there is no reason to read the other copies, they won't be
391 * any less wrong.
392 */
393 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
394 break;
395
396 num_copies = btrfs_num_copies(root->fs_info,
397 eb->start, eb->len);
398 if (num_copies == 1)
399 break;
400
401 if (!failed_mirror) {
402 failed = 1;
403 failed_mirror = eb->read_mirror;
404 }
405
406 mirror_num++;
407 if (mirror_num == failed_mirror)
408 mirror_num++;
409
410 if (mirror_num > num_copies)
411 break;
412 }
413
414 if (failed && !ret && failed_mirror)
415 repair_eb_io_failure(root, eb, failed_mirror);
416
417 return ret;
418}
419
420/*
421 * checksum a dirty tree block before IO. This has extra checks to make sure
422 * we only fill in the checksum field in the first page of a multi-page block
423 */
424
425static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
426{
427 struct extent_io_tree *tree;
428 u64 start = page_offset(page);
429 u64 found_start;
430 struct extent_buffer *eb;
431
432 tree = &BTRFS_I(page->mapping->host)->io_tree;
433
434 eb = (struct extent_buffer *)page->private;
435 if (page != eb->pages[0])
436 return 0;
437 found_start = btrfs_header_bytenr(eb);
438 if (found_start != start) {
439 WARN_ON(1);
440 return 0;
441 }
442 if (!PageUptodate(page)) {
443 WARN_ON(1);
444 return 0;
445 }
446 csum_tree_block(root, eb, 0);
447 return 0;
448}
449
450static int check_tree_block_fsid(struct btrfs_root *root,
451 struct extent_buffer *eb)
452{
453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 u8 fsid[BTRFS_UUID_SIZE];
455 int ret = 1;
456
457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 BTRFS_FSID_SIZE);
459 while (fs_devices) {
460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 ret = 0;
462 break;
463 }
464 fs_devices = fs_devices->seed;
465 }
466 return ret;
467}
468
469#define CORRUPT(reason, eb, root, slot) \
470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471 "root=%llu, slot=%d\n", reason, \
472 (unsigned long long)btrfs_header_bytenr(eb), \
473 (unsigned long long)root->objectid, slot)
474
475static noinline int check_leaf(struct btrfs_root *root,
476 struct extent_buffer *leaf)
477{
478 struct btrfs_key key;
479 struct btrfs_key leaf_key;
480 u32 nritems = btrfs_header_nritems(leaf);
481 int slot;
482
483 if (nritems == 0)
484 return 0;
485
486 /* Check the 0 item */
487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 BTRFS_LEAF_DATA_SIZE(root)) {
489 CORRUPT("invalid item offset size pair", leaf, root, 0);
490 return -EIO;
491 }
492
493 /*
494 * Check to make sure each items keys are in the correct order and their
495 * offsets make sense. We only have to loop through nritems-1 because
496 * we check the current slot against the next slot, which verifies the
497 * next slot's offset+size makes sense and that the current's slot
498 * offset is correct.
499 */
500 for (slot = 0; slot < nritems - 1; slot++) {
501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504 /* Make sure the keys are in the right order */
505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 CORRUPT("bad key order", leaf, root, slot);
507 return -EIO;
508 }
509
510 /*
511 * Make sure the offset and ends are right, remember that the
512 * item data starts at the end of the leaf and grows towards the
513 * front.
514 */
515 if (btrfs_item_offset_nr(leaf, slot) !=
516 btrfs_item_end_nr(leaf, slot + 1)) {
517 CORRUPT("slot offset bad", leaf, root, slot);
518 return -EIO;
519 }
520
521 /*
522 * Check to make sure that we don't point outside of the leaf,
523 * just incase all the items are consistent to eachother, but
524 * all point outside of the leaf.
525 */
526 if (btrfs_item_end_nr(leaf, slot) >
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("slot end outside of leaf", leaf, root, slot);
529 return -EIO;
530 }
531 }
532
533 return 0;
534}
535
536static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
537 struct extent_state *state, int mirror)
538{
539 struct extent_io_tree *tree;
540 u64 found_start;
541 int found_level;
542 struct extent_buffer *eb;
543 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
544 int ret = 0;
545 int reads_done;
546
547 if (!page->private)
548 goto out;
549
550 tree = &BTRFS_I(page->mapping->host)->io_tree;
551 eb = (struct extent_buffer *)page->private;
552
553 /* the pending IO might have been the only thing that kept this buffer
554 * in memory. Make sure we have a ref for all this other checks
555 */
556 extent_buffer_get(eb);
557
558 reads_done = atomic_dec_and_test(&eb->io_pages);
559 if (!reads_done)
560 goto err;
561
562 eb->read_mirror = mirror;
563 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
564 ret = -EIO;
565 goto err;
566 }
567
568 found_start = btrfs_header_bytenr(eb);
569 if (found_start != eb->start) {
570 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
571 "%llu %llu\n",
572 (unsigned long long)found_start,
573 (unsigned long long)eb->start);
574 ret = -EIO;
575 goto err;
576 }
577 if (check_tree_block_fsid(root, eb)) {
578 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
579 (unsigned long long)eb->start);
580 ret = -EIO;
581 goto err;
582 }
583 found_level = btrfs_header_level(eb);
584 if (found_level >= BTRFS_MAX_LEVEL) {
585 btrfs_info(root->fs_info, "bad tree block level %d\n",
586 (int)btrfs_header_level(eb));
587 ret = -EIO;
588 goto err;
589 }
590
591 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
592 eb, found_level);
593
594 ret = csum_tree_block(root, eb, 1);
595 if (ret) {
596 ret = -EIO;
597 goto err;
598 }
599
600 /*
601 * If this is a leaf block and it is corrupt, set the corrupt bit so
602 * that we don't try and read the other copies of this block, just
603 * return -EIO.
604 */
605 if (found_level == 0 && check_leaf(root, eb)) {
606 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
607 ret = -EIO;
608 }
609
610 if (!ret)
611 set_extent_buffer_uptodate(eb);
612err:
613 if (reads_done &&
614 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
615 btree_readahead_hook(root, eb, eb->start, ret);
616
617 if (ret) {
618 /*
619 * our io error hook is going to dec the io pages
620 * again, we have to make sure it has something
621 * to decrement
622 */
623 atomic_inc(&eb->io_pages);
624 clear_extent_buffer_uptodate(eb);
625 }
626 free_extent_buffer(eb);
627out:
628 return ret;
629}
630
631static int btree_io_failed_hook(struct page *page, int failed_mirror)
632{
633 struct extent_buffer *eb;
634 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
635
636 eb = (struct extent_buffer *)page->private;
637 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
638 eb->read_mirror = failed_mirror;
639 atomic_dec(&eb->io_pages);
640 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
641 btree_readahead_hook(root, eb, eb->start, -EIO);
642 return -EIO; /* we fixed nothing */
643}
644
645static void end_workqueue_bio(struct bio *bio, int err)
646{
647 struct end_io_wq *end_io_wq = bio->bi_private;
648 struct btrfs_fs_info *fs_info;
649
650 fs_info = end_io_wq->info;
651 end_io_wq->error = err;
652 end_io_wq->work.func = end_workqueue_fn;
653 end_io_wq->work.flags = 0;
654
655 if (bio->bi_rw & REQ_WRITE) {
656 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
657 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
658 &end_io_wq->work);
659 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
660 btrfs_queue_worker(&fs_info->endio_freespace_worker,
661 &end_io_wq->work);
662 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
663 btrfs_queue_worker(&fs_info->endio_raid56_workers,
664 &end_io_wq->work);
665 else
666 btrfs_queue_worker(&fs_info->endio_write_workers,
667 &end_io_wq->work);
668 } else {
669 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
670 btrfs_queue_worker(&fs_info->endio_raid56_workers,
671 &end_io_wq->work);
672 else if (end_io_wq->metadata)
673 btrfs_queue_worker(&fs_info->endio_meta_workers,
674 &end_io_wq->work);
675 else
676 btrfs_queue_worker(&fs_info->endio_workers,
677 &end_io_wq->work);
678 }
679}
680
681/*
682 * For the metadata arg you want
683 *
684 * 0 - if data
685 * 1 - if normal metadta
686 * 2 - if writing to the free space cache area
687 * 3 - raid parity work
688 */
689int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
690 int metadata)
691{
692 struct end_io_wq *end_io_wq;
693 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
694 if (!end_io_wq)
695 return -ENOMEM;
696
697 end_io_wq->private = bio->bi_private;
698 end_io_wq->end_io = bio->bi_end_io;
699 end_io_wq->info = info;
700 end_io_wq->error = 0;
701 end_io_wq->bio = bio;
702 end_io_wq->metadata = metadata;
703
704 bio->bi_private = end_io_wq;
705 bio->bi_end_io = end_workqueue_bio;
706 return 0;
707}
708
709unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
710{
711 unsigned long limit = min_t(unsigned long,
712 info->workers.max_workers,
713 info->fs_devices->open_devices);
714 return 256 * limit;
715}
716
717static void run_one_async_start(struct btrfs_work *work)
718{
719 struct async_submit_bio *async;
720 int ret;
721
722 async = container_of(work, struct async_submit_bio, work);
723 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
724 async->mirror_num, async->bio_flags,
725 async->bio_offset);
726 if (ret)
727 async->error = ret;
728}
729
730static void run_one_async_done(struct btrfs_work *work)
731{
732 struct btrfs_fs_info *fs_info;
733 struct async_submit_bio *async;
734 int limit;
735
736 async = container_of(work, struct async_submit_bio, work);
737 fs_info = BTRFS_I(async->inode)->root->fs_info;
738
739 limit = btrfs_async_submit_limit(fs_info);
740 limit = limit * 2 / 3;
741
742 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
743 waitqueue_active(&fs_info->async_submit_wait))
744 wake_up(&fs_info->async_submit_wait);
745
746 /* If an error occured we just want to clean up the bio and move on */
747 if (async->error) {
748 bio_endio(async->bio, async->error);
749 return;
750 }
751
752 async->submit_bio_done(async->inode, async->rw, async->bio,
753 async->mirror_num, async->bio_flags,
754 async->bio_offset);
755}
756
757static void run_one_async_free(struct btrfs_work *work)
758{
759 struct async_submit_bio *async;
760
761 async = container_of(work, struct async_submit_bio, work);
762 kfree(async);
763}
764
765int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
766 int rw, struct bio *bio, int mirror_num,
767 unsigned long bio_flags,
768 u64 bio_offset,
769 extent_submit_bio_hook_t *submit_bio_start,
770 extent_submit_bio_hook_t *submit_bio_done)
771{
772 struct async_submit_bio *async;
773
774 async = kmalloc(sizeof(*async), GFP_NOFS);
775 if (!async)
776 return -ENOMEM;
777
778 async->inode = inode;
779 async->rw = rw;
780 async->bio = bio;
781 async->mirror_num = mirror_num;
782 async->submit_bio_start = submit_bio_start;
783 async->submit_bio_done = submit_bio_done;
784
785 async->work.func = run_one_async_start;
786 async->work.ordered_func = run_one_async_done;
787 async->work.ordered_free = run_one_async_free;
788
789 async->work.flags = 0;
790 async->bio_flags = bio_flags;
791 async->bio_offset = bio_offset;
792
793 async->error = 0;
794
795 atomic_inc(&fs_info->nr_async_submits);
796
797 if (rw & REQ_SYNC)
798 btrfs_set_work_high_prio(&async->work);
799
800 btrfs_queue_worker(&fs_info->workers, &async->work);
801
802 while (atomic_read(&fs_info->async_submit_draining) &&
803 atomic_read(&fs_info->nr_async_submits)) {
804 wait_event(fs_info->async_submit_wait,
805 (atomic_read(&fs_info->nr_async_submits) == 0));
806 }
807
808 return 0;
809}
810
811static int btree_csum_one_bio(struct bio *bio)
812{
813 struct bio_vec *bvec = bio->bi_io_vec;
814 int bio_index = 0;
815 struct btrfs_root *root;
816 int ret = 0;
817
818 WARN_ON(bio->bi_vcnt <= 0);
819 while (bio_index < bio->bi_vcnt) {
820 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
821 ret = csum_dirty_buffer(root, bvec->bv_page);
822 if (ret)
823 break;
824 bio_index++;
825 bvec++;
826 }
827 return ret;
828}
829
830static int __btree_submit_bio_start(struct inode *inode, int rw,
831 struct bio *bio, int mirror_num,
832 unsigned long bio_flags,
833 u64 bio_offset)
834{
835 /*
836 * when we're called for a write, we're already in the async
837 * submission context. Just jump into btrfs_map_bio
838 */
839 return btree_csum_one_bio(bio);
840}
841
842static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
843 int mirror_num, unsigned long bio_flags,
844 u64 bio_offset)
845{
846 int ret;
847
848 /*
849 * when we're called for a write, we're already in the async
850 * submission context. Just jump into btrfs_map_bio
851 */
852 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
853 if (ret)
854 bio_endio(bio, ret);
855 return ret;
856}
857
858static int check_async_write(struct inode *inode, unsigned long bio_flags)
859{
860 if (bio_flags & EXTENT_BIO_TREE_LOG)
861 return 0;
862#ifdef CONFIG_X86
863 if (cpu_has_xmm4_2)
864 return 0;
865#endif
866 return 1;
867}
868
869static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
870 int mirror_num, unsigned long bio_flags,
871 u64 bio_offset)
872{
873 int async = check_async_write(inode, bio_flags);
874 int ret;
875
876 if (!(rw & REQ_WRITE)) {
877 /*
878 * called for a read, do the setup so that checksum validation
879 * can happen in the async kernel threads
880 */
881 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
882 bio, 1);
883 if (ret)
884 goto out_w_error;
885 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
886 mirror_num, 0);
887 } else if (!async) {
888 ret = btree_csum_one_bio(bio);
889 if (ret)
890 goto out_w_error;
891 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
892 mirror_num, 0);
893 } else {
894 /*
895 * kthread helpers are used to submit writes so that
896 * checksumming can happen in parallel across all CPUs
897 */
898 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
899 inode, rw, bio, mirror_num, 0,
900 bio_offset,
901 __btree_submit_bio_start,
902 __btree_submit_bio_done);
903 }
904
905 if (ret) {
906out_w_error:
907 bio_endio(bio, ret);
908 }
909 return ret;
910}
911
912#ifdef CONFIG_MIGRATION
913static int btree_migratepage(struct address_space *mapping,
914 struct page *newpage, struct page *page,
915 enum migrate_mode mode)
916{
917 /*
918 * we can't safely write a btree page from here,
919 * we haven't done the locking hook
920 */
921 if (PageDirty(page))
922 return -EAGAIN;
923 /*
924 * Buffers may be managed in a filesystem specific way.
925 * We must have no buffers or drop them.
926 */
927 if (page_has_private(page) &&
928 !try_to_release_page(page, GFP_KERNEL))
929 return -EAGAIN;
930 return migrate_page(mapping, newpage, page, mode);
931}
932#endif
933
934
935static int btree_writepages(struct address_space *mapping,
936 struct writeback_control *wbc)
937{
938 struct extent_io_tree *tree;
939 struct btrfs_fs_info *fs_info;
940 int ret;
941
942 tree = &BTRFS_I(mapping->host)->io_tree;
943 if (wbc->sync_mode == WB_SYNC_NONE) {
944
945 if (wbc->for_kupdate)
946 return 0;
947
948 fs_info = BTRFS_I(mapping->host)->root->fs_info;
949 /* this is a bit racy, but that's ok */
950 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
951 BTRFS_DIRTY_METADATA_THRESH);
952 if (ret < 0)
953 return 0;
954 }
955 return btree_write_cache_pages(mapping, wbc);
956}
957
958static int btree_readpage(struct file *file, struct page *page)
959{
960 struct extent_io_tree *tree;
961 tree = &BTRFS_I(page->mapping->host)->io_tree;
962 return extent_read_full_page(tree, page, btree_get_extent, 0);
963}
964
965static int btree_releasepage(struct page *page, gfp_t gfp_flags)
966{
967 if (PageWriteback(page) || PageDirty(page))
968 return 0;
969
970 return try_release_extent_buffer(page);
971}
972
973static void btree_invalidatepage(struct page *page, unsigned long offset)
974{
975 struct extent_io_tree *tree;
976 tree = &BTRFS_I(page->mapping->host)->io_tree;
977 extent_invalidatepage(tree, page, offset);
978 btree_releasepage(page, GFP_NOFS);
979 if (PagePrivate(page)) {
980 printk(KERN_WARNING "btrfs warning page private not zero "
981 "on page %llu\n", (unsigned long long)page_offset(page));
982 ClearPagePrivate(page);
983 set_page_private(page, 0);
984 page_cache_release(page);
985 }
986}
987
988static int btree_set_page_dirty(struct page *page)
989{
990#ifdef DEBUG
991 struct extent_buffer *eb;
992
993 BUG_ON(!PagePrivate(page));
994 eb = (struct extent_buffer *)page->private;
995 BUG_ON(!eb);
996 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
997 BUG_ON(!atomic_read(&eb->refs));
998 btrfs_assert_tree_locked(eb);
999#endif
1000 return __set_page_dirty_nobuffers(page);
1001}
1002
1003static const struct address_space_operations btree_aops = {
1004 .readpage = btree_readpage,
1005 .writepages = btree_writepages,
1006 .releasepage = btree_releasepage,
1007 .invalidatepage = btree_invalidatepage,
1008#ifdef CONFIG_MIGRATION
1009 .migratepage = btree_migratepage,
1010#endif
1011 .set_page_dirty = btree_set_page_dirty,
1012};
1013
1014int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1015 u64 parent_transid)
1016{
1017 struct extent_buffer *buf = NULL;
1018 struct inode *btree_inode = root->fs_info->btree_inode;
1019 int ret = 0;
1020
1021 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1022 if (!buf)
1023 return 0;
1024 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1025 buf, 0, WAIT_NONE, btree_get_extent, 0);
1026 free_extent_buffer(buf);
1027 return ret;
1028}
1029
1030int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1031 int mirror_num, struct extent_buffer **eb)
1032{
1033 struct extent_buffer *buf = NULL;
1034 struct inode *btree_inode = root->fs_info->btree_inode;
1035 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1036 int ret;
1037
1038 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1039 if (!buf)
1040 return 0;
1041
1042 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1043
1044 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1045 btree_get_extent, mirror_num);
1046 if (ret) {
1047 free_extent_buffer(buf);
1048 return ret;
1049 }
1050
1051 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1052 free_extent_buffer(buf);
1053 return -EIO;
1054 } else if (extent_buffer_uptodate(buf)) {
1055 *eb = buf;
1056 } else {
1057 free_extent_buffer(buf);
1058 }
1059 return 0;
1060}
1061
1062struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1063 u64 bytenr, u32 blocksize)
1064{
1065 struct inode *btree_inode = root->fs_info->btree_inode;
1066 struct extent_buffer *eb;
1067 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1068 bytenr, blocksize);
1069 return eb;
1070}
1071
1072struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1073 u64 bytenr, u32 blocksize)
1074{
1075 struct inode *btree_inode = root->fs_info->btree_inode;
1076 struct extent_buffer *eb;
1077
1078 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1079 bytenr, blocksize);
1080 return eb;
1081}
1082
1083
1084int btrfs_write_tree_block(struct extent_buffer *buf)
1085{
1086 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1087 buf->start + buf->len - 1);
1088}
1089
1090int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1091{
1092 return filemap_fdatawait_range(buf->pages[0]->mapping,
1093 buf->start, buf->start + buf->len - 1);
1094}
1095
1096struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1097 u32 blocksize, u64 parent_transid)
1098{
1099 struct extent_buffer *buf = NULL;
1100 int ret;
1101
1102 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1103 if (!buf)
1104 return NULL;
1105
1106 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1107 return buf;
1108
1109}
1110
1111void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1112 struct extent_buffer *buf)
1113{
1114 struct btrfs_fs_info *fs_info = root->fs_info;
1115
1116 if (btrfs_header_generation(buf) ==
1117 fs_info->running_transaction->transid) {
1118 btrfs_assert_tree_locked(buf);
1119
1120 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1121 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1122 -buf->len,
1123 fs_info->dirty_metadata_batch);
1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 btrfs_set_lock_blocking(buf);
1126 clear_extent_buffer_dirty(buf);
1127 }
1128 }
1129}
1130
1131static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1132 u32 stripesize, struct btrfs_root *root,
1133 struct btrfs_fs_info *fs_info,
1134 u64 objectid)
1135{
1136 root->node = NULL;
1137 root->commit_root = NULL;
1138 root->sectorsize = sectorsize;
1139 root->nodesize = nodesize;
1140 root->leafsize = leafsize;
1141 root->stripesize = stripesize;
1142 root->ref_cows = 0;
1143 root->track_dirty = 0;
1144 root->in_radix = 0;
1145 root->orphan_item_inserted = 0;
1146 root->orphan_cleanup_state = 0;
1147
1148 root->objectid = objectid;
1149 root->last_trans = 0;
1150 root->highest_objectid = 0;
1151 root->name = NULL;
1152 root->inode_tree = RB_ROOT;
1153 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1154 root->block_rsv = NULL;
1155 root->orphan_block_rsv = NULL;
1156
1157 INIT_LIST_HEAD(&root->dirty_list);
1158 INIT_LIST_HEAD(&root->root_list);
1159 INIT_LIST_HEAD(&root->logged_list[0]);
1160 INIT_LIST_HEAD(&root->logged_list[1]);
1161 spin_lock_init(&root->orphan_lock);
1162 spin_lock_init(&root->inode_lock);
1163 spin_lock_init(&root->accounting_lock);
1164 spin_lock_init(&root->log_extents_lock[0]);
1165 spin_lock_init(&root->log_extents_lock[1]);
1166 mutex_init(&root->objectid_mutex);
1167 mutex_init(&root->log_mutex);
1168 init_waitqueue_head(&root->log_writer_wait);
1169 init_waitqueue_head(&root->log_commit_wait[0]);
1170 init_waitqueue_head(&root->log_commit_wait[1]);
1171 atomic_set(&root->log_commit[0], 0);
1172 atomic_set(&root->log_commit[1], 0);
1173 atomic_set(&root->log_writers, 0);
1174 atomic_set(&root->log_batch, 0);
1175 atomic_set(&root->orphan_inodes, 0);
1176 root->log_transid = 0;
1177 root->last_log_commit = 0;
1178 extent_io_tree_init(&root->dirty_log_pages,
1179 fs_info->btree_inode->i_mapping);
1180
1181 memset(&root->root_key, 0, sizeof(root->root_key));
1182 memset(&root->root_item, 0, sizeof(root->root_item));
1183 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1184 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1185 root->defrag_trans_start = fs_info->generation;
1186 init_completion(&root->kobj_unregister);
1187 root->defrag_running = 0;
1188 root->root_key.objectid = objectid;
1189 root->anon_dev = 0;
1190
1191 spin_lock_init(&root->root_item_lock);
1192}
1193
1194static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1195 struct btrfs_fs_info *fs_info,
1196 u64 objectid,
1197 struct btrfs_root *root)
1198{
1199 int ret;
1200 u32 blocksize;
1201 u64 generation;
1202
1203 __setup_root(tree_root->nodesize, tree_root->leafsize,
1204 tree_root->sectorsize, tree_root->stripesize,
1205 root, fs_info, objectid);
1206 ret = btrfs_find_last_root(tree_root, objectid,
1207 &root->root_item, &root->root_key);
1208 if (ret > 0)
1209 return -ENOENT;
1210 else if (ret < 0)
1211 return ret;
1212
1213 generation = btrfs_root_generation(&root->root_item);
1214 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1215 root->commit_root = NULL;
1216 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1217 blocksize, generation);
1218 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1219 free_extent_buffer(root->node);
1220 root->node = NULL;
1221 return -EIO;
1222 }
1223 root->commit_root = btrfs_root_node(root);
1224 return 0;
1225}
1226
1227static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1228{
1229 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1230 if (root)
1231 root->fs_info = fs_info;
1232 return root;
1233}
1234
1235struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1236 struct btrfs_fs_info *fs_info,
1237 u64 objectid)
1238{
1239 struct extent_buffer *leaf;
1240 struct btrfs_root *tree_root = fs_info->tree_root;
1241 struct btrfs_root *root;
1242 struct btrfs_key key;
1243 int ret = 0;
1244 u64 bytenr;
1245 uuid_le uuid;
1246
1247 root = btrfs_alloc_root(fs_info);
1248 if (!root)
1249 return ERR_PTR(-ENOMEM);
1250
1251 __setup_root(tree_root->nodesize, tree_root->leafsize,
1252 tree_root->sectorsize, tree_root->stripesize,
1253 root, fs_info, objectid);
1254 root->root_key.objectid = objectid;
1255 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1256 root->root_key.offset = 0;
1257
1258 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1259 0, objectid, NULL, 0, 0, 0);
1260 if (IS_ERR(leaf)) {
1261 ret = PTR_ERR(leaf);
1262 leaf = NULL;
1263 goto fail;
1264 }
1265
1266 bytenr = leaf->start;
1267 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1268 btrfs_set_header_bytenr(leaf, leaf->start);
1269 btrfs_set_header_generation(leaf, trans->transid);
1270 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1271 btrfs_set_header_owner(leaf, objectid);
1272 root->node = leaf;
1273
1274 write_extent_buffer(leaf, fs_info->fsid,
1275 (unsigned long)btrfs_header_fsid(leaf),
1276 BTRFS_FSID_SIZE);
1277 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1278 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1279 BTRFS_UUID_SIZE);
1280 btrfs_mark_buffer_dirty(leaf);
1281
1282 root->commit_root = btrfs_root_node(root);
1283 root->track_dirty = 1;
1284
1285
1286 root->root_item.flags = 0;
1287 root->root_item.byte_limit = 0;
1288 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1289 btrfs_set_root_generation(&root->root_item, trans->transid);
1290 btrfs_set_root_level(&root->root_item, 0);
1291 btrfs_set_root_refs(&root->root_item, 1);
1292 btrfs_set_root_used(&root->root_item, leaf->len);
1293 btrfs_set_root_last_snapshot(&root->root_item, 0);
1294 btrfs_set_root_dirid(&root->root_item, 0);
1295 uuid_le_gen(&uuid);
1296 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1297 root->root_item.drop_level = 0;
1298
1299 key.objectid = objectid;
1300 key.type = BTRFS_ROOT_ITEM_KEY;
1301 key.offset = 0;
1302 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1303 if (ret)
1304 goto fail;
1305
1306 btrfs_tree_unlock(leaf);
1307
1308 return root;
1309
1310fail:
1311 if (leaf) {
1312 btrfs_tree_unlock(leaf);
1313 free_extent_buffer(leaf);
1314 }
1315 kfree(root);
1316
1317 return ERR_PTR(ret);
1318}
1319
1320static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1321 struct btrfs_fs_info *fs_info)
1322{
1323 struct btrfs_root *root;
1324 struct btrfs_root *tree_root = fs_info->tree_root;
1325 struct extent_buffer *leaf;
1326
1327 root = btrfs_alloc_root(fs_info);
1328 if (!root)
1329 return ERR_PTR(-ENOMEM);
1330
1331 __setup_root(tree_root->nodesize, tree_root->leafsize,
1332 tree_root->sectorsize, tree_root->stripesize,
1333 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1334
1335 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1336 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1337 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1338 /*
1339 * log trees do not get reference counted because they go away
1340 * before a real commit is actually done. They do store pointers
1341 * to file data extents, and those reference counts still get
1342 * updated (along with back refs to the log tree).
1343 */
1344 root->ref_cows = 0;
1345
1346 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1347 BTRFS_TREE_LOG_OBJECTID, NULL,
1348 0, 0, 0);
1349 if (IS_ERR(leaf)) {
1350 kfree(root);
1351 return ERR_CAST(leaf);
1352 }
1353
1354 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1355 btrfs_set_header_bytenr(leaf, leaf->start);
1356 btrfs_set_header_generation(leaf, trans->transid);
1357 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1358 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1359 root->node = leaf;
1360
1361 write_extent_buffer(root->node, root->fs_info->fsid,
1362 (unsigned long)btrfs_header_fsid(root->node),
1363 BTRFS_FSID_SIZE);
1364 btrfs_mark_buffer_dirty(root->node);
1365 btrfs_tree_unlock(root->node);
1366 return root;
1367}
1368
1369int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1370 struct btrfs_fs_info *fs_info)
1371{
1372 struct btrfs_root *log_root;
1373
1374 log_root = alloc_log_tree(trans, fs_info);
1375 if (IS_ERR(log_root))
1376 return PTR_ERR(log_root);
1377 WARN_ON(fs_info->log_root_tree);
1378 fs_info->log_root_tree = log_root;
1379 return 0;
1380}
1381
1382int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1383 struct btrfs_root *root)
1384{
1385 struct btrfs_root *log_root;
1386 struct btrfs_inode_item *inode_item;
1387
1388 log_root = alloc_log_tree(trans, root->fs_info);
1389 if (IS_ERR(log_root))
1390 return PTR_ERR(log_root);
1391
1392 log_root->last_trans = trans->transid;
1393 log_root->root_key.offset = root->root_key.objectid;
1394
1395 inode_item = &log_root->root_item.inode;
1396 inode_item->generation = cpu_to_le64(1);
1397 inode_item->size = cpu_to_le64(3);
1398 inode_item->nlink = cpu_to_le32(1);
1399 inode_item->nbytes = cpu_to_le64(root->leafsize);
1400 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1401
1402 btrfs_set_root_node(&log_root->root_item, log_root->node);
1403
1404 WARN_ON(root->log_root);
1405 root->log_root = log_root;
1406 root->log_transid = 0;
1407 root->last_log_commit = 0;
1408 return 0;
1409}
1410
1411struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1412 struct btrfs_key *location)
1413{
1414 struct btrfs_root *root;
1415 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1416 struct btrfs_path *path;
1417 struct extent_buffer *l;
1418 u64 generation;
1419 u32 blocksize;
1420 int ret = 0;
1421 int slot;
1422
1423 root = btrfs_alloc_root(fs_info);
1424 if (!root)
1425 return ERR_PTR(-ENOMEM);
1426 if (location->offset == (u64)-1) {
1427 ret = find_and_setup_root(tree_root, fs_info,
1428 location->objectid, root);
1429 if (ret) {
1430 kfree(root);
1431 return ERR_PTR(ret);
1432 }
1433 goto out;
1434 }
1435
1436 __setup_root(tree_root->nodesize, tree_root->leafsize,
1437 tree_root->sectorsize, tree_root->stripesize,
1438 root, fs_info, location->objectid);
1439
1440 path = btrfs_alloc_path();
1441 if (!path) {
1442 kfree(root);
1443 return ERR_PTR(-ENOMEM);
1444 }
1445 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1446 if (ret == 0) {
1447 l = path->nodes[0];
1448 slot = path->slots[0];
1449 btrfs_read_root_item(l, slot, &root->root_item);
1450 memcpy(&root->root_key, location, sizeof(*location));
1451 }
1452 btrfs_free_path(path);
1453 if (ret) {
1454 kfree(root);
1455 if (ret > 0)
1456 ret = -ENOENT;
1457 return ERR_PTR(ret);
1458 }
1459
1460 generation = btrfs_root_generation(&root->root_item);
1461 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1462 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1463 blocksize, generation);
1464 if (!root->node || !extent_buffer_uptodate(root->node)) {
1465 ret = (!root->node) ? -ENOMEM : -EIO;
1466
1467 free_extent_buffer(root->node);
1468 kfree(root);
1469 return ERR_PTR(ret);
1470 }
1471
1472 root->commit_root = btrfs_root_node(root);
1473 BUG_ON(!root->node); /* -ENOMEM */
1474out:
1475 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1476 root->ref_cows = 1;
1477 btrfs_check_and_init_root_item(&root->root_item);
1478 }
1479
1480 return root;
1481}
1482
1483struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1484 struct btrfs_key *location)
1485{
1486 struct btrfs_root *root;
1487 int ret;
1488
1489 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1490 return fs_info->tree_root;
1491 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1492 return fs_info->extent_root;
1493 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1494 return fs_info->chunk_root;
1495 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1496 return fs_info->dev_root;
1497 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1498 return fs_info->csum_root;
1499 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1500 return fs_info->quota_root ? fs_info->quota_root :
1501 ERR_PTR(-ENOENT);
1502again:
1503 spin_lock(&fs_info->fs_roots_radix_lock);
1504 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1505 (unsigned long)location->objectid);
1506 spin_unlock(&fs_info->fs_roots_radix_lock);
1507 if (root)
1508 return root;
1509
1510 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1511 if (IS_ERR(root))
1512 return root;
1513
1514 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1515 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1516 GFP_NOFS);
1517 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1518 ret = -ENOMEM;
1519 goto fail;
1520 }
1521
1522 btrfs_init_free_ino_ctl(root);
1523 mutex_init(&root->fs_commit_mutex);
1524 spin_lock_init(&root->cache_lock);
1525 init_waitqueue_head(&root->cache_wait);
1526
1527 ret = get_anon_bdev(&root->anon_dev);
1528 if (ret)
1529 goto fail;
1530
1531 if (btrfs_root_refs(&root->root_item) == 0) {
1532 ret = -ENOENT;
1533 goto fail;
1534 }
1535
1536 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1537 if (ret < 0)
1538 goto fail;
1539 if (ret == 0)
1540 root->orphan_item_inserted = 1;
1541
1542 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1543 if (ret)
1544 goto fail;
1545
1546 spin_lock(&fs_info->fs_roots_radix_lock);
1547 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1548 (unsigned long)root->root_key.objectid,
1549 root);
1550 if (ret == 0)
1551 root->in_radix = 1;
1552
1553 spin_unlock(&fs_info->fs_roots_radix_lock);
1554 radix_tree_preload_end();
1555 if (ret) {
1556 if (ret == -EEXIST) {
1557 free_fs_root(root);
1558 goto again;
1559 }
1560 goto fail;
1561 }
1562
1563 ret = btrfs_find_dead_roots(fs_info->tree_root,
1564 root->root_key.objectid);
1565 WARN_ON(ret);
1566 return root;
1567fail:
1568 free_fs_root(root);
1569 return ERR_PTR(ret);
1570}
1571
1572static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1573{
1574 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1575 int ret = 0;
1576 struct btrfs_device *device;
1577 struct backing_dev_info *bdi;
1578
1579 rcu_read_lock();
1580 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1581 if (!device->bdev)
1582 continue;
1583 bdi = blk_get_backing_dev_info(device->bdev);
1584 if (bdi && bdi_congested(bdi, bdi_bits)) {
1585 ret = 1;
1586 break;
1587 }
1588 }
1589 rcu_read_unlock();
1590 return ret;
1591}
1592
1593/*
1594 * If this fails, caller must call bdi_destroy() to get rid of the
1595 * bdi again.
1596 */
1597static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1598{
1599 int err;
1600
1601 bdi->capabilities = BDI_CAP_MAP_COPY;
1602 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1603 if (err)
1604 return err;
1605
1606 bdi->ra_pages = default_backing_dev_info.ra_pages;
1607 bdi->congested_fn = btrfs_congested_fn;
1608 bdi->congested_data = info;
1609 return 0;
1610}
1611
1612/*
1613 * called by the kthread helper functions to finally call the bio end_io
1614 * functions. This is where read checksum verification actually happens
1615 */
1616static void end_workqueue_fn(struct btrfs_work *work)
1617{
1618 struct bio *bio;
1619 struct end_io_wq *end_io_wq;
1620 struct btrfs_fs_info *fs_info;
1621 int error;
1622
1623 end_io_wq = container_of(work, struct end_io_wq, work);
1624 bio = end_io_wq->bio;
1625 fs_info = end_io_wq->info;
1626
1627 error = end_io_wq->error;
1628 bio->bi_private = end_io_wq->private;
1629 bio->bi_end_io = end_io_wq->end_io;
1630 kfree(end_io_wq);
1631 bio_endio(bio, error);
1632}
1633
1634static int cleaner_kthread(void *arg)
1635{
1636 struct btrfs_root *root = arg;
1637
1638 do {
1639 int again = 0;
1640
1641 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1642 down_read_trylock(&root->fs_info->sb->s_umount)) {
1643 if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1644 btrfs_run_delayed_iputs(root);
1645 again = btrfs_clean_one_deleted_snapshot(root);
1646 mutex_unlock(&root->fs_info->cleaner_mutex);
1647 }
1648 btrfs_run_defrag_inodes(root->fs_info);
1649 up_read(&root->fs_info->sb->s_umount);
1650 }
1651
1652 if (!try_to_freeze() && !again) {
1653 set_current_state(TASK_INTERRUPTIBLE);
1654 if (!kthread_should_stop())
1655 schedule();
1656 __set_current_state(TASK_RUNNING);
1657 }
1658 } while (!kthread_should_stop());
1659 return 0;
1660}
1661
1662static int transaction_kthread(void *arg)
1663{
1664 struct btrfs_root *root = arg;
1665 struct btrfs_trans_handle *trans;
1666 struct btrfs_transaction *cur;
1667 u64 transid;
1668 unsigned long now;
1669 unsigned long delay;
1670 bool cannot_commit;
1671
1672 do {
1673 cannot_commit = false;
1674 delay = HZ * 30;
1675 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1676
1677 spin_lock(&root->fs_info->trans_lock);
1678 cur = root->fs_info->running_transaction;
1679 if (!cur) {
1680 spin_unlock(&root->fs_info->trans_lock);
1681 goto sleep;
1682 }
1683
1684 now = get_seconds();
1685 if (!cur->blocked &&
1686 (now < cur->start_time || now - cur->start_time < 30)) {
1687 spin_unlock(&root->fs_info->trans_lock);
1688 delay = HZ * 5;
1689 goto sleep;
1690 }
1691 transid = cur->transid;
1692 spin_unlock(&root->fs_info->trans_lock);
1693
1694 /* If the file system is aborted, this will always fail. */
1695 trans = btrfs_attach_transaction(root);
1696 if (IS_ERR(trans)) {
1697 if (PTR_ERR(trans) != -ENOENT)
1698 cannot_commit = true;
1699 goto sleep;
1700 }
1701 if (transid == trans->transid) {
1702 btrfs_commit_transaction(trans, root);
1703 } else {
1704 btrfs_end_transaction(trans, root);
1705 }
1706sleep:
1707 wake_up_process(root->fs_info->cleaner_kthread);
1708 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1709
1710 if (!try_to_freeze()) {
1711 set_current_state(TASK_INTERRUPTIBLE);
1712 if (!kthread_should_stop() &&
1713 (!btrfs_transaction_blocked(root->fs_info) ||
1714 cannot_commit))
1715 schedule_timeout(delay);
1716 __set_current_state(TASK_RUNNING);
1717 }
1718 } while (!kthread_should_stop());
1719 return 0;
1720}
1721
1722/*
1723 * this will find the highest generation in the array of
1724 * root backups. The index of the highest array is returned,
1725 * or -1 if we can't find anything.
1726 *
1727 * We check to make sure the array is valid by comparing the
1728 * generation of the latest root in the array with the generation
1729 * in the super block. If they don't match we pitch it.
1730 */
1731static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1732{
1733 u64 cur;
1734 int newest_index = -1;
1735 struct btrfs_root_backup *root_backup;
1736 int i;
1737
1738 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1739 root_backup = info->super_copy->super_roots + i;
1740 cur = btrfs_backup_tree_root_gen(root_backup);
1741 if (cur == newest_gen)
1742 newest_index = i;
1743 }
1744
1745 /* check to see if we actually wrapped around */
1746 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1747 root_backup = info->super_copy->super_roots;
1748 cur = btrfs_backup_tree_root_gen(root_backup);
1749 if (cur == newest_gen)
1750 newest_index = 0;
1751 }
1752 return newest_index;
1753}
1754
1755
1756/*
1757 * find the oldest backup so we know where to store new entries
1758 * in the backup array. This will set the backup_root_index
1759 * field in the fs_info struct
1760 */
1761static void find_oldest_super_backup(struct btrfs_fs_info *info,
1762 u64 newest_gen)
1763{
1764 int newest_index = -1;
1765
1766 newest_index = find_newest_super_backup(info, newest_gen);
1767 /* if there was garbage in there, just move along */
1768 if (newest_index == -1) {
1769 info->backup_root_index = 0;
1770 } else {
1771 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1772 }
1773}
1774
1775/*
1776 * copy all the root pointers into the super backup array.
1777 * this will bump the backup pointer by one when it is
1778 * done
1779 */
1780static void backup_super_roots(struct btrfs_fs_info *info)
1781{
1782 int next_backup;
1783 struct btrfs_root_backup *root_backup;
1784 int last_backup;
1785
1786 next_backup = info->backup_root_index;
1787 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1788 BTRFS_NUM_BACKUP_ROOTS;
1789
1790 /*
1791 * just overwrite the last backup if we're at the same generation
1792 * this happens only at umount
1793 */
1794 root_backup = info->super_for_commit->super_roots + last_backup;
1795 if (btrfs_backup_tree_root_gen(root_backup) ==
1796 btrfs_header_generation(info->tree_root->node))
1797 next_backup = last_backup;
1798
1799 root_backup = info->super_for_commit->super_roots + next_backup;
1800
1801 /*
1802 * make sure all of our padding and empty slots get zero filled
1803 * regardless of which ones we use today
1804 */
1805 memset(root_backup, 0, sizeof(*root_backup));
1806
1807 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1808
1809 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1810 btrfs_set_backup_tree_root_gen(root_backup,
1811 btrfs_header_generation(info->tree_root->node));
1812
1813 btrfs_set_backup_tree_root_level(root_backup,
1814 btrfs_header_level(info->tree_root->node));
1815
1816 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1817 btrfs_set_backup_chunk_root_gen(root_backup,
1818 btrfs_header_generation(info->chunk_root->node));
1819 btrfs_set_backup_chunk_root_level(root_backup,
1820 btrfs_header_level(info->chunk_root->node));
1821
1822 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1823 btrfs_set_backup_extent_root_gen(root_backup,
1824 btrfs_header_generation(info->extent_root->node));
1825 btrfs_set_backup_extent_root_level(root_backup,
1826 btrfs_header_level(info->extent_root->node));
1827
1828 /*
1829 * we might commit during log recovery, which happens before we set
1830 * the fs_root. Make sure it is valid before we fill it in.
1831 */
1832 if (info->fs_root && info->fs_root->node) {
1833 btrfs_set_backup_fs_root(root_backup,
1834 info->fs_root->node->start);
1835 btrfs_set_backup_fs_root_gen(root_backup,
1836 btrfs_header_generation(info->fs_root->node));
1837 btrfs_set_backup_fs_root_level(root_backup,
1838 btrfs_header_level(info->fs_root->node));
1839 }
1840
1841 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1842 btrfs_set_backup_dev_root_gen(root_backup,
1843 btrfs_header_generation(info->dev_root->node));
1844 btrfs_set_backup_dev_root_level(root_backup,
1845 btrfs_header_level(info->dev_root->node));
1846
1847 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1848 btrfs_set_backup_csum_root_gen(root_backup,
1849 btrfs_header_generation(info->csum_root->node));
1850 btrfs_set_backup_csum_root_level(root_backup,
1851 btrfs_header_level(info->csum_root->node));
1852
1853 btrfs_set_backup_total_bytes(root_backup,
1854 btrfs_super_total_bytes(info->super_copy));
1855 btrfs_set_backup_bytes_used(root_backup,
1856 btrfs_super_bytes_used(info->super_copy));
1857 btrfs_set_backup_num_devices(root_backup,
1858 btrfs_super_num_devices(info->super_copy));
1859
1860 /*
1861 * if we don't copy this out to the super_copy, it won't get remembered
1862 * for the next commit
1863 */
1864 memcpy(&info->super_copy->super_roots,
1865 &info->super_for_commit->super_roots,
1866 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1867}
1868
1869/*
1870 * this copies info out of the root backup array and back into
1871 * the in-memory super block. It is meant to help iterate through
1872 * the array, so you send it the number of backups you've already
1873 * tried and the last backup index you used.
1874 *
1875 * this returns -1 when it has tried all the backups
1876 */
1877static noinline int next_root_backup(struct btrfs_fs_info *info,
1878 struct btrfs_super_block *super,
1879 int *num_backups_tried, int *backup_index)
1880{
1881 struct btrfs_root_backup *root_backup;
1882 int newest = *backup_index;
1883
1884 if (*num_backups_tried == 0) {
1885 u64 gen = btrfs_super_generation(super);
1886
1887 newest = find_newest_super_backup(info, gen);
1888 if (newest == -1)
1889 return -1;
1890
1891 *backup_index = newest;
1892 *num_backups_tried = 1;
1893 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1894 /* we've tried all the backups, all done */
1895 return -1;
1896 } else {
1897 /* jump to the next oldest backup */
1898 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1899 BTRFS_NUM_BACKUP_ROOTS;
1900 *backup_index = newest;
1901 *num_backups_tried += 1;
1902 }
1903 root_backup = super->super_roots + newest;
1904
1905 btrfs_set_super_generation(super,
1906 btrfs_backup_tree_root_gen(root_backup));
1907 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1908 btrfs_set_super_root_level(super,
1909 btrfs_backup_tree_root_level(root_backup));
1910 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1911
1912 /*
1913 * fixme: the total bytes and num_devices need to match or we should
1914 * need a fsck
1915 */
1916 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1917 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1918 return 0;
1919}
1920
1921/* helper to cleanup workers */
1922static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1923{
1924 btrfs_stop_workers(&fs_info->generic_worker);
1925 btrfs_stop_workers(&fs_info->fixup_workers);
1926 btrfs_stop_workers(&fs_info->delalloc_workers);
1927 btrfs_stop_workers(&fs_info->workers);
1928 btrfs_stop_workers(&fs_info->endio_workers);
1929 btrfs_stop_workers(&fs_info->endio_meta_workers);
1930 btrfs_stop_workers(&fs_info->endio_raid56_workers);
1931 btrfs_stop_workers(&fs_info->rmw_workers);
1932 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1933 btrfs_stop_workers(&fs_info->endio_write_workers);
1934 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1935 btrfs_stop_workers(&fs_info->submit_workers);
1936 btrfs_stop_workers(&fs_info->delayed_workers);
1937 btrfs_stop_workers(&fs_info->caching_workers);
1938 btrfs_stop_workers(&fs_info->readahead_workers);
1939 btrfs_stop_workers(&fs_info->flush_workers);
1940 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
1941}
1942
1943/* helper to cleanup tree roots */
1944static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1945{
1946 free_extent_buffer(info->tree_root->node);
1947 free_extent_buffer(info->tree_root->commit_root);
1948 free_extent_buffer(info->dev_root->node);
1949 free_extent_buffer(info->dev_root->commit_root);
1950 free_extent_buffer(info->extent_root->node);
1951 free_extent_buffer(info->extent_root->commit_root);
1952 free_extent_buffer(info->csum_root->node);
1953 free_extent_buffer(info->csum_root->commit_root);
1954 if (info->quota_root) {
1955 free_extent_buffer(info->quota_root->node);
1956 free_extent_buffer(info->quota_root->commit_root);
1957 }
1958
1959 info->tree_root->node = NULL;
1960 info->tree_root->commit_root = NULL;
1961 info->dev_root->node = NULL;
1962 info->dev_root->commit_root = NULL;
1963 info->extent_root->node = NULL;
1964 info->extent_root->commit_root = NULL;
1965 info->csum_root->node = NULL;
1966 info->csum_root->commit_root = NULL;
1967 if (info->quota_root) {
1968 info->quota_root->node = NULL;
1969 info->quota_root->commit_root = NULL;
1970 }
1971
1972 if (chunk_root) {
1973 free_extent_buffer(info->chunk_root->node);
1974 free_extent_buffer(info->chunk_root->commit_root);
1975 info->chunk_root->node = NULL;
1976 info->chunk_root->commit_root = NULL;
1977 }
1978}
1979
1980static void del_fs_roots(struct btrfs_fs_info *fs_info)
1981{
1982 int ret;
1983 struct btrfs_root *gang[8];
1984 int i;
1985
1986 while (!list_empty(&fs_info->dead_roots)) {
1987 gang[0] = list_entry(fs_info->dead_roots.next,
1988 struct btrfs_root, root_list);
1989 list_del(&gang[0]->root_list);
1990
1991 if (gang[0]->in_radix) {
1992 btrfs_free_fs_root(fs_info, gang[0]);
1993 } else {
1994 free_extent_buffer(gang[0]->node);
1995 free_extent_buffer(gang[0]->commit_root);
1996 kfree(gang[0]);
1997 }
1998 }
1999
2000 while (1) {
2001 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2002 (void **)gang, 0,
2003 ARRAY_SIZE(gang));
2004 if (!ret)
2005 break;
2006 for (i = 0; i < ret; i++)
2007 btrfs_free_fs_root(fs_info, gang[i]);
2008 }
2009}
2010
2011int open_ctree(struct super_block *sb,
2012 struct btrfs_fs_devices *fs_devices,
2013 char *options)
2014{
2015 u32 sectorsize;
2016 u32 nodesize;
2017 u32 leafsize;
2018 u32 blocksize;
2019 u32 stripesize;
2020 u64 generation;
2021 u64 features;
2022 struct btrfs_key location;
2023 struct buffer_head *bh;
2024 struct btrfs_super_block *disk_super;
2025 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2026 struct btrfs_root *tree_root;
2027 struct btrfs_root *extent_root;
2028 struct btrfs_root *csum_root;
2029 struct btrfs_root *chunk_root;
2030 struct btrfs_root *dev_root;
2031 struct btrfs_root *quota_root;
2032 struct btrfs_root *log_tree_root;
2033 int ret;
2034 int err = -EINVAL;
2035 int num_backups_tried = 0;
2036 int backup_index = 0;
2037
2038 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2039 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2040 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2041 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2042 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2043 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2044
2045 if (!tree_root || !extent_root || !csum_root ||
2046 !chunk_root || !dev_root || !quota_root) {
2047 err = -ENOMEM;
2048 goto fail;
2049 }
2050
2051 ret = init_srcu_struct(&fs_info->subvol_srcu);
2052 if (ret) {
2053 err = ret;
2054 goto fail;
2055 }
2056
2057 ret = setup_bdi(fs_info, &fs_info->bdi);
2058 if (ret) {
2059 err = ret;
2060 goto fail_srcu;
2061 }
2062
2063 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2064 if (ret) {
2065 err = ret;
2066 goto fail_bdi;
2067 }
2068 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2069 (1 + ilog2(nr_cpu_ids));
2070
2071 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2072 if (ret) {
2073 err = ret;
2074 goto fail_dirty_metadata_bytes;
2075 }
2076
2077 fs_info->btree_inode = new_inode(sb);
2078 if (!fs_info->btree_inode) {
2079 err = -ENOMEM;
2080 goto fail_delalloc_bytes;
2081 }
2082
2083 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2084
2085 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2086 INIT_LIST_HEAD(&fs_info->trans_list);
2087 INIT_LIST_HEAD(&fs_info->dead_roots);
2088 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2089 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2090 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2091 spin_lock_init(&fs_info->delalloc_lock);
2092 spin_lock_init(&fs_info->trans_lock);
2093 spin_lock_init(&fs_info->fs_roots_radix_lock);
2094 spin_lock_init(&fs_info->delayed_iput_lock);
2095 spin_lock_init(&fs_info->defrag_inodes_lock);
2096 spin_lock_init(&fs_info->free_chunk_lock);
2097 spin_lock_init(&fs_info->tree_mod_seq_lock);
2098 spin_lock_init(&fs_info->super_lock);
2099 rwlock_init(&fs_info->tree_mod_log_lock);
2100 mutex_init(&fs_info->reloc_mutex);
2101 seqlock_init(&fs_info->profiles_lock);
2102
2103 init_completion(&fs_info->kobj_unregister);
2104 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2105 INIT_LIST_HEAD(&fs_info->space_info);
2106 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2107 btrfs_mapping_init(&fs_info->mapping_tree);
2108 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2109 BTRFS_BLOCK_RSV_GLOBAL);
2110 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2111 BTRFS_BLOCK_RSV_DELALLOC);
2112 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2113 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2114 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2115 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2116 BTRFS_BLOCK_RSV_DELOPS);
2117 atomic_set(&fs_info->nr_async_submits, 0);
2118 atomic_set(&fs_info->async_delalloc_pages, 0);
2119 atomic_set(&fs_info->async_submit_draining, 0);
2120 atomic_set(&fs_info->nr_async_bios, 0);
2121 atomic_set(&fs_info->defrag_running, 0);
2122 atomic64_set(&fs_info->tree_mod_seq, 0);
2123 fs_info->sb = sb;
2124 fs_info->max_inline = 8192 * 1024;
2125 fs_info->metadata_ratio = 0;
2126 fs_info->defrag_inodes = RB_ROOT;
2127 fs_info->trans_no_join = 0;
2128 fs_info->free_chunk_space = 0;
2129 fs_info->tree_mod_log = RB_ROOT;
2130
2131 /* readahead state */
2132 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2133 spin_lock_init(&fs_info->reada_lock);
2134
2135 fs_info->thread_pool_size = min_t(unsigned long,
2136 num_online_cpus() + 2, 8);
2137
2138 INIT_LIST_HEAD(&fs_info->ordered_extents);
2139 spin_lock_init(&fs_info->ordered_extent_lock);
2140 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2141 GFP_NOFS);
2142 if (!fs_info->delayed_root) {
2143 err = -ENOMEM;
2144 goto fail_iput;
2145 }
2146 btrfs_init_delayed_root(fs_info->delayed_root);
2147
2148 mutex_init(&fs_info->scrub_lock);
2149 atomic_set(&fs_info->scrubs_running, 0);
2150 atomic_set(&fs_info->scrub_pause_req, 0);
2151 atomic_set(&fs_info->scrubs_paused, 0);
2152 atomic_set(&fs_info->scrub_cancel_req, 0);
2153 init_waitqueue_head(&fs_info->scrub_pause_wait);
2154 init_rwsem(&fs_info->scrub_super_lock);
2155 fs_info->scrub_workers_refcnt = 0;
2156#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2157 fs_info->check_integrity_print_mask = 0;
2158#endif
2159
2160 spin_lock_init(&fs_info->balance_lock);
2161 mutex_init(&fs_info->balance_mutex);
2162 atomic_set(&fs_info->balance_running, 0);
2163 atomic_set(&fs_info->balance_pause_req, 0);
2164 atomic_set(&fs_info->balance_cancel_req, 0);
2165 fs_info->balance_ctl = NULL;
2166 init_waitqueue_head(&fs_info->balance_wait_q);
2167
2168 sb->s_blocksize = 4096;
2169 sb->s_blocksize_bits = blksize_bits(4096);
2170 sb->s_bdi = &fs_info->bdi;
2171
2172 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2173 set_nlink(fs_info->btree_inode, 1);
2174 /*
2175 * we set the i_size on the btree inode to the max possible int.
2176 * the real end of the address space is determined by all of
2177 * the devices in the system
2178 */
2179 fs_info->btree_inode->i_size = OFFSET_MAX;
2180 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2181 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2182
2183 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2184 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2185 fs_info->btree_inode->i_mapping);
2186 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2187 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2188
2189 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2190
2191 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2192 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2193 sizeof(struct btrfs_key));
2194 set_bit(BTRFS_INODE_DUMMY,
2195 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2196 insert_inode_hash(fs_info->btree_inode);
2197
2198 spin_lock_init(&fs_info->block_group_cache_lock);
2199 fs_info->block_group_cache_tree = RB_ROOT;
2200 fs_info->first_logical_byte = (u64)-1;
2201
2202 extent_io_tree_init(&fs_info->freed_extents[0],
2203 fs_info->btree_inode->i_mapping);
2204 extent_io_tree_init(&fs_info->freed_extents[1],
2205 fs_info->btree_inode->i_mapping);
2206 fs_info->pinned_extents = &fs_info->freed_extents[0];
2207 fs_info->do_barriers = 1;
2208
2209
2210 mutex_init(&fs_info->ordered_operations_mutex);
2211 mutex_init(&fs_info->tree_log_mutex);
2212 mutex_init(&fs_info->chunk_mutex);
2213 mutex_init(&fs_info->transaction_kthread_mutex);
2214 mutex_init(&fs_info->cleaner_mutex);
2215 mutex_init(&fs_info->volume_mutex);
2216 init_rwsem(&fs_info->extent_commit_sem);
2217 init_rwsem(&fs_info->cleanup_work_sem);
2218 init_rwsem(&fs_info->subvol_sem);
2219 fs_info->dev_replace.lock_owner = 0;
2220 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2221 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2222 mutex_init(&fs_info->dev_replace.lock_management_lock);
2223 mutex_init(&fs_info->dev_replace.lock);
2224
2225 spin_lock_init(&fs_info->qgroup_lock);
2226 mutex_init(&fs_info->qgroup_ioctl_lock);
2227 fs_info->qgroup_tree = RB_ROOT;
2228 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2229 fs_info->qgroup_seq = 1;
2230 fs_info->quota_enabled = 0;
2231 fs_info->pending_quota_state = 0;
2232 mutex_init(&fs_info->qgroup_rescan_lock);
2233
2234 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2235 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2236
2237 init_waitqueue_head(&fs_info->transaction_throttle);
2238 init_waitqueue_head(&fs_info->transaction_wait);
2239 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2240 init_waitqueue_head(&fs_info->async_submit_wait);
2241
2242 ret = btrfs_alloc_stripe_hash_table(fs_info);
2243 if (ret) {
2244 err = ret;
2245 goto fail_alloc;
2246 }
2247
2248 __setup_root(4096, 4096, 4096, 4096, tree_root,
2249 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2250
2251 invalidate_bdev(fs_devices->latest_bdev);
2252 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2253 if (!bh) {
2254 err = -EINVAL;
2255 goto fail_alloc;
2256 }
2257
2258 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2259 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2260 sizeof(*fs_info->super_for_commit));
2261 brelse(bh);
2262
2263 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2264
2265 disk_super = fs_info->super_copy;
2266 if (!btrfs_super_root(disk_super))
2267 goto fail_alloc;
2268
2269 /* check FS state, whether FS is broken. */
2270 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2271 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2272
2273 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2274 if (ret) {
2275 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2276 err = ret;
2277 goto fail_alloc;
2278 }
2279
2280 /*
2281 * run through our array of backup supers and setup
2282 * our ring pointer to the oldest one
2283 */
2284 generation = btrfs_super_generation(disk_super);
2285 find_oldest_super_backup(fs_info, generation);
2286
2287 /*
2288 * In the long term, we'll store the compression type in the super
2289 * block, and it'll be used for per file compression control.
2290 */
2291 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2292
2293 ret = btrfs_parse_options(tree_root, options);
2294 if (ret) {
2295 err = ret;
2296 goto fail_alloc;
2297 }
2298
2299 features = btrfs_super_incompat_flags(disk_super) &
2300 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2301 if (features) {
2302 printk(KERN_ERR "BTRFS: couldn't mount because of "
2303 "unsupported optional features (%Lx).\n",
2304 (unsigned long long)features);
2305 err = -EINVAL;
2306 goto fail_alloc;
2307 }
2308
2309 if (btrfs_super_leafsize(disk_super) !=
2310 btrfs_super_nodesize(disk_super)) {
2311 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2312 "blocksizes don't match. node %d leaf %d\n",
2313 btrfs_super_nodesize(disk_super),
2314 btrfs_super_leafsize(disk_super));
2315 err = -EINVAL;
2316 goto fail_alloc;
2317 }
2318 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2319 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2320 "blocksize (%d) was too large\n",
2321 btrfs_super_leafsize(disk_super));
2322 err = -EINVAL;
2323 goto fail_alloc;
2324 }
2325
2326 features = btrfs_super_incompat_flags(disk_super);
2327 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2328 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2329 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2330
2331 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2332 printk(KERN_ERR "btrfs: has skinny extents\n");
2333
2334 /*
2335 * flag our filesystem as having big metadata blocks if
2336 * they are bigger than the page size
2337 */
2338 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2339 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2340 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2341 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2342 }
2343
2344 nodesize = btrfs_super_nodesize(disk_super);
2345 leafsize = btrfs_super_leafsize(disk_super);
2346 sectorsize = btrfs_super_sectorsize(disk_super);
2347 stripesize = btrfs_super_stripesize(disk_super);
2348 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2349 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2350
2351 /*
2352 * mixed block groups end up with duplicate but slightly offset
2353 * extent buffers for the same range. It leads to corruptions
2354 */
2355 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2356 (sectorsize != leafsize)) {
2357 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2358 "are not allowed for mixed block groups on %s\n",
2359 sb->s_id);
2360 goto fail_alloc;
2361 }
2362
2363 /*
2364 * Needn't use the lock because there is no other task which will
2365 * update the flag.
2366 */
2367 btrfs_set_super_incompat_flags(disk_super, features);
2368
2369 features = btrfs_super_compat_ro_flags(disk_super) &
2370 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2371 if (!(sb->s_flags & MS_RDONLY) && features) {
2372 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2373 "unsupported option features (%Lx).\n",
2374 (unsigned long long)features);
2375 err = -EINVAL;
2376 goto fail_alloc;
2377 }
2378
2379 btrfs_init_workers(&fs_info->generic_worker,
2380 "genwork", 1, NULL);
2381
2382 btrfs_init_workers(&fs_info->workers, "worker",
2383 fs_info->thread_pool_size,
2384 &fs_info->generic_worker);
2385
2386 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2387 fs_info->thread_pool_size,
2388 &fs_info->generic_worker);
2389
2390 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2391 fs_info->thread_pool_size,
2392 &fs_info->generic_worker);
2393
2394 btrfs_init_workers(&fs_info->submit_workers, "submit",
2395 min_t(u64, fs_devices->num_devices,
2396 fs_info->thread_pool_size),
2397 &fs_info->generic_worker);
2398
2399 btrfs_init_workers(&fs_info->caching_workers, "cache",
2400 2, &fs_info->generic_worker);
2401
2402 /* a higher idle thresh on the submit workers makes it much more
2403 * likely that bios will be send down in a sane order to the
2404 * devices
2405 */
2406 fs_info->submit_workers.idle_thresh = 64;
2407
2408 fs_info->workers.idle_thresh = 16;
2409 fs_info->workers.ordered = 1;
2410
2411 fs_info->delalloc_workers.idle_thresh = 2;
2412 fs_info->delalloc_workers.ordered = 1;
2413
2414 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2415 &fs_info->generic_worker);
2416 btrfs_init_workers(&fs_info->endio_workers, "endio",
2417 fs_info->thread_pool_size,
2418 &fs_info->generic_worker);
2419 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2420 fs_info->thread_pool_size,
2421 &fs_info->generic_worker);
2422 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2423 "endio-meta-write", fs_info->thread_pool_size,
2424 &fs_info->generic_worker);
2425 btrfs_init_workers(&fs_info->endio_raid56_workers,
2426 "endio-raid56", fs_info->thread_pool_size,
2427 &fs_info->generic_worker);
2428 btrfs_init_workers(&fs_info->rmw_workers,
2429 "rmw", fs_info->thread_pool_size,
2430 &fs_info->generic_worker);
2431 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2432 fs_info->thread_pool_size,
2433 &fs_info->generic_worker);
2434 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2435 1, &fs_info->generic_worker);
2436 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2437 fs_info->thread_pool_size,
2438 &fs_info->generic_worker);
2439 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2440 fs_info->thread_pool_size,
2441 &fs_info->generic_worker);
2442 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2443 &fs_info->generic_worker);
2444
2445 /*
2446 * endios are largely parallel and should have a very
2447 * low idle thresh
2448 */
2449 fs_info->endio_workers.idle_thresh = 4;
2450 fs_info->endio_meta_workers.idle_thresh = 4;
2451 fs_info->endio_raid56_workers.idle_thresh = 4;
2452 fs_info->rmw_workers.idle_thresh = 2;
2453
2454 fs_info->endio_write_workers.idle_thresh = 2;
2455 fs_info->endio_meta_write_workers.idle_thresh = 2;
2456 fs_info->readahead_workers.idle_thresh = 2;
2457
2458 /*
2459 * btrfs_start_workers can really only fail because of ENOMEM so just
2460 * return -ENOMEM if any of these fail.
2461 */
2462 ret = btrfs_start_workers(&fs_info->workers);
2463 ret |= btrfs_start_workers(&fs_info->generic_worker);
2464 ret |= btrfs_start_workers(&fs_info->submit_workers);
2465 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2466 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2467 ret |= btrfs_start_workers(&fs_info->endio_workers);
2468 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2469 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2470 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2471 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2472 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2473 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2474 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2475 ret |= btrfs_start_workers(&fs_info->caching_workers);
2476 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2477 ret |= btrfs_start_workers(&fs_info->flush_workers);
2478 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2479 if (ret) {
2480 err = -ENOMEM;
2481 goto fail_sb_buffer;
2482 }
2483
2484 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2485 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2486 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2487
2488 tree_root->nodesize = nodesize;
2489 tree_root->leafsize = leafsize;
2490 tree_root->sectorsize = sectorsize;
2491 tree_root->stripesize = stripesize;
2492
2493 sb->s_blocksize = sectorsize;
2494 sb->s_blocksize_bits = blksize_bits(sectorsize);
2495
2496 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2497 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2498 goto fail_sb_buffer;
2499 }
2500
2501 if (sectorsize != PAGE_SIZE) {
2502 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2503 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2504 goto fail_sb_buffer;
2505 }
2506
2507 mutex_lock(&fs_info->chunk_mutex);
2508 ret = btrfs_read_sys_array(tree_root);
2509 mutex_unlock(&fs_info->chunk_mutex);
2510 if (ret) {
2511 printk(KERN_WARNING "btrfs: failed to read the system "
2512 "array on %s\n", sb->s_id);
2513 goto fail_sb_buffer;
2514 }
2515
2516 blocksize = btrfs_level_size(tree_root,
2517 btrfs_super_chunk_root_level(disk_super));
2518 generation = btrfs_super_chunk_root_generation(disk_super);
2519
2520 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2521 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2522
2523 chunk_root->node = read_tree_block(chunk_root,
2524 btrfs_super_chunk_root(disk_super),
2525 blocksize, generation);
2526 if (!chunk_root->node ||
2527 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2528 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2529 sb->s_id);
2530 goto fail_tree_roots;
2531 }
2532 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2533 chunk_root->commit_root = btrfs_root_node(chunk_root);
2534
2535 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2536 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2537 BTRFS_UUID_SIZE);
2538
2539 ret = btrfs_read_chunk_tree(chunk_root);
2540 if (ret) {
2541 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2542 sb->s_id);
2543 goto fail_tree_roots;
2544 }
2545
2546 /*
2547 * keep the device that is marked to be the target device for the
2548 * dev_replace procedure
2549 */
2550 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2551
2552 if (!fs_devices->latest_bdev) {
2553 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2554 sb->s_id);
2555 goto fail_tree_roots;
2556 }
2557
2558retry_root_backup:
2559 blocksize = btrfs_level_size(tree_root,
2560 btrfs_super_root_level(disk_super));
2561 generation = btrfs_super_generation(disk_super);
2562
2563 tree_root->node = read_tree_block(tree_root,
2564 btrfs_super_root(disk_super),
2565 blocksize, generation);
2566 if (!tree_root->node ||
2567 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2568 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2569 sb->s_id);
2570
2571 goto recovery_tree_root;
2572 }
2573
2574 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2575 tree_root->commit_root = btrfs_root_node(tree_root);
2576
2577 ret = find_and_setup_root(tree_root, fs_info,
2578 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2579 if (ret)
2580 goto recovery_tree_root;
2581 extent_root->track_dirty = 1;
2582
2583 ret = find_and_setup_root(tree_root, fs_info,
2584 BTRFS_DEV_TREE_OBJECTID, dev_root);
2585 if (ret)
2586 goto recovery_tree_root;
2587 dev_root->track_dirty = 1;
2588
2589 ret = find_and_setup_root(tree_root, fs_info,
2590 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2591 if (ret)
2592 goto recovery_tree_root;
2593 csum_root->track_dirty = 1;
2594
2595 ret = find_and_setup_root(tree_root, fs_info,
2596 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2597 if (ret) {
2598 kfree(quota_root);
2599 quota_root = fs_info->quota_root = NULL;
2600 } else {
2601 quota_root->track_dirty = 1;
2602 fs_info->quota_enabled = 1;
2603 fs_info->pending_quota_state = 1;
2604 }
2605
2606 fs_info->generation = generation;
2607 fs_info->last_trans_committed = generation;
2608
2609 ret = btrfs_recover_balance(fs_info);
2610 if (ret) {
2611 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2612 goto fail_block_groups;
2613 }
2614
2615 ret = btrfs_init_dev_stats(fs_info);
2616 if (ret) {
2617 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2618 ret);
2619 goto fail_block_groups;
2620 }
2621
2622 ret = btrfs_init_dev_replace(fs_info);
2623 if (ret) {
2624 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2625 goto fail_block_groups;
2626 }
2627
2628 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2629
2630 ret = btrfs_init_space_info(fs_info);
2631 if (ret) {
2632 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2633 goto fail_block_groups;
2634 }
2635
2636 ret = btrfs_read_block_groups(extent_root);
2637 if (ret) {
2638 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2639 goto fail_block_groups;
2640 }
2641 fs_info->num_tolerated_disk_barrier_failures =
2642 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2643 if (fs_info->fs_devices->missing_devices >
2644 fs_info->num_tolerated_disk_barrier_failures &&
2645 !(sb->s_flags & MS_RDONLY)) {
2646 printk(KERN_WARNING
2647 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2648 goto fail_block_groups;
2649 }
2650
2651 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2652 "btrfs-cleaner");
2653 if (IS_ERR(fs_info->cleaner_kthread))
2654 goto fail_block_groups;
2655
2656 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2657 tree_root,
2658 "btrfs-transaction");
2659 if (IS_ERR(fs_info->transaction_kthread))
2660 goto fail_cleaner;
2661
2662 if (!btrfs_test_opt(tree_root, SSD) &&
2663 !btrfs_test_opt(tree_root, NOSSD) &&
2664 !fs_info->fs_devices->rotating) {
2665 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2666 "mode\n");
2667 btrfs_set_opt(fs_info->mount_opt, SSD);
2668 }
2669
2670#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2671 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2672 ret = btrfsic_mount(tree_root, fs_devices,
2673 btrfs_test_opt(tree_root,
2674 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2675 1 : 0,
2676 fs_info->check_integrity_print_mask);
2677 if (ret)
2678 printk(KERN_WARNING "btrfs: failed to initialize"
2679 " integrity check module %s\n", sb->s_id);
2680 }
2681#endif
2682 ret = btrfs_read_qgroup_config(fs_info);
2683 if (ret)
2684 goto fail_trans_kthread;
2685
2686 /* do not make disk changes in broken FS */
2687 if (btrfs_super_log_root(disk_super) != 0) {
2688 u64 bytenr = btrfs_super_log_root(disk_super);
2689
2690 if (fs_devices->rw_devices == 0) {
2691 printk(KERN_WARNING "Btrfs log replay required "
2692 "on RO media\n");
2693 err = -EIO;
2694 goto fail_qgroup;
2695 }
2696 blocksize =
2697 btrfs_level_size(tree_root,
2698 btrfs_super_log_root_level(disk_super));
2699
2700 log_tree_root = btrfs_alloc_root(fs_info);
2701 if (!log_tree_root) {
2702 err = -ENOMEM;
2703 goto fail_qgroup;
2704 }
2705
2706 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2707 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2708
2709 log_tree_root->node = read_tree_block(tree_root, bytenr,
2710 blocksize,
2711 generation + 1);
2712 if (!log_tree_root->node ||
2713 !extent_buffer_uptodate(log_tree_root->node)) {
2714 printk(KERN_ERR "btrfs: failed to read log tree\n");
2715 free_extent_buffer(log_tree_root->node);
2716 kfree(log_tree_root);
2717 goto fail_trans_kthread;
2718 }
2719 /* returns with log_tree_root freed on success */
2720 ret = btrfs_recover_log_trees(log_tree_root);
2721 if (ret) {
2722 btrfs_error(tree_root->fs_info, ret,
2723 "Failed to recover log tree");
2724 free_extent_buffer(log_tree_root->node);
2725 kfree(log_tree_root);
2726 goto fail_trans_kthread;
2727 }
2728
2729 if (sb->s_flags & MS_RDONLY) {
2730 ret = btrfs_commit_super(tree_root);
2731 if (ret)
2732 goto fail_trans_kthread;
2733 }
2734 }
2735
2736 ret = btrfs_find_orphan_roots(tree_root);
2737 if (ret)
2738 goto fail_trans_kthread;
2739
2740 if (!(sb->s_flags & MS_RDONLY)) {
2741 ret = btrfs_cleanup_fs_roots(fs_info);
2742 if (ret)
2743 goto fail_trans_kthread;
2744
2745 ret = btrfs_recover_relocation(tree_root);
2746 if (ret < 0) {
2747 printk(KERN_WARNING
2748 "btrfs: failed to recover relocation\n");
2749 err = -EINVAL;
2750 goto fail_qgroup;
2751 }
2752 }
2753
2754 location.objectid = BTRFS_FS_TREE_OBJECTID;
2755 location.type = BTRFS_ROOT_ITEM_KEY;
2756 location.offset = (u64)-1;
2757
2758 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2759 if (!fs_info->fs_root)
2760 goto fail_qgroup;
2761 if (IS_ERR(fs_info->fs_root)) {
2762 err = PTR_ERR(fs_info->fs_root);
2763 goto fail_qgroup;
2764 }
2765
2766 if (sb->s_flags & MS_RDONLY)
2767 return 0;
2768
2769 down_read(&fs_info->cleanup_work_sem);
2770 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2771 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2772 up_read(&fs_info->cleanup_work_sem);
2773 close_ctree(tree_root);
2774 return ret;
2775 }
2776 up_read(&fs_info->cleanup_work_sem);
2777
2778 ret = btrfs_resume_balance_async(fs_info);
2779 if (ret) {
2780 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2781 close_ctree(tree_root);
2782 return ret;
2783 }
2784
2785 ret = btrfs_resume_dev_replace_async(fs_info);
2786 if (ret) {
2787 pr_warn("btrfs: failed to resume dev_replace\n");
2788 close_ctree(tree_root);
2789 return ret;
2790 }
2791
2792 return 0;
2793
2794fail_qgroup:
2795 btrfs_free_qgroup_config(fs_info);
2796fail_trans_kthread:
2797 kthread_stop(fs_info->transaction_kthread);
2798 del_fs_roots(fs_info);
2799 btrfs_cleanup_transaction(fs_info->tree_root);
2800fail_cleaner:
2801 kthread_stop(fs_info->cleaner_kthread);
2802
2803 /*
2804 * make sure we're done with the btree inode before we stop our
2805 * kthreads
2806 */
2807 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2808
2809fail_block_groups:
2810 btrfs_put_block_group_cache(fs_info);
2811 btrfs_free_block_groups(fs_info);
2812
2813fail_tree_roots:
2814 free_root_pointers(fs_info, 1);
2815 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2816
2817fail_sb_buffer:
2818 btrfs_stop_all_workers(fs_info);
2819fail_alloc:
2820fail_iput:
2821 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2822
2823 iput(fs_info->btree_inode);
2824fail_delalloc_bytes:
2825 percpu_counter_destroy(&fs_info->delalloc_bytes);
2826fail_dirty_metadata_bytes:
2827 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2828fail_bdi:
2829 bdi_destroy(&fs_info->bdi);
2830fail_srcu:
2831 cleanup_srcu_struct(&fs_info->subvol_srcu);
2832fail:
2833 btrfs_free_stripe_hash_table(fs_info);
2834 btrfs_close_devices(fs_info->fs_devices);
2835 return err;
2836
2837recovery_tree_root:
2838 if (!btrfs_test_opt(tree_root, RECOVERY))
2839 goto fail_tree_roots;
2840
2841 free_root_pointers(fs_info, 0);
2842
2843 /* don't use the log in recovery mode, it won't be valid */
2844 btrfs_set_super_log_root(disk_super, 0);
2845
2846 /* we can't trust the free space cache either */
2847 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2848
2849 ret = next_root_backup(fs_info, fs_info->super_copy,
2850 &num_backups_tried, &backup_index);
2851 if (ret == -1)
2852 goto fail_block_groups;
2853 goto retry_root_backup;
2854}
2855
2856static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2857{
2858 if (uptodate) {
2859 set_buffer_uptodate(bh);
2860 } else {
2861 struct btrfs_device *device = (struct btrfs_device *)
2862 bh->b_private;
2863
2864 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2865 "I/O error on %s\n",
2866 rcu_str_deref(device->name));
2867 /* note, we dont' set_buffer_write_io_error because we have
2868 * our own ways of dealing with the IO errors
2869 */
2870 clear_buffer_uptodate(bh);
2871 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2872 }
2873 unlock_buffer(bh);
2874 put_bh(bh);
2875}
2876
2877struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2878{
2879 struct buffer_head *bh;
2880 struct buffer_head *latest = NULL;
2881 struct btrfs_super_block *super;
2882 int i;
2883 u64 transid = 0;
2884 u64 bytenr;
2885
2886 /* we would like to check all the supers, but that would make
2887 * a btrfs mount succeed after a mkfs from a different FS.
2888 * So, we need to add a special mount option to scan for
2889 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2890 */
2891 for (i = 0; i < 1; i++) {
2892 bytenr = btrfs_sb_offset(i);
2893 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2894 break;
2895 bh = __bread(bdev, bytenr / 4096, 4096);
2896 if (!bh)
2897 continue;
2898
2899 super = (struct btrfs_super_block *)bh->b_data;
2900 if (btrfs_super_bytenr(super) != bytenr ||
2901 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2902 brelse(bh);
2903 continue;
2904 }
2905
2906 if (!latest || btrfs_super_generation(super) > transid) {
2907 brelse(latest);
2908 latest = bh;
2909 transid = btrfs_super_generation(super);
2910 } else {
2911 brelse(bh);
2912 }
2913 }
2914 return latest;
2915}
2916
2917/*
2918 * this should be called twice, once with wait == 0 and
2919 * once with wait == 1. When wait == 0 is done, all the buffer heads
2920 * we write are pinned.
2921 *
2922 * They are released when wait == 1 is done.
2923 * max_mirrors must be the same for both runs, and it indicates how
2924 * many supers on this one device should be written.
2925 *
2926 * max_mirrors == 0 means to write them all.
2927 */
2928static int write_dev_supers(struct btrfs_device *device,
2929 struct btrfs_super_block *sb,
2930 int do_barriers, int wait, int max_mirrors)
2931{
2932 struct buffer_head *bh;
2933 int i;
2934 int ret;
2935 int errors = 0;
2936 u32 crc;
2937 u64 bytenr;
2938
2939 if (max_mirrors == 0)
2940 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2941
2942 for (i = 0; i < max_mirrors; i++) {
2943 bytenr = btrfs_sb_offset(i);
2944 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2945 break;
2946
2947 if (wait) {
2948 bh = __find_get_block(device->bdev, bytenr / 4096,
2949 BTRFS_SUPER_INFO_SIZE);
2950 if (!bh) {
2951 errors++;
2952 continue;
2953 }
2954 wait_on_buffer(bh);
2955 if (!buffer_uptodate(bh))
2956 errors++;
2957
2958 /* drop our reference */
2959 brelse(bh);
2960
2961 /* drop the reference from the wait == 0 run */
2962 brelse(bh);
2963 continue;
2964 } else {
2965 btrfs_set_super_bytenr(sb, bytenr);
2966
2967 crc = ~(u32)0;
2968 crc = btrfs_csum_data((char *)sb +
2969 BTRFS_CSUM_SIZE, crc,
2970 BTRFS_SUPER_INFO_SIZE -
2971 BTRFS_CSUM_SIZE);
2972 btrfs_csum_final(crc, sb->csum);
2973
2974 /*
2975 * one reference for us, and we leave it for the
2976 * caller
2977 */
2978 bh = __getblk(device->bdev, bytenr / 4096,
2979 BTRFS_SUPER_INFO_SIZE);
2980 if (!bh) {
2981 printk(KERN_ERR "btrfs: couldn't get super "
2982 "buffer head for bytenr %Lu\n", bytenr);
2983 errors++;
2984 continue;
2985 }
2986
2987 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2988
2989 /* one reference for submit_bh */
2990 get_bh(bh);
2991
2992 set_buffer_uptodate(bh);
2993 lock_buffer(bh);
2994 bh->b_end_io = btrfs_end_buffer_write_sync;
2995 bh->b_private = device;
2996 }
2997
2998 /*
2999 * we fua the first super. The others we allow
3000 * to go down lazy.
3001 */
3002 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3003 if (ret)
3004 errors++;
3005 }
3006 return errors < i ? 0 : -1;
3007}
3008
3009/*
3010 * endio for the write_dev_flush, this will wake anyone waiting
3011 * for the barrier when it is done
3012 */
3013static void btrfs_end_empty_barrier(struct bio *bio, int err)
3014{
3015 if (err) {
3016 if (err == -EOPNOTSUPP)
3017 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3018 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3019 }
3020 if (bio->bi_private)
3021 complete(bio->bi_private);
3022 bio_put(bio);
3023}
3024
3025/*
3026 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3027 * sent down. With wait == 1, it waits for the previous flush.
3028 *
3029 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3030 * capable
3031 */
3032static int write_dev_flush(struct btrfs_device *device, int wait)
3033{
3034 struct bio *bio;
3035 int ret = 0;
3036
3037 if (device->nobarriers)
3038 return 0;
3039
3040 if (wait) {
3041 bio = device->flush_bio;
3042 if (!bio)
3043 return 0;
3044
3045 wait_for_completion(&device->flush_wait);
3046
3047 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3048 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3049 rcu_str_deref(device->name));
3050 device->nobarriers = 1;
3051 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3052 ret = -EIO;
3053 btrfs_dev_stat_inc_and_print(device,
3054 BTRFS_DEV_STAT_FLUSH_ERRS);
3055 }
3056
3057 /* drop the reference from the wait == 0 run */
3058 bio_put(bio);
3059 device->flush_bio = NULL;
3060
3061 return ret;
3062 }
3063
3064 /*
3065 * one reference for us, and we leave it for the
3066 * caller
3067 */
3068 device->flush_bio = NULL;
3069 bio = bio_alloc(GFP_NOFS, 0);
3070 if (!bio)
3071 return -ENOMEM;
3072
3073 bio->bi_end_io = btrfs_end_empty_barrier;
3074 bio->bi_bdev = device->bdev;
3075 init_completion(&device->flush_wait);
3076 bio->bi_private = &device->flush_wait;
3077 device->flush_bio = bio;
3078
3079 bio_get(bio);
3080 btrfsic_submit_bio(WRITE_FLUSH, bio);
3081
3082 return 0;
3083}
3084
3085/*
3086 * send an empty flush down to each device in parallel,
3087 * then wait for them
3088 */
3089static int barrier_all_devices(struct btrfs_fs_info *info)
3090{
3091 struct list_head *head;
3092 struct btrfs_device *dev;
3093 int errors_send = 0;
3094 int errors_wait = 0;
3095 int ret;
3096
3097 /* send down all the barriers */
3098 head = &info->fs_devices->devices;
3099 list_for_each_entry_rcu(dev, head, dev_list) {
3100 if (!dev->bdev) {
3101 errors_send++;
3102 continue;
3103 }
3104 if (!dev->in_fs_metadata || !dev->writeable)
3105 continue;
3106
3107 ret = write_dev_flush(dev, 0);
3108 if (ret)
3109 errors_send++;
3110 }
3111
3112 /* wait for all the barriers */
3113 list_for_each_entry_rcu(dev, head, dev_list) {
3114 if (!dev->bdev) {
3115 errors_wait++;
3116 continue;
3117 }
3118 if (!dev->in_fs_metadata || !dev->writeable)
3119 continue;
3120
3121 ret = write_dev_flush(dev, 1);
3122 if (ret)
3123 errors_wait++;
3124 }
3125 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3126 errors_wait > info->num_tolerated_disk_barrier_failures)
3127 return -EIO;
3128 return 0;
3129}
3130
3131int btrfs_calc_num_tolerated_disk_barrier_failures(
3132 struct btrfs_fs_info *fs_info)
3133{
3134 struct btrfs_ioctl_space_info space;
3135 struct btrfs_space_info *sinfo;
3136 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3137 BTRFS_BLOCK_GROUP_SYSTEM,
3138 BTRFS_BLOCK_GROUP_METADATA,
3139 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3140 int num_types = 4;
3141 int i;
3142 int c;
3143 int num_tolerated_disk_barrier_failures =
3144 (int)fs_info->fs_devices->num_devices;
3145
3146 for (i = 0; i < num_types; i++) {
3147 struct btrfs_space_info *tmp;
3148
3149 sinfo = NULL;
3150 rcu_read_lock();
3151 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3152 if (tmp->flags == types[i]) {
3153 sinfo = tmp;
3154 break;
3155 }
3156 }
3157 rcu_read_unlock();
3158
3159 if (!sinfo)
3160 continue;
3161
3162 down_read(&sinfo->groups_sem);
3163 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3164 if (!list_empty(&sinfo->block_groups[c])) {
3165 u64 flags;
3166
3167 btrfs_get_block_group_info(
3168 &sinfo->block_groups[c], &space);
3169 if (space.total_bytes == 0 ||
3170 space.used_bytes == 0)
3171 continue;
3172 flags = space.flags;
3173 /*
3174 * return
3175 * 0: if dup, single or RAID0 is configured for
3176 * any of metadata, system or data, else
3177 * 1: if RAID5 is configured, or if RAID1 or
3178 * RAID10 is configured and only two mirrors
3179 * are used, else
3180 * 2: if RAID6 is configured, else
3181 * num_mirrors - 1: if RAID1 or RAID10 is
3182 * configured and more than
3183 * 2 mirrors are used.
3184 */
3185 if (num_tolerated_disk_barrier_failures > 0 &&
3186 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3187 BTRFS_BLOCK_GROUP_RAID0)) ||
3188 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3189 == 0)))
3190 num_tolerated_disk_barrier_failures = 0;
3191 else if (num_tolerated_disk_barrier_failures > 1) {
3192 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3193 BTRFS_BLOCK_GROUP_RAID5 |
3194 BTRFS_BLOCK_GROUP_RAID10)) {
3195 num_tolerated_disk_barrier_failures = 1;
3196 } else if (flags &
3197 BTRFS_BLOCK_GROUP_RAID5) {
3198 num_tolerated_disk_barrier_failures = 2;
3199 }
3200 }
3201 }
3202 }
3203 up_read(&sinfo->groups_sem);
3204 }
3205
3206 return num_tolerated_disk_barrier_failures;
3207}
3208
3209static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3210{
3211 struct list_head *head;
3212 struct btrfs_device *dev;
3213 struct btrfs_super_block *sb;
3214 struct btrfs_dev_item *dev_item;
3215 int ret;
3216 int do_barriers;
3217 int max_errors;
3218 int total_errors = 0;
3219 u64 flags;
3220
3221 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3222 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3223 backup_super_roots(root->fs_info);
3224
3225 sb = root->fs_info->super_for_commit;
3226 dev_item = &sb->dev_item;
3227
3228 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3229 head = &root->fs_info->fs_devices->devices;
3230
3231 if (do_barriers) {
3232 ret = barrier_all_devices(root->fs_info);
3233 if (ret) {
3234 mutex_unlock(
3235 &root->fs_info->fs_devices->device_list_mutex);
3236 btrfs_error(root->fs_info, ret,
3237 "errors while submitting device barriers.");
3238 return ret;
3239 }
3240 }
3241
3242 list_for_each_entry_rcu(dev, head, dev_list) {
3243 if (!dev->bdev) {
3244 total_errors++;
3245 continue;
3246 }
3247 if (!dev->in_fs_metadata || !dev->writeable)
3248 continue;
3249
3250 btrfs_set_stack_device_generation(dev_item, 0);
3251 btrfs_set_stack_device_type(dev_item, dev->type);
3252 btrfs_set_stack_device_id(dev_item, dev->devid);
3253 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3254 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3255 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3256 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3257 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3258 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3259 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3260
3261 flags = btrfs_super_flags(sb);
3262 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3263
3264 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3265 if (ret)
3266 total_errors++;
3267 }
3268 if (total_errors > max_errors) {
3269 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3270 total_errors);
3271
3272 /* This shouldn't happen. FUA is masked off if unsupported */
3273 BUG();
3274 }
3275
3276 total_errors = 0;
3277 list_for_each_entry_rcu(dev, head, dev_list) {
3278 if (!dev->bdev)
3279 continue;
3280 if (!dev->in_fs_metadata || !dev->writeable)
3281 continue;
3282
3283 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3284 if (ret)
3285 total_errors++;
3286 }
3287 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3288 if (total_errors > max_errors) {
3289 btrfs_error(root->fs_info, -EIO,
3290 "%d errors while writing supers", total_errors);
3291 return -EIO;
3292 }
3293 return 0;
3294}
3295
3296int write_ctree_super(struct btrfs_trans_handle *trans,
3297 struct btrfs_root *root, int max_mirrors)
3298{
3299 int ret;
3300
3301 ret = write_all_supers(root, max_mirrors);
3302 return ret;
3303}
3304
3305void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3306{
3307 spin_lock(&fs_info->fs_roots_radix_lock);
3308 radix_tree_delete(&fs_info->fs_roots_radix,
3309 (unsigned long)root->root_key.objectid);
3310 spin_unlock(&fs_info->fs_roots_radix_lock);
3311
3312 if (btrfs_root_refs(&root->root_item) == 0)
3313 synchronize_srcu(&fs_info->subvol_srcu);
3314
3315 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3316 btrfs_free_log(NULL, root);
3317 btrfs_free_log_root_tree(NULL, fs_info);
3318 }
3319
3320 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3321 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3322 free_fs_root(root);
3323}
3324
3325static void free_fs_root(struct btrfs_root *root)
3326{
3327 iput(root->cache_inode);
3328 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3329 if (root->anon_dev)
3330 free_anon_bdev(root->anon_dev);
3331 free_extent_buffer(root->node);
3332 free_extent_buffer(root->commit_root);
3333 kfree(root->free_ino_ctl);
3334 kfree(root->free_ino_pinned);
3335 kfree(root->name);
3336 kfree(root);
3337}
3338
3339int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3340{
3341 u64 root_objectid = 0;
3342 struct btrfs_root *gang[8];
3343 int i;
3344 int ret;
3345
3346 while (1) {
3347 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3348 (void **)gang, root_objectid,
3349 ARRAY_SIZE(gang));
3350 if (!ret)
3351 break;
3352
3353 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3354 for (i = 0; i < ret; i++) {
3355 int err;
3356
3357 root_objectid = gang[i]->root_key.objectid;
3358 err = btrfs_orphan_cleanup(gang[i]);
3359 if (err)
3360 return err;
3361 }
3362 root_objectid++;
3363 }
3364 return 0;
3365}
3366
3367int btrfs_commit_super(struct btrfs_root *root)
3368{
3369 struct btrfs_trans_handle *trans;
3370 int ret;
3371
3372 mutex_lock(&root->fs_info->cleaner_mutex);
3373 btrfs_run_delayed_iputs(root);
3374 mutex_unlock(&root->fs_info->cleaner_mutex);
3375 wake_up_process(root->fs_info->cleaner_kthread);
3376
3377 /* wait until ongoing cleanup work done */
3378 down_write(&root->fs_info->cleanup_work_sem);
3379 up_write(&root->fs_info->cleanup_work_sem);
3380
3381 trans = btrfs_join_transaction(root);
3382 if (IS_ERR(trans))
3383 return PTR_ERR(trans);
3384 ret = btrfs_commit_transaction(trans, root);
3385 if (ret)
3386 return ret;
3387 /* run commit again to drop the original snapshot */
3388 trans = btrfs_join_transaction(root);
3389 if (IS_ERR(trans))
3390 return PTR_ERR(trans);
3391 ret = btrfs_commit_transaction(trans, root);
3392 if (ret)
3393 return ret;
3394 ret = btrfs_write_and_wait_transaction(NULL, root);
3395 if (ret) {
3396 btrfs_error(root->fs_info, ret,
3397 "Failed to sync btree inode to disk.");
3398 return ret;
3399 }
3400
3401 ret = write_ctree_super(NULL, root, 0);
3402 return ret;
3403}
3404
3405int close_ctree(struct btrfs_root *root)
3406{
3407 struct btrfs_fs_info *fs_info = root->fs_info;
3408 int ret;
3409
3410 fs_info->closing = 1;
3411 smp_mb();
3412
3413 /* pause restriper - we want to resume on mount */
3414 btrfs_pause_balance(fs_info);
3415
3416 btrfs_dev_replace_suspend_for_unmount(fs_info);
3417
3418 btrfs_scrub_cancel(fs_info);
3419
3420 /* wait for any defraggers to finish */
3421 wait_event(fs_info->transaction_wait,
3422 (atomic_read(&fs_info->defrag_running) == 0));
3423
3424 /* clear out the rbtree of defraggable inodes */
3425 btrfs_cleanup_defrag_inodes(fs_info);
3426
3427 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3428 ret = btrfs_commit_super(root);
3429 if (ret)
3430 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3431 }
3432
3433 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3434 btrfs_error_commit_super(root);
3435
3436 btrfs_put_block_group_cache(fs_info);
3437
3438 kthread_stop(fs_info->transaction_kthread);
3439 kthread_stop(fs_info->cleaner_kthread);
3440
3441 fs_info->closing = 2;
3442 smp_mb();
3443
3444 btrfs_free_qgroup_config(root->fs_info);
3445
3446 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3447 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3448 percpu_counter_sum(&fs_info->delalloc_bytes));
3449 }
3450
3451 free_root_pointers(fs_info, 1);
3452
3453 btrfs_free_block_groups(fs_info);
3454
3455 del_fs_roots(fs_info);
3456
3457 iput(fs_info->btree_inode);
3458
3459 btrfs_stop_all_workers(fs_info);
3460
3461#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3462 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3463 btrfsic_unmount(root, fs_info->fs_devices);
3464#endif
3465
3466 btrfs_close_devices(fs_info->fs_devices);
3467 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3468
3469 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3470 percpu_counter_destroy(&fs_info->delalloc_bytes);
3471 bdi_destroy(&fs_info->bdi);
3472 cleanup_srcu_struct(&fs_info->subvol_srcu);
3473
3474 btrfs_free_stripe_hash_table(fs_info);
3475
3476 return 0;
3477}
3478
3479int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3480 int atomic)
3481{
3482 int ret;
3483 struct inode *btree_inode = buf->pages[0]->mapping->host;
3484
3485 ret = extent_buffer_uptodate(buf);
3486 if (!ret)
3487 return ret;
3488
3489 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3490 parent_transid, atomic);
3491 if (ret == -EAGAIN)
3492 return ret;
3493 return !ret;
3494}
3495
3496int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3497{
3498 return set_extent_buffer_uptodate(buf);
3499}
3500
3501void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3502{
3503 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3504 u64 transid = btrfs_header_generation(buf);
3505 int was_dirty;
3506
3507 btrfs_assert_tree_locked(buf);
3508 if (transid != root->fs_info->generation)
3509 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3510 "found %llu running %llu\n",
3511 (unsigned long long)buf->start,
3512 (unsigned long long)transid,
3513 (unsigned long long)root->fs_info->generation);
3514 was_dirty = set_extent_buffer_dirty(buf);
3515 if (!was_dirty)
3516 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3517 buf->len,
3518 root->fs_info->dirty_metadata_batch);
3519}
3520
3521static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3522 int flush_delayed)
3523{
3524 /*
3525 * looks as though older kernels can get into trouble with
3526 * this code, they end up stuck in balance_dirty_pages forever
3527 */
3528 int ret;
3529
3530 if (current->flags & PF_MEMALLOC)
3531 return;
3532
3533 if (flush_delayed)
3534 btrfs_balance_delayed_items(root);
3535
3536 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3537 BTRFS_DIRTY_METADATA_THRESH);
3538 if (ret > 0) {
3539 balance_dirty_pages_ratelimited(
3540 root->fs_info->btree_inode->i_mapping);
3541 }
3542 return;
3543}
3544
3545void btrfs_btree_balance_dirty(struct btrfs_root *root)
3546{
3547 __btrfs_btree_balance_dirty(root, 1);
3548}
3549
3550void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3551{
3552 __btrfs_btree_balance_dirty(root, 0);
3553}
3554
3555int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3556{
3557 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3558 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3559}
3560
3561static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3562 int read_only)
3563{
3564 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3565 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3566 return -EINVAL;
3567 }
3568
3569 if (read_only)
3570 return 0;
3571
3572 return 0;
3573}
3574
3575static void btrfs_error_commit_super(struct btrfs_root *root)
3576{
3577 mutex_lock(&root->fs_info->cleaner_mutex);
3578 btrfs_run_delayed_iputs(root);
3579 mutex_unlock(&root->fs_info->cleaner_mutex);
3580
3581 down_write(&root->fs_info->cleanup_work_sem);
3582 up_write(&root->fs_info->cleanup_work_sem);
3583
3584 /* cleanup FS via transaction */
3585 btrfs_cleanup_transaction(root);
3586}
3587
3588static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3589 struct btrfs_root *root)
3590{
3591 struct btrfs_inode *btrfs_inode;
3592 struct list_head splice;
3593
3594 INIT_LIST_HEAD(&splice);
3595
3596 mutex_lock(&root->fs_info->ordered_operations_mutex);
3597 spin_lock(&root->fs_info->ordered_extent_lock);
3598
3599 list_splice_init(&t->ordered_operations, &splice);
3600 while (!list_empty(&splice)) {
3601 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3602 ordered_operations);
3603
3604 list_del_init(&btrfs_inode->ordered_operations);
3605
3606 btrfs_invalidate_inodes(btrfs_inode->root);
3607 }
3608
3609 spin_unlock(&root->fs_info->ordered_extent_lock);
3610 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3611}
3612
3613static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3614{
3615 struct btrfs_ordered_extent *ordered;
3616
3617 spin_lock(&root->fs_info->ordered_extent_lock);
3618 /*
3619 * This will just short circuit the ordered completion stuff which will
3620 * make sure the ordered extent gets properly cleaned up.
3621 */
3622 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3623 root_extent_list)
3624 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3625 spin_unlock(&root->fs_info->ordered_extent_lock);
3626}
3627
3628int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3629 struct btrfs_root *root)
3630{
3631 struct rb_node *node;
3632 struct btrfs_delayed_ref_root *delayed_refs;
3633 struct btrfs_delayed_ref_node *ref;
3634 int ret = 0;
3635
3636 delayed_refs = &trans->delayed_refs;
3637
3638 spin_lock(&delayed_refs->lock);
3639 if (delayed_refs->num_entries == 0) {
3640 spin_unlock(&delayed_refs->lock);
3641 printk(KERN_INFO "delayed_refs has NO entry\n");
3642 return ret;
3643 }
3644
3645 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3646 struct btrfs_delayed_ref_head *head = NULL;
3647
3648 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3649 atomic_set(&ref->refs, 1);
3650 if (btrfs_delayed_ref_is_head(ref)) {
3651
3652 head = btrfs_delayed_node_to_head(ref);
3653 if (!mutex_trylock(&head->mutex)) {
3654 atomic_inc(&ref->refs);
3655 spin_unlock(&delayed_refs->lock);
3656
3657 /* Need to wait for the delayed ref to run */
3658 mutex_lock(&head->mutex);
3659 mutex_unlock(&head->mutex);
3660 btrfs_put_delayed_ref(ref);
3661
3662 spin_lock(&delayed_refs->lock);
3663 continue;
3664 }
3665
3666 if (head->must_insert_reserved)
3667 btrfs_pin_extent(root, ref->bytenr,
3668 ref->num_bytes, 1);
3669 btrfs_free_delayed_extent_op(head->extent_op);
3670 delayed_refs->num_heads--;
3671 if (list_empty(&head->cluster))
3672 delayed_refs->num_heads_ready--;
3673 list_del_init(&head->cluster);
3674 }
3675
3676 ref->in_tree = 0;
3677 rb_erase(&ref->rb_node, &delayed_refs->root);
3678 delayed_refs->num_entries--;
3679 if (head)
3680 mutex_unlock(&head->mutex);
3681 spin_unlock(&delayed_refs->lock);
3682 btrfs_put_delayed_ref(ref);
3683
3684 cond_resched();
3685 spin_lock(&delayed_refs->lock);
3686 }
3687
3688 spin_unlock(&delayed_refs->lock);
3689
3690 return ret;
3691}
3692
3693static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3694{
3695 struct btrfs_pending_snapshot *snapshot;
3696 struct list_head splice;
3697
3698 INIT_LIST_HEAD(&splice);
3699
3700 list_splice_init(&t->pending_snapshots, &splice);
3701
3702 while (!list_empty(&splice)) {
3703 snapshot = list_entry(splice.next,
3704 struct btrfs_pending_snapshot,
3705 list);
3706 snapshot->error = -ECANCELED;
3707 list_del_init(&snapshot->list);
3708 }
3709}
3710
3711static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3712{
3713 struct btrfs_inode *btrfs_inode;
3714 struct list_head splice;
3715
3716 INIT_LIST_HEAD(&splice);
3717
3718 spin_lock(&root->fs_info->delalloc_lock);
3719 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3720
3721 while (!list_empty(&splice)) {
3722 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3723 delalloc_inodes);
3724
3725 list_del_init(&btrfs_inode->delalloc_inodes);
3726 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3727 &btrfs_inode->runtime_flags);
3728
3729 btrfs_invalidate_inodes(btrfs_inode->root);
3730 }
3731
3732 spin_unlock(&root->fs_info->delalloc_lock);
3733}
3734
3735static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3736 struct extent_io_tree *dirty_pages,
3737 int mark)
3738{
3739 int ret;
3740 struct extent_buffer *eb;
3741 u64 start = 0;
3742 u64 end;
3743
3744 while (1) {
3745 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3746 mark, NULL);
3747 if (ret)
3748 break;
3749
3750 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3751 while (start <= end) {
3752 eb = btrfs_find_tree_block(root, start,
3753 root->leafsize);
3754 start += eb->len;
3755 if (!eb)
3756 continue;
3757 wait_on_extent_buffer_writeback(eb);
3758
3759 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3760 &eb->bflags))
3761 clear_extent_buffer_dirty(eb);
3762 free_extent_buffer_stale(eb);
3763 }
3764 }
3765
3766 return ret;
3767}
3768
3769static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3770 struct extent_io_tree *pinned_extents)
3771{
3772 struct extent_io_tree *unpin;
3773 u64 start;
3774 u64 end;
3775 int ret;
3776 bool loop = true;
3777
3778 unpin = pinned_extents;
3779again:
3780 while (1) {
3781 ret = find_first_extent_bit(unpin, 0, &start, &end,
3782 EXTENT_DIRTY, NULL);
3783 if (ret)
3784 break;
3785
3786 /* opt_discard */
3787 if (btrfs_test_opt(root, DISCARD))
3788 ret = btrfs_error_discard_extent(root, start,
3789 end + 1 - start,
3790 NULL);
3791
3792 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3793 btrfs_error_unpin_extent_range(root, start, end);
3794 cond_resched();
3795 }
3796
3797 if (loop) {
3798 if (unpin == &root->fs_info->freed_extents[0])
3799 unpin = &root->fs_info->freed_extents[1];
3800 else
3801 unpin = &root->fs_info->freed_extents[0];
3802 loop = false;
3803 goto again;
3804 }
3805
3806 return 0;
3807}
3808
3809void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3810 struct btrfs_root *root)
3811{
3812 btrfs_destroy_delayed_refs(cur_trans, root);
3813 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3814 cur_trans->dirty_pages.dirty_bytes);
3815
3816 /* FIXME: cleanup wait for commit */
3817 cur_trans->in_commit = 1;
3818 cur_trans->blocked = 1;
3819 wake_up(&root->fs_info->transaction_blocked_wait);
3820
3821 btrfs_evict_pending_snapshots(cur_trans);
3822
3823 cur_trans->blocked = 0;
3824 wake_up(&root->fs_info->transaction_wait);
3825
3826 cur_trans->commit_done = 1;
3827 wake_up(&cur_trans->commit_wait);
3828
3829 btrfs_destroy_delayed_inodes(root);
3830 btrfs_assert_delayed_root_empty(root);
3831
3832 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3833 EXTENT_DIRTY);
3834 btrfs_destroy_pinned_extent(root,
3835 root->fs_info->pinned_extents);
3836
3837 /*
3838 memset(cur_trans, 0, sizeof(*cur_trans));
3839 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3840 */
3841}
3842
3843static int btrfs_cleanup_transaction(struct btrfs_root *root)
3844{
3845 struct btrfs_transaction *t;
3846 LIST_HEAD(list);
3847
3848 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3849
3850 spin_lock(&root->fs_info->trans_lock);
3851 list_splice_init(&root->fs_info->trans_list, &list);
3852 root->fs_info->trans_no_join = 1;
3853 spin_unlock(&root->fs_info->trans_lock);
3854
3855 while (!list_empty(&list)) {
3856 t = list_entry(list.next, struct btrfs_transaction, list);
3857
3858 btrfs_destroy_ordered_operations(t, root);
3859
3860 btrfs_destroy_ordered_extents(root);
3861
3862 btrfs_destroy_delayed_refs(t, root);
3863
3864 /* FIXME: cleanup wait for commit */
3865 t->in_commit = 1;
3866 t->blocked = 1;
3867 smp_mb();
3868 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3869 wake_up(&root->fs_info->transaction_blocked_wait);
3870
3871 btrfs_evict_pending_snapshots(t);
3872
3873 t->blocked = 0;
3874 smp_mb();
3875 if (waitqueue_active(&root->fs_info->transaction_wait))
3876 wake_up(&root->fs_info->transaction_wait);
3877
3878 t->commit_done = 1;
3879 smp_mb();
3880 if (waitqueue_active(&t->commit_wait))
3881 wake_up(&t->commit_wait);
3882
3883 btrfs_destroy_delayed_inodes(root);
3884 btrfs_assert_delayed_root_empty(root);
3885
3886 btrfs_destroy_delalloc_inodes(root);
3887
3888 spin_lock(&root->fs_info->trans_lock);
3889 root->fs_info->running_transaction = NULL;
3890 spin_unlock(&root->fs_info->trans_lock);
3891
3892 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3893 EXTENT_DIRTY);
3894
3895 btrfs_destroy_pinned_extent(root,
3896 root->fs_info->pinned_extents);
3897
3898 atomic_set(&t->use_count, 0);
3899 list_del_init(&t->list);
3900 memset(t, 0, sizeof(*t));
3901 kmem_cache_free(btrfs_transaction_cachep, t);
3902 }
3903
3904 spin_lock(&root->fs_info->trans_lock);
3905 root->fs_info->trans_no_join = 0;
3906 spin_unlock(&root->fs_info->trans_lock);
3907 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3908
3909 return 0;
3910}
3911
3912static struct extent_io_ops btree_extent_io_ops = {
3913 .readpage_end_io_hook = btree_readpage_end_io_hook,
3914 .readpage_io_failed_hook = btree_io_failed_hook,
3915 .submit_bio_hook = btree_submit_bio_hook,
3916 /* note we're sharing with inode.c for the merge bio hook */
3917 .merge_bio_hook = btrfs_merge_bio_hook,
3918};