Btrfs: introduce grab/put functions for the root of the fs/file tree
[linux-2.6-block.git] / fs / btrfs / disk-io.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/blkdev.h>
21#include <linux/scatterlist.h>
22#include <linux/swap.h>
23#include <linux/radix-tree.h>
24#include <linux/writeback.h>
25#include <linux/buffer_head.h>
26#include <linux/workqueue.h>
27#include <linux/kthread.h>
28#include <linux/freezer.h>
29#include <linux/crc32c.h>
30#include <linux/slab.h>
31#include <linux/migrate.h>
32#include <linux/ratelimit.h>
33#include <linux/uuid.h>
34#include <asm/unaligned.h>
35#include "compat.h"
36#include "ctree.h"
37#include "disk-io.h"
38#include "transaction.h"
39#include "btrfs_inode.h"
40#include "volumes.h"
41#include "print-tree.h"
42#include "async-thread.h"
43#include "locking.h"
44#include "tree-log.h"
45#include "free-space-cache.h"
46#include "inode-map.h"
47#include "check-integrity.h"
48#include "rcu-string.h"
49#include "dev-replace.h"
50#include "raid56.h"
51
52#ifdef CONFIG_X86
53#include <asm/cpufeature.h>
54#endif
55
56static struct extent_io_ops btree_extent_io_ops;
57static void end_workqueue_fn(struct btrfs_work *work);
58static void free_fs_root(struct btrfs_root *root);
59static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60 int read_only);
61static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
63static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73static int btrfs_cleanup_transaction(struct btrfs_root *root);
74static void btrfs_error_commit_super(struct btrfs_root *root);
75
76/*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
81struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
87 int metadata;
88 struct list_head list;
89 struct btrfs_work work;
90};
91
92/*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
97struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
103 int rw;
104 int mirror_num;
105 unsigned long bio_flags;
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
111 struct btrfs_work work;
112 int error;
113};
114
115/*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
125 *
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
129 *
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
133 *
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
137 */
138#ifdef CONFIG_DEBUG_LOCK_ALLOC
139# if BTRFS_MAX_LEVEL != 8
140# error
141# endif
142
143static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148} btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = 0, .name_stem = "tree" },
160};
161
162void __init btrfs_init_lockdep(void)
163{
164 int i, j;
165
166 /* initialize lockdep class names */
167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 snprintf(ks->names[j], sizeof(ks->names[j]),
172 "btrfs-%s-%02d", ks->name_stem, j);
173 }
174}
175
176void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177 int level)
178{
179 struct btrfs_lockdep_keyset *ks;
180
181 BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 if (ks->id == objectid)
186 break;
187
188 lockdep_set_class_and_name(&eb->lock,
189 &ks->keys[level], ks->names[level]);
190}
191
192#endif
193
194/*
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
197 */
198static struct extent_map *btree_get_extent(struct inode *inode,
199 struct page *page, size_t pg_offset, u64 start, u64 len,
200 int create)
201{
202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 struct extent_map *em;
204 int ret;
205
206 read_lock(&em_tree->lock);
207 em = lookup_extent_mapping(em_tree, start, len);
208 if (em) {
209 em->bdev =
210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211 read_unlock(&em_tree->lock);
212 goto out;
213 }
214 read_unlock(&em_tree->lock);
215
216 em = alloc_extent_map();
217 if (!em) {
218 em = ERR_PTR(-ENOMEM);
219 goto out;
220 }
221 em->start = 0;
222 em->len = (u64)-1;
223 em->block_len = (u64)-1;
224 em->block_start = 0;
225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227 write_lock(&em_tree->lock);
228 ret = add_extent_mapping(em_tree, em, 0);
229 if (ret == -EEXIST) {
230 free_extent_map(em);
231 em = lookup_extent_mapping(em_tree, start, len);
232 if (!em)
233 em = ERR_PTR(-EIO);
234 } else if (ret) {
235 free_extent_map(em);
236 em = ERR_PTR(ret);
237 }
238 write_unlock(&em_tree->lock);
239
240out:
241 return em;
242}
243
244u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245{
246 return crc32c(seed, data, len);
247}
248
249void btrfs_csum_final(u32 crc, char *result)
250{
251 put_unaligned_le32(~crc, result);
252}
253
254/*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260{
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318}
319
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329{
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357}
358
359/*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
363static int btrfs_check_super_csum(char *raw_disk_sb)
364{
365 struct btrfs_super_block *disk_sb =
366 (struct btrfs_super_block *)raw_disk_sb;
367 u16 csum_type = btrfs_super_csum_type(disk_sb);
368 int ret = 0;
369
370 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371 u32 crc = ~(u32)0;
372 const int csum_size = sizeof(crc);
373 char result[csum_size];
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 * is filled with zeros and is included in the checkum.
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
384 if (memcmp(raw_disk_sb, result, csum_size))
385 ret = 1;
386
387 if (ret && btrfs_super_generation(disk_sb) < 10) {
388 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
389 ret = 0;
390 }
391 }
392
393 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
395 csum_type);
396 ret = 1;
397 }
398
399 return ret;
400}
401
402/*
403 * helper to read a given tree block, doing retries as required when
404 * the checksums don't match and we have alternate mirrors to try.
405 */
406static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407 struct extent_buffer *eb,
408 u64 start, u64 parent_transid)
409{
410 struct extent_io_tree *io_tree;
411 int failed = 0;
412 int ret;
413 int num_copies = 0;
414 int mirror_num = 0;
415 int failed_mirror = 0;
416
417 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
418 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
419 while (1) {
420 ret = read_extent_buffer_pages(io_tree, eb, start,
421 WAIT_COMPLETE,
422 btree_get_extent, mirror_num);
423 if (!ret) {
424 if (!verify_parent_transid(io_tree, eb,
425 parent_transid, 0))
426 break;
427 else
428 ret = -EIO;
429 }
430
431 /*
432 * This buffer's crc is fine, but its contents are corrupted, so
433 * there is no reason to read the other copies, they won't be
434 * any less wrong.
435 */
436 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
437 break;
438
439 num_copies = btrfs_num_copies(root->fs_info,
440 eb->start, eb->len);
441 if (num_copies == 1)
442 break;
443
444 if (!failed_mirror) {
445 failed = 1;
446 failed_mirror = eb->read_mirror;
447 }
448
449 mirror_num++;
450 if (mirror_num == failed_mirror)
451 mirror_num++;
452
453 if (mirror_num > num_copies)
454 break;
455 }
456
457 if (failed && !ret && failed_mirror)
458 repair_eb_io_failure(root, eb, failed_mirror);
459
460 return ret;
461}
462
463/*
464 * checksum a dirty tree block before IO. This has extra checks to make sure
465 * we only fill in the checksum field in the first page of a multi-page block
466 */
467
468static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
469{
470 struct extent_io_tree *tree;
471 u64 start = page_offset(page);
472 u64 found_start;
473 struct extent_buffer *eb;
474
475 tree = &BTRFS_I(page->mapping->host)->io_tree;
476
477 eb = (struct extent_buffer *)page->private;
478 if (page != eb->pages[0])
479 return 0;
480 found_start = btrfs_header_bytenr(eb);
481 if (found_start != start) {
482 WARN_ON(1);
483 return 0;
484 }
485 if (!PageUptodate(page)) {
486 WARN_ON(1);
487 return 0;
488 }
489 csum_tree_block(root, eb, 0);
490 return 0;
491}
492
493static int check_tree_block_fsid(struct btrfs_root *root,
494 struct extent_buffer *eb)
495{
496 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497 u8 fsid[BTRFS_UUID_SIZE];
498 int ret = 1;
499
500 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
501 BTRFS_FSID_SIZE);
502 while (fs_devices) {
503 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504 ret = 0;
505 break;
506 }
507 fs_devices = fs_devices->seed;
508 }
509 return ret;
510}
511
512#define CORRUPT(reason, eb, root, slot) \
513 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514 "root=%llu, slot=%d\n", reason, \
515 (unsigned long long)btrfs_header_bytenr(eb), \
516 (unsigned long long)root->objectid, slot)
517
518static noinline int check_leaf(struct btrfs_root *root,
519 struct extent_buffer *leaf)
520{
521 struct btrfs_key key;
522 struct btrfs_key leaf_key;
523 u32 nritems = btrfs_header_nritems(leaf);
524 int slot;
525
526 if (nritems == 0)
527 return 0;
528
529 /* Check the 0 item */
530 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("invalid item offset size pair", leaf, root, 0);
533 return -EIO;
534 }
535
536 /*
537 * Check to make sure each items keys are in the correct order and their
538 * offsets make sense. We only have to loop through nritems-1 because
539 * we check the current slot against the next slot, which verifies the
540 * next slot's offset+size makes sense and that the current's slot
541 * offset is correct.
542 */
543 for (slot = 0; slot < nritems - 1; slot++) {
544 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
546
547 /* Make sure the keys are in the right order */
548 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549 CORRUPT("bad key order", leaf, root, slot);
550 return -EIO;
551 }
552
553 /*
554 * Make sure the offset and ends are right, remember that the
555 * item data starts at the end of the leaf and grows towards the
556 * front.
557 */
558 if (btrfs_item_offset_nr(leaf, slot) !=
559 btrfs_item_end_nr(leaf, slot + 1)) {
560 CORRUPT("slot offset bad", leaf, root, slot);
561 return -EIO;
562 }
563
564 /*
565 * Check to make sure that we don't point outside of the leaf,
566 * just incase all the items are consistent to eachother, but
567 * all point outside of the leaf.
568 */
569 if (btrfs_item_end_nr(leaf, slot) >
570 BTRFS_LEAF_DATA_SIZE(root)) {
571 CORRUPT("slot end outside of leaf", leaf, root, slot);
572 return -EIO;
573 }
574 }
575
576 return 0;
577}
578
579static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
580 struct extent_state *state, int mirror)
581{
582 struct extent_io_tree *tree;
583 u64 found_start;
584 int found_level;
585 struct extent_buffer *eb;
586 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
587 int ret = 0;
588 int reads_done;
589
590 if (!page->private)
591 goto out;
592
593 tree = &BTRFS_I(page->mapping->host)->io_tree;
594 eb = (struct extent_buffer *)page->private;
595
596 /* the pending IO might have been the only thing that kept this buffer
597 * in memory. Make sure we have a ref for all this other checks
598 */
599 extent_buffer_get(eb);
600
601 reads_done = atomic_dec_and_test(&eb->io_pages);
602 if (!reads_done)
603 goto err;
604
605 eb->read_mirror = mirror;
606 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
607 ret = -EIO;
608 goto err;
609 }
610
611 found_start = btrfs_header_bytenr(eb);
612 if (found_start != eb->start) {
613 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
614 "%llu %llu\n",
615 (unsigned long long)found_start,
616 (unsigned long long)eb->start);
617 ret = -EIO;
618 goto err;
619 }
620 if (check_tree_block_fsid(root, eb)) {
621 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
622 (unsigned long long)eb->start);
623 ret = -EIO;
624 goto err;
625 }
626 found_level = btrfs_header_level(eb);
627 if (found_level >= BTRFS_MAX_LEVEL) {
628 btrfs_info(root->fs_info, "bad tree block level %d\n",
629 (int)btrfs_header_level(eb));
630 ret = -EIO;
631 goto err;
632 }
633
634 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
635 eb, found_level);
636
637 ret = csum_tree_block(root, eb, 1);
638 if (ret) {
639 ret = -EIO;
640 goto err;
641 }
642
643 /*
644 * If this is a leaf block and it is corrupt, set the corrupt bit so
645 * that we don't try and read the other copies of this block, just
646 * return -EIO.
647 */
648 if (found_level == 0 && check_leaf(root, eb)) {
649 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650 ret = -EIO;
651 }
652
653 if (!ret)
654 set_extent_buffer_uptodate(eb);
655err:
656 if (reads_done &&
657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 btree_readahead_hook(root, eb, eb->start, ret);
659
660 if (ret) {
661 /*
662 * our io error hook is going to dec the io pages
663 * again, we have to make sure it has something
664 * to decrement
665 */
666 atomic_inc(&eb->io_pages);
667 clear_extent_buffer_uptodate(eb);
668 }
669 free_extent_buffer(eb);
670out:
671 return ret;
672}
673
674static int btree_io_failed_hook(struct page *page, int failed_mirror)
675{
676 struct extent_buffer *eb;
677 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678
679 eb = (struct extent_buffer *)page->private;
680 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
681 eb->read_mirror = failed_mirror;
682 atomic_dec(&eb->io_pages);
683 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
684 btree_readahead_hook(root, eb, eb->start, -EIO);
685 return -EIO; /* we fixed nothing */
686}
687
688static void end_workqueue_bio(struct bio *bio, int err)
689{
690 struct end_io_wq *end_io_wq = bio->bi_private;
691 struct btrfs_fs_info *fs_info;
692
693 fs_info = end_io_wq->info;
694 end_io_wq->error = err;
695 end_io_wq->work.func = end_workqueue_fn;
696 end_io_wq->work.flags = 0;
697
698 if (bio->bi_rw & REQ_WRITE) {
699 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
700 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
701 &end_io_wq->work);
702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
703 btrfs_queue_worker(&fs_info->endio_freespace_worker,
704 &end_io_wq->work);
705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706 btrfs_queue_worker(&fs_info->endio_raid56_workers,
707 &end_io_wq->work);
708 else
709 btrfs_queue_worker(&fs_info->endio_write_workers,
710 &end_io_wq->work);
711 } else {
712 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
713 btrfs_queue_worker(&fs_info->endio_raid56_workers,
714 &end_io_wq->work);
715 else if (end_io_wq->metadata)
716 btrfs_queue_worker(&fs_info->endio_meta_workers,
717 &end_io_wq->work);
718 else
719 btrfs_queue_worker(&fs_info->endio_workers,
720 &end_io_wq->work);
721 }
722}
723
724/*
725 * For the metadata arg you want
726 *
727 * 0 - if data
728 * 1 - if normal metadta
729 * 2 - if writing to the free space cache area
730 * 3 - raid parity work
731 */
732int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733 int metadata)
734{
735 struct end_io_wq *end_io_wq;
736 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
737 if (!end_io_wq)
738 return -ENOMEM;
739
740 end_io_wq->private = bio->bi_private;
741 end_io_wq->end_io = bio->bi_end_io;
742 end_io_wq->info = info;
743 end_io_wq->error = 0;
744 end_io_wq->bio = bio;
745 end_io_wq->metadata = metadata;
746
747 bio->bi_private = end_io_wq;
748 bio->bi_end_io = end_workqueue_bio;
749 return 0;
750}
751
752unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
753{
754 unsigned long limit = min_t(unsigned long,
755 info->workers.max_workers,
756 info->fs_devices->open_devices);
757 return 256 * limit;
758}
759
760static void run_one_async_start(struct btrfs_work *work)
761{
762 struct async_submit_bio *async;
763 int ret;
764
765 async = container_of(work, struct async_submit_bio, work);
766 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
767 async->mirror_num, async->bio_flags,
768 async->bio_offset);
769 if (ret)
770 async->error = ret;
771}
772
773static void run_one_async_done(struct btrfs_work *work)
774{
775 struct btrfs_fs_info *fs_info;
776 struct async_submit_bio *async;
777 int limit;
778
779 async = container_of(work, struct async_submit_bio, work);
780 fs_info = BTRFS_I(async->inode)->root->fs_info;
781
782 limit = btrfs_async_submit_limit(fs_info);
783 limit = limit * 2 / 3;
784
785 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
786 waitqueue_active(&fs_info->async_submit_wait))
787 wake_up(&fs_info->async_submit_wait);
788
789 /* If an error occured we just want to clean up the bio and move on */
790 if (async->error) {
791 bio_endio(async->bio, async->error);
792 return;
793 }
794
795 async->submit_bio_done(async->inode, async->rw, async->bio,
796 async->mirror_num, async->bio_flags,
797 async->bio_offset);
798}
799
800static void run_one_async_free(struct btrfs_work *work)
801{
802 struct async_submit_bio *async;
803
804 async = container_of(work, struct async_submit_bio, work);
805 kfree(async);
806}
807
808int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
809 int rw, struct bio *bio, int mirror_num,
810 unsigned long bio_flags,
811 u64 bio_offset,
812 extent_submit_bio_hook_t *submit_bio_start,
813 extent_submit_bio_hook_t *submit_bio_done)
814{
815 struct async_submit_bio *async;
816
817 async = kmalloc(sizeof(*async), GFP_NOFS);
818 if (!async)
819 return -ENOMEM;
820
821 async->inode = inode;
822 async->rw = rw;
823 async->bio = bio;
824 async->mirror_num = mirror_num;
825 async->submit_bio_start = submit_bio_start;
826 async->submit_bio_done = submit_bio_done;
827
828 async->work.func = run_one_async_start;
829 async->work.ordered_func = run_one_async_done;
830 async->work.ordered_free = run_one_async_free;
831
832 async->work.flags = 0;
833 async->bio_flags = bio_flags;
834 async->bio_offset = bio_offset;
835
836 async->error = 0;
837
838 atomic_inc(&fs_info->nr_async_submits);
839
840 if (rw & REQ_SYNC)
841 btrfs_set_work_high_prio(&async->work);
842
843 btrfs_queue_worker(&fs_info->workers, &async->work);
844
845 while (atomic_read(&fs_info->async_submit_draining) &&
846 atomic_read(&fs_info->nr_async_submits)) {
847 wait_event(fs_info->async_submit_wait,
848 (atomic_read(&fs_info->nr_async_submits) == 0));
849 }
850
851 return 0;
852}
853
854static int btree_csum_one_bio(struct bio *bio)
855{
856 struct bio_vec *bvec = bio->bi_io_vec;
857 int bio_index = 0;
858 struct btrfs_root *root;
859 int ret = 0;
860
861 WARN_ON(bio->bi_vcnt <= 0);
862 while (bio_index < bio->bi_vcnt) {
863 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864 ret = csum_dirty_buffer(root, bvec->bv_page);
865 if (ret)
866 break;
867 bio_index++;
868 bvec++;
869 }
870 return ret;
871}
872
873static int __btree_submit_bio_start(struct inode *inode, int rw,
874 struct bio *bio, int mirror_num,
875 unsigned long bio_flags,
876 u64 bio_offset)
877{
878 /*
879 * when we're called for a write, we're already in the async
880 * submission context. Just jump into btrfs_map_bio
881 */
882 return btree_csum_one_bio(bio);
883}
884
885static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
886 int mirror_num, unsigned long bio_flags,
887 u64 bio_offset)
888{
889 int ret;
890
891 /*
892 * when we're called for a write, we're already in the async
893 * submission context. Just jump into btrfs_map_bio
894 */
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
896 if (ret)
897 bio_endio(bio, ret);
898 return ret;
899}
900
901static int check_async_write(struct inode *inode, unsigned long bio_flags)
902{
903 if (bio_flags & EXTENT_BIO_TREE_LOG)
904 return 0;
905#ifdef CONFIG_X86
906 if (cpu_has_xmm4_2)
907 return 0;
908#endif
909 return 1;
910}
911
912static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
913 int mirror_num, unsigned long bio_flags,
914 u64 bio_offset)
915{
916 int async = check_async_write(inode, bio_flags);
917 int ret;
918
919 if (!(rw & REQ_WRITE)) {
920 /*
921 * called for a read, do the setup so that checksum validation
922 * can happen in the async kernel threads
923 */
924 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
925 bio, 1);
926 if (ret)
927 goto out_w_error;
928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929 mirror_num, 0);
930 } else if (!async) {
931 ret = btree_csum_one_bio(bio);
932 if (ret)
933 goto out_w_error;
934 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
935 mirror_num, 0);
936 } else {
937 /*
938 * kthread helpers are used to submit writes so that
939 * checksumming can happen in parallel across all CPUs
940 */
941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942 inode, rw, bio, mirror_num, 0,
943 bio_offset,
944 __btree_submit_bio_start,
945 __btree_submit_bio_done);
946 }
947
948 if (ret) {
949out_w_error:
950 bio_endio(bio, ret);
951 }
952 return ret;
953}
954
955#ifdef CONFIG_MIGRATION
956static int btree_migratepage(struct address_space *mapping,
957 struct page *newpage, struct page *page,
958 enum migrate_mode mode)
959{
960 /*
961 * we can't safely write a btree page from here,
962 * we haven't done the locking hook
963 */
964 if (PageDirty(page))
965 return -EAGAIN;
966 /*
967 * Buffers may be managed in a filesystem specific way.
968 * We must have no buffers or drop them.
969 */
970 if (page_has_private(page) &&
971 !try_to_release_page(page, GFP_KERNEL))
972 return -EAGAIN;
973 return migrate_page(mapping, newpage, page, mode);
974}
975#endif
976
977
978static int btree_writepages(struct address_space *mapping,
979 struct writeback_control *wbc)
980{
981 struct extent_io_tree *tree;
982 struct btrfs_fs_info *fs_info;
983 int ret;
984
985 tree = &BTRFS_I(mapping->host)->io_tree;
986 if (wbc->sync_mode == WB_SYNC_NONE) {
987
988 if (wbc->for_kupdate)
989 return 0;
990
991 fs_info = BTRFS_I(mapping->host)->root->fs_info;
992 /* this is a bit racy, but that's ok */
993 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
994 BTRFS_DIRTY_METADATA_THRESH);
995 if (ret < 0)
996 return 0;
997 }
998 return btree_write_cache_pages(mapping, wbc);
999}
1000
1001static int btree_readpage(struct file *file, struct page *page)
1002{
1003 struct extent_io_tree *tree;
1004 tree = &BTRFS_I(page->mapping->host)->io_tree;
1005 return extent_read_full_page(tree, page, btree_get_extent, 0);
1006}
1007
1008static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1009{
1010 if (PageWriteback(page) || PageDirty(page))
1011 return 0;
1012
1013 return try_release_extent_buffer(page);
1014}
1015
1016static void btree_invalidatepage(struct page *page, unsigned long offset)
1017{
1018 struct extent_io_tree *tree;
1019 tree = &BTRFS_I(page->mapping->host)->io_tree;
1020 extent_invalidatepage(tree, page, offset);
1021 btree_releasepage(page, GFP_NOFS);
1022 if (PagePrivate(page)) {
1023 printk(KERN_WARNING "btrfs warning page private not zero "
1024 "on page %llu\n", (unsigned long long)page_offset(page));
1025 ClearPagePrivate(page);
1026 set_page_private(page, 0);
1027 page_cache_release(page);
1028 }
1029}
1030
1031static int btree_set_page_dirty(struct page *page)
1032{
1033#ifdef DEBUG
1034 struct extent_buffer *eb;
1035
1036 BUG_ON(!PagePrivate(page));
1037 eb = (struct extent_buffer *)page->private;
1038 BUG_ON(!eb);
1039 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1040 BUG_ON(!atomic_read(&eb->refs));
1041 btrfs_assert_tree_locked(eb);
1042#endif
1043 return __set_page_dirty_nobuffers(page);
1044}
1045
1046static const struct address_space_operations btree_aops = {
1047 .readpage = btree_readpage,
1048 .writepages = btree_writepages,
1049 .releasepage = btree_releasepage,
1050 .invalidatepage = btree_invalidatepage,
1051#ifdef CONFIG_MIGRATION
1052 .migratepage = btree_migratepage,
1053#endif
1054 .set_page_dirty = btree_set_page_dirty,
1055};
1056
1057int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058 u64 parent_transid)
1059{
1060 struct extent_buffer *buf = NULL;
1061 struct inode *btree_inode = root->fs_info->btree_inode;
1062 int ret = 0;
1063
1064 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065 if (!buf)
1066 return 0;
1067 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1068 buf, 0, WAIT_NONE, btree_get_extent, 0);
1069 free_extent_buffer(buf);
1070 return ret;
1071}
1072
1073int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1074 int mirror_num, struct extent_buffer **eb)
1075{
1076 struct extent_buffer *buf = NULL;
1077 struct inode *btree_inode = root->fs_info->btree_inode;
1078 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1079 int ret;
1080
1081 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082 if (!buf)
1083 return 0;
1084
1085 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1086
1087 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1088 btree_get_extent, mirror_num);
1089 if (ret) {
1090 free_extent_buffer(buf);
1091 return ret;
1092 }
1093
1094 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1095 free_extent_buffer(buf);
1096 return -EIO;
1097 } else if (extent_buffer_uptodate(buf)) {
1098 *eb = buf;
1099 } else {
1100 free_extent_buffer(buf);
1101 }
1102 return 0;
1103}
1104
1105struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1106 u64 bytenr, u32 blocksize)
1107{
1108 struct inode *btree_inode = root->fs_info->btree_inode;
1109 struct extent_buffer *eb;
1110 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1111 bytenr, blocksize);
1112 return eb;
1113}
1114
1115struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1116 u64 bytenr, u32 blocksize)
1117{
1118 struct inode *btree_inode = root->fs_info->btree_inode;
1119 struct extent_buffer *eb;
1120
1121 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1122 bytenr, blocksize);
1123 return eb;
1124}
1125
1126
1127int btrfs_write_tree_block(struct extent_buffer *buf)
1128{
1129 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1130 buf->start + buf->len - 1);
1131}
1132
1133int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1134{
1135 return filemap_fdatawait_range(buf->pages[0]->mapping,
1136 buf->start, buf->start + buf->len - 1);
1137}
1138
1139struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1140 u32 blocksize, u64 parent_transid)
1141{
1142 struct extent_buffer *buf = NULL;
1143 int ret;
1144
1145 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1146 if (!buf)
1147 return NULL;
1148
1149 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1150 return buf;
1151
1152}
1153
1154void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155 struct extent_buffer *buf)
1156{
1157 struct btrfs_fs_info *fs_info = root->fs_info;
1158
1159 if (btrfs_header_generation(buf) ==
1160 fs_info->running_transaction->transid) {
1161 btrfs_assert_tree_locked(buf);
1162
1163 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1164 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1165 -buf->len,
1166 fs_info->dirty_metadata_batch);
1167 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168 btrfs_set_lock_blocking(buf);
1169 clear_extent_buffer_dirty(buf);
1170 }
1171 }
1172}
1173
1174static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1175 u32 stripesize, struct btrfs_root *root,
1176 struct btrfs_fs_info *fs_info,
1177 u64 objectid)
1178{
1179 root->node = NULL;
1180 root->commit_root = NULL;
1181 root->sectorsize = sectorsize;
1182 root->nodesize = nodesize;
1183 root->leafsize = leafsize;
1184 root->stripesize = stripesize;
1185 root->ref_cows = 0;
1186 root->track_dirty = 0;
1187 root->in_radix = 0;
1188 root->orphan_item_inserted = 0;
1189 root->orphan_cleanup_state = 0;
1190
1191 root->objectid = objectid;
1192 root->last_trans = 0;
1193 root->highest_objectid = 0;
1194 root->name = NULL;
1195 root->inode_tree = RB_ROOT;
1196 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1197 root->block_rsv = NULL;
1198 root->orphan_block_rsv = NULL;
1199
1200 INIT_LIST_HEAD(&root->dirty_list);
1201 INIT_LIST_HEAD(&root->root_list);
1202 INIT_LIST_HEAD(&root->logged_list[0]);
1203 INIT_LIST_HEAD(&root->logged_list[1]);
1204 spin_lock_init(&root->orphan_lock);
1205 spin_lock_init(&root->inode_lock);
1206 spin_lock_init(&root->accounting_lock);
1207 spin_lock_init(&root->log_extents_lock[0]);
1208 spin_lock_init(&root->log_extents_lock[1]);
1209 mutex_init(&root->objectid_mutex);
1210 mutex_init(&root->log_mutex);
1211 init_waitqueue_head(&root->log_writer_wait);
1212 init_waitqueue_head(&root->log_commit_wait[0]);
1213 init_waitqueue_head(&root->log_commit_wait[1]);
1214 atomic_set(&root->log_commit[0], 0);
1215 atomic_set(&root->log_commit[1], 0);
1216 atomic_set(&root->log_writers, 0);
1217 atomic_set(&root->log_batch, 0);
1218 atomic_set(&root->orphan_inodes, 0);
1219 atomic_set(&root->refs, 1);
1220 root->log_transid = 0;
1221 root->last_log_commit = 0;
1222 extent_io_tree_init(&root->dirty_log_pages,
1223 fs_info->btree_inode->i_mapping);
1224
1225 memset(&root->root_key, 0, sizeof(root->root_key));
1226 memset(&root->root_item, 0, sizeof(root->root_item));
1227 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1228 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1229 root->defrag_trans_start = fs_info->generation;
1230 init_completion(&root->kobj_unregister);
1231 root->defrag_running = 0;
1232 root->root_key.objectid = objectid;
1233 root->anon_dev = 0;
1234
1235 spin_lock_init(&root->root_item_lock);
1236}
1237
1238static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1239{
1240 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1241 if (root)
1242 root->fs_info = fs_info;
1243 return root;
1244}
1245
1246struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1247 struct btrfs_fs_info *fs_info,
1248 u64 objectid)
1249{
1250 struct extent_buffer *leaf;
1251 struct btrfs_root *tree_root = fs_info->tree_root;
1252 struct btrfs_root *root;
1253 struct btrfs_key key;
1254 int ret = 0;
1255 u64 bytenr;
1256 uuid_le uuid;
1257
1258 root = btrfs_alloc_root(fs_info);
1259 if (!root)
1260 return ERR_PTR(-ENOMEM);
1261
1262 __setup_root(tree_root->nodesize, tree_root->leafsize,
1263 tree_root->sectorsize, tree_root->stripesize,
1264 root, fs_info, objectid);
1265 root->root_key.objectid = objectid;
1266 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1267 root->root_key.offset = 0;
1268
1269 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1270 0, objectid, NULL, 0, 0, 0);
1271 if (IS_ERR(leaf)) {
1272 ret = PTR_ERR(leaf);
1273 leaf = NULL;
1274 goto fail;
1275 }
1276
1277 bytenr = leaf->start;
1278 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1279 btrfs_set_header_bytenr(leaf, leaf->start);
1280 btrfs_set_header_generation(leaf, trans->transid);
1281 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1282 btrfs_set_header_owner(leaf, objectid);
1283 root->node = leaf;
1284
1285 write_extent_buffer(leaf, fs_info->fsid,
1286 (unsigned long)btrfs_header_fsid(leaf),
1287 BTRFS_FSID_SIZE);
1288 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1289 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1290 BTRFS_UUID_SIZE);
1291 btrfs_mark_buffer_dirty(leaf);
1292
1293 root->commit_root = btrfs_root_node(root);
1294 root->track_dirty = 1;
1295
1296
1297 root->root_item.flags = 0;
1298 root->root_item.byte_limit = 0;
1299 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1300 btrfs_set_root_generation(&root->root_item, trans->transid);
1301 btrfs_set_root_level(&root->root_item, 0);
1302 btrfs_set_root_refs(&root->root_item, 1);
1303 btrfs_set_root_used(&root->root_item, leaf->len);
1304 btrfs_set_root_last_snapshot(&root->root_item, 0);
1305 btrfs_set_root_dirid(&root->root_item, 0);
1306 uuid_le_gen(&uuid);
1307 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1308 root->root_item.drop_level = 0;
1309
1310 key.objectid = objectid;
1311 key.type = BTRFS_ROOT_ITEM_KEY;
1312 key.offset = 0;
1313 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1314 if (ret)
1315 goto fail;
1316
1317 btrfs_tree_unlock(leaf);
1318
1319 return root;
1320
1321fail:
1322 if (leaf) {
1323 btrfs_tree_unlock(leaf);
1324 free_extent_buffer(leaf);
1325 }
1326 kfree(root);
1327
1328 return ERR_PTR(ret);
1329}
1330
1331static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1332 struct btrfs_fs_info *fs_info)
1333{
1334 struct btrfs_root *root;
1335 struct btrfs_root *tree_root = fs_info->tree_root;
1336 struct extent_buffer *leaf;
1337
1338 root = btrfs_alloc_root(fs_info);
1339 if (!root)
1340 return ERR_PTR(-ENOMEM);
1341
1342 __setup_root(tree_root->nodesize, tree_root->leafsize,
1343 tree_root->sectorsize, tree_root->stripesize,
1344 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1345
1346 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1347 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1348 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1349 /*
1350 * log trees do not get reference counted because they go away
1351 * before a real commit is actually done. They do store pointers
1352 * to file data extents, and those reference counts still get
1353 * updated (along with back refs to the log tree).
1354 */
1355 root->ref_cows = 0;
1356
1357 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1358 BTRFS_TREE_LOG_OBJECTID, NULL,
1359 0, 0, 0);
1360 if (IS_ERR(leaf)) {
1361 kfree(root);
1362 return ERR_CAST(leaf);
1363 }
1364
1365 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1366 btrfs_set_header_bytenr(leaf, leaf->start);
1367 btrfs_set_header_generation(leaf, trans->transid);
1368 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1369 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1370 root->node = leaf;
1371
1372 write_extent_buffer(root->node, root->fs_info->fsid,
1373 (unsigned long)btrfs_header_fsid(root->node),
1374 BTRFS_FSID_SIZE);
1375 btrfs_mark_buffer_dirty(root->node);
1376 btrfs_tree_unlock(root->node);
1377 return root;
1378}
1379
1380int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1381 struct btrfs_fs_info *fs_info)
1382{
1383 struct btrfs_root *log_root;
1384
1385 log_root = alloc_log_tree(trans, fs_info);
1386 if (IS_ERR(log_root))
1387 return PTR_ERR(log_root);
1388 WARN_ON(fs_info->log_root_tree);
1389 fs_info->log_root_tree = log_root;
1390 return 0;
1391}
1392
1393int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root)
1395{
1396 struct btrfs_root *log_root;
1397 struct btrfs_inode_item *inode_item;
1398
1399 log_root = alloc_log_tree(trans, root->fs_info);
1400 if (IS_ERR(log_root))
1401 return PTR_ERR(log_root);
1402
1403 log_root->last_trans = trans->transid;
1404 log_root->root_key.offset = root->root_key.objectid;
1405
1406 inode_item = &log_root->root_item.inode;
1407 inode_item->generation = cpu_to_le64(1);
1408 inode_item->size = cpu_to_le64(3);
1409 inode_item->nlink = cpu_to_le32(1);
1410 inode_item->nbytes = cpu_to_le64(root->leafsize);
1411 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1412
1413 btrfs_set_root_node(&log_root->root_item, log_root->node);
1414
1415 WARN_ON(root->log_root);
1416 root->log_root = log_root;
1417 root->log_transid = 0;
1418 root->last_log_commit = 0;
1419 return 0;
1420}
1421
1422struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1423 struct btrfs_key *key)
1424{
1425 struct btrfs_root *root;
1426 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1427 struct btrfs_path *path;
1428 u64 generation;
1429 u32 blocksize;
1430 int ret;
1431
1432 path = btrfs_alloc_path();
1433 if (!path)
1434 return ERR_PTR(-ENOMEM);
1435
1436 root = btrfs_alloc_root(fs_info);
1437 if (!root) {
1438 ret = -ENOMEM;
1439 goto alloc_fail;
1440 }
1441
1442 __setup_root(tree_root->nodesize, tree_root->leafsize,
1443 tree_root->sectorsize, tree_root->stripesize,
1444 root, fs_info, key->objectid);
1445
1446 ret = btrfs_find_root(tree_root, key, path,
1447 &root->root_item, &root->root_key);
1448 if (ret) {
1449 if (ret > 0)
1450 ret = -ENOENT;
1451 goto find_fail;
1452 }
1453
1454 generation = btrfs_root_generation(&root->root_item);
1455 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1456 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1457 blocksize, generation);
1458 if (!root->node) {
1459 ret = -ENOMEM;
1460 goto find_fail;
1461 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1462 ret = -EIO;
1463 goto read_fail;
1464 }
1465 root->commit_root = btrfs_root_node(root);
1466out:
1467 btrfs_free_path(path);
1468 return root;
1469
1470read_fail:
1471 free_extent_buffer(root->node);
1472find_fail:
1473 kfree(root);
1474alloc_fail:
1475 root = ERR_PTR(ret);
1476 goto out;
1477}
1478
1479struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1480 struct btrfs_key *location)
1481{
1482 struct btrfs_root *root;
1483
1484 root = btrfs_read_tree_root(tree_root, location);
1485 if (IS_ERR(root))
1486 return root;
1487
1488 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1489 root->ref_cows = 1;
1490 btrfs_check_and_init_root_item(&root->root_item);
1491 }
1492
1493 return root;
1494}
1495
1496int btrfs_init_fs_root(struct btrfs_root *root)
1497{
1498 int ret;
1499
1500 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1501 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1502 GFP_NOFS);
1503 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1504 ret = -ENOMEM;
1505 goto fail;
1506 }
1507
1508 btrfs_init_free_ino_ctl(root);
1509 mutex_init(&root->fs_commit_mutex);
1510 spin_lock_init(&root->cache_lock);
1511 init_waitqueue_head(&root->cache_wait);
1512
1513 ret = get_anon_bdev(&root->anon_dev);
1514 if (ret)
1515 goto fail;
1516 return 0;
1517fail:
1518 kfree(root->free_ino_ctl);
1519 kfree(root->free_ino_pinned);
1520 return ret;
1521}
1522
1523struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1524 u64 root_id)
1525{
1526 struct btrfs_root *root;
1527
1528 spin_lock(&fs_info->fs_roots_radix_lock);
1529 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1530 (unsigned long)root_id);
1531 spin_unlock(&fs_info->fs_roots_radix_lock);
1532 return root;
1533}
1534
1535int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1536 struct btrfs_root *root)
1537{
1538 int ret;
1539
1540 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1541 if (ret)
1542 return ret;
1543
1544 spin_lock(&fs_info->fs_roots_radix_lock);
1545 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1546 (unsigned long)root->root_key.objectid,
1547 root);
1548 if (ret == 0)
1549 root->in_radix = 1;
1550 spin_unlock(&fs_info->fs_roots_radix_lock);
1551 radix_tree_preload_end();
1552
1553 return ret;
1554}
1555
1556struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1557 struct btrfs_key *location)
1558{
1559 struct btrfs_root *root;
1560 int ret;
1561
1562 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1563 return fs_info->tree_root;
1564 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1565 return fs_info->extent_root;
1566 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1567 return fs_info->chunk_root;
1568 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1569 return fs_info->dev_root;
1570 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1571 return fs_info->csum_root;
1572 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1573 return fs_info->quota_root ? fs_info->quota_root :
1574 ERR_PTR(-ENOENT);
1575again:
1576 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1577 if (root)
1578 return root;
1579
1580 root = btrfs_read_fs_root(fs_info->tree_root, location);
1581 if (IS_ERR(root))
1582 return root;
1583
1584 if (btrfs_root_refs(&root->root_item) == 0) {
1585 ret = -ENOENT;
1586 goto fail;
1587 }
1588
1589 ret = btrfs_init_fs_root(root);
1590 if (ret)
1591 goto fail;
1592
1593 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1594 if (ret < 0)
1595 goto fail;
1596 if (ret == 0)
1597 root->orphan_item_inserted = 1;
1598
1599 ret = btrfs_insert_fs_root(fs_info, root);
1600 if (ret) {
1601 if (ret == -EEXIST) {
1602 free_fs_root(root);
1603 goto again;
1604 }
1605 goto fail;
1606 }
1607 return root;
1608fail:
1609 free_fs_root(root);
1610 return ERR_PTR(ret);
1611}
1612
1613static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1614{
1615 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1616 int ret = 0;
1617 struct btrfs_device *device;
1618 struct backing_dev_info *bdi;
1619
1620 rcu_read_lock();
1621 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1622 if (!device->bdev)
1623 continue;
1624 bdi = blk_get_backing_dev_info(device->bdev);
1625 if (bdi && bdi_congested(bdi, bdi_bits)) {
1626 ret = 1;
1627 break;
1628 }
1629 }
1630 rcu_read_unlock();
1631 return ret;
1632}
1633
1634/*
1635 * If this fails, caller must call bdi_destroy() to get rid of the
1636 * bdi again.
1637 */
1638static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1639{
1640 int err;
1641
1642 bdi->capabilities = BDI_CAP_MAP_COPY;
1643 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1644 if (err)
1645 return err;
1646
1647 bdi->ra_pages = default_backing_dev_info.ra_pages;
1648 bdi->congested_fn = btrfs_congested_fn;
1649 bdi->congested_data = info;
1650 return 0;
1651}
1652
1653/*
1654 * called by the kthread helper functions to finally call the bio end_io
1655 * functions. This is where read checksum verification actually happens
1656 */
1657static void end_workqueue_fn(struct btrfs_work *work)
1658{
1659 struct bio *bio;
1660 struct end_io_wq *end_io_wq;
1661 struct btrfs_fs_info *fs_info;
1662 int error;
1663
1664 end_io_wq = container_of(work, struct end_io_wq, work);
1665 bio = end_io_wq->bio;
1666 fs_info = end_io_wq->info;
1667
1668 error = end_io_wq->error;
1669 bio->bi_private = end_io_wq->private;
1670 bio->bi_end_io = end_io_wq->end_io;
1671 kfree(end_io_wq);
1672 bio_endio(bio, error);
1673}
1674
1675static int cleaner_kthread(void *arg)
1676{
1677 struct btrfs_root *root = arg;
1678 int again;
1679
1680 do {
1681 again = 0;
1682
1683 /* Make the cleaner go to sleep early. */
1684 if (btrfs_need_cleaner_sleep(root))
1685 goto sleep;
1686
1687 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1688 goto sleep;
1689
1690 /*
1691 * Avoid the problem that we change the status of the fs
1692 * during the above check and trylock.
1693 */
1694 if (btrfs_need_cleaner_sleep(root)) {
1695 mutex_unlock(&root->fs_info->cleaner_mutex);
1696 goto sleep;
1697 }
1698
1699 btrfs_run_delayed_iputs(root);
1700 again = btrfs_clean_one_deleted_snapshot(root);
1701 mutex_unlock(&root->fs_info->cleaner_mutex);
1702
1703 /*
1704 * The defragger has dealt with the R/O remount and umount,
1705 * needn't do anything special here.
1706 */
1707 btrfs_run_defrag_inodes(root->fs_info);
1708sleep:
1709 if (!try_to_freeze() && !again) {
1710 set_current_state(TASK_INTERRUPTIBLE);
1711 if (!kthread_should_stop())
1712 schedule();
1713 __set_current_state(TASK_RUNNING);
1714 }
1715 } while (!kthread_should_stop());
1716 return 0;
1717}
1718
1719static int transaction_kthread(void *arg)
1720{
1721 struct btrfs_root *root = arg;
1722 struct btrfs_trans_handle *trans;
1723 struct btrfs_transaction *cur;
1724 u64 transid;
1725 unsigned long now;
1726 unsigned long delay;
1727 bool cannot_commit;
1728
1729 do {
1730 cannot_commit = false;
1731 delay = HZ * 30;
1732 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1733
1734 spin_lock(&root->fs_info->trans_lock);
1735 cur = root->fs_info->running_transaction;
1736 if (!cur) {
1737 spin_unlock(&root->fs_info->trans_lock);
1738 goto sleep;
1739 }
1740
1741 now = get_seconds();
1742 if (!cur->blocked &&
1743 (now < cur->start_time || now - cur->start_time < 30)) {
1744 spin_unlock(&root->fs_info->trans_lock);
1745 delay = HZ * 5;
1746 goto sleep;
1747 }
1748 transid = cur->transid;
1749 spin_unlock(&root->fs_info->trans_lock);
1750
1751 /* If the file system is aborted, this will always fail. */
1752 trans = btrfs_attach_transaction(root);
1753 if (IS_ERR(trans)) {
1754 if (PTR_ERR(trans) != -ENOENT)
1755 cannot_commit = true;
1756 goto sleep;
1757 }
1758 if (transid == trans->transid) {
1759 btrfs_commit_transaction(trans, root);
1760 } else {
1761 btrfs_end_transaction(trans, root);
1762 }
1763sleep:
1764 wake_up_process(root->fs_info->cleaner_kthread);
1765 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1766
1767 if (!try_to_freeze()) {
1768 set_current_state(TASK_INTERRUPTIBLE);
1769 if (!kthread_should_stop() &&
1770 (!btrfs_transaction_blocked(root->fs_info) ||
1771 cannot_commit))
1772 schedule_timeout(delay);
1773 __set_current_state(TASK_RUNNING);
1774 }
1775 } while (!kthread_should_stop());
1776 return 0;
1777}
1778
1779/*
1780 * this will find the highest generation in the array of
1781 * root backups. The index of the highest array is returned,
1782 * or -1 if we can't find anything.
1783 *
1784 * We check to make sure the array is valid by comparing the
1785 * generation of the latest root in the array with the generation
1786 * in the super block. If they don't match we pitch it.
1787 */
1788static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1789{
1790 u64 cur;
1791 int newest_index = -1;
1792 struct btrfs_root_backup *root_backup;
1793 int i;
1794
1795 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1796 root_backup = info->super_copy->super_roots + i;
1797 cur = btrfs_backup_tree_root_gen(root_backup);
1798 if (cur == newest_gen)
1799 newest_index = i;
1800 }
1801
1802 /* check to see if we actually wrapped around */
1803 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1804 root_backup = info->super_copy->super_roots;
1805 cur = btrfs_backup_tree_root_gen(root_backup);
1806 if (cur == newest_gen)
1807 newest_index = 0;
1808 }
1809 return newest_index;
1810}
1811
1812
1813/*
1814 * find the oldest backup so we know where to store new entries
1815 * in the backup array. This will set the backup_root_index
1816 * field in the fs_info struct
1817 */
1818static void find_oldest_super_backup(struct btrfs_fs_info *info,
1819 u64 newest_gen)
1820{
1821 int newest_index = -1;
1822
1823 newest_index = find_newest_super_backup(info, newest_gen);
1824 /* if there was garbage in there, just move along */
1825 if (newest_index == -1) {
1826 info->backup_root_index = 0;
1827 } else {
1828 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1829 }
1830}
1831
1832/*
1833 * copy all the root pointers into the super backup array.
1834 * this will bump the backup pointer by one when it is
1835 * done
1836 */
1837static void backup_super_roots(struct btrfs_fs_info *info)
1838{
1839 int next_backup;
1840 struct btrfs_root_backup *root_backup;
1841 int last_backup;
1842
1843 next_backup = info->backup_root_index;
1844 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1845 BTRFS_NUM_BACKUP_ROOTS;
1846
1847 /*
1848 * just overwrite the last backup if we're at the same generation
1849 * this happens only at umount
1850 */
1851 root_backup = info->super_for_commit->super_roots + last_backup;
1852 if (btrfs_backup_tree_root_gen(root_backup) ==
1853 btrfs_header_generation(info->tree_root->node))
1854 next_backup = last_backup;
1855
1856 root_backup = info->super_for_commit->super_roots + next_backup;
1857
1858 /*
1859 * make sure all of our padding and empty slots get zero filled
1860 * regardless of which ones we use today
1861 */
1862 memset(root_backup, 0, sizeof(*root_backup));
1863
1864 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1865
1866 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1867 btrfs_set_backup_tree_root_gen(root_backup,
1868 btrfs_header_generation(info->tree_root->node));
1869
1870 btrfs_set_backup_tree_root_level(root_backup,
1871 btrfs_header_level(info->tree_root->node));
1872
1873 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1874 btrfs_set_backup_chunk_root_gen(root_backup,
1875 btrfs_header_generation(info->chunk_root->node));
1876 btrfs_set_backup_chunk_root_level(root_backup,
1877 btrfs_header_level(info->chunk_root->node));
1878
1879 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1880 btrfs_set_backup_extent_root_gen(root_backup,
1881 btrfs_header_generation(info->extent_root->node));
1882 btrfs_set_backup_extent_root_level(root_backup,
1883 btrfs_header_level(info->extent_root->node));
1884
1885 /*
1886 * we might commit during log recovery, which happens before we set
1887 * the fs_root. Make sure it is valid before we fill it in.
1888 */
1889 if (info->fs_root && info->fs_root->node) {
1890 btrfs_set_backup_fs_root(root_backup,
1891 info->fs_root->node->start);
1892 btrfs_set_backup_fs_root_gen(root_backup,
1893 btrfs_header_generation(info->fs_root->node));
1894 btrfs_set_backup_fs_root_level(root_backup,
1895 btrfs_header_level(info->fs_root->node));
1896 }
1897
1898 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1899 btrfs_set_backup_dev_root_gen(root_backup,
1900 btrfs_header_generation(info->dev_root->node));
1901 btrfs_set_backup_dev_root_level(root_backup,
1902 btrfs_header_level(info->dev_root->node));
1903
1904 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1905 btrfs_set_backup_csum_root_gen(root_backup,
1906 btrfs_header_generation(info->csum_root->node));
1907 btrfs_set_backup_csum_root_level(root_backup,
1908 btrfs_header_level(info->csum_root->node));
1909
1910 btrfs_set_backup_total_bytes(root_backup,
1911 btrfs_super_total_bytes(info->super_copy));
1912 btrfs_set_backup_bytes_used(root_backup,
1913 btrfs_super_bytes_used(info->super_copy));
1914 btrfs_set_backup_num_devices(root_backup,
1915 btrfs_super_num_devices(info->super_copy));
1916
1917 /*
1918 * if we don't copy this out to the super_copy, it won't get remembered
1919 * for the next commit
1920 */
1921 memcpy(&info->super_copy->super_roots,
1922 &info->super_for_commit->super_roots,
1923 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1924}
1925
1926/*
1927 * this copies info out of the root backup array and back into
1928 * the in-memory super block. It is meant to help iterate through
1929 * the array, so you send it the number of backups you've already
1930 * tried and the last backup index you used.
1931 *
1932 * this returns -1 when it has tried all the backups
1933 */
1934static noinline int next_root_backup(struct btrfs_fs_info *info,
1935 struct btrfs_super_block *super,
1936 int *num_backups_tried, int *backup_index)
1937{
1938 struct btrfs_root_backup *root_backup;
1939 int newest = *backup_index;
1940
1941 if (*num_backups_tried == 0) {
1942 u64 gen = btrfs_super_generation(super);
1943
1944 newest = find_newest_super_backup(info, gen);
1945 if (newest == -1)
1946 return -1;
1947
1948 *backup_index = newest;
1949 *num_backups_tried = 1;
1950 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1951 /* we've tried all the backups, all done */
1952 return -1;
1953 } else {
1954 /* jump to the next oldest backup */
1955 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1956 BTRFS_NUM_BACKUP_ROOTS;
1957 *backup_index = newest;
1958 *num_backups_tried += 1;
1959 }
1960 root_backup = super->super_roots + newest;
1961
1962 btrfs_set_super_generation(super,
1963 btrfs_backup_tree_root_gen(root_backup));
1964 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1965 btrfs_set_super_root_level(super,
1966 btrfs_backup_tree_root_level(root_backup));
1967 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1968
1969 /*
1970 * fixme: the total bytes and num_devices need to match or we should
1971 * need a fsck
1972 */
1973 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1974 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1975 return 0;
1976}
1977
1978/* helper to cleanup workers */
1979static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1980{
1981 btrfs_stop_workers(&fs_info->generic_worker);
1982 btrfs_stop_workers(&fs_info->fixup_workers);
1983 btrfs_stop_workers(&fs_info->delalloc_workers);
1984 btrfs_stop_workers(&fs_info->workers);
1985 btrfs_stop_workers(&fs_info->endio_workers);
1986 btrfs_stop_workers(&fs_info->endio_meta_workers);
1987 btrfs_stop_workers(&fs_info->endio_raid56_workers);
1988 btrfs_stop_workers(&fs_info->rmw_workers);
1989 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1990 btrfs_stop_workers(&fs_info->endio_write_workers);
1991 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1992 btrfs_stop_workers(&fs_info->submit_workers);
1993 btrfs_stop_workers(&fs_info->delayed_workers);
1994 btrfs_stop_workers(&fs_info->caching_workers);
1995 btrfs_stop_workers(&fs_info->readahead_workers);
1996 btrfs_stop_workers(&fs_info->flush_workers);
1997 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
1998}
1999
2000/* helper to cleanup tree roots */
2001static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2002{
2003 free_extent_buffer(info->tree_root->node);
2004 free_extent_buffer(info->tree_root->commit_root);
2005 info->tree_root->node = NULL;
2006 info->tree_root->commit_root = NULL;
2007
2008 if (info->dev_root) {
2009 free_extent_buffer(info->dev_root->node);
2010 free_extent_buffer(info->dev_root->commit_root);
2011 info->dev_root->node = NULL;
2012 info->dev_root->commit_root = NULL;
2013 }
2014 if (info->extent_root) {
2015 free_extent_buffer(info->extent_root->node);
2016 free_extent_buffer(info->extent_root->commit_root);
2017 info->extent_root->node = NULL;
2018 info->extent_root->commit_root = NULL;
2019 }
2020 if (info->csum_root) {
2021 free_extent_buffer(info->csum_root->node);
2022 free_extent_buffer(info->csum_root->commit_root);
2023 info->csum_root->node = NULL;
2024 info->csum_root->commit_root = NULL;
2025 }
2026 if (info->quota_root) {
2027 free_extent_buffer(info->quota_root->node);
2028 free_extent_buffer(info->quota_root->commit_root);
2029 info->quota_root->node = NULL;
2030 info->quota_root->commit_root = NULL;
2031 }
2032 if (chunk_root) {
2033 free_extent_buffer(info->chunk_root->node);
2034 free_extent_buffer(info->chunk_root->commit_root);
2035 info->chunk_root->node = NULL;
2036 info->chunk_root->commit_root = NULL;
2037 }
2038}
2039
2040static void del_fs_roots(struct btrfs_fs_info *fs_info)
2041{
2042 int ret;
2043 struct btrfs_root *gang[8];
2044 int i;
2045
2046 while (!list_empty(&fs_info->dead_roots)) {
2047 gang[0] = list_entry(fs_info->dead_roots.next,
2048 struct btrfs_root, root_list);
2049 list_del(&gang[0]->root_list);
2050
2051 if (gang[0]->in_radix) {
2052 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2053 } else {
2054 free_extent_buffer(gang[0]->node);
2055 free_extent_buffer(gang[0]->commit_root);
2056 btrfs_put_fs_root(gang[0]);
2057 }
2058 }
2059
2060 while (1) {
2061 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2062 (void **)gang, 0,
2063 ARRAY_SIZE(gang));
2064 if (!ret)
2065 break;
2066 for (i = 0; i < ret; i++)
2067 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2068 }
2069}
2070
2071int open_ctree(struct super_block *sb,
2072 struct btrfs_fs_devices *fs_devices,
2073 char *options)
2074{
2075 u32 sectorsize;
2076 u32 nodesize;
2077 u32 leafsize;
2078 u32 blocksize;
2079 u32 stripesize;
2080 u64 generation;
2081 u64 features;
2082 struct btrfs_key location;
2083 struct buffer_head *bh;
2084 struct btrfs_super_block *disk_super;
2085 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2086 struct btrfs_root *tree_root;
2087 struct btrfs_root *extent_root;
2088 struct btrfs_root *csum_root;
2089 struct btrfs_root *chunk_root;
2090 struct btrfs_root *dev_root;
2091 struct btrfs_root *quota_root;
2092 struct btrfs_root *log_tree_root;
2093 int ret;
2094 int err = -EINVAL;
2095 int num_backups_tried = 0;
2096 int backup_index = 0;
2097
2098 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2099 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2100 if (!tree_root || !chunk_root) {
2101 err = -ENOMEM;
2102 goto fail;
2103 }
2104
2105 ret = init_srcu_struct(&fs_info->subvol_srcu);
2106 if (ret) {
2107 err = ret;
2108 goto fail;
2109 }
2110
2111 ret = setup_bdi(fs_info, &fs_info->bdi);
2112 if (ret) {
2113 err = ret;
2114 goto fail_srcu;
2115 }
2116
2117 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2118 if (ret) {
2119 err = ret;
2120 goto fail_bdi;
2121 }
2122 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2123 (1 + ilog2(nr_cpu_ids));
2124
2125 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2126 if (ret) {
2127 err = ret;
2128 goto fail_dirty_metadata_bytes;
2129 }
2130
2131 fs_info->btree_inode = new_inode(sb);
2132 if (!fs_info->btree_inode) {
2133 err = -ENOMEM;
2134 goto fail_delalloc_bytes;
2135 }
2136
2137 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2138
2139 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2140 INIT_LIST_HEAD(&fs_info->trans_list);
2141 INIT_LIST_HEAD(&fs_info->dead_roots);
2142 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2143 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2144 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2145 spin_lock_init(&fs_info->delalloc_lock);
2146 spin_lock_init(&fs_info->trans_lock);
2147 spin_lock_init(&fs_info->fs_roots_radix_lock);
2148 spin_lock_init(&fs_info->delayed_iput_lock);
2149 spin_lock_init(&fs_info->defrag_inodes_lock);
2150 spin_lock_init(&fs_info->free_chunk_lock);
2151 spin_lock_init(&fs_info->tree_mod_seq_lock);
2152 spin_lock_init(&fs_info->super_lock);
2153 rwlock_init(&fs_info->tree_mod_log_lock);
2154 mutex_init(&fs_info->reloc_mutex);
2155 seqlock_init(&fs_info->profiles_lock);
2156
2157 init_completion(&fs_info->kobj_unregister);
2158 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2159 INIT_LIST_HEAD(&fs_info->space_info);
2160 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2161 btrfs_mapping_init(&fs_info->mapping_tree);
2162 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2163 BTRFS_BLOCK_RSV_GLOBAL);
2164 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2165 BTRFS_BLOCK_RSV_DELALLOC);
2166 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2167 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2168 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2169 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2170 BTRFS_BLOCK_RSV_DELOPS);
2171 atomic_set(&fs_info->nr_async_submits, 0);
2172 atomic_set(&fs_info->async_delalloc_pages, 0);
2173 atomic_set(&fs_info->async_submit_draining, 0);
2174 atomic_set(&fs_info->nr_async_bios, 0);
2175 atomic_set(&fs_info->defrag_running, 0);
2176 atomic64_set(&fs_info->tree_mod_seq, 0);
2177 fs_info->sb = sb;
2178 fs_info->max_inline = 8192 * 1024;
2179 fs_info->metadata_ratio = 0;
2180 fs_info->defrag_inodes = RB_ROOT;
2181 fs_info->trans_no_join = 0;
2182 fs_info->free_chunk_space = 0;
2183 fs_info->tree_mod_log = RB_ROOT;
2184
2185 /* readahead state */
2186 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2187 spin_lock_init(&fs_info->reada_lock);
2188
2189 fs_info->thread_pool_size = min_t(unsigned long,
2190 num_online_cpus() + 2, 8);
2191
2192 INIT_LIST_HEAD(&fs_info->ordered_extents);
2193 spin_lock_init(&fs_info->ordered_extent_lock);
2194 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2195 GFP_NOFS);
2196 if (!fs_info->delayed_root) {
2197 err = -ENOMEM;
2198 goto fail_iput;
2199 }
2200 btrfs_init_delayed_root(fs_info->delayed_root);
2201
2202 mutex_init(&fs_info->scrub_lock);
2203 atomic_set(&fs_info->scrubs_running, 0);
2204 atomic_set(&fs_info->scrub_pause_req, 0);
2205 atomic_set(&fs_info->scrubs_paused, 0);
2206 atomic_set(&fs_info->scrub_cancel_req, 0);
2207 init_waitqueue_head(&fs_info->scrub_pause_wait);
2208 init_rwsem(&fs_info->scrub_super_lock);
2209 fs_info->scrub_workers_refcnt = 0;
2210#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2211 fs_info->check_integrity_print_mask = 0;
2212#endif
2213
2214 spin_lock_init(&fs_info->balance_lock);
2215 mutex_init(&fs_info->balance_mutex);
2216 atomic_set(&fs_info->balance_running, 0);
2217 atomic_set(&fs_info->balance_pause_req, 0);
2218 atomic_set(&fs_info->balance_cancel_req, 0);
2219 fs_info->balance_ctl = NULL;
2220 init_waitqueue_head(&fs_info->balance_wait_q);
2221
2222 sb->s_blocksize = 4096;
2223 sb->s_blocksize_bits = blksize_bits(4096);
2224 sb->s_bdi = &fs_info->bdi;
2225
2226 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2227 set_nlink(fs_info->btree_inode, 1);
2228 /*
2229 * we set the i_size on the btree inode to the max possible int.
2230 * the real end of the address space is determined by all of
2231 * the devices in the system
2232 */
2233 fs_info->btree_inode->i_size = OFFSET_MAX;
2234 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2235 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2236
2237 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2238 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2239 fs_info->btree_inode->i_mapping);
2240 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2241 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2242
2243 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2244
2245 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2246 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2247 sizeof(struct btrfs_key));
2248 set_bit(BTRFS_INODE_DUMMY,
2249 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2250 insert_inode_hash(fs_info->btree_inode);
2251
2252 spin_lock_init(&fs_info->block_group_cache_lock);
2253 fs_info->block_group_cache_tree = RB_ROOT;
2254 fs_info->first_logical_byte = (u64)-1;
2255
2256 extent_io_tree_init(&fs_info->freed_extents[0],
2257 fs_info->btree_inode->i_mapping);
2258 extent_io_tree_init(&fs_info->freed_extents[1],
2259 fs_info->btree_inode->i_mapping);
2260 fs_info->pinned_extents = &fs_info->freed_extents[0];
2261 fs_info->do_barriers = 1;
2262
2263
2264 mutex_init(&fs_info->ordered_operations_mutex);
2265 mutex_init(&fs_info->tree_log_mutex);
2266 mutex_init(&fs_info->chunk_mutex);
2267 mutex_init(&fs_info->transaction_kthread_mutex);
2268 mutex_init(&fs_info->cleaner_mutex);
2269 mutex_init(&fs_info->volume_mutex);
2270 init_rwsem(&fs_info->extent_commit_sem);
2271 init_rwsem(&fs_info->cleanup_work_sem);
2272 init_rwsem(&fs_info->subvol_sem);
2273 fs_info->dev_replace.lock_owner = 0;
2274 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2275 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2276 mutex_init(&fs_info->dev_replace.lock_management_lock);
2277 mutex_init(&fs_info->dev_replace.lock);
2278
2279 spin_lock_init(&fs_info->qgroup_lock);
2280 mutex_init(&fs_info->qgroup_ioctl_lock);
2281 fs_info->qgroup_tree = RB_ROOT;
2282 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2283 fs_info->qgroup_seq = 1;
2284 fs_info->quota_enabled = 0;
2285 fs_info->pending_quota_state = 0;
2286 fs_info->qgroup_ulist = NULL;
2287 mutex_init(&fs_info->qgroup_rescan_lock);
2288
2289 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2290 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2291
2292 init_waitqueue_head(&fs_info->transaction_throttle);
2293 init_waitqueue_head(&fs_info->transaction_wait);
2294 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2295 init_waitqueue_head(&fs_info->async_submit_wait);
2296
2297 ret = btrfs_alloc_stripe_hash_table(fs_info);
2298 if (ret) {
2299 err = ret;
2300 goto fail_alloc;
2301 }
2302
2303 __setup_root(4096, 4096, 4096, 4096, tree_root,
2304 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2305
2306 invalidate_bdev(fs_devices->latest_bdev);
2307
2308 /*
2309 * Read super block and check the signature bytes only
2310 */
2311 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2312 if (!bh) {
2313 err = -EINVAL;
2314 goto fail_alloc;
2315 }
2316
2317 /*
2318 * We want to check superblock checksum, the type is stored inside.
2319 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2320 */
2321 if (btrfs_check_super_csum(bh->b_data)) {
2322 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2323 err = -EINVAL;
2324 goto fail_alloc;
2325 }
2326
2327 /*
2328 * super_copy is zeroed at allocation time and we never touch the
2329 * following bytes up to INFO_SIZE, the checksum is calculated from
2330 * the whole block of INFO_SIZE
2331 */
2332 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2333 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2334 sizeof(*fs_info->super_for_commit));
2335 brelse(bh);
2336
2337 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2338
2339 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2340 if (ret) {
2341 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2342 err = -EINVAL;
2343 goto fail_alloc;
2344 }
2345
2346 disk_super = fs_info->super_copy;
2347 if (!btrfs_super_root(disk_super))
2348 goto fail_alloc;
2349
2350 /* check FS state, whether FS is broken. */
2351 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2352 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2353
2354 /*
2355 * run through our array of backup supers and setup
2356 * our ring pointer to the oldest one
2357 */
2358 generation = btrfs_super_generation(disk_super);
2359 find_oldest_super_backup(fs_info, generation);
2360
2361 /*
2362 * In the long term, we'll store the compression type in the super
2363 * block, and it'll be used for per file compression control.
2364 */
2365 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2366
2367 ret = btrfs_parse_options(tree_root, options);
2368 if (ret) {
2369 err = ret;
2370 goto fail_alloc;
2371 }
2372
2373 features = btrfs_super_incompat_flags(disk_super) &
2374 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2375 if (features) {
2376 printk(KERN_ERR "BTRFS: couldn't mount because of "
2377 "unsupported optional features (%Lx).\n",
2378 (unsigned long long)features);
2379 err = -EINVAL;
2380 goto fail_alloc;
2381 }
2382
2383 if (btrfs_super_leafsize(disk_super) !=
2384 btrfs_super_nodesize(disk_super)) {
2385 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2386 "blocksizes don't match. node %d leaf %d\n",
2387 btrfs_super_nodesize(disk_super),
2388 btrfs_super_leafsize(disk_super));
2389 err = -EINVAL;
2390 goto fail_alloc;
2391 }
2392 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2393 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2394 "blocksize (%d) was too large\n",
2395 btrfs_super_leafsize(disk_super));
2396 err = -EINVAL;
2397 goto fail_alloc;
2398 }
2399
2400 features = btrfs_super_incompat_flags(disk_super);
2401 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2402 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2403 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2404
2405 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2406 printk(KERN_ERR "btrfs: has skinny extents\n");
2407
2408 /*
2409 * flag our filesystem as having big metadata blocks if
2410 * they are bigger than the page size
2411 */
2412 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2413 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2414 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2415 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2416 }
2417
2418 nodesize = btrfs_super_nodesize(disk_super);
2419 leafsize = btrfs_super_leafsize(disk_super);
2420 sectorsize = btrfs_super_sectorsize(disk_super);
2421 stripesize = btrfs_super_stripesize(disk_super);
2422 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2423 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2424
2425 /*
2426 * mixed block groups end up with duplicate but slightly offset
2427 * extent buffers for the same range. It leads to corruptions
2428 */
2429 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2430 (sectorsize != leafsize)) {
2431 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2432 "are not allowed for mixed block groups on %s\n",
2433 sb->s_id);
2434 goto fail_alloc;
2435 }
2436
2437 /*
2438 * Needn't use the lock because there is no other task which will
2439 * update the flag.
2440 */
2441 btrfs_set_super_incompat_flags(disk_super, features);
2442
2443 features = btrfs_super_compat_ro_flags(disk_super) &
2444 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2445 if (!(sb->s_flags & MS_RDONLY) && features) {
2446 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2447 "unsupported option features (%Lx).\n",
2448 (unsigned long long)features);
2449 err = -EINVAL;
2450 goto fail_alloc;
2451 }
2452
2453 btrfs_init_workers(&fs_info->generic_worker,
2454 "genwork", 1, NULL);
2455
2456 btrfs_init_workers(&fs_info->workers, "worker",
2457 fs_info->thread_pool_size,
2458 &fs_info->generic_worker);
2459
2460 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2461 fs_info->thread_pool_size,
2462 &fs_info->generic_worker);
2463
2464 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2465 fs_info->thread_pool_size,
2466 &fs_info->generic_worker);
2467
2468 btrfs_init_workers(&fs_info->submit_workers, "submit",
2469 min_t(u64, fs_devices->num_devices,
2470 fs_info->thread_pool_size),
2471 &fs_info->generic_worker);
2472
2473 btrfs_init_workers(&fs_info->caching_workers, "cache",
2474 2, &fs_info->generic_worker);
2475
2476 /* a higher idle thresh on the submit workers makes it much more
2477 * likely that bios will be send down in a sane order to the
2478 * devices
2479 */
2480 fs_info->submit_workers.idle_thresh = 64;
2481
2482 fs_info->workers.idle_thresh = 16;
2483 fs_info->workers.ordered = 1;
2484
2485 fs_info->delalloc_workers.idle_thresh = 2;
2486 fs_info->delalloc_workers.ordered = 1;
2487
2488 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2489 &fs_info->generic_worker);
2490 btrfs_init_workers(&fs_info->endio_workers, "endio",
2491 fs_info->thread_pool_size,
2492 &fs_info->generic_worker);
2493 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2494 fs_info->thread_pool_size,
2495 &fs_info->generic_worker);
2496 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2497 "endio-meta-write", fs_info->thread_pool_size,
2498 &fs_info->generic_worker);
2499 btrfs_init_workers(&fs_info->endio_raid56_workers,
2500 "endio-raid56", fs_info->thread_pool_size,
2501 &fs_info->generic_worker);
2502 btrfs_init_workers(&fs_info->rmw_workers,
2503 "rmw", fs_info->thread_pool_size,
2504 &fs_info->generic_worker);
2505 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2506 fs_info->thread_pool_size,
2507 &fs_info->generic_worker);
2508 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2509 1, &fs_info->generic_worker);
2510 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2511 fs_info->thread_pool_size,
2512 &fs_info->generic_worker);
2513 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2514 fs_info->thread_pool_size,
2515 &fs_info->generic_worker);
2516 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2517 &fs_info->generic_worker);
2518
2519 /*
2520 * endios are largely parallel and should have a very
2521 * low idle thresh
2522 */
2523 fs_info->endio_workers.idle_thresh = 4;
2524 fs_info->endio_meta_workers.idle_thresh = 4;
2525 fs_info->endio_raid56_workers.idle_thresh = 4;
2526 fs_info->rmw_workers.idle_thresh = 2;
2527
2528 fs_info->endio_write_workers.idle_thresh = 2;
2529 fs_info->endio_meta_write_workers.idle_thresh = 2;
2530 fs_info->readahead_workers.idle_thresh = 2;
2531
2532 /*
2533 * btrfs_start_workers can really only fail because of ENOMEM so just
2534 * return -ENOMEM if any of these fail.
2535 */
2536 ret = btrfs_start_workers(&fs_info->workers);
2537 ret |= btrfs_start_workers(&fs_info->generic_worker);
2538 ret |= btrfs_start_workers(&fs_info->submit_workers);
2539 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2540 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2541 ret |= btrfs_start_workers(&fs_info->endio_workers);
2542 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2543 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2544 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2545 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2546 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2547 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2548 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2549 ret |= btrfs_start_workers(&fs_info->caching_workers);
2550 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2551 ret |= btrfs_start_workers(&fs_info->flush_workers);
2552 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2553 if (ret) {
2554 err = -ENOMEM;
2555 goto fail_sb_buffer;
2556 }
2557
2558 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2559 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2560 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2561
2562 tree_root->nodesize = nodesize;
2563 tree_root->leafsize = leafsize;
2564 tree_root->sectorsize = sectorsize;
2565 tree_root->stripesize = stripesize;
2566
2567 sb->s_blocksize = sectorsize;
2568 sb->s_blocksize_bits = blksize_bits(sectorsize);
2569
2570 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2571 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2572 goto fail_sb_buffer;
2573 }
2574
2575 if (sectorsize != PAGE_SIZE) {
2576 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2577 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2578 goto fail_sb_buffer;
2579 }
2580
2581 mutex_lock(&fs_info->chunk_mutex);
2582 ret = btrfs_read_sys_array(tree_root);
2583 mutex_unlock(&fs_info->chunk_mutex);
2584 if (ret) {
2585 printk(KERN_WARNING "btrfs: failed to read the system "
2586 "array on %s\n", sb->s_id);
2587 goto fail_sb_buffer;
2588 }
2589
2590 blocksize = btrfs_level_size(tree_root,
2591 btrfs_super_chunk_root_level(disk_super));
2592 generation = btrfs_super_chunk_root_generation(disk_super);
2593
2594 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2595 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2596
2597 chunk_root->node = read_tree_block(chunk_root,
2598 btrfs_super_chunk_root(disk_super),
2599 blocksize, generation);
2600 if (!chunk_root->node ||
2601 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2602 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2603 sb->s_id);
2604 goto fail_tree_roots;
2605 }
2606 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2607 chunk_root->commit_root = btrfs_root_node(chunk_root);
2608
2609 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2610 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2611 BTRFS_UUID_SIZE);
2612
2613 ret = btrfs_read_chunk_tree(chunk_root);
2614 if (ret) {
2615 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2616 sb->s_id);
2617 goto fail_tree_roots;
2618 }
2619
2620 /*
2621 * keep the device that is marked to be the target device for the
2622 * dev_replace procedure
2623 */
2624 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2625
2626 if (!fs_devices->latest_bdev) {
2627 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2628 sb->s_id);
2629 goto fail_tree_roots;
2630 }
2631
2632retry_root_backup:
2633 blocksize = btrfs_level_size(tree_root,
2634 btrfs_super_root_level(disk_super));
2635 generation = btrfs_super_generation(disk_super);
2636
2637 tree_root->node = read_tree_block(tree_root,
2638 btrfs_super_root(disk_super),
2639 blocksize, generation);
2640 if (!tree_root->node ||
2641 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2642 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2643 sb->s_id);
2644
2645 goto recovery_tree_root;
2646 }
2647
2648 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2649 tree_root->commit_root = btrfs_root_node(tree_root);
2650
2651 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2652 location.type = BTRFS_ROOT_ITEM_KEY;
2653 location.offset = 0;
2654
2655 extent_root = btrfs_read_tree_root(tree_root, &location);
2656 if (IS_ERR(extent_root)) {
2657 ret = PTR_ERR(extent_root);
2658 goto recovery_tree_root;
2659 }
2660 extent_root->track_dirty = 1;
2661 fs_info->extent_root = extent_root;
2662
2663 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2664 dev_root = btrfs_read_tree_root(tree_root, &location);
2665 if (IS_ERR(dev_root)) {
2666 ret = PTR_ERR(dev_root);
2667 goto recovery_tree_root;
2668 }
2669 dev_root->track_dirty = 1;
2670 fs_info->dev_root = dev_root;
2671 btrfs_init_devices_late(fs_info);
2672
2673 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2674 csum_root = btrfs_read_tree_root(tree_root, &location);
2675 if (IS_ERR(csum_root)) {
2676 ret = PTR_ERR(csum_root);
2677 goto recovery_tree_root;
2678 }
2679 csum_root->track_dirty = 1;
2680 fs_info->csum_root = csum_root;
2681
2682 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2683 quota_root = btrfs_read_tree_root(tree_root, &location);
2684 if (!IS_ERR(quota_root)) {
2685 quota_root->track_dirty = 1;
2686 fs_info->quota_enabled = 1;
2687 fs_info->pending_quota_state = 1;
2688 fs_info->quota_root = quota_root;
2689 }
2690
2691 fs_info->generation = generation;
2692 fs_info->last_trans_committed = generation;
2693
2694 ret = btrfs_recover_balance(fs_info);
2695 if (ret) {
2696 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2697 goto fail_block_groups;
2698 }
2699
2700 ret = btrfs_init_dev_stats(fs_info);
2701 if (ret) {
2702 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2703 ret);
2704 goto fail_block_groups;
2705 }
2706
2707 ret = btrfs_init_dev_replace(fs_info);
2708 if (ret) {
2709 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2710 goto fail_block_groups;
2711 }
2712
2713 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2714
2715 ret = btrfs_init_space_info(fs_info);
2716 if (ret) {
2717 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2718 goto fail_block_groups;
2719 }
2720
2721 ret = btrfs_read_block_groups(extent_root);
2722 if (ret) {
2723 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2724 goto fail_block_groups;
2725 }
2726 fs_info->num_tolerated_disk_barrier_failures =
2727 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2728 if (fs_info->fs_devices->missing_devices >
2729 fs_info->num_tolerated_disk_barrier_failures &&
2730 !(sb->s_flags & MS_RDONLY)) {
2731 printk(KERN_WARNING
2732 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2733 goto fail_block_groups;
2734 }
2735
2736 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2737 "btrfs-cleaner");
2738 if (IS_ERR(fs_info->cleaner_kthread))
2739 goto fail_block_groups;
2740
2741 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2742 tree_root,
2743 "btrfs-transaction");
2744 if (IS_ERR(fs_info->transaction_kthread))
2745 goto fail_cleaner;
2746
2747 if (!btrfs_test_opt(tree_root, SSD) &&
2748 !btrfs_test_opt(tree_root, NOSSD) &&
2749 !fs_info->fs_devices->rotating) {
2750 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2751 "mode\n");
2752 btrfs_set_opt(fs_info->mount_opt, SSD);
2753 }
2754
2755#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2756 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2757 ret = btrfsic_mount(tree_root, fs_devices,
2758 btrfs_test_opt(tree_root,
2759 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2760 1 : 0,
2761 fs_info->check_integrity_print_mask);
2762 if (ret)
2763 printk(KERN_WARNING "btrfs: failed to initialize"
2764 " integrity check module %s\n", sb->s_id);
2765 }
2766#endif
2767 ret = btrfs_read_qgroup_config(fs_info);
2768 if (ret)
2769 goto fail_trans_kthread;
2770
2771 /* do not make disk changes in broken FS */
2772 if (btrfs_super_log_root(disk_super) != 0) {
2773 u64 bytenr = btrfs_super_log_root(disk_super);
2774
2775 if (fs_devices->rw_devices == 0) {
2776 printk(KERN_WARNING "Btrfs log replay required "
2777 "on RO media\n");
2778 err = -EIO;
2779 goto fail_qgroup;
2780 }
2781 blocksize =
2782 btrfs_level_size(tree_root,
2783 btrfs_super_log_root_level(disk_super));
2784
2785 log_tree_root = btrfs_alloc_root(fs_info);
2786 if (!log_tree_root) {
2787 err = -ENOMEM;
2788 goto fail_qgroup;
2789 }
2790
2791 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2792 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2793
2794 log_tree_root->node = read_tree_block(tree_root, bytenr,
2795 blocksize,
2796 generation + 1);
2797 if (!log_tree_root->node ||
2798 !extent_buffer_uptodate(log_tree_root->node)) {
2799 printk(KERN_ERR "btrfs: failed to read log tree\n");
2800 free_extent_buffer(log_tree_root->node);
2801 kfree(log_tree_root);
2802 goto fail_trans_kthread;
2803 }
2804 /* returns with log_tree_root freed on success */
2805 ret = btrfs_recover_log_trees(log_tree_root);
2806 if (ret) {
2807 btrfs_error(tree_root->fs_info, ret,
2808 "Failed to recover log tree");
2809 free_extent_buffer(log_tree_root->node);
2810 kfree(log_tree_root);
2811 goto fail_trans_kthread;
2812 }
2813
2814 if (sb->s_flags & MS_RDONLY) {
2815 ret = btrfs_commit_super(tree_root);
2816 if (ret)
2817 goto fail_trans_kthread;
2818 }
2819 }
2820
2821 ret = btrfs_find_orphan_roots(tree_root);
2822 if (ret)
2823 goto fail_trans_kthread;
2824
2825 if (!(sb->s_flags & MS_RDONLY)) {
2826 ret = btrfs_cleanup_fs_roots(fs_info);
2827 if (ret)
2828 goto fail_trans_kthread;
2829
2830 ret = btrfs_recover_relocation(tree_root);
2831 if (ret < 0) {
2832 printk(KERN_WARNING
2833 "btrfs: failed to recover relocation\n");
2834 err = -EINVAL;
2835 goto fail_qgroup;
2836 }
2837 }
2838
2839 location.objectid = BTRFS_FS_TREE_OBJECTID;
2840 location.type = BTRFS_ROOT_ITEM_KEY;
2841 location.offset = 0;
2842
2843 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2844 if (IS_ERR(fs_info->fs_root)) {
2845 err = PTR_ERR(fs_info->fs_root);
2846 goto fail_qgroup;
2847 }
2848
2849 if (sb->s_flags & MS_RDONLY)
2850 return 0;
2851
2852 down_read(&fs_info->cleanup_work_sem);
2853 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2854 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2855 up_read(&fs_info->cleanup_work_sem);
2856 close_ctree(tree_root);
2857 return ret;
2858 }
2859 up_read(&fs_info->cleanup_work_sem);
2860
2861 ret = btrfs_resume_balance_async(fs_info);
2862 if (ret) {
2863 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2864 close_ctree(tree_root);
2865 return ret;
2866 }
2867
2868 ret = btrfs_resume_dev_replace_async(fs_info);
2869 if (ret) {
2870 pr_warn("btrfs: failed to resume dev_replace\n");
2871 close_ctree(tree_root);
2872 return ret;
2873 }
2874
2875 return 0;
2876
2877fail_qgroup:
2878 btrfs_free_qgroup_config(fs_info);
2879fail_trans_kthread:
2880 kthread_stop(fs_info->transaction_kthread);
2881 btrfs_cleanup_transaction(fs_info->tree_root);
2882 del_fs_roots(fs_info);
2883fail_cleaner:
2884 kthread_stop(fs_info->cleaner_kthread);
2885
2886 /*
2887 * make sure we're done with the btree inode before we stop our
2888 * kthreads
2889 */
2890 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2891
2892fail_block_groups:
2893 btrfs_put_block_group_cache(fs_info);
2894 btrfs_free_block_groups(fs_info);
2895
2896fail_tree_roots:
2897 free_root_pointers(fs_info, 1);
2898 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2899
2900fail_sb_buffer:
2901 btrfs_stop_all_workers(fs_info);
2902fail_alloc:
2903fail_iput:
2904 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2905
2906 iput(fs_info->btree_inode);
2907fail_delalloc_bytes:
2908 percpu_counter_destroy(&fs_info->delalloc_bytes);
2909fail_dirty_metadata_bytes:
2910 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2911fail_bdi:
2912 bdi_destroy(&fs_info->bdi);
2913fail_srcu:
2914 cleanup_srcu_struct(&fs_info->subvol_srcu);
2915fail:
2916 btrfs_free_stripe_hash_table(fs_info);
2917 btrfs_close_devices(fs_info->fs_devices);
2918 return err;
2919
2920recovery_tree_root:
2921 if (!btrfs_test_opt(tree_root, RECOVERY))
2922 goto fail_tree_roots;
2923
2924 free_root_pointers(fs_info, 0);
2925
2926 /* don't use the log in recovery mode, it won't be valid */
2927 btrfs_set_super_log_root(disk_super, 0);
2928
2929 /* we can't trust the free space cache either */
2930 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2931
2932 ret = next_root_backup(fs_info, fs_info->super_copy,
2933 &num_backups_tried, &backup_index);
2934 if (ret == -1)
2935 goto fail_block_groups;
2936 goto retry_root_backup;
2937}
2938
2939static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2940{
2941 if (uptodate) {
2942 set_buffer_uptodate(bh);
2943 } else {
2944 struct btrfs_device *device = (struct btrfs_device *)
2945 bh->b_private;
2946
2947 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2948 "I/O error on %s\n",
2949 rcu_str_deref(device->name));
2950 /* note, we dont' set_buffer_write_io_error because we have
2951 * our own ways of dealing with the IO errors
2952 */
2953 clear_buffer_uptodate(bh);
2954 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2955 }
2956 unlock_buffer(bh);
2957 put_bh(bh);
2958}
2959
2960struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2961{
2962 struct buffer_head *bh;
2963 struct buffer_head *latest = NULL;
2964 struct btrfs_super_block *super;
2965 int i;
2966 u64 transid = 0;
2967 u64 bytenr;
2968
2969 /* we would like to check all the supers, but that would make
2970 * a btrfs mount succeed after a mkfs from a different FS.
2971 * So, we need to add a special mount option to scan for
2972 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2973 */
2974 for (i = 0; i < 1; i++) {
2975 bytenr = btrfs_sb_offset(i);
2976 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2977 break;
2978 bh = __bread(bdev, bytenr / 4096, 4096);
2979 if (!bh)
2980 continue;
2981
2982 super = (struct btrfs_super_block *)bh->b_data;
2983 if (btrfs_super_bytenr(super) != bytenr ||
2984 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2985 brelse(bh);
2986 continue;
2987 }
2988
2989 if (!latest || btrfs_super_generation(super) > transid) {
2990 brelse(latest);
2991 latest = bh;
2992 transid = btrfs_super_generation(super);
2993 } else {
2994 brelse(bh);
2995 }
2996 }
2997 return latest;
2998}
2999
3000/*
3001 * this should be called twice, once with wait == 0 and
3002 * once with wait == 1. When wait == 0 is done, all the buffer heads
3003 * we write are pinned.
3004 *
3005 * They are released when wait == 1 is done.
3006 * max_mirrors must be the same for both runs, and it indicates how
3007 * many supers on this one device should be written.
3008 *
3009 * max_mirrors == 0 means to write them all.
3010 */
3011static int write_dev_supers(struct btrfs_device *device,
3012 struct btrfs_super_block *sb,
3013 int do_barriers, int wait, int max_mirrors)
3014{
3015 struct buffer_head *bh;
3016 int i;
3017 int ret;
3018 int errors = 0;
3019 u32 crc;
3020 u64 bytenr;
3021
3022 if (max_mirrors == 0)
3023 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3024
3025 for (i = 0; i < max_mirrors; i++) {
3026 bytenr = btrfs_sb_offset(i);
3027 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3028 break;
3029
3030 if (wait) {
3031 bh = __find_get_block(device->bdev, bytenr / 4096,
3032 BTRFS_SUPER_INFO_SIZE);
3033 if (!bh) {
3034 errors++;
3035 continue;
3036 }
3037 wait_on_buffer(bh);
3038 if (!buffer_uptodate(bh))
3039 errors++;
3040
3041 /* drop our reference */
3042 brelse(bh);
3043
3044 /* drop the reference from the wait == 0 run */
3045 brelse(bh);
3046 continue;
3047 } else {
3048 btrfs_set_super_bytenr(sb, bytenr);
3049
3050 crc = ~(u32)0;
3051 crc = btrfs_csum_data((char *)sb +
3052 BTRFS_CSUM_SIZE, crc,
3053 BTRFS_SUPER_INFO_SIZE -
3054 BTRFS_CSUM_SIZE);
3055 btrfs_csum_final(crc, sb->csum);
3056
3057 /*
3058 * one reference for us, and we leave it for the
3059 * caller
3060 */
3061 bh = __getblk(device->bdev, bytenr / 4096,
3062 BTRFS_SUPER_INFO_SIZE);
3063 if (!bh) {
3064 printk(KERN_ERR "btrfs: couldn't get super "
3065 "buffer head for bytenr %Lu\n", bytenr);
3066 errors++;
3067 continue;
3068 }
3069
3070 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3071
3072 /* one reference for submit_bh */
3073 get_bh(bh);
3074
3075 set_buffer_uptodate(bh);
3076 lock_buffer(bh);
3077 bh->b_end_io = btrfs_end_buffer_write_sync;
3078 bh->b_private = device;
3079 }
3080
3081 /*
3082 * we fua the first super. The others we allow
3083 * to go down lazy.
3084 */
3085 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3086 if (ret)
3087 errors++;
3088 }
3089 return errors < i ? 0 : -1;
3090}
3091
3092/*
3093 * endio for the write_dev_flush, this will wake anyone waiting
3094 * for the barrier when it is done
3095 */
3096static void btrfs_end_empty_barrier(struct bio *bio, int err)
3097{
3098 if (err) {
3099 if (err == -EOPNOTSUPP)
3100 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3101 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3102 }
3103 if (bio->bi_private)
3104 complete(bio->bi_private);
3105 bio_put(bio);
3106}
3107
3108/*
3109 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3110 * sent down. With wait == 1, it waits for the previous flush.
3111 *
3112 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3113 * capable
3114 */
3115static int write_dev_flush(struct btrfs_device *device, int wait)
3116{
3117 struct bio *bio;
3118 int ret = 0;
3119
3120 if (device->nobarriers)
3121 return 0;
3122
3123 if (wait) {
3124 bio = device->flush_bio;
3125 if (!bio)
3126 return 0;
3127
3128 wait_for_completion(&device->flush_wait);
3129
3130 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3131 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3132 rcu_str_deref(device->name));
3133 device->nobarriers = 1;
3134 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3135 ret = -EIO;
3136 btrfs_dev_stat_inc_and_print(device,
3137 BTRFS_DEV_STAT_FLUSH_ERRS);
3138 }
3139
3140 /* drop the reference from the wait == 0 run */
3141 bio_put(bio);
3142 device->flush_bio = NULL;
3143
3144 return ret;
3145 }
3146
3147 /*
3148 * one reference for us, and we leave it for the
3149 * caller
3150 */
3151 device->flush_bio = NULL;
3152 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3153 if (!bio)
3154 return -ENOMEM;
3155
3156 bio->bi_end_io = btrfs_end_empty_barrier;
3157 bio->bi_bdev = device->bdev;
3158 init_completion(&device->flush_wait);
3159 bio->bi_private = &device->flush_wait;
3160 device->flush_bio = bio;
3161
3162 bio_get(bio);
3163 btrfsic_submit_bio(WRITE_FLUSH, bio);
3164
3165 return 0;
3166}
3167
3168/*
3169 * send an empty flush down to each device in parallel,
3170 * then wait for them
3171 */
3172static int barrier_all_devices(struct btrfs_fs_info *info)
3173{
3174 struct list_head *head;
3175 struct btrfs_device *dev;
3176 int errors_send = 0;
3177 int errors_wait = 0;
3178 int ret;
3179
3180 /* send down all the barriers */
3181 head = &info->fs_devices->devices;
3182 list_for_each_entry_rcu(dev, head, dev_list) {
3183 if (!dev->bdev) {
3184 errors_send++;
3185 continue;
3186 }
3187 if (!dev->in_fs_metadata || !dev->writeable)
3188 continue;
3189
3190 ret = write_dev_flush(dev, 0);
3191 if (ret)
3192 errors_send++;
3193 }
3194
3195 /* wait for all the barriers */
3196 list_for_each_entry_rcu(dev, head, dev_list) {
3197 if (!dev->bdev) {
3198 errors_wait++;
3199 continue;
3200 }
3201 if (!dev->in_fs_metadata || !dev->writeable)
3202 continue;
3203
3204 ret = write_dev_flush(dev, 1);
3205 if (ret)
3206 errors_wait++;
3207 }
3208 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3209 errors_wait > info->num_tolerated_disk_barrier_failures)
3210 return -EIO;
3211 return 0;
3212}
3213
3214int btrfs_calc_num_tolerated_disk_barrier_failures(
3215 struct btrfs_fs_info *fs_info)
3216{
3217 struct btrfs_ioctl_space_info space;
3218 struct btrfs_space_info *sinfo;
3219 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3220 BTRFS_BLOCK_GROUP_SYSTEM,
3221 BTRFS_BLOCK_GROUP_METADATA,
3222 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3223 int num_types = 4;
3224 int i;
3225 int c;
3226 int num_tolerated_disk_barrier_failures =
3227 (int)fs_info->fs_devices->num_devices;
3228
3229 for (i = 0; i < num_types; i++) {
3230 struct btrfs_space_info *tmp;
3231
3232 sinfo = NULL;
3233 rcu_read_lock();
3234 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3235 if (tmp->flags == types[i]) {
3236 sinfo = tmp;
3237 break;
3238 }
3239 }
3240 rcu_read_unlock();
3241
3242 if (!sinfo)
3243 continue;
3244
3245 down_read(&sinfo->groups_sem);
3246 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3247 if (!list_empty(&sinfo->block_groups[c])) {
3248 u64 flags;
3249
3250 btrfs_get_block_group_info(
3251 &sinfo->block_groups[c], &space);
3252 if (space.total_bytes == 0 ||
3253 space.used_bytes == 0)
3254 continue;
3255 flags = space.flags;
3256 /*
3257 * return
3258 * 0: if dup, single or RAID0 is configured for
3259 * any of metadata, system or data, else
3260 * 1: if RAID5 is configured, or if RAID1 or
3261 * RAID10 is configured and only two mirrors
3262 * are used, else
3263 * 2: if RAID6 is configured, else
3264 * num_mirrors - 1: if RAID1 or RAID10 is
3265 * configured and more than
3266 * 2 mirrors are used.
3267 */
3268 if (num_tolerated_disk_barrier_failures > 0 &&
3269 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3270 BTRFS_BLOCK_GROUP_RAID0)) ||
3271 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3272 == 0)))
3273 num_tolerated_disk_barrier_failures = 0;
3274 else if (num_tolerated_disk_barrier_failures > 1) {
3275 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3276 BTRFS_BLOCK_GROUP_RAID5 |
3277 BTRFS_BLOCK_GROUP_RAID10)) {
3278 num_tolerated_disk_barrier_failures = 1;
3279 } else if (flags &
3280 BTRFS_BLOCK_GROUP_RAID6) {
3281 num_tolerated_disk_barrier_failures = 2;
3282 }
3283 }
3284 }
3285 }
3286 up_read(&sinfo->groups_sem);
3287 }
3288
3289 return num_tolerated_disk_barrier_failures;
3290}
3291
3292static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3293{
3294 struct list_head *head;
3295 struct btrfs_device *dev;
3296 struct btrfs_super_block *sb;
3297 struct btrfs_dev_item *dev_item;
3298 int ret;
3299 int do_barriers;
3300 int max_errors;
3301 int total_errors = 0;
3302 u64 flags;
3303
3304 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3305 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3306 backup_super_roots(root->fs_info);
3307
3308 sb = root->fs_info->super_for_commit;
3309 dev_item = &sb->dev_item;
3310
3311 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3312 head = &root->fs_info->fs_devices->devices;
3313
3314 if (do_barriers) {
3315 ret = barrier_all_devices(root->fs_info);
3316 if (ret) {
3317 mutex_unlock(
3318 &root->fs_info->fs_devices->device_list_mutex);
3319 btrfs_error(root->fs_info, ret,
3320 "errors while submitting device barriers.");
3321 return ret;
3322 }
3323 }
3324
3325 list_for_each_entry_rcu(dev, head, dev_list) {
3326 if (!dev->bdev) {
3327 total_errors++;
3328 continue;
3329 }
3330 if (!dev->in_fs_metadata || !dev->writeable)
3331 continue;
3332
3333 btrfs_set_stack_device_generation(dev_item, 0);
3334 btrfs_set_stack_device_type(dev_item, dev->type);
3335 btrfs_set_stack_device_id(dev_item, dev->devid);
3336 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3337 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3338 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3339 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3340 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3341 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3342 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3343
3344 flags = btrfs_super_flags(sb);
3345 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3346
3347 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3348 if (ret)
3349 total_errors++;
3350 }
3351 if (total_errors > max_errors) {
3352 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3353 total_errors);
3354
3355 /* This shouldn't happen. FUA is masked off if unsupported */
3356 BUG();
3357 }
3358
3359 total_errors = 0;
3360 list_for_each_entry_rcu(dev, head, dev_list) {
3361 if (!dev->bdev)
3362 continue;
3363 if (!dev->in_fs_metadata || !dev->writeable)
3364 continue;
3365
3366 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3367 if (ret)
3368 total_errors++;
3369 }
3370 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3371 if (total_errors > max_errors) {
3372 btrfs_error(root->fs_info, -EIO,
3373 "%d errors while writing supers", total_errors);
3374 return -EIO;
3375 }
3376 return 0;
3377}
3378
3379int write_ctree_super(struct btrfs_trans_handle *trans,
3380 struct btrfs_root *root, int max_mirrors)
3381{
3382 int ret;
3383
3384 ret = write_all_supers(root, max_mirrors);
3385 return ret;
3386}
3387
3388/* Drop a fs root from the radix tree and free it. */
3389void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3390 struct btrfs_root *root)
3391{
3392 spin_lock(&fs_info->fs_roots_radix_lock);
3393 radix_tree_delete(&fs_info->fs_roots_radix,
3394 (unsigned long)root->root_key.objectid);
3395 spin_unlock(&fs_info->fs_roots_radix_lock);
3396
3397 if (btrfs_root_refs(&root->root_item) == 0)
3398 synchronize_srcu(&fs_info->subvol_srcu);
3399
3400 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3401 btrfs_free_log(NULL, root);
3402 btrfs_free_log_root_tree(NULL, fs_info);
3403 }
3404
3405 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3406 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3407 free_fs_root(root);
3408}
3409
3410static void free_fs_root(struct btrfs_root *root)
3411{
3412 iput(root->cache_inode);
3413 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3414 if (root->anon_dev)
3415 free_anon_bdev(root->anon_dev);
3416 free_extent_buffer(root->node);
3417 free_extent_buffer(root->commit_root);
3418 kfree(root->free_ino_ctl);
3419 kfree(root->free_ino_pinned);
3420 kfree(root->name);
3421 btrfs_put_fs_root(root);
3422}
3423
3424void btrfs_free_fs_root(struct btrfs_root *root)
3425{
3426 free_fs_root(root);
3427}
3428
3429int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3430{
3431 u64 root_objectid = 0;
3432 struct btrfs_root *gang[8];
3433 int i;
3434 int ret;
3435
3436 while (1) {
3437 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3438 (void **)gang, root_objectid,
3439 ARRAY_SIZE(gang));
3440 if (!ret)
3441 break;
3442
3443 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3444 for (i = 0; i < ret; i++) {
3445 int err;
3446
3447 root_objectid = gang[i]->root_key.objectid;
3448 err = btrfs_orphan_cleanup(gang[i]);
3449 if (err)
3450 return err;
3451 }
3452 root_objectid++;
3453 }
3454 return 0;
3455}
3456
3457int btrfs_commit_super(struct btrfs_root *root)
3458{
3459 struct btrfs_trans_handle *trans;
3460 int ret;
3461
3462 mutex_lock(&root->fs_info->cleaner_mutex);
3463 btrfs_run_delayed_iputs(root);
3464 mutex_unlock(&root->fs_info->cleaner_mutex);
3465 wake_up_process(root->fs_info->cleaner_kthread);
3466
3467 /* wait until ongoing cleanup work done */
3468 down_write(&root->fs_info->cleanup_work_sem);
3469 up_write(&root->fs_info->cleanup_work_sem);
3470
3471 trans = btrfs_join_transaction(root);
3472 if (IS_ERR(trans))
3473 return PTR_ERR(trans);
3474 ret = btrfs_commit_transaction(trans, root);
3475 if (ret)
3476 return ret;
3477 /* run commit again to drop the original snapshot */
3478 trans = btrfs_join_transaction(root);
3479 if (IS_ERR(trans))
3480 return PTR_ERR(trans);
3481 ret = btrfs_commit_transaction(trans, root);
3482 if (ret)
3483 return ret;
3484 ret = btrfs_write_and_wait_transaction(NULL, root);
3485 if (ret) {
3486 btrfs_error(root->fs_info, ret,
3487 "Failed to sync btree inode to disk.");
3488 return ret;
3489 }
3490
3491 ret = write_ctree_super(NULL, root, 0);
3492 return ret;
3493}
3494
3495int close_ctree(struct btrfs_root *root)
3496{
3497 struct btrfs_fs_info *fs_info = root->fs_info;
3498 int ret;
3499
3500 fs_info->closing = 1;
3501 smp_mb();
3502
3503 /* pause restriper - we want to resume on mount */
3504 btrfs_pause_balance(fs_info);
3505
3506 btrfs_dev_replace_suspend_for_unmount(fs_info);
3507
3508 btrfs_scrub_cancel(fs_info);
3509
3510 /* wait for any defraggers to finish */
3511 wait_event(fs_info->transaction_wait,
3512 (atomic_read(&fs_info->defrag_running) == 0));
3513
3514 /* clear out the rbtree of defraggable inodes */
3515 btrfs_cleanup_defrag_inodes(fs_info);
3516
3517 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3518 ret = btrfs_commit_super(root);
3519 if (ret)
3520 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3521 }
3522
3523 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3524 btrfs_error_commit_super(root);
3525
3526 btrfs_put_block_group_cache(fs_info);
3527
3528 kthread_stop(fs_info->transaction_kthread);
3529 kthread_stop(fs_info->cleaner_kthread);
3530
3531 fs_info->closing = 2;
3532 smp_mb();
3533
3534 btrfs_free_qgroup_config(root->fs_info);
3535
3536 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3537 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3538 percpu_counter_sum(&fs_info->delalloc_bytes));
3539 }
3540
3541 btrfs_free_block_groups(fs_info);
3542
3543 btrfs_stop_all_workers(fs_info);
3544
3545 del_fs_roots(fs_info);
3546
3547 free_root_pointers(fs_info, 1);
3548
3549 iput(fs_info->btree_inode);
3550
3551#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3552 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3553 btrfsic_unmount(root, fs_info->fs_devices);
3554#endif
3555
3556 btrfs_close_devices(fs_info->fs_devices);
3557 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3558
3559 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3560 percpu_counter_destroy(&fs_info->delalloc_bytes);
3561 bdi_destroy(&fs_info->bdi);
3562 cleanup_srcu_struct(&fs_info->subvol_srcu);
3563
3564 btrfs_free_stripe_hash_table(fs_info);
3565
3566 return 0;
3567}
3568
3569int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3570 int atomic)
3571{
3572 int ret;
3573 struct inode *btree_inode = buf->pages[0]->mapping->host;
3574
3575 ret = extent_buffer_uptodate(buf);
3576 if (!ret)
3577 return ret;
3578
3579 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3580 parent_transid, atomic);
3581 if (ret == -EAGAIN)
3582 return ret;
3583 return !ret;
3584}
3585
3586int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3587{
3588 return set_extent_buffer_uptodate(buf);
3589}
3590
3591void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3592{
3593 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3594 u64 transid = btrfs_header_generation(buf);
3595 int was_dirty;
3596
3597 btrfs_assert_tree_locked(buf);
3598 if (transid != root->fs_info->generation)
3599 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3600 "found %llu running %llu\n",
3601 (unsigned long long)buf->start,
3602 (unsigned long long)transid,
3603 (unsigned long long)root->fs_info->generation);
3604 was_dirty = set_extent_buffer_dirty(buf);
3605 if (!was_dirty)
3606 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3607 buf->len,
3608 root->fs_info->dirty_metadata_batch);
3609}
3610
3611static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3612 int flush_delayed)
3613{
3614 /*
3615 * looks as though older kernels can get into trouble with
3616 * this code, they end up stuck in balance_dirty_pages forever
3617 */
3618 int ret;
3619
3620 if (current->flags & PF_MEMALLOC)
3621 return;
3622
3623 if (flush_delayed)
3624 btrfs_balance_delayed_items(root);
3625
3626 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3627 BTRFS_DIRTY_METADATA_THRESH);
3628 if (ret > 0) {
3629 balance_dirty_pages_ratelimited(
3630 root->fs_info->btree_inode->i_mapping);
3631 }
3632 return;
3633}
3634
3635void btrfs_btree_balance_dirty(struct btrfs_root *root)
3636{
3637 __btrfs_btree_balance_dirty(root, 1);
3638}
3639
3640void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3641{
3642 __btrfs_btree_balance_dirty(root, 0);
3643}
3644
3645int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3646{
3647 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3648 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3649}
3650
3651static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3652 int read_only)
3653{
3654 /*
3655 * Placeholder for checks
3656 */
3657 return 0;
3658}
3659
3660static void btrfs_error_commit_super(struct btrfs_root *root)
3661{
3662 mutex_lock(&root->fs_info->cleaner_mutex);
3663 btrfs_run_delayed_iputs(root);
3664 mutex_unlock(&root->fs_info->cleaner_mutex);
3665
3666 down_write(&root->fs_info->cleanup_work_sem);
3667 up_write(&root->fs_info->cleanup_work_sem);
3668
3669 /* cleanup FS via transaction */
3670 btrfs_cleanup_transaction(root);
3671}
3672
3673static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3674 struct btrfs_root *root)
3675{
3676 struct btrfs_inode *btrfs_inode;
3677 struct list_head splice;
3678
3679 INIT_LIST_HEAD(&splice);
3680
3681 mutex_lock(&root->fs_info->ordered_operations_mutex);
3682 spin_lock(&root->fs_info->ordered_extent_lock);
3683
3684 list_splice_init(&t->ordered_operations, &splice);
3685 while (!list_empty(&splice)) {
3686 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3687 ordered_operations);
3688
3689 list_del_init(&btrfs_inode->ordered_operations);
3690 spin_unlock(&root->fs_info->ordered_extent_lock);
3691
3692 btrfs_invalidate_inodes(btrfs_inode->root);
3693
3694 spin_lock(&root->fs_info->ordered_extent_lock);
3695 }
3696
3697 spin_unlock(&root->fs_info->ordered_extent_lock);
3698 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3699}
3700
3701static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3702{
3703 struct btrfs_ordered_extent *ordered;
3704
3705 spin_lock(&root->fs_info->ordered_extent_lock);
3706 /*
3707 * This will just short circuit the ordered completion stuff which will
3708 * make sure the ordered extent gets properly cleaned up.
3709 */
3710 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3711 root_extent_list)
3712 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3713 spin_unlock(&root->fs_info->ordered_extent_lock);
3714}
3715
3716int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3717 struct btrfs_root *root)
3718{
3719 struct rb_node *node;
3720 struct btrfs_delayed_ref_root *delayed_refs;
3721 struct btrfs_delayed_ref_node *ref;
3722 int ret = 0;
3723
3724 delayed_refs = &trans->delayed_refs;
3725
3726 spin_lock(&delayed_refs->lock);
3727 if (delayed_refs->num_entries == 0) {
3728 spin_unlock(&delayed_refs->lock);
3729 printk(KERN_INFO "delayed_refs has NO entry\n");
3730 return ret;
3731 }
3732
3733 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3734 struct btrfs_delayed_ref_head *head = NULL;
3735
3736 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3737 atomic_set(&ref->refs, 1);
3738 if (btrfs_delayed_ref_is_head(ref)) {
3739
3740 head = btrfs_delayed_node_to_head(ref);
3741 if (!mutex_trylock(&head->mutex)) {
3742 atomic_inc(&ref->refs);
3743 spin_unlock(&delayed_refs->lock);
3744
3745 /* Need to wait for the delayed ref to run */
3746 mutex_lock(&head->mutex);
3747 mutex_unlock(&head->mutex);
3748 btrfs_put_delayed_ref(ref);
3749
3750 spin_lock(&delayed_refs->lock);
3751 continue;
3752 }
3753
3754 if (head->must_insert_reserved)
3755 btrfs_pin_extent(root, ref->bytenr,
3756 ref->num_bytes, 1);
3757 btrfs_free_delayed_extent_op(head->extent_op);
3758 delayed_refs->num_heads--;
3759 if (list_empty(&head->cluster))
3760 delayed_refs->num_heads_ready--;
3761 list_del_init(&head->cluster);
3762 }
3763
3764 ref->in_tree = 0;
3765 rb_erase(&ref->rb_node, &delayed_refs->root);
3766 delayed_refs->num_entries--;
3767 if (head)
3768 mutex_unlock(&head->mutex);
3769 spin_unlock(&delayed_refs->lock);
3770 btrfs_put_delayed_ref(ref);
3771
3772 cond_resched();
3773 spin_lock(&delayed_refs->lock);
3774 }
3775
3776 spin_unlock(&delayed_refs->lock);
3777
3778 return ret;
3779}
3780
3781static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3782{
3783 struct btrfs_pending_snapshot *snapshot;
3784 struct list_head splice;
3785
3786 INIT_LIST_HEAD(&splice);
3787
3788 list_splice_init(&t->pending_snapshots, &splice);
3789
3790 while (!list_empty(&splice)) {
3791 snapshot = list_entry(splice.next,
3792 struct btrfs_pending_snapshot,
3793 list);
3794 snapshot->error = -ECANCELED;
3795 list_del_init(&snapshot->list);
3796 }
3797}
3798
3799static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3800{
3801 struct btrfs_inode *btrfs_inode;
3802 struct list_head splice;
3803
3804 INIT_LIST_HEAD(&splice);
3805
3806 spin_lock(&root->fs_info->delalloc_lock);
3807 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3808
3809 while (!list_empty(&splice)) {
3810 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3811 delalloc_inodes);
3812
3813 list_del_init(&btrfs_inode->delalloc_inodes);
3814 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3815 &btrfs_inode->runtime_flags);
3816 spin_unlock(&root->fs_info->delalloc_lock);
3817
3818 btrfs_invalidate_inodes(btrfs_inode->root);
3819
3820 spin_lock(&root->fs_info->delalloc_lock);
3821 }
3822
3823 spin_unlock(&root->fs_info->delalloc_lock);
3824}
3825
3826static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3827 struct extent_io_tree *dirty_pages,
3828 int mark)
3829{
3830 int ret;
3831 struct extent_buffer *eb;
3832 u64 start = 0;
3833 u64 end;
3834
3835 while (1) {
3836 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3837 mark, NULL);
3838 if (ret)
3839 break;
3840
3841 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3842 while (start <= end) {
3843 eb = btrfs_find_tree_block(root, start,
3844 root->leafsize);
3845 start += root->leafsize;
3846 if (!eb)
3847 continue;
3848 wait_on_extent_buffer_writeback(eb);
3849
3850 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3851 &eb->bflags))
3852 clear_extent_buffer_dirty(eb);
3853 free_extent_buffer_stale(eb);
3854 }
3855 }
3856
3857 return ret;
3858}
3859
3860static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3861 struct extent_io_tree *pinned_extents)
3862{
3863 struct extent_io_tree *unpin;
3864 u64 start;
3865 u64 end;
3866 int ret;
3867 bool loop = true;
3868
3869 unpin = pinned_extents;
3870again:
3871 while (1) {
3872 ret = find_first_extent_bit(unpin, 0, &start, &end,
3873 EXTENT_DIRTY, NULL);
3874 if (ret)
3875 break;
3876
3877 /* opt_discard */
3878 if (btrfs_test_opt(root, DISCARD))
3879 ret = btrfs_error_discard_extent(root, start,
3880 end + 1 - start,
3881 NULL);
3882
3883 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3884 btrfs_error_unpin_extent_range(root, start, end);
3885 cond_resched();
3886 }
3887
3888 if (loop) {
3889 if (unpin == &root->fs_info->freed_extents[0])
3890 unpin = &root->fs_info->freed_extents[1];
3891 else
3892 unpin = &root->fs_info->freed_extents[0];
3893 loop = false;
3894 goto again;
3895 }
3896
3897 return 0;
3898}
3899
3900void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3901 struct btrfs_root *root)
3902{
3903 btrfs_destroy_delayed_refs(cur_trans, root);
3904 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3905 cur_trans->dirty_pages.dirty_bytes);
3906
3907 /* FIXME: cleanup wait for commit */
3908 cur_trans->in_commit = 1;
3909 cur_trans->blocked = 1;
3910 wake_up(&root->fs_info->transaction_blocked_wait);
3911
3912 btrfs_evict_pending_snapshots(cur_trans);
3913
3914 cur_trans->blocked = 0;
3915 wake_up(&root->fs_info->transaction_wait);
3916
3917 cur_trans->commit_done = 1;
3918 wake_up(&cur_trans->commit_wait);
3919
3920 btrfs_destroy_delayed_inodes(root);
3921 btrfs_assert_delayed_root_empty(root);
3922
3923 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3924 EXTENT_DIRTY);
3925 btrfs_destroy_pinned_extent(root,
3926 root->fs_info->pinned_extents);
3927
3928 /*
3929 memset(cur_trans, 0, sizeof(*cur_trans));
3930 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3931 */
3932}
3933
3934static int btrfs_cleanup_transaction(struct btrfs_root *root)
3935{
3936 struct btrfs_transaction *t;
3937 LIST_HEAD(list);
3938
3939 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3940
3941 spin_lock(&root->fs_info->trans_lock);
3942 list_splice_init(&root->fs_info->trans_list, &list);
3943 root->fs_info->trans_no_join = 1;
3944 spin_unlock(&root->fs_info->trans_lock);
3945
3946 while (!list_empty(&list)) {
3947 t = list_entry(list.next, struct btrfs_transaction, list);
3948
3949 btrfs_destroy_ordered_operations(t, root);
3950
3951 btrfs_destroy_ordered_extents(root);
3952
3953 btrfs_destroy_delayed_refs(t, root);
3954
3955 /* FIXME: cleanup wait for commit */
3956 t->in_commit = 1;
3957 t->blocked = 1;
3958 smp_mb();
3959 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3960 wake_up(&root->fs_info->transaction_blocked_wait);
3961
3962 btrfs_evict_pending_snapshots(t);
3963
3964 t->blocked = 0;
3965 smp_mb();
3966 if (waitqueue_active(&root->fs_info->transaction_wait))
3967 wake_up(&root->fs_info->transaction_wait);
3968
3969 t->commit_done = 1;
3970 smp_mb();
3971 if (waitqueue_active(&t->commit_wait))
3972 wake_up(&t->commit_wait);
3973
3974 btrfs_destroy_delayed_inodes(root);
3975 btrfs_assert_delayed_root_empty(root);
3976
3977 btrfs_destroy_delalloc_inodes(root);
3978
3979 spin_lock(&root->fs_info->trans_lock);
3980 root->fs_info->running_transaction = NULL;
3981 spin_unlock(&root->fs_info->trans_lock);
3982
3983 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3984 EXTENT_DIRTY);
3985
3986 btrfs_destroy_pinned_extent(root,
3987 root->fs_info->pinned_extents);
3988
3989 atomic_set(&t->use_count, 0);
3990 list_del_init(&t->list);
3991 memset(t, 0, sizeof(*t));
3992 kmem_cache_free(btrfs_transaction_cachep, t);
3993 }
3994
3995 spin_lock(&root->fs_info->trans_lock);
3996 root->fs_info->trans_no_join = 0;
3997 spin_unlock(&root->fs_info->trans_lock);
3998 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3999
4000 return 0;
4001}
4002
4003static struct extent_io_ops btree_extent_io_ops = {
4004 .readpage_end_io_hook = btree_readpage_end_io_hook,
4005 .readpage_io_failed_hook = btree_io_failed_hook,
4006 .submit_bio_hook = btree_submit_bio_hook,
4007 /* note we're sharing with inode.c for the merge bio hook */
4008 .merge_bio_hook = btrfs_merge_bio_hook,
4009};