btrfs: fix an uninitialized variable warning in btrfs_log_inode
[linux-2.6-block.git] / fs / btrfs / disk-io.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/blkdev.h>
8#include <linux/radix-tree.h>
9#include <linux/writeback.h>
10#include <linux/workqueue.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <linux/migrate.h>
14#include <linux/ratelimit.h>
15#include <linux/uuid.h>
16#include <linux/semaphore.h>
17#include <linux/error-injection.h>
18#include <linux/crc32c.h>
19#include <linux/sched/mm.h>
20#include <asm/unaligned.h>
21#include <crypto/hash.h>
22#include "ctree.h"
23#include "disk-io.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "bio.h"
27#include "print-tree.h"
28#include "locking.h"
29#include "tree-log.h"
30#include "free-space-cache.h"
31#include "free-space-tree.h"
32#include "check-integrity.h"
33#include "rcu-string.h"
34#include "dev-replace.h"
35#include "raid56.h"
36#include "sysfs.h"
37#include "qgroup.h"
38#include "compression.h"
39#include "tree-checker.h"
40#include "ref-verify.h"
41#include "block-group.h"
42#include "discard.h"
43#include "space-info.h"
44#include "zoned.h"
45#include "subpage.h"
46#include "fs.h"
47#include "accessors.h"
48#include "extent-tree.h"
49#include "root-tree.h"
50#include "defrag.h"
51#include "uuid-tree.h"
52#include "relocation.h"
53#include "scrub.h"
54#include "super.h"
55
56#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
57 BTRFS_HEADER_FLAG_RELOC |\
58 BTRFS_SUPER_FLAG_ERROR |\
59 BTRFS_SUPER_FLAG_SEEDING |\
60 BTRFS_SUPER_FLAG_METADUMP |\
61 BTRFS_SUPER_FLAG_METADUMP_V2)
62
63static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_fs_info *fs_info);
66static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
68 struct extent_io_tree *dirty_pages,
69 int mark);
70static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
71 struct extent_io_tree *pinned_extents);
72static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
73static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
74
75static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
76{
77 if (fs_info->csum_shash)
78 crypto_free_shash(fs_info->csum_shash);
79}
80
81/*
82 * Compute the csum of a btree block and store the result to provided buffer.
83 */
84static void csum_tree_block(struct extent_buffer *buf, u8 *result)
85{
86 struct btrfs_fs_info *fs_info = buf->fs_info;
87 const int num_pages = num_extent_pages(buf);
88 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
89 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
90 char *kaddr;
91 int i;
92
93 shash->tfm = fs_info->csum_shash;
94 crypto_shash_init(shash);
95 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97 first_page_part - BTRFS_CSUM_SIZE);
98
99 for (i = 1; i < num_pages; i++) {
100 kaddr = page_address(buf->pages[i]);
101 crypto_shash_update(shash, kaddr, PAGE_SIZE);
102 }
103 memset(result, 0, BTRFS_CSUM_SIZE);
104 crypto_shash_final(shash, result);
105}
106
107/*
108 * we can't consider a given block up to date unless the transid of the
109 * block matches the transid in the parent node's pointer. This is how we
110 * detect blocks that either didn't get written at all or got written
111 * in the wrong place.
112 */
113static int verify_parent_transid(struct extent_io_tree *io_tree,
114 struct extent_buffer *eb, u64 parent_transid,
115 int atomic)
116{
117 struct extent_state *cached_state = NULL;
118 int ret;
119
120 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
121 return 0;
122
123 if (atomic)
124 return -EAGAIN;
125
126 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
127 if (extent_buffer_uptodate(eb) &&
128 btrfs_header_generation(eb) == parent_transid) {
129 ret = 0;
130 goto out;
131 }
132 btrfs_err_rl(eb->fs_info,
133"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 eb->start, eb->read_mirror,
135 parent_transid, btrfs_header_generation(eb));
136 ret = 1;
137 clear_extent_buffer_uptodate(eb);
138out:
139 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
140 &cached_state);
141 return ret;
142}
143
144static bool btrfs_supported_super_csum(u16 csum_type)
145{
146 switch (csum_type) {
147 case BTRFS_CSUM_TYPE_CRC32:
148 case BTRFS_CSUM_TYPE_XXHASH:
149 case BTRFS_CSUM_TYPE_SHA256:
150 case BTRFS_CSUM_TYPE_BLAKE2:
151 return true;
152 default:
153 return false;
154 }
155}
156
157/*
158 * Return 0 if the superblock checksum type matches the checksum value of that
159 * algorithm. Pass the raw disk superblock data.
160 */
161int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
162 const struct btrfs_super_block *disk_sb)
163{
164 char result[BTRFS_CSUM_SIZE];
165 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
166
167 shash->tfm = fs_info->csum_shash;
168
169 /*
170 * The super_block structure does not span the whole
171 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
172 * filled with zeros and is included in the checksum.
173 */
174 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
175 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
176
177 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
178 return 1;
179
180 return 0;
181}
182
183int btrfs_verify_level_key(struct extent_buffer *eb, int level,
184 struct btrfs_key *first_key, u64 parent_transid)
185{
186 struct btrfs_fs_info *fs_info = eb->fs_info;
187 int found_level;
188 struct btrfs_key found_key;
189 int ret;
190
191 found_level = btrfs_header_level(eb);
192 if (found_level != level) {
193 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
194 KERN_ERR "BTRFS: tree level check failed\n");
195 btrfs_err(fs_info,
196"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
197 eb->start, level, found_level);
198 return -EIO;
199 }
200
201 if (!first_key)
202 return 0;
203
204 /*
205 * For live tree block (new tree blocks in current transaction),
206 * we need proper lock context to avoid race, which is impossible here.
207 * So we only checks tree blocks which is read from disk, whose
208 * generation <= fs_info->last_trans_committed.
209 */
210 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
211 return 0;
212
213 /* We have @first_key, so this @eb must have at least one item */
214 if (btrfs_header_nritems(eb) == 0) {
215 btrfs_err(fs_info,
216 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
217 eb->start);
218 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
219 return -EUCLEAN;
220 }
221
222 if (found_level)
223 btrfs_node_key_to_cpu(eb, &found_key, 0);
224 else
225 btrfs_item_key_to_cpu(eb, &found_key, 0);
226 ret = btrfs_comp_cpu_keys(first_key, &found_key);
227
228 if (ret) {
229 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
230 KERN_ERR "BTRFS: tree first key check failed\n");
231 btrfs_err(fs_info,
232"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
233 eb->start, parent_transid, first_key->objectid,
234 first_key->type, first_key->offset,
235 found_key.objectid, found_key.type,
236 found_key.offset);
237 }
238 return ret;
239}
240
241static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
242 int mirror_num)
243{
244 struct btrfs_fs_info *fs_info = eb->fs_info;
245 u64 start = eb->start;
246 int i, num_pages = num_extent_pages(eb);
247 int ret = 0;
248
249 if (sb_rdonly(fs_info->sb))
250 return -EROFS;
251
252 for (i = 0; i < num_pages; i++) {
253 struct page *p = eb->pages[i];
254
255 ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE,
256 start, p, start - page_offset(p), mirror_num);
257 if (ret)
258 break;
259 start += PAGE_SIZE;
260 }
261
262 return ret;
263}
264
265/*
266 * helper to read a given tree block, doing retries as required when
267 * the checksums don't match and we have alternate mirrors to try.
268 *
269 * @check: expected tree parentness check, see the comments of the
270 * structure for details.
271 */
272int btrfs_read_extent_buffer(struct extent_buffer *eb,
273 struct btrfs_tree_parent_check *check)
274{
275 struct btrfs_fs_info *fs_info = eb->fs_info;
276 int failed = 0;
277 int ret;
278 int num_copies = 0;
279 int mirror_num = 0;
280 int failed_mirror = 0;
281
282 ASSERT(check);
283
284 while (1) {
285 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
286 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
287 if (!ret)
288 break;
289
290 num_copies = btrfs_num_copies(fs_info,
291 eb->start, eb->len);
292 if (num_copies == 1)
293 break;
294
295 if (!failed_mirror) {
296 failed = 1;
297 failed_mirror = eb->read_mirror;
298 }
299
300 mirror_num++;
301 if (mirror_num == failed_mirror)
302 mirror_num++;
303
304 if (mirror_num > num_copies)
305 break;
306 }
307
308 if (failed && !ret && failed_mirror)
309 btrfs_repair_eb_io_failure(eb, failed_mirror);
310
311 return ret;
312}
313
314static int csum_one_extent_buffer(struct extent_buffer *eb)
315{
316 struct btrfs_fs_info *fs_info = eb->fs_info;
317 u8 result[BTRFS_CSUM_SIZE];
318 int ret;
319
320 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
321 offsetof(struct btrfs_header, fsid),
322 BTRFS_FSID_SIZE) == 0);
323 csum_tree_block(eb, result);
324
325 if (btrfs_header_level(eb))
326 ret = btrfs_check_node(eb);
327 else
328 ret = btrfs_check_leaf_full(eb);
329
330 if (ret < 0)
331 goto error;
332
333 /*
334 * Also check the generation, the eb reached here must be newer than
335 * last committed. Or something seriously wrong happened.
336 */
337 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
338 ret = -EUCLEAN;
339 btrfs_err(fs_info,
340 "block=%llu bad generation, have %llu expect > %llu",
341 eb->start, btrfs_header_generation(eb),
342 fs_info->last_trans_committed);
343 goto error;
344 }
345 write_extent_buffer(eb, result, 0, fs_info->csum_size);
346
347 return 0;
348
349error:
350 btrfs_print_tree(eb, 0);
351 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
352 eb->start);
353 /*
354 * Be noisy if this is an extent buffer from a log tree. We don't abort
355 * a transaction in case there's a bad log tree extent buffer, we just
356 * fallback to a transaction commit. Still we want to know when there is
357 * a bad log tree extent buffer, as that may signal a bug somewhere.
358 */
359 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
360 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
361 return ret;
362}
363
364/* Checksum all dirty extent buffers in one bio_vec */
365static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
366 struct bio_vec *bvec)
367{
368 struct page *page = bvec->bv_page;
369 u64 bvec_start = page_offset(page) + bvec->bv_offset;
370 u64 cur;
371 int ret = 0;
372
373 for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
374 cur += fs_info->nodesize) {
375 struct extent_buffer *eb;
376 bool uptodate;
377
378 eb = find_extent_buffer(fs_info, cur);
379 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
380 fs_info->nodesize);
381
382 /* A dirty eb shouldn't disappear from buffer_radix */
383 if (WARN_ON(!eb))
384 return -EUCLEAN;
385
386 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
387 free_extent_buffer(eb);
388 return -EUCLEAN;
389 }
390 if (WARN_ON(!uptodate)) {
391 free_extent_buffer(eb);
392 return -EUCLEAN;
393 }
394
395 ret = csum_one_extent_buffer(eb);
396 free_extent_buffer(eb);
397 if (ret < 0)
398 return ret;
399 }
400 return ret;
401}
402
403/*
404 * Checksum a dirty tree block before IO. This has extra checks to make sure
405 * we only fill in the checksum field in the first page of a multi-page block.
406 * For subpage extent buffers we need bvec to also read the offset in the page.
407 */
408static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
409{
410 struct page *page = bvec->bv_page;
411 u64 start = page_offset(page);
412 u64 found_start;
413 struct extent_buffer *eb;
414
415 if (fs_info->nodesize < PAGE_SIZE)
416 return csum_dirty_subpage_buffers(fs_info, bvec);
417
418 eb = (struct extent_buffer *)page->private;
419 if (page != eb->pages[0])
420 return 0;
421
422 found_start = btrfs_header_bytenr(eb);
423
424 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
425 WARN_ON(found_start != 0);
426 return 0;
427 }
428
429 /*
430 * Please do not consolidate these warnings into a single if.
431 * It is useful to know what went wrong.
432 */
433 if (WARN_ON(found_start != start))
434 return -EUCLEAN;
435 if (WARN_ON(!PageUptodate(page)))
436 return -EUCLEAN;
437
438 return csum_one_extent_buffer(eb);
439}
440
441blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
442{
443 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
444 struct bvec_iter iter;
445 struct bio_vec bv;
446 int ret = 0;
447
448 bio_for_each_segment(bv, &bbio->bio, iter) {
449 ret = csum_dirty_buffer(fs_info, &bv);
450 if (ret)
451 break;
452 }
453
454 return errno_to_blk_status(ret);
455}
456
457static int check_tree_block_fsid(struct extent_buffer *eb)
458{
459 struct btrfs_fs_info *fs_info = eb->fs_info;
460 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
461 u8 fsid[BTRFS_FSID_SIZE];
462 u8 *metadata_uuid;
463
464 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
465 BTRFS_FSID_SIZE);
466 /*
467 * Checking the incompat flag is only valid for the current fs. For
468 * seed devices it's forbidden to have their uuid changed so reading
469 * ->fsid in this case is fine
470 */
471 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
472 metadata_uuid = fs_devices->metadata_uuid;
473 else
474 metadata_uuid = fs_devices->fsid;
475
476 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
477 return 0;
478
479 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
480 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
481 return 0;
482
483 return 1;
484}
485
486/* Do basic extent buffer checks at read time */
487static int validate_extent_buffer(struct extent_buffer *eb,
488 struct btrfs_tree_parent_check *check)
489{
490 struct btrfs_fs_info *fs_info = eb->fs_info;
491 u64 found_start;
492 const u32 csum_size = fs_info->csum_size;
493 u8 found_level;
494 u8 result[BTRFS_CSUM_SIZE];
495 const u8 *header_csum;
496 int ret = 0;
497
498 ASSERT(check);
499
500 found_start = btrfs_header_bytenr(eb);
501 if (found_start != eb->start) {
502 btrfs_err_rl(fs_info,
503 "bad tree block start, mirror %u want %llu have %llu",
504 eb->read_mirror, eb->start, found_start);
505 ret = -EIO;
506 goto out;
507 }
508 if (check_tree_block_fsid(eb)) {
509 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
510 eb->start, eb->read_mirror);
511 ret = -EIO;
512 goto out;
513 }
514 found_level = btrfs_header_level(eb);
515 if (found_level >= BTRFS_MAX_LEVEL) {
516 btrfs_err(fs_info,
517 "bad tree block level, mirror %u level %d on logical %llu",
518 eb->read_mirror, btrfs_header_level(eb), eb->start);
519 ret = -EIO;
520 goto out;
521 }
522
523 csum_tree_block(eb, result);
524 header_csum = page_address(eb->pages[0]) +
525 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
526
527 if (memcmp(result, header_csum, csum_size) != 0) {
528 btrfs_warn_rl(fs_info,
529"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
530 eb->start, eb->read_mirror,
531 CSUM_FMT_VALUE(csum_size, header_csum),
532 CSUM_FMT_VALUE(csum_size, result),
533 btrfs_header_level(eb));
534 ret = -EUCLEAN;
535 goto out;
536 }
537
538 if (found_level != check->level) {
539 btrfs_err(fs_info,
540 "level verify failed on logical %llu mirror %u wanted %u found %u",
541 eb->start, eb->read_mirror, check->level, found_level);
542 ret = -EIO;
543 goto out;
544 }
545 if (unlikely(check->transid &&
546 btrfs_header_generation(eb) != check->transid)) {
547 btrfs_err_rl(eb->fs_info,
548"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
549 eb->start, eb->read_mirror, check->transid,
550 btrfs_header_generation(eb));
551 ret = -EIO;
552 goto out;
553 }
554 if (check->has_first_key) {
555 struct btrfs_key *expect_key = &check->first_key;
556 struct btrfs_key found_key;
557
558 if (found_level)
559 btrfs_node_key_to_cpu(eb, &found_key, 0);
560 else
561 btrfs_item_key_to_cpu(eb, &found_key, 0);
562 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
563 btrfs_err(fs_info,
564"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
565 eb->start, check->transid,
566 expect_key->objectid,
567 expect_key->type, expect_key->offset,
568 found_key.objectid, found_key.type,
569 found_key.offset);
570 ret = -EUCLEAN;
571 goto out;
572 }
573 }
574 if (check->owner_root) {
575 ret = btrfs_check_eb_owner(eb, check->owner_root);
576 if (ret < 0)
577 goto out;
578 }
579
580 /*
581 * If this is a leaf block and it is corrupt, set the corrupt bit so
582 * that we don't try and read the other copies of this block, just
583 * return -EIO.
584 */
585 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
586 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
587 ret = -EIO;
588 }
589
590 if (found_level > 0 && btrfs_check_node(eb))
591 ret = -EIO;
592
593 if (!ret)
594 set_extent_buffer_uptodate(eb);
595 else
596 btrfs_err(fs_info,
597 "read time tree block corruption detected on logical %llu mirror %u",
598 eb->start, eb->read_mirror);
599out:
600 return ret;
601}
602
603static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
604 int mirror, struct btrfs_tree_parent_check *check)
605{
606 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
607 struct extent_buffer *eb;
608 bool reads_done;
609 int ret = 0;
610
611 ASSERT(check);
612
613 /*
614 * We don't allow bio merge for subpage metadata read, so we should
615 * only get one eb for each endio hook.
616 */
617 ASSERT(end == start + fs_info->nodesize - 1);
618 ASSERT(PagePrivate(page));
619
620 eb = find_extent_buffer(fs_info, start);
621 /*
622 * When we are reading one tree block, eb must have been inserted into
623 * the radix tree. If not, something is wrong.
624 */
625 ASSERT(eb);
626
627 reads_done = atomic_dec_and_test(&eb->io_pages);
628 /* Subpage read must finish in page read */
629 ASSERT(reads_done);
630
631 eb->read_mirror = mirror;
632 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
633 ret = -EIO;
634 goto err;
635 }
636 ret = validate_extent_buffer(eb, check);
637 if (ret < 0)
638 goto err;
639
640 set_extent_buffer_uptodate(eb);
641
642 free_extent_buffer(eb);
643 return ret;
644err:
645 /*
646 * end_bio_extent_readpage decrements io_pages in case of error,
647 * make sure it has something to decrement.
648 */
649 atomic_inc(&eb->io_pages);
650 clear_extent_buffer_uptodate(eb);
651 free_extent_buffer(eb);
652 return ret;
653}
654
655int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
656 struct page *page, u64 start, u64 end,
657 int mirror)
658{
659 struct extent_buffer *eb;
660 int ret = 0;
661 int reads_done;
662
663 ASSERT(page->private);
664
665 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
666 return validate_subpage_buffer(page, start, end, mirror,
667 &bbio->parent_check);
668
669 eb = (struct extent_buffer *)page->private;
670
671 /*
672 * The pending IO might have been the only thing that kept this buffer
673 * in memory. Make sure we have a ref for all this other checks
674 */
675 atomic_inc(&eb->refs);
676
677 reads_done = atomic_dec_and_test(&eb->io_pages);
678 if (!reads_done)
679 goto err;
680
681 eb->read_mirror = mirror;
682 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
683 ret = -EIO;
684 goto err;
685 }
686 ret = validate_extent_buffer(eb, &bbio->parent_check);
687err:
688 if (ret) {
689 /*
690 * our io error hook is going to dec the io pages
691 * again, we have to make sure it has something
692 * to decrement
693 */
694 atomic_inc(&eb->io_pages);
695 clear_extent_buffer_uptodate(eb);
696 }
697 free_extent_buffer(eb);
698
699 return ret;
700}
701
702#ifdef CONFIG_MIGRATION
703static int btree_migrate_folio(struct address_space *mapping,
704 struct folio *dst, struct folio *src, enum migrate_mode mode)
705{
706 /*
707 * we can't safely write a btree page from here,
708 * we haven't done the locking hook
709 */
710 if (folio_test_dirty(src))
711 return -EAGAIN;
712 /*
713 * Buffers may be managed in a filesystem specific way.
714 * We must have no buffers or drop them.
715 */
716 if (folio_get_private(src) &&
717 !filemap_release_folio(src, GFP_KERNEL))
718 return -EAGAIN;
719 return migrate_folio(mapping, dst, src, mode);
720}
721#else
722#define btree_migrate_folio NULL
723#endif
724
725static int btree_writepages(struct address_space *mapping,
726 struct writeback_control *wbc)
727{
728 struct btrfs_fs_info *fs_info;
729 int ret;
730
731 if (wbc->sync_mode == WB_SYNC_NONE) {
732
733 if (wbc->for_kupdate)
734 return 0;
735
736 fs_info = BTRFS_I(mapping->host)->root->fs_info;
737 /* this is a bit racy, but that's ok */
738 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
739 BTRFS_DIRTY_METADATA_THRESH,
740 fs_info->dirty_metadata_batch);
741 if (ret < 0)
742 return 0;
743 }
744 return btree_write_cache_pages(mapping, wbc);
745}
746
747static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
748{
749 if (folio_test_writeback(folio) || folio_test_dirty(folio))
750 return false;
751
752 return try_release_extent_buffer(&folio->page);
753}
754
755static void btree_invalidate_folio(struct folio *folio, size_t offset,
756 size_t length)
757{
758 struct extent_io_tree *tree;
759 tree = &BTRFS_I(folio->mapping->host)->io_tree;
760 extent_invalidate_folio(tree, folio, offset);
761 btree_release_folio(folio, GFP_NOFS);
762 if (folio_get_private(folio)) {
763 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
764 "folio private not zero on folio %llu",
765 (unsigned long long)folio_pos(folio));
766 folio_detach_private(folio);
767 }
768}
769
770#ifdef DEBUG
771static bool btree_dirty_folio(struct address_space *mapping,
772 struct folio *folio)
773{
774 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
775 struct btrfs_subpage *subpage;
776 struct extent_buffer *eb;
777 int cur_bit = 0;
778 u64 page_start = folio_pos(folio);
779
780 if (fs_info->sectorsize == PAGE_SIZE) {
781 eb = folio_get_private(folio);
782 BUG_ON(!eb);
783 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
784 BUG_ON(!atomic_read(&eb->refs));
785 btrfs_assert_tree_write_locked(eb);
786 return filemap_dirty_folio(mapping, folio);
787 }
788 subpage = folio_get_private(folio);
789
790 ASSERT(subpage->dirty_bitmap);
791 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
792 unsigned long flags;
793 u64 cur;
794 u16 tmp = (1 << cur_bit);
795
796 spin_lock_irqsave(&subpage->lock, flags);
797 if (!(tmp & subpage->dirty_bitmap)) {
798 spin_unlock_irqrestore(&subpage->lock, flags);
799 cur_bit++;
800 continue;
801 }
802 spin_unlock_irqrestore(&subpage->lock, flags);
803 cur = page_start + cur_bit * fs_info->sectorsize;
804
805 eb = find_extent_buffer(fs_info, cur);
806 ASSERT(eb);
807 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
808 ASSERT(atomic_read(&eb->refs));
809 btrfs_assert_tree_write_locked(eb);
810 free_extent_buffer(eb);
811
812 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
813 }
814 return filemap_dirty_folio(mapping, folio);
815}
816#else
817#define btree_dirty_folio filemap_dirty_folio
818#endif
819
820static const struct address_space_operations btree_aops = {
821 .writepages = btree_writepages,
822 .release_folio = btree_release_folio,
823 .invalidate_folio = btree_invalidate_folio,
824 .migrate_folio = btree_migrate_folio,
825 .dirty_folio = btree_dirty_folio,
826};
827
828struct extent_buffer *btrfs_find_create_tree_block(
829 struct btrfs_fs_info *fs_info,
830 u64 bytenr, u64 owner_root,
831 int level)
832{
833 if (btrfs_is_testing(fs_info))
834 return alloc_test_extent_buffer(fs_info, bytenr);
835 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
836}
837
838/*
839 * Read tree block at logical address @bytenr and do variant basic but critical
840 * verification.
841 *
842 * @check: expected tree parentness check, see comments of the
843 * structure for details.
844 */
845struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
846 struct btrfs_tree_parent_check *check)
847{
848 struct extent_buffer *buf = NULL;
849 int ret;
850
851 ASSERT(check);
852
853 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
854 check->level);
855 if (IS_ERR(buf))
856 return buf;
857
858 ret = btrfs_read_extent_buffer(buf, check);
859 if (ret) {
860 free_extent_buffer_stale(buf);
861 return ERR_PTR(ret);
862 }
863 if (btrfs_check_eb_owner(buf, check->owner_root)) {
864 free_extent_buffer_stale(buf);
865 return ERR_PTR(-EUCLEAN);
866 }
867 return buf;
868
869}
870
871static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
872 u64 objectid)
873{
874 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
875
876 memset(&root->root_key, 0, sizeof(root->root_key));
877 memset(&root->root_item, 0, sizeof(root->root_item));
878 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
879 root->fs_info = fs_info;
880 root->root_key.objectid = objectid;
881 root->node = NULL;
882 root->commit_root = NULL;
883 root->state = 0;
884 RB_CLEAR_NODE(&root->rb_node);
885
886 root->last_trans = 0;
887 root->free_objectid = 0;
888 root->nr_delalloc_inodes = 0;
889 root->nr_ordered_extents = 0;
890 root->inode_tree = RB_ROOT;
891 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
892
893 btrfs_init_root_block_rsv(root);
894
895 INIT_LIST_HEAD(&root->dirty_list);
896 INIT_LIST_HEAD(&root->root_list);
897 INIT_LIST_HEAD(&root->delalloc_inodes);
898 INIT_LIST_HEAD(&root->delalloc_root);
899 INIT_LIST_HEAD(&root->ordered_extents);
900 INIT_LIST_HEAD(&root->ordered_root);
901 INIT_LIST_HEAD(&root->reloc_dirty_list);
902 INIT_LIST_HEAD(&root->logged_list[0]);
903 INIT_LIST_HEAD(&root->logged_list[1]);
904 spin_lock_init(&root->inode_lock);
905 spin_lock_init(&root->delalloc_lock);
906 spin_lock_init(&root->ordered_extent_lock);
907 spin_lock_init(&root->accounting_lock);
908 spin_lock_init(&root->log_extents_lock[0]);
909 spin_lock_init(&root->log_extents_lock[1]);
910 spin_lock_init(&root->qgroup_meta_rsv_lock);
911 mutex_init(&root->objectid_mutex);
912 mutex_init(&root->log_mutex);
913 mutex_init(&root->ordered_extent_mutex);
914 mutex_init(&root->delalloc_mutex);
915 init_waitqueue_head(&root->qgroup_flush_wait);
916 init_waitqueue_head(&root->log_writer_wait);
917 init_waitqueue_head(&root->log_commit_wait[0]);
918 init_waitqueue_head(&root->log_commit_wait[1]);
919 INIT_LIST_HEAD(&root->log_ctxs[0]);
920 INIT_LIST_HEAD(&root->log_ctxs[1]);
921 atomic_set(&root->log_commit[0], 0);
922 atomic_set(&root->log_commit[1], 0);
923 atomic_set(&root->log_writers, 0);
924 atomic_set(&root->log_batch, 0);
925 refcount_set(&root->refs, 1);
926 atomic_set(&root->snapshot_force_cow, 0);
927 atomic_set(&root->nr_swapfiles, 0);
928 root->log_transid = 0;
929 root->log_transid_committed = -1;
930 root->last_log_commit = 0;
931 root->anon_dev = 0;
932 if (!dummy) {
933 extent_io_tree_init(fs_info, &root->dirty_log_pages,
934 IO_TREE_ROOT_DIRTY_LOG_PAGES);
935 extent_io_tree_init(fs_info, &root->log_csum_range,
936 IO_TREE_LOG_CSUM_RANGE);
937 }
938
939 spin_lock_init(&root->root_item_lock);
940 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
941#ifdef CONFIG_BTRFS_DEBUG
942 INIT_LIST_HEAD(&root->leak_list);
943 spin_lock(&fs_info->fs_roots_radix_lock);
944 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
945 spin_unlock(&fs_info->fs_roots_radix_lock);
946#endif
947}
948
949static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
950 u64 objectid, gfp_t flags)
951{
952 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
953 if (root)
954 __setup_root(root, fs_info, objectid);
955 return root;
956}
957
958#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
959/* Should only be used by the testing infrastructure */
960struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
961{
962 struct btrfs_root *root;
963
964 if (!fs_info)
965 return ERR_PTR(-EINVAL);
966
967 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
968 if (!root)
969 return ERR_PTR(-ENOMEM);
970
971 /* We don't use the stripesize in selftest, set it as sectorsize */
972 root->alloc_bytenr = 0;
973
974 return root;
975}
976#endif
977
978static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
979{
980 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
981 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
982
983 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
984}
985
986static int global_root_key_cmp(const void *k, const struct rb_node *node)
987{
988 const struct btrfs_key *key = k;
989 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
990
991 return btrfs_comp_cpu_keys(key, &root->root_key);
992}
993
994int btrfs_global_root_insert(struct btrfs_root *root)
995{
996 struct btrfs_fs_info *fs_info = root->fs_info;
997 struct rb_node *tmp;
998
999 write_lock(&fs_info->global_root_lock);
1000 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1001 write_unlock(&fs_info->global_root_lock);
1002 ASSERT(!tmp);
1003
1004 return tmp ? -EEXIST : 0;
1005}
1006
1007void btrfs_global_root_delete(struct btrfs_root *root)
1008{
1009 struct btrfs_fs_info *fs_info = root->fs_info;
1010
1011 write_lock(&fs_info->global_root_lock);
1012 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1013 write_unlock(&fs_info->global_root_lock);
1014}
1015
1016struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1017 struct btrfs_key *key)
1018{
1019 struct rb_node *node;
1020 struct btrfs_root *root = NULL;
1021
1022 read_lock(&fs_info->global_root_lock);
1023 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1024 if (node)
1025 root = container_of(node, struct btrfs_root, rb_node);
1026 read_unlock(&fs_info->global_root_lock);
1027
1028 return root;
1029}
1030
1031static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1032{
1033 struct btrfs_block_group *block_group;
1034 u64 ret;
1035
1036 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1037 return 0;
1038
1039 if (bytenr)
1040 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1041 else
1042 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1043 ASSERT(block_group);
1044 if (!block_group)
1045 return 0;
1046 ret = block_group->global_root_id;
1047 btrfs_put_block_group(block_group);
1048
1049 return ret;
1050}
1051
1052struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1053{
1054 struct btrfs_key key = {
1055 .objectid = BTRFS_CSUM_TREE_OBJECTID,
1056 .type = BTRFS_ROOT_ITEM_KEY,
1057 .offset = btrfs_global_root_id(fs_info, bytenr),
1058 };
1059
1060 return btrfs_global_root(fs_info, &key);
1061}
1062
1063struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1064{
1065 struct btrfs_key key = {
1066 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
1067 .type = BTRFS_ROOT_ITEM_KEY,
1068 .offset = btrfs_global_root_id(fs_info, bytenr),
1069 };
1070
1071 return btrfs_global_root(fs_info, &key);
1072}
1073
1074struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1075{
1076 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1077 return fs_info->block_group_root;
1078 return btrfs_extent_root(fs_info, 0);
1079}
1080
1081struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1082 u64 objectid)
1083{
1084 struct btrfs_fs_info *fs_info = trans->fs_info;
1085 struct extent_buffer *leaf;
1086 struct btrfs_root *tree_root = fs_info->tree_root;
1087 struct btrfs_root *root;
1088 struct btrfs_key key;
1089 unsigned int nofs_flag;
1090 int ret = 0;
1091
1092 /*
1093 * We're holding a transaction handle, so use a NOFS memory allocation
1094 * context to avoid deadlock if reclaim happens.
1095 */
1096 nofs_flag = memalloc_nofs_save();
1097 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1098 memalloc_nofs_restore(nofs_flag);
1099 if (!root)
1100 return ERR_PTR(-ENOMEM);
1101
1102 root->root_key.objectid = objectid;
1103 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1104 root->root_key.offset = 0;
1105
1106 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1107 BTRFS_NESTING_NORMAL);
1108 if (IS_ERR(leaf)) {
1109 ret = PTR_ERR(leaf);
1110 leaf = NULL;
1111 goto fail;
1112 }
1113
1114 root->node = leaf;
1115 btrfs_mark_buffer_dirty(leaf);
1116
1117 root->commit_root = btrfs_root_node(root);
1118 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1119
1120 btrfs_set_root_flags(&root->root_item, 0);
1121 btrfs_set_root_limit(&root->root_item, 0);
1122 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1123 btrfs_set_root_generation(&root->root_item, trans->transid);
1124 btrfs_set_root_level(&root->root_item, 0);
1125 btrfs_set_root_refs(&root->root_item, 1);
1126 btrfs_set_root_used(&root->root_item, leaf->len);
1127 btrfs_set_root_last_snapshot(&root->root_item, 0);
1128 btrfs_set_root_dirid(&root->root_item, 0);
1129 if (is_fstree(objectid))
1130 generate_random_guid(root->root_item.uuid);
1131 else
1132 export_guid(root->root_item.uuid, &guid_null);
1133 btrfs_set_root_drop_level(&root->root_item, 0);
1134
1135 btrfs_tree_unlock(leaf);
1136
1137 key.objectid = objectid;
1138 key.type = BTRFS_ROOT_ITEM_KEY;
1139 key.offset = 0;
1140 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1141 if (ret)
1142 goto fail;
1143
1144 return root;
1145
1146fail:
1147 btrfs_put_root(root);
1148
1149 return ERR_PTR(ret);
1150}
1151
1152static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1153 struct btrfs_fs_info *fs_info)
1154{
1155 struct btrfs_root *root;
1156
1157 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1158 if (!root)
1159 return ERR_PTR(-ENOMEM);
1160
1161 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1162 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1163 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1164
1165 return root;
1166}
1167
1168int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1169 struct btrfs_root *root)
1170{
1171 struct extent_buffer *leaf;
1172
1173 /*
1174 * DON'T set SHAREABLE bit for log trees.
1175 *
1176 * Log trees are not exposed to user space thus can't be snapshotted,
1177 * and they go away before a real commit is actually done.
1178 *
1179 * They do store pointers to file data extents, and those reference
1180 * counts still get updated (along with back refs to the log tree).
1181 */
1182
1183 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1184 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1185 if (IS_ERR(leaf))
1186 return PTR_ERR(leaf);
1187
1188 root->node = leaf;
1189
1190 btrfs_mark_buffer_dirty(root->node);
1191 btrfs_tree_unlock(root->node);
1192
1193 return 0;
1194}
1195
1196int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1197 struct btrfs_fs_info *fs_info)
1198{
1199 struct btrfs_root *log_root;
1200
1201 log_root = alloc_log_tree(trans, fs_info);
1202 if (IS_ERR(log_root))
1203 return PTR_ERR(log_root);
1204
1205 if (!btrfs_is_zoned(fs_info)) {
1206 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1207
1208 if (ret) {
1209 btrfs_put_root(log_root);
1210 return ret;
1211 }
1212 }
1213
1214 WARN_ON(fs_info->log_root_tree);
1215 fs_info->log_root_tree = log_root;
1216 return 0;
1217}
1218
1219int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1220 struct btrfs_root *root)
1221{
1222 struct btrfs_fs_info *fs_info = root->fs_info;
1223 struct btrfs_root *log_root;
1224 struct btrfs_inode_item *inode_item;
1225 int ret;
1226
1227 log_root = alloc_log_tree(trans, fs_info);
1228 if (IS_ERR(log_root))
1229 return PTR_ERR(log_root);
1230
1231 ret = btrfs_alloc_log_tree_node(trans, log_root);
1232 if (ret) {
1233 btrfs_put_root(log_root);
1234 return ret;
1235 }
1236
1237 log_root->last_trans = trans->transid;
1238 log_root->root_key.offset = root->root_key.objectid;
1239
1240 inode_item = &log_root->root_item.inode;
1241 btrfs_set_stack_inode_generation(inode_item, 1);
1242 btrfs_set_stack_inode_size(inode_item, 3);
1243 btrfs_set_stack_inode_nlink(inode_item, 1);
1244 btrfs_set_stack_inode_nbytes(inode_item,
1245 fs_info->nodesize);
1246 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1247
1248 btrfs_set_root_node(&log_root->root_item, log_root->node);
1249
1250 WARN_ON(root->log_root);
1251 root->log_root = log_root;
1252 root->log_transid = 0;
1253 root->log_transid_committed = -1;
1254 root->last_log_commit = 0;
1255 return 0;
1256}
1257
1258static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1259 struct btrfs_path *path,
1260 struct btrfs_key *key)
1261{
1262 struct btrfs_root *root;
1263 struct btrfs_tree_parent_check check = { 0 };
1264 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1265 u64 generation;
1266 int ret;
1267 int level;
1268
1269 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1270 if (!root)
1271 return ERR_PTR(-ENOMEM);
1272
1273 ret = btrfs_find_root(tree_root, key, path,
1274 &root->root_item, &root->root_key);
1275 if (ret) {
1276 if (ret > 0)
1277 ret = -ENOENT;
1278 goto fail;
1279 }
1280
1281 generation = btrfs_root_generation(&root->root_item);
1282 level = btrfs_root_level(&root->root_item);
1283 check.level = level;
1284 check.transid = generation;
1285 check.owner_root = key->objectid;
1286 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1287 &check);
1288 if (IS_ERR(root->node)) {
1289 ret = PTR_ERR(root->node);
1290 root->node = NULL;
1291 goto fail;
1292 }
1293 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1294 ret = -EIO;
1295 goto fail;
1296 }
1297
1298 /*
1299 * For real fs, and not log/reloc trees, root owner must
1300 * match its root node owner
1301 */
1302 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1303 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1304 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1305 root->root_key.objectid != btrfs_header_owner(root->node)) {
1306 btrfs_crit(fs_info,
1307"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1308 root->root_key.objectid, root->node->start,
1309 btrfs_header_owner(root->node),
1310 root->root_key.objectid);
1311 ret = -EUCLEAN;
1312 goto fail;
1313 }
1314 root->commit_root = btrfs_root_node(root);
1315 return root;
1316fail:
1317 btrfs_put_root(root);
1318 return ERR_PTR(ret);
1319}
1320
1321struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1322 struct btrfs_key *key)
1323{
1324 struct btrfs_root *root;
1325 struct btrfs_path *path;
1326
1327 path = btrfs_alloc_path();
1328 if (!path)
1329 return ERR_PTR(-ENOMEM);
1330 root = read_tree_root_path(tree_root, path, key);
1331 btrfs_free_path(path);
1332
1333 return root;
1334}
1335
1336/*
1337 * Initialize subvolume root in-memory structure
1338 *
1339 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1340 */
1341static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1342{
1343 int ret;
1344
1345 btrfs_drew_lock_init(&root->snapshot_lock);
1346
1347 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1348 !btrfs_is_data_reloc_root(root)) {
1349 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1350 btrfs_check_and_init_root_item(&root->root_item);
1351 }
1352
1353 /*
1354 * Don't assign anonymous block device to roots that are not exposed to
1355 * userspace, the id pool is limited to 1M
1356 */
1357 if (is_fstree(root->root_key.objectid) &&
1358 btrfs_root_refs(&root->root_item) > 0) {
1359 if (!anon_dev) {
1360 ret = get_anon_bdev(&root->anon_dev);
1361 if (ret)
1362 goto fail;
1363 } else {
1364 root->anon_dev = anon_dev;
1365 }
1366 }
1367
1368 mutex_lock(&root->objectid_mutex);
1369 ret = btrfs_init_root_free_objectid(root);
1370 if (ret) {
1371 mutex_unlock(&root->objectid_mutex);
1372 goto fail;
1373 }
1374
1375 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1376
1377 mutex_unlock(&root->objectid_mutex);
1378
1379 return 0;
1380fail:
1381 /* The caller is responsible to call btrfs_free_fs_root */
1382 return ret;
1383}
1384
1385static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1386 u64 root_id)
1387{
1388 struct btrfs_root *root;
1389
1390 spin_lock(&fs_info->fs_roots_radix_lock);
1391 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1392 (unsigned long)root_id);
1393 if (root)
1394 root = btrfs_grab_root(root);
1395 spin_unlock(&fs_info->fs_roots_radix_lock);
1396 return root;
1397}
1398
1399static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1400 u64 objectid)
1401{
1402 struct btrfs_key key = {
1403 .objectid = objectid,
1404 .type = BTRFS_ROOT_ITEM_KEY,
1405 .offset = 0,
1406 };
1407
1408 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1409 return btrfs_grab_root(fs_info->tree_root);
1410 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1411 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1412 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1413 return btrfs_grab_root(fs_info->chunk_root);
1414 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1415 return btrfs_grab_root(fs_info->dev_root);
1416 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1417 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1418 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1419 return btrfs_grab_root(fs_info->quota_root) ?
1420 fs_info->quota_root : ERR_PTR(-ENOENT);
1421 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1422 return btrfs_grab_root(fs_info->uuid_root) ?
1423 fs_info->uuid_root : ERR_PTR(-ENOENT);
1424 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1425 return btrfs_grab_root(fs_info->block_group_root) ?
1426 fs_info->block_group_root : ERR_PTR(-ENOENT);
1427 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1428 struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1429
1430 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1431 }
1432 return NULL;
1433}
1434
1435int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1436 struct btrfs_root *root)
1437{
1438 int ret;
1439
1440 ret = radix_tree_preload(GFP_NOFS);
1441 if (ret)
1442 return ret;
1443
1444 spin_lock(&fs_info->fs_roots_radix_lock);
1445 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1446 (unsigned long)root->root_key.objectid,
1447 root);
1448 if (ret == 0) {
1449 btrfs_grab_root(root);
1450 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1451 }
1452 spin_unlock(&fs_info->fs_roots_radix_lock);
1453 radix_tree_preload_end();
1454
1455 return ret;
1456}
1457
1458void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1459{
1460#ifdef CONFIG_BTRFS_DEBUG
1461 struct btrfs_root *root;
1462
1463 while (!list_empty(&fs_info->allocated_roots)) {
1464 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1465
1466 root = list_first_entry(&fs_info->allocated_roots,
1467 struct btrfs_root, leak_list);
1468 btrfs_err(fs_info, "leaked root %s refcount %d",
1469 btrfs_root_name(&root->root_key, buf),
1470 refcount_read(&root->refs));
1471 while (refcount_read(&root->refs) > 1)
1472 btrfs_put_root(root);
1473 btrfs_put_root(root);
1474 }
1475#endif
1476}
1477
1478static void free_global_roots(struct btrfs_fs_info *fs_info)
1479{
1480 struct btrfs_root *root;
1481 struct rb_node *node;
1482
1483 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1484 root = rb_entry(node, struct btrfs_root, rb_node);
1485 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1486 btrfs_put_root(root);
1487 }
1488}
1489
1490void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1491{
1492 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1493 percpu_counter_destroy(&fs_info->delalloc_bytes);
1494 percpu_counter_destroy(&fs_info->ordered_bytes);
1495 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1496 btrfs_free_csum_hash(fs_info);
1497 btrfs_free_stripe_hash_table(fs_info);
1498 btrfs_free_ref_cache(fs_info);
1499 kfree(fs_info->balance_ctl);
1500 kfree(fs_info->delayed_root);
1501 free_global_roots(fs_info);
1502 btrfs_put_root(fs_info->tree_root);
1503 btrfs_put_root(fs_info->chunk_root);
1504 btrfs_put_root(fs_info->dev_root);
1505 btrfs_put_root(fs_info->quota_root);
1506 btrfs_put_root(fs_info->uuid_root);
1507 btrfs_put_root(fs_info->fs_root);
1508 btrfs_put_root(fs_info->data_reloc_root);
1509 btrfs_put_root(fs_info->block_group_root);
1510 btrfs_check_leaked_roots(fs_info);
1511 btrfs_extent_buffer_leak_debug_check(fs_info);
1512 kfree(fs_info->super_copy);
1513 kfree(fs_info->super_for_commit);
1514 kfree(fs_info->subpage_info);
1515 kvfree(fs_info);
1516}
1517
1518
1519/*
1520 * Get an in-memory reference of a root structure.
1521 *
1522 * For essential trees like root/extent tree, we grab it from fs_info directly.
1523 * For subvolume trees, we check the cached filesystem roots first. If not
1524 * found, then read it from disk and add it to cached fs roots.
1525 *
1526 * Caller should release the root by calling btrfs_put_root() after the usage.
1527 *
1528 * NOTE: Reloc and log trees can't be read by this function as they share the
1529 * same root objectid.
1530 *
1531 * @objectid: root id
1532 * @anon_dev: preallocated anonymous block device number for new roots,
1533 * pass 0 for new allocation.
1534 * @check_ref: whether to check root item references, If true, return -ENOENT
1535 * for orphan roots
1536 */
1537static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1538 u64 objectid, dev_t anon_dev,
1539 bool check_ref)
1540{
1541 struct btrfs_root *root;
1542 struct btrfs_path *path;
1543 struct btrfs_key key;
1544 int ret;
1545
1546 root = btrfs_get_global_root(fs_info, objectid);
1547 if (root)
1548 return root;
1549again:
1550 root = btrfs_lookup_fs_root(fs_info, objectid);
1551 if (root) {
1552 /* Shouldn't get preallocated anon_dev for cached roots */
1553 ASSERT(!anon_dev);
1554 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1555 btrfs_put_root(root);
1556 return ERR_PTR(-ENOENT);
1557 }
1558 return root;
1559 }
1560
1561 key.objectid = objectid;
1562 key.type = BTRFS_ROOT_ITEM_KEY;
1563 key.offset = (u64)-1;
1564 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1565 if (IS_ERR(root))
1566 return root;
1567
1568 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1569 ret = -ENOENT;
1570 goto fail;
1571 }
1572
1573 ret = btrfs_init_fs_root(root, anon_dev);
1574 if (ret)
1575 goto fail;
1576
1577 path = btrfs_alloc_path();
1578 if (!path) {
1579 ret = -ENOMEM;
1580 goto fail;
1581 }
1582 key.objectid = BTRFS_ORPHAN_OBJECTID;
1583 key.type = BTRFS_ORPHAN_ITEM_KEY;
1584 key.offset = objectid;
1585
1586 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1587 btrfs_free_path(path);
1588 if (ret < 0)
1589 goto fail;
1590 if (ret == 0)
1591 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1592
1593 ret = btrfs_insert_fs_root(fs_info, root);
1594 if (ret) {
1595 if (ret == -EEXIST) {
1596 btrfs_put_root(root);
1597 goto again;
1598 }
1599 goto fail;
1600 }
1601 return root;
1602fail:
1603 /*
1604 * If our caller provided us an anonymous device, then it's his
1605 * responsibility to free it in case we fail. So we have to set our
1606 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1607 * and once again by our caller.
1608 */
1609 if (anon_dev)
1610 root->anon_dev = 0;
1611 btrfs_put_root(root);
1612 return ERR_PTR(ret);
1613}
1614
1615/*
1616 * Get in-memory reference of a root structure
1617 *
1618 * @objectid: tree objectid
1619 * @check_ref: if set, verify that the tree exists and the item has at least
1620 * one reference
1621 */
1622struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1623 u64 objectid, bool check_ref)
1624{
1625 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1626}
1627
1628/*
1629 * Get in-memory reference of a root structure, created as new, optionally pass
1630 * the anonymous block device id
1631 *
1632 * @objectid: tree objectid
1633 * @anon_dev: if zero, allocate a new anonymous block device or use the
1634 * parameter value
1635 */
1636struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1637 u64 objectid, dev_t anon_dev)
1638{
1639 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1640}
1641
1642/*
1643 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1644 * @fs_info: the fs_info
1645 * @objectid: the objectid we need to lookup
1646 *
1647 * This is exclusively used for backref walking, and exists specifically because
1648 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1649 * creation time, which means we may have to read the tree_root in order to look
1650 * up a fs root that is not in memory. If the root is not in memory we will
1651 * read the tree root commit root and look up the fs root from there. This is a
1652 * temporary root, it will not be inserted into the radix tree as it doesn't
1653 * have the most uptodate information, it'll simply be discarded once the
1654 * backref code is finished using the root.
1655 */
1656struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1657 struct btrfs_path *path,
1658 u64 objectid)
1659{
1660 struct btrfs_root *root;
1661 struct btrfs_key key;
1662
1663 ASSERT(path->search_commit_root && path->skip_locking);
1664
1665 /*
1666 * This can return -ENOENT if we ask for a root that doesn't exist, but
1667 * since this is called via the backref walking code we won't be looking
1668 * up a root that doesn't exist, unless there's corruption. So if root
1669 * != NULL just return it.
1670 */
1671 root = btrfs_get_global_root(fs_info, objectid);
1672 if (root)
1673 return root;
1674
1675 root = btrfs_lookup_fs_root(fs_info, objectid);
1676 if (root)
1677 return root;
1678
1679 key.objectid = objectid;
1680 key.type = BTRFS_ROOT_ITEM_KEY;
1681 key.offset = (u64)-1;
1682 root = read_tree_root_path(fs_info->tree_root, path, &key);
1683 btrfs_release_path(path);
1684
1685 return root;
1686}
1687
1688static int cleaner_kthread(void *arg)
1689{
1690 struct btrfs_fs_info *fs_info = arg;
1691 int again;
1692
1693 while (1) {
1694 again = 0;
1695
1696 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1697
1698 /* Make the cleaner go to sleep early. */
1699 if (btrfs_need_cleaner_sleep(fs_info))
1700 goto sleep;
1701
1702 /*
1703 * Do not do anything if we might cause open_ctree() to block
1704 * before we have finished mounting the filesystem.
1705 */
1706 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1707 goto sleep;
1708
1709 if (!mutex_trylock(&fs_info->cleaner_mutex))
1710 goto sleep;
1711
1712 /*
1713 * Avoid the problem that we change the status of the fs
1714 * during the above check and trylock.
1715 */
1716 if (btrfs_need_cleaner_sleep(fs_info)) {
1717 mutex_unlock(&fs_info->cleaner_mutex);
1718 goto sleep;
1719 }
1720
1721 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1722 btrfs_sysfs_feature_update(fs_info);
1723
1724 btrfs_run_delayed_iputs(fs_info);
1725
1726 again = btrfs_clean_one_deleted_snapshot(fs_info);
1727 mutex_unlock(&fs_info->cleaner_mutex);
1728
1729 /*
1730 * The defragger has dealt with the R/O remount and umount,
1731 * needn't do anything special here.
1732 */
1733 btrfs_run_defrag_inodes(fs_info);
1734
1735 /*
1736 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1737 * with relocation (btrfs_relocate_chunk) and relocation
1738 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1739 * after acquiring fs_info->reclaim_bgs_lock. So we
1740 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1741 * unused block groups.
1742 */
1743 btrfs_delete_unused_bgs(fs_info);
1744
1745 /*
1746 * Reclaim block groups in the reclaim_bgs list after we deleted
1747 * all unused block_groups. This possibly gives us some more free
1748 * space.
1749 */
1750 btrfs_reclaim_bgs(fs_info);
1751sleep:
1752 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1753 if (kthread_should_park())
1754 kthread_parkme();
1755 if (kthread_should_stop())
1756 return 0;
1757 if (!again) {
1758 set_current_state(TASK_INTERRUPTIBLE);
1759 schedule();
1760 __set_current_state(TASK_RUNNING);
1761 }
1762 }
1763}
1764
1765static int transaction_kthread(void *arg)
1766{
1767 struct btrfs_root *root = arg;
1768 struct btrfs_fs_info *fs_info = root->fs_info;
1769 struct btrfs_trans_handle *trans;
1770 struct btrfs_transaction *cur;
1771 u64 transid;
1772 time64_t delta;
1773 unsigned long delay;
1774 bool cannot_commit;
1775
1776 do {
1777 cannot_commit = false;
1778 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1779 mutex_lock(&fs_info->transaction_kthread_mutex);
1780
1781 spin_lock(&fs_info->trans_lock);
1782 cur = fs_info->running_transaction;
1783 if (!cur) {
1784 spin_unlock(&fs_info->trans_lock);
1785 goto sleep;
1786 }
1787
1788 delta = ktime_get_seconds() - cur->start_time;
1789 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1790 cur->state < TRANS_STATE_COMMIT_START &&
1791 delta < fs_info->commit_interval) {
1792 spin_unlock(&fs_info->trans_lock);
1793 delay -= msecs_to_jiffies((delta - 1) * 1000);
1794 delay = min(delay,
1795 msecs_to_jiffies(fs_info->commit_interval * 1000));
1796 goto sleep;
1797 }
1798 transid = cur->transid;
1799 spin_unlock(&fs_info->trans_lock);
1800
1801 /* If the file system is aborted, this will always fail. */
1802 trans = btrfs_attach_transaction(root);
1803 if (IS_ERR(trans)) {
1804 if (PTR_ERR(trans) != -ENOENT)
1805 cannot_commit = true;
1806 goto sleep;
1807 }
1808 if (transid == trans->transid) {
1809 btrfs_commit_transaction(trans);
1810 } else {
1811 btrfs_end_transaction(trans);
1812 }
1813sleep:
1814 wake_up_process(fs_info->cleaner_kthread);
1815 mutex_unlock(&fs_info->transaction_kthread_mutex);
1816
1817 if (BTRFS_FS_ERROR(fs_info))
1818 btrfs_cleanup_transaction(fs_info);
1819 if (!kthread_should_stop() &&
1820 (!btrfs_transaction_blocked(fs_info) ||
1821 cannot_commit))
1822 schedule_timeout_interruptible(delay);
1823 } while (!kthread_should_stop());
1824 return 0;
1825}
1826
1827/*
1828 * This will find the highest generation in the array of root backups. The
1829 * index of the highest array is returned, or -EINVAL if we can't find
1830 * anything.
1831 *
1832 * We check to make sure the array is valid by comparing the
1833 * generation of the latest root in the array with the generation
1834 * in the super block. If they don't match we pitch it.
1835 */
1836static int find_newest_super_backup(struct btrfs_fs_info *info)
1837{
1838 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1839 u64 cur;
1840 struct btrfs_root_backup *root_backup;
1841 int i;
1842
1843 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1844 root_backup = info->super_copy->super_roots + i;
1845 cur = btrfs_backup_tree_root_gen(root_backup);
1846 if (cur == newest_gen)
1847 return i;
1848 }
1849
1850 return -EINVAL;
1851}
1852
1853/*
1854 * copy all the root pointers into the super backup array.
1855 * this will bump the backup pointer by one when it is
1856 * done
1857 */
1858static void backup_super_roots(struct btrfs_fs_info *info)
1859{
1860 const int next_backup = info->backup_root_index;
1861 struct btrfs_root_backup *root_backup;
1862
1863 root_backup = info->super_for_commit->super_roots + next_backup;
1864
1865 /*
1866 * make sure all of our padding and empty slots get zero filled
1867 * regardless of which ones we use today
1868 */
1869 memset(root_backup, 0, sizeof(*root_backup));
1870
1871 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1872
1873 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1874 btrfs_set_backup_tree_root_gen(root_backup,
1875 btrfs_header_generation(info->tree_root->node));
1876
1877 btrfs_set_backup_tree_root_level(root_backup,
1878 btrfs_header_level(info->tree_root->node));
1879
1880 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1881 btrfs_set_backup_chunk_root_gen(root_backup,
1882 btrfs_header_generation(info->chunk_root->node));
1883 btrfs_set_backup_chunk_root_level(root_backup,
1884 btrfs_header_level(info->chunk_root->node));
1885
1886 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1887 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1888 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1889
1890 btrfs_set_backup_extent_root(root_backup,
1891 extent_root->node->start);
1892 btrfs_set_backup_extent_root_gen(root_backup,
1893 btrfs_header_generation(extent_root->node));
1894 btrfs_set_backup_extent_root_level(root_backup,
1895 btrfs_header_level(extent_root->node));
1896
1897 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1898 btrfs_set_backup_csum_root_gen(root_backup,
1899 btrfs_header_generation(csum_root->node));
1900 btrfs_set_backup_csum_root_level(root_backup,
1901 btrfs_header_level(csum_root->node));
1902 }
1903
1904 /*
1905 * we might commit during log recovery, which happens before we set
1906 * the fs_root. Make sure it is valid before we fill it in.
1907 */
1908 if (info->fs_root && info->fs_root->node) {
1909 btrfs_set_backup_fs_root(root_backup,
1910 info->fs_root->node->start);
1911 btrfs_set_backup_fs_root_gen(root_backup,
1912 btrfs_header_generation(info->fs_root->node));
1913 btrfs_set_backup_fs_root_level(root_backup,
1914 btrfs_header_level(info->fs_root->node));
1915 }
1916
1917 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1918 btrfs_set_backup_dev_root_gen(root_backup,
1919 btrfs_header_generation(info->dev_root->node));
1920 btrfs_set_backup_dev_root_level(root_backup,
1921 btrfs_header_level(info->dev_root->node));
1922
1923 btrfs_set_backup_total_bytes(root_backup,
1924 btrfs_super_total_bytes(info->super_copy));
1925 btrfs_set_backup_bytes_used(root_backup,
1926 btrfs_super_bytes_used(info->super_copy));
1927 btrfs_set_backup_num_devices(root_backup,
1928 btrfs_super_num_devices(info->super_copy));
1929
1930 /*
1931 * if we don't copy this out to the super_copy, it won't get remembered
1932 * for the next commit
1933 */
1934 memcpy(&info->super_copy->super_roots,
1935 &info->super_for_commit->super_roots,
1936 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1937}
1938
1939/*
1940 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1941 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1942 *
1943 * fs_info - filesystem whose backup roots need to be read
1944 * priority - priority of backup root required
1945 *
1946 * Returns backup root index on success and -EINVAL otherwise.
1947 */
1948static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1949{
1950 int backup_index = find_newest_super_backup(fs_info);
1951 struct btrfs_super_block *super = fs_info->super_copy;
1952 struct btrfs_root_backup *root_backup;
1953
1954 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1955 if (priority == 0)
1956 return backup_index;
1957
1958 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1959 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1960 } else {
1961 return -EINVAL;
1962 }
1963
1964 root_backup = super->super_roots + backup_index;
1965
1966 btrfs_set_super_generation(super,
1967 btrfs_backup_tree_root_gen(root_backup));
1968 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1969 btrfs_set_super_root_level(super,
1970 btrfs_backup_tree_root_level(root_backup));
1971 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1972
1973 /*
1974 * Fixme: the total bytes and num_devices need to match or we should
1975 * need a fsck
1976 */
1977 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1978 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1979
1980 return backup_index;
1981}
1982
1983/* helper to cleanup workers */
1984static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1985{
1986 btrfs_destroy_workqueue(fs_info->fixup_workers);
1987 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1988 btrfs_destroy_workqueue(fs_info->hipri_workers);
1989 btrfs_destroy_workqueue(fs_info->workers);
1990 if (fs_info->endio_workers)
1991 destroy_workqueue(fs_info->endio_workers);
1992 if (fs_info->rmw_workers)
1993 destroy_workqueue(fs_info->rmw_workers);
1994 if (fs_info->compressed_write_workers)
1995 destroy_workqueue(fs_info->compressed_write_workers);
1996 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1997 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1998 btrfs_destroy_workqueue(fs_info->delayed_workers);
1999 btrfs_destroy_workqueue(fs_info->caching_workers);
2000 btrfs_destroy_workqueue(fs_info->flush_workers);
2001 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2002 if (fs_info->discard_ctl.discard_workers)
2003 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2004 /*
2005 * Now that all other work queues are destroyed, we can safely destroy
2006 * the queues used for metadata I/O, since tasks from those other work
2007 * queues can do metadata I/O operations.
2008 */
2009 if (fs_info->endio_meta_workers)
2010 destroy_workqueue(fs_info->endio_meta_workers);
2011}
2012
2013static void free_root_extent_buffers(struct btrfs_root *root)
2014{
2015 if (root) {
2016 free_extent_buffer(root->node);
2017 free_extent_buffer(root->commit_root);
2018 root->node = NULL;
2019 root->commit_root = NULL;
2020 }
2021}
2022
2023static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2024{
2025 struct btrfs_root *root, *tmp;
2026
2027 rbtree_postorder_for_each_entry_safe(root, tmp,
2028 &fs_info->global_root_tree,
2029 rb_node)
2030 free_root_extent_buffers(root);
2031}
2032
2033/* helper to cleanup tree roots */
2034static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2035{
2036 free_root_extent_buffers(info->tree_root);
2037
2038 free_global_root_pointers(info);
2039 free_root_extent_buffers(info->dev_root);
2040 free_root_extent_buffers(info->quota_root);
2041 free_root_extent_buffers(info->uuid_root);
2042 free_root_extent_buffers(info->fs_root);
2043 free_root_extent_buffers(info->data_reloc_root);
2044 free_root_extent_buffers(info->block_group_root);
2045 if (free_chunk_root)
2046 free_root_extent_buffers(info->chunk_root);
2047}
2048
2049void btrfs_put_root(struct btrfs_root *root)
2050{
2051 if (!root)
2052 return;
2053
2054 if (refcount_dec_and_test(&root->refs)) {
2055 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2056 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2057 if (root->anon_dev)
2058 free_anon_bdev(root->anon_dev);
2059 free_root_extent_buffers(root);
2060#ifdef CONFIG_BTRFS_DEBUG
2061 spin_lock(&root->fs_info->fs_roots_radix_lock);
2062 list_del_init(&root->leak_list);
2063 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2064#endif
2065 kfree(root);
2066 }
2067}
2068
2069void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2070{
2071 int ret;
2072 struct btrfs_root *gang[8];
2073 int i;
2074
2075 while (!list_empty(&fs_info->dead_roots)) {
2076 gang[0] = list_entry(fs_info->dead_roots.next,
2077 struct btrfs_root, root_list);
2078 list_del(&gang[0]->root_list);
2079
2080 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2081 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2082 btrfs_put_root(gang[0]);
2083 }
2084
2085 while (1) {
2086 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2087 (void **)gang, 0,
2088 ARRAY_SIZE(gang));
2089 if (!ret)
2090 break;
2091 for (i = 0; i < ret; i++)
2092 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2093 }
2094}
2095
2096static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2097{
2098 mutex_init(&fs_info->scrub_lock);
2099 atomic_set(&fs_info->scrubs_running, 0);
2100 atomic_set(&fs_info->scrub_pause_req, 0);
2101 atomic_set(&fs_info->scrubs_paused, 0);
2102 atomic_set(&fs_info->scrub_cancel_req, 0);
2103 init_waitqueue_head(&fs_info->scrub_pause_wait);
2104 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2105}
2106
2107static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2108{
2109 spin_lock_init(&fs_info->balance_lock);
2110 mutex_init(&fs_info->balance_mutex);
2111 atomic_set(&fs_info->balance_pause_req, 0);
2112 atomic_set(&fs_info->balance_cancel_req, 0);
2113 fs_info->balance_ctl = NULL;
2114 init_waitqueue_head(&fs_info->balance_wait_q);
2115 atomic_set(&fs_info->reloc_cancel_req, 0);
2116}
2117
2118static int btrfs_init_btree_inode(struct super_block *sb)
2119{
2120 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2121 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2122 fs_info->tree_root);
2123 struct inode *inode;
2124
2125 inode = new_inode(sb);
2126 if (!inode)
2127 return -ENOMEM;
2128
2129 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2130 set_nlink(inode, 1);
2131 /*
2132 * we set the i_size on the btree inode to the max possible int.
2133 * the real end of the address space is determined by all of
2134 * the devices in the system
2135 */
2136 inode->i_size = OFFSET_MAX;
2137 inode->i_mapping->a_ops = &btree_aops;
2138 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
2139
2140 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2141 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2142 IO_TREE_BTREE_INODE_IO);
2143 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2144
2145 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2146 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2147 BTRFS_I(inode)->location.type = 0;
2148 BTRFS_I(inode)->location.offset = 0;
2149 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2150 __insert_inode_hash(inode, hash);
2151 fs_info->btree_inode = inode;
2152
2153 return 0;
2154}
2155
2156static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2157{
2158 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2159 init_rwsem(&fs_info->dev_replace.rwsem);
2160 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2161}
2162
2163static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2164{
2165 spin_lock_init(&fs_info->qgroup_lock);
2166 mutex_init(&fs_info->qgroup_ioctl_lock);
2167 fs_info->qgroup_tree = RB_ROOT;
2168 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2169 fs_info->qgroup_seq = 1;
2170 fs_info->qgroup_ulist = NULL;
2171 fs_info->qgroup_rescan_running = false;
2172 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
2173 mutex_init(&fs_info->qgroup_rescan_lock);
2174}
2175
2176static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2177{
2178 u32 max_active = fs_info->thread_pool_size;
2179 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2180
2181 fs_info->workers =
2182 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2183 fs_info->hipri_workers =
2184 btrfs_alloc_workqueue(fs_info, "worker-high",
2185 flags | WQ_HIGHPRI, max_active, 16);
2186
2187 fs_info->delalloc_workers =
2188 btrfs_alloc_workqueue(fs_info, "delalloc",
2189 flags, max_active, 2);
2190
2191 fs_info->flush_workers =
2192 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2193 flags, max_active, 0);
2194
2195 fs_info->caching_workers =
2196 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2197
2198 fs_info->fixup_workers =
2199 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2200
2201 fs_info->endio_workers =
2202 alloc_workqueue("btrfs-endio", flags, max_active);
2203 fs_info->endio_meta_workers =
2204 alloc_workqueue("btrfs-endio-meta", flags, max_active);
2205 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2206 fs_info->endio_write_workers =
2207 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2208 max_active, 2);
2209 fs_info->compressed_write_workers =
2210 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2211 fs_info->endio_freespace_worker =
2212 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2213 max_active, 0);
2214 fs_info->delayed_workers =
2215 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2216 max_active, 0);
2217 fs_info->qgroup_rescan_workers =
2218 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2219 fs_info->discard_ctl.discard_workers =
2220 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2221
2222 if (!(fs_info->workers && fs_info->hipri_workers &&
2223 fs_info->delalloc_workers && fs_info->flush_workers &&
2224 fs_info->endio_workers && fs_info->endio_meta_workers &&
2225 fs_info->compressed_write_workers &&
2226 fs_info->endio_write_workers &&
2227 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2228 fs_info->caching_workers && fs_info->fixup_workers &&
2229 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2230 fs_info->discard_ctl.discard_workers)) {
2231 return -ENOMEM;
2232 }
2233
2234 return 0;
2235}
2236
2237static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2238{
2239 struct crypto_shash *csum_shash;
2240 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2241
2242 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2243
2244 if (IS_ERR(csum_shash)) {
2245 btrfs_err(fs_info, "error allocating %s hash for checksum",
2246 csum_driver);
2247 return PTR_ERR(csum_shash);
2248 }
2249
2250 fs_info->csum_shash = csum_shash;
2251
2252 /*
2253 * Check if the checksum implementation is a fast accelerated one.
2254 * As-is this is a bit of a hack and should be replaced once the csum
2255 * implementations provide that information themselves.
2256 */
2257 switch (csum_type) {
2258 case BTRFS_CSUM_TYPE_CRC32:
2259 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2260 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2261 break;
2262 default:
2263 break;
2264 }
2265
2266 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2267 btrfs_super_csum_name(csum_type),
2268 crypto_shash_driver_name(csum_shash));
2269 return 0;
2270}
2271
2272static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2273 struct btrfs_fs_devices *fs_devices)
2274{
2275 int ret;
2276 struct btrfs_tree_parent_check check = { 0 };
2277 struct btrfs_root *log_tree_root;
2278 struct btrfs_super_block *disk_super = fs_info->super_copy;
2279 u64 bytenr = btrfs_super_log_root(disk_super);
2280 int level = btrfs_super_log_root_level(disk_super);
2281
2282 if (fs_devices->rw_devices == 0) {
2283 btrfs_warn(fs_info, "log replay required on RO media");
2284 return -EIO;
2285 }
2286
2287 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2288 GFP_KERNEL);
2289 if (!log_tree_root)
2290 return -ENOMEM;
2291
2292 check.level = level;
2293 check.transid = fs_info->generation + 1;
2294 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2295 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2296 if (IS_ERR(log_tree_root->node)) {
2297 btrfs_warn(fs_info, "failed to read log tree");
2298 ret = PTR_ERR(log_tree_root->node);
2299 log_tree_root->node = NULL;
2300 btrfs_put_root(log_tree_root);
2301 return ret;
2302 }
2303 if (!extent_buffer_uptodate(log_tree_root->node)) {
2304 btrfs_err(fs_info, "failed to read log tree");
2305 btrfs_put_root(log_tree_root);
2306 return -EIO;
2307 }
2308
2309 /* returns with log_tree_root freed on success */
2310 ret = btrfs_recover_log_trees(log_tree_root);
2311 if (ret) {
2312 btrfs_handle_fs_error(fs_info, ret,
2313 "Failed to recover log tree");
2314 btrfs_put_root(log_tree_root);
2315 return ret;
2316 }
2317
2318 if (sb_rdonly(fs_info->sb)) {
2319 ret = btrfs_commit_super(fs_info);
2320 if (ret)
2321 return ret;
2322 }
2323
2324 return 0;
2325}
2326
2327static int load_global_roots_objectid(struct btrfs_root *tree_root,
2328 struct btrfs_path *path, u64 objectid,
2329 const char *name)
2330{
2331 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2332 struct btrfs_root *root;
2333 u64 max_global_id = 0;
2334 int ret;
2335 struct btrfs_key key = {
2336 .objectid = objectid,
2337 .type = BTRFS_ROOT_ITEM_KEY,
2338 .offset = 0,
2339 };
2340 bool found = false;
2341
2342 /* If we have IGNOREDATACSUMS skip loading these roots. */
2343 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2344 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2345 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2346 return 0;
2347 }
2348
2349 while (1) {
2350 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2351 if (ret < 0)
2352 break;
2353
2354 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2355 ret = btrfs_next_leaf(tree_root, path);
2356 if (ret) {
2357 if (ret > 0)
2358 ret = 0;
2359 break;
2360 }
2361 }
2362 ret = 0;
2363
2364 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2365 if (key.objectid != objectid)
2366 break;
2367 btrfs_release_path(path);
2368
2369 /*
2370 * Just worry about this for extent tree, it'll be the same for
2371 * everybody.
2372 */
2373 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2374 max_global_id = max(max_global_id, key.offset);
2375
2376 found = true;
2377 root = read_tree_root_path(tree_root, path, &key);
2378 if (IS_ERR(root)) {
2379 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2380 ret = PTR_ERR(root);
2381 break;
2382 }
2383 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2384 ret = btrfs_global_root_insert(root);
2385 if (ret) {
2386 btrfs_put_root(root);
2387 break;
2388 }
2389 key.offset++;
2390 }
2391 btrfs_release_path(path);
2392
2393 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2394 fs_info->nr_global_roots = max_global_id + 1;
2395
2396 if (!found || ret) {
2397 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2398 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2399
2400 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2401 ret = ret ? ret : -ENOENT;
2402 else
2403 ret = 0;
2404 btrfs_err(fs_info, "failed to load root %s", name);
2405 }
2406 return ret;
2407}
2408
2409static int load_global_roots(struct btrfs_root *tree_root)
2410{
2411 struct btrfs_path *path;
2412 int ret = 0;
2413
2414 path = btrfs_alloc_path();
2415 if (!path)
2416 return -ENOMEM;
2417
2418 ret = load_global_roots_objectid(tree_root, path,
2419 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2420 if (ret)
2421 goto out;
2422 ret = load_global_roots_objectid(tree_root, path,
2423 BTRFS_CSUM_TREE_OBJECTID, "csum");
2424 if (ret)
2425 goto out;
2426 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2427 goto out;
2428 ret = load_global_roots_objectid(tree_root, path,
2429 BTRFS_FREE_SPACE_TREE_OBJECTID,
2430 "free space");
2431out:
2432 btrfs_free_path(path);
2433 return ret;
2434}
2435
2436static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2437{
2438 struct btrfs_root *tree_root = fs_info->tree_root;
2439 struct btrfs_root *root;
2440 struct btrfs_key location;
2441 int ret;
2442
2443 BUG_ON(!fs_info->tree_root);
2444
2445 ret = load_global_roots(tree_root);
2446 if (ret)
2447 return ret;
2448
2449 location.type = BTRFS_ROOT_ITEM_KEY;
2450 location.offset = 0;
2451
2452 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2453 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2454 root = btrfs_read_tree_root(tree_root, &location);
2455 if (IS_ERR(root)) {
2456 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2457 ret = PTR_ERR(root);
2458 goto out;
2459 }
2460 } else {
2461 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2462 fs_info->block_group_root = root;
2463 }
2464 }
2465
2466 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2467 root = btrfs_read_tree_root(tree_root, &location);
2468 if (IS_ERR(root)) {
2469 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2470 ret = PTR_ERR(root);
2471 goto out;
2472 }
2473 } else {
2474 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2475 fs_info->dev_root = root;
2476 }
2477 /* Initialize fs_info for all devices in any case */
2478 ret = btrfs_init_devices_late(fs_info);
2479 if (ret)
2480 goto out;
2481
2482 /*
2483 * This tree can share blocks with some other fs tree during relocation
2484 * and we need a proper setup by btrfs_get_fs_root
2485 */
2486 root = btrfs_get_fs_root(tree_root->fs_info,
2487 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2488 if (IS_ERR(root)) {
2489 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2490 ret = PTR_ERR(root);
2491 goto out;
2492 }
2493 } else {
2494 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2495 fs_info->data_reloc_root = root;
2496 }
2497
2498 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2499 root = btrfs_read_tree_root(tree_root, &location);
2500 if (!IS_ERR(root)) {
2501 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2502 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2503 fs_info->quota_root = root;
2504 }
2505
2506 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2507 root = btrfs_read_tree_root(tree_root, &location);
2508 if (IS_ERR(root)) {
2509 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2510 ret = PTR_ERR(root);
2511 if (ret != -ENOENT)
2512 goto out;
2513 }
2514 } else {
2515 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2516 fs_info->uuid_root = root;
2517 }
2518
2519 return 0;
2520out:
2521 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2522 location.objectid, ret);
2523 return ret;
2524}
2525
2526/*
2527 * Real super block validation
2528 * NOTE: super csum type and incompat features will not be checked here.
2529 *
2530 * @sb: super block to check
2531 * @mirror_num: the super block number to check its bytenr:
2532 * 0 the primary (1st) sb
2533 * 1, 2 2nd and 3rd backup copy
2534 * -1 skip bytenr check
2535 */
2536int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2537 struct btrfs_super_block *sb, int mirror_num)
2538{
2539 u64 nodesize = btrfs_super_nodesize(sb);
2540 u64 sectorsize = btrfs_super_sectorsize(sb);
2541 int ret = 0;
2542
2543 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2544 btrfs_err(fs_info, "no valid FS found");
2545 ret = -EINVAL;
2546 }
2547 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2548 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2549 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2550 ret = -EINVAL;
2551 }
2552 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2553 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2554 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2555 ret = -EINVAL;
2556 }
2557 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2558 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2559 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2560 ret = -EINVAL;
2561 }
2562 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2563 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2564 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2565 ret = -EINVAL;
2566 }
2567
2568 /*
2569 * Check sectorsize and nodesize first, other check will need it.
2570 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2571 */
2572 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2573 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2574 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2575 ret = -EINVAL;
2576 }
2577
2578 /*
2579 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2580 *
2581 * We can support 16K sectorsize with 64K page size without problem,
2582 * but such sectorsize/pagesize combination doesn't make much sense.
2583 * 4K will be our future standard, PAGE_SIZE is supported from the very
2584 * beginning.
2585 */
2586 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2587 btrfs_err(fs_info,
2588 "sectorsize %llu not yet supported for page size %lu",
2589 sectorsize, PAGE_SIZE);
2590 ret = -EINVAL;
2591 }
2592
2593 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2594 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2595 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2596 ret = -EINVAL;
2597 }
2598 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2599 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2600 le32_to_cpu(sb->__unused_leafsize), nodesize);
2601 ret = -EINVAL;
2602 }
2603
2604 /* Root alignment check */
2605 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2606 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2607 btrfs_super_root(sb));
2608 ret = -EINVAL;
2609 }
2610 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2611 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2612 btrfs_super_chunk_root(sb));
2613 ret = -EINVAL;
2614 }
2615 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2616 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2617 btrfs_super_log_root(sb));
2618 ret = -EINVAL;
2619 }
2620
2621 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2622 BTRFS_FSID_SIZE)) {
2623 btrfs_err(fs_info,
2624 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2625 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2626 ret = -EINVAL;
2627 }
2628
2629 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2630 memcmp(fs_info->fs_devices->metadata_uuid,
2631 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2632 btrfs_err(fs_info,
2633"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2634 fs_info->super_copy->metadata_uuid,
2635 fs_info->fs_devices->metadata_uuid);
2636 ret = -EINVAL;
2637 }
2638
2639 /*
2640 * Artificial requirement for block-group-tree to force newer features
2641 * (free-space-tree, no-holes) so the test matrix is smaller.
2642 */
2643 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2644 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2645 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2646 btrfs_err(fs_info,
2647 "block-group-tree feature requires fres-space-tree and no-holes");
2648 ret = -EINVAL;
2649 }
2650
2651 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2652 BTRFS_FSID_SIZE) != 0) {
2653 btrfs_err(fs_info,
2654 "dev_item UUID does not match metadata fsid: %pU != %pU",
2655 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2656 ret = -EINVAL;
2657 }
2658
2659 /*
2660 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2661 * done later
2662 */
2663 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2664 btrfs_err(fs_info, "bytes_used is too small %llu",
2665 btrfs_super_bytes_used(sb));
2666 ret = -EINVAL;
2667 }
2668 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2669 btrfs_err(fs_info, "invalid stripesize %u",
2670 btrfs_super_stripesize(sb));
2671 ret = -EINVAL;
2672 }
2673 if (btrfs_super_num_devices(sb) > (1UL << 31))
2674 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2675 btrfs_super_num_devices(sb));
2676 if (btrfs_super_num_devices(sb) == 0) {
2677 btrfs_err(fs_info, "number of devices is 0");
2678 ret = -EINVAL;
2679 }
2680
2681 if (mirror_num >= 0 &&
2682 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2683 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2684 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2685 ret = -EINVAL;
2686 }
2687
2688 /*
2689 * Obvious sys_chunk_array corruptions, it must hold at least one key
2690 * and one chunk
2691 */
2692 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2693 btrfs_err(fs_info, "system chunk array too big %u > %u",
2694 btrfs_super_sys_array_size(sb),
2695 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2696 ret = -EINVAL;
2697 }
2698 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2699 + sizeof(struct btrfs_chunk)) {
2700 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2701 btrfs_super_sys_array_size(sb),
2702 sizeof(struct btrfs_disk_key)
2703 + sizeof(struct btrfs_chunk));
2704 ret = -EINVAL;
2705 }
2706
2707 /*
2708 * The generation is a global counter, we'll trust it more than the others
2709 * but it's still possible that it's the one that's wrong.
2710 */
2711 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2712 btrfs_warn(fs_info,
2713 "suspicious: generation < chunk_root_generation: %llu < %llu",
2714 btrfs_super_generation(sb),
2715 btrfs_super_chunk_root_generation(sb));
2716 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2717 && btrfs_super_cache_generation(sb) != (u64)-1)
2718 btrfs_warn(fs_info,
2719 "suspicious: generation < cache_generation: %llu < %llu",
2720 btrfs_super_generation(sb),
2721 btrfs_super_cache_generation(sb));
2722
2723 return ret;
2724}
2725
2726/*
2727 * Validation of super block at mount time.
2728 * Some checks already done early at mount time, like csum type and incompat
2729 * flags will be skipped.
2730 */
2731static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2732{
2733 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2734}
2735
2736/*
2737 * Validation of super block at write time.
2738 * Some checks like bytenr check will be skipped as their values will be
2739 * overwritten soon.
2740 * Extra checks like csum type and incompat flags will be done here.
2741 */
2742static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2743 struct btrfs_super_block *sb)
2744{
2745 int ret;
2746
2747 ret = btrfs_validate_super(fs_info, sb, -1);
2748 if (ret < 0)
2749 goto out;
2750 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2751 ret = -EUCLEAN;
2752 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2753 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2754 goto out;
2755 }
2756 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2757 ret = -EUCLEAN;
2758 btrfs_err(fs_info,
2759 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2760 btrfs_super_incompat_flags(sb),
2761 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2762 goto out;
2763 }
2764out:
2765 if (ret < 0)
2766 btrfs_err(fs_info,
2767 "super block corruption detected before writing it to disk");
2768 return ret;
2769}
2770
2771static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2772{
2773 struct btrfs_tree_parent_check check = {
2774 .level = level,
2775 .transid = gen,
2776 .owner_root = root->root_key.objectid
2777 };
2778 int ret = 0;
2779
2780 root->node = read_tree_block(root->fs_info, bytenr, &check);
2781 if (IS_ERR(root->node)) {
2782 ret = PTR_ERR(root->node);
2783 root->node = NULL;
2784 return ret;
2785 }
2786 if (!extent_buffer_uptodate(root->node)) {
2787 free_extent_buffer(root->node);
2788 root->node = NULL;
2789 return -EIO;
2790 }
2791
2792 btrfs_set_root_node(&root->root_item, root->node);
2793 root->commit_root = btrfs_root_node(root);
2794 btrfs_set_root_refs(&root->root_item, 1);
2795 return ret;
2796}
2797
2798static int load_important_roots(struct btrfs_fs_info *fs_info)
2799{
2800 struct btrfs_super_block *sb = fs_info->super_copy;
2801 u64 gen, bytenr;
2802 int level, ret;
2803
2804 bytenr = btrfs_super_root(sb);
2805 gen = btrfs_super_generation(sb);
2806 level = btrfs_super_root_level(sb);
2807 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2808 if (ret) {
2809 btrfs_warn(fs_info, "couldn't read tree root");
2810 return ret;
2811 }
2812 return 0;
2813}
2814
2815static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2816{
2817 int backup_index = find_newest_super_backup(fs_info);
2818 struct btrfs_super_block *sb = fs_info->super_copy;
2819 struct btrfs_root *tree_root = fs_info->tree_root;
2820 bool handle_error = false;
2821 int ret = 0;
2822 int i;
2823
2824 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2825 if (handle_error) {
2826 if (!IS_ERR(tree_root->node))
2827 free_extent_buffer(tree_root->node);
2828 tree_root->node = NULL;
2829
2830 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2831 break;
2832
2833 free_root_pointers(fs_info, 0);
2834
2835 /*
2836 * Don't use the log in recovery mode, it won't be
2837 * valid
2838 */
2839 btrfs_set_super_log_root(sb, 0);
2840
2841 /* We can't trust the free space cache either */
2842 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2843
2844 ret = read_backup_root(fs_info, i);
2845 backup_index = ret;
2846 if (ret < 0)
2847 return ret;
2848 }
2849
2850 ret = load_important_roots(fs_info);
2851 if (ret) {
2852 handle_error = true;
2853 continue;
2854 }
2855
2856 /*
2857 * No need to hold btrfs_root::objectid_mutex since the fs
2858 * hasn't been fully initialised and we are the only user
2859 */
2860 ret = btrfs_init_root_free_objectid(tree_root);
2861 if (ret < 0) {
2862 handle_error = true;
2863 continue;
2864 }
2865
2866 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2867
2868 ret = btrfs_read_roots(fs_info);
2869 if (ret < 0) {
2870 handle_error = true;
2871 continue;
2872 }
2873
2874 /* All successful */
2875 fs_info->generation = btrfs_header_generation(tree_root->node);
2876 fs_info->last_trans_committed = fs_info->generation;
2877 fs_info->last_reloc_trans = 0;
2878
2879 /* Always begin writing backup roots after the one being used */
2880 if (backup_index < 0) {
2881 fs_info->backup_root_index = 0;
2882 } else {
2883 fs_info->backup_root_index = backup_index + 1;
2884 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2885 }
2886 break;
2887 }
2888
2889 return ret;
2890}
2891
2892void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2893{
2894 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2895 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2896 INIT_LIST_HEAD(&fs_info->trans_list);
2897 INIT_LIST_HEAD(&fs_info->dead_roots);
2898 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2899 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2900 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2901 spin_lock_init(&fs_info->delalloc_root_lock);
2902 spin_lock_init(&fs_info->trans_lock);
2903 spin_lock_init(&fs_info->fs_roots_radix_lock);
2904 spin_lock_init(&fs_info->delayed_iput_lock);
2905 spin_lock_init(&fs_info->defrag_inodes_lock);
2906 spin_lock_init(&fs_info->super_lock);
2907 spin_lock_init(&fs_info->buffer_lock);
2908 spin_lock_init(&fs_info->unused_bgs_lock);
2909 spin_lock_init(&fs_info->treelog_bg_lock);
2910 spin_lock_init(&fs_info->zone_active_bgs_lock);
2911 spin_lock_init(&fs_info->relocation_bg_lock);
2912 rwlock_init(&fs_info->tree_mod_log_lock);
2913 rwlock_init(&fs_info->global_root_lock);
2914 mutex_init(&fs_info->unused_bg_unpin_mutex);
2915 mutex_init(&fs_info->reclaim_bgs_lock);
2916 mutex_init(&fs_info->reloc_mutex);
2917 mutex_init(&fs_info->delalloc_root_mutex);
2918 mutex_init(&fs_info->zoned_meta_io_lock);
2919 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2920 seqlock_init(&fs_info->profiles_lock);
2921
2922 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2923 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2924 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2925 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2926 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2927 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2928 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2929 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2930 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2931 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2932 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2933 BTRFS_LOCKDEP_TRANS_COMPLETED);
2934
2935 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2936 INIT_LIST_HEAD(&fs_info->space_info);
2937 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2938 INIT_LIST_HEAD(&fs_info->unused_bgs);
2939 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2940 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2941#ifdef CONFIG_BTRFS_DEBUG
2942 INIT_LIST_HEAD(&fs_info->allocated_roots);
2943 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2944 spin_lock_init(&fs_info->eb_leak_lock);
2945#endif
2946 extent_map_tree_init(&fs_info->mapping_tree);
2947 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2948 BTRFS_BLOCK_RSV_GLOBAL);
2949 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2950 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2951 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2952 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2953 BTRFS_BLOCK_RSV_DELOPS);
2954 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2955 BTRFS_BLOCK_RSV_DELREFS);
2956
2957 atomic_set(&fs_info->async_delalloc_pages, 0);
2958 atomic_set(&fs_info->defrag_running, 0);
2959 atomic_set(&fs_info->nr_delayed_iputs, 0);
2960 atomic64_set(&fs_info->tree_mod_seq, 0);
2961 fs_info->global_root_tree = RB_ROOT;
2962 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2963 fs_info->metadata_ratio = 0;
2964 fs_info->defrag_inodes = RB_ROOT;
2965 atomic64_set(&fs_info->free_chunk_space, 0);
2966 fs_info->tree_mod_log = RB_ROOT;
2967 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2968 btrfs_init_ref_verify(fs_info);
2969
2970 fs_info->thread_pool_size = min_t(unsigned long,
2971 num_online_cpus() + 2, 8);
2972
2973 INIT_LIST_HEAD(&fs_info->ordered_roots);
2974 spin_lock_init(&fs_info->ordered_root_lock);
2975
2976 btrfs_init_scrub(fs_info);
2977#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2978 fs_info->check_integrity_print_mask = 0;
2979#endif
2980 btrfs_init_balance(fs_info);
2981 btrfs_init_async_reclaim_work(fs_info);
2982
2983 rwlock_init(&fs_info->block_group_cache_lock);
2984 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2985
2986 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2987 IO_TREE_FS_EXCLUDED_EXTENTS);
2988
2989 mutex_init(&fs_info->ordered_operations_mutex);
2990 mutex_init(&fs_info->tree_log_mutex);
2991 mutex_init(&fs_info->chunk_mutex);
2992 mutex_init(&fs_info->transaction_kthread_mutex);
2993 mutex_init(&fs_info->cleaner_mutex);
2994 mutex_init(&fs_info->ro_block_group_mutex);
2995 init_rwsem(&fs_info->commit_root_sem);
2996 init_rwsem(&fs_info->cleanup_work_sem);
2997 init_rwsem(&fs_info->subvol_sem);
2998 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2999
3000 btrfs_init_dev_replace_locks(fs_info);
3001 btrfs_init_qgroup(fs_info);
3002 btrfs_discard_init(fs_info);
3003
3004 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3005 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3006
3007 init_waitqueue_head(&fs_info->transaction_throttle);
3008 init_waitqueue_head(&fs_info->transaction_wait);
3009 init_waitqueue_head(&fs_info->transaction_blocked_wait);
3010 init_waitqueue_head(&fs_info->async_submit_wait);
3011 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3012
3013 /* Usable values until the real ones are cached from the superblock */
3014 fs_info->nodesize = 4096;
3015 fs_info->sectorsize = 4096;
3016 fs_info->sectorsize_bits = ilog2(4096);
3017 fs_info->stripesize = 4096;
3018
3019 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3020
3021 spin_lock_init(&fs_info->swapfile_pins_lock);
3022 fs_info->swapfile_pins = RB_ROOT;
3023
3024 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3025 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3026}
3027
3028static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3029{
3030 int ret;
3031
3032 fs_info->sb = sb;
3033 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3034 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3035
3036 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3037 if (ret)
3038 return ret;
3039
3040 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3041 if (ret)
3042 return ret;
3043
3044 fs_info->dirty_metadata_batch = PAGE_SIZE *
3045 (1 + ilog2(nr_cpu_ids));
3046
3047 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3048 if (ret)
3049 return ret;
3050
3051 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3052 GFP_KERNEL);
3053 if (ret)
3054 return ret;
3055
3056 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3057 GFP_KERNEL);
3058 if (!fs_info->delayed_root)
3059 return -ENOMEM;
3060 btrfs_init_delayed_root(fs_info->delayed_root);
3061
3062 if (sb_rdonly(sb))
3063 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3064
3065 return btrfs_alloc_stripe_hash_table(fs_info);
3066}
3067
3068static int btrfs_uuid_rescan_kthread(void *data)
3069{
3070 struct btrfs_fs_info *fs_info = data;
3071 int ret;
3072
3073 /*
3074 * 1st step is to iterate through the existing UUID tree and
3075 * to delete all entries that contain outdated data.
3076 * 2nd step is to add all missing entries to the UUID tree.
3077 */
3078 ret = btrfs_uuid_tree_iterate(fs_info);
3079 if (ret < 0) {
3080 if (ret != -EINTR)
3081 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3082 ret);
3083 up(&fs_info->uuid_tree_rescan_sem);
3084 return ret;
3085 }
3086 return btrfs_uuid_scan_kthread(data);
3087}
3088
3089static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3090{
3091 struct task_struct *task;
3092
3093 down(&fs_info->uuid_tree_rescan_sem);
3094 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3095 if (IS_ERR(task)) {
3096 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3097 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3098 up(&fs_info->uuid_tree_rescan_sem);
3099 return PTR_ERR(task);
3100 }
3101
3102 return 0;
3103}
3104
3105/*
3106 * Some options only have meaning at mount time and shouldn't persist across
3107 * remounts, or be displayed. Clear these at the end of mount and remount
3108 * code paths.
3109 */
3110void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3111{
3112 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3113 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3114}
3115
3116/*
3117 * Mounting logic specific to read-write file systems. Shared by open_ctree
3118 * and btrfs_remount when remounting from read-only to read-write.
3119 */
3120int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3121{
3122 int ret;
3123 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3124 bool rebuild_free_space_tree = false;
3125
3126 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3127 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3128 rebuild_free_space_tree = true;
3129 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3130 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3131 btrfs_warn(fs_info, "free space tree is invalid");
3132 rebuild_free_space_tree = true;
3133 }
3134
3135 if (rebuild_free_space_tree) {
3136 btrfs_info(fs_info, "rebuilding free space tree");
3137 ret = btrfs_rebuild_free_space_tree(fs_info);
3138 if (ret) {
3139 btrfs_warn(fs_info,
3140 "failed to rebuild free space tree: %d", ret);
3141 goto out;
3142 }
3143 }
3144
3145 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3146 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3147 btrfs_info(fs_info, "disabling free space tree");
3148 ret = btrfs_delete_free_space_tree(fs_info);
3149 if (ret) {
3150 btrfs_warn(fs_info,
3151 "failed to disable free space tree: %d", ret);
3152 goto out;
3153 }
3154 }
3155
3156 /*
3157 * btrfs_find_orphan_roots() is responsible for finding all the dead
3158 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3159 * them into the fs_info->fs_roots_radix tree. This must be done before
3160 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3161 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3162 * item before the root's tree is deleted - this means that if we unmount
3163 * or crash before the deletion completes, on the next mount we will not
3164 * delete what remains of the tree because the orphan item does not
3165 * exists anymore, which is what tells us we have a pending deletion.
3166 */
3167 ret = btrfs_find_orphan_roots(fs_info);
3168 if (ret)
3169 goto out;
3170
3171 ret = btrfs_cleanup_fs_roots(fs_info);
3172 if (ret)
3173 goto out;
3174
3175 down_read(&fs_info->cleanup_work_sem);
3176 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3177 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3178 up_read(&fs_info->cleanup_work_sem);
3179 goto out;
3180 }
3181 up_read(&fs_info->cleanup_work_sem);
3182
3183 mutex_lock(&fs_info->cleaner_mutex);
3184 ret = btrfs_recover_relocation(fs_info);
3185 mutex_unlock(&fs_info->cleaner_mutex);
3186 if (ret < 0) {
3187 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3188 goto out;
3189 }
3190
3191 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3192 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3193 btrfs_info(fs_info, "creating free space tree");
3194 ret = btrfs_create_free_space_tree(fs_info);
3195 if (ret) {
3196 btrfs_warn(fs_info,
3197 "failed to create free space tree: %d", ret);
3198 goto out;
3199 }
3200 }
3201
3202 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3203 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3204 if (ret)
3205 goto out;
3206 }
3207
3208 ret = btrfs_resume_balance_async(fs_info);
3209 if (ret)
3210 goto out;
3211
3212 ret = btrfs_resume_dev_replace_async(fs_info);
3213 if (ret) {
3214 btrfs_warn(fs_info, "failed to resume dev_replace");
3215 goto out;
3216 }
3217
3218 btrfs_qgroup_rescan_resume(fs_info);
3219
3220 if (!fs_info->uuid_root) {
3221 btrfs_info(fs_info, "creating UUID tree");
3222 ret = btrfs_create_uuid_tree(fs_info);
3223 if (ret) {
3224 btrfs_warn(fs_info,
3225 "failed to create the UUID tree %d", ret);
3226 goto out;
3227 }
3228 }
3229
3230out:
3231 return ret;
3232}
3233
3234/*
3235 * Do various sanity and dependency checks of different features.
3236 *
3237 * @is_rw_mount: If the mount is read-write.
3238 *
3239 * This is the place for less strict checks (like for subpage or artificial
3240 * feature dependencies).
3241 *
3242 * For strict checks or possible corruption detection, see
3243 * btrfs_validate_super().
3244 *
3245 * This should be called after btrfs_parse_options(), as some mount options
3246 * (space cache related) can modify on-disk format like free space tree and
3247 * screw up certain feature dependencies.
3248 */
3249int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3250{
3251 struct btrfs_super_block *disk_super = fs_info->super_copy;
3252 u64 incompat = btrfs_super_incompat_flags(disk_super);
3253 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3254 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3255
3256 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3257 btrfs_err(fs_info,
3258 "cannot mount because of unknown incompat features (0x%llx)",
3259 incompat);
3260 return -EINVAL;
3261 }
3262
3263 /* Runtime limitation for mixed block groups. */
3264 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3265 (fs_info->sectorsize != fs_info->nodesize)) {
3266 btrfs_err(fs_info,
3267"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3268 fs_info->nodesize, fs_info->sectorsize);
3269 return -EINVAL;
3270 }
3271
3272 /* Mixed backref is an always-enabled feature. */
3273 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3274
3275 /* Set compression related flags just in case. */
3276 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3277 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3278 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3279 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3280
3281 /*
3282 * An ancient flag, which should really be marked deprecated.
3283 * Such runtime limitation doesn't really need a incompat flag.
3284 */
3285 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3286 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3287
3288 if (compat_ro_unsupp && is_rw_mount) {
3289 btrfs_err(fs_info,
3290 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3291 compat_ro);
3292 return -EINVAL;
3293 }
3294
3295 /*
3296 * We have unsupported RO compat features, although RO mounted, we
3297 * should not cause any metadata writes, including log replay.
3298 * Or we could screw up whatever the new feature requires.
3299 */
3300 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3301 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3302 btrfs_err(fs_info,
3303"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3304 compat_ro);
3305 return -EINVAL;
3306 }
3307
3308 /*
3309 * Artificial limitations for block group tree, to force
3310 * block-group-tree to rely on no-holes and free-space-tree.
3311 */
3312 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3313 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3314 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3315 btrfs_err(fs_info,
3316"block-group-tree feature requires no-holes and free-space-tree features");
3317 return -EINVAL;
3318 }
3319
3320 /*
3321 * Subpage runtime limitation on v1 cache.
3322 *
3323 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3324 * we're already defaulting to v2 cache, no need to bother v1 as it's
3325 * going to be deprecated anyway.
3326 */
3327 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3328 btrfs_warn(fs_info,
3329 "v1 space cache is not supported for page size %lu with sectorsize %u",
3330 PAGE_SIZE, fs_info->sectorsize);
3331 return -EINVAL;
3332 }
3333
3334 /* This can be called by remount, we need to protect the super block. */
3335 spin_lock(&fs_info->super_lock);
3336 btrfs_set_super_incompat_flags(disk_super, incompat);
3337 spin_unlock(&fs_info->super_lock);
3338
3339 return 0;
3340}
3341
3342int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3343 char *options)
3344{
3345 u32 sectorsize;
3346 u32 nodesize;
3347 u32 stripesize;
3348 u64 generation;
3349 u64 features;
3350 u16 csum_type;
3351 struct btrfs_super_block *disk_super;
3352 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3353 struct btrfs_root *tree_root;
3354 struct btrfs_root *chunk_root;
3355 int ret;
3356 int level;
3357
3358 ret = init_mount_fs_info(fs_info, sb);
3359 if (ret)
3360 goto fail;
3361
3362 /* These need to be init'ed before we start creating inodes and such. */
3363 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3364 GFP_KERNEL);
3365 fs_info->tree_root = tree_root;
3366 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3367 GFP_KERNEL);
3368 fs_info->chunk_root = chunk_root;
3369 if (!tree_root || !chunk_root) {
3370 ret = -ENOMEM;
3371 goto fail;
3372 }
3373
3374 ret = btrfs_init_btree_inode(sb);
3375 if (ret)
3376 goto fail;
3377
3378 invalidate_bdev(fs_devices->latest_dev->bdev);
3379
3380 /*
3381 * Read super block and check the signature bytes only
3382 */
3383 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3384 if (IS_ERR(disk_super)) {
3385 ret = PTR_ERR(disk_super);
3386 goto fail_alloc;
3387 }
3388
3389 /*
3390 * Verify the type first, if that or the checksum value are
3391 * corrupted, we'll find out
3392 */
3393 csum_type = btrfs_super_csum_type(disk_super);
3394 if (!btrfs_supported_super_csum(csum_type)) {
3395 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3396 csum_type);
3397 ret = -EINVAL;
3398 btrfs_release_disk_super(disk_super);
3399 goto fail_alloc;
3400 }
3401
3402 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3403
3404 ret = btrfs_init_csum_hash(fs_info, csum_type);
3405 if (ret) {
3406 btrfs_release_disk_super(disk_super);
3407 goto fail_alloc;
3408 }
3409
3410 /*
3411 * We want to check superblock checksum, the type is stored inside.
3412 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3413 */
3414 if (btrfs_check_super_csum(fs_info, disk_super)) {
3415 btrfs_err(fs_info, "superblock checksum mismatch");
3416 ret = -EINVAL;
3417 btrfs_release_disk_super(disk_super);
3418 goto fail_alloc;
3419 }
3420
3421 /*
3422 * super_copy is zeroed at allocation time and we never touch the
3423 * following bytes up to INFO_SIZE, the checksum is calculated from
3424 * the whole block of INFO_SIZE
3425 */
3426 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3427 btrfs_release_disk_super(disk_super);
3428
3429 disk_super = fs_info->super_copy;
3430
3431
3432 features = btrfs_super_flags(disk_super);
3433 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3434 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3435 btrfs_set_super_flags(disk_super, features);
3436 btrfs_info(fs_info,
3437 "found metadata UUID change in progress flag, clearing");
3438 }
3439
3440 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3441 sizeof(*fs_info->super_for_commit));
3442
3443 ret = btrfs_validate_mount_super(fs_info);
3444 if (ret) {
3445 btrfs_err(fs_info, "superblock contains fatal errors");
3446 ret = -EINVAL;
3447 goto fail_alloc;
3448 }
3449
3450 if (!btrfs_super_root(disk_super)) {
3451 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3452 ret = -EINVAL;
3453 goto fail_alloc;
3454 }
3455
3456 /* check FS state, whether FS is broken. */
3457 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3458 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3459
3460 /*
3461 * In the long term, we'll store the compression type in the super
3462 * block, and it'll be used for per file compression control.
3463 */
3464 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3465
3466
3467 /* Set up fs_info before parsing mount options */
3468 nodesize = btrfs_super_nodesize(disk_super);
3469 sectorsize = btrfs_super_sectorsize(disk_super);
3470 stripesize = sectorsize;
3471 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3472 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3473
3474 fs_info->nodesize = nodesize;
3475 fs_info->sectorsize = sectorsize;
3476 fs_info->sectorsize_bits = ilog2(sectorsize);
3477 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3478 fs_info->stripesize = stripesize;
3479
3480 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3481 if (ret)
3482 goto fail_alloc;
3483
3484 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3485 if (ret < 0)
3486 goto fail_alloc;
3487
3488 if (sectorsize < PAGE_SIZE) {
3489 struct btrfs_subpage_info *subpage_info;
3490
3491 /*
3492 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3493 * going to be deprecated.
3494 *
3495 * Force to use v2 cache for subpage case.
3496 */
3497 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3498 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3499 "forcing free space tree for sector size %u with page size %lu",
3500 sectorsize, PAGE_SIZE);
3501
3502 btrfs_warn(fs_info,
3503 "read-write for sector size %u with page size %lu is experimental",
3504 sectorsize, PAGE_SIZE);
3505 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3506 if (!subpage_info) {
3507 ret = -ENOMEM;
3508 goto fail_alloc;
3509 }
3510 btrfs_init_subpage_info(subpage_info, sectorsize);
3511 fs_info->subpage_info = subpage_info;
3512 }
3513
3514 ret = btrfs_init_workqueues(fs_info);
3515 if (ret)
3516 goto fail_sb_buffer;
3517
3518 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3519 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3520
3521 sb->s_blocksize = sectorsize;
3522 sb->s_blocksize_bits = blksize_bits(sectorsize);
3523 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3524
3525 mutex_lock(&fs_info->chunk_mutex);
3526 ret = btrfs_read_sys_array(fs_info);
3527 mutex_unlock(&fs_info->chunk_mutex);
3528 if (ret) {
3529 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3530 goto fail_sb_buffer;
3531 }
3532
3533 generation = btrfs_super_chunk_root_generation(disk_super);
3534 level = btrfs_super_chunk_root_level(disk_super);
3535 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3536 generation, level);
3537 if (ret) {
3538 btrfs_err(fs_info, "failed to read chunk root");
3539 goto fail_tree_roots;
3540 }
3541
3542 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3543 offsetof(struct btrfs_header, chunk_tree_uuid),
3544 BTRFS_UUID_SIZE);
3545
3546 ret = btrfs_read_chunk_tree(fs_info);
3547 if (ret) {
3548 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3549 goto fail_tree_roots;
3550 }
3551
3552 /*
3553 * At this point we know all the devices that make this filesystem,
3554 * including the seed devices but we don't know yet if the replace
3555 * target is required. So free devices that are not part of this
3556 * filesystem but skip the replace target device which is checked
3557 * below in btrfs_init_dev_replace().
3558 */
3559 btrfs_free_extra_devids(fs_devices);
3560 if (!fs_devices->latest_dev->bdev) {
3561 btrfs_err(fs_info, "failed to read devices");
3562 ret = -EIO;
3563 goto fail_tree_roots;
3564 }
3565
3566 ret = init_tree_roots(fs_info);
3567 if (ret)
3568 goto fail_tree_roots;
3569
3570 /*
3571 * Get zone type information of zoned block devices. This will also
3572 * handle emulation of a zoned filesystem if a regular device has the
3573 * zoned incompat feature flag set.
3574 */
3575 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3576 if (ret) {
3577 btrfs_err(fs_info,
3578 "zoned: failed to read device zone info: %d", ret);
3579 goto fail_block_groups;
3580 }
3581
3582 /*
3583 * If we have a uuid root and we're not being told to rescan we need to
3584 * check the generation here so we can set the
3585 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3586 * transaction during a balance or the log replay without updating the
3587 * uuid generation, and then if we crash we would rescan the uuid tree,
3588 * even though it was perfectly fine.
3589 */
3590 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3591 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3592 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3593
3594 ret = btrfs_verify_dev_extents(fs_info);
3595 if (ret) {
3596 btrfs_err(fs_info,
3597 "failed to verify dev extents against chunks: %d",
3598 ret);
3599 goto fail_block_groups;
3600 }
3601 ret = btrfs_recover_balance(fs_info);
3602 if (ret) {
3603 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3604 goto fail_block_groups;
3605 }
3606
3607 ret = btrfs_init_dev_stats(fs_info);
3608 if (ret) {
3609 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3610 goto fail_block_groups;
3611 }
3612
3613 ret = btrfs_init_dev_replace(fs_info);
3614 if (ret) {
3615 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3616 goto fail_block_groups;
3617 }
3618
3619 ret = btrfs_check_zoned_mode(fs_info);
3620 if (ret) {
3621 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3622 ret);
3623 goto fail_block_groups;
3624 }
3625
3626 ret = btrfs_sysfs_add_fsid(fs_devices);
3627 if (ret) {
3628 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3629 ret);
3630 goto fail_block_groups;
3631 }
3632
3633 ret = btrfs_sysfs_add_mounted(fs_info);
3634 if (ret) {
3635 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3636 goto fail_fsdev_sysfs;
3637 }
3638
3639 ret = btrfs_init_space_info(fs_info);
3640 if (ret) {
3641 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3642 goto fail_sysfs;
3643 }
3644
3645 ret = btrfs_read_block_groups(fs_info);
3646 if (ret) {
3647 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3648 goto fail_sysfs;
3649 }
3650
3651 btrfs_free_zone_cache(fs_info);
3652
3653 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3654 !btrfs_check_rw_degradable(fs_info, NULL)) {
3655 btrfs_warn(fs_info,
3656 "writable mount is not allowed due to too many missing devices");
3657 ret = -EINVAL;
3658 goto fail_sysfs;
3659 }
3660
3661 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3662 "btrfs-cleaner");
3663 if (IS_ERR(fs_info->cleaner_kthread)) {
3664 ret = PTR_ERR(fs_info->cleaner_kthread);
3665 goto fail_sysfs;
3666 }
3667
3668 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3669 tree_root,
3670 "btrfs-transaction");
3671 if (IS_ERR(fs_info->transaction_kthread)) {
3672 ret = PTR_ERR(fs_info->transaction_kthread);
3673 goto fail_cleaner;
3674 }
3675
3676 if (!btrfs_test_opt(fs_info, NOSSD) &&
3677 !fs_info->fs_devices->rotating) {
3678 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3679 }
3680
3681 /*
3682 * For devices supporting discard turn on discard=async automatically,
3683 * unless it's already set or disabled. This could be turned off by
3684 * nodiscard for the same mount.
3685 */
3686 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3687 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3688 btrfs_test_opt(fs_info, NODISCARD)) &&
3689 fs_info->fs_devices->discardable) {
3690 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3691 "auto enabling async discard");
3692 }
3693
3694#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3695 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3696 ret = btrfsic_mount(fs_info, fs_devices,
3697 btrfs_test_opt(fs_info,
3698 CHECK_INTEGRITY_DATA) ? 1 : 0,
3699 fs_info->check_integrity_print_mask);
3700 if (ret)
3701 btrfs_warn(fs_info,
3702 "failed to initialize integrity check module: %d",
3703 ret);
3704 }
3705#endif
3706 ret = btrfs_read_qgroup_config(fs_info);
3707 if (ret)
3708 goto fail_trans_kthread;
3709
3710 if (btrfs_build_ref_tree(fs_info))
3711 btrfs_err(fs_info, "couldn't build ref tree");
3712
3713 /* do not make disk changes in broken FS or nologreplay is given */
3714 if (btrfs_super_log_root(disk_super) != 0 &&
3715 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3716 btrfs_info(fs_info, "start tree-log replay");
3717 ret = btrfs_replay_log(fs_info, fs_devices);
3718 if (ret)
3719 goto fail_qgroup;
3720 }
3721
3722 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3723 if (IS_ERR(fs_info->fs_root)) {
3724 ret = PTR_ERR(fs_info->fs_root);
3725 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3726 fs_info->fs_root = NULL;
3727 goto fail_qgroup;
3728 }
3729
3730 if (sb_rdonly(sb))
3731 goto clear_oneshot;
3732
3733 ret = btrfs_start_pre_rw_mount(fs_info);
3734 if (ret) {
3735 close_ctree(fs_info);
3736 return ret;
3737 }
3738 btrfs_discard_resume(fs_info);
3739
3740 if (fs_info->uuid_root &&
3741 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3742 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3743 btrfs_info(fs_info, "checking UUID tree");
3744 ret = btrfs_check_uuid_tree(fs_info);
3745 if (ret) {
3746 btrfs_warn(fs_info,
3747 "failed to check the UUID tree: %d", ret);
3748 close_ctree(fs_info);
3749 return ret;
3750 }
3751 }
3752
3753 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3754
3755 /* Kick the cleaner thread so it'll start deleting snapshots. */
3756 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3757 wake_up_process(fs_info->cleaner_kthread);
3758
3759clear_oneshot:
3760 btrfs_clear_oneshot_options(fs_info);
3761 return 0;
3762
3763fail_qgroup:
3764 btrfs_free_qgroup_config(fs_info);
3765fail_trans_kthread:
3766 kthread_stop(fs_info->transaction_kthread);
3767 btrfs_cleanup_transaction(fs_info);
3768 btrfs_free_fs_roots(fs_info);
3769fail_cleaner:
3770 kthread_stop(fs_info->cleaner_kthread);
3771
3772 /*
3773 * make sure we're done with the btree inode before we stop our
3774 * kthreads
3775 */
3776 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3777
3778fail_sysfs:
3779 btrfs_sysfs_remove_mounted(fs_info);
3780
3781fail_fsdev_sysfs:
3782 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3783
3784fail_block_groups:
3785 btrfs_put_block_group_cache(fs_info);
3786
3787fail_tree_roots:
3788 if (fs_info->data_reloc_root)
3789 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3790 free_root_pointers(fs_info, true);
3791 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3792
3793fail_sb_buffer:
3794 btrfs_stop_all_workers(fs_info);
3795 btrfs_free_block_groups(fs_info);
3796fail_alloc:
3797 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3798
3799 iput(fs_info->btree_inode);
3800fail:
3801 btrfs_close_devices(fs_info->fs_devices);
3802 ASSERT(ret < 0);
3803 return ret;
3804}
3805ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3806
3807static void btrfs_end_super_write(struct bio *bio)
3808{
3809 struct btrfs_device *device = bio->bi_private;
3810 struct bio_vec *bvec;
3811 struct bvec_iter_all iter_all;
3812 struct page *page;
3813
3814 bio_for_each_segment_all(bvec, bio, iter_all) {
3815 page = bvec->bv_page;
3816
3817 if (bio->bi_status) {
3818 btrfs_warn_rl_in_rcu(device->fs_info,
3819 "lost page write due to IO error on %s (%d)",
3820 btrfs_dev_name(device),
3821 blk_status_to_errno(bio->bi_status));
3822 ClearPageUptodate(page);
3823 SetPageError(page);
3824 btrfs_dev_stat_inc_and_print(device,
3825 BTRFS_DEV_STAT_WRITE_ERRS);
3826 } else {
3827 SetPageUptodate(page);
3828 }
3829
3830 put_page(page);
3831 unlock_page(page);
3832 }
3833
3834 bio_put(bio);
3835}
3836
3837struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3838 int copy_num, bool drop_cache)
3839{
3840 struct btrfs_super_block *super;
3841 struct page *page;
3842 u64 bytenr, bytenr_orig;
3843 struct address_space *mapping = bdev->bd_inode->i_mapping;
3844 int ret;
3845
3846 bytenr_orig = btrfs_sb_offset(copy_num);
3847 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3848 if (ret == -ENOENT)
3849 return ERR_PTR(-EINVAL);
3850 else if (ret)
3851 return ERR_PTR(ret);
3852
3853 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3854 return ERR_PTR(-EINVAL);
3855
3856 if (drop_cache) {
3857 /* This should only be called with the primary sb. */
3858 ASSERT(copy_num == 0);
3859
3860 /*
3861 * Drop the page of the primary superblock, so later read will
3862 * always read from the device.
3863 */
3864 invalidate_inode_pages2_range(mapping,
3865 bytenr >> PAGE_SHIFT,
3866 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3867 }
3868
3869 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3870 if (IS_ERR(page))
3871 return ERR_CAST(page);
3872
3873 super = page_address(page);
3874 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3875 btrfs_release_disk_super(super);
3876 return ERR_PTR(-ENODATA);
3877 }
3878
3879 if (btrfs_super_bytenr(super) != bytenr_orig) {
3880 btrfs_release_disk_super(super);
3881 return ERR_PTR(-EINVAL);
3882 }
3883
3884 return super;
3885}
3886
3887
3888struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3889{
3890 struct btrfs_super_block *super, *latest = NULL;
3891 int i;
3892 u64 transid = 0;
3893
3894 /* we would like to check all the supers, but that would make
3895 * a btrfs mount succeed after a mkfs from a different FS.
3896 * So, we need to add a special mount option to scan for
3897 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3898 */
3899 for (i = 0; i < 1; i++) {
3900 super = btrfs_read_dev_one_super(bdev, i, false);
3901 if (IS_ERR(super))
3902 continue;
3903
3904 if (!latest || btrfs_super_generation(super) > transid) {
3905 if (latest)
3906 btrfs_release_disk_super(super);
3907
3908 latest = super;
3909 transid = btrfs_super_generation(super);
3910 }
3911 }
3912
3913 return super;
3914}
3915
3916/*
3917 * Write superblock @sb to the @device. Do not wait for completion, all the
3918 * pages we use for writing are locked.
3919 *
3920 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3921 * the expected device size at commit time. Note that max_mirrors must be
3922 * same for write and wait phases.
3923 *
3924 * Return number of errors when page is not found or submission fails.
3925 */
3926static int write_dev_supers(struct btrfs_device *device,
3927 struct btrfs_super_block *sb, int max_mirrors)
3928{
3929 struct btrfs_fs_info *fs_info = device->fs_info;
3930 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3931 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3932 int i;
3933 int errors = 0;
3934 int ret;
3935 u64 bytenr, bytenr_orig;
3936
3937 if (max_mirrors == 0)
3938 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3939
3940 shash->tfm = fs_info->csum_shash;
3941
3942 for (i = 0; i < max_mirrors; i++) {
3943 struct page *page;
3944 struct bio *bio;
3945 struct btrfs_super_block *disk_super;
3946
3947 bytenr_orig = btrfs_sb_offset(i);
3948 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3949 if (ret == -ENOENT) {
3950 continue;
3951 } else if (ret < 0) {
3952 btrfs_err(device->fs_info,
3953 "couldn't get super block location for mirror %d",
3954 i);
3955 errors++;
3956 continue;
3957 }
3958 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3959 device->commit_total_bytes)
3960 break;
3961
3962 btrfs_set_super_bytenr(sb, bytenr_orig);
3963
3964 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3965 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3966 sb->csum);
3967
3968 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3969 GFP_NOFS);
3970 if (!page) {
3971 btrfs_err(device->fs_info,
3972 "couldn't get super block page for bytenr %llu",
3973 bytenr);
3974 errors++;
3975 continue;
3976 }
3977
3978 /* Bump the refcount for wait_dev_supers() */
3979 get_page(page);
3980
3981 disk_super = page_address(page);
3982 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3983
3984 /*
3985 * Directly use bios here instead of relying on the page cache
3986 * to do I/O, so we don't lose the ability to do integrity
3987 * checking.
3988 */
3989 bio = bio_alloc(device->bdev, 1,
3990 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3991 GFP_NOFS);
3992 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3993 bio->bi_private = device;
3994 bio->bi_end_io = btrfs_end_super_write;
3995 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3996 offset_in_page(bytenr));
3997
3998 /*
3999 * We FUA only the first super block. The others we allow to
4000 * go down lazy and there's a short window where the on-disk
4001 * copies might still contain the older version.
4002 */
4003 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4004 bio->bi_opf |= REQ_FUA;
4005
4006 btrfsic_check_bio(bio);
4007 submit_bio(bio);
4008
4009 if (btrfs_advance_sb_log(device, i))
4010 errors++;
4011 }
4012 return errors < i ? 0 : -1;
4013}
4014
4015/*
4016 * Wait for write completion of superblocks done by write_dev_supers,
4017 * @max_mirrors same for write and wait phases.
4018 *
4019 * Return number of errors when page is not found or not marked up to
4020 * date.
4021 */
4022static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4023{
4024 int i;
4025 int errors = 0;
4026 bool primary_failed = false;
4027 int ret;
4028 u64 bytenr;
4029
4030 if (max_mirrors == 0)
4031 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4032
4033 for (i = 0; i < max_mirrors; i++) {
4034 struct page *page;
4035
4036 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4037 if (ret == -ENOENT) {
4038 break;
4039 } else if (ret < 0) {
4040 errors++;
4041 if (i == 0)
4042 primary_failed = true;
4043 continue;
4044 }
4045 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4046 device->commit_total_bytes)
4047 break;
4048
4049 page = find_get_page(device->bdev->bd_inode->i_mapping,
4050 bytenr >> PAGE_SHIFT);
4051 if (!page) {
4052 errors++;
4053 if (i == 0)
4054 primary_failed = true;
4055 continue;
4056 }
4057 /* Page is submitted locked and unlocked once the IO completes */
4058 wait_on_page_locked(page);
4059 if (PageError(page)) {
4060 errors++;
4061 if (i == 0)
4062 primary_failed = true;
4063 }
4064
4065 /* Drop our reference */
4066 put_page(page);
4067
4068 /* Drop the reference from the writing run */
4069 put_page(page);
4070 }
4071
4072 /* log error, force error return */
4073 if (primary_failed) {
4074 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4075 device->devid);
4076 return -1;
4077 }
4078
4079 return errors < i ? 0 : -1;
4080}
4081
4082/*
4083 * endio for the write_dev_flush, this will wake anyone waiting
4084 * for the barrier when it is done
4085 */
4086static void btrfs_end_empty_barrier(struct bio *bio)
4087{
4088 bio_uninit(bio);
4089 complete(bio->bi_private);
4090}
4091
4092/*
4093 * Submit a flush request to the device if it supports it. Error handling is
4094 * done in the waiting counterpart.
4095 */
4096static void write_dev_flush(struct btrfs_device *device)
4097{
4098 struct bio *bio = &device->flush_bio;
4099
4100 device->last_flush_error = BLK_STS_OK;
4101
4102#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4103 /*
4104 * When a disk has write caching disabled, we skip submission of a bio
4105 * with flush and sync requests before writing the superblock, since
4106 * it's not needed. However when the integrity checker is enabled, this
4107 * results in reports that there are metadata blocks referred by a
4108 * superblock that were not properly flushed. So don't skip the bio
4109 * submission only when the integrity checker is enabled for the sake
4110 * of simplicity, since this is a debug tool and not meant for use in
4111 * non-debug builds.
4112 */
4113 if (!bdev_write_cache(device->bdev))
4114 return;
4115#endif
4116
4117 bio_init(bio, device->bdev, NULL, 0,
4118 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4119 bio->bi_end_io = btrfs_end_empty_barrier;
4120 init_completion(&device->flush_wait);
4121 bio->bi_private = &device->flush_wait;
4122
4123 btrfsic_check_bio(bio);
4124 submit_bio(bio);
4125 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4126}
4127
4128/*
4129 * If the flush bio has been submitted by write_dev_flush, wait for it.
4130 * Return true for any error, and false otherwise.
4131 */
4132static bool wait_dev_flush(struct btrfs_device *device)
4133{
4134 struct bio *bio = &device->flush_bio;
4135
4136 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4137 return false;
4138
4139 wait_for_completion_io(&device->flush_wait);
4140
4141 if (bio->bi_status) {
4142 device->last_flush_error = bio->bi_status;
4143 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
4144 return true;
4145 }
4146
4147 return false;
4148}
4149
4150/*
4151 * send an empty flush down to each device in parallel,
4152 * then wait for them
4153 */
4154static int barrier_all_devices(struct btrfs_fs_info *info)
4155{
4156 struct list_head *head;
4157 struct btrfs_device *dev;
4158 int errors_wait = 0;
4159
4160 lockdep_assert_held(&info->fs_devices->device_list_mutex);
4161 /* send down all the barriers */
4162 head = &info->fs_devices->devices;
4163 list_for_each_entry(dev, head, dev_list) {
4164 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4165 continue;
4166 if (!dev->bdev)
4167 continue;
4168 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4169 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4170 continue;
4171
4172 write_dev_flush(dev);
4173 }
4174
4175 /* wait for all the barriers */
4176 list_for_each_entry(dev, head, dev_list) {
4177 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4178 continue;
4179 if (!dev->bdev) {
4180 errors_wait++;
4181 continue;
4182 }
4183 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4184 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4185 continue;
4186
4187 if (wait_dev_flush(dev))
4188 errors_wait++;
4189 }
4190
4191 /*
4192 * Checks last_flush_error of disks in order to determine the device
4193 * state.
4194 */
4195 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
4196 return -EIO;
4197
4198 return 0;
4199}
4200
4201int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4202{
4203 int raid_type;
4204 int min_tolerated = INT_MAX;
4205
4206 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4207 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4208 min_tolerated = min_t(int, min_tolerated,
4209 btrfs_raid_array[BTRFS_RAID_SINGLE].
4210 tolerated_failures);
4211
4212 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4213 if (raid_type == BTRFS_RAID_SINGLE)
4214 continue;
4215 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4216 continue;
4217 min_tolerated = min_t(int, min_tolerated,
4218 btrfs_raid_array[raid_type].
4219 tolerated_failures);
4220 }
4221
4222 if (min_tolerated == INT_MAX) {
4223 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4224 min_tolerated = 0;
4225 }
4226
4227 return min_tolerated;
4228}
4229
4230int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4231{
4232 struct list_head *head;
4233 struct btrfs_device *dev;
4234 struct btrfs_super_block *sb;
4235 struct btrfs_dev_item *dev_item;
4236 int ret;
4237 int do_barriers;
4238 int max_errors;
4239 int total_errors = 0;
4240 u64 flags;
4241
4242 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4243
4244 /*
4245 * max_mirrors == 0 indicates we're from commit_transaction,
4246 * not from fsync where the tree roots in fs_info have not
4247 * been consistent on disk.
4248 */
4249 if (max_mirrors == 0)
4250 backup_super_roots(fs_info);
4251
4252 sb = fs_info->super_for_commit;
4253 dev_item = &sb->dev_item;
4254
4255 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4256 head = &fs_info->fs_devices->devices;
4257 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4258
4259 if (do_barriers) {
4260 ret = barrier_all_devices(fs_info);
4261 if (ret) {
4262 mutex_unlock(
4263 &fs_info->fs_devices->device_list_mutex);
4264 btrfs_handle_fs_error(fs_info, ret,
4265 "errors while submitting device barriers.");
4266 return ret;
4267 }
4268 }
4269
4270 list_for_each_entry(dev, head, dev_list) {
4271 if (!dev->bdev) {
4272 total_errors++;
4273 continue;
4274 }
4275 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4276 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4277 continue;
4278
4279 btrfs_set_stack_device_generation(dev_item, 0);
4280 btrfs_set_stack_device_type(dev_item, dev->type);
4281 btrfs_set_stack_device_id(dev_item, dev->devid);
4282 btrfs_set_stack_device_total_bytes(dev_item,
4283 dev->commit_total_bytes);
4284 btrfs_set_stack_device_bytes_used(dev_item,
4285 dev->commit_bytes_used);
4286 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4287 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4288 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4289 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4290 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4291 BTRFS_FSID_SIZE);
4292
4293 flags = btrfs_super_flags(sb);
4294 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4295
4296 ret = btrfs_validate_write_super(fs_info, sb);
4297 if (ret < 0) {
4298 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4299 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4300 "unexpected superblock corruption detected");
4301 return -EUCLEAN;
4302 }
4303
4304 ret = write_dev_supers(dev, sb, max_mirrors);
4305 if (ret)
4306 total_errors++;
4307 }
4308 if (total_errors > max_errors) {
4309 btrfs_err(fs_info, "%d errors while writing supers",
4310 total_errors);
4311 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4312
4313 /* FUA is masked off if unsupported and can't be the reason */
4314 btrfs_handle_fs_error(fs_info, -EIO,
4315 "%d errors while writing supers",
4316 total_errors);
4317 return -EIO;
4318 }
4319
4320 total_errors = 0;
4321 list_for_each_entry(dev, head, dev_list) {
4322 if (!dev->bdev)
4323 continue;
4324 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4325 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4326 continue;
4327
4328 ret = wait_dev_supers(dev, max_mirrors);
4329 if (ret)
4330 total_errors++;
4331 }
4332 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4333 if (total_errors > max_errors) {
4334 btrfs_handle_fs_error(fs_info, -EIO,
4335 "%d errors while writing supers",
4336 total_errors);
4337 return -EIO;
4338 }
4339 return 0;
4340}
4341
4342/* Drop a fs root from the radix tree and free it. */
4343void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4344 struct btrfs_root *root)
4345{
4346 bool drop_ref = false;
4347
4348 spin_lock(&fs_info->fs_roots_radix_lock);
4349 radix_tree_delete(&fs_info->fs_roots_radix,
4350 (unsigned long)root->root_key.objectid);
4351 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4352 drop_ref = true;
4353 spin_unlock(&fs_info->fs_roots_radix_lock);
4354
4355 if (BTRFS_FS_ERROR(fs_info)) {
4356 ASSERT(root->log_root == NULL);
4357 if (root->reloc_root) {
4358 btrfs_put_root(root->reloc_root);
4359 root->reloc_root = NULL;
4360 }
4361 }
4362
4363 if (drop_ref)
4364 btrfs_put_root(root);
4365}
4366
4367int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4368{
4369 u64 root_objectid = 0;
4370 struct btrfs_root *gang[8];
4371 int i = 0;
4372 int err = 0;
4373 unsigned int ret = 0;
4374
4375 while (1) {
4376 spin_lock(&fs_info->fs_roots_radix_lock);
4377 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4378 (void **)gang, root_objectid,
4379 ARRAY_SIZE(gang));
4380 if (!ret) {
4381 spin_unlock(&fs_info->fs_roots_radix_lock);
4382 break;
4383 }
4384 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4385
4386 for (i = 0; i < ret; i++) {
4387 /* Avoid to grab roots in dead_roots */
4388 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4389 gang[i] = NULL;
4390 continue;
4391 }
4392 /* grab all the search result for later use */
4393 gang[i] = btrfs_grab_root(gang[i]);
4394 }
4395 spin_unlock(&fs_info->fs_roots_radix_lock);
4396
4397 for (i = 0; i < ret; i++) {
4398 if (!gang[i])
4399 continue;
4400 root_objectid = gang[i]->root_key.objectid;
4401 err = btrfs_orphan_cleanup(gang[i]);
4402 if (err)
4403 goto out;
4404 btrfs_put_root(gang[i]);
4405 }
4406 root_objectid++;
4407 }
4408out:
4409 /* release the uncleaned roots due to error */
4410 for (; i < ret; i++) {
4411 if (gang[i])
4412 btrfs_put_root(gang[i]);
4413 }
4414 return err;
4415}
4416
4417int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4418{
4419 struct btrfs_root *root = fs_info->tree_root;
4420 struct btrfs_trans_handle *trans;
4421
4422 mutex_lock(&fs_info->cleaner_mutex);
4423 btrfs_run_delayed_iputs(fs_info);
4424 mutex_unlock(&fs_info->cleaner_mutex);
4425 wake_up_process(fs_info->cleaner_kthread);
4426
4427 /* wait until ongoing cleanup work done */
4428 down_write(&fs_info->cleanup_work_sem);
4429 up_write(&fs_info->cleanup_work_sem);
4430
4431 trans = btrfs_join_transaction(root);
4432 if (IS_ERR(trans))
4433 return PTR_ERR(trans);
4434 return btrfs_commit_transaction(trans);
4435}
4436
4437static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4438{
4439 struct btrfs_transaction *trans;
4440 struct btrfs_transaction *tmp;
4441 bool found = false;
4442
4443 if (list_empty(&fs_info->trans_list))
4444 return;
4445
4446 /*
4447 * This function is only called at the very end of close_ctree(),
4448 * thus no other running transaction, no need to take trans_lock.
4449 */
4450 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4451 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4452 struct extent_state *cached = NULL;
4453 u64 dirty_bytes = 0;
4454 u64 cur = 0;
4455 u64 found_start;
4456 u64 found_end;
4457
4458 found = true;
4459 while (!find_first_extent_bit(&trans->dirty_pages, cur,
4460 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4461 dirty_bytes += found_end + 1 - found_start;
4462 cur = found_end + 1;
4463 }
4464 btrfs_warn(fs_info,
4465 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4466 trans->transid, dirty_bytes);
4467 btrfs_cleanup_one_transaction(trans, fs_info);
4468
4469 if (trans == fs_info->running_transaction)
4470 fs_info->running_transaction = NULL;
4471 list_del_init(&trans->list);
4472
4473 btrfs_put_transaction(trans);
4474 trace_btrfs_transaction_commit(fs_info);
4475 }
4476 ASSERT(!found);
4477}
4478
4479void __cold close_ctree(struct btrfs_fs_info *fs_info)
4480{
4481 int ret;
4482
4483 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4484
4485 /*
4486 * If we had UNFINISHED_DROPS we could still be processing them, so
4487 * clear that bit and wake up relocation so it can stop.
4488 * We must do this before stopping the block group reclaim task, because
4489 * at btrfs_relocate_block_group() we wait for this bit, and after the
4490 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4491 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4492 * return 1.
4493 */
4494 btrfs_wake_unfinished_drop(fs_info);
4495
4496 /*
4497 * We may have the reclaim task running and relocating a data block group,
4498 * in which case it may create delayed iputs. So stop it before we park
4499 * the cleaner kthread otherwise we can get new delayed iputs after
4500 * parking the cleaner, and that can make the async reclaim task to hang
4501 * if it's waiting for delayed iputs to complete, since the cleaner is
4502 * parked and can not run delayed iputs - this will make us hang when
4503 * trying to stop the async reclaim task.
4504 */
4505 cancel_work_sync(&fs_info->reclaim_bgs_work);
4506 /*
4507 * We don't want the cleaner to start new transactions, add more delayed
4508 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4509 * because that frees the task_struct, and the transaction kthread might
4510 * still try to wake up the cleaner.
4511 */
4512 kthread_park(fs_info->cleaner_kthread);
4513
4514 /* wait for the qgroup rescan worker to stop */
4515 btrfs_qgroup_wait_for_completion(fs_info, false);
4516
4517 /* wait for the uuid_scan task to finish */
4518 down(&fs_info->uuid_tree_rescan_sem);
4519 /* avoid complains from lockdep et al., set sem back to initial state */
4520 up(&fs_info->uuid_tree_rescan_sem);
4521
4522 /* pause restriper - we want to resume on mount */
4523 btrfs_pause_balance(fs_info);
4524
4525 btrfs_dev_replace_suspend_for_unmount(fs_info);
4526
4527 btrfs_scrub_cancel(fs_info);
4528
4529 /* wait for any defraggers to finish */
4530 wait_event(fs_info->transaction_wait,
4531 (atomic_read(&fs_info->defrag_running) == 0));
4532
4533 /* clear out the rbtree of defraggable inodes */
4534 btrfs_cleanup_defrag_inodes(fs_info);
4535
4536 /*
4537 * After we parked the cleaner kthread, ordered extents may have
4538 * completed and created new delayed iputs. If one of the async reclaim
4539 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4540 * can hang forever trying to stop it, because if a delayed iput is
4541 * added after it ran btrfs_run_delayed_iputs() and before it called
4542 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4543 * no one else to run iputs.
4544 *
4545 * So wait for all ongoing ordered extents to complete and then run
4546 * delayed iputs. This works because once we reach this point no one
4547 * can either create new ordered extents nor create delayed iputs
4548 * through some other means.
4549 *
4550 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4551 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4552 * but the delayed iput for the respective inode is made only when doing
4553 * the final btrfs_put_ordered_extent() (which must happen at
4554 * btrfs_finish_ordered_io() when we are unmounting).
4555 */
4556 btrfs_flush_workqueue(fs_info->endio_write_workers);
4557 /* Ordered extents for free space inodes. */
4558 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4559 btrfs_run_delayed_iputs(fs_info);
4560
4561 cancel_work_sync(&fs_info->async_reclaim_work);
4562 cancel_work_sync(&fs_info->async_data_reclaim_work);
4563 cancel_work_sync(&fs_info->preempt_reclaim_work);
4564
4565 /* Cancel or finish ongoing discard work */
4566 btrfs_discard_cleanup(fs_info);
4567
4568 if (!sb_rdonly(fs_info->sb)) {
4569 /*
4570 * The cleaner kthread is stopped, so do one final pass over
4571 * unused block groups.
4572 */
4573 btrfs_delete_unused_bgs(fs_info);
4574
4575 /*
4576 * There might be existing delayed inode workers still running
4577 * and holding an empty delayed inode item. We must wait for
4578 * them to complete first because they can create a transaction.
4579 * This happens when someone calls btrfs_balance_delayed_items()
4580 * and then a transaction commit runs the same delayed nodes
4581 * before any delayed worker has done something with the nodes.
4582 * We must wait for any worker here and not at transaction
4583 * commit time since that could cause a deadlock.
4584 * This is a very rare case.
4585 */
4586 btrfs_flush_workqueue(fs_info->delayed_workers);
4587
4588 ret = btrfs_commit_super(fs_info);
4589 if (ret)
4590 btrfs_err(fs_info, "commit super ret %d", ret);
4591 }
4592
4593 if (BTRFS_FS_ERROR(fs_info))
4594 btrfs_error_commit_super(fs_info);
4595
4596 kthread_stop(fs_info->transaction_kthread);
4597 kthread_stop(fs_info->cleaner_kthread);
4598
4599 ASSERT(list_empty(&fs_info->delayed_iputs));
4600 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4601
4602 if (btrfs_check_quota_leak(fs_info)) {
4603 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4604 btrfs_err(fs_info, "qgroup reserved space leaked");
4605 }
4606
4607 btrfs_free_qgroup_config(fs_info);
4608 ASSERT(list_empty(&fs_info->delalloc_roots));
4609
4610 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4611 btrfs_info(fs_info, "at unmount delalloc count %lld",
4612 percpu_counter_sum(&fs_info->delalloc_bytes));
4613 }
4614
4615 if (percpu_counter_sum(&fs_info->ordered_bytes))
4616 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4617 percpu_counter_sum(&fs_info->ordered_bytes));
4618
4619 btrfs_sysfs_remove_mounted(fs_info);
4620 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4621
4622 btrfs_put_block_group_cache(fs_info);
4623
4624 /*
4625 * we must make sure there is not any read request to
4626 * submit after we stopping all workers.
4627 */
4628 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4629 btrfs_stop_all_workers(fs_info);
4630
4631 /* We shouldn't have any transaction open at this point */
4632 warn_about_uncommitted_trans(fs_info);
4633
4634 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4635 free_root_pointers(fs_info, true);
4636 btrfs_free_fs_roots(fs_info);
4637
4638 /*
4639 * We must free the block groups after dropping the fs_roots as we could
4640 * have had an IO error and have left over tree log blocks that aren't
4641 * cleaned up until the fs roots are freed. This makes the block group
4642 * accounting appear to be wrong because there's pending reserved bytes,
4643 * so make sure we do the block group cleanup afterwards.
4644 */
4645 btrfs_free_block_groups(fs_info);
4646
4647 iput(fs_info->btree_inode);
4648
4649#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4650 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4651 btrfsic_unmount(fs_info->fs_devices);
4652#endif
4653
4654 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4655 btrfs_close_devices(fs_info->fs_devices);
4656}
4657
4658int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4659 int atomic)
4660{
4661 int ret;
4662 struct inode *btree_inode = buf->pages[0]->mapping->host;
4663
4664 ret = extent_buffer_uptodate(buf);
4665 if (!ret)
4666 return ret;
4667
4668 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4669 parent_transid, atomic);
4670 if (ret == -EAGAIN)
4671 return ret;
4672 return !ret;
4673}
4674
4675void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4676{
4677 struct btrfs_fs_info *fs_info = buf->fs_info;
4678 u64 transid = btrfs_header_generation(buf);
4679 int was_dirty;
4680
4681#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4682 /*
4683 * This is a fast path so only do this check if we have sanity tests
4684 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4685 * outside of the sanity tests.
4686 */
4687 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4688 return;
4689#endif
4690 btrfs_assert_tree_write_locked(buf);
4691 if (transid != fs_info->generation)
4692 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4693 buf->start, transid, fs_info->generation);
4694 was_dirty = set_extent_buffer_dirty(buf);
4695 if (!was_dirty)
4696 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4697 buf->len,
4698 fs_info->dirty_metadata_batch);
4699#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4700 /*
4701 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4702 * but item data not updated.
4703 * So here we should only check item pointers, not item data.
4704 */
4705 if (btrfs_header_level(buf) == 0 &&
4706 btrfs_check_leaf_relaxed(buf)) {
4707 btrfs_print_leaf(buf);
4708 ASSERT(0);
4709 }
4710#endif
4711}
4712
4713static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4714 int flush_delayed)
4715{
4716 /*
4717 * looks as though older kernels can get into trouble with
4718 * this code, they end up stuck in balance_dirty_pages forever
4719 */
4720 int ret;
4721
4722 if (current->flags & PF_MEMALLOC)
4723 return;
4724
4725 if (flush_delayed)
4726 btrfs_balance_delayed_items(fs_info);
4727
4728 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4729 BTRFS_DIRTY_METADATA_THRESH,
4730 fs_info->dirty_metadata_batch);
4731 if (ret > 0) {
4732 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4733 }
4734}
4735
4736void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4737{
4738 __btrfs_btree_balance_dirty(fs_info, 1);
4739}
4740
4741void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4742{
4743 __btrfs_btree_balance_dirty(fs_info, 0);
4744}
4745
4746static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4747{
4748 /* cleanup FS via transaction */
4749 btrfs_cleanup_transaction(fs_info);
4750
4751 mutex_lock(&fs_info->cleaner_mutex);
4752 btrfs_run_delayed_iputs(fs_info);
4753 mutex_unlock(&fs_info->cleaner_mutex);
4754
4755 down_write(&fs_info->cleanup_work_sem);
4756 up_write(&fs_info->cleanup_work_sem);
4757}
4758
4759static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4760{
4761 struct btrfs_root *gang[8];
4762 u64 root_objectid = 0;
4763 int ret;
4764
4765 spin_lock(&fs_info->fs_roots_radix_lock);
4766 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4767 (void **)gang, root_objectid,
4768 ARRAY_SIZE(gang))) != 0) {
4769 int i;
4770
4771 for (i = 0; i < ret; i++)
4772 gang[i] = btrfs_grab_root(gang[i]);
4773 spin_unlock(&fs_info->fs_roots_radix_lock);
4774
4775 for (i = 0; i < ret; i++) {
4776 if (!gang[i])
4777 continue;
4778 root_objectid = gang[i]->root_key.objectid;
4779 btrfs_free_log(NULL, gang[i]);
4780 btrfs_put_root(gang[i]);
4781 }
4782 root_objectid++;
4783 spin_lock(&fs_info->fs_roots_radix_lock);
4784 }
4785 spin_unlock(&fs_info->fs_roots_radix_lock);
4786 btrfs_free_log_root_tree(NULL, fs_info);
4787}
4788
4789static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4790{
4791 struct btrfs_ordered_extent *ordered;
4792
4793 spin_lock(&root->ordered_extent_lock);
4794 /*
4795 * This will just short circuit the ordered completion stuff which will
4796 * make sure the ordered extent gets properly cleaned up.
4797 */
4798 list_for_each_entry(ordered, &root->ordered_extents,
4799 root_extent_list)
4800 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4801 spin_unlock(&root->ordered_extent_lock);
4802}
4803
4804static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4805{
4806 struct btrfs_root *root;
4807 struct list_head splice;
4808
4809 INIT_LIST_HEAD(&splice);
4810
4811 spin_lock(&fs_info->ordered_root_lock);
4812 list_splice_init(&fs_info->ordered_roots, &splice);
4813 while (!list_empty(&splice)) {
4814 root = list_first_entry(&splice, struct btrfs_root,
4815 ordered_root);
4816 list_move_tail(&root->ordered_root,
4817 &fs_info->ordered_roots);
4818
4819 spin_unlock(&fs_info->ordered_root_lock);
4820 btrfs_destroy_ordered_extents(root);
4821
4822 cond_resched();
4823 spin_lock(&fs_info->ordered_root_lock);
4824 }
4825 spin_unlock(&fs_info->ordered_root_lock);
4826
4827 /*
4828 * We need this here because if we've been flipped read-only we won't
4829 * get sync() from the umount, so we need to make sure any ordered
4830 * extents that haven't had their dirty pages IO start writeout yet
4831 * actually get run and error out properly.
4832 */
4833 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4834}
4835
4836static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4837 struct btrfs_fs_info *fs_info)
4838{
4839 struct rb_node *node;
4840 struct btrfs_delayed_ref_root *delayed_refs;
4841 struct btrfs_delayed_ref_node *ref;
4842 int ret = 0;
4843
4844 delayed_refs = &trans->delayed_refs;
4845
4846 spin_lock(&delayed_refs->lock);
4847 if (atomic_read(&delayed_refs->num_entries) == 0) {
4848 spin_unlock(&delayed_refs->lock);
4849 btrfs_debug(fs_info, "delayed_refs has NO entry");
4850 return ret;
4851 }
4852
4853 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4854 struct btrfs_delayed_ref_head *head;
4855 struct rb_node *n;
4856 bool pin_bytes = false;
4857
4858 head = rb_entry(node, struct btrfs_delayed_ref_head,
4859 href_node);
4860 if (btrfs_delayed_ref_lock(delayed_refs, head))
4861 continue;
4862
4863 spin_lock(&head->lock);
4864 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4865 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4866 ref_node);
4867 ref->in_tree = 0;
4868 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4869 RB_CLEAR_NODE(&ref->ref_node);
4870 if (!list_empty(&ref->add_list))
4871 list_del(&ref->add_list);
4872 atomic_dec(&delayed_refs->num_entries);
4873 btrfs_put_delayed_ref(ref);
4874 }
4875 if (head->must_insert_reserved)
4876 pin_bytes = true;
4877 btrfs_free_delayed_extent_op(head->extent_op);
4878 btrfs_delete_ref_head(delayed_refs, head);
4879 spin_unlock(&head->lock);
4880 spin_unlock(&delayed_refs->lock);
4881 mutex_unlock(&head->mutex);
4882
4883 if (pin_bytes) {
4884 struct btrfs_block_group *cache;
4885
4886 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4887 BUG_ON(!cache);
4888
4889 spin_lock(&cache->space_info->lock);
4890 spin_lock(&cache->lock);
4891 cache->pinned += head->num_bytes;
4892 btrfs_space_info_update_bytes_pinned(fs_info,
4893 cache->space_info, head->num_bytes);
4894 cache->reserved -= head->num_bytes;
4895 cache->space_info->bytes_reserved -= head->num_bytes;
4896 spin_unlock(&cache->lock);
4897 spin_unlock(&cache->space_info->lock);
4898
4899 btrfs_put_block_group(cache);
4900
4901 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4902 head->bytenr + head->num_bytes - 1);
4903 }
4904 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4905 btrfs_put_delayed_ref_head(head);
4906 cond_resched();
4907 spin_lock(&delayed_refs->lock);
4908 }
4909 btrfs_qgroup_destroy_extent_records(trans);
4910
4911 spin_unlock(&delayed_refs->lock);
4912
4913 return ret;
4914}
4915
4916static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4917{
4918 struct btrfs_inode *btrfs_inode;
4919 struct list_head splice;
4920
4921 INIT_LIST_HEAD(&splice);
4922
4923 spin_lock(&root->delalloc_lock);
4924 list_splice_init(&root->delalloc_inodes, &splice);
4925
4926 while (!list_empty(&splice)) {
4927 struct inode *inode = NULL;
4928 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4929 delalloc_inodes);
4930 __btrfs_del_delalloc_inode(root, btrfs_inode);
4931 spin_unlock(&root->delalloc_lock);
4932
4933 /*
4934 * Make sure we get a live inode and that it'll not disappear
4935 * meanwhile.
4936 */
4937 inode = igrab(&btrfs_inode->vfs_inode);
4938 if (inode) {
4939 unsigned int nofs_flag;
4940
4941 nofs_flag = memalloc_nofs_save();
4942 invalidate_inode_pages2(inode->i_mapping);
4943 memalloc_nofs_restore(nofs_flag);
4944 iput(inode);
4945 }
4946 spin_lock(&root->delalloc_lock);
4947 }
4948 spin_unlock(&root->delalloc_lock);
4949}
4950
4951static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4952{
4953 struct btrfs_root *root;
4954 struct list_head splice;
4955
4956 INIT_LIST_HEAD(&splice);
4957
4958 spin_lock(&fs_info->delalloc_root_lock);
4959 list_splice_init(&fs_info->delalloc_roots, &splice);
4960 while (!list_empty(&splice)) {
4961 root = list_first_entry(&splice, struct btrfs_root,
4962 delalloc_root);
4963 root = btrfs_grab_root(root);
4964 BUG_ON(!root);
4965 spin_unlock(&fs_info->delalloc_root_lock);
4966
4967 btrfs_destroy_delalloc_inodes(root);
4968 btrfs_put_root(root);
4969
4970 spin_lock(&fs_info->delalloc_root_lock);
4971 }
4972 spin_unlock(&fs_info->delalloc_root_lock);
4973}
4974
4975static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4976 struct extent_io_tree *dirty_pages,
4977 int mark)
4978{
4979 int ret;
4980 struct extent_buffer *eb;
4981 u64 start = 0;
4982 u64 end;
4983
4984 while (1) {
4985 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4986 mark, NULL);
4987 if (ret)
4988 break;
4989
4990 clear_extent_bits(dirty_pages, start, end, mark);
4991 while (start <= end) {
4992 eb = find_extent_buffer(fs_info, start);
4993 start += fs_info->nodesize;
4994 if (!eb)
4995 continue;
4996
4997 btrfs_tree_lock(eb);
4998 wait_on_extent_buffer_writeback(eb);
4999 btrfs_clear_buffer_dirty(NULL, eb);
5000 btrfs_tree_unlock(eb);
5001
5002 free_extent_buffer_stale(eb);
5003 }
5004 }
5005
5006 return ret;
5007}
5008
5009static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5010 struct extent_io_tree *unpin)
5011{
5012 u64 start;
5013 u64 end;
5014 int ret;
5015
5016 while (1) {
5017 struct extent_state *cached_state = NULL;
5018
5019 /*
5020 * The btrfs_finish_extent_commit() may get the same range as
5021 * ours between find_first_extent_bit and clear_extent_dirty.
5022 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5023 * the same extent range.
5024 */
5025 mutex_lock(&fs_info->unused_bg_unpin_mutex);
5026 ret = find_first_extent_bit(unpin, 0, &start, &end,
5027 EXTENT_DIRTY, &cached_state);
5028 if (ret) {
5029 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5030 break;
5031 }
5032
5033 clear_extent_dirty(unpin, start, end, &cached_state);
5034 free_extent_state(cached_state);
5035 btrfs_error_unpin_extent_range(fs_info, start, end);
5036 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5037 cond_resched();
5038 }
5039
5040 return 0;
5041}
5042
5043static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5044{
5045 struct inode *inode;
5046
5047 inode = cache->io_ctl.inode;
5048 if (inode) {
5049 unsigned int nofs_flag;
5050
5051 nofs_flag = memalloc_nofs_save();
5052 invalidate_inode_pages2(inode->i_mapping);
5053 memalloc_nofs_restore(nofs_flag);
5054
5055 BTRFS_I(inode)->generation = 0;
5056 cache->io_ctl.inode = NULL;
5057 iput(inode);
5058 }
5059 ASSERT(cache->io_ctl.pages == NULL);
5060 btrfs_put_block_group(cache);
5061}
5062
5063void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5064 struct btrfs_fs_info *fs_info)
5065{
5066 struct btrfs_block_group *cache;
5067
5068 spin_lock(&cur_trans->dirty_bgs_lock);
5069 while (!list_empty(&cur_trans->dirty_bgs)) {
5070 cache = list_first_entry(&cur_trans->dirty_bgs,
5071 struct btrfs_block_group,
5072 dirty_list);
5073
5074 if (!list_empty(&cache->io_list)) {
5075 spin_unlock(&cur_trans->dirty_bgs_lock);
5076 list_del_init(&cache->io_list);
5077 btrfs_cleanup_bg_io(cache);
5078 spin_lock(&cur_trans->dirty_bgs_lock);
5079 }
5080
5081 list_del_init(&cache->dirty_list);
5082 spin_lock(&cache->lock);
5083 cache->disk_cache_state = BTRFS_DC_ERROR;
5084 spin_unlock(&cache->lock);
5085
5086 spin_unlock(&cur_trans->dirty_bgs_lock);
5087 btrfs_put_block_group(cache);
5088 btrfs_delayed_refs_rsv_release(fs_info, 1);
5089 spin_lock(&cur_trans->dirty_bgs_lock);
5090 }
5091 spin_unlock(&cur_trans->dirty_bgs_lock);
5092
5093 /*
5094 * Refer to the definition of io_bgs member for details why it's safe
5095 * to use it without any locking
5096 */
5097 while (!list_empty(&cur_trans->io_bgs)) {
5098 cache = list_first_entry(&cur_trans->io_bgs,
5099 struct btrfs_block_group,
5100 io_list);
5101
5102 list_del_init(&cache->io_list);
5103 spin_lock(&cache->lock);
5104 cache->disk_cache_state = BTRFS_DC_ERROR;
5105 spin_unlock(&cache->lock);
5106 btrfs_cleanup_bg_io(cache);
5107 }
5108}
5109
5110void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5111 struct btrfs_fs_info *fs_info)
5112{
5113 struct btrfs_device *dev, *tmp;
5114
5115 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5116 ASSERT(list_empty(&cur_trans->dirty_bgs));
5117 ASSERT(list_empty(&cur_trans->io_bgs));
5118
5119 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5120 post_commit_list) {
5121 list_del_init(&dev->post_commit_list);
5122 }
5123
5124 btrfs_destroy_delayed_refs(cur_trans, fs_info);
5125
5126 cur_trans->state = TRANS_STATE_COMMIT_START;
5127 wake_up(&fs_info->transaction_blocked_wait);
5128
5129 cur_trans->state = TRANS_STATE_UNBLOCKED;
5130 wake_up(&fs_info->transaction_wait);
5131
5132 btrfs_destroy_delayed_inodes(fs_info);
5133
5134 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5135 EXTENT_DIRTY);
5136 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5137
5138 btrfs_free_redirty_list(cur_trans);
5139
5140 cur_trans->state =TRANS_STATE_COMPLETED;
5141 wake_up(&cur_trans->commit_wait);
5142}
5143
5144static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5145{
5146 struct btrfs_transaction *t;
5147
5148 mutex_lock(&fs_info->transaction_kthread_mutex);
5149
5150 spin_lock(&fs_info->trans_lock);
5151 while (!list_empty(&fs_info->trans_list)) {
5152 t = list_first_entry(&fs_info->trans_list,
5153 struct btrfs_transaction, list);
5154 if (t->state >= TRANS_STATE_COMMIT_START) {
5155 refcount_inc(&t->use_count);
5156 spin_unlock(&fs_info->trans_lock);
5157 btrfs_wait_for_commit(fs_info, t->transid);
5158 btrfs_put_transaction(t);
5159 spin_lock(&fs_info->trans_lock);
5160 continue;
5161 }
5162 if (t == fs_info->running_transaction) {
5163 t->state = TRANS_STATE_COMMIT_DOING;
5164 spin_unlock(&fs_info->trans_lock);
5165 /*
5166 * We wait for 0 num_writers since we don't hold a trans
5167 * handle open currently for this transaction.
5168 */
5169 wait_event(t->writer_wait,
5170 atomic_read(&t->num_writers) == 0);
5171 } else {
5172 spin_unlock(&fs_info->trans_lock);
5173 }
5174 btrfs_cleanup_one_transaction(t, fs_info);
5175
5176 spin_lock(&fs_info->trans_lock);
5177 if (t == fs_info->running_transaction)
5178 fs_info->running_transaction = NULL;
5179 list_del_init(&t->list);
5180 spin_unlock(&fs_info->trans_lock);
5181
5182 btrfs_put_transaction(t);
5183 trace_btrfs_transaction_commit(fs_info);
5184 spin_lock(&fs_info->trans_lock);
5185 }
5186 spin_unlock(&fs_info->trans_lock);
5187 btrfs_destroy_all_ordered_extents(fs_info);
5188 btrfs_destroy_delayed_inodes(fs_info);
5189 btrfs_assert_delayed_root_empty(fs_info);
5190 btrfs_destroy_all_delalloc_inodes(fs_info);
5191 btrfs_drop_all_logs(fs_info);
5192 mutex_unlock(&fs_info->transaction_kthread_mutex);
5193
5194 return 0;
5195}
5196
5197int btrfs_init_root_free_objectid(struct btrfs_root *root)
5198{
5199 struct btrfs_path *path;
5200 int ret;
5201 struct extent_buffer *l;
5202 struct btrfs_key search_key;
5203 struct btrfs_key found_key;
5204 int slot;
5205
5206 path = btrfs_alloc_path();
5207 if (!path)
5208 return -ENOMEM;
5209
5210 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5211 search_key.type = -1;
5212 search_key.offset = (u64)-1;
5213 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5214 if (ret < 0)
5215 goto error;
5216 BUG_ON(ret == 0); /* Corruption */
5217 if (path->slots[0] > 0) {
5218 slot = path->slots[0] - 1;
5219 l = path->nodes[0];
5220 btrfs_item_key_to_cpu(l, &found_key, slot);
5221 root->free_objectid = max_t(u64, found_key.objectid + 1,
5222 BTRFS_FIRST_FREE_OBJECTID);
5223 } else {
5224 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5225 }
5226 ret = 0;
5227error:
5228 btrfs_free_path(path);
5229 return ret;
5230}
5231
5232int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5233{
5234 int ret;
5235 mutex_lock(&root->objectid_mutex);
5236
5237 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5238 btrfs_warn(root->fs_info,
5239 "the objectid of root %llu reaches its highest value",
5240 root->root_key.objectid);
5241 ret = -ENOSPC;
5242 goto out;
5243 }
5244
5245 *objectid = root->free_objectid++;
5246 ret = 0;
5247out:
5248 mutex_unlock(&root->objectid_mutex);
5249 return ret;
5250}